
-li591 NOSC (NAVAL OCEAN SYSTEMS
CENTER) ADVNSYSTLI

A ARRAY PROCESSOR (SPP)(U) NAVAL OCEAN SSTEMS CENTER
UNCA~S~FIC SAN DIEGO CA J P LOUGHLIN DEC 87 /126 W

4-0 1112.

0' 111211111.

i -- - - . .'. rr w s nw-r.. .w n, - n.. . . .

U.NCL.ASSIFIED
S SE' JJE L J

T DOCUMENTATION PAGEAD~~ 191 5811b. RESTRICTIVE MARKINGSAD-A 191 581 o..,VMO.o
2. 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(l applicawl)

Naval Ocean Systems Center NOSC Naval Ocean Systems Center
6c. ADDRESS (Coy, State and ZP Code) 7b. ADDRESS CStaftdZIP Code)

San Diego, California 92152-5000 San Diego, California 92152-5000

a. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(f aop/ic,,le)

Office of Naval Technology ONT

8c. ADDRESS (C State and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO. PROJECT NO. TASK NO. AGENCY

ACCESSION NO

Arlington, VA 22217 62721N EEB2 RS21243 DN088 690

11. TITLE (niudeSecurnyCasscafn)

NOSC Advanced Systolic Array Processor (ASAP)

12, PERSONAL AUTHOR(S)

J. P. Loughlin

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month. Day) 15. PAGE COUNT

Professional pap er/speech FROM Aug 1987 TO Aug 1987 December 1987
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Corn Wnecessar~tendnv y nt *byblocknumber)
FIELD GROUP SUB-GROUP microsequencer

algorithms
systolic architecture j" Ill

19. ABSTRACT (Contmle on me esmaand detl by block number)
The design of a high-speed (250 million 32-bit floating point operations per second) two dimensional systolic array composed of

16 bit/slice microsequencer structured processors will be presented. System design features such as broadcast data flow, tag bit move-
ment, and integrated diagnostic test registers will be described. The software development tools needed to map complex matrix-based
signal processing algorithms onto the systolic processor system will be described.

Presented at SPIE International Technical Symposium, 17-21 Aug 1987, San Diego, CA. D T IC

MAR 2 3 1988 D

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

* UNCLASSIFIED/UNLIMITED] SAME AS RPT E DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE {miticeAwe Code) 22c. OFFICE SYMBOL

J.P. Loughlin 619-553-2531 Code 741
DD FORM 1473, 84 JAN 3 APR EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIED

ALL OTHER EDITIONS ARE OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE

. .. w " -' :' l

To appear in the Proceedings of the SPIE international Technical Symposium,
Vol. 827-13, Real Time Signal Processing X, San Diego, CA 18-19 August 1987

827 13
NOSC Advanced Systolic Array Processor (ASAP)

Joseph P. Loughlin

Signal Processing Branch, Naval ocean Systems Center
271 Catalina Blvd., San Diego, California 92152

ABSTRACT

The design of a high-speed (250 million 32-bit floating point operations per second) two
dimensional systolic array composed of 16 bit/slice microsequencer structure processors
will be presented. System design features such as broadcast data flow, tag bit movement,
and integrated diagnostic test registers will be described. The software development tools
needed to maD complex matrix-based signal processing algorithms onto the systolic processor
system will be described.

1 . INTRODUCTION

The Navy is focusing research at the Naval Ocean Systems Center (NOSC) in the area of
the processing o -f signals collected from large arrays of sensors. Enhanced performance
through the use of powerful matrix based signal processing algorithms operating on large
volumes of data promise efficient extraction of signal information under conditions of
noise and corruptive media effects. Several important matrix based algorithms used to pro-
cess signal data require large numbers of computations. A computational requirement which
increases at'a rate corresponding to the square, cube or to the fourth power of the sensor

P...array 'element composition number are required for such matrix processing. To maintain a
realistic processing throughput in Navy system applications, a geometrically increasing
demand is being placed on the computational throughput of the signal processing hardware.
To address these demands, NOSC is investigating the application of systolic architectures
hosting matrix-based signal processing algorithms.

