" UAD-at91 638 Mm fﬁ’g@j%ﬁﬁ‘iuﬁw

: P43
UNCLASSIFIED ek =

e

-

l,c mg” uw”.

E—— ISIS m%

l-’
sz =

1-1
b= i 12

B

pra—
-

"

|9 ‘\CLAQSIFIFI)

aE .4:5 JA L

NTATION PAGE

AD-A191 638 27 50vT ACCESSION NO.

3. RECIPLIENT’ S CA AL.OG NUMEBE R

- Lt fang)UDY'”E) L. . _

Aud Ccmpiler Vallidation Summary Xeplirt:
Tandem Computers. Tandem Ada Compiler, Release
T9270C00. Tandem NonStop VLX host and target.Ver.COO

TYOE QF PIO0RT g PIRIND rNGERTY

20 May 1987 ro 20 May 1988

5. PERFCAMING (ORG. REPQRT NUMEER

i L AUTH

! Wrxg?\t“-)}’atterson AFB

8. CONTRACT QR GRANT NUMBER(s)

/3. PERFORMING ORGANIZATION AND ADDRESS
i Ada Vvalidation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1C. PROGRAM E_EMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Ada Joint Program Office
United States Department of Defense

12. REPORT DATE
20 May 1987

T3 WOMBER UF PAGES

Washington, DC 20301-3081 92
14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (of thisreport)
Wright-Patterson UNCLASSIFIED
) LASSIFICATION/DOWNGRADING
15a. QECLASSIfICATION/DOWNG
N/A

{ 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRIBUTION STATEMENT (of the abstractentered in 8lock 20 (f different from Report) ! g E ﬁz '
S

| 18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue onreverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming languace, Ada Compiler Validat
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

ion Summary Report, Ada

| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

DD '™ 1473
1 JAN 73

EDITION OF ! NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601

UNCLASSIFIED

SECCRITY CLASSIFICATION OF THIS YAGE (When Data Enterea)

A
hod
>4

\ - . - Taa 7

p———

EXECUTIVE SUMMARY

™~

—~ This Validation Summary Report (VSR) summarizes the results and conclusions

of wvalidation testing performed on the Tandem Ada® Compiler, Release
T9270C00, using Version 1.8 of the Ada Compiler Validation Capability
(ACVC). The Tandem Ada Compiler is hosted on a Tandem NonStop ®ViX
operating under GUARDIAN 90, Version COO. Programs processed by this
compiler may be executed on a Tandem NonStop VLX operating under GUARDIAN
90, Version C00.~

On-site testing was performed 15 May 1987 through 20 May 1987 at Tandem
Computers, Cupertino CA, under the direction of the Ada Valig?tion Faciliby)
(AVR), according to Ada Validation Organization '((AV@) policies and
procedures. The AVF identified 2222 of the 2399 tests in ACVC Ve-sion 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 158 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2222 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation 1listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and 1link
results of Class L tests were analyzed for correct detection of errors.
There were 38 of the processed tests determined zo be inapplicable. The
rexzaining 2184 tests were passed.

\\

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
—2_3_ 4 _s5_6_7_8_9 10 1 12 14

Passed 103 259 339 246 161 S7 137 260 124 32 217 210 2184

Failed ©o 0 0 0 0 0 0 0 0 0 0 O 0

Inapplicable 13 67 81 1 0 0 2 2 6 0 1 23 . 196

Withdrawn o 's 5 0 0 1 1 2 4 0 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

-

®Ada is a registered trademark of the United States Goverment
(Ada Joint Program Office).
@NonStop is a trademark of Tandem Computers

[S-SR

ergmt

— -

AVF Control Number: AVF-VSR-111.0787
86-12-01-TAN

Ada® COMPILER
VALIDATION SUMMARY REPORT:
Tandem Computers
Tandem Ada Compiler, Release T9270C00
Tandem NonStop @VLX host and target

Completion of On-Site Testing:
20 May 1987

Prepared By:
Ada Validation Facility :
ASD/SCOL RS 4
Wright-Patterson AFB OH 45433-6503 P

Prepared For: ; : !
Ada Joint Program Office i ﬂ—’) :
United States Department of Defense L«‘n--
Washingtcn, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).
NonStop is a trademark of Tandem Computers

R R e Y Tearewe

+ +
+ Place NTIS form here +
+ +

e e at e et

-

ada’® Compiler Validation Summary Report:

Compiler Name: Tandem Ada Compiler, Release T3270C00

Host: Target:
Tandem NonStopC>VLx under Tandem NonStop VLX under
GUARDIAN 90, Version COO GUARDIAN 90, Version COO

Testing Completed 20 May 1987 Using ACVC 1.8

This report has been reviewed and is approved.

‘ ERye
\'/_9 ,{'/W (o W

Ada Validition Facility

Georgeanne Chitwood

ASD/SCOL

Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA

[
Ada J%%nt Program Office

Virginia L. Caster
Director

Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).
NonStop is a trademark of Tandem Computers

EXECUTIVE SUMMARY

Tnis Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Tandem Ads® Compiler, Release
T9270C00, using Version 1.8 of the Ada Compiler Validation Capability
(ACVC). The Tandem Ada Compiler is hosted on a Tandem NonStop ®VLX
operating under GUARDIAN 90, Version COO. Programs processed by this
compile- wmay be executed on a Tandem NonStop VLX operating under GUARDIAN
90, Version COO.

On-site testing was performed 15 May 1987 through 20 May 1987 at Tandem
Computers, Cupertino CA, under the direction of the Ada Validation Facility
(AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2222 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 158 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2222 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation 1listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and 1link
results of C(Class L tests were analyzed for correct detection of errors.
There were 38 of the processed tests determined to be inapplicable. The
remaining 2184 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
~2_3_4_5_6_7_8_9 10 11 12 14

Prssed 103 258 329 246 161 9T 137 260 124 32 217 210 2184

Failed o 0o 0 0 0 0 O 0 O O 0 0 0

Inapplicable 13 67 81 1 0 0 2 2 6 0 1 23 196
Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD~1815A Ada.

TtAda is a registered trademark of the United States Govermment
(Ada Joint Program Office).
@NonStop is a trademark of Tandem Computers

CHAPTER 1

- e e
. « 4 e
W N -

N

CHAPTER

CHAPTER

[9%)

. e e

.

L) L)W W ww www
.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

NN NN WD
« v .

w N =

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT .

REFERENCES . . + + ¢« ¢ ¢« v v ¢ s o o o &
DEFINITION OF TERMS .+ « ¢ ¢ & ¢ « & « &
ACVC TEST CLASSES . . « v ¢ o v o o« 4 &

CONFIGURATION INFORMATION

CONFIGURATION TESTED « « & & ¢ & « &« & &
IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION

TEST RESULTS & &« &« v ¢ ¢ ¢ v o v o o 4 &
SUMMARY OF TEST RESULTS BY CLASS . . e
SUMMARY OF TEST RESULTS BY CHAPTER . . .
WITHDRAWN TESTS « & & o ¢ ¢ 4« o o o o &

INAPPLICABLE TESTS ¢ ¢« v o« o o « o o & o
SPLIT TESTS ¢« ¢ ¢ o ¢ o o o 5 o o o o« «
ADDITIONAL TESTING INFORMATION
Prevalidation . . ¢« ¢ ¢ ¢ ¢ o ¢ o « &
Test Method .« ¢« ¢ & ¢ ¢ ¢« ¢ ¢ « o . &

Test Site & ¢ ¢ & o ¢ ¢ o ¢ o o o o &

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

. . o v s e
wwwwgiuuwwww
VT 20 VDY - —

— e b es 2
1
Eww N

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum 1length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operatins systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs tc an Ada ccmpiler and
evaluating the results. The purpose of validating is to ensure conformity
cf the compi.er to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This V3SR documents tne results of the validaticn testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Val:idation Organization (AVO). On-site testing was conducted from
15 May 1987 through 20 May 1987 at Tandem Computers, Cupertino CA.

1.2 USt OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. 1In the United States,
this is provided in accordance with the "Freedom of Information Act™ (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do nct
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the pubdlic from:

Ada Irnfcrmation Clearinghouse

Ada Joint Program Office

QUSDRE

Thne Pentagon, Rm 3D-139 (Fern Street)
Washington DC 2G301-308%

or from:
Ada Validation Facility

A3D/SCOL
Wright-Patterson AFB OH U5433-6503

INTRODUCTION

Questions regardirn-~ this report or the validation tes* results shouli b=
1
-

directed to the A4VF

isted above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984,

1.4 DEFINITION OF TERMS

ACVC

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

The Ada Compiler Validation Capability. A set of progracs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

ANSI/MIL-STD-18154, February 1983.

The agency requesting validation.

The Ada Validation racility. In the context of this report,
the AVF 1is responsible for conducting compiler validations
according to established pclicies and procedures.

The Ada Validation Organizaticn. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

cross-compilers, translators, and interpreters.

A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

1-3

-

= SRS N

INTRODUCITION

Inapplicable A test that uses features of the language that a compiler is
vest not required to support or may legitimately support in a way
siner wnan the one expected by tne test.

rassed test A test for wnich a compiler generates the expected result.
Target The cozputer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity

test to the Ada language specification. A test may be incorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests checsk that legal Ada programs can be successfully <compiled
and executed. However, no checks are performed during execution to see if
the test objective nhas been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
llass A test is passed if rno errors are detected at compile time and the
progranm executes to produce a PASSED message.

ciass B tests cneck that a compiler detects illegal language usage. Ciass
3 tests are not executable. Zach test in this class is compiled and the
resulting coxpilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests cneck that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result +when it 1is
executed.

Class D tests check the compilation and execution capacities of a compiler.

Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

INTRCOUCTIION

permitted in a compilation or the number cf units in a library--a compiler
may refuse to compile a Class D test and still be a conforzing compiler.
Therefore, if a Class D test falls to compliie because the capacity of the
compiler is exceeded, the test is classified as inapplicable. 1If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSD,
or FAILED message wnen it 1s compiled and executed. However, tnhe Aida
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes

to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
rovides the mecharisz by which executable tests report PASSZD, FAILED, or
NOT APPLICABLE results. t also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines witn a maximum length of 72 characters, use small nuzmeric values, and
place features that may not be supported by all implementations in separate
tests, However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used fcr this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by snowing that the test is inapplicable to
tne implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that 1is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

INTRGDUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language ccastruct is withdrawn from the ACVC and, therefore, is

ot used in testing 3 compiler. The tests witndrawn at wne <ime f
validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under
following configuration:

Compiler: Tandem Ada Compiler, Release T9270C00

ACVC Version: 1.8

Certificate Number: 870515W1.08089

Host Computer:

Machine: Tandem NonStop VLX

Operating System: GUARDIAN 90
Version C00

Memory Size: 8 megabytes

Target Computer:

Machine: Tandem NonStop VLX
Operating System: GUAPDIAN 90
Version C0O
Memory Size: 8 mezabytes
2-1

the

LR,

CONFIGURATION INFCRMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the foliowing
interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, DO6UOOSE..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests DUADO2A, DHA002B, DUuAOOU4A, and
DUAOOUB.)

. Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, LONG_INTEGER, LONG_FLOAT, and LONG_LONG_INTEGER in
the package STANDARD. (See tests BB6001C and B86001D.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT _ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

. Array types.
An implementation 1is allowed to raise NUMERIC_ERROR or

CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT.

2-2

e e

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE_ERROR when the array objects are declared. (See

test £52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises STORAGE_ERROR when the array object is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ ERROR either
when declared or assigned. Alternatively, an implementaticrn may
accept the declaration. However, lengths wmust match in array
slice assignments. This implementation raises no exceptions.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381044.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety vpefore CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compazible with the target's subtype. (3ee “est C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear tc be evaluated before checking against the index type.
(See tests CU3207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before beisg checked for identical
bounds. (See test EU3212B.)

All choices are not evaluated before CONSTRAINT_ERROR is raised if

a bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

2-3

" r ey

CONFIGURATION INTORMATION

Functions.

An implementation may allow the dJdeclaration of a parameteriess
function and an enumeration literal having the same profile in the
same immediate scope, Or it may reject the function declaration.
If it accepts the function declaration, tne use of the enumsration
literal’s identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to suppert
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts ‘'SIZE and 'STORAGE_SIZE for tasks, and
'SMALL clauses; it rejects 'STORAGE_SIZE for collections.
Enumeration representation clauses appear not to be supported.
(See tests C55B16A, C8TB62A, C87B62B, C87B62C, and BC1002A.)

Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL IO cannot oe instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECT_IO cannot be instantiated
with unconstrained array types and record types w'th discrininants
without defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E,
and CE2401D.)

hn existing text file can be opened in OUT_FILE mode, but cannot
be created in OUT_FILE or IN _FILE mode. (See test EE3102C.)

More than one internal file can be associated with each external
file for text I/0 for reading only. (See tests CE3111A..E (5
tests).)

More than one internal file can be associated with each external
file for sequential I/0 for reading only. (See tests CE2107A..F
(6 tests).)

More than one internal file can be associated with each external
file for direct 1I1I/0 for reading only. (See tests CE2107A..F (6
tests).)

