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PREFACE

The Geomechanics Division of the Structures Laboratory (SL) at the US

Army Engineer Waterways Experiment Station (WES) designed and constructed a

fast triaxial shear device (FTRXD) and is currently evaluating it under the

sponsorship of the Office, Chief of Engineers, US Army, as a part of Project

4A161102AT22, Task BO, Work Unit 005, "Constitutive Properties for Natural

Earth and Manmade Materials."A.

The investigation was conducted under the general supervision of Mr.

Bryant Mather, Chief, SL. Mr. John Q. Ehrgott, Geomechanics Division (GD), SL,

was responsible for development and evaluation of the FTRXD under the general

direction of Dr. J. G. Jackson, Jr., Chief, GD, SL. Performance tests were

conducted by Mr. Toney K. Cummins, GD, SL. Numerical evaluation of the FTRXD

was undertaken by Dr. William F. Carroll, Professor of Engineering at the

University of Central Florida (UCF) in Orlando, FL, under an Intergovernmental

Personnel Act agreement with WES. This report, prepared by Dr. Carroll, docu-

ments the first phase of the evaluation of the FTRXD.

Dr. David R. Jenkins is Chairman, Department of Civil Engineering and

Environmental Sciences at UCF, and Dr. Robert D. Kersten is Dean of the

College of Engineering.

COL Dwayne G. Lee, CE, is Commander and Director of WES, and Dr. Robert

W. Whalin is Technical Director.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)

UNITS OF MEASUREMENT )

Non-SI units ofa measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain

feet 0.3048 metres

inches 25.4 millimetres

inches per second 0.0254 metres per second

mi is 0.0254 millimetres

pounds (force) 4.448222 newtons

pounds (force) per 0.006894757 megapascals
square inch

pounds (mass) 0.4535924 kilograms

pounds (mass) per cubic 16.01846 kilograms per cubic '

foot metre
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FAST TRIAXIAL SHEAR DEVICE EVALUATION

CHAPTER I 1

INTRODUCTION

1.1 BACKGROUND

In 1981 the US Army Engineer Waterways Experiment. Station
(WES) undertook the design and construction of a test apparatus
to provide a capability for conducting laboratory testing of
soils in times to failure of less than one millisecond. A test
apparatus patterned after the traditional triaxial shear device
was developed. The apparatus applies axial loads to a cylindrical
soil specimen 0.75 inches in diameter and 1.5-inches high. Load
is measured at the top and bottom of the specimen as a function
of time and the displacement of the top of the specimen is also
measured. The constant confining pressure on the specimen during
testing is controlled and recorded. The apparatus is the Fast
Triaxial Shear Device (FTRXD). The device and some soil specimens
tested to failure in it are shown on Figures 1.1 and 1.2.

The rapid loading of soils in a triaxial testing device was Avg

done by WES earlier in the 1960's in conjuction with research on
the dynamic bearing capacity of soils. A dynamic triaxial test
apparatus was designed and constructed. The results from testing
with the apparatus on highly plastic clay specimens, 1.4 inches
in diameter by 3.0-inches long, were used to interpret dynamic p.

bearing tests of small plates resting on the clay. The apparatus,

the results obtained from it, and their uses are described in
Reference 1.

1.2 PURPOSE AND SCOPE I

The purpose of this report is to define the nature of the
problem posed in interpreting the results of testing soils with
the Fast Triaxial Device (FTRXD), to present the steps taken to
date in the evaluation of the device, and to outline those
planned for the future. To the extent necessary to understand its
operation and therefore the difficulties in understanding the
meaning of test results, pertinent characteristics of the FTRXD
are presented in Chapter 2. Moreover, a description of selected e..
properties of the soil used in the FTRXD that bear on its evalua-
tion are presented in Chapter 3. A complete description of the
FTRXD is contained in Reference 2. The extensive earlier testing
by WES of the soil used is reported in Reference 3.

1.3 EVALUATION OF THE FAST TRIAXIAL SHEAR DEVICE

The steps taken so far in the evaluation of the FTRXD
include a modest amount of testing of remolded soils taken from "

I
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tfte CARES-Dry test site located at Luke Bombing and Gunnery Range
in Arizona and examination of the results of this testing. These
results are described in Chapter 4.