2. ARCHITECTURAL CONSIDERATIONS

A careful study of the classical computer architectures previously used for signal pro-
cessing shows either serious bottlenecks in data movement or inefficiencies in computa-
tional power due to the general nature of the design. Figure 1, shows the basic elements
of a Von Neumann computer architecture. The throughput available in this type of machine
is directly related to the instruction execution rate. As the performance of the semi-
conductor components used to implement such a machine levels off, an upper limit in proces-
sing throughput is reached.

As shown in Figure 2, the growth in performance level of the integrated circuit has been
sufficient during the past two decades to promise enhanced system performance based solely
on the new devices as they become available. The technology which promised such growth in
the past years is becoming mature and presently the growth is less pronounced. At the same
time, the system requirements for orders of magnitude increases in computational throughput
force the pursuit of different design avenues which provide much more room for performance
enhancements.

An enhancement on the Von Neumann architecture that attempts to remove the dependence
of processing throughput on device performance is the parallel processor, Figure 3. This
architecture uses the fact that most algorithms may be disassembled into component parts
which may be performed by multiple processors sharing a common memory. The concept of

* incrementally adding additional processors to the signal processing task to multiply the
apparent throughput of the system is theoretically sound. However, incremental enhance-
ment in throughput with each additional processor rapidly reaches a point of diminishing
returns. Figure 4 shows~this point to occur with about 10 processors in the system. This

* throughput cei.ling results from two mechanisms fundamental to a parallel signal processor
of this type. The first limitation is present due to the overhead incurred in scheduling
parts of the signal processing task to available processors in the system. This task
assignment activity must be performed by a supervisory processor or be attached to each
individual processor as an overhead to each processor in the system. Beyond 10 processors,
this arbitration and scheduling becomes very time consuming. Another, and possibly more
serious problem jeopardizing the promised throughput of this architecture is the system bus
bandwidth limit. As more processors are attached to the system bus, the transfer band-
width of the bus becomes the system bottleneck threatening to idle processors.

Proposing the use of parallel processors to multiply the throughput of a signal proces-
sing system is the'basis for the systolic array architecture introduced by H. T. !unc in

0188 3 21 U 7 4

827 13

-- ..- 1sLJ(

z1"* It

System Bus System Bus
loptw aInput1,/Output

i a Interface

Figure 1. Von Neumann Figure 2. Processing Growth Figure 3. Parallel Processor
Architecture Potential Architecture

1978. However, this architecture avoids the eventual degradation of incremental throughput
enhancement as each additional processor is introduced into the system. Being conceived
expressly to perform only signal processing (primarily matrix-based) problems the systolic
array architecture addresses the previous parallel processor performance drawbacks
described above in an elegant way. The extremely regular structure of the operations
needed to perform many signal processing tasks identified a parallel processor structure.

% However, all of these processors perform identical parts of an algorithm while responding
II to only locally available data. Furthermore, with each new and identical processor added
Z to the architecture, additional buses are also included. The issue of scheduling multiple

processors is now equated to arranging appropriate coincidence of input data to each pro-
cessing element. The processor to bus ratio is maintained regardless of the size of the
array, thus avoiding the data bus bandwidth limitation described in earlier parallel pro-
cessor architectures.

3. ALGORITHMS
All signal processing generally falls into two categories which are identified by their

type of execution. The first category, typified by the Fast Fourier Transform, contains
those algorithms which consist of a collection of arithmetic operations and well defined
data movements which are performed repeatedly. The execution of an algorithm which is in
this category is not affected by the actual numerical values being processed or any inter-
mediate values incurred. This type of algorithm when mapped onto a systolic array results
in a single instruction/multiple data (SIMD) architecture or regional groupings of SIMD
routines with well defined timing relationships. The use of architectures with extremely
long pipelines such as bit serial processors host such algorithms quite nicely. The second
category, typified by Single Value Decomposition matrix operation, exhibits variability
in the actual course of execution of the algorithm depending on the values of the data cir-
culating within the processor array.