2-4

CONFIGURATION INFOBRMATION

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted

when they are closed. (See tests CE210%4 ana EZI113C.

jenerics.
Separate zompilation of generic¢ bodies with:it specifications is

not supported by this implementat.on, {See tests BAR1011C,
CA1012A, CA2009C, CA200%F and BC3205D.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
Tandem Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 196 tests were inapplicable to this implementation, and
that the 2184 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B €€ D E L

Pas=d 67 865 1178 17 13 4y 2184

Failed 0 0 0 0 0] 0

Inapplicable 2 2 190 0 0 2 196

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 B74 1380 17 13 46 2399

TEST INFORMATICN

3.3 SUMMARY OF TEST RESULTS BY CHAPTEF

RESULT CHAPTER TOTAL
_2_3_ 4 _5_6_1_8&_9 10 11 _ 12 14

Pas sed 103 258 339 246 161 97 137 260 124 32 217 210 2184

Failed ©o 0 0 0 0 0O 0 0 0 2 0 0 3

Inapplicaple 13 67 81 1 0 0 2 2 6 0 1 23 196
Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A CU140L4A B74101B

B33203C B45116A C87B50A

C340184A C4B008A £92C05A

€35904A B49005A CYU40ACA

B374014 B4AO10C CA3005A..D (4 tests)
BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not reqired by the Ada Standard to support. Others may
depend on the result of another test that 1is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation 1is not necessarily inapplicable for 2 subsequent attempt. For
this validation attempt, 196 tests were inapplicable for the reasons
indicated:

. C3U4001F and C35702A use SHORT_FLOAT which is not supported by this
compiler.

. CU3212A makes assumptions about the order of operations during the
evaluation of an array aggregate. This implementation raises
CONSTRAINT_ERROR after evaluating two of the Ilower bounds and
determining that they don't match, while the test considers it an

3-2

(8]
[&7]

SNEURMATI N

error if at least two of the upper bounds aren't also evaluated.
The AVO has ruled that this .3 an acceptable behavior.

S55816A maxkes use of an enumeration representation clause
containing noncontiguous values which 1is not supported by tnis

compiler.

Z86001F redefines package SYSTEM, but TEXT_IO is made obsclete by
+nis new definition in this implementation and the test cannot be
executed since the package REPORT 1is dependent on the package
TEXT_IO.

C87B62B uses a length clause which 1s not supported by this
compiler. The 'STORAGE_SIZE 1length clause for access types 1is
rejected during compilation.

C92005B is inapplicable because in this implementation a task's
STORAGE_SIZE attribute yields a value greater than
STANDARD.INTEGER' LAST.

C96005B checks implementations for which the smllest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

BA1011C, CA10124, CA2009C, CA2009F, BC3205D, LA50084, and LAS008N
compile generic declarations and bodies in separate compilation
units. Separate compilation of generic bodies without
specifications is not supported by this implementation.

AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL_IO with unconstrained array types which 1is not
supported ty this compiler.

AE2101H and CE2401D use an instantiation of package DIRECT IO with
unconstrained array types which is not supported by this compiler.

CE2107B..E (4 tests), CE2110B, CE2111H, CE3111B..E (4 tests), and
CE3114B are inapplicable tecause multiple internal files cannot bde
associated with the same external file except for reading. The
proper exception is raised when multiple access is attempted.

CE2102D, CE2102I, CE2105A, and CE2H407A create a file with mode
IN_FILE which is not supported by this implementation.

CE2111D and CE3115A create a file with mode OUT_FILE, reset the
file to mode IN_FILE, and then try to open the file again in mode
IN_FILE. This implementation retains the file's access rights
from when it is opened until the file is closed. Wnen a file is
created with mode OUT_FILE, this implementation prohibits multiple
access to this file until it is closed. When the test resets the
file to mode IN FILE and attempts to open a second internal file
to the same external file, this implementation raises USE_ERROR.

3-3

TZST INFORMATION

This behavior has been determined to be acceptable by the AVO.

2236354 writes about 300 characters to a line in a ‘text file.
Tnis implementation raises USE_ERROR because this is longer than
the acceptable line length imposed by the operating system for
tnis file type. This implementation raises USE ERROR on the
subsequent NEW_LINE, which is when they physically t;y to write
the line to the file. The issue will be raised before the LMP
(AI-00534), and the AVO has provisionally ruled that this behavior
is acceptable. When the form parameter (FORM => "FILE_TYPE=R,
RECORDLEN=500") was added to the test, the implementation passes
the test objective.

. The following 158 tests require a floating-point accuracy that
exceeds the maximum of 16 supported by the implementation:

C24113M..Y (13 tests) C35705M..Y (13 tests)
C35706M..Y (13 tests) C3570TM..Y (13 tests)
C35708M..Y (13 tests) C35802M..Y (13 testis)
C45241M. .Y (13 tests) C45321M. .Y (13 tests)
CU5421M..Y (13 tests) C4SUL2UM. .Y (13 tests)
C45521M..Z (14 tests) CU5621M..Z (14 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 35 Class B tests:

B220034 B2400SA B33301A B510034
B22004A 240058 £351014 BS5A01A
B22004B B2U204A B36201A B64001A
B22004C B2420UB B37201A B67001A
B23004A B260024 B37307B B67001B
B230043 B23001A 338008A B67001C
B24001A B2ACO34 B412024 B57001D
B24001B B2ACO3B BU4OOTA B91003B
B24001C B2ACOX BL5205A
3-4

a
m
(5
=3
(=]
3
5~
(8]
¥
()
.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalization

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Tandem Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exnibited
the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Tandem Ada Compiler using ACVC Version 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Tandem NonStop VLX operating under GUARDIAN 90, Version COO.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that mare use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the Tandem
NonStop VLX, Version B40 computer and read using a special program written
by Tandem for reading ANSI tape format. The files were then written to
tape using tandem backup format and transferred to the Tandem NonStop VLX,
Version CO0 computer. After the test files were loaded to disk, the full
set of tests was compiled on the Tandex YonStop VLX, and all executable
tests were linked and run on the Tandem NonStop VLX wusing four parallel
batch streams. 3X2sults were put on tape, using standard Tandem utilities.
A special Ada proz-am was used to print hard copies of the results. Tre
results were printed using any system that had available printer resourcas.

The compiier was tested using command scripts provided by Tandem Compute:rs
and reviewed My the validation team.

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. Tne listings
exanined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at Tandem Computers, Cupertino CA on 15 May
1967, and departed after testing was completed on 20 May 1987.

APPENDIX A

DECLARATION OF CONFORMANCE

Tandem Computers has submitted the following
declaration of conformnce concerning the Tandem Ada
Compiler.

DECLARATION OF CONFORMANCE

Comgiler Implementor: Tandem Computers Incorporated (Tandem Computers)
Ada“validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: Tandem Ada Compiler Version: Release T9270C00
Host Architecture ISA: Tandem NonStop TM VLX

OS&VER #1: GUARDIAN 90, Version CO0O0
Target Architecture ISA: Tandem NonStop TM VLX

OS&VER #1: GUARDIAN 90, Version C00

Implementor's Declaration

I, the undersigned, representing Tandem Computers, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler 1listed in this declaration. 1 declare that Tandem
Computers is the owner of record of the Ada language compiler 1listed
above and, as such, is responsible for maintaining said compiler in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations
for Ada language compiler listed in this leclaration shall be made
only in the cowner's corporate name.

KO,_,J WC\/ Fate: §,/§-—K7

Tandem Computers
Dennis McEvoy, Vice Hr 51dent
Software Development

Owner's Declaration

1, the wundersigned, representing Tandem Computers, take full
responsibility for implementation and maintenance of the Ada compiler
listed above, and agree to the public disclosure of the final
vValication Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program
Cffice. I declare that all of the Ada language compilers listed, and
their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A,

Ne s saves_5°/5-8]

Tandem Computers
Dennis McEvoy, Vice Prdsident
Software Development

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).
GNonStop is a trademark of Tandem Computers

— .

APPENDIX B

APPENDIX F JF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
cnapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
reoresentation clauses. Te implementation-dependent characteristics of
tne Tandem Ada Compiler, Release TG270C00, are described in the following
sections which discuss topics in Appendix F of the Ada language Reference
Manual (ANSI/MIL-STD-18154). Implementation-specific portions of the
pacrage STANDARD are also included in this appendix.

APPENDIX F

IMPLEMENTATION~DEPENDENT CHARACTERISTICS

This appendix contains the Tandem implementation dependencies for
Ada programming. It is also Appendix F for the ANSI Reference
Manual for the Ada Programming Language (ANSI/MIL-STD-1815aA,
January 1983). That manual does not include this appendix, which
appears only in this user’'s guide.

The implementation dependencies this appendix describes include
the following:

e The form, allowed places, and effects of zll implementation-
dependent pragmas

e The names and types of all implementation-dependent attributes
e The specification of the package SYSTEM

e Implementation-defined aspects of the package STANLARD

e Implementation-defined predefined packages

e Restrictions on representation clauses

¢ Semantics of representation attributes

e Restrictions on unchecked conversions

e Information on input and cutput features

e Information about parameters and function returns for external
subprograms

e Rules for compiling generic units

¢ Implementation-defined limits

IMPLEMENTATICON-DEPENDENT CHARACTERISTICS
Pragmas

ﬁ PRAGMAS

Tandem Ada includes an implementation-defined pragma and has
restrictions on several predefined pragmas. This subsection
lists the additional pragma and the pragmas that have
restrictions, with descriptions.

For information about using pragmas, see sections 3 and 8. For
complete information about predefined pragmas for which Tandem
Ada has no restrictions, see the ANSI Reference Manual for the
Ada Programming Language.

1 Implementation-Defined Pragma

The EXTERNAL_NAME pragma, which is implementation-defined,

1 associates a TAL procedure name with the last Ada subprogram
declared before the pragma in the source file. EXTERNAL NAME
takes two arguments: the simple name of an Ada subprogram and a
string. You can use this pragma at the place of a declarative
item.

The pragma must apply to the last subprogram declared before the
pragma in the same declarative part or package specification.
You can not use this pragma for a library unit. The string is
the TAL name of the subprogram.

The second argument to EXTERNAL NAME should not start with RSL”®
because the compiler reserves all external subprogram names
starting with RSL~ for run-time support routines. If the second
| argument does start with RSL~, the compiler issues a warning
| message.

B-3

IMPLEMENTAT
Restr

EPENIENT CHAFACTER!

ON-2 F 18T
ctions on Predefired Pregre

v
-
i

Restrictions on Predefined Pragmas

The following list summarizes the restrictions on predefined
pragmas for the Tandem Ada compiler:

CONTROLLED

INLINE

This pragma has no effect. Everything is
controlled.

This pragma has the following effects:

It allows the compiler to expand subprogram
calls in line,

If the compiler does not expand a subprogram
call in line when the latest compilation of
the subprogram specification included the
INLINE pragma, then the compiler issues one
of the following warning messages at each
call site:

The call to this Inline subprogram is not
expanded because its body is not available.

The call to this Inline subprogram is not
expanded because its return type is
unconstrained.

The call to this Inline subprogram is not
expanded because it is either recursive
or mutually recursive.

An in-line expansion of a subprogram call
creates a compilation dependency on the body
of the called subprogram.

If you do not specify the INLINE pragma for

a subprogram, the compiler might expand that
subprogram call in line if the expansion does
not create any compilation dependencies and
if you use the OPTIMIZE switca for the
compilation. The effect of the optimize
switch is an average of the effects of the
SPACE and TIME settings of pragma INLINE,

The compiler does not 2xpand calls to derived
subprograms.

The compiler can expand a call to a recursive

subprogram, However, the compiler does not
expand the subprogram's second call to itself.

B-4

IMPLEMENTATI

INTERFACE

MEMORY_SIZE

OPTIMIZE

ON-DEPEZNDENT CHARACTERISTICS
Restrictions on Predefined Pragmas

The only language you can specify is TAL. An
Ada program can call a TAL procedure only if
the procedure could have a le_al Aca sucr-
program specification. This means an Ada
program cannot call any TAL function that has
an out parameter or any TAL procedure that has
optional parameters.

You cannot specify the INTERFACE pragma for
renamed subprograms or library subprograms.

Without a corresponding pragna EXTERNAL NAME,
the subprogram name in the INTERFACE pragma
must be the same as the TAL procedure name.

A TAL procedure for an Ada procedure cannot
have a return value, and a TAL procedure for
an Ada function must have a return value,

This pragma is reserved for development use
in compiling the base library.

This pragma does not apply to any block or
body nested within the block or body whose
declarative part contains the pragma. This
gives you greater control because you can
specify the OPTIMIZE pragma for individual
nested blocks or bodies when you want to. You
can specify the OPTIMIZE pragma at mcre than
one place in a declarative part.

If you do not specify the OPTIMIZE switch in
the ADA command for a compilation, the
compiler does not expand subprogram calls

in line unless a pragma INLINE applies to the
subprcgram, If you do specify the OPTIMIZE
switch in the ADA command, the compiler might
expand other subprogram calls in line where
the expansion does not create additional
compilation depencencies. The OPTIMIZE pragma
provides additional control over when the
compiler performs in line expansion. -

This pragma takes one parameter, either SPACE
or TIME. If you specify SPACE, then in-line
expansion happens only where it does not
increase the generated code size. 1If you
specify TIME, in-line expansion might occur
more often for subprograms of moderate size.

B-5

IMPLEMENTATION-DEPENDENT CEAFAC
Predefined

I1f you do not specify the OPTIMIZE pragma, the
effect is in between the results from SPACE
and TIME. 1If you specify the pragma more than
cnce for a urit of ccce using SPACE in one
instance and TIME in another, the effect is
the same as if you did not specify the pragma.