An analytical study of a model of the soil specimen as an
initial value-boundary value problem was undertaken to assess the
extent of inertial effects on stress at the top and bottom of the
model specimen. A purpose of this study was also to evaluate
"gross stress", the stress that is realized when the displacement
of the top of the specimen divided by the specimen length is
entered as strain into the soil's constitutive relationship. The
premise of this analysis is that the behavior of the specimen
during rapid testing could be described satisfactorily as
one-dimensional wave phenomena in a continuous medium exhibiting.1

realistic, nonlinear, uniaxial stress-strain characteristics. The
initial values and boundary conditions employed were analytical
representations of the measured conditions during testing. This
analysis is presented in Chapter 5. 0

Where inertial effects within the soil specimen are not
overriding, the FTRXD with a soil specimen in it has been modeled
as a two degree of freedom lumped mass system. A nonlinear spring
element and damper represent the soil specimen; linear springs,
dampers, and lumped masses represent the remainder of the device.
This modeling work is incomplete and will not be presented in
this report; it will be the subject of a later report.

Future plans call for modifications to the FTRXD for im-
proved control of the boundary conditions for the system and
improved measurement of them. Further testing on the CARES-Dry
remolded soil and other different soil types will be necessary to
refine and validate conclusions drawn from the analytical studies
of the FTRXD. Moreover, to more clearly define the very rapid end
of the testing spectrum, further analysis of the soil specimen as
an initial value-boundary value problem employing two-dimensional
axisymmetric wave phenomena with non-linear constitutive behavior
will be necessary.
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Fig 1.1, The Fast Triaxial Device (FTRXD)
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CHAPTER 2 lip,

THE FAST TRIAXIAL SHEAR DEVICE (FTRXD) .-81

2.1 THE APPARATUS

The FTRXD is a triaxial soil testing device. It consists of
a loading assembly, a base, a specimen chamber, a pressurization
system, upper and lower load cells, a Kaman gage, and a data
recording system. Schematics of it are on Figures 2.1 and 2.2,
photographs are on Figures 1.1 and 2.3, and Reference 2 provides
more complete details.

2.2 THE LOADING ASSEMBLY "4

The loading a-sembly is a piston-cylinder arrangement. The
piston consists o, a 4.0-inch-diameter steel piston to which is
rigidly attached a 0.75-inch-diameter by 7.125-inch-long steel

ram. The piston-ram has a mass of 1100 grams; the mass of the ram
alone is about 405 grams. Initially the piston is positioned with
its ram in contact with the upper load cell which in turn is in
contact with the top of the soil specimen. The chamber in the

cylinder above the piston is pressurized to a pre-determined
level using compressed nitrogen. For the slower tests - thodv i-
which failure occurs in 20 milliseconds or more - the chamber in :%
the cylinder below the piston is filled with oil and sealed until
the test is initiated. For faster tests, this chamber contains
air and is open to the atmosphere, and the piston and ram are
held in position by a tubular shear pin. .

The loading assembly is activated for the slower tests by ..

the rapid ipening of a solenoid valve in the lower chamber of the
cylinder which allows the oil to escape. The ability to control ..- ,

the magnitude of the pressure in the upper chamber and the rapid
opening of the valve releasing the oil from the lower chamber, •
provides a measure of control of the rate and magnitude of the
load pulse impressed on the soil specimen. The presence of the
oil in the lower chamber flowing from the chamber as the specimen
is loaded causes a characteristic shape in the load pulse and
damps undesirable vibrations in the system during testing.

The oil in the lower chamber does not permit the system in
its present configuration to bring a specimen to failure in less
than 20 milliseconds. For faster tests, therefore, there is no
oil in the lower chamber. The loading assembly is activated by
applying sufficient pressure in the upper chamber to shear the e

tubular shear pin holding the piston and ram in place. The result.0
is a rapid application of load to the soil specimen. A variety of
tubular shear pins are available in both aluminum and plastic and
with several different wall thicknesses. The rate of loading is pIN
increased by applying higher pressure in the upper chamber above
the piston and this is made possible by employing stronger
tubular shear pins.

5
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2.3 THE BASE ..

The base is a steel disk which serves to support the cham-

ber, the lower load cell, and eight studs which in turn support
the loading assembly.

2.4 THE SPECIMEN CHAMBER

The specimen chamber surrounds the soil specimen and con-

tains fluid subjected to the pressure which equals the confining
pressure for the test. There is a steel or plexiglas chamber for

tests with high or low confining pressures. When testing with the

plexiglas chamber, a wire mesh cylinder is placed around the

plexiglas to serve as a safety shield. The chamber is sealed to
the base and the loading assembly by O-rings and held in place by

the eight studs which also support the weight of the loading S
assembly.