The mapping of this type of algorithm is best accomplished by loosely coupled auto-
nomous processing elements executing in a multiple instruction/multiple data, (MIMD),
systolic architecture. The overall signal processing task often requires a combination of
one or more algorithm components from both categories just described. In addition to the
programming flexibility needed at each systolic element, information required to guide
algorithm execution may not be available at this low level. The global communication of
data to a centralized algorithm control may be necessary to reconfigure groups of elements'-
in the array to perform 'the next portion of the signal processing task.

4. TESTBED ARCHITECTURAL SPECIFICATIONS

The'systolic array testbed system, Figure 5, incorporates arc'itectural features which 3
allow it to host a large variety of signal processing algorithms. Our experience with our
previous testbed * and mapping approaches identified for similar architectures indicated a
need for a system architecture which contained a superset of the basic systolic character-

*t istics. The regular and orderly movement of data through an array of processing elements
executing a rigid cycle of primitive operations appears to be too limiting and awkward for,
the execution of single value decomposition or Gram-Schmidt orthogonalizers. Previous rOdOS

' NOSC 8 X 8 processor array hosting Gentleman-Kung least squares matri solution, nd/or

/ IC tt Special

CDPop
00sP trm

827 13

-4 0. 0.

Figure 4. Multiprocessor Efficiencies Figure 5. Systolic Testbed Architecture

* mapping of the SVD and parallel models constructed to study the execution of a GS ortho-
gonizer * indicate that additional array capabilities not normally associated with a
classical systolic array were required to guarantee maximal use of the processing power
contained within. The complete list of architectural features of this hybrid system
array are as follows:

4.1 Systolic features

a. Two dimensional array of 16 identical processors which support nearest neighbor
communication of data.

b. Four identical boundary processors which handle data communication with external
data ports.

c. A system controller responsible for control of algorithm execution.

4.2. Enhanced features

d. Data Communication -- Broadcast of data across an entire row, column, diagonal,
or array global.

e. Autonomous program execution at each processor with tight or loose coupling
to neighboring processors

f. Tag Communication -- Instruction or status information tagged to data movement
throughout the array.

In addition to the above array architectural features, enhancements to the structure
of the individual processing elements have been included to extend the parallel nature
of the processing within the array hardware. These features are expressly needed tc avoid
computational bottlenecks within the processing element and ease programming.

4.3. Additional element features

g. Four independent input/output ports.
h. Simultaneous multiplication and add or subtract on independent pairs of operands.
i. Capability of concurrent I/0 and numeric computation.
. Autonomous program execution with extensive branch capability resident.

k. Operand Address generation.

The mapping of an *algorithm, especially one such as an SVD or Gram-Schmidt orthogcnali-
zer requires the target software to support sophisticated and interactive development tools.
To this end, elemental features included expressly to allow the algcrithmist or programmer
to verify proper operation of the algorithm are identified below:

4.4. Additional diagnostic features

1. Built-in diagnostic set-scan capabilities for component fault isolation and power up
confidence testing.

m. Down-loadable instruction microcode.
n. Program trace capability.
o. Parity checking for instruction word integrity during run-time.

*VAX simulation of the Dobson adaptive beamformer/nullsteerer aloorithm.

713
p. Host access to all memory contents supported.
q. Mode utilities to handle computational errors, illegal program execution and

breakpoints.

The testbed system has been constructed to allow the host computer to be used not only
as an experiment oriver, but to also support the following developmental tasks:

a. Provide a vehicle for the generation of microcode which is downloaded to the target
hardware processing elements.

b. Provide a vehicle for the generation of input matrix data through the use of appro-
priate simulation programs.

c. Host output data formatting and display utility programs necessary to access per-
,. formance of algorithms hosted on the target hardware.
S-d. Handle the development utilities of initiating confidence testing, downloading

executable microcode, interfacing simulated input/output data during algorithm
execution on the target testbed hardware.

e. Act as an intelligent algorithm controller during algorithm execution.
f. Support the algorithm diagnostic utilities available with the architecture of the

target hardware.