PACK This pragma has no effect on data layout. 1If
you use this pragma, the compiler issues a
varning message.

STORAGE_UNIT This pragma is reserved for development use

in compiling the base library.

SUPPRESS This pragma has no effect on the suppression
or generation of checking code. 1If you use
this pragma, the compiler issues a warning
message.

SYSTEM_NAME This pragma is reserved for development use

- in compiling the base library.

ATTRIBUTES

Tandem Ada has no implementation-defined attributes. For the
semantics of predefined attributes, see "Representation
Attributes," later in this appendix.

PREDEFINED PACKAGES

In addition to the packages SYSTEM and STANDARD and the stancdard
input-output packages, Tandem Ada has predefined packages for
NonStop systems:

e COMMAND_INTERPRETER_INTERFACE, which reads the startup,
assign, and param messages for the Ada process, It also
provides procedures and functions that the process can use to
get information from these messages.

e SYSTEM_CALLS, which enables Ada programs to set completion
codes.

B-6

I
I
I
I
I
|
I
|
I
|
!

IMPLEMENTATION-DEPENDENT
Package SYSTEM

Package SYSTEM

The specification of package SYSTEM for the Tandem Ada compiler
on NonStop systems follows:

package SYSTEM is

type ADDRESS is private;

type NAME is (NONSTOP);

SYSTEM_NAME :

STORAGE_UNIT :
MEMORY SIZE :

-- System-dependent named

MIN_INT
MAX_INT
MAX_DIGITS
MAX_MANTISSA
FINE_DELTA

TICK :

constant

constant
constant

constant
constant
constant
constant
constant

constant

CHARACTERISTICS

NAME := NONSTOP;

8;
2 ** 30;

numbers:

-9 223 372_036_854_775_808;
+9722373727036_854_775°807;
16; -

31;

2.0 =* (-31);

0.01;

-- Other system-dependent declaration:

subtype PRIORITY is INTEGER range 0 .. -1;

private

end SYSTEM;

B-7

r'-..IlIlI.-.----------—-------—-‘*~ —

% FMPLEMENTATION-DEPLNDINT CHARACTEEISTICS
¥,

e L T LS.

Package STANDARD

In the predefined package STANDARD, each implemer:ation defines
the number of predef::ed numeric types, their names, and their
representation attributes.

l Tandem's Ada compiler supports the following predefined numeric
types:

type SHORT INTEGER is range -2 ** 7 _, 2 **x 7 - 1.
¥ for SHORT_INTEGER'SIZE use 8;

] type INTEGER is range -2 ** 15 ., 2 ** 15 - 1;
{ for INTEGER'SIZE use 16;

1 type LONG_INTEGER is range -2 ** 31 ,, 2 ** 31 - 1;
for LONG_INTEGER'SIZE use 32;

{ type LONG LONG INTEGER is range -2 ** g3 ,, 6 2 ** g3 - 1;
] for LONG_ LONG INTEGER'SIZE use 64:

type FLOAT is digits 6 range -(2 ** 254 * (1 - 2 #x (-

2 *% 254 * (1 - 2 *x (
-- range is —-FLOAT' SAFE_ LARGE .. FLOAT'SAFE_LARGE
for FLOAT'SIZE use 32;

N
LY

type LONG_FLOAT is digits 16
range -(2 ** 254 * (1 - 2 *x (-55)))
2 ** 254 * (1 - 2 ** (-55));
-- range is -LONG_FLOAT'SAFE_LARGE .. LONG_FLOAT'SAFE_LARGE
{ for LONG_FLOAT'SIZE use 64;

type DURATION is delta 1 / 2 ** 14
range -(2 ** 31 / 2 ** 14) .,
} (2 =* 31 - 1) / 2 ** 14;
for DURATION'SIZE use 64;
for BOOLEAN'SIZE use 8;

for CHARACTER'SIZE use 8;

B-8

W

IMPLEMENTATION-DEPENDENT CEARACTERISTICS
Package COMMAND_ INTERPRETER_INTERFACE

Package COMMAND INTERPRETER INTERFACE

The COMMAND_ INTERPRETER_INTERFACE package enables an Ada process
to communicate with an operating system command interpreter.

The specification for this package follows, with comments that
describe the information Ada processes can get from the comrand
interpreter.

1 package COMMAND INTERPRETER_INTERFACE is

-~ This package reads the startuvp, assign, and param
-- messages and returns the specified information from
4 -- these messages. For details about the interface to
-- the operating system command interpreter, see the
-~ GUARDIAN Operating System Programmer's Gulde.

-- Elaboration code in this package reads the command

-- interpreter messages. To use this package in the

-- elaboration of another compilation unit, the dependent
-- unit should specify pragma ELABORATE for this package.
CANT_READ_MESSAGES : exception;

-- Raised by all routines if the Ada process could not

-- read the command interpreter messages.
FIELD’NOT_PRESENT : exception;

-- Raised when a field selection of an assign message is
-- absent.

type ASSIGN_MESSAGE T is private;

NO_ASSIGN : constant ASSIGN_MESSAGE T;

type FILE_EXCLUSION T is (SHARED, EXCLUSIVE, PROTECTED);
type FILE_ACCESS T is (IN_OUT, INPUT, OUTPUT);

subtype LOGICAL_FILENAME T is STRING (1 .. 31);

type PARAM_MESSAGE T is private;

NO_PARAM : constant PARAM MESSAGE_T;

function GET DEPAULT return STRING;

-- Returns the default volume and subvolume specified by
r -- the startup message in the form "$VOL,SUBVOL".

B-9

m —

IMPLEMENTATION-DEPENDINT CHAFACTE:R:
Package COMMAND _INTERPRETER_INT

arwm
'
>
NN
1 wn

] 'Y
|64 33

function GET INFILE return STRING;
-- Returns the IN file specified by the startup message
-- in the form "SVOL.SUBVOL.DNAME",

function GET OUTFILE return STRING;
-- Returns the OUT file specified by the star:zup
-- message in the form "SVOL.SUBVOL.DNAME"

function GET_STARTUP_MESSAGE_PARAM return STRING;

-- Returns the parameter string specified in the RUN

-- command line from the startup message. The returned
-- string does not include any trailing null characters
-- with which the command interpreter pacded the string.

procedure ASSIGN LIST_RESET;
-- Resets the pointer to the first assign message.

functicn GET _NEXT_ASSIGN return ASSIGN _MESSAGE_T;
| -- Returns the next message from the assign message list
-- or, if no message is left, returns NO_ASSIGN,

function SEARCH_ASSIGN (PROG_NAME : in STRING;
FILE NAME : in STRING)
return ASSIGN_MESSAGE_T;
-- Searches the list of assign messages for the logical unit
-- specified. A match occurs when both the input program
-- name and file name are identical to those of an assign
-- message. Otherwise, the function returns NO_ASSIGN.

procedure GET_LOGICAL_UNIT_NAMES (ASSIGN : in ASSIGN_MESSAGE_T; !
PROG NAME : out LOGICAL FILENAME _T;
PROG NAME LEN : out INTEGER;
FILE_NAME : out LOGICAL_ FILENAME T;
FILE NAME LEN : out INTEGER) ;

-- Returns the program name and file names of the 1og1cal

-- unit for the specified assign message.

function 1S_TANDEM_FILENAME PRESENT

T(ASSIGN : ASSIGN_MESSAGE_T) return BOOLEAN;
-- Returns TRUE if the operating system file name is present or
-- FALSE otherwise.

functiorn IS_PRI_EXTENT_PRESENT (ASSIGN : ASSIGN_MESSAGE_T)
return BOOLEAN;

-- Returns TRUE if the primary extént is present or FALSE

-=- otherwise,

IMPLEMENTATION-DEPENDENT CRARACTERISTICS
Package COMMAND_ INTERPRETER_INTERFACE

function IS_SEC_EXTBNT_PRESENT (ASSIGN : ASSIGN_MESSAGE_T)
return BOOLEAN;

-- Returns TRUE if the secondary extent is present or FALSE

-- otherwise.

function IS FILECODE_PRESENT (ASSIGN : ASSIGN_MESSAGE T)
- return BOOLEAN; -

-- Returns TRUE if the file code is present or FALSE

-- otherwise

function IS_EXCLUSION_PRESENT (ASSIGN : ASSIGN_MESSAGE_T)
return BOOLEAN;

-- Returns TRUE if the exclusion spec is present or FALSE

-- otherwise.

function IS_ACCESS_SPEC_PRESENT (ASSIGN : ASSIGN_MESSAGE T)
return BOOLEAN;

-- Returns TRUE if the access spec is present or FALSE

-- otherwvise.

function IS_RECORD_SIZE_PRESENT (ASSIGN : ASSIGN _MESSAGE T)
return BOOLEAN;

-- Returns TRUE if the record size is present or FALSE

-- otherwise,

function IS_BLOCK_SIZE_PRESENT (ASSIGN : ASSIGN_MESSAGE_T)
return BOOLEAN;

-- Returns TRUE if the block size is present or FALSE

-- otherwise,

function GET_TANDEM_FILENAME (ASSIGN : ASSIGN_MESSAGE_T)
return STRING;

-- Returns the operating system file name for the specified

-- assign message. Absence of the field raises

-- FIELD_NOT_PRESENT.

function GET_PRI_EXTENT (ASSIGN : ASSIGN_MESSAGE_T)
return INTEGER;
-- Returns the primary extent for the specified assign
-- mess23e., Abserce of the field raises FIELD_NOT_PRESENT,

function GET_SEC_EXTENT (ASSIGN : ASSIGN_MESSAGE_T)

return INTEGER;
-- Returns the secondary extent for the specified assign
-- message., Absence of the field raises FIELD_NOT_PRESENT,

function GET_FILECODE (ASSIGN : ASSIGN_MESSAGE _T)

return INTEGER;
-- Returns the file code for the specified assign message.
-- Absence of the field raises FIELD_NOT_PRESENT.

IMPLEMENTATICON-DEPENDENT CHARACTERISTIZS

Package COMMAND I h?"ﬁPRETER INTERFACE

function GET_EXCLUSION (ASSIGN : ASSIGN MESSAGE T)
return FILE EXCLUSION T;
-- Returns the exclusion spec for the specified assign
~- message. Absence of the field raises FIELD_NOT_PRESENT.

function GET_ ACCES: SPEC (ALSIGN : ASSIGN_MESSAGE_T)
) return FILE ACCESS T;
-- Returns the access cpec for the specified assign
-- messace. Absence of the field raises FIELD_NOT_PRESENT.

function GET_RECORD_SIZE (ASSIGN : ASSIGN_MESSAGE_T)
return INTEGER;
~- Returns the record size for the specified assign
-- message. Absence of the field raises FIELD_NOT_PRESENT,

function GET_BLOCK_SIZE (ASSIGN : ASSIGN_MESSAGE_T)

return INTEGER;
-- Returns the block size for the specxfled assign message.
-- Absence of the field raises FIELD_NOT_PRESENT.

procedure PARAM LIST_RESET;
-- Resets the pointer to the beginning of the param
-- message list.

function GET_NEXT_PARAM return PARAM MESSAGE_T;
-- Returns the next message from the param message list or,
-- if no message is left, returns NO_FARAM.

function SEARCH_PARAM_LIST (NAME : STRING)
return PARAM MESSAGE T;
-- Searches the param message list for a param with the
-- specified name and returns the message for the param that
-- matches. If none matches, i%Z returns NO_PARAM.

function GET_PARAM_NAME (PARAM : PARAM _MESSAGE_T)
return STRING
-~ Returns the param name of the specxfxed param message.

function GET_PARAM VALUE (PARAM : PARAM MESSAGE_T)
return STRING;
-- Returns the value of the specified param message.

private

end COMMAND_ INTERPRETER_INTERFACE;

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Package SYSTEM_CALLS

Package SYSTEM CALLS

The predefined package SYSTEM_CALLS enables Ada programs to

set completion codes. The Ada process can either exit while
setting the completion code information or set the completion
code information to be used when the process reaches its normal
termination.

The package contains six subprogram declarations for operating
system procedures, two each for the ABEND, SETCOMPLETIONCODE,
and STOP procedures, For each procedure, you can have your Ada
program set only the completion code parameter or set the five
supplemental information parameters as well as the completion
code parameter. For information about the completion code
parameter and the supplemental information parameters, see the
System Procedure Calls Reference Manual.

If an unhandled exception reaches the main subprogram, an Ada
process returns the completion code 5, whether or not the Ada
program set a different code.

If an Ada process terminates without calling any of the subpro-

grams in the SYSTEM CALLS package, the process returns the
completion code 0 for normal termination of the main subprogram.

B-13

IMPLEMENTATION-DEPENDENT CHARACTEIA!

