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OPTICAL ASSOCIATIVE MEMORIES: FIRST STEP
TOWARDS NEUROMORPHIC OPTICAL DATA PROCESSING

1. INTRODUCTION

-- . Ever since the fit between what neural net models can offer

(collective, iterative, nonlinear, robust, and fault-tolerant approach to

information processing) and the inherent capabilities of optics (parallelism

and massive interconnectivity) was first pointed out and the first optical

associative memory demonstrated in 1985 [1, (see also Appendices I and

......- of this report-), work and interest in neuromorphic optical signal

processing has been growing steadily. For example, work in optical

associative memories is currently being conducted at several academic

institutions (e.g., California Institute of Technology, University of

Colorado, University of California - San Diego, Stanford University,

University of Rochester, and the author's own institution the University of

Pennsylvania) and at several industrial and governmental laboratories (e.g.,

Hughes Research Laboratories - Malibu, the Naval Research Laboratory, and

the Jet Propulsion Laboratory). In these efforts, in addition to the vector

marix multiplication with thresholding and feedback scheme utilized in early

implementations, an arsenal of sophisticated optical tools such as

holographic storage, phase conjugate optics, and wavefront modulation and

mixing are being drawn upon to realize associative memory functions. ._uch

functions include auto-associative, hetero-associative and sequential or---

cyclic storage and recall [3]-[8] with signal recovery from partial

information receiving much attention as potential application [5],[9],[10].

It is gradually becoming clear however, that associative memory is only

one apparent function of biological neural nets that lends itself to optical '.-

implementation. Optics can pay a useful role in the implementation of

artificial neural nets capable of self-organization and learning i.e., self-

programming nets. One can safely state that self-organization and learning

is the most distinctive single feature that sets neuromorphic processing

apart from other approaches to information processing. Learning in these

nets is by adaptive modification of the weights o. interconnections between

neurons (plasticity). It can be supervised or unsupervised, deterministic

'S



or stochastic. Work on optical learning networks is currently being pursued

by two of the groups mentioned earlier, that at the University of

Pennsylvania (Penn) and that at the California Institute of Technology

(Caltech). Important progress in multilayered optical learning networks

based on holographically inerconnected nonlinear Fabry-Perot etalons has

been achieved by the Caltech group [11]. Making use of a deterministic

error back-propagation algorithm these nets can learn the connectivity

weights that represent associations they are presented with. The focus in

this work is on the use of volume holograms formed in photo-refractive

media, as opposed to planar holograms, for defining and storing the

interconnectivity patterns between neurons. A clever fractal based method

for the implementation of arbitrary interconnects input and output planes

defined within the net's architecture with minimal cross-talk has also been

devised and verified. The effort at Penn focuses on the other hand on

architectures and methodologies for opto-electronic implementation of

stochastic learning in self-organizing multilayered nets. This-work is

based on simulated annealing within the framework of a Boltzmann machine

[12]. Stochastic rather than deterministic learning is of primary interest

because of its physical plausibility and because it can shed light on the

way nature has turned noise present in biological neural nets to work to its

advantage. The primary result of this work to date is a scheme that

combines optical random array generators with the parallelism of optics to

accelerate stochastic learning by an estimated fator of 10 as compared to

serial machine executions of the same learning algorithm. The scheme

basically imparts to the neurons a random threshold component that produces

controlled shaking of the "energy landscape" of the net which can, so to

speak, shake the net loose whenever it tends to get stuck in a state of

local energy minimum accelerating thereby its successful descent to the

state of global energy minimum (or one very close to it) which is a

requirement of the learning algorithm.

The above work on optical learning nets is helping bring into focus the

acute need for suitable materials and devices for the implementation of

programmable interconnects and plasticity. Examples are modifiable

nonvclatile volume holographic materials, spatial light modulators, an

dense arrays of nonlinear light amplifiers or optically bistable elements.
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Biological neural nets were evolved in nature for one ultimate purpose:

that of maintaining and enhancing survivability of the organism they reside

in. Embedding artificial neural nets in man-made systems, and in particular

autonomous systems, can serve to enhance their survivability and therefore

reliability. Survivability is also a central issue in a variety of systems

with complex behavior encountered in biology, economics, societal models,

and military science. One can therefore expect neuromorphic processing to

lay an increasing role in the modeling and study of such complex systems

especially if optical techniques can be made to furnish speed and

flexibility. Finally, one should expect also that software development for

emulating neural functions on serial and parallel digital machines will not

continue to be confined to the realm of straight-forward simulation, but

spurred by the mounting inerest in neural processing, will move into the

algorithmic domain where fast efficient algorithms are likely to be

developed becoming to neural processing what the FFT was to the discrete

Fourier transform. Thus we expect that advances in optical and digital

neuromorphic signal processing will proceed in parallel.

2. RESEARCH ACCOMPLISHMENTS

During the period of this report, a comparative study of two equivalent

implementations of the Hopfield model one employing direct storage and inner

product recall and the other outer product storage and recall was conducted.

The results of this study reveal clearly that the distinctive feature of

neural net distributed processing as compared to straight forward template

matching is self-organization and learning, which is not possible in inner

product schemes because of the vanishing of the connectivity matrix T. in
13

such schemes. Thus self-organization and learning is what sets neuromorphic

processing apart from other conventional approaches to signal processing.

It has the important advantage of alleviating the programming complexity of

artificial neural nets (i.e. computing the Tij matrix and setting the

weights of interconnections accordingly). It should be noted that in serial

computation programming complexity is not an issue however computational

complexity of certain problems encountered in vision, remote sensing, and S

combinatorial optimization is. As the degree of parallelism of a computing

machine increases, computational complexity decreases but is replaced by

3



increased difficulty of programming. Note that once the task of programming

a neural net is completed a solution is found usually in a few time
constant~s of the switching elements. That is the computational complexity
virtually vanishes. By devising networks that can organize themselves

(self-modify their synaptic weights) and hence learn or progrn themselves,
the programming complexity of such nets is reduced drastically. Such nets
can learn from examples presented to them and can capture the underlying
structure of the entitles presented. Learning can be deterministic (e.g.
error backpropagation) or stochastic (simulated annealing in a Boltzmann

machine framework), supervised or unsupervised. Accordingly in another

aspect of our research, an architecture for the partitioning of an opto-

electronic analog of a neural net into a multilayered structure suitable for

use in the study and implementation of self -organization and stochastic
learning has been developed (see Appendix II). Of particular interest in
this work is stochastic learning by fast annealing in the context of a
Boltzmann machine formalism.

The above work on optical learning nets is helping bring into focus the

acute need for suitable materials and devices for the implementation of

programmable interconnects and plasticity. Examples are modifiable

nonvolatile volume holographic materials, spatial light modulators, and

dense arrays of nonlinear light amplifiers or optically bistable elements.

We have given attention in our work to magneto-optic spatial light

modulators because of their nonvolatility and potential speed for use as
modifiable synaptic mask or connectivity matrices. Although the switching

time of a single pixel in such devices can be 100 nsec or less, the frame
rate of commercially available units ranges between a few tens to a few
hundred frames/sec depending on device size. A careful study of the
addressing of such a device (see Appendix IV) reveals that parallel

addressing schemes (one row at a time or one column at a time) can not be

applied to exploit the fast pixel switching time in order to achieve high

frame rates because of thermal and possible magnetic stress limitation.

Ruling out special cooling arrangements which are bound to complicate

operation and reduce the utility of the device we have developed a

parallel/serial addressing scheme that avoids the above limitations and
enables frame switching time of slightly less than a millisecond for a 4I8x148
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pixel device (see Appendix IV for details). The scheme relies on the use of

external magnetic field bias to reduce the amplitude and duration of the

current pulse need to switch a pixel. Power dissipation is thus reduced to

the allowable level of the device. A fast driver circuit capable of

accepting 16 bit parallel input from a computer conroller (or a dedicated

microprocessor) in 2psec and driving 16 pixels of a row serially in 2psec

* was devised and successfully operated. The serial addressing eliminates the

possible magnetic stresses that arise in parallel addressing schemes. When

used with a dedicated pprocessor the magneto-optic SLM is expected to be

able to operate at 1000 frames/sec which would be particularly attractive in

the implementation of neuromorphic optical learning machines in order to

accelerate learning.

