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NOSC Advanced Systolic Array Processor (ASAP)

o
i 1 Joseph P, Loughlin
~
')
' Signal Processing Branch, Naval Ocean Systems Center
- 271 Catalina Blvd., San Diego, California 92152
a0
N
\ ) ABSTRACT
:N ) The design of a high-speed (250 million 32-bit floating point operations per second) two
N dimensional systolic array composed of 16 bit/slice microsequencer structured processors
‘5j will be presented. System design features such as broadcast data flow, tag bit movement,

and integrated diagnostic test registers will be described. The software development tools

needed to mao complex matrix-based signal processing algorithms onto the systolic processor
e system will be described.

v 1. INTRODUCTION J
) )? The Navy is focusing research at the Naval Ocean Systems Center (NOSC) in the area of
oty the processing of signals collected from large arrays of sensors. Enhanced performance
ib" through the use of powerful matrix based signal processing algorithms operating on large
n“ » volumes of data promise efficient extraction of signal information under conditions of
MU noise and corruptive media effects. Several important matrix based algorithms used to pro-
.~ cess signal data require large numbers of computations. A computational requirement which
. increases dt:a rate corresponding to the square, cube or to the fourth power of the sensor
S array element composition number are required for such matrix processing. To maintain a
iv realistic processing throughput in Navy system applications, a geometrically increasing
xﬂ demand is being placed on the computational throughput of the signal processing hardware.
N To address these demands, NOSC is investigating the application of systolic architectures
Vﬁ:t- hosting matrix-based signal processing algorithms.
D '
-

2. ARCHITECTURAL CONSIDERATIONS

A careful study of the classical computer architectures previously used for signal pro-
,iﬁ: cessing shows either seriocus bottlenecks in data movement or inefficiencies in computa-
e, tional power due to the general nature of the design. Figure 1, shows the basic elements
ﬁb of a Von Neumann computer architecture. The throughput available in this type of machine
oa) is directly related to the instruction execution rate. As the performance of the semi-
ﬁ'd conductor components used to implement such a machine levels off, an upper limit in proces-
45 sing throughput is reached.
0 As shown in Figure 2, the growth in performance level of the integrated circuit has been
ﬁﬁ sufficient during the past two decades to promise enhanced system performance based solely
o on the new devices as they become available. The technology which promised such growth in
oYyl the past years is becoming mature and presently the growth is less pronounced. At the same
fh ~ time, the system requirements for orders of magnitude increases in computatiocnal throughput
h ™ force the pursuit of different design avenues which provide much more room for performance
o enhancements.
o
"y An enhancement on the Von Neumann architecture that attempts to remove the dependence
) of processing throughput on device performance is the parallel processor, Figure 3. This
g architecture uses the fact that most algorithms may be disassembled into component parts
‘“ ' which may be performed by multiple processors sharing a comnon memory. The concept of
:%ﬂ incrementally adding additional processors to the signal processing task to multiply the
,hf apparent throughput of the system is theoretically sound. However, incremental enhance-
A ment in throughput with each additional processor rapidly reaches a point of diminishing
; ¢ returns. Figure 4 shows this point to occur with about 10 processors in the system. This
- throughput ceiling results from two mechanisms fundamental to a parallel signal processor
) of this type. The first limitation is present due to the overhead incurred in scheduling
$f parts of the signal processing task to available processors in the system. This task
ﬁ; assignment activity must be performed by a supervisory processor or be attached to each
St individual processor as an overhead to each processor in the system. Beyond 10 processors,
o this arbitration and scheduling becomes very time consuming. Another, and possibly more
> serious problem jeopardizing the promised throughput of this architecture is the system bus
' bandwidth limit. As more processors are attached to the system bus, the transfer band-
'.} width of the bus becomes the system bottleneck threatening to idle processors.
A .
)\ Proposing the use of parallel processors to multiply the throughput of a signal proces-
L sing system is the basis for the systolic array architecture introduced by H. T. Kung 1n
b |
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1978." However, this architecture avoids the eventual degradation of incremental throughput