2.5 THE PRESSURIZATION SYSTEM

Compressed nitrogen is the source of pressure used to drive
the piston and ram downward which loads the soil specimen during

testing. It is also used to apply the constant confining pressure
to the soil specimen. Two different arrangements are employed:
one for the slower tests (times to failure greater than 20

milliseconds) when oil is in the lower chamber of the cylinder

below the piston, and one for the faster tests with no oil in

this lower chamber. A schematic of the pressurization system is

shown in Figure 2.2.

In both arrangements, the confining pressure is applied to
the specimen chamber as pressurized nitrogen over oil and the

chamber is sealed until the test is completed. After the test,

this pressure and the system applying it are used to drain the

specimen chamber of the oil. We.

In the slow test arrangement, pressurized nitrogen is

applied to the oil in the accumulator forcing it into the lower

chamber of the loading assembly cylinder. This provides an

ability to carefully control the positioning of the piston and 0
ram and to set it for testing by sealing the lower chamber of the

cylinder. Once this lower chamber is sealed, the pressure on the
oil in the accumulator is relieved. Pressure is then introduced -j-

into the upper chamber of the loading assembly above the piston.
The test is initiated by the rapid opening of the solenoid valve

to the lower chamber so the oil can return to the accumulator.

In the fast test arrangement, the lower chamber of the

cylinder is left open to the atmosphere. The piston and ram are
adjusted manually and set for testing by emplacing the tubular
shear pin. Pressure is introduced into the upper chamber above

the ,ston and the test is initiated when the tubular pin shears.

8% a
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2.6 THE LOAD CELLS

The load cells used in the FTRXD were designed and built at
WES. There are four matched pairs of load cells. Each pair

consists of two essentially identical load cells - one which is
placed above the soil specimen during testing (the upper load
cell: ULC) and the other below the soil specimen (the lower load
cell: LLC). The differences between the ULC and LLC are only in
the manner in which they attach to the loading assembly and base.
There are four pairs to permit testing with load ranges of 500,

1000, 2500, and 10000 pounds. A photograph of a specimen
installed between an upper and a lower load cell is shown on
Figure 2.3. "

The load cells are stainless-steel cylinders loaded along

their axes. The central part of the load cells are hollow cylin- e
ders about 0.6-inches long with 0.6 inches for their outer
diameters (the 500-pound set has an outer diameter of 0.575
inches). The inner diameters of each set differ to permit in-
creasing wall t iicknesses for the increasing load ranges. The 500-
and 1000-pound sets have inner diameters of 9/16 inches, the 2500-

pound set's is 1/2 inches, and the 10,000-pound set's is 1/4
inches. Two pairs of strain gages are mounted on the outside

surface of each hollow cylindrical part. Each strain gage of the .

pair is located at the midpoint of the cylindrical axis and
diametrically opposite of its mate. One pair is oriented along 0.,

the axis of the cylinder and the other at right angles to i-t. The .
four strain gages are equally spaced around the circumference of K
the load cell. P

A solid cylindrical piece of stainless steel is an integral
part of each load cell and is located between the hollow cylin-

drical part and the soil specimen. It is 0.75 inches in diameter
and about 0.5-inches long - a 35 to 40 gram mass. This solid
piece serves as a pedestal directly in contact with the soil

specimen. At the other end of the hollow part are stainless-steel
pieces which permit the load cells to be engaged by the loading
assembly (ULC) or attached to the base (LLC).

The 500 and 1000-pound load cells have natural periods of
about 0.11 and 0.07 milliseconds respectively.

