-A191 877 IARRRTIVE COMPRESSION CODING FOR L W
) NRVRL OCEAN SYSTEMS CENTER SRN DIEGO CA J W BOND

UNCLASSIFIED F/G 25/35

b B
MM WP el

"

!r\?‘v‘b b ‘;

o o

-
Is
o

s 22

o

= o

N~
*\ ——
0 _

-y

LY

: il
I

IFPEEER

rr
r
fr

N
O

I

6

L2 e

||| =

LX) v - v . = v) v)) «' S . " W ar
R A DR
"i"“ ""' u'nﬂ %) "'y i‘ 100 ... tl.q '
PR *> e R
|. " 1‘ \. .al' .'. I ! QQ: ." .‘ ‘. \ “‘."“' .\ " Q f || Y Q'; 9' I'; t' i’ 0. t‘ '.a l‘ %, .] | LMY

AT I AN T R TY L eh o ud sad Boit B A LB o d L g

UNCLASSIFIED. S um-F“.E wR) @

A D A 1 1b. RESTRICTIVE MARKINGS
=A191 577
3. DISTRIBUTION/AVAILABILITY OF REPORT
’ ~.,) o
) 3 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.
Mo
.".-,Q
LY W 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
L]
“""i
‘—') 6a. NAME OF PERFORMING ORGANIZATION 8b. OF{;IC&; fbnwao 7a. NAME OF MONITORING ORGANIZATION
\ appicable
LA Naval Ocean Systems Center NOSC Naval Ocean Systems Center
‘\:». 6c. ADDRESS (Cty, State and ZiP Code) 7b. ADDRESS (Cty, State and ZiP Code)
~
v
-
B . . .
~:.)- San Diego, California 92152-5000 San Diego, California 92152-5000
)
* 8a. NAME OF FUNDING/SPONSORING ORGANIZATION |8b. OF(”FIC%“SJ)MBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
applicable,
-
-"} 8c¢. ADDRESS (Ctty, State and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
X PROGRAM ELEMENT NO.| PROJECT NO. | TASK NO. AGENCY
e ACCESSION NO
b _"_1. Inhouse
; o
L) 11, TITLE (icluce Securty Classifcation)
)
-" Narrative Compression Coding for a Channel with Errors
N
- 12. PERSONAL AUTHOR(S)
> 1.W. Bond
R 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. OUNT
! . :
; Professional paper FROM Jun 1987 TG Jun 1987 January 1988
; 16. SUPPLEMENTARY NOTATION
:‘-:_- 17. COSATI CODES 18. S8UBJECT TERMS (Contnue on reverse i necessary and identifly by biock number) W
-'»_f FIELD GROUP SUB-GROUP " comma-free data U
"' data compression capabilities, .. ’ :
Huffman Code -
) cEr - ! d
l' N -
. 19. ABSTRACT (Continve on reverse if necessary and slentily by block number) .
-".: " Data compression codes offer the possxbxlny of improving the thruput of existing communication systems in the near term. This study
e, was undertaken to determine if data compression codes could be utilized 10 provide message compression in a channel with up 10 a 0.10 bit
.:-. error rate.
-
o~ . e . . - . .
" The data compression capabilities of ccdes were investigated by estimating the average number of bits-per-character required to
- transmit narrative files. The performance of the codes in a channel with errors (a noisy channel) was investigated in ferms of the average
v, numbers of characters-decoded-in-error~per-bit-error and of characters-printed-in-error-per-bit-error.
B .i,' Results were obtained by encoding four narrative files, which were resident on an IBM-PC and use a 58 character set. The study
B focused on Huffman codes and suffix/prefix comma-free codes. Other data compression codes, in particular, block codes and some
B simple variants of block codes, are briefly discussed to place the study results in context. -
O
, Comma-free codes were found to have the most promising data compression because error propagation due to bit errors are limited to
“ a few characters for these codes. A technique was found to identify a suffix/prefix comma-free code giving nearly the same data
A compression as a Huffman code with much less error propagation than the Huffman codes. Grealer data compression can be achieved
ALY through the use of this comma-free code with code word assignments based on conditioned probabilities of character occurrence.
‘-I
,,-'\': Presented at Agard Electromagnetic Wave Propagation Panel, Lisbon, Portugal, 19-23 October 1987.
B ; - 7
s : ’ o
483 -y . .
W ! 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
: "'Q [JuncLassFED/UNLIMITED SAME AS RPT [] DTIC USERS UNCLASSIFIED
t
N
"y 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inckue Arsa Code) 22c. OFFICE SYMBOL
)) .
¢ D J.W. Bond \619) 553-4166 Code 83
4
v 83 APR EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIED
. . DD FORM 1473, 84 JAN ALL OTHER EDITIONS ARE OBSOLETE
! SECURITY CLASSIFICATION OF THIS PAGE
5
)
el
»

\ N) W LTS K.‘l- o ¥
;"' "" ﬁ’ o "’o * h. 7"' ,p ““o.\ 4 Ch .'-. “". Al N ':fv‘.,s‘:',t‘,.ﬁ W, 0".'. W, ‘ .‘ﬂ !": "0 \' \- * O ' M.; ‘c o

- -
r

=B -

LA G0 i poy

L

NARRATIVE COMPRESSION CODING FOR A CHANNEL WITH ERRORS

11 June 1987

Prepared by:

Naval Ocean Systems Center
Submarine Broadcast Systems Division
San Diego, CA 92152-5000

Accession For

NTIS GRAXI g
DTIC TAB
Unannounced O

! Justifiocation

By.

Distribution/

Availability Codes

Dist

Approved for public release; kl

distribution is unlimited

.."‘.-‘f‘-f'\'.'.\ ". BT R e

\'&‘-

LN -'\-

DA

Avail and/or
Specisal

88 3 2!

A, 2 o B A N £ e R

B R A A S

ng g

'

="

{J:!Lﬁ»

.

LI RN
v

%> v \?
LL{‘.‘..\\"

s r. l,
RO

¢

"f,\' O

NARRATIVE COMPRESSION CODING FOR A CHANNEL WITH ERRORS

By Dr. James W. Bond, Staff Scientist N
NAVOCEANSYSCEN, Code 83
271 Catalina Boulevard
- -e-——w__ San Diego, California 92152-5000

ABSTRACT

Data compression codes offer the possibility of improving the thruput of existing
communication systems in the near term. This study was undertaken to determine if datz
Lompressxon codes could be utilized t) provide message compression in a channel with up to

.10 bit error rate.
/

The data compression capabilities of codes were investigated by estimating the
average number of bits-per-character required to transmit narrative files. The
performance of the codes in a channel with errors (a noisy channel) was investigated in
terms of the average numbers of characters-decoded-in-error-per-bit-error and of
characters-printed-in-error-per-bit-error.

Results were obtained by encoding four narrative files, which were resident on an IBM
PC and use a 58 character set. The study focused on Huffman codes and suffix/prefix
comma-free codes. Other data compression codes, in particular, block codes and some
simple variants of block codes, are briefly discussed to place the study results in
context.

Comma-free codes were found to have the most promising data compression because error
propagation due to bit errors are limited to a few characters for these codes. A
technique was found to identify a suffix/prefix comma-free code giving nearly the same
data compression as a Huffman code with much less error propagation than the Huffman
codes. Greater data compression can be achieved through the use of this comma-free code
with code word assignments based on conditioned probabil%ties of character occurrence.

2

INTRODUCTION

Data compression encoding offers an option for increasing the channel capacity of
existing communications systems by efficiently encoding the narrative portions of
messages. A data compression code assigns short binary code words to characters with a
high frequency of occurrence and long code words to characters with a low frequency of
occurrence. Difficulties arise when data compression codes are used in noisy channels
because one bit error can lead to multiple character errors due to temporary loss of
character synchronization.

This study focused on the investigation of Huffman and comma-free data compression
codes which could be used to encode characters based on their probabilities of occurrence.
The comma-free code results were then extended to encoding of characters based on their
conditional probabilities of occurrence. 1In addition, several coding approaches using
block codes and simple variants of block codes are discussed.

The data compression provided by a code is measured by the average number of bits-
per-character ot the encoded narratives files; the performance of the code in noisy
channels is measured by the average number of characters-decoded-in-error-per-bit-error
and the average number of characters-printed-in-error-per-bjt-error. Generally speaking,
as the number of bits-per-character decreases (that is, as data compression increases),
the numbers of characters-decoded and printed-in-error-per-bit-error increase. Observe
that under the assumptions of a fixed bit-error-rate and random bit errors, the ratio of
the average number of character (decoded or printed) errors for two codes is equal to the
ratio of the product of the average number of bits-per-character and the average number of
characters (decoded or printed)-in-error-per-bit-error for the two codes.