2 enhancement as each additional processor is introduced into the system. Being conceived
el expressly to perform only signal processzng (primarily matrix-based) problems the systolic
array architecture addresses the previous parallel processor performance drawbacks
<t described above in an elegant way. The extremely regular structure of the operations
?;{ needed to perform many signal processing tasks identified a parallel processor structure.
’;f_ However, all of these processors perform identical parts of an algorithm while responding
Ca? to only locally available data. Furthermore, with each new and identical processor added
" to the architecture, additional buses are also included. The issue of scheduling multiple
‘Ahﬁ processcrs is now equated to arranging appropriate coincidence of input data to each pro-
" cessing element. The processor to bus ratio is maintained regardless of the size of the
array, thus avoiding the data bus bandwidth limitation described in earlier parallel pro-
e cessor architectures.
Pags
":j 3. ALGORITHMS
e
f{* All signal processing generally falls into two categories which are identified by their
.;*j type of execution. The first category, typified by the Fast Fourier Transform, contains
l.

those algorithms which consist of a collection of arithmetic operations and well defined
data movements which are performed repeatedly. The execution of an algorithm which is in

O3

g this category is not affected by the actual numerical values being processed or any inter-
Jk ! mediate values incurred. .This type of algorithm when mapped onto a systolic array results
I?& in a single instruction/multiple data (SIMD} architecture or regional groupings of SIMD

| k: routines with well defined timing relationships. The use of architectures with extremely

long pipelines such as bit serial processors host such algorithms quite nicely. The second
. category, typified by Single Value Decomposition matrix operation, exhibits variability

1 in the actual course of execution of the algorithm depending on the values of the data cir-
culating within the processor array.

K The mapping of this type of algorithm is best accomplished by loosely coupled auto-
) 5 nomous processing elements executing in a multiple instruction/multiple data, (MIMD),
ﬂ“ systolic architecture. The overall signal processing task often requires a combination of
’“f one or more algorithm components from both categories just described. In addition to the
Q“l programming flexibility needed at each systolic element, information required to guide
‘Jd algorithm execution may not be available at this low level. The global communication of —~———
4 data to a centralized algorithm control may be necessary to reconflgure groups of elements’
} : in the array to perform the next portion of the signal processing task.
T .
?
:“ \ 4. TESTBED ARCHITECTURAL SPECIFICATIONS
P, . O
hs The' systolic array testbed system, Figure 5, incorporates architectural features which
A ? allow it to host a large variety of signal processing algorithms. Our experience with our
U revious testbed * and mapping approaches identified for similar architectures indicated a
a0 p ) g P A : S
e need for a system architecture which contained a superset of the basic systolic character-
e istics. The regular and orderly movement of data through an array of processing elements
Tl executing a rigid cycle of primitive operations appears to be too limiting and awkward for/
O 9 Y A PP : : o )
k\& the execution of single value decomposition or Gram-Schmidt orthogonalizers. Previous ; Codes
)
AN
Jzﬂ * NOSC 8 X B processor array hosting Gentleman-Kung least squares matrix_Solution. nd/or
ooy .
;:::n 7 ome \ 1ot f Special
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Figure 4. Multiprocessor Efficiencies Figure 5. Systolic Testbed Architecture

mapping of the svD? and parallel models constructed to study the execution of a GS ortho-

gonizer * indicate that additional array capabilities not normally associated with a

classical systolic array were required to guarantee maximal use of the processing power

4‘#L contained within. The complete list of architectural features of this hybrid system
array are as follows:

>

i\}' 4.1 Systolic features
L
v, . . .
':r a. Two dimensional array of 16 identical processors which support nearest neighbor
O communication of data.
o b. Four identical boundary processors which handle data communication with external
WOug data ports.
: c. A system controller responsible for control cf algorithm execution.
as. 4.2. Enhanced features
‘0t . . .
[ d. Data Communication -- Broadcast of data across an entire row, column, diagonal,
‘o or array global.
; ) e. Autonomous program execution at each processor with tight or loose coupling
h * to neighboring processors
. f. Tag Communication -- Instruction or status information tagged to data movement
) throughout the array.

b In addition to the above array architectural features, enhancements to the structure

> of the individual processing elements have been included to extend the parallel nature
" of the processing within the array hardware. These features are expressly needed tc avoid
N: computational bottlenecks within the processing element and ease programming. !

