
_A19I 1 "iALERTING EXPLANATION AMD KNOWLEDGE ACQUISITION FOR A 77-1
NAVAL THREAT ASSESSMENT EXPERT SVSTEM(U) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA L E GADBOIS APR 88

UNCLASSIFIED NOSC/TR-t285 F/G 12/5 M

E 10 0 00 1010iE
EhhEEEmhmhhhhE

11.1

11111 1.5 1.4__

MICROCOPY RESOLUTION TEST CHARI

,.n1

Iiii
I#'
.,w,,S S S S S S S *

we CR4.Y ESLUbOdTSTCHR

",# .

Technical Report 1205
April 1988

Alerting, Explanation, and
00 Knowledge Acquisition for a

Naval Threat Assessment
Expert System

(D0 DTIC L. E. abi

II-IIII ELECTE
IM APR6

0 5

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT. USN R. M. HILLYER

Commander Technical Director

ADMINISTRATIVE INFORMATION

The work reported here was performed by members of the Artificial Intelligence Technology Branch

at NOSC, and the Computer Science Department at Carnegie-Mellon University. Research funding was

provided by DARPA.

Released by Under authority of

Don Eddington, Head W.T. Rasmussen, Head
Artificial Intelligence Advanced C2 Technologies

Technology Branch Division

i :.'.

-%

0.

01

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

_____Approved for public release; distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NOSC TR 1205

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center Code 444

6c. ADDRESS (Cy. Sta'e &W ZIP Code) 7b, ADDRESS (C, StarandZPCode)

San Diego, CA 92152-5000

8a. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(01 applicalble)

Defense Advanced Research Projects Agency DARPA

8c. ADDRESS (Cay. State and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO. PROJECT NO. TASK NO. AGENCY

DARPA-Naval Technology Office ACCESSION NO.
1400 Wilson Blvd.
Arlington, VA 22209 62301E DARPA DARPA 440-CD50

* 11 TITLE (includeSecurdyClasstczaon)

Alerting, Explanation, and Knowledge Acquisition for a Naval Threat Assessment Expert System
i2 PERSONAL AUTHOR(S)

Laurence E. Gadbois
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, MothDay) 1S. PAGE COUNT

Final FROM Oct 1987 TO Dec 1987 April 1988 28
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Contue on remsed necessary andr denby block number)

FIELD GROUP SUB-GROUP

Artificial intelligence, explanation, alerts

19. ABSTRACT (Contie on reverse if necessary anid dentby block number)

A threat assessment expert system is written which provides textual explanation of its conclusion, allows the user to modify--at
run-time--the threat assessment tasks performed, and captures these user modifications for knowledge acquisition. The run-time
method used to define the constituent elements of a threat situation is outlined in depth. The computer program compares the
components of a threat event (defined by a knowledgeable user) with the dynamic track data base. If the threat event occurs, a warning
is issued to the user. This definition of a threat event is added to the program and thus acts as run-time knowledge acquisition. The
matching between the user defined attributes and the corresponding track data is displayed for explanation.

20 DISTR18UTION 'AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

1UNCLASSIFIEDUNLIMITED OX SAME AS RPT LIDTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inckueAeaCxie) 22c. OFFICE SYMBOL

Laurence E. Gadbois (619) 553- 4141 Code 444

83 APR EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIED* DD FORM 1473, 84 JAN ALL OTHER EDITIONS ARE OBSOLETE UNCLASSIFIE
• SECURITY CLASSIFICATION OF THIS PAGE

. -l , % % %
E-.1;

UNCLASSIFIED

4 SECURITY CLASSIFICATION OF THIS PAGE (When DMAEnlmd)

,,

..

I

DD FORM 1473, 84 JAN UNCLASSIFIED
I SECURITY CLASSIFICATION OF THIS PAGE (W1IDafteId)

EXECUTIVE SUMMARY

PROBLEM
Threat assessment for a naval command ship is a dynamic and complex task which must

evolve in response both to the external situation and to the varied and temporal needs of

different users. A computer program was needed to assist the tactical watch officer with this

task. For this threat assessment program to be useful, it had to be tailorable by the user to

perform analyses and present information appropriate to the types of tasks the user is interested

in. This tailoring must also be amenable to modification during run time in order to adapt to

changing threat assessment needs.

OBJECTIVE
The project's objective was to write a computer program to provide intelligent assistance to

the tactical watch officer. This report describes a software architecture which provides three

functional capabilities to the computer program: (1) to provide the user with the ability to
modify, at run time, the threat assessment tasks performed by the program; (2) to explain

conclusions derived by the expert system; and (3) to incorporate into the program an expert

user's input of the components of tactically significant events, thereby performing knowledge

acquisition.

APPROACH
The naval threat assessment realm appears suitable for the application of expert system

programming techniques. These techniques facilitate encapsulating an expert's knowledge in

computer code and capitalizing on the computational power of a computer to handle the

extensive information processing resulting from a dynamic data stream.
Four major points are addressed in this report: First, the foci of threat assessment

personnel are on a variety of different tasks. For example, some items of high interest to ASW

(antisubmarine warfare) personnel may be of marginal interest to air-strike personnel. Second,

items of interest change over time in response to the current threats or exercise. These two

points dictate that a useful program must be tailorable by the user to perform analyses and

present information appropriate to this user at the time. Tailoring must also be amenable to

modification during run time in order to adapt to changing threat-assessment needs. The third

major point is that the program must be able to justify its conclusions. This is needed by the

experts and programmers to validate knowledge and either to confirm to the user the validity of

the conclusions or to reveal the faulty line of reasoning or invalid data input that resulted in an
invalid conclusion. Fourth, the method used to tailor the program extracts components of

N N

-. vW1

tactically significant events from the user. Capturing this knowledge is a way of achieving

knowledge acquisition.