2.7 THE KAMAN GAGE

The displacement of the moving piston and ram with respect

to the fixed part of the loading assembly is measured with the
Kaman gage and its cantilever target. The Kaman gage is the

KD2300 series displacement measuring system manufactured by Kaman
Measuring Systems. It is a variable impedance transducer and is

attached to the stationary underside of the loading assembly. Its I
target is an aluminum bar 0.385-inches thick by 1.0-inches wide
rigidly attached to the moving ram as a cantilever. The •
cantilever extends 1.625 inches from the edge of the ram to a S

7
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region directly under the Kaman gage. The target for the gage,
therefore, is an aluminum surface about 1.625 inches by 1.0 .

inches in plan and 0.385-inches thick. Eddy currents induced in
the moving target result in variations in the impedance in the

Kaman gage. Since the strength of the impedance variations
depends on the distance between Kaman gage and the target, the

displacement of the target, and therefore of the ram, is sensed
and measured. The linear range of the Kaman gage is 300 mils and
its static frequency response is 50KHz at -3dB. The manufacturer

also suggests its transient response is 0.01 milliseconds with no
overshoot.o

The Kaman gage is designed to perform under static pressures

to 20,000 psi. Confining pressures in the FTRXD are not intended

to exceed 1000 psi. The gage's ability to perform under high
pressures and to sense accurately displacements up to 0.1 inches

occurring well within the sub-millisecond range was reported in
Reference 4. Preliminary analysis of displacement data recorded
during testing with the FTRXD indicates that the Kaman gage can

measure displacement variations at least this fast, meaning its

response time is considerably less than 0.1 milliseconds. The
natural period in the fundamental mode of the cantilever target,

however, is from 0.20 to 0.30 milliseconds, depending on how the

rigidity of its attachment to the ram is viewed.

2.8 THE DATA RECORDING SYSTEM

An AD509J amplifier was used to generate an excitation

circuit through the Kaman gage and the strain gages of the load

cells. The signals produced by these gages during testing were
thus amplified and could be recorded. The AD509J is a high-speed

amplifier exhibiting response times of less than 0.001
milliseconds.

A Rascal Stole 7DS tape recorder made a continuous record
of load and displacement data during testing. Magnetic tape
recording was employed to obtain high resolution load and .4

displacement data during the very rapid testing. At its top
recording speed of 60 inches/second, the recorder has a time base

error of less than 0.0015 milliseconds and an interchannel time

displacement error of less than 0.0007 milliseconds.

.
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Fig 2.1p FTRXD Schematic %

Upper Chamber
C C

y y
1 Piston- 1

Loading i Ram i
Assembly n n

d d
e Lower Cham- e
r ber r

Kaman I
Gage

Cantilever
Target

Upper
Specimen Load
Chamber Cell

Specimen

.. .%

Lower

Load
Cell

Base , I

9 .P



TV%

,.i

Fig 2.2, FTRXD Pressurization Schematic
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CHAPTER 3

SELECTED PROPERTIES OF THE CARES-DRY SOIL

3.1 DESCRIPTION 1

The so", used was from the CARES-Dry test site located at
Luke Bombing and Gunnery Range in Arizona. Soil was obtained from
near the surface of the ground and passed through a number 4
sieve (4.76-mm opening); only the portion finer than the number 4
sieve was used. It classifies as SC (clayey s-nd) in the Unified
Soil Classification System with 33 percent fines, a Liquid Limit
of 36 percent, and a Plasticity Index of 19 percent. An average
gradation curve is shown on Figure 3.1. Standard Proctor

compaction testing revealed a maximum dry density of 122 pounds
per cubic foot at an optimum water content of 11.6 percent.
Modified Proctor testing showed a maximum dry density of 132
pounds per cubic foot at an optimum water content of 7.9 percent.
This testing and the standard triaxial shear testing described

below are reported comprehensively in Reference 3.

3.2 STANDARD TRIAXIAL SHEAR (STRX) TESTING

Remolded specimens tested in STRX were prepared at water %

contents of about 5 percent and compacted to wet densities of
118-120 pounds per cubic foot. This was done for eleven specimens
by rodding the soil in three lifts into a mold 2.0 inches in

diameter by 5.0-inches high; there were also three specimens
prepared in this mold using five lifts. In addition, four
specimens were prepared in three lifts in a 3.0-inch-diameter by
6.0-inch-high mold and one in a 3.0-inch-diameter by 5.0-inch- :

high mold.