Results are presented for a 58 character alphabet derived from the 95 character set
of the personal computer and for processing narrative files stored on its hard disk.
These files were edited to use only capital letters and certain seldom used symbols were
deleted to obtain an alphabet emulating the Military Standard of the American Variation of
the International Telegraph Alphabet No. 2 (hereafter called the Military Baudot Code) in
use for Navy communications.

The error properties of both Huffman and comma-free codes depend on the specific
choices of bits and code words, respectively, used to construct the codes. A main thrust
of this paper is to identify the Huffman codes and the comma-free codes giving the lowest
average number of character (decoded or printed)-errors-per-bit-error for a given
compression gain.

APPROACH

Huffman codes are known to provide the best data compression possible for variable
length coding of individual characters (reference 1]. This property is ensured by the
code construction process because it is based on the prcbabilities of occurrences of the
characters to be encoded. We began our investigation by establishing the properties of
Huffman codes in noisy channels using character encoding.

b

Al e i) l"‘ﬂ &L

o

kR

-y

i A0 v s

22 4@

YY)

A
AL CA Eq

<

R T e B

a4

“".'-':1.-

The comma-free codes analyzed in this report are constructed using a sequential
procedure found by R. A. Scholtz [references 2 and 3]. His procedure does not utilize
probabilities of occurrence to quide the construction process. We developed a way to most
nearly match the word lengths ot a comma-free code to those of an optimum Huffman code 1in
order to maximive the data compression performance of the selected comma-free code.

Even after specifying the distribution ot word lengths of Huffman and comma-free
codes, there are degrees of freedom in the construction processes. It was discovered that
the error properties of a code depended on the use made of these degrees of freedom.

The insights provided by the investigation of Huffman codes and comma-free codes led
to the 1dentification of certain natural extensions of the presently used Military Baudot
code. A comparison of the pertormance of these codes with those of Huffman and comma-tree
codes provides an additional performance gauge against which the latter codes can be
assessed.

The Huttman code construction process has a great number of degrees of freedom. The
impact of bit errors on character synchronization and character errors is very context-
dependent; thervtore, an analytical study of the dependency of error statistics on the
Huftman construction process could not be performed. Therefore a simulation program was
written and exervised to search for the best Huffman codes.

The number of degrees of freedom in the comma-free code construction process depends
on the number of sequential steps in the process and not on the character set size. The
performance of codes constructed in a few steps, which are the codes of most interest, are
established analytically by an exhaustive treatment of the available codes.

Huffman and comma-free coding could also be applied to character encoding based on
conditional probdbilities of character occurrence. We obtained results for comma-free
codes, which are placed in perspective by considering biock coding of the words in large
dictionaraies.

DATABASE

Four narrative files were used to analyze the performance of data compression codes.
These files (labeled I, II, I1I, and IV) contain 31,744, 28,672, 12,288, and 13,312
bytes, respectively, and are resident on the hard disk of the personal computer. All of
the narrative fl.ies were technical documents involving some equations.

Table 1 presents the probabilities of occurrence for the different characters for
ecach of the tour narrative files. Note that the probabilities of occurrence of the
characters are usimilar tor the four narrative files.

BLOCK CODES AND GENERALIZED BAUDOT CODES

This section describes block codes and a family of compression codes which have a
structure very similar to that of the presently used Military Baudot code.

Block Codes

A code consisting of code words of equal length is called a block code. The length
of the block code used depends on the number of different symbols being encoded. A 58
character set 1s used by the United States Navy. Six-bit code words are necessary to
encode this character set. .

If words are encoded, then the dictionary size determines the length of the code
words necessary to encode the words: 14 bits are necessary to encode a 16,384 word
dictionary; 1% bits to encode a 32,768 word dictionary; and 16 bits to encode a 6%,5136
word dictionary. (Note for an average word length of five characters, the dxctlonary
schemes use 2.33, 2.%0, and 2.67 bits per character encoding, respectively, by not
requiring the encoding of spaces.) Larger dictionaries appear to be prohibited by the
difficulty of implementing encoding and decoding by table look-up operations. One final
note: if block codes are used, a bit error leads to a single character error if characters
are encoded or a single word error if words are encoded.

Since the English language is known to contain over 300,000 words some provision must
be made to handle words not in the dictionary. 1t is undeslrable to limit the vocabulary
of the writer of Navy messages so that words occur which are not in the dictionary. 1In
order to take the most advantage of a fixed-size dictionary some way should be found to
handle variants of the same word, such as alternate sf=11ings, misspellings, and
abbreviations. We do not analyze block encoding of large dictionaries in this paper.
Kather we chose to analyze the use of data compression coding of characters based on
conditional probabilities of character occurrence.

Generalized Baudot Codes

The Military Baudot code consists of information carrying characters and two shift
characters, which change the decoding of the next code word. The Military Baudot alphabet
consists of %6 information characters and shift characters. One shift character shifts
letters to figures and the other tfrum figures back to numbers. If a simple block code was

h

IS fxf

N LA

-
5"’ A a S

J{q TABLE 1. CHARACTER PROBABILITIES OF OCCURRENCE FOR
Y FOUKR NARRATIVE FILES
X . e e ey e e
4 NARRATIVE NARRATIVE NARRATIVE NARRATIVE
- CHARACTER | FILE I FILE II FILE III FILE IV
‘.'g 3 - e — —
i'ﬁ "o 0.3085 0.3171 0.2851 0.4095
o E 0.0855 0.0865 0.0882 0.0664
o<, T 0.06136 0.0677 0.0585 0.0492
N 0.0543 0.0537 0.0483 0.0407
o 0.0416 0.0518 0.0505 0.0420
1 0.0513 0.0511 0.0537 0.0426
A 0.0455 0.0450 0.0499 0.0434
K 0.0192 0.0421 0.0471 0.0438
5 0.0372 0.0391 0.0440 0.0367
H 0.0277 0.0263 0.0291 0.0162
c G.0193 0.0232 0.0245 0.0216
L 0.0233 0.0218 0.0262 0.0226
D 0.0191 0.0206 0.0327 0.0165
U 0.0142 0.0185 0.0147 0.0165
P U.0163 0.0170 0.0171 0.0164
M 0.0120 0.0162 0.0230 0.0150
F 0.0151 0.0141 0.0190 0.0169
G 0.0117 0.0121 0.0163 0.0109
B 0.0049 0.C101 V.0017 0.0067
v 0.0136 0.0099 0.0078 0.0077
W 0.0147 0.0082 0.0080 0.0030
. 0.0073 0.0076 - 0.0u75 0.0087
¥ U.0050 0.0058 0.0074 0.0026
s 0.0062 0.0001 0.0016 0.0060
) 0.G016 0.0039 0.0024 0.0024
X (0.0016 0.0039 0.0024 0.0024
“n - 0.0047 0.0034 0.0044 0.0053
S 1 0.0078 0.0024 G.0015% 0.0054
wh K 0.0v40 6.0023 0.0014 0.0008
,55' / 0.0003 0.0016 0.0003 0.0019
b, J 6.0016 0.0014 0.0011 0.0000
X 0.0018 0.0013 0.0017 0.0008
2 0.0059 0.0013 0.0016 0.0031
+ 0.0031 0.0011 U.0000 0.0000
= 0.0019 0.0010 U.0002 0.0000
z 0.0002 0.0009 0.0011 0.0004
Q U.0014 0.0008 0.0012 0.0004
3 0.0015 0.0007 0.0010 0.0018
0 0.0009 0.000% 0.0014 0.0050
- 0.0000 0.0005 0.0000 0.0000
" 0.0003 0.0003 0.0003 0.0000
4 0.0000 0.0003 0.0002 0.0001.
: 0.0014 0.0002 0.0000 0.0000
: U. 0006 0.0002 0.0008 0.0004
8 0. 0001 0.0002 0.0005 0.0015-
e 0.0000 0.0002 0.0000 0.0000
5 0.0001 0.0002 0.0005 0.0014
9 U. 0000 0.0002 0.0007 0.0034
* v.0021 0.0002 0.0000 0.0000
; U. 0000 0.0002 0.0006 0.0000
< 0. 0000 0.0001 0.0002 0.0015
. 0.0000 ¢.0001 0.0001 0.0000
! . UL 0.0u01l 0.0001 0.0001
’ 0.0000 0.0001 0.0002 0.0004
< 0.0600 0.0000 0.0002 0.0000
! 0. 0000 0.0000 0.0001 0.00600
] G.nuls 0.0000 0.0000 0.0000
1 ¢.0000 0.0000 0.0001 0.0000
. « o S SRR N
l::'.‘ tuTE: " " denntes space
[}
o
ol
o

"O“J ‘| ‘ ;'Q ‘I

OUMN (ADCRMALNT) .I)
iy athy .0.'.s".t" s S ey ‘.0‘0.» X l.o LN ." LN ,r‘ 1! .l‘

‘.""»:,l :(

WL
o."u !‘. U .q.l‘ 15, .n

R

P
[_w_) s

24

P
Fatf i

1
l"A"l «!