RESULTS

The technique implemented in the expert system requires a user or expert to define the

constituent elements of a tactically significant event which would be of interest to the watch

officer. The expert system then compares the static and dynamic track data, and intelligent

-- conclusions it has drawn using its preexisting tactical knowledge, with the conditions specified

by the user. If all the threat components exist, a warning is issued to the user.

This method of having the expert user define the threat situations fulfills the need for

knowledge acquistion. The pairing of user-defined threat components and the corresponding

track data forms the foundation for an explanation of the warnings.

,. CONCLUSIONS

The expert system fulfilled the objectives of flexibility and an organized method of

explanation. It provided a crude but functional method for knowledge acquisition.

RECOMMENDATIONS

The process for employing user definition of tactical events is good as far as it goes, but

needs enhancements to allow the user greater flexibility in defining track characteristics. Not

all relevant threat events are track related, so the user should be allowed to include these types

of events in his definition of a threat situation. The software described in this report does not

allow for the inclusion of nontrack-related conditions.

Some method for dynamically modifying the tasks to be performed should be included in

any expert system which must adapt to the information needs of different users. This report

describes one such method.

.v

O % % W

CONTENTS

Executive Summary ii

Nomenclature W

Introduction 1
Problem 1
Purpose of Project I
Scope of Report 2

Design Considerations 2
OPS83 2
Explanation Process 2

Approach 3
Alerts 3

Requirements 3
Usage 4
Composition (From the User's Perspective) 5
Structure (From the Programmer's Perspective) 6
Pattern Matching 6

Warnings 7
Explanations 10€, Requirements 10Developing Explanation Text 11

Tracing the Inference Net 11

Conclusions and Recommendations 15
Strengths 15
Limitations 15

Inclusion of Referenced Conditions 15
Time Window Concurrency 16
Multiple Triggering of Alert by One Track 16
Determining Reasons for Unsatisfied Alerts 17
Comparisons of Different Attributes 17
Algebraic Operators 17
Backtracking to Generate Assertions Specified in Alerts 17
Assessing Significance of an Alert or Event 17
Summary of Limitations 18

Ac~a?.$10; or

NT!S CRAMI

DTIC TAB U
Undnnou:nced 0

, : bqjt'ion/II0., 1,,.

A., i dllor

, .4 1C31

NOMENCLATURE

alert A structure built by the user that specifies a number of tracks and a number of attributes
for each of the tracks.

alert condition One of the attributes that a track in an alert must possess.

assertion Conclusions based directly on factural data such as that derived from data bases, or
conclusions derived by applying knowledge contained in rules to factual data.

category A classification into one of the following: subsurface, surface, air, space.

CAT Command Action Team. An expert system written primarily in OPS83 to perform threat
assessment for a naval command ship.

Comptype Comparison type. Can be null, within object, or between object.

Comp node For between-object comparisons, this number indicates the address of the alert condition
to use for comparison.

cpa Closest point of approach. Specified by a position, range, and date/time.

explanation Textual description of why a warning was produced.

expert system Computer program that performs an intelligent analysis of a situation. The process
mimics the decisions an expert in that field would perform under the same situation.

inference engine Determines the rules that are relevant given the current working memory, chooses which
rule to fire, and executes it.

knowledge The ability to draw conclusions based on an initial set of information. In expert systems
knowledge is contained in structures called rules and the initial set of information needed
by the rule is called the antecedent.

LHS Left-hand side of a rule. Contains the antecedent (or conditions) that must be in working
memory for the rule to execute.

nonmonotonic Truth value changes with time.

OPS83 An artificial intelligence language that uses rules and WMEs in a forward-chaining
reasoning process.

pointer A field in a structure which indicates the address of another structure which is related in
some way.

real time Process information as fast as it is being transmitted.

rewinding Retracing a sequence of steps.

RIIS Right-hand side of a rule. Contains the action part of a rule that will be executed if the
rule is executed. Execution of the rule is under control of the inference engine.

L,4

No VtW ,~ pN* j,*-.R

- -- -- -- ---- --

rule A software structure that contain, procedural knowledge on its RHS and conditions under
which to apply this knowledge on its LHS.

type Either object or condition (as a field of an alert condition).

S... warning Message displayed to the user indicating that the conditions specified in an alert have been
satisfied.

working memory A structure that can contain data or higher level conclusions resulting from the
element (WME) application of relevant knowledge. WMEs are the data forms matched to the conditions

on the LHSs of the rules.

..., ./,

.1

"..-

Vii

% % %,
.,','%

INTRODUCTION

PROBLEM

Aboard a naval aircraft carrier a tremendous amount of information is available on-line over

communication networks and data links. Automated systems generate much of this
information, necessitating automated systems for its analysis and integration. Over a period

of hours or days the threat-assessment task may evolve dramatically. A computer tool to
assist in threat-assessment must be able to adapt to the changing information requirements of

the computer user. An expert system should be able to accommodate change by enabling the
user to specify the types of information he wants processed and the categories of conclusions
of which he wants to be notified.