3. CONCLUSION

The deterministic iterative update equation for a neural net can be

implemented in two equivalent opto-elecronic architectures, one involving

outer product and the other inner product. Despite several attractive

* features, the inner product scheme appears to lack the ability of self-

organization and learning and hence self-programmability where the net can

find by itself what are the connectivity weights that best describe the

entities it is given to learn. To this end we have shown that an opto-

electronic analog of a neural net can be partitioned into layers of input,

output, and hidden (internal, or buffer) neurons to facilitate the study and

implementation of "optical learning machines". Furthermore the scheme

enables partitioning a net into any desired number of layers with any

prescribed communication pattern between them. Such nets appear to be well

suited for implementing learning algorithms. In particular evidence is

mounting in our work that opto-electronic techniques have much promise for

implementing stochastic learning by simulated annealing in a context of

Boltzmann machine where spatio-temporal optical noise can play an important

role in accelerating the stochastic learning algorithms by several orders of

magnitude as opposed to software implementation on serial computing

machines. Such fast optical learning machines can be "softened" for the

learning phase and then "hardened" to act as associative memory merely by

controlling the noise level in the net. Furthermore synaptic modification
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(plasticity) in these nets appear to be achievable by fast nonvolatile
electronically addressed magneto-optic spatial light modulators. These are
basically however binary transmittance SLM and hence require the development

of binary learning rules. Search for such rules is underway in our work.
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4. PUBLICATIONS AND OTHER ACTIVITIES

During the period of this report the following papers were published or

presented at technical meetings:

" N.H. Farhat, "Architectures for Opto-Electronic Analogs of Self-
* Organizing Neural Networks", Topical Meeting on Optical Computing,

Technical Digest Series 1987, Vol. 11 (Optical Society of America,
Wash. D.C. 1987), pp. 125-128.

" N.H. Farhat, "Robust Signal Recovery and Recognition with Optical
Analogs of Neural Nets and Spurious Memory Discrimination", SPIE, Vol. -

• 700 IOCC, Proc. 1986 Intern. Opt. Comp. Conf., pp. 283-288. S

" N.H. Farhat, "Neural Net Models and Optical Computing", in Optical
Computing, H.H. Szu (Ed.), SPIE Vol. 634, pp. 307-309 (1987).

N.H. Farhat, "Architectures and Implementation Concepts for Opto-
Electronic Analogs of Self-Organizing Neural Networks", Presented at
the Second Conference on Neural Networks for Computing, Snowbird, Utah
April 1-4, 1987.

Also during the period of this report, N. Farhat attended the following
conferences:

Conference on Current Topics in Neurobiology, Institute for Theoretical
Physics, University of California, Santa Barbara, CA, Sept. 2-6, 1986.

* Degrees Awarded:

S. Miyahara, Ph.D., University of Pennsylvania Dissertation:
"Automated Radar Target Recognition Based on Models of Neural Nets",
(1987).

Patent Disclosure:

Super-Resolution - Patent disclosure filed April 9, 1987 on behalf of
the University of Pennsylvania, by University Patent Inc., 1465 Post
Rd. East, P.O. Box 901, Westport, CT 06881
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Robust signal recovery and recognition with optical analogs

of neural nets and spurious memory discrimination

N.H. Farhat 'S

Department of Electrical Engineering, University of Pennsylvania
200 South 33rd Street, Philadelphia, Pennsylvania 19104-6390

Abstract

Storage recipes used in forming associative content addressable memory (ACAM) based on
models of neural nets are known to generate false spurious memory states together with
those being intentionally stored. Effective use of such memories, and of recent optical
embodiments of them, may require either exorcising the spurious states or devising a means
for discriminating against them when they are evoked. In this paper an opto-electronic
spurious memory discriminating circuit is described. It is used in conjunction with an
ACAM, is designed to ignore spurious states when they occur, and indicates which of the
nominal states is evoked by the stimulus achieving thereby robust recognition. The latter
recognition circuit discussion is used as a vehicle for pointing out distinctive
features of the "neural net" approach to signal processing as opposed to other approaches
to performing the tasks described.

Introduction

The brain is regarded by many to be our last remaining frontier of exploration. With
its more than 1010 neurons and estimated 1015 interconnections, where memory is believed
to reside and to be stored electro-chemically as synaptic weights that are modified by
learning and experience, the brain represents a formidably complex structure that does
not lend itself readily to analysis and study. Never-the-less, steady advances in neuro-
science, biology, and psychology during the last few decades are providing today such a
level of understanding of the structural and functional properties of the brain as to allow
simplified but non-the-less meaningful modeling of its neural networks. Several such models
exist. These usually involve a large number of linear or nonlinear neuron-like element
massively interconnected with each other.through a modifiable connectivity or synaptic
matrix where memories are stored in accordance to prescribed recipes 9with the ."neural net"
as a whole operating asynchronously with or without feedback loops 

-9 . The assumption of
asynchronous operation stems from the lack of evidence of a "master clock" or controller
in the brain, i.e., the assumption of an "egalitarian brain

"1 0 . Despite their highly
simplified nature, these models exhibit, when implemented and exercised in either software
or hardware form, striking similarities in their behavior to known capabilities of the
brain. These capabilities include: content addressability and associative recall, robust-

ness (tolerance to error and noise in the data it is presented with, and to element non-

uniformity and failure), signal recovery from partial information, and a disconcerting,
but fascinating, property of generalization, i.e., generation of false or spurious memory
states in the course of loading (learning) desired ones.

The relationship between the number and composition of spurious states and the nominal
memory states is not fully understood. It is known, however, that the number of spurious

states increases sharply when the number M of entities stored or nominal memory states
exceeds N/4£nNI 9- 1 where N is the number of neurons in the network. It has been hypoth- S
esized that REM (rapid eye movement) sleep and dreaming are means with which the brain rids

itself of such false memories in order to stabilize real or nominal memory states
11 .

Application of an "unlearning" algorithm
12 that is basically the reverse of the Hebbian

learning process (see for example ref. 7), has been shown to reduce the number of spurious

states and to increase accessibility of the nominal memory states. The unlearning pro-

cess consists of stimulating the neural net model with random starting states and noting

those final stable states that are not nominal memory states of the network, i.e., do not

coincide with the stored states, for subsequent unlearning. Clearly a network of N binary

(on-off) neurons requires 2N trials to identify all of its false memory states before
their unlearning can begin. A network of N=32 neurons for example would require 232=4.3 109

trials which is clearly impractical even for such a small network. Hence such a random

trial approach to identifying false states and unlearning can not be effective in removing

all false states but can merely reduce their number. Some false states will always be

present. This raises a practical question: how could an associative memory containing

false memory states intermingled with the nominal stored memory states be used effectively

in Dractice for example in a robust recognition system? Before dealina with this question

it is worth reviewing the role of optics in all of this.

SPIE Vol 700 IOCC.- 1986 International Optical Computing Conference (986) 283
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The parallelism and massive connectivity features of neural nets have drawn attention 9
recently to the feasibility of implementing associative memory and other functions ex-
hibited by such networks efficiently by optical means as both of these features happen to
be also the traditional main strengths of optics. The marriage of neural modeling and
optics is attractive as it can add the power of iterative feedback and decision making
(thresholding) to the traditional capabilities of optical processing. Several optical
architectures and implementations involvinq a relatively small number of "neurons" but
with poln al for being extendable to much larger networks have recently been de-scribed - "

The utility of such optical associative memory networks hinges however on the ability
to identify and ignore the false memory states of the network when these are evoked by
means other than the tedious and impractical unlearning procedure mentioned earlier. It
is the purpose of this paper to describe a solution to this problem and to use the solu-
tion as a vehicle for pointing out the distinctive features of the neural net model
approach to signal processing as opposed to other approaches that can equally perform
similar functions. %

The proposed solution is based on ignoring the spurious states when these are evoked
by means of a recognition or identification "circuit" which is to be used in conjunction
with the ACAM. The identification circuit, which is fed the output state of the ACAM,
is designed to ignore all spurious or false states of the memory and to identify which
of the nominal or real states of the memory has been evoked by the input stimulus. It
has also the capability of reducing the dimensionality of the stimulus being identified
from a single point in the N-dimensional state space of a network of N-neurons to a single
descriptive statement or a word label. This process of reduction of dimensiongity may
be viewed as being analogous to the now out-dated notion of "grandmother cell" in the
brain where highly selective higher order neurons respond only and ogl 7 when a particular
distinctive feature is present in the stimulus. It is now believed, , , that neural
sensory and processing networks handle information in such a way as to achieve as complete
a representation of the stimulus as possible with a spatio-temporal neural activity trace
involving the smallest number of discharging neurons and not just a single firing cell.

For specific explanation of the discriminating "circuit" we refer to Figure 1 where the
state vector h (mo) i=l,2.. .N of the ACAM represented by the photodetector array output as

1

a unipolar binary vector N bits long serves as the input to the discriminating circuit.
Note the ACAM itself (see for example ref. 13 or 14) is not shown in Figure 1. The vectorh(mo) . r opae nepnety nto)
h and its independently generated complement (o)are compared independently in two
optical inner-product vector matrix multipliers with the nominal state vectors

hm) i=1,2. N; m=l,2. . M and their complements K(m) stored as rows of the mask T and its
i "i

complementary T respectively. By adding the outputs of the corresponding elements in the
two photodetector arrays as shown, only one adder output will exceed N-c where e is a small
number exceeding the noise level of the system.