[SR O

Package SY TEM_CAL;S

The specification for the package SYSTEM_CALLS follows.
-——

-- Package Nare : SYSTEM_CALLS

-- Purpose : Ada interface to operating system procedures

-
package SYSTEM_CALLS is

type COMPLETION_CODE is new INTEGER;

subtype TANDEM_COMPLETION_CODE is COMPLETION CODE
range -32767 .. -1;

subtype SHARED_COMPLETION_CODE is COMPLETION_CODE
range 0 .. 999;

subtype CUSTOMER_COMPLETION_CODE is COMPLETION_CODE
range 1000 .. 32767;

NORMAL : constant SHARED_COMPLETION CODE := 0;
WARNING : constant SHARED COMPLETION CODE := 1;
FATAL : constant SHARED COMPLETION CODE := 2;
PREMATURE : constant SHARED COMPLETION CODE := 3;
ABNORMAL : constant SHARED COMPLETION CODE := 5;
WARNING_EXAMINE : constant SHARED_ COMPLETION_CODE := 8;

-

e — —— — —— A R A AR = e e R = e e - . - A e e = e - e S = ————— - = = - = = - = —

-- Purpose: Ada interface to the operating system
-- procedure ABEND

-——4+

procedure ABEND (COMPL_CODE : COMPLETION_CODE);
pragma INTERFACE (TAL, ABEND);

pragma EXTERNAL_NAME (ABEND, "Rsl”Abendl");

procedure ABEND (COMPL CODE COMPLETION_CCDE;

TERMINATION_INFO : INTEGER;
SUBSYS_ORG : STRING;
SUBSYS_NUM : INTEGER;
SUBSYS_VER : STRING;
TEXT : STRING);

pragma INTERFACE (TAL, ABEND);
pragma EXTERNAL_NAME (ABEND, "Rsl~Abend2");

B-14

IMPLEMENTATICN-DEPENTZENT CHEARACTERISTICS
Package SYSTEM CALLS

-~ Subprogram Name: SET_COMPLETION_CODE

-~ Purpose: Ada interface to set the completion zcde to be
-- used when the process stops
-——
procedure SET COMPLETION CODE (COMPL CODE : COMPLETION CODE} ;
pragma INTERFACE (TAL, SET COMPLETION CODE) ; .
pragma EXTERNAL NAME (SET COMPLETION CODE,
"RsT“Set‘Complet1on“Codel):

procedure SET_COMPLETION_CODE (COMPL_CODE

TERMINATION_INFO : INTEGER;
SUBSYS_ORG : STRING;
SUBSYS_NUM : INTEGER;
SUBSYS_VER : STRING;
TEXT : STRING):;

pragma INTERFACE {TAL, SET COMPLETION_ CODE) ;
pPregma EXTERNAL NAME (SET COMPLETION CODE
”RsT‘SetACompletxon‘CodeZ)

-~ Subprogram Name: STOP

-~ Purpose: Ada interface to the operating system
-- procedure STOP

-
procedure STOP (COMPL_CODE : COMPLETION_CODE);
pragma INTERFACE (TAL, STOP);
pragma EXTERNAL NAME (STOP "Rsl*Stopl");

procedure STOP (COMPL CODE COMPLETION_CODE;

TERMINATION_INFO : INTEGER;
SUBSYS_ORG : STRING;
SUBSYS_NUM : INTEGER;
SUBSYS_VER : STRING;
TEXT : STR.NG);

pragma INTERFACE (TAL, STOP);
pragma EXTERNAL_NAME (STOP, "Rsl~Stop2");

end SYSTEM CALLS;

COMPLETION_CODE;

IMPLEMENTATION-DEPENDEY

Package LOW LEVEL 10

The compiler also has the predefined package LOW_LEVEL 10, as
required by the Ada standard. However, a call to a subprogram in
LOW LEVEL IO does not cause any input or output operation to be
performed’

The specification for the predefined package LOW_LEVEL IO
follows:

package LOW_LEVEL_IO is
type DEVICE_TYPE is (NO_DEVICE);
type DATA_TYPE is (NO_DATA);

procedure SEND_CONTROL (DEVICE : DEVICE_TYPE;
DATA : in out DATA TYPE);

procedure RECEIVE CONTROL (DEVICE DEVICE_TYPE;

DATA : in out DATA _TYPE);
end LOW_LEVEL_IO;

A call to either procedure in the package always returns NO DATA
to the formal in out parameter DATA. A call to either procedure
has no other effect at run time, except for taking time and
memory.

r

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Data Representation

DATA REPRESENTATION

This subsection defines how the Tandem Ada compiler represents
data. It includes definitions of the default data representation
of different types and of how representation clauses and repre-
sentation pragmas affect data layout.

bDefault Data Representations

Each type has an associated size and alignment, both expressed in
bits. This size and alignment is the default data representation
for the type.

The size specifies the size of the container in which the
compiler can store an instance of the type. The container size
for a scalar is always 8, 16, 32, or 64 bits. The container
size for a composite is always an integral number of 8-bit bytes
greater than or equal to 0.

The default alignment of a type specifies the alignment that
the compiler uses for objects of that type in the absence of a
representation clause to the contrary. The alignment is always
either 8 or 16 bits,

Scalar values are always right justified in their containers and
sign filled. That is, the least significant bit of the scalar
value is the least significant bit of the container. Composite
values are always left justified in their containers and zero
filled. That is, the bit of the composite corresponding to at 0
range 0..0 occupies the most significant bit of the container.

IMPLEMENTATION-DEPENDENT CHARACTEI® ST:CS
Sizes the Compiler Knows at Compil Te

-~
. -

Sizes the Compiler Knows at Compile Time

To understand the rules for record layout, the restrictions

on component clauses, the restrictions on UNCHECKED_CONVERSION,
and some of the information in the data map that the compiler
produces, you need to know certain rules about which sizes the
Tandem Ada compiler knows at compile time. This subsection
explains these rules.

The compiler can always determine the sizes of the following at
comp.le time:

e Scalar types and subtypes
e Access types and subtypes
e Task types and subtypes

For an array subtype, the compiler can determine the size at
compile time if it can determine the size of the component at
compile time and if all discrete ranges are static.

For a record subtype, to determine the size at compile time,
the compiler must be able to determine the sizes of all valid
components at compile time. If the subtype is statically
constrained, the compiler needs to determine only the sizes

of valid components, and it can use discriminant values to
figure out the sizes of these components. For an unconstrained
record, the compiler must be able to determine the sizes of all
components.

If an unconstrained record has any component whose constraints
come from a discriminant, the compiler cannot determine the size
of the record at compile time.

If an uncons:-ained record has a variant part, the compiler
calculates the size of the largest variant and uses that to
compute the size of the record.

For a private type, the compiler can determrine the size at
compile time only if it can determine the private type's full
declaration size at compile time. For a dynamically constrained
record, the compiler cannot determine its size at compile time.

IMPLEMENTATION-DEPENDENT CEARACTERISTICS
Scalar Types

Scalar Types

Scalar types obey some common rules:

e Subtypes always have the same size as their base types.
If you want to have a different representation, you must
introduce a derxved_type. For example, if you want to select
a different size (via "for T'SIZE use n"), you must introduce
a derived type.

e Tandem Ada does not perform biased arithmetic. That is, the
integer value 3 is always stored as 2#11#, even for a type T
for which T'FIRST is 3.

e A scalar (derived) type always inherits the size cf its parent
type L]

These rules apply to the following types:
e Integer types

e Enumeration types

e Floating-Point Types

e Fixed-Point Types

The following subsections explain the default data representation
for each of these types.

e e
Cha

AMPUEMENTATIUN-DEPENDENT CEA

a(rr
RN G

T o)
n

Integer Types

Integer types are represented as two's-complement binary inte-
gers. The container size for an integer type is equal to

the size of its parent type unless a length clause specifies

a different value. The compiler chooses the smallest possible
container size for the parent type.

Table F-1 shows the sizes and alignments of the predefined
integer types.

Table F-1. Sizes and Alignments of Predefined Integer Types

Type Size Alignment

SHORT _INTEGER 8 bits 8 bits

INTEGER 16 bits 16 bits

LONG_INTEGER 32 bits 16 bits

LONG_LONG_INTEGER 64 bits 16 bits
B-20

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

Scalar Types

The alignment is 8 bits if the size of the type is 8 bits;

otherwise, the alignment is 16 bits.

Table F-2 shows examples of

this.
Table F-2. Relationship of Alignment to Size
Type Size Alignment
type BYTE is range 0 .. 127; 8 8
subtype I is INTEGER range -5 .., 14; 16 16
type J is range -5 .., 14; 8 8
type S is range 0 ., 2 ** 8 - 1; 16 16
type U is range 0 .. 2 ** 16 - 1; 32 16
type Z is INTEGER range VARl .. VAR2; 16 16
-- Varl and var2 might or might not
-- be static integer expressions.
type X is new INTEGER range 1 .. 10; 16 16
type Y is new LONG_INTEGER
range 1 .. 10; 32 16
type W is new LONG_LONG_INTEGER
range 1 .. 10; 64 16

B-21

L

T

IMPLEMENTATION-DERPFNDENT CHARAZTERISTICS
Sca.ar Types

Enumeration Types

The value of an enumeration literal is equal to its position
represented as an unsigned quantity. For enumeration types with
no more than 256 literals, the compiler gives a container size
of 8 bits and an alignment of 8 bits and treats the value as i
an unsigned quantity. For enumeration types with more than 256
but fewer than 32,768 literals, the compiler gives a container
size of 16 bits and an alignment of 16 bits and treats the value
as a signed quantity. Tandem Ada does not support enumeration
types with more than 32,767 literals. Table F-3 shows examples
of enumeration types and their sizes and alignments, in bits.

Table F-3., Sizes and Alignments of Enumeration Types

Type Size Alignment
type BOOLEAN is (FALSE, TRUE); 8 8
type CHARACTER is (...); 8 8
type Z is (E1,E2,E3,E4,...,E300) 16 16
type ALPHA is new CHARACTER

range ‘'a' .. 'z’; 8 8
type NZ is new Z range E1 ., E10 16 16

B-22

"

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Scalar Types

Floating-Point Types

The definitions for FLOAT and LONG_FLOAT in the package STANDARD
and the description of the floating-point hardware in the
Tandem System Description Manual imply the following values for
floating-point types:

FLOAT'DIGITS = 6

FLOAT'MANTISSA = 21

FLOAT'EPSILON = 8#0.4000_000# * 2.0E-21

FLOAT'EMAX = 84

FLOAT'SMALL = 8%#0.4000_000# * 2.0E-84

FLOAT'LARGE = 84#0.7777_777# * 2.0E+84

FLOAT'SAFE_EMAX = 254

FLOAT'SAFE_SMALL = 8#0.4000_000# * 2,0E-254

FLOAT'SAFE_LARGE = 8#0.7777_777# * 2.0E+254

FLOAT'MACHINE_MANTISSA = 23

LONG_FLOAT'DIGITS = 16

LONG_FLOAT'MANTISSA = 55

LONG_FLOAT'EPSILON = 8#0.4000_0000_0000_0000_000# * 2.0E-55
LONG_FLOAT'EMAX = 220

LONG_FLOAT'SMALL = 8#0.4000_0000_0000_0000_000# * 2.0E-220
LONG_FLOAT'LARGE = 8#0.7777_7777_7777_7777_174% * 2.0E+220
LONG_FLOAT'SAFE_EMAX = 254

LONG_FLOAT ' SAFE_SMALL = 8#0.1000_0000_0000_0000_000# * 2.0E-254
LONG_FLOA™' SAFE_LARGE = 8#0.7277_7777_7777_7777_774% * 2.0E+254
LONG_FLOAT'MACHINE_MANTISSA = 55

B-23

IMPLEMENTATION-DEPENDENT CHARACTEZRISTICS
Scalar Types

The following values apply to both predefined floating-point
types:

'"MACHINE_EMAX = 25€

"MACHINE_EMIN = -255

"MACHINE_RADIX = 2

'"MACHINE_ROUNDS = TRUE

'MACHINE_OVERFLOWS = TRUE
The representation sizes for floating-point types are 32 and €4
bits for FLOAT and LONG_FLOAT, respectively. The alignment is
16 for both types. FLOAT is the base type of a user-defined
floating-point type if the user-defined type has the following:

e No more than 6 digits

e If specified, a range within the range of the safe numbers of
FLOAT

The format for floating-point data items is the format that
the Tandem System Description Manual defines for floating-point
numbers.,

B-24

P v - — e

-

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Scalar Types

FPixed-Point Types

Fixed-point types are represented as signed integers equal to the
value of sign * mantissa * small, which Section 3.5.9 of the ANSI
Reference Manual for the Ada Programming Language defines.

When you give a fixed-point type specification and a 'SMALL
specification, the compiler chooses a fixed-point base type with
that value of 'SMALL and with a mantissa of 31 bits. When you

do not specify 'SMALL, the compiler chooses a fixed-point base
type with a value of 'SMALL that is the lzrgest power of 2
smaller than or equal to 'DELTA of the type specification and
with a mantissa of 31 bits. In either case, the base type is

for the fixed-point subtype being defined by the fixed-point type
definition.

The size for fixed-point types is always 64 bits, although
MAX MANTISSA is 31. 'SMALL for fixed-point types must be in the
following range:
2**(-256) to 2**255
The range of fixed-type values follows:

-2%%3]1 * 2*%265 |, -2*%(-256), 0, 2**(-256) .. (2%*31-1) % 2x%2S5

If the definition type T is delta DEL range LB .. UB is in
effect, then all of the following are true:

e T'SMALL = T'BASE'SMALL = T'SAFE_SMALL = largest power of 2
less than or equal to DEL

e T BASE'MANTISSA = 31

e T'DELTA = DEL

¢ T'BASE'DELTA = T'SMALL

e T'BASE'LARGE = T'SAFE_LARGE = (2 ** 31 - 1) * T'SMALL

e T'MACHINE_OVERFLOWS = TRUE

e T'MACHKINE_ROUNDS = TRUE)

The range of T'BASE is -(2 ** 31) * T'SMALL .. 2 ** 31 * T'SMALL.
Ada fixed-point types do not correspond directly to any type
in Tandem's Transaction Application Language (TAL). Also, the
values of certain fixed-point types cannot be represented as
floating-point values because the bounds of a fixed-point type

can be greater than the bounds of the largest floating-point
type. So, when an Ada program passes a parameter of a fixed-

R-?5 -

point type to a TAL procedure, the TAL procedure must recreate
the fixed-point value, as explained under "Scalar, Access, and
Constrained Composite Parameters"™ in Section 8.