5. HARDWARE IMPLEMENTATION DETAILS

The systolic array testbed system, refer to Figure 5, is composed of 16 Arithmetic
Processing Modules (APM), 4 Input/Output Modules [IOM), a System Control Module (SCM)
and the system host control computer (an IBM-AT for this initial configuration). The
16 APM's are systolically connected via orthogonal 40-bit bidirectional parallel data
buses to adjacent APM's or to an IOM on each of the boundaries of the 4 X 4 square array.
Data communication to hardware external to the array occur via the 4 external ports (top,
bottom, right, and left). An additional 40-bit bus, called the data circus, is included
in the processor architecture allowing the data movement around the periphery of the sys-
tolic array structure. Communication between the elements of the systolic array process-
ing elements and the system control module is handled by a global bus called the Array
Control Bus (ACB). The host computer communicates control, diagnostics and data to the
APM's and IOM's via the SCM.

6. ARITHMETIC PROCESSOR MODULE

FUNCTIONAL FEATURES

Each APM is composed of 330 off-the-shelf integrated circuits and has been constructed

on a 16" X 18" wire wrap circuit panel. Figure 6 identifies the ma3or functional compon-
ents of each APM and hints to the highly parallel architecture contained within each
module. The computational power of the APM resides in the ALU which is composed of e pair
of 8 MHz Weitek floating point processor chips, the 1033 multiplier and the 1032 ALU. The
module architecture allows both of these chips to perform simultaneous computations on
separate sets of operands while communication of neighboring processing modules may also
occur. This degree of parallelism is achieved by the use of 4 Weitek register file chips
(1066), which is a five ported 32 location 32-bit wide scratch pad memory. Because a
total of 128 (4 X 32) locations for operand storage was deemed inadequate to support most
signal processing algorithms, an additional 4K locations of single ported memory is
included in this scratch pad function.

Combined with this data memory is a unique data address generator. The memory space
can be segmented and used to support complex data manipulation. These memory segments
(up to 256 locations) can also be used as circulating buffers when modulo address
arithmetic is enabled. Additional memory and comparator circuitry is included to allow
the designation of up to 256 memory pointers as 12-bit counters which can be used as
control of program execution.

The I/0 structure of the APM has been made highly parallel and reconfigurable to allow
the greatest latitude for algorithm data movement. Each register file chip can be dedi-
cated to data movement associated with each adjacent module. This allows the simulta-
neous movement of up to four different data packets during a single transfer interval.
The data transfer occurs at the same rate as the internal computational rate, namely,
125 nanoseconds per transfer. The data flow network is capable of supporting a number of
topological configurations. A characteristic of many signal processing algorithms is the
need for some sort of global or broadcast data movement. Each APM can support broadcast
in several different configurations. By moving data through the data flow network in a
transparent mode, row, column and diagonal broadcasting is supported during a single clock
cycle.

The on-board control of all the functional elements of the APM described so far ori-
ginates from a micro-sequencer and instruction RAM. To accommodate the highly parallel

827 13
nature of the APM, the instruction word contained in the RAM is 176 bits wide. The micro-
sequencer accepts pointing vectors to the starting address of desired program segments via
the control bus. The program flow can be modified by testing the I/0 handshaking, the con-
tents of the data tag byte, auxiliary mode registers, or data related arithmetic operations.

10.....

Figure 6. APM Functional Organization Figure 7. IOM Functional Organization

The APM uses a Berkley architecture where executable program memory is separate from
data storage memory. The only communication occurring between program control and the con-
tents of the data memory is under the condition defined as loading a program imbedded
immediate constant into data memory. The contents of the data memory can only affect pro-
gram flow inoirectly as a result of tests for zero and positive resultants from the ALU.
Thu floating point data type used by the ALU is not compatible with the address format of
the micro-sequencer. This enhances the overall speed of the processor and limits the ulti-
mate addressing flexibility of the processor.

The final functional block in the APM is the diagnostics interface which allows the
system host computer to load or interrogate APM memory registers and internal buses. This
interface is used for such functions as downloading instruction and data and has the addi-
tional feature of supporting initial debugging efforts, operation confidence testing, and
fault isolation.

A trace buffer is included in the diagnostics interface for program development. This
cyclic 4K buffer captures the most recent 12-bit instruction pointers generated by the

* micro-sequencer. An additional 4 test points deemed important for analysis are captured
with each instruction pointer. Using special diagnostic routines, this information ca be
uploaded to the host computer for viewing.