--‘,
Rty

[5

SRy
ARANPLAN,

LA Cn- ()
4,0, W

used, six bits would be required; if a five-bit code is used instead, and one of the 32
code words is used as a shift character, 31 information characters can be transmitted

using tive bits and the remaining 25 information characters can be transmitted by using
the five-bit code word reserved for a shift character followed by a five bit code word.

We model the Military Baudot code in terms of a code using a single one-character
shift character. The Military Baudot code shouuld perform somewhat better than predicted
by the model because ot the tendency for numbers and characters in the alphabet to occur
sequentially and the actual implementation of the shift as a togyle operation.

More than one shift character can be used and these can be used sequentially to
provide a whole fami1ly of difterent Baudot-like codes, which we call generallzed Baudot
codes. A generalized Baudot cvode is specified by its basic code length and the number of
characters used as shitt characters for each multiple of the block length. The
guneralized Baudot codes uf most interest for Navy messages use code lengths which are
muttiples of 3, 4, or 5 (2 allows too few code words to build upon and 6 will block encode
58 characters).

The bits-per-character for the best single shift code is obtained as 5 + SP, where P
is the probability of occurrence of any of the 27 least commonly occurring characters.
The average number of bits-per-character turns cut to be 5.08, 5.06, 5.06, and 5.06, for
narrative files §, 11, 111, and 1V, respectively. For this code, one character is decoded
1n error per bit error and on the average 1.01 to 1.02 printed characters are in error per
bit error, depending on the training file.

Consider a generalized Baudot code using more than one shift symbol. Suppose, in
particular, that the shif{ts were used to produce a code with 15 words of length 4, 15 of
length 8, 15 of length 12, and 13 of length 16. One of the first 16 code words is a
shitt, i.e., leads to a ditferent interpretation of the next code word; one of these code
words is reserved to lead to still another interpretation of the next code word; and one
ot these is reserved to lead to still another interpretation of the next code word. The
average number of bits-per-character required to transmit information using this code is
4.68, 4.%2, 4.54, and 4.52, for narrative files I, 11, III, and IV, respectively. For
this code, one character is decoded in error per bit error and on the average 1.13 to 1.17
printed characters are in error per bit error, depending on the training file.

A Baudot code based on length three code words provided about the same compression as
one of length four, at the cost of dgreatly increased complexity.

HUFFMAN CODES

Using only the probabilities of a set of characters being transmitted, Huffman
provided an organized technique for constructing efficient codes, i.e., using a minimum
number of bits (on the average) to transmit characters. The procedure for constructing a
Hutfman code is illustrated in the following example drawn trom reterence. 1.

Suppose that five characters, a, b, ¢, d, and e, with probabilities of occurrence
0.125, 0.0625, 0.25, 0.0625, and 0.5, respectively, are to be encoded (see figure 1).

[] € S [4 5 € 5
« - -) ¢ .25 e 4 25] ~__>(¢:,c|,h,dl 5
a 129 a 125] {a,b,d) 5
b u6es] {b,d) 125
d 0625

\ v J
¥ - - - 0
¢ - - 0 1
] - 4] 1 1
b 1} 1 b 1
d 1 i 1 1

CODE A (READ RIGHT-TO-LEFT)

. - - - 1
¢ - - 0 0
a - 0 1 0
b 0 1 1 0
d 1 1 1 0

CODE B (AELAD RIGHT-TO-LEFT)

Fgure 1. Two Examples of Huffman Coding

| |

& vy - g . - NRTTRTOT Gl - e N
e RS SN AC L s ' RS AN A ST AN i e)

*

5

For this example, the Huffman procedure involves three regroupings of five characters,

P Grouped characters are indicated by (b,d), (a,b,dj, and (c,a,b,d) along the toup of tigure
\{ 1. At each stuye in this step, the two characters or group ot characters with the lowest

“I probabilities are grouped and the group is assiyned the probability obtained by summing

‘ﬂ‘ the probabilities of its members. 'The Huifman cude is constructed based on the character
it qgroups by proceeding from right to left. Two ot the many possible codes which can be
f assigned to the original character set by the Huffman construction process are 1llustrated
& in figure |.
[}
!5$F We discuss the construction of Code A first. Step 1l: assign “C" to the most likely
l\)‘ character “e" and "1" to the character set (c,a,b,d). These bits are the first bit in the
0*' code words assigned to the characters. The character "e" is distinguished from the
tﬁ*' characters "c¢", "a", "b", and "d" by the fact that the code for “e" begins with "0" and
¥ 5 the others begin with "1", Step 2: no bit is assigned to "e", and a second bit is
Vet assigned to the remaining characters. This bit is chosen to distinguish “c¢" from "a",
{ "b", and "d"; "0" is assigned to "c" and "1" 1is assigned to the other characters. Step J3:
no additional bits are assigned to "“e" and "c"; additional bits are assigned to
h -\J distinguish "a" from "b" and "d". Step 4: no bits are assigned to “e", “c", and "a"; bits
3}\1 are assigned tou distinguish "b" and "d“.
-
N Code B, also shown in figure 1, differs from code A in that at step 1, the character

n, Ye" is assigned "1" and the characters "c", "a", "b", and "d” begin with "0". The
'*\‘ remaining steps are the same. Note that "0" and "1" can be assigned in either way at each
‘* step, leading to the construction of 16 different codes for the example shown in figure 1.

The example in figure 1 is very regular in that no reordering is necessary during the
grouping of characters at the different stages ot the construction process. This is not

] always the case. It 1s alsc worthwhile to note that the Huffman coding procedure can lead
J?. to block coding when all of the character probabilities are the same. For example,
N {& cons.der the case of eight characters: a,b,c,d,e,f,g, and h, each hav.ng a probability of
o ¢V 0.125. The first step leads to grouping g and h, the next step to grouping e and f, the
f ?N next to grouping ¢ and 4, and the fourth step to grouping a and b. Each group is assigned
e a probability of 0.25. The next two steps lead tu grouping e,f,g, and h, and to grouping

a,b,c, and d. Each of these groups is assigned a probability of 0.5. It is easy to see
that in this case each character is assigned a three-bit code word. 1In general, the
P a Hut fman code construction process for characters with differing probabilities of

. occurrence leads to a code with some characters having code words of the same length and
ﬁ other characters having code words of differing lengths.
e Figure 2 shows the impact of introducing a single bit error into the code word
P,’h assigned "a" four Code A and Code B. For Huffman codes, and other variable length codes,
(ﬂ the impact ot an error depends on the characters [ollowing "a®. In the example, "abcde"
b i is being transmitted. "The impact of the single bit error is enclosed by brackets and an
t errur count shown to the right for each of the two Huffman codes. For code A, an error in
; the first bit of the code word tor "a" leads to it being incorrectly decoded into the two
,\J characters "e" and "c¢"; i.e., one character decoded in error and two characters printed in
,54 error. For code B, an error in the tirst bit of the code word tor "a" leads to the next
,,“J three characters being decoded in error for a total of 10 characters printed in error.
}\' For code A, the bit error does not lead to loss of character synchronization; while for
it code B, it does.
o
Lot A
e
‘) a|b ¢ d =« CODE A CHARACTER ERROA COUNT FOR
0 l \'\\\ A SINGLE BIT ERROR
K :: ~ o DECODER PRINTER.
ﬂ:& 110 1110 10 1311 ERRORS ERARCORS
L}
- 010 1110 10 1111 0 1 2

2

oL

3 b d [
? ,j A.l [<
ol
¥ o o b ¢ dle CODE B CHARACTER ERAOR COUNT FOR
e l \\\\\\‘\ A SINGLE BIT ERADR
‘l o ~ DECODER PRINTER
W 010 G110 00 o111 1 ERADRS € AHORS
]
- 110 0110 a0 0111 1 ¢ 10
Wy ¥ |
; WT—l—TT |
. X

*‘- ._I-I < (44 [4 < ree

Figure 2. Examples of Error Propagation tor Two Huffman Codes
Providing the Same Compression

ﬂ:s [‘

%
‘::l.. ' ™ ‘ l 2N N, y ™) RS At A
5,50, 0! o (A

e A LA
LNt OO A W 5 .,l‘ LRCIu OV i

o wn
N, \J%’

- . Sy
Sl

g
b %o

'’

5
>

"‘ a
AR
R

b

L]

'y "
Pl
WPThrS

L 4

g
"-.,'-f'h R

'

XA —. .
RSN
LN 'n"\.'-:-_'l]

b
¥

[+

o

7.’