STRX testing was performed on specimens which had been first

subjected to isotropic compression under an equal all-around A
confining pressure. With the confining pressure held constant on
the specimen, axial load was applied to the specimen and the
consequent changes in the specimen's height and diameter were
measured. Pore pressures were not measured since the soil was
only 26-29 percent saturated. Stresses computed are total
stresses. The duration of these tests was five to ten minutes. 0

The reported STRX test results most comparable to the

initial FTRXD test results are those that relate principal stress '
difference to axial strain in remolded specimens of the soil at
comparable confining pressures. There are five such STRX test
results: one at a confining pressure of 0.4 MPa (50 psi), three

at 0.7 MPa (100 psi), and one at 1.4 MPa (200 psi). Linearized
plots of principal stress difference versus axial strain for
these five specimens are shown on Figure 3.2. Pertinent test

parameters for the five soil specimens are listed in Table 3.1.
e e



3.3 FAST TRIAXIAL SHEAR DEVICE (FTRXD) SLOW TESTING

The soil used initially in the FTRXD was remolded CARES-Dry

soil prepared as 0.75-inch-diameter by 1.5-inch-high specimens,
rodded into a suitably sized mold in three to five lifts.
Specimen wet densities were 112-119 pounds per cubic foot and
their water contents were 0.0-4.3 percent. Because these

specimens were smaller than the specimens used in the STRX
testing, only soil passing the number 8 sieve (2.36-mm opening)
was used.

Slow testing in the FTRXD was done in much the same manner

as for STRX testing. A constant confining pressure was applied,

the specimen wa loaded axially, and measurement was made of
axial load and change in the height of the specimen (see Chap 2).
The confining pressures employed were 50, 100, and 200 pounds per
square inch and pore pressures were not measured. In the results

reported here for six specimens, test durations were 120 seconds

and 1.2 seconds. Plots of principal stress difference versus
axial strain for these six tests are shown on Figures 3.3 and
3.4. Pertinent test parameters for the six specimens are listed

in Table 3.2.

The stress-strain curve for the specimen tested at a

confining pressure of 200 pounds per square inch with a test

duration of 1.2 seconds showed values of principal stress

difference of about one-half of what was expected. The shape of

the curve, however, was as expected. This curve is plotted with u

its principal stress difference values doubled. All of the plots

on Figure 3.3 are pairs of principal stress difference curves
reflecting the readings from both the upper and lower load cells

in the FTRXD. The upper load cell readings consistently plot
above the lower load cell readings in each pair. Though the

difference is small (less than 1.0 percent), it appears to be

larger in the tests completed in 1.2 seconds than those completed
in 120 seconds.

3.4 THE LINEAR-HYPERBOLIC STRESS-STRAIN CURVE

Examination of the "static" plots of principal stress
difference (PSD) versus axial strain for the CARES-Dry soil
(Figures 3.2 to 3.4) reveals a characteristic shape of the -

curves. They are relatively linear for stress levels up to 20-60%

of the maximum principal stress difference (peak PSD). Thereafter

they exhibit a smooth, non-linear trace with decreasing slope.
Some of the curves achieve a peak PSD where their slopes are
zero, prior to reaching 15% axial strain. Some do not, however,

especially those at the higher confining pressures. Increasing

confining pressure appears to increase the values of PSD at
corresponding axial strains and to increase the slope of the .k

curves. It also seems to cause the peak PSD to occur at larger
axial strains, or not at all prior to reaching 15% axial strain.
These characteristics are not atypical for many soils which
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exhibit changes in stress-strairt behavior due to changes in
confining pressure.

The stress-strain curves for the soil were not examined at
axial strains exceeding 15%. Axial strain is calculated as the

difference in axial displacement between the top and bottom of
the soil specimen divided by the specimen length. The calculation
assumes a uniform strain throughout the specimen. At small

strains specimen deformation is quite uniform, especially in the
central portion of the specimen. The calculated uniform strain in
this circumstance gives an acceptable indication of the actual
strain distribution. As strains increase, however, specimen
deformation becomes increasingly nonuniform and the calculated
uniform strain becomes less representative of the actual strain
distribution. At some point, there is little relationship between

the calculated uniform strain and the actual strain distribution.
This point is considered to occur at least by the time 15% axial

strain is reached.

To accomplish dynamic analyses of the soil specimen as it is
tested in the FTRXD, it is n-cessary to employ a stress-strain
relationship. Although the magnitudes of PSD, slopes of the

curves, and other properties must necessarily be the result of
testing, the manner of variation of stress with strain is
required to employ a form of the wave equation to gain insights
into the inertial effects in the specimen during testing. To this
end, a mathematical model of the specimen's stress-strain c-urve,
a constitutive relationship, must be specified.

Clearly any stress-strain relationship used should conform
to as many of the known facts about the soil as is possible.