o
e 4.3. Additional element features
S T g. Four independent input/output ports.
5'31 h. Simultaneous multiplication and add or subtract on independent pairs of operands.
D {P 1. Capability of concurrent I/0 and numeric computation.
K, s8 }. Autonomous program execution with extensive branch capability resident.
: 2 k. Operand Address generation.
RO
o The mapping of an algorithm, especially one such as an SVD or Gram-Schmidt orthogcnali-
- zer requires the target software to support sophisticated and interactive development tocls.
! = . PP P
e, . To this end, elemental features included expressly to allow the algcrithmist or programmer
;_m_ to verify proper operation of the algorithm are identified below:
o .
:::. 4.4, Additional diaqgnostic fcatures
(L%
‘us- 1. Built-in diagnostic set-scan capabilities for component fault isolation and power up
N confidence testing.
: m. Down-locadable instruction microcode.
;% n. Program trace capability.
.%\ o. Parity checking for instruction word integrity during run-time.
¢
L)
nsk : *VAX simulation ©of thc Dobson adaptive beamformer/nullsteerer aloorithm,
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%% p. Host access to all memory contents supported.
. . q. Mode utilities to handle computational errors, illegal program execution and
{ breakpoints.

4y
‘dﬂ The testbed system has been constructed to allow the host computer to be used not only
ﬂﬁ. as an experiment ariver, but to also support the following developmental tasks:
N
: a. Provide a vehicle for the generation of microcode which is downloaded to the target .
hardware processing elements.

b. Provide a vehicle for the generation of input matrix data through the use of appro-
priate simulation programs.

~

3~ 5

" ¢. Host output data formatting and display utility programs necessary to access per-
Tl formance of algorithms hosted on the target hardware.

S d. Handle the development utilities of initiating confidence testing, downloading
'}. executable microcode, interfacing simulated input/output data during algorithm
N execution on the target testbed hardware.

o e. Act as an 1intelligent algorithm controller during algorithm execution.
’ f. Support the algorithm diagnostic utilities available with the architecture of the

target hardware.
f:: 5. HARDWARE IMPLEMENTATION DETAILS
{: The systolic. array testbed system, refer to Figure 5, is composed of 16 Arithmetic

Processing Modules (APM}, 4 Input/Output Modules (IOM), a System Control Module (SCM)
and the system host control computer {(an IBM-AT for this initial configuration). The
16 APM's are systolically connected via orthogonal 40-bit bidirectional parallel data

B

® buses to adjacent APM's or to an 10OM on each of the boundaries of the 4 X 4 square array.
v Data communication to hardware external to the array occur via the 4 external ports (top,
;n bottom, right, and left). An additional 40-bit bus, called the data circus, is included
- in the processor architecture allowing the data movement around the periphery of the sys-
;: tolic array structure. Communication between the elements of the systolic array process-
::q ing elements and the system control module is handled by a global bus called the Array
-, Control Bus (ACB). The host computer communicates control, diagneostics and data to the
Lof APM's and IOM's via the SCM.
A\ 6. ARITHMETIC PROCESSOR MODULE
e, FUNCTIONAL FEATURES
a-‘
hﬁ' Each APM is composed of 330 off-the-shelf integrated circuits and has been constructed
- on a 16" X 18" wire wrap circuit panel. Figure 6 identifies the major functional compon-
?;: ents of each APM and hints to the highly parallel architecture contained within each
e module. The computational power of the APM resides in the ALU which is composed of a pair
) of 8 MHz Weitek floating point processor chips, the 1033 multiplier and the 1032 ALU. The
- module architecture allows both of these chips to perform simultaneous computations on
K ;Q separate sets of operands while communication of neighboring processing modules may also
y :h occur. This degree of parallelism is achieved by the use of 4 Weitek register file chips
A (1066), which is a five ported 32 location 32-bit wide scratch pad memory. Because a
B total of 128 (4 X 32) locations for operand storage was deemed inadequate to support most
j} signal processing algorithms, an additional 4K locations of single ported memory is
.ﬂ& included in this scratch pad function.
Combined with this data memory is a unique data address generator. The memory space
A can be segmented and used to support complex data manipulation. These memory segments
“Jp (up to 256 locations) can also be used as circulating buffers when modulo address
‘& arithmetic is enabled., Additional memory and comparator circuitry is included to allow
;Ji the designation of up tc 256 memory pointers as 12-bit counters which can be used as
" control of program execution.
U
ol The 1/0 structure of the APM has been made highly parallel and reconfigurable to allow
' the greatest latitude for algorithm data movement. Each register file chip car be dedi-
Y cated to data movement associated with each adjacent module. This allows the simulta-
W, . neous movement of up to four different data packets during a single transfer interval.
A The data transfer occurs at the same rate as the internal computational rate, namely,
W 125 nanoseconds per transfer. The data flow network is capable of supporting a number of
ACL topological configurations. A characteristic of many signal processing algorithms is the
‘t: need for some sort of global or broadcast data movement. Each APM can support broadcast
L

in several different configurations. By mcving data through the data flow network in a
transparent mode, row, column and diagonal broadcasting is supported during a single clock
cycle.