7. INPUT/OUTPUT MODULE
FUNCTIONAL FEATURES

Each IOM is composed of 190 integrated circuits and has been constructed on a 9" X 16"
5 wire wrap circuit panel. Figure 7 identifies the major functional components of each of

A 4 IONI's in the system. To minimize the complexity of programming and the hardware debug
cycle, the microcode sequencer and diagnostics interface are identical in function to those
used in the APM. The IOM contains no data computational circuitry but is expressly
designed to efficiently move data. The data flow network connects the data present at the
boundary of the systolic array to the internal 4K Luffer memory. The IOM handshaking and
transfer rates are identical to the APM's. Each of the boundary IOM's has 2 nons'Ystolic
ports included which serve important interface functicns in the application of the array
hardware. The external port comes complete with a separate set of handshaking sig.nasSwhich allow the intelligent ccmmunication of data with external hardware without inter-
fering with the systolic movement of data within the array itself. The data bus (data cir-
cus) allows the IOM processors to act as a distributed interface system. The registration
of data input and output to the array hardware with the external system hardware can be
programmed into the IOM program.

5 8. SYSTEM CONTRO, MoC1FU!.E
FUNCTIONAL FLATUPLS

The SCM is composed of 1"40 integrated circuits and is similar to construction to the
IOm's. Figure 8 identifies its functional components and its relationship to the other
system components. The main function of the SCM is to convert an extension of the host
computer bus (16-bits) to a format used in the ACB (64-bits). The host cor-puter can
aL'rss each of the diagnostic and control registers cnntained in singc jrccesscrs or
gr _ups of APM's and/or IOM's. System status including global busy rcady, arithret c

V.,

827 13
error detection, or system instruction parity memory fault can be monitored by the host
computer via the SCM. The incremental algorithm commands (the selection of the desired
microcode program modules) can be directed to modules of the array. The system clock

%originates on the SCM board and a separate copy of the clock is sent to each system module.
This clock is programmable in speed, and can be incrementally controlled and used during
hardware debugging and algorithm mapping. The SCM incorporates the circuitry needed to
allow data movement between the host computer and any one of the 4 external ports. This
feature is included to aid in the initial mapping of the algorithm in the absence of the
balance of the external system hardware.

9. HARDWARE SYSTEM CONSTRUCTION

The system hardware, with the exception of the host computer, is housed in a 24" wide,
30" deep and 56" high equipment rack. A custom cardcage complete with fans was constructed
which allows the mounting of the 16 APM cards in the front side of the backplane circuit
card and the IOM's and SCM in the back. Due to the number of wide parallel buses and high

*i clock speed of the array, all the systolic connectivity is contained in one 19" X 24"
10-layer circuit card. A special power distribution grid constructed from copper ir stock
was attached to the backplane to accommodate the current load of the present system con-
figuration (6500 IC's) and future enhancements up to 400 amps.

A secondary multibus cardcage has been included in the equipment cabinet to accommodate
data aciui sitio system components and possible future use of a single board computer to
replacu the present IBM-AT host.

_ .~ 10. SOFTWARE DEVELLOPMENT

The mapping of signal processing algorithms which incorporate complex manipulations of
matrix data on an array of computational arithmetic elements requires a well structured

i, suite of development tools. These tools allow the mathematician or programmer to verify
the proper operation of all phases of an algorithm and compare systolically produced inter-
mediate variables with corresponding values derived elsewhere.

To verify the succssful integration of all the design features contained in the test-CJ
hardwore rejuired the ua, of customized software running on a system-dedicated personal
computer. The I/0 resources of the host computer and the C programming language, were used.

to construct a fundamental set of software utilities called hardware primitives. These
i- imit.ives allowed the design engineer to exercise the diagnostics/control bus of the
testbed hardware and gain access to the functional parts of each of the array elements.
Such rudimentary operations as forcing a single immediate microcode instruction to be
placed into an element, permit the engineer to verify the proper wiring and correct logical
design cf small groups of integrated circuits. These lowest level primitives and others
form the basic interface library used by the host personal computer to support all commani-
cation with the testh!d hatdl-rL.