However, the complexity of the relationship must be minimized or
the ensuing wave equation will at best be extremely difficult to
deal with, and may be unsolvable. At worst, it may not be
possible to even develop a wave equation. If the significant
behavior of the specimen is assumed to occur only in the axial
direction, then a one-dimensional (axial) stress-strain
relationship might suffice and a one-dimensional wave equation
can be developed and solved. Since each test is performed at a
constant confining pressure, the effects of the confining
pressure might be accounted for in part by assuming a unique
variation of principal stress difference (PSD) with axial strain-4.

for each test - different for each test but related to the test's
constant confining pressure. Other effects of confining pressure

will be reflected in the measured values of PSD and slopes of
the PSD-axial strain curve for the tests. One-dimensional wave
propagation through a cylindrical specimen twice as high as it is
wide is doubtless a reasonable characterization of specimen
behavior for some portion of its dynamic spectrum. It was
employed in the initial analyses of the FTRXD and is reported in

detail in Chapter 5.
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The nature of the experimental PSD-axial strain curves for
the CARES-Dry soil suggests that to describe them in one-
dimensional (axial) loading, several parameters are required .

The initial linearity of the curves requires two. The subsequent
smooth nonlinear yielding of the curves with decreasing slopes
requires at least two more parameters. Accounting for the peak
PSD when it occurs would require still another. Of the many
mathematical functions possible, what was selected and used was a
simple straight line for the initial part of the curve from the
origin to a stress level designated the maximum linear stress
(MLS). The remainder of the curve was portrayed as a two

parameter hyperbola which smoothly connected to the initial
straight line portion with the initial slope of the hyperbola

equal to the slope of the straight line portion. The hyperbola
continues to rise with decreasing slopes approaching an upper
limiting stress as strain increases indefinitely. For
identification, the function is called linear-hyperbolic.

Only three parameters are required to define this functional
representation of stress versus strain. Since the slopes of the
linear part and the initial slope of the hyperbolic part are the
same one parameter is eliminated, and since a peak PSD is not
directly accounted for another is eliminated also. Of the several
sets of three parameters which could be used, the set chosen was:

- the maximum linear stress (MLS),

- the corresponding maximum linear strain (EL), and
- the upper limiting stress (MS).

These three parameters are relatively easy to determine
directly from an experimental plot of PSD versus axial strain and
provide a good measure of flexibility in fitting a broad range of
experimental curves. Moreover, the initial linear part lends
itself to an easy beginning for a wave propagation analysis.
Figures 3.5 and 3.6 illustrate the linear-hyperbolic
stress-strain function. Shown are two sets of four different
curves. The first set (Figure 3.5) reflects a modest range of .
stress levels (MS=400-800 psi; MLS=25, 50, 75, and 100% of MS).
The maximum linear strain was arbitrarily set at 2%. The four %

resulting curves exhibit a broad range of curve shapes from the
smoothly yielding lower curve (MLS=100 psi, EL=2%, MS=400 psi) to

the elasto-plastic upper curve (MLS=800 psi, EL=2%, MS=800 psi).
The second set (Figure 3.6) illustrates the magnitude of change
of curve shapes that can be effected by varying the parameter EL
alone. Comparing the two sets of curves to one another (Figures

3.5 and 3.6), the corresponding stresses in each set of curves
are the same while the maximum linear strains differ.

On Figure 3.7 is reproduced the experimental principal
stress difference versus axial strain curve obtained using the
upper load cell during FTRXD test RDCFS14 (see Figure 3.3 also).
Fitting of the linear-hyperbolic function to this experimental %
curve is illustrated on Figure 3.8. The fitting was accomplished
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by selecting values of the three parameters (MLS, EL, and MS)
from a visual examination of the experimental curve. These values

were then used to calculate linear-hyperbolic stress-strain
values and plot the results. Visual examination of Figure 3.8
suggests that the linear-hyperbolic stress-strain plot is an
acceptable representation of the experimental curve. The center
linear-hyperbolic plot seems to be the best fit of the three

h A more refined curve fitting process is certainly possible.

However, first the on-going wave analyses of the test specimen or
the analyses of the test apparatus system should validate the
usefulness of the linear-hyperbolic function as representative of
soil stress-strain behavior. One approach to the curve fitting

process is to define criteria for fitting the mathematical
functions to the experimental curves, and then automate the
process using system identification techniques.