_-‘
o
A

The on-board control of all the functional elements of the APM described so far ori-
ginates from a micro~sequencer and instruction RAM. To accommodate the highly parallel

- -
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nature of the APM, the instruction word contained in the RAM is 176 bits wide. The micro-
seguencer accepts pointing vectors to the starting address of desired program segments via
the control bus. The preogram flow can be modified by testing the I/0 handshaking, the con-
tents of the data tag byte, auxiliary mode registers, or data related arithmetic opcrations.
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Figure 6. APM Funct:ional Organization Figure 7. IOM Functional Organization
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The APM uses-a Berkley architecture where executable program memory is separate from
data stcrage memory. The only communication occurring between program control and the con-
tents of the data memory is under the condition definced as loading a program imbecdded
immediate constant into data memory. The contents of the data memory can only affect pro-
agram flow 1indirectly as a result of tests for zero and positive resultants from the ALU.

The froating point data type used by the ALU is not compatible with the address format of
the micro-sequencer. This enhances the overall speed of the processor and limits the ulti-
mate addressing flexibility of the processor.

o

o
P

A
v

s
v N

The final functional block in the APM is the diagnostics interface which allows the
svstem hest computer to load or intcerrogate APM memory registers and internal buses. Th:is
interface 1s used for such functions as downloading instruction and data and has tre addi-

ticnal feature of supforting initial debugging efforts, operation confidence testing, and
fault 1sclation.

A
o )

-

ra

A trace bulfer 1s included in the diagnostics interface for program development. Th:s
cyclic 4K buffer captures the most recent 12-bit instruction pointers generated by the
micro-segquencer. An additional 4 test points deemed 1mportant for analysis are captures
with each instruction pointer. Using special diagnostic routines, this informatizn can be
upl oqdei to the host computer for viewing.
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7. _INPUT/OUTPUT MODULE
FUNCTIONAL FEATURES

Ny
Aerd

-

Each IOM 1is composed of 190 integrated circuits and has been constructed on a 9" X 16"
wire wrap circuit panel. Figure 7 identifies the major functional compcnents of each of
4 IOM's in the system. To minimize the complexity of programming and the hardware debug
cycle, the microcode sequencer and diagnostics 1interface are identical in function to thcse
uscd 1n the APM. The IOM contains nc data computational circultry but is expressly
designed to efficiently move data. The data flow network connects the data present at the
boundary of the systolic array to the internal 4K Luffer memory. The IOM handshaking and
transfer rates are identical to the &PM's. Each of the boundary ICM's has 2 nonsystclic
ports included which serve important interface furcticns in the application of the array
har2ware. The external port comes complete with a separate set of handshaking signals
which allow the intelligent ccmmunication of data with external hardware withcut inter-
fering with the systolic movement of data within the array itself. The data bus {(data cir-
cus) allows the 10M processors to act as a distributed interface system., The registration
of data input and output to the array hardware with the external systcm hardwarc can be
pregrammed into the IOM program,

-
-

.
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8. SYSTEM CONTROI, MOLULE
FUNCTIONAL FEATUPRLS

y L ]
AU

The SCM 13 composed of 10 integrated circuits and is similar to construction tc the
IOM's. Figure 8 identifies 1ts functional components and 1ts relationship to the other
system components. The main function of the SCM 1s to convert an extensicon of the heost
ccmputer bus (l6-bits) to a format used in the ACB (64~bits). The hcst corputer can
ardiiress cach of the diagnostic and control registers contained 1n singlce processcrs or
gr_ups of APM's and/or IOM's. System status 1including glcocbal busy ready, arithret.c
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error dctection, or system instruction parity memory fault can be monitured by the host
computer via. the SCM. The incremental algorithm commands {(the selection of the desired
microcode program modules) can be directed to modules of the array. The system clock