OPS83 was used for the development of the expert system. It is a forward-chaining

language, which when combined with an extensive knowledge base, can result in the

-. derivation of far more assertions than the user can assimilate. The user must be able to tailor

* the program to filter and collate assertions into a more appropriate and manageable work load.
This tailoring must be a run-time feature since what is appropriate is nonmonotonic (changing
with time). In addition, a set of assertions generated by the OPS83 program may constitute a

significant event that the program does not know about. Run-time user alerts inform the

computer of the importance of this event.
An explanation is needed to instill confidence in the computer user of the validity of the

conclusion, to enable him to pinpoint the source of error if a faulty conclusion is reached, and
to provide him with insight into how and why the conclusion was reached.

PURPOSE OF PROJECT

A large expert system called the Command Action Team (CAT) system was built to

perform threat-assessment for a naval command ship. A main task of the project was to
explore the feasibility of applying advanced artificial intelligence (AI) technology to the

solution of real-time threat-assessment problems. The computer program needed to have a

generalized architecture into which modules of functionality could be inserted or withdrawn
with minimal sideeffects -- with rapid prototyping and test-bed architecture as design

requirements. CAT also needed to be flexible to allow the user to tailor the task "on the fly" in

response to the current tactical needs. A strong explanation scheme was needed to support the
knowledge engineer's development needs and the user's needs for conclusion justification.

.- % -)is,-M%1

-r

%

SCOPE OF REPORT
The scope of this report is defined by its attempt to provide a detailed description of a

particular alerting process and cxplanation processes in general. Its intended audience
consists of software engineers interested in the design considerations for developing alerting
and explanation procedures and for providing automated knowledge acquisition, and users or
future developers of the CAT system interested in a detailed description of these processes.

- DESIGN CONSIDERATIONS
OPS83

OPS83 is an artificial intelligence computer programming language. It uses
forward-chaining inferencing, meaning that it progresses from its input data to its
conclusions. (This is in contrast to a backward-chaining language, which starts with a final
goal and seeks to confirm this goal given its input.) Forward chaining tends to be very
responsive to its input and favors rapid switches between different paths of reasoning. Within
an OPS83 program are pieces of code called rules. These rules contain knowledge from which

an assertion can be made (or a conclusion drawn) given a specified set of conditions. Rules
cannot be modified at run time. Thus once the program is written and put in the hands of the
user, the tasks the program can perform and the conclusions it can draw are fixed for a set of
input data.

EXPLANATION PROCESS
Assertions can be derived by using many methods. The method chosen depends on (1) the

algorithms that must be used, (2) the relative importance of the speed of computation versus
W,. the clarity of reasoning, and (3) whether an explanation must be provided in user-friendly

terms, This report covers the constraints imposed on the reasoning method that results from
the need to explain conclusions to the user.

CAT is designed to perform nonmonotonic reasoning. To do this, it must keep track of the
data elements used to help derive another data element. If the original data element is foundno longer to be true, it is removed from working memory. The truth of any information
derived from this original data element is questionable. Unless it has independent support

from other data, the derived information is also removed.
'o support this backtracking process, a network of pointers is needed to indicate

parent-child relationships. This same network, which can be traversed for explanation
*€"" purposes, mUist recOrd tW() tpcs of inf Orniation: factual data that exist in working mernory

2

"% %.%%

and knowledge that is encoded in the rules. Thus explaining the origin of an assertion

involves recapitulating the rule knowledge and data elements.

The explanation scheme can either follow the reasoning path the program used to generate

the conclusion or present some other reasoning sequence that could have resulted in the same

conclusion. Following the program's reasoning has the advantage of ncedim e only one
reasoning sequence to achieve the conclusion. It has the disadvantage that this reasoning

sequence must make sense to both the user and the knowledge engineer.

Having a separate path for idea development and explanation also has its streneths and

weaknesses. It is useful when the reasoning process is so complex or abstract that to use it in

the explanation would not be meaningful to a typical user. Its main disadvantage is that for

every method of deriving a conclusion, there is a separate method explaining that conclusion.

Also, since an assertion could be arrived at by a number of different paths, the conclusion
must contain a trace of the path actually used. The explanation then retraces (or rewinds) this

path in order to elaborate on the conclusions to the user.

APPROACH

ALERTS

Requirements
An alerting mechanism is needed to allow the user to configure the program at run time.

W" An alert is a way for the user to specify a set of data elements in working memory (WMEs) as

assertions that add up to a tactically significant event. The tactical significance of a set of

assertions is temporal. Interest in this event also varies among the different personnel of a

command. The user of the program interested in ASW (antisubmarine warfare), for example,
would have a different set of alerts than the planner of an air exercise two days in the future.

S..For a program to meet both these needs tinder all conditions, without having alerts set at run

time, would require an astronomical number of rules. The program would either choke from

the magnitude of the task or flood the user with assertions most of which would be

inappropriate to his current mission.