Array Types

The size and alignment of an array depends on the size &nd
alignment of its components.

The compiler arranges arrays so that all components have the

same size and alignment as the component type, and the entire
array has the same alignment. For example, if an array has
1-byte components aligned to l-byte boundaries, then the array
also has l-byte alignment. The stride of an array is the size of
each component of the array--the difference between A(1)'ADDRESS
and A(T'SUCC(I))'ADDRESS). The compiler stores multidimensional
arrays in row-major order.

The algorithm for calculating the size and alignment of an array
follows:

1. Set the alignment of the array to the alignment of the
component.

2. Set the stride to the component size,

3. Set the size of the array to the product of the stride and
the number of elements. For unconstrained array types, the
number of elements is undefined; however, the size is equal
to the maximum possible size that a constrained subtype could
have.

W -

IMPLEMENTATION-DIZPENDENT CHARACTRERISTICS
Record Types

Record Types

The size and alignment of a record depends on the size and
alignment of its components and any record representation clauses
and length specifications for the record. The following subsec-
tions describe the default data representation for simple and
complex records, including static, nonvariant record types and
dynamic and variant record types.

Simple Records

A record that has no discriminants, no dynamically constrained
composite components, and no unconstrained components is a simple
record. The compiler arranges a simple record so that each
component has its own default size and alignment, relative to the
base of the record.

The algorithm for calculating the size and alignment of a record
follows:

1. For each component, align at the default alignment for the
component type and allocate space for the component's size.

2. Set component locations as follows:

a) Sort components by alignment, largest first, and then by
order of declaration.

b) Assign each component the location that (1) is closest
to tne base of the record, (2) is not yet assigned to
another component, and (3) meets the default size and
alignment requirements of the component type.

3. Set the alignment of the record to the largest alignment of
its components., That alignment is the most restrictive and
can only be 8 or 16 bits,

4. Set the size of the record to the sum of the offset of the
component that has the largest offset ('POSITION attribute)
and the size of that component rounded up to the next
multiple of the record type's alignment.

-~

B-27

W

IMPLEMENTATION-DEPENDENT CHARACTER!

Complex Records

A complex record has at least one of the follewing:
e Discriminants (one or more)
e Dynamically constrained composite components
e Unconstrained components
For example, consider these declerations:
N : INTEGER := F(10); -- F is a function,
type DYNAMIC ARRAY is array (1..N) of INTEGER;
type R(D : NATURAL) is

record

A NATURAL := 0;

B : STRING(1..D);
Cl : DYNAMIC_ARRAY;
C2 : DYNAMIC_ARRAY;

end record;

In the example, R is a complex record because it has a

discriminant and also because the values of B'LAST, Cl1'LAST, and

C2'LAST are determined at run time.

Layout of Record Components. The compiler lays the record compo-

nents out 1n the following order:

1. The discriminants, if any

2. The variant index field, if the record type has variants, as

if the variant index were another discriminant

3. Everything the compiler knows tha size of cdeclared in the
invariant part

4. For each variant, everything the compiler knows the size of

declared in the variant part

£. Everything the compiler does not know the size of declared in

the invariant part

6. For each variant, everything the compiler does not know the

size of declared in the variant part

B-28

T - .

IMPLEMENTATICN-DEPENDENT CHARACTERISTICS
Record Types

The compiler always determines the ordering of all components at
compile time. It cannot determine the position values for any
component the compiler does not know the size of at compile time
or for any component constrained by a discriminant, except for
the first such component.

Components With Unknown Sizes or Discriminant Constraints. The
compiler always stores components i1t does not know the size

of and components constrained by discriminants at the end of a
record. If the record has more than one of these components per
variant, each of the components except the last one causes the
compiler to create an extra component and assign it a location
within the record. This extra component holds the byte-relative
offset of the corresponding component.

The extra component is a 16-bit field aligned on a 16-bit
boundary. The field is located in the static invariant part for
a corresponding component in the dynamic invariant part or in the
static variant part for a corresponding component in the dynamic
variant part.

If a record subtype is constrained and has no dynamic part, the
compiler allocates space only for the active variant parts. 1If
a constrained record subtype has a dynamic part, the compiler
allocates space for all variants in the static part to insure
that the dynamic part of all subtypes start at the same offset.

Multidimensional Subtypes. When a record component is a multidi-
mensional subtype in which more than one bound depends on a
discriminant, the size the compiler allocates for the component
can be the minimum space the component needs or larger. For
example, the following declaration can cause the compiler to
allocate more than the minimum space for a component:

subtype INT is INTEGER range 1 .., 20;
type ARR is array (INT range <>, INT range <>) of INT;
type R (D : INT := §) is
record
A : ARR (1 .. D, D.. 20);
end record;

When D is 10, the number of components in A is 110, the maximum
size that A can be. However, the compiler plugs in the upper-and
lower bounds for the discriminant type in the appropriate parts
of the subtype range for A and calculates the number of elements
in A to be 400,

B-29

IMPLEMENTATION-

('1

NDENT CHARACTLZIST:
h it

Descr1ptor Components. For each component in the record that has
a constraint which depends on a discriminant of the record, the
comp1ler also generates an additional descriptor component. The
size of the descriptor component varies with the type of the
component, as described under "Run-Time Descriptors," later in
this appendix. However, the alignment is always 16 bits.

NOTE

The compiler does not round up the size of a descriptor
component to a multiple of two bytes.

The compiler, at compile time, sizes the components it generates
and allocates space for them in the appropriate static areas.

1f a descriptor's corresponding component is in the dynamic
invariant part, then the descriptor component goes in the static
invariant part. If a descriptor's corresponding component is in
the dynamic variant part, then the descriptor component goes in
the static variant part.

For a variant record, the compiler also generates a 16-bit
variant index field. The compiler uses the index field to
simplify component selection checks. The alignment cf the index
field is 16 bits.

Representation of Complex Records. The algorithm for determining
the representation of complex records follows:

1. rCivide the components, including compiler-generated
components, into three groups:

e Discriminants
e Invarients
e Variant part

2. Apply the algorithm for laying out simple record components
to the set of discriminants,

3. If the record type has any variants, generate a variant index
field. Place the index field at the location closest to the
base of the record that (1) is not assigned to a discriminant
and (2) has a size of 2 bytes and an alignment of 2 bytes.

B-30

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Record Types

Apply a slightly modified version of the algorithm for
laying out simpie records to the set of everything the
compiler knows the size of in the invariant part. The

only modification is that, for each component, the compiler
allocates the unoccupied location closest to the last loca-
tion ~ccupied by a discriminant, or by the variant index
field if present, instead of the unoccupied location closest
to the base of the record.

For each variant case, lay out everything the compiler

knows the size of, using a slightly modified version of

the algorithm for laying out simple records. The only
modification is that, for each component, the compiler
allocates the location closest to the last location occupied
by a component in the static invariant part, instead of

the unoccupied location closest to the base of the record.
The compiler computes each variant case independently of

any of the others, so components in one ordinarily overlay
components in another.

Lay out the subvariants, if any, within each variant in the
same manner as the variants.

Finally, at run time, lay out components the compiler does
not know the size of and components that are constrained by
discriminants. The size of an unconstrained component is the
maximum possible size for that component.

The algorithm for laying out the components in the final step
follows:

a) For each invariant component, apply a slightly modified
version of the algorithm for laying out simple records.
The only modification is that each component is allocated
the location closest to the last location occupied by
a comgponent in all of the static variant parts, instead
of the unoccupied location closest to the base of the
record,

b) For each variant case, lay out the components the
compiler does not know the size of and the components
tha: are constrained by discriminants, using a slightly
modified version of the algorithm for laying out simple
reccrds. The only modification is that each component
is allocated the location closest to the last location
occupied by a component in the dynamic variant part,
instead of the unoccupied location closest to the base of
the record. Each variant case is computed independently
of any of the others, so components in one ordinarily
overlay components in another.

8-31

IMPLEMENTATION-DEPENDENT CEAPACTERISTICS
Record Types

components at compi}e time, but the position values for
components the compiler does not know the size of and
components constrained by discriminants must be computed at
run time.

l The compiler can always determine the ordering of all

For the record R, we might arrive at the following layout for a
declaration of R(D => 5) and N := S

Component Position
D 0
A 2
B's Indirect Pointer 4
B's Descriptor 6
C2's Indirect Pointer 14
Ccl 16
1 Cc2 26
B 36

There is no indirect pointer for the dynamic component Cl because
W it is the first dynamic component in the record. The compiler
determines this component's offset within the record at compile
time.

Figure F-1 illustrates the layout of the record R.

B-32

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Record Types

D

A

e

B's Indirect Pointer

B's Descriptor

WO WN -

C2's Indirect Pointer 14

16
c1

26
c2

36

N
o
N

F Pigure F-1, Layout of a Complex Record

B-33

"

IMPLEMENTATION-DEPENDENT CHARACTEIRIST CS
Compcnent Clauces

Access Types

The size of an access type depends on whether the accessed type
is constrained and on whether the accessed type is completed in
the same compilation with its incomplete type specification. The
compiler allocates 64 bits for an access type to .an-unconstrained
record or array subtype. The compiler also allocates 64 bits for
an access type to a type not completed in the same compilation,
if the corresponding full type declaration for the accessed

type does not occur before a forcing occurrence of the access
type. (Section 13.1 of the ANSI Reference Manual for the Ada
Programming Language defines forcing occurrence.) For any other
access type, the compiler allocates 32 bits,

Subtypes and derived types of access types always have the same
sizes 2s their base or parent types.

Task Types

The size of a task type is 32 bits. The 32 bits contain a task
identifier.

Component Clauses

A record representation clause can give one or more component
clauses for a record. The representation clause is legal if the
compiler can assign all the specified locations and sizes without
incorrectly overlapping any fields.

For any field mentioned with a component clause, the compiler
assigns precisely the specified location and size. After it
locates all such fields, the compiler applies the algorithm
described in the preceding tex* to locate <he remaining fields.
In doing so, it avoids incorrectly overlapping those fields
that it explicitly located. 1In any case, the alignment of a
record type that has a component clause is equal to the largest
component alignment.

For any component, the size, as implied by the range, must be
the same as the size of the component type. The alignment

for any component relative to the base of the record must

be a multiple of the alignment of the component's type. A
record representation clause cannot specify the insertion of a
component from a component list or the discriminant part of a
type declaration into another component list or the discriminant
part of the same type declaration., (For an explanation of

B-34

l
!

"

-'

g

—py~—

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Component Clauses

component lists, see sections 3.7 and 3.7.3 of the ANSI Reference

Manual for the Ada Programming Language.)

For example, the following record representation clause is

illegal because it tries to place a variant component in the list

of invariant components.

type R (D : INTEGER) is
record;
A,B : INTEGER;
case D is
wvhen 0 =>
C : INTEGER;
when others =>
null;
end case;
end record;

for R use
record
-- D is at 0 range 0..15.
-- Variant index is at 4 range 0..15.

A at 6 range 0..15;

B at 10 range 0..15;

C at 8 range 0..15;
end record;

| To make this representation clause legal, the position of
| component C should follow the position of component B.

B-35

IMPLEMENTAT ION-DEPENDENT CEARACTEFRISTICS

-

Componert Clauses

In record representation clauses, you must leave space in the
component list for the following:

e variant index field, which the compiler puts in the discrimi-
nant part

e Descriptors for dependent subtypes, described in "Descriptor
Components” under "Complex Records," earlier in this appendix

e Indirect pointers to components, described in "Components
With Unknown Sizes or Discriminant Restraints”™ under "Complex
Records," earlier in this appendix

A representation clause can leave space fc.- the variant index
anywhere in the discriminant part, before the first component,
A. The compiler considers the variant index to be part of the
component list of discriminants, For example, the following
representation clause is illegal:

type R (D : INTEGER) is
record
I : INTEGER;
case D is
when 1 => J : INTEGER;
when others => null;
end case;
end record;

for R use
record

D at 0 range 0..15;
I at 2 range 0..15;

end record

The compiler cannot honor the representation clause for component
I because it aiready placed the variant index at 2 range 0..15.
The same applies to components the compiler does not know the
size of and components constrained by discriminants.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Alignment Clauses

Alignment Clauses

An alignment clause in a record representation clause affects
only the alignment of the record. It does not affect the layout
of the components of the record.

The following examples illustrate the use of an alignment clause:

-- Sample record type:
type S is range 0..1000;
type Q is range 0..20;

type T is
record
A : CHARACTER;
B : LONG_INTEGER; -- 32 bits
C: S;
D : Q;
end record;

-- Default representation:

for T use
record at mod 2 ~- SYSTEM, STORAGE_UNIT = 8 bits
B at 0 range 0..31;
C at 4 range 0..15°
A at 6 range 0.
D at 7 range 0
end record;
for T'SIZE use 64; -- bits

..7.