%y PoI~h Asy Poceior A;

., ! Oll n:, Pe D __ ~2~C--pd

Fi ur,- 8. SC. Fa rctonal Organization Figure 9. SAP Operating System

11. DEVIL[!'* .F1NT TCAd.S UMBPELT[A PROGP M

A syst:ILc array proessor (SAP) operating system, Figure 9, resides on the IBM-AT
whi- pr 'ih a ohcesive intorface ar,'cn'7 the various components of the software devclotment
tools, the systolic array hardware and the file directories of the DOS operating system.
B-th Jiinstc actlvities and algorithm execution is supported by this software environ-
M, . T: is c ;t ' , r-p t itrg system pr vs the2 us, di:t ct control of thie har dare thrcun-
tP h r ., i T' S

i -'

- -

827 13
%d

Th. large number of development tools necessary to support the mapping of complex alger-
ithms onto a high performance parallel processor array of this type can be a source. of

confusicon. Four user modes are built into the SAP operating system, direct command line

access to all functions, a menu and cursor style function access, a DOS shell, and algor-
ithm control program (ACP) shell.

% .P In the menu shell, Figure 10, all of the hardware primitives are divided into groupings

according to the processor board type. A further distinction according to primitive func-

tional category providts an easy reference approach locating the appropriate primitive.

Each menu entry contains online help documentation if necessary. This system of menu pages

also includes a page dedicated to canned hardware confidence tests and in total allows

organized reference and usage by inexperienced programmers. The menu interface uses either
4 a mouse or cursor keys to select a primitive.

.d. Numerous primitives require additional information in the form of command line arguments

to execute. In those cases, the primitive calling name with references of expected argu-

ment syntax prompts the user for the required information.

The command line shell provides direct access to hardware primitives and other diagnos-

tic utilities. It is reserved for the more experienced programmer and does not give any

syntax prompts. This short cut also minimizes the cycle time while conducting interative
hardware debugging tests.

Several utilities available in the SAP operating environment interface DOS files with
th, tcstbed hardware, such a memory write and buffer memory read operations. A user path

to DOS is therefore included in the umbrella program. This provides a convenient access

* to directory listings.

INPUT/ OUTPUT MENU
/r 15-OS TO r r I READ WRITE DIAGNOSTICS

select processor code memory code memory aray ctrl bus

,., reset procesior code address code address serial shdw reg
, start data memory data memory test code mem

stop pointer memory data address test data mem
pipeline register pointer memory test ptr meme

CLOCK
2 9 10a sequencer pipeline register test ptr arith

start counter counter test pgm 01
stop d bus d bus test pgn 12
single step vector
run break point
set frequency
set delay
set halt mode

TRACE FILL

read code memory
initlialize data memory
load binary pointer memory

*. . o chinricI . CH to sfect I ESC to oit h for help
IOM Status:
Selections ,

Figure 10. SAP Menu Screen

12. BUILDING TOOLS

There exist a number of routines which do not access the testbed hardware. Due to tho:r

size, these software utilities are stand alone and are accessed outside the ccnt:cl of t*-._
SAP operating environment.

12.1. Microcode assemblerC-

C" ThL binury patterns needed in uach microcode pi nitive are constructed by thc hardwre

engi.neer on a microcode template worksheet. This information combined with ccmo"ents is
used to produce a microcode primitive library element. This library of microccde Frimn-

41 tives is the fundamental interface with the programming execution on each indlividual ele-

ment. While the primitives need only be constructed once, th, error free asse'...y of

groups of microcode primitives into larger microcode modules required a custon asseridler

to bL constructed to aid the programmer. The actuil microcode exccutable imucie tc bo d.-wn-
ltod-J to thL pr cueusiny CL Slint must adlErE to Soin vury spcci~fc format guidelines.

. .

82713
a. All bits not actively uscd in a microword to perform the intended function must

assume a default value.
b. Operations involving pipelining must span multiple microwords with approp rate

delays of affected microword bit fields.
c. Even parity must be established across each microword using a bit field transparent

to the progranvner.

d. A file header containing information about the microcode data contained within must
be constructed to provide proper. loading of the executable image.