<

Lol

AL

IXxeg®

3

S M M S W € o
lt".i":"‘...) " w {

We turn now to the analysis of Huffman encoding of the fodr narrative tiles
previously described. Thne structure of a Huttman code 1n the sense of its distribution ot
lengths of code wurds 15 Jdetermined by the probabilities of occurrence of the 58
characters in the cncodud narrative tille (provided some conventiun to treat equi-probable
sets 1n the construction process {8 adopted).

Table 2 summarizes the code words assigned by the particular computer implementation
of the Hutfman conutructed process that we used in our study. (It also contains a column
of werd 1engths for a commpa-free code. This column will be discussed later.) The code
word lengths for Hutfman encoding were obtained using the probabilities of occurrence of
the characters presented in table 1 for the four narrative files. The order of the
ctharacters 1s the same in table 2 as that in table 1 and the characters are partitloned
1into sets of 1% characters to facilitate discussion.

The probability of occurrence of any of the ftirst 15 characters listed in table 2
exceeds .84 for all the narrative files. The word lengths assigned to the first 1%
characters based on the probabilities of occurrence of the characters in the different

narrative tiles never difter by more than one bit. The word lengths are nearly the same
tfor the next 1% characters and tend to differ greatly only four the least probable
characters. Some of the differences between word lengths presented 1n takle 2 for low

probability of occurrence characters could have been lessened by adopting a difterent
conventiun for egui-probability character sets than that used in our slmulatiouns.
Nevertheless, use of any of the tuur narrative tiles as a training file should lead to
similar compression results for Huffman (and later, comma-free) encoding ot the narrative
tiles.

Huf fman code data compression performance is summarized by the average number of
bits-per-character required to transmit the narrative files depending on the particular
tile (the training tile) whose probabilities ot character occurrence were used to

construct the code. Tahle 3 summarizes the results of the Hutfman code average blts-per-
vharacter calculations. Note that using narrative files 1] ‘and 11! as training files gave
neatrly the same results. The maximum difference between two entries of the tables

ocaurred when narrative file IV was used as a training tile for narrative file I; however,
the ditference was only .23 bits-per-character.

TABLE 2. HUFFMAN AND COMMA-FREE CODE WORD LENGTHS
FOR FOUR NARRATIVE FILES

WORD LENGTHS WORD LENGTHS
FOR NARRATIVE FILE COMMA- FOR NARRATIVE FILE COMMA -
CHAR 1 [r 1 1Iv FREE CHAR I 1I 111 IV FREE |
w2 2 2 1 2 J 9 9 10 22 9
E 3 3 4 4 3 X 9 9 9 11 9
T 4 4 4 4 3 2 10 8 10 9 9 .
N 4 4 4 5 4 + 10 8 18 15 9
8] q 5 4 5 4 = 10 9 13 21 9
1 4 4 4 S 4 z 10 12 10 12 9 .
A 4 4 4 5 5 Q 10 10 10 12 10
R 5 5 4 5 S 3 10 9 10 10 10
S 5 5) 5 5 0 11 10 9 8 i0-
H 5 5 5 6 S - 11 25 19 27 10
[5 [5 [6 " 11 12 11 18 10
L 6 5 5 6 6 12 1% 12 13 10
D 6 6 5 6 6 - 12 9 19 27 10
u 6 [6 6 6 : 12 11 10 11 10
P [6 6 6 6 8 12 14 11 10 10
M 6 6 6 [7 e 12 18 16 24 11
¥ [6 6 6 7 5 12 12 11 10 11
G 6 6 6 G 7 9 13 22 10 9 11
B 7 8 [8 7 * 12 9 17 26 11
\ 7 6 7 7 7 ; 12 24 11 19 11
W 7 [7 9 7 6 13 19 13 10 11
7 7 7 7 -] > 13 17 13 23 11
Y 7 8 7 9 8 7 14 20 13 14 11
, 7 7 8 8 8 * 15 21 12 11 11
) -] 7 9 9 8 < 16 25 12 20 11
(8 7 9 9 8 ! 17 23 13 17 12
- 8 8 8 8 8 [18 13 15 2% 12
1 9 7 9 8 8] 18 16 14 16 12
K 9 8 9 11 9
/ 9 il 11 9 9
.
| |
v L ¢"L.4 - o A" AT et =
AN RSN |‘ U U ‘ .58, l'?‘u'.

.zh
"
g
.,, 7
A .. -~
.\.‘_
3 :."
s TAMLE 3. AVERAGE NUMBER OF BITS-PEK-CHARACTER FOR
.,-.:-‘ HUFFMAN COLDES AND DIFFERENT TRAINING FILES
.. - - - - - = ey — e ey — = —
X R
N)
(TRALNING NARRATIVE NARRATIVE | NARRATIVE NARRATIVE
‘ F1LE FILE I FILE II FILE III | FILE IV
- - R et T T e S —
1 4.04 4.05 4.24 3.77
11 4.12 3.95 4.19 3.73
111 4.12 3.96 4.15 3.72
v 4.27 4.05 4.32 3.613
R S A e B

The entries 1ln table 3 required to encode the training files are calculated directly
as the sum of the probabilities of occurrence of a charactur with the length of the code
word assigned to 1t by the Huftman construction process. The remaining table entries are
obtained by multiplying each chdaracter probability of vccurrence in the narrative file
under consideration by the length ot the Hutfman code wurd assiyned to that character and
surming the results.

A computer program was written to search among the possible Huffman codes, which give
the bit-per-character vaiues presented in table 3, for the one performing best in a noisy
channel. The original program reads a text file and counts the number of occurrences of
each character; from this, a Hutfman code 1s constructed using the construction process

rx tirst described earlier. In order to search for a guod code the specific choices made in
n‘ the Hutfman counstruction process were randomized. The probabilities of occurrence for
\;“ each character and the assigned Huffman code words for each character were written to
\;\ 1i1les so that the particular codes could be recovered if desired. Trials were run using
\;\ the prohbabilities of occurrence of the characters 1n each of the tour narrative tiles.
:}\: The simulations were run by randomly introducing bilt errors at a rdate of 3 per 1000 bits.

No attempt was made to model the impact of burst errors on the channel. It was felt that
should burst errots pose a problem in the implementation of a particular code, it would
always be pussible to superimpose 1nterleaving after data compression encoding and

‘@

¢ ?F delnterleaving prior to data compression decoding.

IS]

_\i- wWe found that, regardless of the narrative file used as a training file, the poorest
DR €rror pertormance results were obtained when processiny narrative tile IV (the most

RS compressible) and the best error performance results were obtained for narrative file 111

" (the least compressible). Fiqure_) illustrates the dependency of the results upon the
‘g code selection process by presenting the average numbers of characters-decoded-in-error-
P per-bit-error for éexperiments run using narrative tile II as a training file.

A best and worst code for each narrative tile as a training file was selected for

'f\J further analysis. bilgure 4 presents the distributions of lengths of successive printed
. Chiaracters in ertor obtained for the best ana worst of the eigyht cases analyzed. Note
'i\J that any ot the printed character error sequences may involve more than one bit error.
'i\ﬁ However, the 11ke1;hood ut two bit-error induced error sequences merying is very small for
LR a bit error rate ot 3‘in 1000 and can be neglected: therefore, printed output character
;}%J performance 1s summarized in terms of the average number of printed character errors per

b1t error, which we estimated by dividing the total number of character errors by the
tutal number of bit errors introduced during a simulation run.

~ WL

>

11 o T
10 45; - T
y 0 ‘ | IR Best |

41

X
ors/

Y
Fall o

Irr

L@ iy
[l
e r
Errar
i
.
o
»* O
erces
- s
.
i
| =
’D
S
-
—

7
TrAra~t

+
o

o
(=4

-
»
A+

<

<

S
T
ecode
—-
<o
b5
+
b

-«
!
N
.