LED

PD ARRAY IDENTIFICATION
N THRESHOLDARRAY

COMPLEMETARY M 8|
GENERATOR H HLL_

PR THRESHOLD

PD. ARRAYt -

PARALLEL OUTPUT.
BINARY VECTOR 1 , , T
hi(m0l, i- 1,2 ... N M f[.. h |

ARRAY OF ALL M 'VECTORS
ARRANGED IN ROWS YO FORM
AN (N xM) MATRIX T.
(T IS COMPLEMENTARY MATRIX),

Figure 1. Spurious memory discriminator and recognitior circui.

284 / SPIE Vol 700 IOCC- 1986 International Optical Computing Conference (1986)
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Thresholding the adders outputs to N-E will insure that only one output will be present
in the LED identification array at the LED or terminal corresponding to the nominal memory

(mo)."rnmte-el
state vector coinciding with h. . in this fashion an ACAM with a gadohrcl
recognition capability can be implemented.

Discussion and Conclusions

In the above scheme the ACA-M performs a nearest-neighbor search based on an outer product
storage recipe7 while the recognition and discriminating circuit recognizes the ACAM output
based on an inner-product correlation scheme followed by a maximum value discriminator
(thresholding and labeling) . The nearest-neighbor search operation can however be per-
formed by the recognition and discriminating circuit directly without rescrt to the ACAM.
What does the neural net approach then offer that conventional signal processing and
computing methods do not? The answer to this gUestion may be found in the following
observations which were also given elsewhere,3''38 .

(a) Neural nets and their models provide us with a new way of viewing signal processing
and computing problems that may lead to solutions *and applications not thought of otherwise
in a manner very much reminiscent to what happened with the advent of holography several
decades ago.

(b) The brain and its neural organization are the results of a prolonged evolutionary
process in which only those permutations that enhanced the survivability, and by impli-
cation the function, of the organism have been retained and all other permutations have
been discarded through "survival of the fittest" process. The result is a biological
"computer" that has no equal at present among artificial systems when it comes to tasks
of recognition, classification, categorization, generalization, and perhaps optimization.
it is not surprising therefore to see the current interest in brain mechanisms in the
artificial intelligence, cognitive science, and pattern recognition communities. Even
early researchers 6n computer science were concerned with brain-related attributes of
computing systems2 . A serial approach to computing was however adopted and pursued
because of better understanding, easier mathematical modeling, and because a collective
or parallel approach to computation would have been technologically and economically not
feasible at the time. There is much therefore that we can afford to learn from the brain
and its neural nets that can prove to be useful in artificial man made systems today.
The general idea here would be not to attempt to build systems that try to emulate the
brain, as this would be unrealistic, but to gain insights in its operation and mechanisms,
as to allow us to be able to glean information about those attributes and functions that
would be worth incorporating in man made systems. optical analogs of neural nets can be
a useful tool in gaining such insights and as a way of ultimately simulating neural nets
consisting of thousands to millions of elements. P

(c) Information processing in the brain can be characterized as collective, adaptive,
highly nonlinear, and relying heavily on feedback, We know that all these are attributes
of powerful signal processing algorithms. What is amazing is that these capabilities are
achieved in networks that appear to be homogeneous in their general structure i.e., only
a few different types of neurons (cells) are involved and the process followed by most
neurons is macroscopically similar in the sense that each neuron receives inputs from
other neighboring neuron and decides to change its state or not depending on the nature%
of the inputs and the synaptic weights they make with the neuron where memory is stored.
In other words the brain exhibits a fractal (self-similar) feature in its structure.
It is now recognized that the same basic structure of highly interconnected neurons can4
be involved in the formation of signal-adaptive sV5-organized networks for unsupervised
learning and feature extraction from sensory data 9, in the formation o~0 amociative
memory modules tuned to respond to specific features of the sensory data, ,and for
recognition and perception "circuits" of the brain. This is a tremendous flexibility
that is achieved with little apparent specific design unlike conventional circuit design
where function specific components and parts are connected in accordance to specific
rules to perform required signal processing tasks. As evidence of this flexibility it
is worth noting in this regard that in associative memory based on neural net modols the
function of memory and signal processing involved in recall are totally intermingled.

(d) The fractal nature of neural nets, their robustness and fault tolerance can be
immensely useful for modern VLSI technology. Continuing advances in microfabrication,
and optical technologies promise to make it possible to fabricate large numbers of
massively interconnected decision making switching elements with low power consumption.
Neural net models and architectures can provide such structures (possibly in the form 4
of opto-electronic chips) with the robustness and the fault-tolerance badly needed in
VLSI to alleviate the central problem of yield. Less than perfect chips may no lonqer be0
discarded as rejects but can find use in artificial neural net processors or computers.

SPIE Vol 700 I0CC- 7986 International Optical Computing Conference (7986) 285
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(e) Architectures and Optical implementations of 2-D neural net arrangements can provide
content addressable associative memory modules that are suited for use with 2-D pictorial
data. In practice such pictorial data would be, in the form of distortionless descriptors,
(scale, rotation, and size invariant classifiers or feature spaces) derived from sensory
array data generated for example by electromagnetic or acoustic (including seismic and
sonar) receiver arrays. Associative memory modules can tell us then rapidly, in a matter
of a few time constants of the neuron-like elements used, which member of an ensemble of
input descriptors is recognized by the memory even when the descriptor information it is
presented with happens to be sketchy (incomplete or noisy). Recognition of an input is
manifested by the neural net converging and settling into one of its nominal states
corresponding to that stored entity which most resembles the input. It is clear that this
operation by itself may not be useful unless some means for identifying or recognizing the
outcome of the nearest neighbor search is incorporated as described earlier. This also may
suggest that in the absence of such "recognizer", auto-associative memories may be intended
as building blocks of more complex processors in which higher order hierarchical processing
takes place, in a manner not yet fully understood. Such processing would have the aim of
first reducing the information content of the signals flowing concurrently through such a
network of associative CAMs and then fusing their outcomes into a single meaningful concept
or perception leading to subsequent action as shown schematically in Figure 2 which depicts
a generalized smart sensing and recognition system.

BANK OF ASSOCIATIVE MEMORIES t

(POSSIBLY INTERACTIVE)

SENSORSENSOR FEATURE AM 2 RECOGNITION -1-ACTIONI
ENVIRONMENT EXTRACTION PECPIO I

:, ] AM N

Figure 2. Concept of a smart sensing and automated recognition system employing self-
organized feature extraction and array of associative or content addressable
memories based on models of the neural nets.

In biological systems, such perception is thought to be associated with a prescribed
trace of neural activity (spatio-temporal firing pattern of neurons) in the cortex.
Associative memory modules by themselves become more meaningful when used in a hetero-
associative mode where the learning set of descriptors or classifiers is not stored by
auto-association but by heter-association with reference entities that are more easy to
recognize i.e., reference entities that are tailored to the "recognizer" such as word
labels or pictorial representations in the case of a human observer or coded analog or
digital outputs for activating motor functions in robotic and artificial intelligence
systems. Hetero-associative storage and recall of partial information can play an
important role in smart sensing and automated recognition systems as was recently
demonstrated with an example of identifying different types of aircraft from partial
information about their sinogram classifiers 35 and individual faces from edge enhanced
versions as classifiers36 . In these neural net analogs the function of memory, processing,
and recognition or labeling are carried out simultaneously by the same network of inter-
connected "neurons". This is a distinctive feature of signal processing in such networks
that sets them apart from other more familiar approaches to signal processing. The
practical utility and implications of this unique feature remain to be seen.' The
intellectual challenge of understanding the dynamics and properties of neural nets and
other variants of collective processing insure however that answers to these questions
are forthcoming.
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Appendix IV . .

ARCHITECTURES FOR OPTO-ELECTRONIC ANALOGS OF SELF-ORGANIZING NEURAL NETWORKS

Nabil H. Farhat
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Philadelphia, PA 19104-6390

Abstract

Architectures for partitioning opto-electronic analogs of neural nets
into input/output and internal units to enable self-organization and
learning where a net can form its own internal representations of the I.

"environment" are described.

1. INTRODUCTION: In our preceeding work on optical analogs of neural nets,

[1],[2], the nets described were programmed to do a specific computational
task, namely a nearest neighbor search by finding the stored entity that is
closest to the address in the Hamming sense. As such the net acted as a
content addressable associative memory. The programming was done by
computir,, first the interconnectivity matrix using an outer-product recipe
given the entities we wished the net to store and become familiar with
followed by setting the weights of synaptic interconnections or links
between neurons accordingly.