The assembler has been constructed using the framework of the C programming language.
The microcode primitives ate configured as an extension of the C library. The microcode
programier is free to use the power of constructs contained within the C programming
language with an enhanced library to produce large amounts of executable code with access
to such features as automatic microcode address assignment, iterative assembly and para-
meter/variable passing.

The generation of exucutaLle microcode modules which can be downloaded to the target
testi-d hardware entails writing the source code of a C program using calls to the micro-
codu primitives. The C source is compiled and linked in the normal manner to produce a
program. When executed, this program produces three files, one of which is the executable
Linary memory image to be downloaded to the testLbd. The remaining two files are ASCII
files containing user comments extracted from the source program and pipeline comments
contained in the microcode primitive library. These comments (identified with their loca-
tion in the code memory image) appear in the files in the order which the micrcode was
generated. These files aid thu programmer in two distinct w ys. Initially, the microcode
can Le checked to verity that the microcode was assemLled in the intended order and appro-
pr!ate parameters -nd variables have been passed. Secondly, the contents of either one
of these files can be used in conjunctic:n with trace utility (described below) to provide
the programmer with a disassembled display of the actual microcode execution on the target

,. 12.2. Binary editor

The microcod- binary image contained in an executable file can be viewed directly by the
use of a binary editor routine. Lither the 64 or 176 bits with a corresponding instruction
locatirn in code memory is displayed on the CRT. By the use of a mouse or cursor keys, an%
Lit er bits may be changed, microwords added or deleted. This tool is powerful and is used
only during hardware debugging.

12.3. Data editor

The systolic array testbed was designed to support 32-bit data computations throughout.
An additional 8-bit tag associated with each data word has been added. A small utility
routine resides on the utilities menu which allows the construction of arbitrary length
data file. In its initial version, this routine accepts decimal keyboard entry from the
user. Later versions will accommodate the input from simulation program data output files.

Two software utilities have been constructed which provide access to selected variables
associated with the execution of systolic algor'thms. The trace utility is designed pri-
marily to document the actual execution of the microcode program. The window utility,
while presenting information about program flow, additionally allows the tracking of
selected data memory locations of multiple processors. Both utilities are very important
for testing the operation of signal processing algorithms hosted on the systolic array
hardware.

12.4. Trace utility

A record of the actual execution of microcode primitives or modules on individual pro-
cessing elements is an important tool for hardware confidence tests and for the verifica-
tion of proper algorithm execution. Included in the APM's and IOM's is a trace buffer
memory which captures the last 4096 instruction address pointers generated by the on-board
microsequencer. In addition to the address pointers (12 bits) a flag field of four bits
can be wired to any arbitrary test points of interest in the circuit. Through the use of
hardware primitives, a trace utility program accesses this buffer and displays its contents
on the houst pursonal computer CRT. With this utility, the programmer with the aid of a
listing of the communt file, can follow the execution of the [rogram.

Another mode of the trace utility cause the comments in either the user comment file or
pipeline file to be organized and displayed next to corresponding code memory address
pointer resulting in a disassembled display of the executed program. This utility also
inc.rpoiates displays in hexidecomal or decimal and supports address occurrence search.

- W-- - - -- - - -- -- - - -

827 13
The user comments and pipeline comment serve two different purposes. Displaying the

user comments associates with each microcode instruction a comment that th- user is free
to assign during the microcode assembly phase. This comment *allows the programmer to
recall the purpose of the instruction or to identify exact positioning in the algorithm.
The pipeline comments are hardwired into the microcode primitives upon their creation and
serve as a debug tool at the lowest lcvel of the hardware. The creator of a microcode
primitive is allowed and encouraged to generate a comment identified with each field pro-
grar rned .;, the microword. The intended usage of such flexibility is to allow verification
of proper microcode construction at the output of the microcode assembler and the success-
ful tracing of pipelined fields through complicated program execution on the testbed.

12.5. Windows

To properly monitor the execution of software residing on 20 microcoded floating point
processing elements, a diagnostic utility called "windows" was designed. This utility
allows the user to define specific locations in data memory on selected processor elements
and receive updated reports about their contents under a variety of algorithm execution
modes. The relative dependence of program flow and data manipulation can be monitored at
soeral processor sites simultaneously. Other pertinent information about the status of
array processing elements may also be monitored to confirm proper data communication
throughout the systolic system.