S originates on the SCM board and a secparate copy of the clock is sent to each system module.
s This clock is programmable in speed, and can be incrementelly controlled and used during
. hardware debugging and algorithm mapping. The SCM 1ncorporates the circuitry needecd to
N allow data movement betwecn the host computer and any one of the 4 external ports. This
N feature 1s included to aid in the initial mapping of the algogithm in the absence of the
::J balance of the external systcem hardware.
( 9. HARDWARE SYSTEM CONSTRUCTION
o
'xL The system hardware, with the exception of the host computer, 1s housed in a 24" wide,
?. 30" deep and 56" high egquipment rack. A custom cardcage complcte with fans was constructed
{4 which allows the mounting of the 16 APM cards in thc front side of the backplane circuit
‘o card and the I0OM's and SCM in the back. Due to thc number of wide parallel buses and high
"N clock speced of the array, all the systolic connectivity is contained in one 19" X 24"
Llart 10-layer cirzuit card. A special power distribution grid constructed from copper Lar stock

was attached to the backplane to accommodate the current load of the present system con-

p figuraticn (6500 IC's) and future enhancements up to 400 amps.

ﬂ; A secondary multibus cardcage has been included in the equipment cabinet to accommodate
f}; data acguilsiticn system components and possible future use of a single board computer to
o replace the present IBM-AT host.

L)

L)

° 10. SOFTWARE DEVELOPMENT

" ®

The¢ mapping of signal processing algorithms which incorporate complex manipulations of

o matrix data on an array of computational arithmctic elements reguires a well structured
P suite of development tools. These tools allow the mathematician or programmer to verify
>, the proper operation of all phases cof an algorithm and compare systclically produced inter-
e mediate variables with corresponding values derived elsewhere.

a v -
e~ To verify the successful integration of all the design features contained 1n the testhed
(4 hardware regulred the use of customicved softwarc running on a system-dedicated perscnal

. computer. The I/0 resuurces of the host computer and the C programming languagc, were usc.

- to construct a fundamental set of software utilities called hardware primitives. These
C“% i -1mitives allowed the design enginecr to exercise the diagnostics/control bus of the
‘:} testbed hardware and gain access to the functional parts of each of the array elements.

- Such rudimentary operations as forcing a single immediate microcode instruction to be
:-}: placed into an element, permit the engineer to verify the proper wirirg and correct logical

design <f small groups of integrated circuits. Thesc lowest level primitives and others

form the basic interface library uscd by the host personal computer to suppeort all communi-
caticn with the testhad hatdwarce.,

s L
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d
2
|l~ 11. DEVELOPMENT TOOLE UMBRELLLA PROGRAM
)
l‘n.

A syst-lic array processcr (SAP) operating system, Figure 9, resides on the IBM-AT
which prowvide a cohesive 1nterface arong the various ccmponents of the software devclopment
‘.W tcels, the systolic array hardware and the file directeories of the DOS operating system.
B.oth diagnostic activities and algorithm execution 1s supported by this software envircn-
Mmoo, This custum Sperating system provides the uscr ditect centrol of the hardware through

the harduare praimitives.,
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The large numbcer of development tools necessary to support the mapping of complex algcr-
1thms onto a high performance parallel processor array of this type can be a source of -~
confusicn. Four user modes are built into the SAP operating system, direct command line
access to all functions, a menu and cursor style function access, a DOS shell, and algor-
1thm controul program (ACP) shell.

In the menu shell, Figure 10, all of the hardware primitives are divided into groupings
according to the processor board type. A further distinction according to primitive func-
tional category provides an easy reference approach locating the appropriate primitive.
Each mcnu entry contains onlinc help documentation if nccessary. This system of menu pages
also includes a page dcdicated to canned hardware confidence tests and in total allows
organized reference and usage by inexperienced programmers. The menu interface uscs either !
a mouse or cursor keys to select a primitive.

Numcrous primitives require additional information in the form of command line arguments
to exccute. In those cases, the primitive calling name with rcferences of expectcd argu-
ment syntax prompts the user for the required information.

The command line shell provides direct access to hardware primitives and other diagnos-
tic utilities. It is reserved for the more experienced programmer and does not give any

syntax prompts. This short cut also minimizes the cycle time while conducting interative
hardware debugging tests.

Several utilities available in the SAP opcrating environment interface DOS files with
the testbed hardware, such a memory write and buffer memory read operations. A user path
to DCS is therefore included in the umbrella program. This provides a convenient access
to directory listings.

.