Y + +] ‘ ¢
a 0 1 2 3 4 49 6
i o) Characters Printed 1n
d v Tria Frror/Bit Error

~<
D+
O
—
j s
—
no

Filagure 4. Huf fran Code ticor Propanation Fiaure 4. Distributions of Printed
' Fenwit o with Narrative 11 as Characters in Frror per
Ry Trawnang File (L = Narratjve 1, Bit Frror for Best and

% x . Hartat ve 11, * - Narrative 117, Worst Huffman Codes
. a - Narsative (V)

"

1t 47
Vet gt
)

[~ . P YT, [WL N >
W0 :': l‘!‘t‘. t'.o.t'!.l':‘t A "‘ -V “»' i .'?‘a ."‘!“; :*:".‘u !‘.’!h , A \t".h"t“'t?'f:.‘"‘ S '.-'

O/
Sl

ridh b

-

There 1s a dramatic difference 1n the structure ot the distributions for each of the
narrative filles used as a training fi1le tor the Huttman codes tound to give the best and
worst pertormance 10 a channel with errors. ‘I'he best distributions have a preponderance
ot short length segquences (lengths one, two, ard thiee) while the worst distributions tend
to be relatively tlat with the occurtence of extrenely long character error sequences (15,
104, 6%, and 40 for narratives 1, [I, 111, and IV, respectively). ‘The simulation for
narrative 1V shown 1n tigure 4 only resulted in three printed character sequences longer

- -

] than 7 characters, une each ot 9, 10, and 14 characters. The average length of a printed
> sequence of character errors for this Jjlutfman code, presented 1n table 4, was 2.4 printed
o character c«rrors.
] Some experiments were run using an operator-interactive program to determine the
= percentage of errors introduced into a text file through Huffman decoding of bit errors
b that could be coriected through narrative context. It appears possible to change a bit
- likely to be in error and then to use a standard spell check program to check whether
\ reinitialization of Huftman decoding by the change leads to mure reasonable results. The
D potential of such an alyoerithm could be assessed by using an operator-interactive
, program--with the ovperator choosing the decoding which provided text which made the most
' sense,
"’
" A 4271 character narrative file consisting of 88 lines and 4456 bytes was chosen to
ﬁJ assess operator-interactive correcting of narrative character errors. Bit errors were
. introduced randowly at a rate of .005. 'This error rate would lead to an estimated 90
characters containing a bit error ((.005)(4:71 characters) (4 bits/character)). These 90
bit errors led to 3u2 character decoding errors. After the interactive session the
operator was able to reduce the number of character decoding errors to 85 errors (that is
_‘ the number of character errors were reduced by 76 percent).
b,
g
A .
P
B
B
q
;. TABLE 4. HUFFMAN CODE WORDS FOR NARRATIVE FILE IV
. WHICH PROVIDED THE BEST PERFORMANCE 1N A
] CHANNEL WI'TH ERKRORS
l.‘ — = e - ——— - . e ————— ————
J& CHAR CODE WORD CHAR CODE WORD
- U O V.
s " on o1 e 100010100010
. ! 1U001010000006G011 A 1110
. " 11111110101 B (0001101
er ¥ 100010100090000100 C 11110
1 100010100000000101 D 000011
3 ' 1000101006000001 E 110
3 (0U100001 F 100011
2) 60100000 [111110 L L
A * 111111101001 H 10000)
+ 6010101000 1 1010
, 1111110 J 111111110 N
i - 10601011 K 001010101
N . 0010001 L 000010
", / trri1rin M 001001
7, 0 00101011101 N 1001
o, 1 001020110 o] 1011
o 2 0010101111 P 001011
Lo 3 1111111011 Q 1000101001
p a 001010111000 R 00000
. 5 100010100011 S 00010
N 6 V010101110010 T 0011
- 7 10001010000V001 U 000111
. 8 10001010L0Y01 \ 3001100
/ 9 0010101110011 W 0010100
D : 100030101100 X 111111100
' ; 111111101000 Y 1000100
') < 1000101000000000 Z 1000101010
3 = 0010101001 - 100010101101
> 1000101000001 - 10001010111
- -
Il
o
L)
D)
o
) .

| -

l’lll‘I‘.‘,"‘"\"""t'ﬁ'\‘I'h’\'l\\\
P 0 TP P - o AL LA s
sl ‘. \5 N 0"“'.. L l-l‘!‘la (‘.\‘ ‘ " qﬂ

e e
» AL L) 0

Py

At

o,
5

9
W

.h.q,

o

AN T AN \u

Rn L

COMMA-FREE CODES

Comma-free codes are binary codes so constructed that 1t is possible to identify
1ndtvidual code words prior to decoding the received bit stream. We analyze a tamily of
Comma-tree codes, Fnown as “sattlix/prefix" codes, tound by R. A. Scholtz [reference 2.

In order to illustrate the jdeas involved in Scholtz's construction process, we
d1ocuss a partacularly simple example of the Hicholtz construction process. Scholtz
constructs sets of code words seguentlaily. We begin with the set of two code words

VoL L. The mext code set s obtalned trom this set by chousing "1% as a suftix. This set
Censists of e, ul, ol 001,011, L.). A next set 1s obtained by choosing an element of
this set as e1ther a sut!ix or a pretix. [t "u" 1s chosen as a prefix, the code set
Becomen (Lol ool with oat least vne “U" and one "1") (we call thils code the surtix-
protis cotaas tree codey o 1t e L chosen as a suttix, the code set becomes { Ob...10...0
w1 At teast onee M1 jwe call otnls code the sultaix-sultix comma-free code): it “0l1" is

chiasen oan g suttix, the code et bedOnes [0..0.01...101...01 with zerou or two or more
W,

"t Generally speabuneg, new code words can be constructed by either using suffixes or
prellaes. e provess can be carried out any nuuber ot times.

Figure % shows the operation of the three-step process used to insert "commas", which
vorrtesponds 1O Thie twa-dtepn construction provess used to construct the suffix-suffix code
desoraibel 1n the last paragraph. {lndividual code words are enclosed in brackets and the
B1ts matntained 1n s panment an figure 5 to aid the reader. The transmitted and received
E3U stream woul ! consiut simply of the bits enclosed in these brackets with no indicaticn
wi where une cvode word ended and anuther began.) The comma insertion process parallels
the code conutruction process and the reader could readily verify that it reconstructs the
Currect code wornds o dn thie absence ol errors, except possibly at the beginning or end ot
the decoded sequence, 1t proceeds by tirst inserting ccemmas between all the bits and then
sucvesclively deleting those acvording to rules based on the suffix choices. For example,
Carresponiting to choosing "1" as a suftix, commas are removed preceding "1"s in the second
step of the comma lhsertion process. Other atgorithms are available to insert commas for
sume 0! the comma-free codes. For example, for a suffix "1" prefix "0" code, one need
vnly Inseit a comma between every string of Y1"s and string ot “0"s to identify the cude
words.

We turn now to the selection of the comma-free code which would provide the best data
compression for a narrative file with particular character prubabilities of occurrence.
R. A. scholtz does not discuss how to match his comma-free code construction process to
the probatilities of oovurrence of the characters to be encoded to prouvide the best
Ccompression. We tound how to survey the possible codes in terms of the distributions of
their code word lengths. 'The survey can be conducted without specifying the particular
vode word chosen at eacl step of the construction process, or whether the chosen word at
each step 15 used as o suffix or a prefix. All that need be specified is the lengths of
the worde chosen tor suttixes and pretixes.

11 f0so00 fos) losrol fotret]fot] (o] (010l
{ RHURS
1ol oroo) (ot potrol [0ty fo1) oo} o0 -
\L INSERT COMMAS

L0010, 01,011 0t 00 01,0,
EHASE (OMMAS PHECEDING 1§

01, 0010, 0111 01 00 040,
i EHASE FIRST COMMA IN ,0,

040, 0100, 01 0010 01111, 01 00 010

NAINT[]NPU Loht ;ISI

LYMEHHONT AT TON SYNCHHUNTJATION CYNCHRONIZATION

6Le 0100 0

[

010 0100

3 OBIT EHHUHS LED TO ¢ LOSHES UF SYNCHRONIZATION AND
4 UHAHACTEHS THNLUNHELTLY ULLDLFD

Figure % Ao Example of the Comma Free Algueithm to Insert “Commas®
i Channel with Ferors

B AN W TS TR e N R Ny T .6 > AT AP " AT A%, NP ARSI ’ n
. ""'- Y L0 .‘.h DO W " S e - T L ‘o .’-‘!N"‘l‘!'l‘,'u‘. t“.‘;‘:h"_h‘?‘.‘!h‘.ﬁa'!‘:

Tl N M "L .n.,’l.'n,.v« X

3
‘

b4 S
e

GehhREL X

Y
J\

[V) o
"l{.? ""/ £

S

4

7z
." "} -S

x
'l
.l '-»

g

“

[ST WP N

AR

b
rd
'
o
4

P s

-

LA AP AR

ﬁa
i..

3 ? .
et

¥ O - O * M- o g ah J . < uJ . Ll St Sal Sak Ral tall Sab Sl Al Al Ske Bile Ale MRS S A B A S-a

10

A nutural way to survey the c¢odes 1s to survey cthem inductively based on the
construct tun steps. Touward this end, let C[h) denote the set ot code words produced atter
the tirst kh steps of the construditlon process; Jet il = (0, 1) be the starting point in
the Construction prove: and let nik) (1) denote the number of code words of length | an
set CjK]. In the suttix, pretix construction process, a word used as a suftlx ur pretix
van no longer be used as a code word. To take this inte account let n* k) (1) = n[k)())} -
1, 1t 3 - 5, and < nik|{)), 1f 3 £ 5, where s is the lenyth of the suttix or pretix chosen
to construct the (kKel)-th code set from the k-th code set.