13. ALORITHM CONTROL PROGRtM

The testbcd hardware can support the execution of a large range of signal processing
a- 1rithmz. Th. complexity of the software which controls the execution of algorithm
depends on several system architectural and algorithm functional requirements. The r-i-
losop:hy underlying the software development effort on this project is to afford maxim-

flexibility in the programming approach. An algorithm which is rigidly defined and is
invariunt in its execution could be entirely captured in a large microcode module which is
sbmily callef once by the host computer. The algorithms, such as the Dobson adaptive

....rr, footnote 2, require a combination of global communication, program branching,
an2 host coonuter intervention. These characteristics necessitate a more intensive inter-
action between the microcode residing on each processor, its neighboring processor, and
the hcnt. To accomu modate this interaction, an algorithm is considered here as a collection

of ai~e microcode nodules which reside in the processing elements and are an extension
Sof the algorithm control larnguage C library. The algorithmist or programmer approaches the

of an algorith by com-osing a C source program which will execute on the host
personalr comuter. In addition to the standard library, the programmer will hcve access
to dlibrary calls which perform the following functions:

a. Call for the execution of a selected module in one or more processing elements of
the testbed hardware.

b. Open input matrix data files and make the contents available to the e>xternal data
ports of the hardwar,.

c. Create output matrix data files and receive processed data from the array hardware.
d. Support algorithm breakpoints which suspend execution of the algorithm while the

operator interrogates the state of the hardware.
e. Support repeated automatic interruption of the algorithm execution for the purpose

of performing system "snapshots" of selected variables and accumulating their
values in special diagnostic files.

f. Call utilities which display the status of the testbed hardware on the host's CRT.
Algorithm control program source comments, variable values and other system
infrmation can be displayed at appropriate times in the algorithm execution.

j Figure 11 depicts the interaction required between the IBM-AT host computer executing
the algorithm control language program and the systolic array processor executing the
rcjtl~stcci microco de modules. This figure shows the controlling role of the personal
computer host which commands the orderly execution of the "algorithm microcode pieces" in
a sequential manner.

I.4. CONCLUSTONS

The. four year development of the systolic array processor, diagnostic software and
algorithm mpping touls is nearing complution. Prcliminary work has com enced toward the
mapping of the multiple signal classification (MUSIC) algorithm onto the systolic hardware
with the ultimate goal to demonstrate a generic surveillance application. It is antici-
pated that the large efforts in constructing a omprehensive algorithm mapping envrrnment
will greatly aid systolic programming.

V0 ,,,MWN 1""N

827 13

A~,. . .I, 11. a

"o".", i.Mctood* Y

-0 -" . c ,o - '-A...gul ki ulC IIe,0 0. 1. F-.-,i '. ,,.

* . Y4AI, UA.hCe mO Ii,,,PJC.O' V I QADC

7
.. r.. c-- "1"..-----

Figure 11. systolic Software Execution

-, 15. ACKNOWLEDGIENTS

The author wishes to thank Jerry Symanski at NOSC for his many suggestions and guidance
. in thc dsign of tht array architecture. Additional thanks is extended to Manfred Heigl,

the principal hardworc design engineer and an Australian participatina in the exchange
2. scicntist program with the Navy laboratory command.

16. REFERENCES

1. Kuni, H.T., "Why Systolic Architectures?", Computer Magazine, IEEE Comzuter Society,
January 1982, pp 37-45

*-.2. Syrnanski, J.J., "Implementation of matrix operations on the two-dimensional systclic
array testbed", Prcccedings of the SPIE International Technical Symposium,
Sao Dicqo, CA, 21-26 August 1983

it.

-~.a. U'~WJ7~JWJJI~1"ZRN3 RW F~S ?t flS I1~ ~Y' .**al .- ~~ry1sw..~tMy,,p~p-; - -* - -

* w

b* ~

'a.

L41
~

\ a.~

S

9 68
I~.

V'V
________Iv

V

* 0 0 9 S S S S~'yV~ ~ V
I

a-V

WI
I.