( INPUT / OUTPUT MENU )
[PROCESSOR READ WRITE DIAGNOSTICS
select processor €0de memory code memory array ctri bus
resct processor code address code address serial shdw reg
start data memory data memory test code mem
stop pointer memory  dala address test data mem
pipeline register pointer memory test ptr mem
CLOCK 2910a scquencer Ppipeline register  test ptr arith
start counter counter test pgm #1
stop d bus d bus test pgm #2
single step vector
run break point
sct frequency
set dolay
set halt mode
TRACE - FitL
read code memory
intialize data memory
load binary pointer memory
s v» 10 channe |l < CR: 1o setect | ESC to awt | h tor help
IOM Status:
Selections:
\_ ——’

Figure 10. SAP Menu Screen

12, BUILDING TOOLS

There exist a number of routines which do not access the testbed hardware. Due to the:r
size, these software utilities are stand alone and are accessed outside the ccntrcl of tho
SAP operating environment.

12.1. Microcode assembler

The bLinary patterns needed in cach microcode primitive are constructed by the hardware
engineer on a microcode template workshcet., This information combined with ccmments 1s
used to produce a microcode primitive library element. This library of microccde prim:-
tives is the fundamental interface with the programming executicn on each indavidual ele-
ment. While the primitives need only be constructed once, thc error free assembiy of
groups of microcode primitives into larger microcode mcdules rejuired a custom asserbler
to be constructed to aid the programmer. The actual microcode exccutable i1mage tc be down-
loaded to the processing clement must adhere to sume very spocifiac format guidelines.
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a. All bits not actively uscd 1n a microword to pcrform the intended function must
assume a dcfault value.

b. Operations involving pipclining must span multiple microwords with approp iate
delays of affected microword bit fields.

c. Even parity must be established across each microword using a bit field transparent
to the programmer.

d. A file hcader containing information about the microcode data contained within must
be constructed to provide propur. loading of the executable image.

The assembler has becen constructed using the framcwork of the C programming language.
The microcode primitives arc configured as an extensicen of the € library. The microccde
programmcr is free to use the power of constructs containcd within the C programming
language with an enhanced library to produce large amcunts of executable code with access
to such features as automatic microccdc address assignment, iterative assembly and para-
moter/variable passing.

The gencration of executable microccde modules which can be downloaded to the target
testhod hardware entails writing the source code of a C program using calls to the micro-
code praimitives. The C scurce 1s comgried and linked in the ncrmal manner to produce a
progsram. When executed, this program procduces thrce files, onc of which is the executakble
Linary memory image to be downloaded to the testbed. The remaining twe files are ASCII
filcs containing user comments extracted from thc source program and pipeline ccmments
containcd in the microcode primitive library. These comments (identified with their loca-
tion 1n the code memory i1mage) appear in the files i1n the order which the micrcode was
gencvrated. These filecs aid the pregrammer in two distinct ways. Initially, the microcode
can Lbe checked to verify that the microcode was asscmbled in the intendeé order and appro-
priate parameters und variables huve becn passed. Sccondly, the contents of either one
cf these files can be used in conjunction with trace utility (described below) to provide

the pregrammer with a disassembled display of the actual microcecde exccution on the target
Frocusscr.

12.2. Binary editor

The microcode binary image contained 1n an executable file can be viewed directly by the
usc of a binary editor routine. Lither the 64 or 176 bits with 3 corresponding instruct:icn
lecation 1in code memory is displayed on the CRT. By the use of a mouse or cursor keys, any
Lit or Lits may be changed, microwords added or delcted. This tool is powerful and is used
cnly during hardware debugging.

12.3. Duata editor

The systolic array testbed was designed to support 32-bit data computations throughcut.
An additional 8-bit tag associated with each data word has been added. A small utility
routine resides on the utilitics menu which allows the construction of arbitrary length
data file. 1In its initial version, this routine accepts decimal keyboard entry from the
uscr. Later versions will accommodate the input from simulation program data outgut files.

Two software utilities have been constructed which provide access to selected variables
asscciated with the exccution of systolic algor’thms. The trace utility is designed pri-
marily to document the actual execution of the microcode program. The window utility,
whilc presenting information about program flow, additionally allows the tracking of
sclected data memory locations of multiple processors. Both utilities are very important

for testing the cpcration of signal processing algorithms hosted on the systolic array
hardware.