The imductive tormula for the number of comma-tice code words ot length i resulting
trom the cholce of a wuftix or pretix of length s 1n the (k+l)-th construction step 1is
given by nikelj(y) - nolk)(3) f nopk](i-s) + ... + n |k;j{j-ns), with the convention that
n {k;(1-ns) - 0 a1) - nso 1.

The atove formula allows easy compilation of tabular summaries of distributions of
code word lengths tor available comma-free codes constructed using the suftix/prefix
procvess. Table 5 jllustrates 1ts use. With the exception of the first column, the
numbers of code words 1n g code are only summarized up through the length of code word
needed to allow the coding ot 58 characters. The codes summarized 1n table S begin with
Cil) = (0,11 and eusch new code set C 2] through C|6] is obtained from the previous one by
us1ng one ot shortest avallable code words as a sutfix or pretix in the construction
pro.s ss.

We turn now to the selection of a comma-free code to encode the narrative files used
earlier Lo assess Huftman cudes. The probabilities of occurrence ror the character set
used tor our %6 character simulations ot the Hutfman code, has the property that the
character poobabilities rall otf rapidly trom the most used characters to the least used
Ccharacters (as shown 1n table | which was presented eartier). In such a sltuation, 1f we
could clusely match the code word lengths provided by the Huftman cude constructed for the
Jiven character probabilities of occurrence for the tirst 10 to 15 characters, we would
expect very siwllav cownpression performance from that comma-free and a Hultman code.

Tatle 2 (previously discussed) shows how closely the simplest suffix/prefix candidate
code word lengths match those provided by the Hutfman codes. The first four columns
present tuttman word lJengths and a fitth column presents the werd lengths for any of the
suffiz-prefix comma-free codes obtalned by us. of "0" and "1" as suffixes or prefixes in
a two-step construction. The assignment of code words to characters is optimum tor
fia:t ative tile L., However, as can ke seen trom table 2, this assignment leads to
excellent word length agreement through the first 40 characters tor all of the narrative
1iles wo no other wotd assignments were studled.

Table € presents a comparison between Huffman code bits-per-character values and
comma-tree code bits-per-character values for the code wourd to character assignments shown
in tabje 2. The next best comma-free code appears to be the coge (1,1,3) for which
samrlar catoulations revealed a penalty of (114 (rounded down to “hree signiticant places)
bitu-per-character tor usinyg this comma-free code instead ol the Hutfman eode for
natrative tile [1.

There are choices 1n the construction of comma-free codes leading to the same
diotribution of code word lengths. The behavior o!f the cude in a noisy channel depends on
thene choices., We single out the suttaix-prefix and suftix-suttix codes for detailled
sturly. Thesne codes represent the two fundamentally ditferent codes p:ovidihq the
compression surtarized sn table 6.

TABLE 5. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR COMMA-FREE CODES

COMMA-FREE CODE

WORD - o i i D T
LENGTH | C{1] Ci2i [N Cl4) C(5) cl6]

1 2 1

2 1 1

3 1 2 2 1

4 i 3 3 3 3

5 1 4 [6 [

6 1 5 8 9 9

7 1 6 12 15 18

8 1 7 1% 21 27

9 1 8 18 27

10 . 9 ~4

11 10 .

12 11
- : o

S A T A
. e, s} L) » A LS v €8 (4

)

2t

L4
¥
MMM

200

X
)

3 LY

o - s .‘00’4“
S X [ofef S
& . aﬁ;ﬁ'fﬁ'

‘:;

f Yo

5

o
K W,
o
Ot
) oy
(o]

A,

-

., ('.
1;ﬁ;vﬁ} ’ﬂ} ~

; Y
AN

.‘:‘.‘") > r

-

PAR IR U

BASSHYSS

17T AT
* Y
DO AN

¢
N

A

%, :‘:'."'.'I. ':‘

L)
A8 4

11

TABLE 6. COMPARISON OF BITS-PER-CHARACTER VALUES
OF HUFFMAN AND COMMA-FRLE CODES

. "AVERAGE NUMBER OF)

BITS-1FER-CHARACTER

NARRATIVE
FILE HUFFMAN CODE COMMA-FREE CODE

I 4.04 4.10

(1 3.95 4.00

11 q4.15 4.26

v 3.63 3.81
PSP ——

The impact of bit errors on character errors can be determined analytically for the
suffix-pretix and the surtix-suffix codes. The basic observation is that for these two
codes a blt error 1n the middle word of three code words w(l]w{2]w|[3] always leads to a
bit seguence which can be expressed as three other code words w*[L]w [2)w' (3] with at most
two of the code words in etror. ‘'the probability that o particular bit in w{2) 1s in error
1s given hy the probability that the character w{.?] represents occurs times the
probabllity that bit in w{2) is in error, which is just | divided by the length of w(2].

Generally speaking, four probabilities determine the error propagation properties of
a comma-tree code: P;D], the probability that s bLit erro; leads to the deletion of the
comnae separating two code words; P[M], the probability that a bit error leads to the
misplacement ot a comma; PlA)], the probability that a bit error leads to the addition of a
comma; and P(N}], the proubability that a bit error leads to no change in the placement of
the commas. rhe inpact of a bit error on the comma determines the number of characters
decoded in error and the number of characters cutput by the decoder in error. 1In
particular: (1) it a bit error leads to comma deletion then two characters are incorrectly
decoded as a sinyle character or not decodable; (2) it a bit error leads to comma movement
then two characters are incorrectly decoded into two characters; (3) if a bit error leads
to the insertion ot a comma (always within the code word with the bit error) then one
character is incorrectly decoded into two characters; and (4) if there is no change in the
commas then one character is incorrectly decoded into a single character.

The required calculations for a particular assignment of the suffix-prefix code words
to a %8-character set are easy but tedious. We omit the majority of the details (see
reference 4 tor them) and summarize the results of the calculations. Calculations were
carried out for the probabilities of oucurrence of the characters in narrative file 11I.
Similar results are expected for the remaining three narrative files.

For the assignment of suffix-prefix codes to characters described above and
summarized by talle 2, the toliuwing statistics were obtained: P(D] = .42, P[M] = .21,
PrAl = .16, and i"{N) - .21. Note that about three-yguarters ot the contribution to P[D) is
that provided by the code word "01" assigned to the space character with probability of
occurrence 0.317. The average number of characters decoded in error per bit error is’
(-42)(2) + (.21)12) + (.lu) (1) 4 (.21)(Ll) = l.o3. The average number of incorrect printed
characters per bit error 1s given by (.42)(1) + (.21)(2) + (.l6)(2) + (-21) (1) = 1.37.
Note that these values are obtained by treating words too long to be decoded because they
excued the lungest word assigned one of the %8 characters as being incorrectly decoded.
(buch characters could be decoded into a S9th character indicating an error has occurred.)
The calculations presented clearly indicate that the performance of the sutfix-prefix code
in an error channel is considerably better than the performance ot any Huffman code that
we found.

A two-step comma-free code construction using a one-bit prefix and a one-bit suffix,
no matter what chojees are made, leads to code words either of the form 0...01...1 or
1...10...0 with cach cole word cortaining at least one "1" and one "0". One of these
codes can be ubtalined trom the other by iuterchanging "1"s and "u"s. 1f this were done to
the assiynment of code words, the same probabilities would be obtained as for the code
word assignment before the interchange. Thus all the prefix-suffix codes using a one-bit
prefix and a one-bat suitix would for these assignments have the same error statistics.

We turn now to estimating the impact of errors on the suffix-suffix code discussed
earlier. Recall that the coude words for this code have the structure 0l1...10...0 with at
least one "1". This code ditters from the suftix-prefix code in that (1) the impact of an
error in the first Lit pusition of a code word depends on the ending ot the previous code
word and (2) the impact of an error in the second bit position depends on whether or not
the second bit is the only "1" in the code word. Again calculations were only carried out
for the probabilities of occurrence of the characters in narrative 11.

An error in the first bit leads to the movement of a comma or the deletion of a comma
depending on whether the first code word ends in "u" (probability of 0.51) or ends in “1*
(probability of 0.49). It follows that the probability that an error in the first bit
leads to the movement of a comma is ,198 and the prubability that an error in the first
bit leads to the deletion of a comma 1s .152.

4,

'

¥) 0 ¥ 0 0 agd O
4 ...‘."’ l..,.o'f.l'." ' g AN AR \J "‘!.‘QC.C‘ON.' ... %\'v‘l'»‘:‘:“"'l‘!““n "~".’".,.l.- "" L WA

' An error in the second bit leads to the deletion ot a comma or the addition of a
~ comma, depending on whether or not the second hit in error was the anly "1" in the code
wurda. 1t turns out that the probability that an error 1n the second bit will lead to the
v deletion ot a comma 1s 0.1/ (rounded to three places) and that the probability that an
1. crror 1n the second bit leads to the addition ot a4 comma 1s (.45,

The remaining calculations are similar to those for the suftix-prefix case. We found
v that the probability that o bit error leads to the addition of a comma through changing
other than the first or second bit is .18 and the probabllity that a bit error leads to no
change in the comras throuyh changing other than the first or second bit is .20.