17.
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TABLE 3.1

Test Parameters for STRX Testing of Five CARES-Dry Specimens

Test Confining Wet Water Number Mold Test
Number Pressure Density Content of Lifts Size Duration

RDX-TXC-10 50 psi 119 pcf 5.0% 3 2 x 5 5-10
RDX-TXC-11 100 psi 119 pcf 4.9% 5 2 x 5 min
RDX-TXC-12 100 psi 119 pcf 5.0% 5 2 x 5 do
RDX-TXC-13 100 psi 119 pcf 4.9% 5 2 x 5 do
RDX-TXC-01 200 psi 119 pcf 5.1% 3 3 x 6 do

TABLE 3.2

Test Parameters for FTRXD Slow Testing of Six CARES-Dry Specimens S
%i

Test Confining Wet Water Number Mold Te'st
Number Pressure Density Content of Lifts Size Duration

RDCFS1O 50 psi 113 pcf 4.0% 3-5 0.75 x 1.5 120 sec ,
RDCFS14 100 psi 113 pcf 3.8% 3-5 0.75 x 1.5 120 sec
RDCFS18 200 psi 113 pcf 4.4% 3-5 0.75 x 1.5 120 5ec
RDCFS36 50 psi 119 pcf *4.0% 3-5 0.75 x 1.5 1.2 sec
RDCFS40 100 psi 118 pcf *4.0% 3-5 0.75 x 1.5 1.2 sec
RDCFS43 200 psi 119 pcf *4.0% 3-5 0.75 x 1.5 1.2 sec

batch value: specimens contaminated by posttest leakage

18
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Fig 3.2, STRESS-STRAIN TEST DATA U
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Fig 3.3, STRESS-STRAIN TEST DATA
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Fig 3.5, LINEAR-HYPERBOLIC FUNCTION
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Fig 3.7, STRESS-STRAIN TEST DATA
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CHAPTER 4

PRELIMINARY DYNAMIC TEST RESULTS FROM THE FTRXD

4.1 INTRODUCTION -,

Dynamic tests are those run rapidly enough to begin to cause
inertial effects to occur in the specimen, and consequently to
make wave analyses of the specimen of interest. For these

purposes, the dynamic tests were identified as those in which the
test duration was 30 milliseconds or less. The test duration was
considered over when an axial strain of 15% was reached in the

specimen. Seven such tests are described here to illustrate the
nature of the dynamic test results. Four of the tests were
completed in 28 milliseconds and three in 2 milliseconds.

Confining pressures of 50, 100, and 200 psi were imposed in both
the 28-millisecond and 2-millisecond duration tests.

4.2 LOAD-TIME DATA

Figures 4.1 through 4.4 show measured load versus time for

the four 28-millisecond duration tests with results from both the i

upper and lower load cells. The confining pressure used is S
indicated and is the only experimental quantity that differs

among the four tests; it is 50 psi for test RDCFS49 (Figure 4.1),
100 psi for test RDCFS52 (Figure 4.2), and 200 psi for both. tests
RDCFS56 and 57 (Figures 4.3 and 4.4). For some reason, the

magnitudes of upper and lower load readings in these latter two
tests was recorded as about one-half of what was expected, just .

as occurred in the slow test on the FTRXD at a confining pressure
of 200 psi (see Figure 3.4). Other testing of the CARES-Dry soil

at confining pressures of 50, 100, and 200 psi are the basis for
expecting the load values in these three tests at a confining
pressure of 200 psi to be much higher. The load recorded in all

four tests by the upper load cell was about 12 to 15 percent S

higher than for the lower load cell. Recall that this phenomenon
was also evident, but less pronounced, in the slow tests with
durations of 120 and 1.2 seconds. .

Figures 4.5 through 4.7 show measured load versus time for

the three 2-millisecond duration tests. Confining pressures of 0
50, 100, and 200 psi were employed on these tests, RDCFS69, 72,
and 74 respectively (Figures 4.5, 4.6, and 4.7). The conduct of
these very rapid tests precluded the use of oil in the lower

chamber of the load cylinder to control and damp the motion of

the piston-ram assembly. In test RDCFS69 (Figure 4.5) where the A

confining pressure was 50 psi, the resistance which the specimen
could offer to oppose the loosely controlled motion of the ram
seems to have been obscured by the motion of the ram. The
readings from the upper load cell (which moves with the ram)
reflect this strongly. The readings from the stationary lower