B-37

IMPLEMENTATION-DEPENDENT CHARACTEIRISTICS
Restrictions on Represen:tat:ion Clauses

Restrictions on Representation Clauses

In addition to the rules for representation clauses and represen-
tation pragmas in the ANSI Reference Manual for the Ada
Programming Language, Tandem Ada has restrictions on the
following:

e Size specifications in length clauses

e Record representation clauses

e Address clauses

e Enumeration representation clauses

e Specification of 'SMALL for fixed-point types

e Specification of 'STORAGE_SIZE

Size Specifications in Length Clauses

For records and arrays, the value of the static expression in
a length clause for T'SIZE must be a multiple of 8 and of the
alignment. Also, the value must be at least as large as the
default size the compiler calculates for T.

Table F-4 shows the possible values of N for different data types
in the clause for T'SIZE use N. For scalar types, just a few
values are valid. You cannot use the length clause for access
types.

B-38

r-.-.-.-.-----------------'-r*

IMPLEMENTATION-DEPENDENT CHARACTRRISTICS
Restrictions on Representation Clauses

Table F-4. Size Specifications for Different Types

Type Possible Values of T'SIZE

Integer 8, 16, 32, and 64

Enumeration 8 and 16

Fixed point 64

Floating point 32 and 64

Task 32

Composite Multiples of 8 and of the alignment
Access Not Supported

I1f a representation clause increases the size of a type, then

the compiler creates some filler space. For scalar types, which
the compiler alwsys stores right justified within a container,
the filler space is sign extended. For composite types, which
the compiler always stores left justified within a container, the
filler space is zero filled.

A subtype of a type typically has the same size as the type;
however, a constrained record subtype can be smaller than the
record type. If you specify a length clause for the record tyge,
the compiler uses the length in the clause to allocate space

for the type. But when a2llocating space for an oblect of a
constrained subtype, the compiler ignores the length clause for
the type and chooses a size for the subtype.

B-39

W

R e
.}

RIS
Clauses

IMPLEMENTATICN-DEFENDENT CHARACT
Restrictions on Representation

Record Representation Clauses

The following restrictions apply to component clauses (at N range

L .. R}):

e The compiler must be able to determine the size of the
component subtype at compile time, as explained under "Sizes

the Compiler Knows at Compile Time," earlier in this appendix.

‘ e The size of the range you specify (R-L+1) must equal the size
t of the component type.

e The value for L must be a multiple of 8. The component must
begin on a byte boundary.

L e All values supplied for a record component offset must be
nonnegative (N * 8 + L >= 0),

e Components from a variant part must follow components from the
fixed part in the record layout.

The compiler's layout algorithm implies some additional restric-
tions. For a description of the algorithm, see “Complex Records”
under "Record Types," earlier in this appendix.

The following restrictions apply to alignment clauses (at mod N):

e The value of N must be at least as large as the default
alignment the compiler chose for the record.

e The value of N must be either 1 or 2 bytes.

The Tandem Ada compiler does not support record representation
clauses for records that contain generic formals.

Q Address Clauses

The Tandem Ada compiler does not support address clauses.

Enumeration Representation Clauses

The Tandem Ada compiler does not support enumeration representa-
tion clauses.

B-40

s — - -

IMPLEMENTATION-DEPENDENT CHAR.ACTE:RI STICS
Restrictions on Representation Clauses

Specification of 'SMALL for Fixed-Point Types

The value of the static expression in a length clause for 'SMALL
must be a power of 2 in the following range:

2 ** (-256) to 2 ** 255

The value specified for 'SMALL must be in the range precisely
represented by the positive range of the predefined types FLOAT
and LONG_FLOAT.

The ANSI Reference Manual for the Ada Programming Language also
impiles that the value must satisfy the following relation:

max (ceiling (log2 (abs (LB) / small)),
ceiling (log2 (abs (UB) / small))) <= SYSTEM.MAX_MANTISSA

In other words, the number of binary digits in the mantissa of
the model numbers for fixed-point type must be less than or equal
to the maximum number of binary digits, SYSTEM.MAX MANTISSA,
which is 31, -

Specification of 'STORAGE_SIZE

For tasks, the value you specify for 'STORAGE_SIZE, must be
greater than 0 but less than 2 ** 27 bytes. The default is

2 ** 18 bytes. For a description of how tasks use memory, see
"Memory Usage on NonStop Systems," later in this appendix.

Tandem Ada does not support 'STORAGE_SIZE for access types.

B-41

?

riootes

Represeniation At

Representation Attributes

The Tandem Ada compiler supports al} representation attributes.
However, the following attributes might not have meaningful

values:

'ADDRESS

'ADDRESS returns the 32-bit extended address of an object.
(For a task object, it returns the address of the variable

that contains the task identifier.)

Meaningful addresses exist for some, but not all, objects.
You can use the 'ADDRESS attribute to determine whether an

object has a meaningful address.

For example, to determine whether an object of type T has

a meaningful address, first declare an access type--call it
A--whose designated subtype is T, and instantiate
UNCHECKED_CONVERSION for types SYSTEM,ADDRESS and A. Then, if
an object of type T does not have a meaningful address, the
result of using the 'ADDRESS attribute followed by unchecked
conversion to type A is the value null. 1If objects do have
meaningful addresses, the result of the conversion is a valid,
non-null access value, which you can use to gain access to the

correspcnding object of type T.

NOTE

Unchecked conversicn between SYSTEM.ADDRESS and an ac-

cess type is possible only for access types represented

in 32 bits. If T is an unconstrained type or is not |
completed in the same compilation, an access value to |
type T might require 64 bits, as explained earlier in

this appendix under "Access Types." In such cases,

use the correcpording full type declaration of T, or a
constrained subtype of T, for the designated subtype of

A,

' STORAGE_SIZE

For access types or subtypes, this attribute does not return a
meaningful value.

For tasks, if the program gives a storage-size representation
clause, then 'STORAGE_SIZE returns that value. Otherwise,
'STORAGE_SIZE returns the default task storage size, which is
2 ** 18,

B-42

e e e v g

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Run-Time Descriptors

Run-Time Descriptors

This section describes record and array subtype descriptors.

When the calling program passes an actual parameter corresponding
to an unconstrained formal parameter, it also passes a pointer

to a subtype descriptor. The program pushes the pointer to the
descriptor onto the stack immediately after the pointer to the
data.

The compiler also uses a run-time descriptor when record compo-
nents depend on discriminants.

Record Subtype Descriptors

A record subtype descriptor describes a record subtype. Each
record descriptor is at least four bytes. All record descriptors
have a size field and a field that tells whether the subtype is
constrained. The second field occupies two bytes.

If a record subtype is constrained, its descriptor has additional
fields containing a copy of the discriminant values of the
subtype. The compiler lays out the descriminant values in the
record descriptor in the same way as it lays them out in the
actual record, beginning where the discriminant part begins in
the record layout. For example, if a discriminant is at offset X
in the actual record, and the smallest offset of any discriminant
in the actual record is Y, then that same discriminant is at
offset X-Y+4 in the record descriptor.

-- The following declaration describes a descriptor for a
-- record subtype:

type RECORD_DESCRIPTOR is

record
SIZE : INTEGER; -- at 0 range 0 .. 15
IS CONSTRAINED : INTEGER; -- at 2 range 0 .. 15

REEORD_DISCRIMINANTS ¢ DISCRIM RECOCRD;
--1f the record is constrained and has
--discriminants, then this field is a copy
--of the discriminant constraints of the
-~-record subtype.
end record;

NOTE

The compiler does not round up the size of a descriptor
component to a multiple of two bytes.

B-43

Array Subtype Descriptors

An array subtype descriptor describes an array subtype. Each
descriptor specifies an array of records with two numeric fields
and an array of array strides. Each of these arrays has from

1 to 7 elements, depending upon the number of dimensions of the
array being described. The compiler knows this number at compile
time. The last field in the descriptor is the array size.

Examples of array subtype descriptors fcllow:
MAX INDICES : constant INTEGER := 7;
subtype INDEX_COUNT is INTEGER range 1 .. MAX_INDICES;
subtype STRIDE is INTEGER;

type STRIDE_ARRAY is array (INDZX_COUNT range <>)

of STRIDE;
type AIT is
record
LOWER_BOUND ¢ INTEGER;
UPPER_BOUND : INTEGER;

end record;
type AIT_ARRAY is array (INDEX_COUNT range <>) of AIT;

type LONG_AIT is
record
LOWER_BOUND : LONG_INTEGER;
UPPER_BOUND : LONG_INTEGER;
end record;
type LONG_AIT_ARRAY is array (INDEX_COUNT range <>)
of LONG_AIT;

type LONG_LONG_AIT is
record
LOWER_BOUND : LONG_LONG_INTEGER;
UPPER_BOUND : LONG_LONG_INTEGER;
end record;
type LONG_LONG_AIT_ARRAY is array (INDEX_COUNT range <>)
of LONG_ LONG AIT;

B-44

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Run-Time Descriptors

-+ --The following types describe arrays that have index --subtypes
less than or equal to 16 bits.

type ARRAY DESCRIPTOR_1 is --for a l-dimensional array

record
AIT : AIT_ARRAY (1 .. 1);
STRIDE : STRIDE_ARRAY (1 .. 1);
SIZE ¢ INTEGER;

end record;

type ARRAY DESCRIPTOR_2 is --for a 2-dimensional array

Y record
AIT : AIT_ARRAY (1 .. 2);
{ STRIDE : STRIDE_ARRAY (1 .. 2);

y SIZE ¢ INTEGER;
1' end record;

type ARRAY DESCRIPTOR_3 is --for a 3-dimensional array

record
AlIT ¢ AIT_ARRAY (1 .. 3);
{ STRIDE : STRIDE_ARRAY (1 .. 3);

SIZE : INTEGER;
end record;

type ARRAY DESCRIPTOR_4 is --for a 4-dimensional array
record
AIT AIT_ARRAY (1 .. 4);
i STRIDE : STRIDE_ARRAY (1 .. 4);
SIZE s INTEGER;
end record;

type ARRAY DESCRIPTOR_5 is --for a S-dimensional array

record
AIT : AIT_ARRAY (1 .. S);
W STRIDE : STRIDE_ARRAY (1 .. S);
SIZE : INTEGER;

, end record;

type ARRAY DESCRIPTOR_6 is --for a 6-dimensional array
record
AIT AIT_ARRAY (1 .. 6);
STRIDE : STRIDE_ARRAY (1 .. 6);
SIZE ¢ INTEGER;
end record;

: type ARRAY_ DESCRIPTOR_7 13 --for a 7-dimencional array
F record
AIT ¢ AIT_ARRAY (1 e 1)
r STRIDE : STRIDE_ARRAY (1 .. 7):
SIZE ¢ INTEGER;
* end record;

B-45

IMPLEMENTATION-DEPENIENT CHAFRAZTE

--The following types describe arrays

Run-T.me Dwscr

that have at least

~-one index subtype greater than 16 bits and no index

--subtype greater than 32 bits.

type LONG_ARRAY DESCRIPTOR_1 is --for
record
AIT : LONG_AIT_ARRAY (1 .. 1);
STRIDE : STRIDE_ARRAY (1 .. 1);
SI1ZE : INTEGER;
end record;

type LONG_ARRAY DESCRIPTOR_2 is --for
record
AIT LONG_AIT_ARRAY (1 .. 2);
STRIDE : STRIDE_ARRAY (1 .. 2);
SIZE : INTEGER;
end record;

type LONG_ARRAY DESCRIPTOR_3 is --for
record
AIT LONG_AIT_ARRAY (1 .. 3);
STRIDE STRIDE_ ARRAY (1 .. 3);
SIZE : INTEGER;
end record;

e se oo

type LONG_ARRAY DESCRIPTOR_4 is --for
record
AIT LONG_AIT_ARRAY (1 .. 4);
STRIDE STRIDE ARRAY (1 .. 4);
SIZE : INTEGER;
end record;

type LONG_ARRAY DESCRIPTOR 5 is --for
record
AIT LONG_AIT_ARRAY (1 .. 5);
STRIDE : STRiDE ARRAY (1 .. 5);
SI1Z2E : INTEGER;
end record;

type LONG_ARRAY DESCRIPTOR_€ is --for
record

AIT : LONG_AIT_ARRAY (1 .. 6);
STRIDE : STRIDE_ARRAY (1 .. 6);
SIZE : INTEGER;

end record;

type LONG_ARRAY DESCRIPTOR_7 is --for
record
AIT

STRIDE
SIZE

: LONG_AIT_ARRAY (1 ., 7);
end recoré

STRIDE_ARRAY (1 .. 7);
INTEGER;

B-46

a8 l-dimensional array

a 2-dimensioral array

a 3-dimensional array

a 4-dimensiorzl array

a 5-dimensional array

a 6-dimensional array

a 7-dimensional array

IS8T
-l
P oid

e

tor

,-.

s

IMPLEMENTATION-DEPENDENT CHEARACTERISTICS
Run-Time Descriptors

--The following types describe arrays'that have at least one
--index subtype greater than 32 bits and no index subtype
~-greater than 64 bits.

type LONG_LONG_ARRAY DESCRIPTOR_1 is

record
AIT
STRIDE
SIZE H

end record;

LONG_LONG_ AIT ARRAY (1

STRIDE ARRAY
INTEGER;

T1

1);

type LONG_LONG_ARRAY_DESCRIPTOR_2 is

record
AIT
STRIDE
SIZE H

end record;

LONG_LONG_AIT_ARRAY (1 .,

STRIDE ARRAY
INTEGER;

T1

2);

type LONG_LONG_ARRAY DESCRIPTOR_3 is

record
AIT
STRIDE
SIZE :

end record;

LONG_LONG_AIT ARRAY (1 .
STRIDE_ARRAY T1

INTEGER;

3);

type LONG_LONG_ARRAY DESCRIPTOR 4 is

record
AIT
STRIDE
SIZE :

end record;

LONG_LONG_AIT_ARRAY (1 .
STRIDE ARRAY (1

INTEGER;

4);

type LONG_LONG_ARRAY DESCRIPTOR S is

record
AIT
STRIDE
SIZE H

end record;

LONG_LONG_AIT ARRAY (1 ,
STRIDE ARRAY T1

INTEGER;

5);

type LONG_LONG_ARRAY_DESCRIPTOR 6 is

record
AIT
STRIDE
SIZE :

end record;

LONG_LONG_AIT_ARRAY (1 .
STRIDE ARRAY (1 .. 6);

INTEGER;

type LONG_LONG_ARRAY DESCRIPTOR 7 -is

record
AIT
STRIDE
SIZE

end recor

Q os oo oo

--for a l-dimensional array

1);

--for

--for

. 3);

--for

--for

.« 5);

--for

. 6);

-=-for

LONG_LONG_AIT_ARRAY (1 .. 7);

STRIDE ARRAY
INTEGER’

T1

7);

B-47

2-dimensional

3-dimensional

4-dimensional

S-dimensional

6-dimensional

7-dimensional

array

array

array

array

array

array

IMP_LEMENTATION-DJEPENDENT CHARACTERISTICS
nchecked Vype Conversions

UNCHECKED PROGRAMMING

This subsection explains when you can use instances of the
predefined generic subprograms for unchecked programming and what
they do. For complete descriptions of UNCHECKED DEALLOCATION

and UNCHECKED_CONVERSION, see Section 13.10 of the ANSI Reference
Manual for the Ada Programming Language.