An alert shares many traits with rules. Both alerts and rules have an antecedent (a
@. precursor set of conditions) that, when present in working memory, triggers the execution of

the alert or rule. The output of the alert is a warning displayed to the user. The output of a

rule typically is changes (additions or removals) to working memory. Two major differences

are: (I) Alerts are built by the user and loaded at run time. Thus they can be added or

removed, depending on the tactical situation or the individual needs of the user. (2) Rules are

O.3

always active, "scanning" working memory for their antecedent conditions. If these rules

address tactical areas that are not of interest to the current user, they prevent computational
resources from being used for more appropriate tasks. Rules have the advantage over alerts in

that they can be much more efficiently matched to WMEs than alerts. Thus if a set of

assertions is of more than occasional interest, it should be encoded as a rule.
Because alerts have such a similar structure to rules, it is easy to convert the knowledge

resident in alerts to rules. When users add alerts of general interest to most users,

programmers can readily code the information into rules and compile this knowledge into

CAT. This sequence of actions -- from developing alerts to encoding the alert contents into
rules -- is a means for achieving knowledge acquisition.

Usage

From the four information sources -- data link, static data in data bases or rules, assertions

* tgenerated by CAT, and user input -- a large information pool is formed. The user would be

unable to assimilate nor would he desire to see all the information in CAT. Alerts are used to

allow the user to specify the events for which he wants to be notified. Alerts can be thought
of as a data base query of the form "Warn me if these conditions ever exist in working
memory (current data base)." Figure 1 shows the progression from the user setting an alert to

developing explanation text for warnings resulting from the user's alert.
*Z: When developing a tool that can have its task modified during run time, several initial
-.- decisions must be made. The ability to perform the task can be hard-coded as rules, which are

quicker and more efficient than alerts, but are active all the time. The user is unable to turn
rules off if he is not interested in their utility. The decision as to what should be encoded as

" -~rules and what should be reserved for the user to add as an alert should be based on the

following factors:
• How often and extensive the modifications will be.
, How rapidly the system should be able to incorporate the changes.
. How much of the total computational power will be devoted to examining alerts.

The user tailors the system to his needs by setting alerts. Alerts allow him to dictate what
information should be displayed to the user. An alert consists of a set of conditions that must

be present in the information pool at the same time. The intent is that each condition by itself
is not of interest, but in combination they have some tactical significance in the current setting.

-.44 4

0'

*k *"

User defines an alert that
4.. specifies events or information

for which he wants to be notified

This alert with its constituent set of
conditions is translated into an alert condition net

Pattern matching occurs to
satisfy each condition of the alert

*i When all conditions for the alert have

been met, a warning is issued

% The alert condition net is traced and the
information needed for an explanation is extracted

The explanation is packed into a structure
* called "Canned Text" that is printed

to the user if he asks for an explanation

* Fiture 1. Path from an alert to an explanation.

Composition (From the User's Perspective)
Alerts deal with objects and attributes about objects. (Objects -- also known as platforms

or tracks -- are such things as ships, airplanes, submarines, and land bases.) Figure 2 is an
example of an alert for the following situation: Two platforms of the same category within
range to intercept and with a cpa range <= 200 nmi. The title of the alert should encapsulate
the main idea of the alert, as was done for the example in Fig. 2. The title is not parsed out in

any way to decide what information CAT should be looking for. Rather, it should be a phrase

that portrays to the user the main idea of the alert.

Two platforms of the same category within range to intercept and with a cpa range <= 200 nmi

Platform A: Any object Platform B: Any object
cpa range <= 200 nmi cpa range <= 2M() nmi
range <= its maximum range range <= its maximum range

category = category of Platform A

Figure 2. Sample alert.

0.,

'FN" 5

.'V.

In analyzing this alert, CAT would divide it into eight components:

(1) Platform A has a cpa range <= 200 nmi

(2) Platform A has a maximum range
-S

(3) Platform A has a range <= its maximum range
(4) Platform A has a category

(5) Platform B has a cpa range

(6) Platform B has a maximum range
(7) Platform B has a range <= its maximum range

(8) Platform B has a category = the category of Platform A
An occurrance of any one of these components has negligible significance on its own, but in

combination they present a threat.

Structure (From the Programmer's Perspective)
SAn alert consists of three types of WMEs:

(1) An "alert". This alert has a unique address that other WMEs can point to. It also contains

a condition field that says how many objects the alert refers to.
(2) An "alert condition of type object" for each object specified in the alert. The object has a

-: parent field that points to the alert WME. The object also has a unique address that other
WMEs can point to and a condition number field that specifies which of the objects of the alert

this object is.

(3) An "alert condition of type condition" for each condition of each object. The parent field
in the condition points up to the object this condition refers to. The condition number

indicates which of the object's conditions this condition is. It has a predicate field that
10, contains the attribute that the user specified (such as category, range, speed). There are also

various fields with the magnitude of the attribute the user specified (see Fig. 3 for examples).

The comparison type field specifies whether this is a within- or between-object comparison.

The comparison node field contains the address of the condition that is used for the

comparison.

O.