In this paper we are concerned with architectures for opto-electronic
implementation of neural nets that are able to program or organize
themselves under supervised conditions, i.e., of nets that are capable of
(a) computing the interconnectivity matrix for the associations they are
to learn, and (b) of changing the weights of the links between their neurons
accordingly. Such self-organizing networks have therefore the ability to
form and store their own internal representations of the entities or
associations they are presented with.

Multi-layered self-programming nets have been described recently [3]- I |
[5] where the net is partitioned into three groups. Two are groups of
visible or external input/output units or neurons that interface with the

outside world i.e., with the net environment. The third is a group of
hidden or internal units that separates the input and output units and
participates in the process of forming internal representations of the
associations the net is presented with, as for example by "clamping" or
fixing the states of the input and output neurons to the desired

associations and letting the net run through its learning algorithm to ,'

arrive ultimately at a specific set of synaptic weights or links between the
neurons that capture the underlying structure of all the associations
presented to the net. The hidden units or neurons prevent the input and

output units from communicating with each other directly. In other words no
neuron or unit in the input group is linked directly to a neuron in the S.-

output group and vice-versa. Any such communication must be carried out via
the hidden units. Neurons within the input group can communicate with each
other and with hidden units and the same is true for neurons in the output
gr.u. Neu-.in .. he hidden g-oup can not :ommuncate with each othe-.
They can only communicate with neurons in the input and output groups as %
stated earlier.
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Two adaptive learning procedures in such partitioned nets have
attracted considerable attention. One is stochastic involving a simulated
annealing process [63,[71 and the other is deterministic involving an error
back-propogation process [4]. There is general agreement however; that
because of their iterative nature, serial digital computation of the links
with these algorithms is very time consuming. A faster means for carrying
out the required computations is needed. Never-the-less the work mentioned
represents a milestone in that it opens the way for powerful collective
computations in multilayered neural nets and in that it dispels earlier
reservations [8] about the capabilities of early models of neural nets such
as the Perceptron [9] when the partitioning concept is introduced. What is
most significant and noteworthy, in our opinion, is the ability to now
define buffered input and output groups with unequal number of neurons in a
net which was not possible with earlier nets where all neurons participate
in defining the initial (input) and final (output) states of the net.

2. ANALOG IMPLEMENTATIONS: Optics and opto-electronic architectures and
techniques can play an important role in the study and implementation of
self-programming networks and in speeding-up the execution of learning
algorithms. We have done some exploratory work in this regard to see how
the neurons in an opto-electronic analog of a neural net can be partitioned
into groups with specific interconnection patterns. Here, for example, a
method for partitioning an opto-electronic analog of a neural net into
input, output, and internal units with the selective communication pattern
described earlier to enable, stochastic learning, i.e., carrying out a
simulated annealing learning algorithm in the context of a Boltzmann machine
formalism is described. (see Fig. 1(a)). The arrangement shown in Fig. 1(a)
derives from the neural network analogs we described earlier [2]. The

as,

AAMV.
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Fig. 1. Partitioning concept (a) and method for rapid determination of the
net's energy E.

network, consisting of say N neurons, is partitioned into three groups. Two
groups, V1 and V2,represent visible or exterior units that can be used as

input and output units respectively. The third group H are hidden or
internal units. The partition is such that N+N 2 +N -N where subscripts %

1,2,3 on N refer to the number of neurons in the V1 ,V2 and H groups

resoectively. The interconnectivity matrix, designated here as W,,, is

partitioned into nine submatrices, A,B,C,D,E, and F plus three zero matrices
shown as blackened or opague regions of the Wij mask. The LED array
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represents the state of the neurons, assumed to be unipolar binary LED on =

neuron firing, LED off - neuron not-firing. The W. mask represents the %
13

strengths of interconnection between neurons in a manner similar to earlier
arrangements [2]. Light from the LEDs is smeared vertically over the Wij

mask with the aid of an anamorphic lens system (not shown in Fig. 1(a)) and
light emerging from rows of the mask is focused with the aid of another
anamorphic lens system (also not shown) onto elements of the photodetector
(PD) array. Also we assume the same scheme utilized in [2] for realizing
bipolar values of Wij in incoherent light is adopted here, namely by

separating each row of the W mask into two subrows and assigning positive .-b

ij
values W to one subrow and negative values Wij to the other, then focusing NIP

ij%
light emerging from the two subrows separately onto pairs of adjacent
photosite connected in opposition in the V1 , V 2 and H segment of the

photodetector array. Submatrix A with N x N elements, provides the

interconnection weights of units or neurons within group V I. Submatrix B

with N 2 x N 2 elements, provides the interconnection weights of units within

V2. Submatrices C (of N x N 3 elements) and D (of N 3 x N elements) provide

the interconnection weights between units of V and H and submatrices E (of

N2 x N 3 elements) and F (of N 3 x N2 ) provide the interconnection weights of

units of V 2 and H. Units in V1 and V 2 can not communicate with each other

directly because locations of their interconnectivity weights in the Wij

matrix or mask are blocked out (blackened lower left and top right portion
of W ij). Similarly units within H do not communicate with each other

because locations of their interconnectivity weights in the Wij mask are
also blocked out (center blackened square of W ij). The LED element e is

always on to provide a fixed or adaptive threshold level to all other units
by contributing to the light focused onto only negative photosites of the
photodetector (PD) arrays.

By using a computer controlled nonvolatile spatial light modulator to

implement the W.i mask in Fig. 1(a) and including a computer/controller as

shown the scheme can be made self-programming with ability to modify the
weights of synaptic links between its neurons to form internal
representations of the associations or patterns presented to it. This is
done by fixing or clamping the states of the V1 (input) and V (output)

2
groups to each of the associations we want the net to learn and by repeated
application of the simulated annealing procedure with Boltzmann, or other,
stochastic state update rule and collection of statistics on the states of
the neurons at the end of each run when the net reaches thermodynamic

equilibrium.
For each clamping of the V1 and V2 units to one of the associations,

annealing is applied, starting from an arbitrary W1 j, with switching states
of units in H until thermodynamic equilibrium is reached. The state vector %

of the entire net, which represents a state of global energy minimum, is
then stored by the computer. This procedure is repeated for each
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association several times recording the final state vectors every time. The
probabilities P of finding the i-th and j-th neurons in the same state are

then obtained. Next with the output units V2 unclamped to let them free run

like the H units the above procedure is repeated for the same number of

annealings as before and the probabilities P.. are obtained. The weights

Wi are then incremented by AWi = T-I(P ij-P ij) where n is a constant that

controls the speed and efficacy of learning. Starting from the new Wij the
above procedure is repeated until a steady Wij is reached at which time the

learning procedure is complete. Learning by simulated annealing requires
calculating the energy E of the net [33,[5]. A simplified version of a
rapid scheme for obtaining E opto-electronically is shown in Fig. 1(b). A
slight variation of this scheme that can deal with the bipolar nature of Wij

would actually be utilized. This is not detailed here because of space
limitation.

3. REMARKS: The partitioning architecture described is extendable to
multilayered nets of more than three layers and to 2-D arrangement of

- neurons. Learning algorithms in such layered nets lead to multivalued Wij.
Therefore high-speed computer controlled SLMs with graded pixel response are

called for. Methods of reducing the dynamic range of W iJ or for allowing

the use of W.. with ternary weights are however under study to enable the

use of commercially available nonvolatile SLM devices that are mostly
binary e.g., Litton's MOSLM.
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ABSTRACT
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A brief overview of background and developments in the emerging

field of neural net models for optical computing is presented. At this

early stage the field is offering a new and intellectually stimulating f

approach to signal processing that dove-tails with and compliments the

capabilities of optics. A
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II

1. INTRODUCTION

Interest in neural network models (see for example, [1]-[9]) and their

opto-electronic analogs stems from well recognized capabilities of the brain

and the fit between what optics can do and what even simplified models of

neural nets can offer toward the development of new approaches to collective

signal processing. We know that the brain is not as good in arithmetic

operations as a digital computer but when it comes to operations such as

association, categorization, generalization, classifiction, feature

extraction, recognition, and optimization it outperforms even the most

powerful of todays computers. The brain's amazing capabilities in analyzing

sensory data and in controlling motor function, let alone complex thought

and intelligent reasoning, makes it an intriguing model for smart sensing

and automated recognition systems and for robotic and automatic control

systems with unescapable ramifiction for pattern recognition, artificial

intelligence and autonomeous systems. An interesting aspect of its ability

in processing sensory data is the ease with which it solves computationally

complex problems associated for example with vision that are basically

inverse problems [10]. These are computationally vexing because of their

ill-posedness [11]. The brain's associative memory capabilities where

nearest neighbor searches are performed successfully even when the p

information it is presented with is sketchy are evidence of its remarkable .'