Unchecked Storage Deallocation

The generic procedure UNCHECKED DEALLOCATION resets an access
value to null but does not reclaim the memory space used by the I
allocated object. l

The compiler reclaims any space it allocates for temporary
variables it creates for execution of a subprogram. However,

the compiler does not automatically do garbage collection of data
that a program creates.

Unchecked Tvpe Conversions

The generic function UNCHECKED_CONVEPSION has the following
restrictions:

e The source and target types must have the same size, and the
compiler must be able to determine the size at compile time.
For information about sizes the compiler can determine at
compile time, see "Sizes the Compiler Knows at Compile Time,"
earlier in this appendix.

e The source and target types must not be unconstrained records |
or arrays. |

B-48

—— ——— — — —— — g— —

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Input-Output Packages

INPUT~-OUTPUT PACKAGES

Tandem's Ada compiler supports SEQUENTIAL_ IO, DIRECT_IO, and
TEXT 10. 1/0 routines recognize only disk files, terminals, and
spoolers. If an output file is a process other than a terminal,
the I/0 routines trec: the file like a spooler.

Calling subprograms in LOW_LEVEL_IO does not cause any 1/0
operations to be performed.

FORM Parameter of CREATE and OPEN Procedures

The FORM parameter of the CREATE and OPEN procedures in the
TEXT_I10, DIRECT_IO, and SEQUENTIAL_IO packages has the following
syntax:

form-string ::=
create-open-spec {, create-open-spec}

create-open-spec ::= create-spec | open-spec | null
-- Create-spzc is only for the CREATE
-- procedure., Open-spec is for both the
-- CREATE and OPEN procedures.

create-spec ::=
DATA_BLOCKLEN = block-length -- This data-block length

-- is for structured files.
-- The default is 1024. You
-- can specify any integer in
-- the range 1..4096. If you
-- do not specify 512, 1024,
-- 2048, or 4096, the compiler
-- rounds the block length up
-- to the next highest of
-- these values,

| PILE_CODE = code-number -- The code number is the
-- operating system file code,
-- any integer in the range
-- 0..65535. When a program
-- uses TEXT IO with an edit-
-- formit file, the file code
-- is always 101, and if you
-- try to specify it, the
-- program raises USE_ERROR,
-- Por TEXT 10 with other file
-- types and for DIRECT_IO and
-- SEQUENTIAL 10, the default
-- file code 1s 0.

B-49

IMPLEMENTATION-DEPENDENT CEASAC . . I8TICS
FORM Parameter of CREATE and CPEIN FPric-ed_res
| PRIMARY_EXTENT_SIZE = extent-size -- The extent size is

~=- any integer in the range
~- 0..65535, The cefault
~- primary extent size is &,

| SECONDARY_EXTENT_SIZE = extent-size -- The extent size
~- any integer in the range
~- 0..65535., The default
-- secondary exten:t size is 16.

| FILE_TYPE = file-type

| RECORDLEN = record-length -- The reccrd length is any
-- integer in the range
-- 1..1320. This option
-- specifies the maximum record
~-- length, which applies only
~- when a program creates a
-- relative or entry-sequenced
-- file through TEXT_I10. The
-- default record length is
-- 132 for relative files and
-- 1320 for entry-sequenced
-- files.

| ODDUNSTR -- This option works like the
-- file-system CREATE proce-
~-- dure's ODDUNSTR parameter,
-- For a description of the
-- ODDUNSTR parameter, see
-- the System Procedure Calls
-- Reference Manual.

file-type ::= U | R | E | D -- U is for unstructureg,

-- R for relative, E for entry
-- sequenced, and D for edit
~-- format. For TEXT_IO, the
-- default file type is E.
-=- For DIRECT_IO, the default
-- type is R, and an attempt
-- to specify anything else
-- raises USE_ERROR. For
-~ SEQUENTIAL_ IO, the defa:ult
-- type is E, and an attemp:
-- to specify anything else
-- raises USE_ERROR.

open-spec ::= SHARED | EXCLUSIVE | PROTECTED ~--For opening
-- any type of file with mode
--'in, the default is SHARED.
-- For creating a SEQUENTIAL_IO
-- or TEXT_I10 file, the default
-- is EXCLUSIVE. For creating
-- a DIRECT_10 file or opening
-- a DIRECT_IO file with mode
-- in out or out, the default
-- is EXCLUSIVE, and no other
-- open-spec is allowed.

e e ” ~

o

IMPLEMENLALLUN-UBEPENUENT CHARACTERISTICS
FORM Parameter of CREATE and OPEN Procedures

null ::= -- A null create-open-spec is
-~ zero or more blanks.

Order of Options

In the FORM parameter, you can specify the options in any order.
Also, you can specify each option only once.

IN and OUT Files for an Ada Process

The TEXT_IO package opens the IN file and the OUT file for the
Ada process using the file names supplied by the
COMMAND_INTERPRETER_INTERFACE package for the default IN and OUT
files. You can specify the default IN file and OUT file for

the process in the RUN command. If you do not, the command
interpreter passes the names of its current defualt IN and OUT
files in the startup message for the new process.

If the file named as the OUT file does not exist, TEXT_IO creates
a new file, using all the default values of the CREATE procedure
(that is, it creates an edit-format file). If the file ramed

as the OUT file already exists, TEXT I0 deletes the file and
recreates it with the same characterIstics it had.

Startup, Assign, and Param Messages

The TEXT_IO packace names the COMMAND_INTERPRETER_INTERFACE
package In a with clause. As a result, any program that uses

the TEXT_iO package automatically reads the startup, assign, and
param messages on SRECEIVE. To use any of the information in the
messages, the program must also name the
COMMAND_INTERPRETER_PACKAGE in a with clause.

B-51

IMPLEMENTATION-DEPENDENT CHARACTIFEICTITS
FORM Parameter of CREATE and CPEN Prored._res

TR

File Open Mode

An open-spec in the FORM parameter specifies the operating system
open mode for the file. The value of the open-spec depends on
the kind of file and, for disk files, the purpose for which the
program opens the file. You can specif{y only EXCLUSIVE for the
following:

e Creation of a disk file

e Opening a DIRECT_IO file with mode in out or mode out

The value is always SHARED for terminals and spoolers.
Resetting any kind of file to mode in does not affect the open-
spec previously specified for the file. However, if an Ada
program resets a DIRECT_IO file to mode in out or mode out, the

l

|

run-time routines close and reopen the file with an open-spec |

\ of EXCLUSIVE, even if it was not EXCLUSIVE before. If an Ada |
}

|

!

I

e e oo,

‘ program opens or resets a SEQUENTIAL IO or TEXT_IO file with mode
in out, the run-time routines recreate the file, and the default
open-spec is EXCLUSIVE; you can override the open-spec only if
the program is opening the file.

Record Length Specification

You can specify the RECORDLEN option in a create-spec only when
the program uses TEXT_10 with a relative or entry-sequenced file.
For either type of file, an attempt to specify a record length

i larger than 1320 raises USE_ERROR. If you do not specify the
record length, TEXT IO uses 132 for a relative file or 1320 for

} an entry-sequenced file,

An attempt to specify RECORDLEN raises USE_ERROR when the program |
uses DIRECT_IO, SEQUENTIAL_I0, or TEXT_10 with an edit-format I
file, or TEXT_I10 with an unstructured file.

B-52

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
File Types

File Types

TEXT_IO supports four Tandem disk file types:

e Unstructured

e Relative

e Entry sequenced

e Edit format

The default file type for TEXT_IO is edit format.

TEXT 10 also supports terminals and spoolers. The first time a
program opens a spooler file, the file uses level 3 protocols.
However, subsequent spooler files do not use level 3 protocols.
The range for TEXT_IO.COUNT and DIRECT_IO.COUNT is

0 .. LONG_INTEGER'LAST. The range for TEXT_IO.FIELD is
0 .. INTEGER'LAST.

Pages

For all disk file types except unstructured, a form feed
(ASCII.FF) in a record by itself marks the end of a page.
For unstructured files, a form feed followed by a line feed
(ASCII.LF) marks the end of a page.

Lines

The maximum line length for TEXT_IO is 1320,

No character marks the end of a line in a relative, entry-
sequenced, or edit-format file,. :

For an odd unstructured file (ODDUNSTR parameter set), ASCII.LF
(line feed) marks the end of a line. For an even unstructured
file (ODDUNSTR paraneter not set), ASCII.LF marks the end of a
line that ends at an odd byte, and two ASCII.LF characters mark
the end of a line that ends at an even byte.

B-53

T WEMOLNG AL L VINTURPFENDRND LnARALLLE STICS
F..e Types

USE_ERROR Exception

SEQUENTIAL_IO supports only entry-sequenced files, and DIRECT 0
supports only relative files. An attempt to use SEQUENTIAL_IO or
DIRECT 10 to create any other type of file raises the exception
USE_ ERROR.

The compiler cannot instantiate SEQUENTIAL IO or DIRECT 10 for an
unconstrained type, except for a record that has discriminants
with default expressions, in which case the compiler chooses the
record length needed for the largest possible object of the type.
You cannot specify the record length option for a file that you
use through the facilites of SEQUENTIAL_IO or DIRECT_IO.

The following conditions also raise USE_ERROR:

e An attempt to create a new file with the same name as an
existing file

e An attempt to create a file for input

e An attempt to create or open a DIRECT_IO or SEQUENTIAL_IO file
with record size 0

e Any error in the FORM parameter of the OPEN or CREATE
procedure

e In TEXT_ 10, attempting to open an existing entry-sequenced or
relative file with a maximum record length larger than 1320

e In TEXT_IO, attempting to specify any file characteristics
when creating an edit-format file

An attempt to use DIRECT_IO to read a nonexistent record raises
DATA_ERROR.

File Closing

If a program terminates normally, the run-time routines automati-
cally close STANDARD OUTPUT. The run-time routines never close
other files automatically, so we recommend that you always
explicitly close any files that you open. For example, if

you did not close an edit-format file, it would be left in an
inconsistent state, and the last buffer would be missing from the
first spooler file that you wrote.

B-54

e S v -

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Operating System File Names

Output Files

When a process opens an existing SEQUENTIAL_IO or TEXT_I0 file
for output, the run-time routines delete the file and recreate it
wit! the same characteristics. The FORM parameter of the OPEN
procedure prov1des the copen-spec value. The default value for
open-spec is EXCLUSIVE for a disk file or SHARED for any other
kind of file,

When a process resets a file for output, the run-time routines
delete and recreate the file with the same characteristics. The
exclusion mode is EXCLUSIVE for a disk file and SHARED for any
other kind of file.

Operating System File Names

Each external file name in an Ada program must be identical to
an operating system file name. Operating system file names have
an external and internal form, and Ada programs use only the
external form. These file names can also be logical file names,
if you use the DEFMODE ON run option when you execute the Ada
program,

1f a parameter of a TAL procedure uses the internal form of a
file name, and an Ada program calls the procedure éirectly, the
Ada run-time routines convert the external name to the internal
form., If the TAL procedure passes an internal name back to an
Ada program, the Ada run-time routines convert the name to the
external form.

1f yocur Ada programs have TAL procedures that call other TAL
procedures, you might need to convert file names. To convert the
external form to the interral form, you can use the FNAMEEXPAND
system procedure. To convert the internal form to the external
form, you can use the FNAMECOLLAPSE system procedure.
Disk file names have the following format:
(\system.)file-name
File-name has the follcwing format:
($volume.])(subvolume.]ldisk-£file-name
1f file-name does not include volume or subvolume, the compiler
uses the default volume or subvolume name provided by the

COMMAND_INTERPRETER_INTERFACE package. TEXT_I10 does not add the
system name if the program does not provide Tt.