Pattern Matching

CAT seeks to satisfy an alert condition by condition. When an assertion is found that
-. matches a condition, several WMEs are made (see Fig. 4). One is an alert condition of type

..

d betocrec.Ti M onst h lr odto ftp betvatecneto

list[21 field. An alert condition of type occurrence is also made that points to the address of

the satisfying assertion via the connection list[I1 field. It points to the object occurrence via

the object occurrence field. It also points to the condition of the alert that this occurrence

satisfies. The object occurrence also points down to this Nth occurrence via the subtree

list[Nth] field. Note the the "[]" symbology indicates that this field is an array, and the

number inside the "[I" specifies which element in the array is being referred to.

If the object matches additional conditions of the alert, more occurrences are made until all

' the conditions for one alert object have been satisfied by an object in data memory. When this

occurs, the status field in the object occurrence is set to satisfied. When there is an object

occurrence for each object in the alert, the alert is satisfied, which is indicated by making an

alert condition of type "alert occurrence." This alert occurrence lists the object occurrences in

the subtree list array. Once the alert occurrence is made, a warning is issued to the user.

This network of pointers serves three purposes: First, as assertions used to satisfy

conditions are removed, corresponding alert-related pointers are removed. The alert condition

0 that was instantiated due to this condition becomes uninstantiated. Thus concurrence between

all the conditions is assured. Second, checking for a complete set of pointers for an alert is

how CAT knows whether the alert is satisfied. Third, this pointer network can be traced to

explain why an alert was satisfied and a warning issued. Additionally this net could be used

to explain why an alert was not satisfied. Tracing the net would reveal tthose alert conditions

that had not been satisfied.

Figure 3 shows the alert condition network that would be required to capture the

information to satisfy the sample alert. The completed alert condition-assertion net that would

be made for the example in Fig. 2 is shown in Fig. 4.

WARNINGS

When all the conditions of the alert are satisfied, a warning is made and displayed to the

user. Figure 5 shows the warning that would result from the sample alert. The warning is a

terse statement containing the title of the alert (it should be a descriptive phrase such as "Two

platforms of the same category within range to intercept and with a cpa range <= 200 nmi.")

This title in no way specifies the actual conditions of the alert, but rather describes the alert.

The warning also displays the platforms used to satisfy the conditions. The warnings are

numbered sequentially -- the number being a useful designation of the warning that should be

explained.

7

aert
address: 508
condition: 2

alertcondition alertcondition
address: 509 address: 510
type: object type: object
parent: 508 parent: 508
conditionnumber: 1 conditionnumber: 2

alertcondition
address: 517
type: condition

alertcondition parent: 510
address: 514 condition_number: 1
type: condition predicate: cpa range

magnitude: 200€_,'." ~ ~parent: 509 / meo:<

conditionnumber: 1 mrelop: <=

predicate: cpa range
* magnitude: 200 alertcondition

mrelop: <= address: 519
type: condition
parent: 510

alertcondition conditionnumber 2
address: 513 predicate: range
type: condition mrelop: node
parent: 509 mrelop-node: <=
conditionnumber: 2 comp-type: within object
predicate: range comp-node: 518
mrelop: node
mrelop-node: <= alertcondition
comp-type: within object address: 516
compnode: 512 type: condition

-a parent: 510
alr-ci.o conditionnumber: 4.alert_condition predicate: category

address: 512 name: category

* type: condition nrelop: node

parent: 509 nrelop:iode
. nrelop_node:=

condition_number: 3 comptype: between objects
predicate: max range comp-tnoe: 515

,comp-node: 515

alertcondition alertcondition
7" address: 515 address: 518

type: condition type: condition
parent: 509 parent: 510
conditionnumber: 4 - Indicates conditionnumber 3
predicate: category Parent-Child Relationships predicate: max range

Figure 3. Alert and alert condition network.

a,.t ~8

It*

alertcoflditIof Fig. 3. alert-condition
type: object-occurence Alert and Alert type: object-occurrence
address: 520 CnionNtrkaddress: 521
status: satisf ied CodbnNtokstatus: satisfied
connection Iist[2]: 509 connctionl ist[2]: 510
subtreelist[l1]: 530 suhtrec list! 11: 540
subtreehlst[2]: 531 urclit']54
subt~ree~list[31: 532 sbrelstJ 4
subtreelist[41: 533 sbrcls[] 4

alertt-conditio
type: occurrnce ass tyteo assertccurntp:curec

connecion litt 1!:600 suject:sipi -lt subc: 52p0oneto~is[1 1
connection ~ ~ ~ ~ sutrelit[1 521~:54 pedct:capeict:cacnetinIs[] 1

alert _condiuon alert condition
type ocurrnceassertion asertio type: occurrence

*address: 5310 adldress: 600 address: 6 11 address: 541
*.connectionjist[11: 60X) subject: shipi subject: ship2 connctionI ist[11: 611

connectionist21: 513 l predicate: rag predicate: rag connection_Iist[2]: 519
object occurrence: 50 mimagnitude: agi5de010 object-occurrence: 521

alert condition ________ alertcondition
type: occurrence assertion assertion type: occurrence
address: 5321drss 0 address: 6121drss 4

* connection-lis[1]: 602 subject: shipi subject: ship2 connection listql]: 612
conctojit2] 1 peict: rn:predicate:ma range connectionIist[2]: 518

object-occurence: 520 magnitude: 200 magnitude: 3000 obect occurrence: 521

alert-condition 1 lr-odfo
type: occurrence assertion assertion type: occurrence
address: 533 address: 603 address: 613 address: 543
connection Iist[1]: 603 subject: shipi subject: ship2 connctionIist[11: 613
connection list[2]: 515 predicate: category predicate: categorye connection-list!2]: 516

%object occurrence: 520Y 1n e: rfac anam e: ur0ac object occurrence: 521

alFigureiio 4. Aatisfied alert-condition nto

typ: ccurece ssrtin ssc~o tye:occrrnc

adrs:53ades:63ades.63ades 4

connectio list 1 603 sujet shp -onco lit fl 613 .