robustness where high levels of missing or erroneous data in the input can

be tolerated. The ability of the brain to supplement missing information

has exciting implications for super-resolution and other similar problems of

signal recovery from incomplete and noisy data [11],[12]. The capabilities

of the brain in rapid solution of optimization Droblems [13] are also well 4,

appreciated. Add to the above that the brain is amazingly fault tolerant as
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its (cells or neurons), unlike cells in other parts of the body, are not

renewable, Yet, despite loss of a non-negligible number of cells by the

time one of us reaches the age of 50 we continue to function normally. We

know something about how the brain processes information. We know that it

does that in parallel or more precisely collectively by means of massively

interconnected networks of neurons. There are anywhere between 10 10 10 1

neurons in the brain, each making about 10 3- 10 4synaptic interconnections

with neighboring neurons for a total of 10 13to 10 15interconnections. Even

when we assume the neuron to take only two states: firing or not firing

i.e., binary neuron, the total number of degrees of freedom of the the brain '-

115
is truly astronomical reaching 2 10. Each neuron independently evaluates

its state and decides to change it or not depending on whether the sum of

its synaptic (exitatory and inhibitory) inputs exceeds a given threshold or

not performing thus a highly nonlinear (logic) operation. I

Massive connectivity and parallelism are the two main attributes of

optics. Optics can therefore play an important role in the implementation

of models of neural nets for computing and signal processing. Besides

developments in programmable nonvolatile spatial light modulators [14],

optical light amplifiers [15], and optical bistability devices [16] promise

to play a useful role in the implementations of programmable connectivity

matrices, and optical decision making elements leading ultimately to

powerful neural net type processors.
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2. CURRENT RESEARCH

The above observations have served as motivation for several workers

[17]-[31] to investigate the feasibility ard capabilities of optical

implementations of neural nets. Optical implementations of 1-D and 2-D

distributions of neurons (neural nets) have been considered and/or studied

and evaluated in coherent and incoherent light. The performance of such

networks is found to conform to theoretical prediction of storage capacity

(number of entitles that can be reliably stored) [32 1-[3J4], and exhibits

robustness and fault tolerance. In an optical implementation of an

associative memory of N=32 neurons, with three stored entities errors of up

to 30% in the input stimulus was tolerated during complete and correct

recall of the nearest neighbor stored entity. Furthermore, accidental

failure of about 10% of the neurons hardly caused noticable degradation in

performance. Some of the above studies have been aiined at finding means of

simplifying optical implementation of large neural nets, increasing the

storage capacity, and finding ways for their interconnections as modules

into more complex systems to perform higher order hierarchical processing.

It is worth noting that operations such as associative recall and

nearest neighbor search performed in the above systems can be carried out by

more conventional means without resort to neural net processing. What does

the neural net approach then offer that conventional signal processing and

computing methods do not?. The answer to this question may be found in the

*following observations: (a) Neural nets and their models provide us with a

new way of viewin~g signal processing and computing problems that may lead to

solutions and applications not thought of otherwise in a manner very much

reminiscent to what happened with the advent of holography several decades

ago. (b) The brain and its neural organization are the results of a
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prolonged evolutionary process in which only those permutations that

enhanced the survivability, and by implication the function, of the organism

have been retained and all other permutations have been discarded through

"survival of the fittest" process. The result is a biological "computer"

that has, as pointed out earlier, no equal at present among artificial

systems when it comes to tasks of recognition, classification,

categorization, generalization, recognition, and optimization. It is not

surprising therefore to see the current interest in brain mechanisms in the

artificial intelligence, cognitive science, and pattern recognition

communities. Even early researchers in computer science were concerned with

brain-related attributes of computing systems [35]. A serial approach to

computing was however adopted and pursued because of better understanding,

easier mathematical modeling, and possibly because a collective or parallel

approach to computation would have been technologically and economically not

feasible at the time. There is much therefore that we can afford to learn

from the brain and its neural nets that can prove to be useful in artificial

man made systems. The general idea here is not to attempt to build systems

that fully emulate the brain in all its functions, as this would be I

unrealistic, but to gain insights in its operation and mechanisms, as to

allow us to be able to glean information about these attributes and

functions that would be worth incorporating in man made systems. Optical

analogs of neural nets can be a useful tool in gaining such insights and as

a way of ultimately simulting neural nets consisting of thousands to V

millions of elements. (c) Information processing in the brain can be%

characterized as collective, adaptive, highly nonlinear and rely heavily on

feedback. We know that all these are attributes cf powerful signal

processing algorithms. What is amazing is that these capabilities are

I-
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achieved in networks that appear to be similar homogeneous in their general

structure i.e., only a few different types of neurons (cells) are involved

and the process followed by most neurons is macroscopically similar in the

sense that each neuron receives inputs from other neighboring neuron and

* decides to change its state or not depending on the nature of the inputs and

the synaptic weights they make with the neuron where memory is stored. In

other words the brain exhibits a fractal (self-similar) feature in its

organization. It is now recognized that the same basic structure of highly

interconnected neurons can be involved in the formation of signal-adaptive

self-organized networks for unsupervised learning and feature extraction

from sensory data [4],[36], in the formation of associative memory modules

tuned to respond to specific features of the sensory data, [37]-[J41] and for

recognition and perception "circuits" of the brain. This is a tremendous

flexibility that is achieved with little apparent specific design unlike

conventional circuit design where function specific components and parts are

connected in accordance to specific rules to perform required signal

processing tasks. As evidence of this flexibility it is worth noting in this

regard that in associative memory based on neural net models the function of

memory and signal processing involved in recall are totally intermingled.

(d) The fractal nature of neural nets, their robustnewss and fault tolerance

can be immensely useful for modern VLSI technology. Continuing advances in

microfabricatlon, and optical technologies promise to make it possible to

fabricate large numbers of massively interconnected decision making

switching elements with low power consumption. Neural net models and

architectures can provide such structures (possibly in the form of opto-

electronic chips) with the robustness and the fault-tolerance badly neeaec

in VLSI to alleviate the central problem of yield. Imperfect chips may no
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longer be regarded as rejects but can find use in artificial neural net

processors or computers. (e) Architectures and Optical implementations of 2-

D neural net arangements can provide content addressable associative memory

modules that are suited for use with 2-D pictorial data. In practice such

pictorial data would be, in the form of distortionless descriptors, (scale,

rotation, and size invariant classifiers or feature spaces) derived from

sensory array data generated for example by electromagnetic or acoustic

(including seismic and sonar) receiver arrays. Associative memory modules

can tell us then rapidly, in a matter of a few time constants of the neuron-

like elements used, which member of an ensemble of input descriptors is

recognized by the memory even when the descriptor information it is

presented with happens to be incomplete or sketchy. Recognition of an input

is manifested by the neural net converging and settling into one of its

nominal states corresponding to that stored entity which most resembles the

input. It is clear that this operation by itself may not be useful unless

some means for identifying or recognizing the outcome of the nearest

neighbor search is incorporated. This suggests, in the absence of such

"recognizer", that auto-associative memories may be useful as building

blocks of more complex processors in which higher order hierarchical

processing takes place, in a manner not yet fully understood. Such

processing would have the aim of first reducing the information content of

the signals flowing concurrently through such a network of associative CAMs

and then fusing their outcomes into a single meaningful concept or "

perception. In biological systems, such perception is thought to be ,%

associated with a prescribed trace of neural activity or spatio-temporal

firing pattern in the cortex. Associative memory modules by themselves

become more meaningful when used in a hetero-associative mode where the N
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learning set of descriptors or classifiers is not stored by auto-association 4

but by hetero-association with reference entities that are more easy to

recognize i.e., reference entities that are compatible with the "recognizer"

such as word labels or pictorial representations in the case of a human •

observer or coded analog or digital outputs suitable for activating motor

functions in robotic and artificial intelligence systems. Hetero-

associative storage and recall of partial information can play an important

role in smart sensing and automated recognition systems as was recently

demonstrated with an example of identifying different types of aircraft from

partial information about their sinogram classifiers [42] and individual (

faces from edge enhanced versions as classifiers [43].