12.4. Trace utility

A record of the actual execution of microcode primitives or modules on individual pro-
cessing elements is an important tool for hardware confidence tests and for the verifica-
ticn of proper algorithm execution. Included in the APM's and IOM's is a trace buffer
mcmory which captures the last 4096 instruction address pcinters generated by the on-bcard
microsequencer. In addition to the address pointers (12 bits) a flag field of four bits
can be wired to any arbitrary test points of interest in the circuit. Through thc use of
hardwarce primitives, a trace utility program accesscs this buffer and displays its contunts
on the host personal computer CRT. With this utility, the programmer with the aid of a
listing of thc comment file, can follow the exccution of the program,

Ancther mode of the trace utility cause the comments 1in either the user comment file or
pipeline file to be organized and displayed next to corresponding code memory address
pcinter resulting in a disassembled display of the executed program. This utility alsc
incorporates displays in hexidecomal or decimal and supports address cccurrence scarch.
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The uscr comments and pipeline comment serve two different purposes. Displaying the
user comments associates with each microcode instruction a comment that the user is free
to assign during the microcode asscmbly phase. This comment ‘allows the programmer to
recall the purpose of the 1nstruction or to identify exact positioning in the algorithm.
The pipeline comments are hardwired into the microcode primitives upon their creation and
scrve as a dcbug tool at the lowest level of the hardware. The creator of a microcode
primitive is allowed and encouraged to gcnerate a comment identified with each field pro-
grammoed .o the microword. The intended usage of such flexibility is to allow verification
of proper microcode construction at the output of the microcode assembler and the success-
ful tracing of pipelined fields through complicated program execution on the testbed.

12.5. Windows

To properly monitor the execution of software residing on 20 microcoded floating point
processing elements, a diagnostic utility called "windows" was designed. This utility
allows the user to definc specific locations in data memory on selected processor elements
and reccive updated reports about their contents under a variety of algorithm execution
modes. The relative dependence of program flow and data manipulation can be monitored at
several processor sites simultaneously. Other pertinent information about the status of

array processing elemcnts may also be monitored to confirm proper data communication
throughout the systolic system.

13. ALGORITHM CONTROL PROGRAM

The testbed hardwarce can support the cxecution of a large range of signal processing
alucrithms. The complexity of the software which controls the exccution of algorithm
depends on several system architectural and algorithm functional requirements. The ghi-
losohny underlying the software development effort on this project is to afford maximon
flexibility in the programming approach. An algorithm which is rigidly defined and is

nkﬂrlgﬂt in its execution could be entirely captured in a large microcode mocdule which is
simtly called once by the host computer. The algorithms, such as the Dobson adaptive

czmformer, footnote 2, reguire a combination of global communication, program branching,
and hcet computer intervention. These characteristics necessitate a more intensive inter-

act:ien between the microcode residing on each proccssor, its neighboring processor, and
the hast.  To accommedate this interaction, an algorithm is considered here as a collection
of zallabia microcode mocdules which reside in the processing elements and are an extension
cf the algerithm control language C library. The algorithmist or programmer approaches the
rmarping of an algerithm by composing a C source program which will execute on the hcst
persoral computer. In addition to the standard library, the programmer will have access
to speoialized library calls which perform the following functions:
a. Call for the exccution of a selected module in one or more procescing elements of
the testbed hardware.
b. OCpun input manrix data files and make the contents available to the external data
rorts of the hardwarc. ‘
c. Create output matrix data files and receive processed data from the array hardware.
d. Supgport algorithm breakpoints which suspend execution of the algorithm while the
cperator 1nterrcgates the state of the hardware.
e. Supyort repeated automatic lnterruptxon of the algorithm execution for the purpose

of performing system "snapshots” of selected variables and accumulating their
values 1n special dlaanSth files.

f. Call utilities which display the status of the testbed hardware on the host's CRT.
Algcrithm control program socurce comments, variable values and other system
information can be displaved at appropriate times in the algorithm executicn.

Figurc 11 depicts the interaction required between the IBM-AT host computer executing
the algcrithm control language program and the systolic array processcr executing the
requested microcode modules.  This figure shows the controlling role of the personal

computer host which commands the orderly execution of the "algorithm microcode pieces" 1in
a sejuential manner.

14. CONCLUSIONS

The four yecar development of the systolic array processor, diagnostic software and
algerithm mapping tools 1s ncaring completion., Preliminary work has commenced toward the
mapping of the multiple signal classification (MUSIC) algerithm onto the systolic hardware
with the ultimate goal to demcnstrate a generic surveillance application. It 1s antici-
pated that the large efforts 1n constructing a omprehensive algorithm magpirg envircnment
will greatly aid systolic programming.
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Figure 11. Systolic Software Execution
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