. -- - - 71 -- ' ~ ' M m frr' w -~~ P w .~ ,-

251200z Dec86 Warning #1: Alert Satisfied
Two platforms of the same category within range
to intercept and with a cpa range <= 200 nmi.
Criteria for alert satisfled by the following
platforms: shipl. ship2.

Figure 5. Sample warning.

EXPLANATIONS
Requirements

There are three main requirements which the explanation program must meet: (1) it must

be able to justify the origin of the assertions used to satisfy the alert conditions, (2) it must

explain how all the conditions of the alert were actualized in the data, and (3) it must assess

the significance of an event in light of other events. Only the first two items are addressed
further in this paper.

Justifying assertions involves outlining how the rule logic was applied to externally

originating data. This mode of explanation is of interest to the knowledge engineer and

programmer seeking to validate the inner workings of the program. Users of the first

prototypes of the CAT program indicated that they were not interested in explanation at this

depth.
Through use, CAT users become familiar with alert structures as their means of querying

the data base and specifying tactically significant events. Most of CAT's output is in the form

of warnings that are a direct result of alerts specified by the user. It is the warnings, then,
which the users usually want to have explained. The user's intuitive approach is to present

the conditions of the alert (structures familiar to the user) and show how they were realized in

the WMEs.

N Assertions derived by an expert system result from the firing of rules. These rules contain

knowledge that can take a number of data inputs and derive an assertion from them. The

firing of the rule and the generation of the assertion depend on the data being present. The

general situation that a ship is in does not directly affect the rule firing. When the user asks

for an explanation of the assertion, there are two levels at which the explanation can be

addressed. Level one is a matter of reiterating the data and a summary of the logic used by the
rule. From the knowledge engineer's perspective, this is what has actually happened. This

level of explanation serves to present the specific relevant data and the knowledge in the

10

AA?.
%A %A N

system.

From the user's perspective rewinding of the rule logic and antecedent data is only partially

satisfactory. Perhaps more meaningful would be a level two approach, which would explain

the context surrounding an assertion. Rules and alerts tend to be in groups that deal with

various general situations. The presence of many assertions that deal with a certain situation

would indicate the presence of that situation. The explanation of one of these assertions

should indicate that this situation is present. If this assertion is present in isolation of the rest,

the absence of the situation should be included in the explanation. This level of situation

assessment or briefing is not implemented in CAT, but the need is recognized.

Developing the Explanation Text

By the time a warning is given, an elaborate net of alert conditions and assertions exists.

Before assertions used to satisfy conditions are removed (due to the nonmonotonic nature of

.- CAT), the vital information that the user would want in an explanation is captured and put in

-, the canned text. The canned text's sole purpose is for explanation. If the user requests an

explanation of a warning, the canned text with that warning number is displayed. Having the

information necessary for an explanation already collated provides a much faster (albeit

- memory intensive) explanation than tracing the extensive net when the request is made. If an

explanation is never requested, this information is never used. Figure 6 shows what the

canned text explanation for the sample alert would look like.

Canned text consists of a paraphrase of each alert condition followed by the assertion that

was used to satisfy that condition. The format of the canned text mirrors the pattern used by

CAT to satisfy the alert conditions. The explanation is intuitively natural to a user familiar

with the structure of alerts. The user who has set alerts understands that a warning is issued

when a certain combination of events (specified in the alert conditions) occurs.

Tracing the Inference Net

Raw data from the electronic traffic flow are captured and input to CAT. These data are

used to form an assertion and are put into a WME. An assertion is a conclusion derived by

applying knowledge to data. The information for this assertion was the report from the
W!, electronic data flow. The knowledge used was the rule that extracted the information from the

report and formed it into an assertion. Based on this assertion, and possibly in combination

with other assertions, further assertions can be made using other knowledge (reasoning).

This pattern of building assertions upon assertions results in an inference net. The sequence

01

From the Carl Vinson any platform Note this is a paraphrase of the alert
has cpa range <= 200 nmi condition set by the user.

Condition(s) satisfied by:
address - 600 Note this is the actual track data which
At 251200z Dec86 was used to satisfy the above alert condition.
the shipl had cpa:
range = 150nmi

bearing = x
date/ime = x

with high confidence

From the Carl Vinson any platform
has range <= its max range-v

Condition(s) satisfied by:
address = 602
At 251200z Dec86

* the shipI had max range = 2000 nmi
with medium confidence

address = 601
At 251200z Dec86
the ship I had range = 600 nmi
with high confidence

From the Carl Vinson any platform
has max range

Condition(s) satisfied by:
address = 602
At 251200z Dec86

8t" the shipl had max range = 2000 nmi
with medium confidence

From the Carl Vinson any platform
• has category

Condition(s) satisfied by:
address = 603
At 251200z Dcc86
the shipl was classificd as category surface

0 ,with high confidence (Continued)

Figure 6. Canned text.