3. CONCLUDING REMARKS

At this stage of their early development one can only venture to say

that neural net models offer a new and intellectually stimulating approach

to computing and information processing. The approach "dove-tails" very well I

the capabilities of optics and compliments them. While optics naturally

*provides the parallelism and massive interconnectivity needed in the

implementation of neural nets and their models, these on their part provide

the robustness, fault tolerance, and power of nonlinear processing and

feedback that are generally lacking in optical processing. The combination

results in systems that can no longer be characterized by the usual measures

of convolution and impulse response (variant or invariant) because

superposition no longer applies but may have to be characterized instead by

stable states or modes in the N-dimensional phase-space of an N-neuron

network. Optical analogs of even highly simplified models of neural nets

exhibit a high degree of robustness and fault-telerance, and can be

.. -8-



implemented as content addressable associative memories for use in computers

and in smart sensing and automated recognition systems, or as networks for

rapid collective solution of computationally complex tasks encountered in

optimization, vision, and inverse problems. They may also provide a too!

for the study of nonlinear dynamics, chaos, and even clinical studies of

mental disorder.
-N
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FRAME RATE OF MAGNETO-OPTIC

* SPATIAL LIGHT MODULATORS
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Abstract

High speed computer-controlled spatial light modulators play an impor-

tant role in optical signal processing. Of interest is a commercially available

nonvolatile Litton/Semetex magneto-optical spatial light modulator (MOSLM)

which is limited in achievable frame rate by thermal dissipation and possible

magnetic forces. Methodologies for improving the frame rate of the MOSLM

are investigated. The findings described here show that a parallel-serial ad-

dressing scheme aided by a strong externally applied magnetic field bias could

be employed to achieve high frame rates. A driver circuit capable of exercising

the 48 x 48 MOSLM at a frame switching time of better than 1/1000 second

is described and its performance evaluated.

1 Introduction

High speed programmable optical masks play an important role in optical sig-

nal processing. Such programmable optical masks are generally referred to as

Spatial Light Modulators (SLM). One commercially available nonvolatile SLM

is a magneto-optic device marketed either by Litton [1-3] under the trade name

LIGHT-MOD or by Semetex Corp. under the trade name SIGHT-MOD [4-5].
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In this paper we use the term MOSLM to describe these devices because of

the magneto-optic effect utilized in this operation. The device has binary pixel

transmittance and commercial units can be readily raster driven at a rate of few

tens of frames per second. In exploring operation at higher frame rates parallel

addressing of rows (or columns), one at a time, is an obvious approach. Higher

frame rates are in principle possible in these devices because of the known ex-

tremely short pixel switching time ('- 10" sec [1]). In order to explore the

speed at which this device can operate, we built a high speed interface circuit,

not offered by the manufacture, for this device. We encountered two device

limitations that can be destructive unless special provisions are made to cir-

cumvent them. One is the inability to dissipate heat produced by ohmic losses

in the current bearing addressing wires specially when parallel addressing is

attempted; the other is possible mechanical magnetic forces that can fracture

the device. These are caused by the interaction between the current bearing

addressing wires and the magnetic field established by the external drive coil of

the device. When too many addressing wires are active simultaneously as would

be the case in a parallel addressing scheme, the large net current will make it

very difficult to realize the entire driver circuit in a single VLSI chip. More-

over, we found that one reaches the ohmic losses limit of the device (no cooling)

before a parallel addressing scheme can show its very high frame rate benefit.

These considerations showed us quickly the impracticality of a fully parallel

addressing approach to operation at high frame rate. Therefore, we developed

a "parallel-serial addressing" scheme in which the driver circuit buffers all the

output data bits from a computer controller's parallel digital output interface

card. Every bit corresponds to a desired state of a pixel in the MOSLM. The

driver circuit then address in parallel a small number of pixels at a time, and

process them at a very high speed. In other word, The driver circuit staggers

the addressing time instant of data bits from the computer's parallel digital

output interface card. By doing this, we overcome the limitation of magnetic

mechanical forces without seriously degrading the speed. We also reduce the

magnitude of the required current by using a strong auxiliary external mag-

netic field bias. As a result ohmic losses are reduced considerably because of "

the lower drive current pulses. This relatively low addressing current feature "

suggests that building the driver circuit (except the high current and possibly

2
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high voltage driving components for the external coil) in a customer's VLSI

chip is possible. A driver circuit capable of exercising the 48 x 48 MOSLM

at approximately 1000 frames per second without any special cooling means

has been built successfully and is described below. The work shows that the

switching threshold of a MOSLM plays an important role in determining the

achievable frame rate.

The operational principle of the MOSLM is described in section 2, and its

possible limitations are discussed in section 3. The parallel-serial addressing

scheme is then introduced in section 4, and the methods used to relax ohmic

losses are described in section 5. Experimental results are presented in section Q

6.

2 Operation Principle of A MOSLM

2.1 Magneto-Optic Effect - The Faraday Rotation

The Faraday rotation is a property of transparent substances that causes a ro-

tation of the plane of polarization of light traversing the substance when the %

material is subjected to a magnetic field. The rotation is proportional to the

component of the magnetic field along the direction of propagation of the light. .. ,,

It can be shown [6] that when linearly polarized light propagates along the

optical axis of a uniaxial material with Faraday rotation, the material will sup-

port right and left circular polarized wave modes of equal magnitude. Further,
the indices of refraction associated with these two modes are different. As a

result, the output light will be linearly polarized with a different polarization

direction than that of the input light. The angle between the directions of the

input and output polarization is called the Faraday rotation angle. This angle

is dependent on the Verdet constant [6] of the material and is proportional to

the thickness of the material and the magnitude of the applied magnetic field.

2.2 Function of A Switching Element

The magneto-optic switching element or pixel in a MOSLM cons: ts of a bis- ..

muth substituted transparent iron garnet film grown on a nonmagnetic single

crystal (gadolinium galium garnet crystal) substrate. It is a uniaxial crystal

3

%N'

%0



I ""

with its uniaxial axis oriented perpendicular to the surface plane of the film.
The switching element is practically a bistable magnetic domain with an internal -

magnetic field always parallel to the uniaxial axis. The two stable directions of

its internal magnetization can be electrically switched rapidly. Once we switch

the direction of the internal magnetization of the switching element, we switch

the direction of the Faraday rotation angle from clockwise to counterclockwise

or vice versa. By sandwiching the element between a polarizer at the input face

and analyzer at the output, transmitted monochromatic light intensity It can

be controlled according to the formula [7],

It(±OF) = 4,3 exp (-at) [sin2 (0p ± OF)] (1)

where I. is the incident light intensity, a is the optical absorption constant

of the material, 0 is the loss due to the polarizer and analyzer, t is the material

thickness, Opa is the relative angle between the polarizer and analyzer axes

measured from the extinction position (crossed out position), and OF is the

magnitude of Faraday rotation. .e

The difference in the transmitted light intensity of pixels in the two domain

states can be used in display and optical computation. 1L

2.3 The Structure of A MOSLM

The MOSLM is a rectangular array of magneto-optic switching elements. Co-

incident orthogonal current drive-lines are produced by conductor deposition

on both sides of the iron garnet film. The magnetic field generated by current

flowing in a single conductor is designed to be insufficient to switch the state

of a single pixel. The X-Y coincident current drive-lines make it possible to

switch individual pixels by random selection. The combined magnetic fields -

will switch the state of selected element only. A scanning electronic microscope

(SEM) picture of a MOSLM is shown in Fig. 1. It shows clearly that each

switching element is addressed by two orthogonal wires. Each wire deforms

into a small loop at the corner of each switching element where the alteration

of state of a pixel is initiated. When an element, at the intersection of the

activated X-Y conductors, is addressed to reverse its state, a magnetic domain

is formed in this corner and will be enlarged by the propagation of the domain

4'
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wall through the thickness of the film. When the domain wall reaches the bot-

tom of the film, the element has been nucleated. Removal of the drive current

at that time would result in the element being demagnetized. By maintaining

drive currents until the domain wall has propagated to the opposite corner, the

element will complete switching and will be stable i.e. remain in that state until

the next nucleating process occurs. We also observe from Fig. 1 that some ad-

dressing wires fail to form a proper loop in some elements because of imperfect

fabrication which result in the element not being able to switch its state in a

normal addressing operation. The appearance of such imperfect elements can
be seen in the display of Fig. 10. The above selective switching of the state of

magnetization of pixels takes place in the presence of an external magnetic field

produced by an external coil used to generate a magnetic field for assisting the

element switching.

3 Possible Limitations

3.1 Ohmic Losses

The typical resistance of a drive-line in the device is about 30 ohms. The min-

imal current required to switch the element is 100 mA when a 500 mA current

is used to drive the external coil to produce the external magnetic field bias

(30 gauss) recommended in the device specifications. Accordingly, the thermal

power due to ohmic losses generated by the current in one drive-line is 300 mW.

The switching of one element with coincident currents in the two orthogonale

drive-lines intersecting at the element would dissipate 600 mw in the MOSLM.