PRV B |

From these calculatinns, it follows that P[(D] = .37, P[M] = .16, P[A) = .27, and P{[N)
= .20 50 that the averogye number ot characters decoded in error per bilt error is 1.%1 and
the average number ol prainted characters which are incorrect per bit error is 1.45%. Thuoue
statistics can be seen to apply to all suttix-suffix and prefix-prefix codes with length
one surfixes or prefises.

A

-

The result that a single bit error leads to at most two character errors (decoded or
printed), established for the two simplest kinds of comma-tree codes, can be extended to
other comma-tree codes. Some additional terminolouyy is needud to tacilstate the
discussion of genetal comma-tree codes. let Kk denote the kernel of the code under
construction, p{i), 1 = 1, 2, ... denote the prefixes used 1n the coude under construction,
and s(3), } = 1, 2, ... denute the suffixes used 1n the code under construction. Suppose
2 that the cudes under discussion satisfy: (1) kK = "u" or "1", () both "0" and 1" are used

as either prefixes or sutfixes, and (3) the length ot the pretix or suftix used in k-th
construction step is less than or equal to the length ot the prefix or suffix used in the
. (ktl)-th construction step. A code is called exhaustive it for each of the steps in the

LW N

LE .

s code Ccunstruction process the code word chosen as either a prefix or suffix is one of the
« shortest code words avaliable.
.

L™ For an exhaustive comma-free code, a single bit ¢rror can lead to at most two

L, characters decoded 1n error. Tou establish this result, consider (1) an incoming sequence
) of bits as a seguence ot kernels, prefixes, and sutfixes, and (2) the comma-insertion

p algorithm (after the tirst step) consists of deleting commas between the kernels,
' prefixes, and suftixes. Now, let us discuss the potential impact of a single bit error
occurring in a hernel or in a prefix or suffix of the code words.

Let us denote the word with a bit error by use of """, Consider the incoming

A seguence ot pinary bits parsed into codewords w(l)w(2)w (3)w(4)w(5). Under what
b_* conditions witl the couma scparating w(l) and w(2) or the comma between w(4) and w(5) be
2 altered as a result ot a bit error somewhere in the codeword w(3)? Each of these words 1s
- vonstructed rrom the hernel and prefixes and suftixes, as described above s0 that for the
‘N comna between w(l) and w(2) to be erased by the comma-insertion algorithm, the pretix ur
4 kernel beginning w() must be transformed into a suffix through a bit error in w(3).
Since none of the bits in wW(2) are in error, this can only happen if the addition of bits

A, tu the bits of w{2) has c¢reated a sulfix used 1n the construction process; i.e., there

‘ exists a code word or shorter length in the code than some sutfix ih the code, a

'2 contradiction. For the cumna between w(4) and w(%) to be erased by the comma-insertion

~. algorithm, the sultix or kernel ending w(4) must be transtormed into a prefix through a

A bit error in w(i). Since none of the bits in w(4) are in error, this can only happen if

. the adajtion of L1ts to the hits ot w(2) has created a prefix used in the construction
process, a contradiction, to

R It 1s clear that one could improve upon the results by examining the non-exhaustive
% codes Lo =mee 11 elther of the abouve phenomena can occur for a particular selection of

g pretixes or sutfixes. A cursory examination alluwed us to establish that for the codes
with sequences of suftixes or prefixes with the lengths indicated by (1;1,3), (1,1,3,3),

1 (1,1,2,4), and (1,1,4), a single b1t error can never lead to four or more character

b decodiny errors.

It is also pussible to use Huftman or comma-tree codes to encode characters based on
one or more ot the previous characters encoded. We refer to this as encoding based on
conditional probability ot occurrence of characters. Since the error propagation
", properties of Hufrfman codes were 0 much worse than those tor comma-free codes, we
restricted our attention to comma-free encoding of characters conditioned on the

) vceurrence of previous characters.

E

' The structure of the comma-free codes limits the impact of bit errors. However,

K\ given an error has occurred in an encoded character, then it will be decoded in erior, the

it next chdracter will be decoded in error if conditioned on it, the next code word decoded

in error 1f conditioned un c¢ither of the previous chatacters, and so on. To prevent
decoding c¢rrors from propagating in this manner, it is necessary to reinitialize the
C [p1ropag
: coding process fairly often.

4 -

2 5, Military and commercial messages are transmitted using characters of various types,
N Categorized as the set of letters (A,B,C,, X,Y,2), the set of numbers (0, 1, 2,
x, c+., 9}, and the set ot symbols { punctuation symbols, special characters, control
N characters). The basis of the conditional probability encoding approach is to
N reinitialize the encoding process whenever ¢ is a symbol. Furthermore, in order to limit

‘l the propagation of decuding errors, symbols are encoded independent of previously encoded

i characters.,

)

)

M)

8!

.‘ L]

X i
.' .

; » o . ~ 'y 1‘3' a WAL
y::"a':l:-"\!!‘o t"mﬁ‘..'c By IS .0, , . ’ ; .:’l o."g‘.l\h 'l Ryaly. r“‘q .nei'

1 4
Aoy

P

%

[4 ;Hf

Gt M

OO

.. Al

‘! N
h as

i@l

P

Y

Pd
}-‘

»
%

*
Y

[

-
-

s

s

o ¥ <
L‘?I.}

3

(3
a
[Tl

A

-
Vety

0
PN U S o

i

o

'N
“
o
~
y
)
A
\
2.3
{
o

N

<N

-~y

'~ .\

j.

h

-

13

Off-line processing would be used to determine the assignment of comma-free code
waords to characters. The overall probabilities of occurrence can be used to assign code
words to symbols (although we found that this was npot optimum). The crucial assignment is
the code wourd asisigned to the space. (We found that the assignment of a three-bit cude
word tu the space gave the best compression.) The variable length code words assigned to
tixed length words representing characters or numbers are the remaining code words.

We assign a vode word to a letter depending on whether or not it is the first letter
of a word and to a number depending on whether or not it is the first number in a seguence
of numbers. The comma-tree code words assigned unconditionally to letters or numbers ate
based on the probabilities that a character occurs as the tirst letter in a word
(including vne letter words) or the first number in a sequence of numbers (including
single numberw): the conditional assignment ot comma-tree code words to letters and
numbers is based on the probabilities that a character follows a specific letter or
follows a specific number.

The data compression provided by the comma-free encoding approach described above was
estinated by the following tormula: 3/(L+1) + N{Uncond),/(L+1) ¢+ N[Cond](L-1)/(L+l), where
Nilincomnd}] = the average number ot hits assigned the starting letter in a word, N{Condj =
the average number ot bilts encoding a character counditioned on the receipt of a previous
character, and L = the average length of a word (with symhols treated as length 1 words).
his formula neylects the contributions of numbers conditioned on other letters or
numbers, which are extremely rare in the narratives. 'The first term, J/(L+1l), would be
accurate if blanks separated all the words, another fairly valid assumption because of the
absence of short sentences in the file manuscript and the usual practice of separating
them trom letters and numbers using spaces. Table 7 summarizes the results obtained using
the above formula. By using a length 3 code word for the blank, and making effective use
ot the length 2 code word for the most commonly occurring character starting a word, the
table shows that the bits to encode spaces and beqginning of words are about the same as
the bits to encode the remainder of words.

We estimate the average number ot characters decoded in error for the suffix-prefix
comma-free encoding of characters conditioned on the previous character for narrative file
IT by considering the impact of bit errors on an average word followed by a space. The
expected structure ot a five-character word tollowed by a space is (4.4 bits) (3.5
bits) (3.5 bits) (3.5 bits) (3.5 bits) (3 bits), where we have rounded 3.55 down to 3.5 bits
to compensate tor rounding 4.69 up to 5 letters. Thus, a word is expected to consist of
18.4 pits and a word tollowed by a space of 21.4 bits. We proceed by estimating the
number of characters in error as a result of bit errors in the different bit positions. A
bit error in the first bit of a code word of a letter leads to the previous character
being decoded 1n error; such errors contribute (1/21.4)(6+5+4+3+2) = .93 characters in
error. A bit error in any of the other bits of the letter code words, with the exception
of the very last bit ot the code word of the last letter in the word, leads to the rest of
the word belng decoded 1n error: these bit errors contribute '
(1/21.4)1(3.4)5+(2.5)4+(2.5)3+(2.5)2+(1.5)) = 1.92 characters in error. 1If the last bit
ot the code word ot the last letter of the word, or the first bit of the space is in
error, both the last letter and the space will be decoded in error, and therefore the

following word will be decoded in error; these bit errors contribute (2,/21.4)(7) = .65
characters in error. Bit errors in the remaining two bit positions of the space lead to
it and the following word being decoded wrong, so they contribute (2/21.4)(6) = .56
characters in error. Totalling these contributions leads to an estimate of 4. 1 chafacters

in error per bit error.