1.

rU.,

From the Carl Vinson any platform
has cpa range <= 200 nmi

'S* Condition(s) satisfied by:
address = 610
At 251200z Dec86
the ship2 had cpa:

range = 130 nmi
bearing = x
date/time = x

with low confidence

From the Carl Vinson any platform
has range <= the max range

Condition(s) satisfied by:
address = 612
At 251200z Dec86

.4. the ship2 had max range = 3000 nmi
'with medium confidence0

address = 611•,S &At 251200z Dec86
'5 the ship2 had range = 1200 nmi
-5.,. with low confidence

From the Carl Vinson any platform
has max range

Condition(s) satisfied by:
address = 612
At 251200z Dec86
the ship2 had max range = 3000 nmi
with medium confidence

From the Carl Vinson any platform
has category equal to the category of platform a

" •Condition(s) satisfied by:
". ,-address = 603

At 251200z Dec86
with ship I was classified as category surface
with high confidence

. ' address = 613
At 251200z Dec86
the ship2 was classified as category surface
with medium confidence

Figure 6. Continued.

13

of operation is --

(1) Uptake live data from the data link and static data from data bases or hardcoded in CAT.

(2) Make first-level assertion on the basis of the data.

(3) Continue to make assertions until, given the data, rule firing is exhausted.

(4) Return to number 1.

There are two further considerations that require making this sequence far more complex:

truth maintenance and explanation.

Truth (belief) maintenance is a method for updating the set of believed assertions. Belief

maintenance is necessitated by the nonmonotonic nature of the data. Based on the data flow, a

"picture" of the world is painted (assertions are drawn from the data). Additions or updates to

the data are received that cause a repainting of the world image. Old data may now be

obsolete. The obsolete data and assertions based on this data must be marked or removed

from the system. To achieve this, some sort of trace must be made during the initial building

of the assertion network. Identification of the obsolete data involves following this trace to

mark the assertions based on the obsolete information.

The second reason a trace through the assertion net is needed is to provide explanations. If

the expert system is to provide any explanation to the user, it must be able to arrive at its

conclusions via a logical sequence that would make sense to a human. It must leave a trace

from the data to the final conclusion displayed to the user. When an explanation request is

entered, the program can backtrack through the net and find the information and logic

(reasoning) used to derive this assertion from the data.

During the initial stages of building CAT, explanation was very low level, operating at the

level of the inference net. An assertion may have been arrived at by several (or many)

different paths or sets of input. All the duplicate assertions were combined, but the pointers to

how they were derived were preserved. Explanation involved a plain English paraphrase of

the information contained in the assertion, followed by a paraphrase of the logic used by each

*rule that made the assertion. The result was too fragmented for the typical user. Knowledge

engineers, however, were able to follow the pieces to assess the validity of the assertions.

CAT was able to account for its assertions, an important step in testing and validation.

The current level of explanation proceeds through the alert conditions, paraphrasing the

condition and the assertion that satisfied the condition. The next level of explanation gives the

reason for a specified assertion. At this level CAT traces the inference net, deluging the

curious user with supporting reasoning and data. The result was that most users did not ask

for explanations at this deep level.

it

-r'1 = 'a _r = - r ' r - ,,-U , w' , - r- " r wV Tw V,, ", ' . N, t .s JWV 1 i WV fl . r: . -,: - -' , . ;

CONCLUSIONS AND RECOMMENDATIONS

STREN;TIIS

The current method of developing explanations of warnings and assertions has several

strengths:

(1) The path taken during explanation duplicates that used to derive the conclusion (warning,

assertion) being explained. An explanation of an invalid assertion can reveal where CAT's

error occurred.

(2) Because of (1) above, multiple pathways, one for explanation and one for derivation of the

conclusion, are not needed.

(3) The explanation sequence follows the same condition-by-condition approach the user used

to set the alert. Thus the explanation follows a format already familiar to the user.

The alerting method is very straightforward and sequential, despite the intricacies

necessary for the implementation of the actual computer code.

: LIMITATIONS

The following sections outline limitations of the alert methodology. The items should be

used as suggestions for future development, and as a cautionary note for users of this

computer program as to its limitations.

Inclusion of Referenced Conditions

For within- and between-object comparisons fairly nonspecific conditions are generated for

objects in order to obtain data needed for these comparisons. This is illustrated in the sample

alert dealt with in Fig. 2, 3, 4, and 6. In the sample, platform B had the condition that it was

in the same category as platform A. In order to make this comparison, the category of

platform A had to be known. This was done by adding a condition to platform A that it has a

category. What the value for this category is does not matter. At explanation time, the user is

- told that there is a condition for platform A, namely, that it belongs to a category. The user

did not intentionally set that condition, nor does it appear in his list of conditions for the

platform. Confusion can result when the user sees the explanation including conditions that

he did not think were part of the alert.

- Additionally, because this condition is referenced in a within- or between-object

comparison, it ends up getting paraphrased twice in the explanation. This is due to the search

pattern used. What happens is that condition 1 for object I is paraphrased along with its
assertion. Then sequentially all the remaining conditions for that object are paraphrased. The

15

pattern repeats itself for each of the successive objects. When a condition depends on another

condition, both the satisfying assertions are presented. Thus the condition that was included

to link a datum and the comparison condition is paraphrased twice during the explanation --

once because it was referenced and once due to its position in the object-condition array.