Because the area of the device is so small (less than a half cm sq.) ,it is difficult

to dissipate this much heat even when current pulses at duty cycle less than the0

duty cycle of unity assumed in the above consideration is utilized. Based on the

manufacturer's information, the maximum estimated power dissipation that the

device (uncooled) can sustain is 100 mW [8]. Accordingly, in order to operate

the device safely, the current pulses with duty cycle less than 1/6 have to be

used even when 4 conventional raster switching scheme (one element a time) is

adopted. In addition to this ohmic losses problem, the effect of localization of

the heat in the device should be taken into account. Because the heat conduc-
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tivity of the MOSLM is not very good, the heat generated can be localized. In
general, the temperature in the center part of a MOSLM will be higher than

that in the outer parts and so would temperature near the addressing wires
be higher than at distal parts. The temperature unbalance generates stresses
that can easily fracture the crystal substrate. We happened to observe these
ohmic loss effects by applying current in 17 drive-lines simultaneously to par-

tially address one row of pixels in the device (One line is parallel to the X axis
and 16 lines are parallel to the Y axis). Every two adjacent lines form one pair,
there are 8 pairs along the Y axis. The current in each pair flowed mistakenly

in opposite directions (should flow in the same direction in correct operation).

Based on the magnetic force analysis presented later, this addressing arrange-
ment happens to distribute magnetic force uniformly over the device, and the

forces nearly canceled each other. Thus this parallel addressing arrangement

rules out possible damage due to magnetic forces. The current magnitude in
each wire was 300 mA, the pulse width was 1 ps, and the duty cycle was 0.5..
The result was that the MOSLM shattered into pieces after approximately 3
seconds of operation. A photograph of the damaged device is shown in Fig. 2.

We also show a photograph of the polarizer damaged by heat emitted from the

MOSLM during this incident which was situated a distance of 1 cm from the

polarizer.

3.2 Magnetic Force

3.2.1 Magnetic Force Between Drive-Lines

Based on magnetostatic field theory, parallel current carrying wires experience i
a magnetic force between them. The magnitude of the force is proportional

to the magnitude of the current, the number of wires simultaneously carrying

current and the relative distances between them. Assume there are 2 parallel '
wires each carrying current I with the distance between these two wires being
d, and the length of each wire being infinite. The force per unit length between

such two wires is given by [9]

newton(2
27rd [m
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where i,, = 47r x 10- 7 H/m is the permeability of free space. The force is

attractive if the currents flow in the same direction, and repulsive otherwise. -6

Assume we have N parallel wires numbered 1 to N each carrying the current

I in the same direction. The force on wire 1 points to the center wire with

magnitude F1 , and can be written as
N-I 1

F 1 = F - (3)

where t is the length of each wire. This series diverges if N is infinite [10]. This

implies a significant force for large N. Similarly the force on wire 2 also points

to the center wire with magnitude F2, and can be written as
N-2 1

F 2= Ft - (4)
i=2

As a result, a general expression can be derived for the force exerted on the

n-th wire,

F, = Ft -(5)
i=n $

where n is less than or equal to N/2, and F=- FN+i-n The forces always

point to the center wire. The total force FA in one half of the MOSLM is the 9

sum of the forces of individual wires from 1 to N/2. For a numerical instance,

when N=16, t =0.5 cm, d=228 jim, and I=300 mA, we find FA is on the order

of 10-6 newton.

3.2.2 Magnetic Force Between The Bias Magnetic Field And The

Drive-Lines

The external axial magnetic field will exert force on the perpendicular current

carrying wire. This force is also proportional to the magnitude of the current

drive wires and the number of drive wires activated simultaneously. Assume

the external coil has length L, the number of turns per unit length is M, and

the mean radius is a. The magnetic field at the end of this solenoid can be

decomposed into two orthogonal components [11],

_ jsMI
2L (6)

Br - (7)
4L a .
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where B, is the magnetic field component in the axial direction of the solenoid,
B, is the radial or transversal magnetic field component, and r is the radial

distance from the central axis. Assume there are N parallel wires each carrying
current 1, and these wires are uniformly spaced over the MOSLM extent. First
we consider the force due to the component Bf,. The magnetic force on a

single wire can be written as FB = UI x B,. The magnetic forces on each wire

due to B, have the same magnitude, and are all in the same direction. For a
numerical instance, assume N=16, 1 =0.5 cm, a=1 cm, L=1 cm, and I=0.5 A.
The resulting force on each wire would be 3.2 x 10-4 newton. Therefore, the

total force due to ff. acting on the 16 wires will be 3.4 x 10-3 newton. Next, we

consider the force due to the component B4. Assume the N wires are equally

distributed along the two side of the axis of the solenoid. Then f., = - -n

where F, is the force on the n-th wire. Similar analysis shows the total force

Fc due to B, is approximately 4 x i~ newton.

3.2.3 Total Magnetic Force

By superimposing the three magnetic force components described above we ob-

tain the total force diagram shown in Fig. 3a , where the notation ® designates

current flowing into the plane of the paper. These force components are pro-Il

portional to the number of current carrying wires, and the magnitude of the

current in each wire. fA is also inversely proportional to the distance betweenI

the wires. It is worth nothing that all these forces will be locally distributed

and will nearly cancel each other if the currents in adjacent pairs of wires flow

incorrectly in opposite directions as in the case of section 3.1. Accordingly, we

preclude the magnetic force mechanism in the case of section 3.1. However, in

the case of correct parallel addressing operation, all currents must flow in the

same direction. Therefore, there will be a fracture line running along Y axis atP
the center of the MOSLM because of these magnetic forces if we exercise this

device with a parallel addressing scheme. We happen to observe this effect when

we attempted to repeat the parallel addressing experiment mentioned in sec-

tion 3.1 (currents now flow correctly in the same direction) with the device air 4

cooled and operating at a very low duty cycle of current pulse to avoid thermal 1
damage. Again, 17 drive wires were activated simultaneously; one along the X%
axis, and 16 along the Y axis which are equally distributed over the width of the

8



MOSLM. The magnitude of cretis 300 mAin each wire, the current pulse
width is 1 uss, and the duty cycle is about 0.0001. The device split into 2 pieces -

after approximately one second of operation. The split occurred at a central V..

directed line on the device as predicted by the magnetic force considerations as

illustrated in pictorial view of Fig. 3.

4 The Parallel-Serial Addressing Scheme tl

The purpose of this scheme is to minimize the magnetic force the device has

to sustain, while maximizing the operating speed. We give an example to illus-

trate the parallel-serial addressing scheme. The MASSGOMP 5400 computer

has a parallel digital output interface card which can output 16 bits of data

simultaneously at every 2 jis. If the driver circuit can process the 16 bits of

data within 2 As bit by bit, the system will have the same speed as that of direct

parallel addressing scheme by the available computer. Using this parallel-serial

or systolic scheme, we address a single pixel at a time and at a very high

speed. we can avoid the problem of magnetic mechanical forces by staggering

the switching time instant of the elements and reducing the number of wires

that carry current simultaneously. This will, in turn, reduce the total instanta-

neous current required in the driver circuit and reduce the huge current spikes .

in the driver circuit. This relatively low addressing current feature will also

make building the entire driver circuit into a single customer's VLSI chip prac-

tical. These are the fundamental concepts behind the parallel-serial addressing

scheme. The success of this scheme will depend entirely on how fast each pixel

of the MOSLM can be switched. Our experimental results presented later show %1

that the switching time is on the order of 100 ns. Such a high pixel switch-

ing speed makes our system capable of processing all 16 bits of data within "

2 jis i.e. an addressing serial bit rate of 8 x 106 bits/sec. Accordingly, if we

use the MASSCOMP 5400 computer to provide the data pattern to the driver

circuit, there will be no speed difference between the parallel-serial addressing

scheme and parallel addressing scheme. Moreover, if we have a computer which

can output 32 bits of data at a time once every 2 uts, the driver circuit of the

parallel-serial addressing scheme can process the data 2 bits at a time, i.e. by

driving two at a time, addressing every 100 ns. In this manner, the driver

9



circuit completes the processing of the 32 bits of data within 2 jss. Again, the

parallel-serial addressing scheme can virtually have the same speed as that ob-

tained had we been able to address the device directly in parallel in batches of

32 pixels at a time. Generally speaking, the parallel-serial addressing scheme

provides a flexible way to drive the MOSLM with two benefits: one is that the

device will sustain minimal magnetic force while operating at the maximum

system speed; the other is that the total instantaneous maximum driver cur-

rent required will be the minimized. However, the design of the driver circuit

employing a parallel-serial addressing scheme is much more complicated than

that employing a parallel addressing scheme. In order to get the same MOSLM

frame rate as that offered by the parallel addressing scheme in the present sys-

tem, the clock rate of the driver circuit employing a parallel-serial addressing

scheme must be 16 times faster than that of a parallel addressing scheme. To

demonstrate these ideals, we have designed and built a driver circuit employing

the parallel-serial addressing scheme. A block diagram of which is shown in

Fig. 4.