B-55

IMPLEMENTATION- DEFENTENT CHEARRCTEF!
Opberating System F:.le

The file names for processes and devices have the following
format:

{Sprocess}
[\system.]} { }[.#namel(.name2)]
{Sdevice }
A logital file name, called a DEFINE, has the following format:

=name

To create a DEFINE and assign a file name to it, you can use the
command interpreter ADD DEFINE command, in the following format:

ADD DEFINE =name, FILE fille-name

To create a DEFINE from a program, use the ADDDEFINE system
procedure instead of the ADD DEFINE command.

For more information on operating system file names and DEFINEs,
see the GUARDIAN Operating System User's Guide and the Labeled-
Tape Support Manual. For information about the FNAMEEXPAND,
FNAMECOLLAPSE, and ADDDEFINE procedures, see the System Procedure
Calls Reference Manual.

B-56

W

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Calling Segquences for External Subprograms

CALLING SEQUENCES FOR EXTERNAL SUBPROGRAMS

The order in which formal parameters appear in a subprogram
declaration is the order for pushing the correspondirg actual
parameters onto the data stack. Parameter passing is either by
value or by reference. Some parameters also require passing a
descriptor. The type mark and the mode of the formal parameter
determines the method for passing values.

Function subprograms have return values. Functions return
results either by value or by reference. A result that a
function returns by reference can be either of the following:
e 32-bit extended address

e 64-bit extended address pair

Parameter Types

The following subsections describe parameter-passing conventions
for different data types.

Scalar Types

The calling program passes scalar-type parameters of mode in by
value in 16, 32, or 64 bits. For objects less than 16 bits in
length, such as short enumeration types and BOOLEAN, CHARACTER,
and SHORT_INTEGER types, the program passes the values in 16-bit
containers, right justified.

The calling program passes scalar-type parameters of mode out and
mode in out by reference to a temporary varieble. This is also
known as call by value result. The compiler creates a temporary
variable for each actual parameter. The calling program passes
the temporary variable addresses to the called subprogram. For
objects that are 8 bits in length, the program passes 32-bit
extended addresses. For all other objects, the program passes
16-bit word addresses.

B-57

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Parameter Types

Array and Record Types

For array and record types, the calling program passes parameters
of all modes by reference. If an actual parameter specifies a
type conversion, the program passes the address of a temporary
variable. Otherwise, the program passes the address of the
actual parameter itself.

I1f the formal type mark of the actual parameter is constrained
or unconstrained, the calling program passes a 32-bit extended
address for the actual parameter. If the type mark is
unconstrained, the program also passes an additional 32-bit
extended address of the descriptor of the actual parameter. The
descriptor pointer comes immediately after the pointer to the
object itself,

Access Types

For access types, the calling program passes parameters of mode
in by value in either 32 or 64 bits. If the formal type mark

is constrained, the program passes a 32-bit extended address of
the object. 1If the type mark is unconstrained, the program
passes a 64-bit value, consisting of a 32-bit extended address of
the object followed by a 32-bit extended address of the object
descriptor. If the access type denotes an accessed type that is
not completed in the same compilation with its incomplete type
declaration, the size is 64 bits.,

The calling program passes access-type parameters of mode out and
mode in out by reference to a temporary variable, using 16-bit
word addresses, just like for scalar types. The compiler creates
a temporary variable for each actual parameter. The calling
program passes the temporary variable aZdresses to the called
subprogram. Each address points to a 32-bit or 64-bit object,
depending on whether the accessed type is constrained or uncon-
strained and on whether the accessed type is completed in the
same compilation, as described in the preceding paragraph.

Static Link for Nested Subprograms

A nested subprogram is a subprogram to which the stack frame of
some lexically enclosing subprogram, block, or task is visible.
Every nested subprogram has a sta“ic link that the subprogram
.ses to refer to objects allocatec in enclosing stack frames.

B-58

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Function Returns

The static link is a 16-bit quantity that contains the address of
the stack mark's L-register component of the immediate lexically
enclosing stack frame. The calling program passec the static
link value to a nested subprogram by value as the last actual
parameter. This affects TAL procedures that have nested Aca
specifications. Such procedures should expect an extra 16-bit
value pas:ed on the stack.

Function Returns

The following subsections describe how functions return results
of different data types.

Scalar Types

For scalar types, functions return results by value on the
register stack. Results are 16, 32, or 64 bits long. Functions
return scalar results shorter than 16 bits in 16-bit containers,
right justified, with sign extension for signed values and zero
extension for unsigned values.

Composite Types

For array types and record types, functions return results by
reference as if the functions were access types. If the type
mark of the function return value is ~onstrained, then the
function returns the 32-bit extended address of the result. If
the type mark is unconstrained, then a 64-bit value is returned,
including a 32-bit extended address of the array or record
followed by a 32-bit extended addéress of the descriptor of the
result.

Access Types

Por access types, functions return results by value in either 32
or 64 bits, as for scalar types.

8-59

AT LTSN L AL LNV T WDRELINDLING COARAC L LNLD . LY
Memory Stack and Data Segmen:

GENERIC INSTANTIATIONS

The compiler expands generic units at the point of instantiation.
A generic body must be in the same compilation as its specifica-
tion and must occur after the specification. Any subunits of a
generic unit must also be part of the same compilation that the
parent is in and must follow the parent in the compilation.

MEMORY USAGE ON NONSTOP SYSTEMS

A program running under the GUARDIAN 90 operating system stores
data either in its 128K-byte data segment or in extended memory.
A program's extended memory can consist of several extended
segments, each as large as 128 megabytes. An Ada program uses
only one extended segment, whose initial size can grow to 128
megabytes, as needed,

Main Task and Active Task

An Ada program contains a main task and possibly other tasks. At
any time only one task is active. Whether active or not, a task
has a stack of frames in which it stores objects.

For the main task, the stack contains objects declared within the
main program, objects declared within subprograms called from the
main program, and so on., When the program creates a new task,
the frames visible then are logically part of the new task's
stack, vhich diverges after that.

Memory Stack and Data Segment

The first haif (64K bytes) of the data segment is called the
memory stack. It contains the stack frames visible to the active
task. Composite objects are not stored in these frames.

When a different task becomes active, frames no longer visible
to the nev task are svapped out of the memory stack. Frames
that are visible to the new task but were not visible to the
previously active task are swapped in.

The second half (64K bytes) of the data segment contains global

package dats for the various packages in the program, except for
composite objects.

8-50

rllIllllllIlllIII--------t—w - - v — ——— ——— -

r : IMPLEMENTATION-DEPENDENT CHARACTERISTICS
Extended Stacks

Extended Stacks

Each task, including the main task, also has an extended stack.
Frames in the extended stack correspond either to frames in the
memory stack or to frames swapped out of it. Extended stack
frames store composite objects.

You can specify the size of the extended stack for the main task
in the EXTENDED_STACK SIZE switch of the ADABIND command. The
default size is 2 ** 18 bytes, and you can specify a size greater
than 0 and less than 2 ** 27 bytes.

The size of extended stacks for tasks other than the main task
is 256K bytes, by default. You can specify a different value in
a STORAGE_SIZE representation clause for the corresponding task

type.

Extended Data Segment

The extended data segment contains the extended stacks, composite
global package data, frames swapped out of the memory stack,
objects created by allocators, and other program data. The
compiler reclaims the space from any temporary variables it
| creates for execution of a subprogram. There is no way to reuse
| the space from objects created by allocators.

If the extended data segment needs to be larger than 128
megabytes for the program to run, the program raises the
exception STORAGE_ERROR. It also raises STORAGE_ERROR if any
task needs more space than that allc:ated for its exterded
stack, if the memory stack needs more than 64K bytes, or if the
noncomposite global package data needs more than 64K bytes.

B-61

IMPLEMENTATICON-DEPENDENT CEARACTERIST:C
1 Implementation Limits

COMPLETION CODES FOR COMPILER AND ADABIND PROCESSES

Each compiler or ADABIND process supplies a completion code value

upon exit to the operating system., Table F-5 shows the possible
completion code values and their meanings. :

Table F-5, Completion Codes

‘t value Meaning

}

{ 0 The process terminated normally with no errors.
1 Warning messages were issued.

f
2 The compiler or ADABIND process detected one or

more fatal errors, including source code errors
or the inability to open specified files.

5 The process terminated abnormally due to an
error in the compiler or ADABIND.

IMPLEMENTATION LIMITS

Table F-6 lists some Tandem Ada limits on the use of language
features.

B-62

IMPLIMEINTATION-DEPENDENT CHARACTZIRISTICS
Implz2mentation Limits

Table F-6. Implementétron Limits

Language Feature Maximum Number
Characters in an identifier 200
Characters in a line 200
Discriminants in a constraint 256
Associations in a record aggregate 256
]i Fields in a record aggregate 256
! Formal parameters in a generic unit 256
1 Nested contexts 250
‘ Bytes for an object 32766
Words of object code for a subprogram 32767
Library units in a program 500

Compilation units and subprograms in a program ~15000
(The compiler reserves approximately
1,000 entries for run-time routines.)

Units named in a compilation unit's with clauses 255
1 Dynamic components in a record 256
} Array dimensions 7
Control statement nesting level 256
Literals for an enumeratijon type 32767
Tasks for a program 32767
Entries for a task 32767
Subprogram nesting level in a calling sequence 256
(For example, f(f(f(x))) has 3 nesting
levels.)
Unique strings and identifiers for a
compilation unit 4096
B-63

"
" 2

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names.

makes use of such values is identified by the extension .TST in
Actual values to be substituted are represented by names that begin
A value must be substituted for each of these names
The values used for this validation are given

name.
with a dollar sign.
before the test is run.
below.

Name and Meaning

A test that
its file

Value

$BIG_ID1
Identifier the size of the
maximum input line length with

varying last character.

$BIG_ID2
Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID3
Identifier the size of the
maximum input line length witn
varyirng middle character.

$BIG_ID&
Identifier the size of the
maximum input line length with
varying middle character,

$BIG_INT_LIT
An integer 1literal of value 298
with enough leading zeroes so
that it (s the size of the

maximun line length.

(1..199 => 'A', 200 => '1')

(1..199 => 'A', 200 => '2')

(1..99 => 'A', 100 => '3', 101..200 => 'A")

(1..99 => 'A', 106C => '4', 101..200 => 'A')

(1..137 => *0', 198,.200 => "298")

TEST PARAMETERS

Name and Meaning

Valué

$EIG_REAL LIT
A real literal that can be
either of floating- or fixed-
point type, nas value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT_LAST
A universal integer literal

whose value is TEXT_IO.COUNT'LAST.

$EXTENDED_ASCII CHARS
A string 1literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
A universal integer literal
whose value is TEXT_IO.FIELD'LAST.

$FILE_NAME WITH_BAD_CHARS
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE_NAME WITH WILD_ CARD_ CHAR
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER_THAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_THAN _DURATION_BASE_LAST
The universal real value that is
greater than DURATION'BASE' LAST,
if such a value exists.

(1..194 => '0', 195,.200 => "€3.0E1")

(1..180 => ' *)

2_147_483 647

"abedefghi jklmnopqrstuvwxyz! $376[\]""{}

32767

Xi)e

Xyze

130_000.0

100_000_000.0

-2

e

Name and Meaning

-3
4

j
w

-

EST PARAME

Value-

$ILLEGAL EXTERNAL FILE_NAME1
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2?
An illegal external file name
that is different from
$ILLEGAL_EXTERNAL_FILE_NAME1.

$INTEGER_FIRST
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS_THAN_DURATION_BASE_FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX_DIGITS
The universal integer 1literal
whose value is the maximum
digits supported for
floating-point types.

$¥AX IN_LEN
Tne universal integer 1literal
whose value s the maxizmum
input line length permitted by
tne implementation.

$MAX_INT
The universal integer 1literal
whose value is SYSTEM.MAX_INT.

c-3

bad-character#®”®

muchtoolongname

-32768

32767

-100_000.0

-100_000_000.0

16

200

9_223_372_036_854_775_807

TEST PARAMETERS

Name and Meaning

Value

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER
if one exists, otherwise any
undefined name.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero Dbit
falls in the sign bit
position of the representation
for SYSTEM.MAX_ INT.

$NON_ASCII_CHAR_TYPE
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphies.

LONG_LONG_INTEGER

16 #4FFFF_FFFF_FFFF_FFFE#

(NON_NULL)

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"Al-ddddd" is to an Ada Commentary.

. C321144: An unterminated string literal occurs at line 62.
.« B33203C: The reserved word "IS" is misspelled at line 45,

. C34018A: The call of function G at line 114 is ambiguous in the
presence of implirit conversions.

C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in
the test.

. B374014: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

. CHI404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line TU to the end of the test.

B45116A: ARKPRIBL' and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOL_TYPE instead of ARRPRIBOOL TYPE--at line
41,

. Cu8O00BA: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect

according to AI-00397.

. BL9OOBA: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line u2.

. BHAOIOC: The object declaraticn in line 18 follows a subprogram
body of the same declarative part.

FII----——— — ey

wWITHDRAWN TESTS

B7T4101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

€920054A: The "/=" for type PACK.BIG_INT at line 40 is not visible
without a use clause for the package PACK.

CQUOACA: The assumption that allocated task TT1 will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

BC3204C: The body of BC3204C0 is missing.

D-2