Time Window Concurrency

The current implementation does not check that the conditions of the alert are all true at the
-.- d

(*.. same time, only that they are all in working memory at the same time. This is much more than

a semantic difference. Expert systems often keep historical data in memory for purposes of

calculating trends. Thus information that was true at one point but is no longer valid is still

kept in memory. Generally the user expects the conditions of the alert all to be true at the

same time for the assertions to culminate in a significant event. A simple example is used to

illustrate this. Assume an alert for a multiplatform hostile force within a certain surveillance

area. Assume one hostile platform enters the area and then leaves. The expert system stores

the closest point of approach for historical reference purposes. Later a hostile platform from a

different nation enters the surveillance area. The alert would trigger a warning based on the

two platforms even though they satisfied the conditions at different times. This problem can

be alleviated by saying that all assertions matching alert conditions must be inferred within a

certain time window. This would solve the problem in the example above, where the range

assertions were made at different times. If, however, the ranges occurred near the same time

but the nationality of the first track was inferred much earlier (when it first entered the track

data base), the alert would not fire.

A more complex alerting mechanism would recognize what types of data are monotonic

and what types are not. If, for example, one alert condition specifies what the nationality of a

-". track must be while another condition specifies a range, a direct time window check for the
• • concurrency of these two traits would be pointless. Nationality is generally a monotonic trait

and should be considered valid until evidence dictates otherwise. Ranges of moving tracks,

on the other hand, are nonmonotonic and a time-window check is appropriate. Determination

of time windows can be an involved process since, for example, ranges for airplanes become
.=.v,%Outdated more quickly than ships.

Multiple Triggering of Alert by One Track

Another limitation is one track firing an alert multiple times. Assume, for example, an alert

* Ion two objects. If there are five tracks that satisfy both objects, a warning will be triggered on

16

&e-kA1

track I and 2. track I and 3... track 2 ind 3, track 2 and 4, etc.

)etermining Reasons for Unsatisfied Alerts

- It vouId bc advantageous to be able to ask O hv an alert did not fire. To be able to trace

for\ ,ard do,,n the ret to see at ,xhat point it stops won ld allow the program to say w.vhat

attribute a track lacked that kept it from satu,,iving an alert.

o(mparisons of l)ifferent Attributes

An her hirni ,tn (t t1e current implmcentation of this alerting: approach i.,, that it does not

11! 1 k ,,k t kr ntp:ri ,kn, A t d!:'rCnt atrCi111 tc>, on differcnt tracks. For example, the user cannot

.,,ct an eicri ,:p,-r tile 'speed of platform A ith the 'maximum speed" of platformn B.

il*rc111architectre toakI ' ippoirt this ty pe of comparison.

M"Ilehraic () pt.'ratlors

,"er.alc> opcr,t,,tr, bct ccn conditions are not possible. For example, the user

. ,Ma,: check It the range 0I an object from its starting point is greater than half its maxitnum

ranee ithis v, (,uld indicate that either it must refuel or that it is not making a round-trip

Backtracking to Generate Assertions Specified in Alerts

Currently CAT's inferencing rules are independent of the alerting mechanism. The expert

system is always actively trying to satisfy the rule antecedent with WMEs. When the rule's

antecedent is present, it may fire, causing execution of its right-hand side (RHS). Executing

the roile may produce an assertion that is not contained in any of the alert conditions and thus

is wvasted computation (provided this assertion is not needed for some other task).

A technique worth examination would be to build a mechanism that looks at conditions

specified in alerts and turns on all the rules that try to derive those conditions. Many of the

remaining rules could be turned off, greatly easing the computational burden.

Assessing Significance of an Alert or Event
There are several more levels of explanation that could be performed. The first would be

to analyze the alert that has been triggered, and based on the overall current tactical situation,

deduce and explain the relevance of this satisfied alert. This level of explanation Would be

much more complex than what is currently implenented. It would be appealing because it

F'2 17

0% %.%11
-* K
" LO

gets away from the fragmentary method used now. For a user who is neither familiar with

setting alerts nor thinks in the fragmented perspective used by alerts, this would be a far

smoother approach. It would collate the fragments and piece together an understanding of

why a user would be interested in this combination of events. This intelligent interpretation of

the si-nificance of a warning would be complex. The mechanism would have to be cognizant

of the activity of the hos: vessel and the other events of significance.

Summary of Limitations
The purpose of an explanation is to fill in the details underlying major events (the major

events being specified in alerts, and the details being the assertions). Untended, CAT will

issue warnings each time the conditions in an alert occur. What results is a stream of

varnings, each an individual entity, with nothing cohesive tying it in to other warnings being

issued, nor to events occurring that are not being issued as warnings. An explanation allows

the user to probe the knowledge and data in the system to find out some specific details -- the

real goal is to coalesce this information into a summary of the current threats.

.8

O,"

.5

18

0,

- - . ' ~' -~ -. -. - - *2~~~ -' - -- -. - - -

'-'V.

p

a
14.J

I.,

I

/1,44 FD
S

'9.

I
.~ S S S S S S S S S S S S S S S 0

C.'..