Table 7 allows us to estimate the potential payoff of encoding the ‘third through last
letters of words based on the occurrence of two previous letters. Since there is a single
remaining comma-free 2-bit code word, a single 3-bit code word, and the remaining code
words are of length 4 or more, the least length that one might expect for the doubly
conditioned encoded characters is (1/2)2 + (1/4)3 +(1/4)4 = 2.75. Then a lower bound on
the expected overall average number of bits would be (1/2)(3.6) + (1/2)(2.8) = 3.2 tor
this encoding approach. We would expect about 3.1 to 3.4 bits per character performance
1f we carried out the calculations mure exactly.

TABLE 7. AVERAGE NUMBER OF BITS AND WORD LENGTHS FOR
COMMA-FREE CUDES USING CONDITIONAL PROBABILITIES

AVERAGE NUMBER OF BITS
- - e R R St 4
AVERAGE
NAKRATIVE START REMAINDER WORD
FILE OF WORD Qf WORD OVERALL LENGTH
. [ST _-d___ﬁi_%A_ R | —_—
I 4.51 1.55% 3.62 4.64
11 4.44 3.5% 3.61 4.69
11t 4.71 3.64 3.71 5.15
Iv 4.53 3.54 3.62 4.91

e e U o e o o)y YNV

.l."l. " 'l USRI LS A v, a 2 1% WY

N0 ® /
»sﬁﬂ ,
¢ 7 .#"a,-'_ L4

“,.-.
’ Pl
48

Ty
LB R N
X, S“-J'v"-

e

1

)
A 1o

P J‘:S"'&\
- K4 3 ;' -‘ l‘

NNy

o,
;

The estimated number of character errors per bit error tor a doubly conditioned
comma-free envoding scheme using a sutfix-prefix code 1s the same as tor a singly
conditironed comma-rree cncoding scheme; all the letters or numbers atter an error are 1n
error until the encoding process 1s reinitialized whether singly or doubly conditioned.

SUMMARY AND CONCLUSI1UNS

The performance ot Huffman codes, sutfix/pretix comma-free codes, block codes, and
some variants of Baudot codes was obtained tor the encoding of narrative files ot a
personal computer for a »8-charavter set. Figure 6 summarizes the results of this
investigation. The performance of each encoding approach 1s cummarized by its compression
pertormance measurcd by the average number-oft-bits per character (the y-~axis) and by its
error propagation statistics measured by the average number of characters decoded in error
per bit error (the x-axis). A word error was treated as equivalent to five character
errors to allow comparison of character and werd encoding approaches.

The Military Baudot code uses two shift keys ("LTRS" and "FIGS"), which we model
mathematically as a single shift key generalized Baudot code, to reduce the number of bits
required to transmit intormation from 6 to about %.06. Generalizations of this
construction can turther reduce the average number of bits regulred to around 4.% bits-
per-character while maintaining a basic block structure.

A suttix/prefix comma-tree code can be constructed which provides nearly the same
data compression as a Huttman code, about 4 bits-per-character. For the character set and
prohabilities of ocvcurrence ot the characters of the set us¢d»in the Huffman simulation,
the penalty varled from a Jow of .05 bit per choracter to a high ot .18 bit per character
for four narrative tliles. A single bLit error can lead to at most two character errors tor
the above prefix/sutlix codes while a single bit errur was found to lead to as many as 90
character uerrors 1or a Huffman code, Relative to a l-shift Baudot code, the best Hutfman
code requires an average 24t tewer bits rfor encoding with 43% more decoded character
errors, while tne best comma-free code requires .21 fewer bits for encoding with 18t more
decuded character errors.

(&) L'— #+ BLOCK CODE

5 |- » 1 SHIFT BAUDOT CODE
* 3 SHIFT BAUDOT CODE

'UNCONDmONED COMMA-FREE CODE

4 »*
o HUFFMAN -
L * SINGLY CONDITIONED COMMA-FREE CODE'
Q * DOUBLY CONDITIONED COMMA-FAEE CODE
Z) -
£ 00
9] * 16 BITS (65,536 WORD-DICTIONARY)
& * 15 BITS (32,768 WORD DICTIONARY)
@ » 14 BITS (16,384 WORD DICTIONARY)
o 2
r
8 b o e e m e ——— e e — -
% APPROXIMATE ENTROPY BOUND FOR ENGUSH TEXT
w4

DECODED CHARACTER FRRORS/BIT ERROR

Figure 6. Data Compression and Error Propagation in Noisy Channels

e \KAX
! \‘_ r‘?‘t” ’)t"l‘. [y

~

WRTRIEG oo
n'b.-'l. ..n. ?h!h

“.:}. ' . . :5':!:'0..‘?..0 '.:’:.i .:‘i'.'i

e
o
‘ ’
" 15
.
L ¥ ’
; The une ot comna-ftee encoding tor words with non-letters and non-numbers encoded

independent]y o the proevious character led to an estimated 3.6 bits per character along
with 4.1 characters 1n er1ot per bit error for a saingly conditioned encoding scheme, and

AT

[} ' about 3.3 bits per character along with 4.3 Characters in error per bit error tor a
character tour a doubly conditioned encoding scheme. Relative to a l1-shift Baudot code,
4 the singly conditioned scheme requires 29% fewer Lits tor encvoding and the doubly
[¥ conditroned scheme about 39 fewer bits both wiit /89%¢ more decoded character errors.
I.
::_‘- Block encueding of words for dicticnaries ranging in size trom 16,384 to 05,%36 words
,\,‘.\ requires 2.33 tu 2.6/ bits per character with one word error per Lblt etror.
-
D) -':\ The tollowing conclusions were drawn as a result ot the investigation:
N
_I‘ (1) For unconditioned character encoding, comma-free codes signiticantly outpertorm
t General 1zed Baudot codes and Huttman codes in a noisy channel. They provide nearly the
\. same compression and heve signiticantly fewer decoded ur printed character errors than
N Hut tman codes.
- (2) Additional cowpression is achievable by the use of comma-free encoding of
{.-_' characters based on their conditional probability of occurrences.
-,
N* L1ST OF REFERENCES
Lol
1. Huffman, D., "A Method for the Construction ot Minimum Redundancy Codes™, Proceedings
of the Institute of Radio Engineers, Vol. 40, pp. 109Y8-1101, September 195Z.
»
S j} 2. Scholtz, R., "Codes with Synchronization Capability", 1EEE Transactions on Information
‘] Theory, Vol. IU1-12, No. 2, April 1966.
-
-~ .
4 :? 3 Scholtz, R., "Maximal and Variable Word-Length Comma-Free Codes", 1EEE Transactions_on
W Information ''heory, Vol. 1T-1%, No. 2, March 1969.
D :
. 4. Bond, J., "The Performance of Data Compression Codes in Channels w'<h Errors®,
personal correspondence of author, 19 February 1987.
':~J 5 Bond, J., "Variable Length Data Compression Encoder™, Patent Disclosure, 1987.
.,‘-t (available trom author)
Y
N
“u
by o
P Y
'd
ratgi
o
B -
P e
‘¢
WS
~‘~|
\l
r
Y
.o
e P
oy ‘ .

|

» 1,@9 "7*); y{w",\ y’\ A ﬁk\f\ \J\f\f'$?f\ LIS R %P o % KN,

X) T 0
4,00, (It e o) Jo 0 T 2 Iy N> MANANR, »l».n"n.. N \-v.....!.'lf“'- It",h?‘ko‘!l

L @ @ " " @ ..

T AR AR R R AT T Ty n-n- N
X) % " :. :::‘ o ". n ' '0':‘t’:"‘—‘. NG 2 :"' W .‘.'.-' o‘ :“" o\l ‘. .\ ‘ l'.‘l 'n ‘0' .' .'.::;:: o ‘, b.: ‘::“ *
“' ‘ s M 'u"a u’ o‘t‘ -‘t W WYy NN
"u" a:,l.‘ o Lty R h..:\‘. o .'\ Vit : . ‘,: ‘, “ e Wit ‘.‘o.,‘c..":. D) l" \. 'l ‘c tc ‘o :
6! ‘.;".n Al AT A N MR I IR A ‘,Q OB S N A I NN ',v .i o, ‘,1 '.l LS o v 'u’.) .