5 Schemes for Relaxing Ohmic Losses

As stated earlier the thermal power generated in the device by ohmic losses
produced by currents in addressing wires will limit the operating speed of the

MOSLM because of the finite power dissipation capability of the uncooled de-

vice. There are several ways to deal with this problem. The first approach

is either to reduce the resistance of the addressing wires by increasing their

thickness, or to reduce the switching threshold of the magnetic domain (pixels)

of the device through ion implantation or selection of improved magneto-optic

material [12]. The drive-line current required for switching decreases with de-

creasing the switching threshold. The second approach to this problem is the

setting up of a good cooling system. The active area of the MOSLM is however

too small for effective air cooling at a high duty cycle of current pulses. Since

the device is used ordinary in a transmission mode, the use of any cooling sub-

strates mean they have to be transparent in the operating wavelength of the

MOSLM, good conductors of heat, and do not interact between the MOSLM

crystal and the cooling material. If the device operates in the reflection mode,

10
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ineeds cooling materials which are optically fat, have good reflectivity, are

good conductors of heat, and are without side effects. Such cooling schemes

obviously complicate the system. The third approach is to make use of the

thermal properties of the switching element material. The switching threshold

is inversely proportional to the operation temperature before the curie temper-

ature is reached 113,141. However, this approach may have practical difficulties

due to the fact that the temperature distribution over the device is not uni-

form and the temperature of each element is varying with time. In order to

guarantee perfect switching operation for each element, a very intelligent driver

circuit would be required to monitor the temperature of all pixels so that a suit- "

able amplitude and width of the addressing current pulse can be determined.

The fourth approach in dealing with operating speed limitation is to reduce

the magnitude of the currert needed to switch pixels by using a strong external

magnetic field bias in addition to that produced by the magnetic coil. Note that

using a strong external magnetic field bias to reduce the ohmic losses without

using the parallel-serial addressing scheme might increase the hazard of dam-

age by magnetic forces. However, using the parallel-serial addressing scheme '

alone without using a strong external magnetic field bias can not overcome the a

ohmic losses. Therefore, these two schemes have to work together to achieve

high frame rates. Erasure of all pixels at once can be done by applying a strong I I
external magnetic field only. There is no current required in the addressing

wires in this erasing operation. Then, only write operations require currents '

flowing in the addressing wires. Accordingly, this scheme will reduce the heat
dissipation in t1~e MOSLM by a factor of one half. We have chosen to adopt

and investigate the last two methodologies. .

6 Experimental Results

6.1 Basic MOSLM Characteristic Measurements

A series of experiments to study the magnetic switching properties of a MOSLM

were carried out. A schematic diagram of the arrangement used is shown in

Fig. 5 when a polarized laser is used as the illumination source. A pictorial

view of the setup is shown in Fig. 6 with the laser light source replaced by

IV %
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(ring type) magnet used to produce the strong auxiliary external magnetic field

bias. The axial magnetic field distribution of this magnet (model 008-01-8 i.

manufactured by Avco Everett Research Lab.) was measured using a gauss-
meter (Radio Frequency Lab. model 1890). The measured axial magnetic

distribution or magnetic field profile is shown in Fig. 7. The permanent magnet

is moved close to the MOSLM until all pixels switch their states. We recorded p

the distance from the permanent magnet to the MOSLM crystal. From Fig.
7, this distance corresponds to a magnetic field strength which is called the

switching threshold of a MOSLM's pixels. We observed that the switching
threshold of pixels is not always the same even within the same MOSLM chip.
For two available MOSLMs we recorded a switching threshold of 200 gauss and
300 gauss respectively. The threshold variation in these two devices is therefore

large. This fact implies that the switching threshold is strongly influenced by
the manufacturing process. Next a 500 mA current was applied in the external
coil and we measure the magnetic field profile along the central axis of the coil.

The measured field profile is shown in Fig. 8. Based on the data in Fig. 8,
the 500 mA current in the external coil is equivalent to 30 gauss bias in the

plane of the MOSLM. The inductance of the coil is 0.782 mH and its resistance

is 1.26 ohm. The magnetic field produced in the plane of the MOSLM by the

permanent magnet is easily adjusted by changing the axial distance between

the magnet and the MOSLM. The use of the permanent magnet provides a
convenient way of studying the relation between the external magnetic field

bias and the required addressing wire current needed to switch pixels as will be

discussed in the next section.4-

6.2 The Effect of A Strong External Magnetic Field Bias

on The Required Drive-Line Current

Our aim was to determine the degree to which the switching drive current

could be reduced when an external magnetic field bias is used. First, we used

the MOSLM which has a switching threshold of 200 gauss. This device requires

a 100 ns, lO0mA coincident current pulses in the X and Y to write a pixel with
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a 30 gauss bias from the external coil but without the help of the external per-

manent magnet. The writing current pulse is shown in Fig. 9a. We then place

the permanent magnet 2.7 cm away from the MOSLM. This is a distance just

beyond the critical distance where some of the pixels start to switch their states

due to the strong magnetic field provided by the permanent magnet. This ar-

rangement establishes a 180 gauss bias and reduces the current pulse required

to write one pixel to 17 mA peak amplitude and 50 ns duration as shown in Fig.

9b. From Figs. 9a and 9b, we can see that the external magnetic field bias not

only reduces the current magnitude but also the current pulse width needed for .

writing a pixel. Therefore, the external magnetic field bias has dramatic effect

on the achievable frame rate of the MOSLM. We can switch all the pixels at 0

once by applying reverse current of 5 A in the external coil when there is no

permanent magnet in the setup. However, with the unidirectional strong bias

provided by the permanent magnet, we need a larger current in the external
coil to erase the pixels. This current, in turn, generates heat in the coil. This

presents a hazard to the MOSLM crystal because of the coil's proximity to the

crystal. The present driver circuit can not supply a current large enough to

erase the pixels in this situation. Therefore, we place the permanent magnet

4.5 cm away from the MOSLM with a 500 mA current in the external coil. In

this situation, the total bias is 110 gauss, of which 80 gauss are provided by the

permanent magnet, and 30 gauss by the coil. With this arrangement, we can

write the pixel with a current pulse of 70 ns duration and 66 mA peak ampli- *

tude, and erase all pixels simultaneously by applying 7 A reverse current in the

external coil. The shape of the writing pulse is shown in Fig. 9c. Based on the

100 mW power dissipation constraint, we estimate that this particular device

(with a 200 gauss switching threshold) can be exercised at approximately 400

frames per second without the permanent magnet bias, and at approximately S

1000 frames per second with the permanent magnet bias. Similar considera-

tions of the second MOSLM (with a 300 gauss switching threshold) yields the

following results: with a 500 mA current in the external coil and no permanent

magnet bias, the required writing current pulse is 200 mA peak and 250 ns

duration and the erasing current is 7.5 A. With the permanent magnet 6.5 cm

away (40 gauss bias) and a 550 mA current in the coil, the required writing

current pulse is reduced to 170 mA peak and 180 ns duration and the erasing

13
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current is 8 A. Based on the 100 mW power dissipation constraint, this partic-

ular MOSLM can achieve 60 frames per second without the permanent magnet

bias, and 120 frames per second with the permanent magnet bias. The above

results of these two devices show that switching threshold plays an important

role in the achievable frame rate and should be used as a design parameter

in future MOSLM fabrication. The benefit of using a permanent magnet to

generate the strong external magnetic field bias and increase frame rate in the

present scheme is apparent. Finally as an illustration of the capability of the

drive circuit with the parallel-serial addressing scheme, one of the two MOSLMs

(the 300 gauss switching threshold device) was addressed with a complete pat-

tern (see Fig. 10) in about 0.6 msec. Missing portions of the pattern in Fig.

10 are due to disconnection of some addressing wires, imperfection in magnetic

domain triggering loops of some pixels (see reference of Fig. 1 in section 2.3)

or merely bad pixels in this particular device.

7 Conclusions

Possible limitations and methodologies for enhancing the frame rate of a MOSLM

were investigated. The findings indicate that direct parallel addressing is im-

practical for present commercially available devices because of thermal and

possible magnetic stresses and that the single parameter determining the high-

est frame rate is the switching threshold of pixels in the device. In our opinion,

the parallel-serial addressing scheme aided with a strong external magnetic

field bias provides the best strategy for achieving high frame rates with present

commercially available MOSLM device. Note that the switching speed of the I

magnetic domain itself in these device can be very fast (few tens of ns). Thus

the speed limitation is primarily due to the heat generated by the ohmic losses

in the addressing wires. Further enhancement of the frame rate of MOSLMs

should be possible by exploration of new materials and fabrication techniques

that lead to uniform reduction of the switching threshold for all pixels and

reduction of the resistance of the addressing wires.
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