load cell are more predictable. The situation is similar, but

25

d



less pronounced in test RDCFS72 (Figure 4.6) where the confining
pressure was 100 psi and the specimen stronger. In test RDCFS74
(Figure 4.7) where the confining pressure was 200 psi, the
readings from the upper load cell show a variation one might
anticipate in a very rapid test, while the stationary lower load
cell shows a smooth variation, similar to what was exhibited in
the slower tests. Note the magnitudes of the load cell readings
in this test are about what one might expect rather than half
that much. Also note the upper load cell readings, at least in
test RDCFS74 (Figure 4.7), are on the order of 40 percent higher
than those for the lower load cell. The discrepancy between the
upper and lower load cell readings was consistent from the very
slow to the very rapid tests. The upper load cell always read
higher values. The discrepancy also increased significantly from
about 1 percent for the slow tests to 40 percent for the very
rapid tests.

4.3 DISPLACEMENT-TIME DATA

The measured variation with time of the displacement of the

top of the specimen during the seven dynamic tests is shown on
Figures 4.1 through 4.7 along with the load-time variation
discussed above. The displacement variation is not linear; it
curves upward with increasing slope - more severely the more
rapid the test. Displacement-time variation of the top of the

specimen is essential to the wave analysis of the specimen. It is %

taken as the boundary condition at the top of the specimen -so
that displacements, strain, stress, and load can be calculated
throughout the specimen. Moreover, the displacement versus time
data must permit the calculation of velocities and accelerations
with reasonable accuracy since acceleration and perhaps velocity
will appear in any form of the wave equation employed. One way to
achieve this calculation ability is to fit a mathematical
function to the displacement data, and then differentiate the

function to obtain velocities and acceleration. Measured velocity
and acceleration data along with measured displacement data would
be the best approach, but this was not possible at the time these
tests were run.

In tests RDCFS49, 52, 56, and 57 (Figures 4.1 through 4.4),
the variation of displacement with time is smooth with an
increasing slope throughout the duration of the test. The curves ,

approach a straight line during the latter part of each test.
This variation suggests a function whose slope or velocity begins
at an initial value of zero and then increases smoothly to a
limiting value. One might expect such a variation in the FTRXD
since these and all the slower tests were run with oil in the
lower chamber of the load cylinder. During the conduct of the
tests the piston-ram was initially at rest, the upper chamber of .
the load cylinder was under pressure, and the oil in the lower
chamber was under pressure. The test was initiated by rapidly
opening a valve in the lower chamber connecting it to the
accumulator at atmospheric pressure, while maintaining the
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pressure in the upper chamber. Thus the oil was forced out of the

lower chamber through the opened valve. The piston-ram moved
under the influence of the constant upper chamber pressure and
the lower chamber oil flowing back to the accumulator. The ram
therefore started from rest, its velocity increasing but
approaching a limit since the rate at which the oil could pass
through the opened valve was limited.

A simple mathematical function describing a smoothly
increasing velocity which approaches an upper limit is a two-

parameter hyperbola. Figure 4.8 shows a plot of the two-parameter
hyperbola (velocity), its integral (displacement), and its first
derivative (acceleration). The two parameters needed to define
the curve are its initial slope and its limiting value. The
initial slope (Ao) is the initial acceleration and its limiting
value (Vo) is the terminal velocity. Another useful calculated

parameter is the characteristic time (To), which is the ratio
Vo/Ao. The hyperbola can easily be fitted to the velocity 0
variation with time, if good velocity data is available and
varies as described. The fitting procedure is to plot the

reciprocal of velocity versus the reciprocal of time. The result
is a straight line for the hyperbolic function. The slope of this
line is the reciprocal of the initial acceleration (Ao); the

intercept of the line on the 1/V axis is the reciprocal of the
terminal velocity (Vo). If the experimental velocity data also

plots as a straight line on these reciprocal axes, the hyperbolic
fit is achieved by reading the slope and intercept of the

experimental line.

On Figure 4.9 is reproduced the plot of measured
displacement versus time of the top of the specimen in test
RDCFS56 (see also Figure 4.3). The data were reported at 0.3-
millisecond intervals. The displacement was differentiated
numerically with a 3-point central difference expression on a 0.6-
millisecond time increment to obtain velocities at intervals of

0.3 milliseconds. The result is also shown on Figure 4.9. The
oscillating nature of the calculated velocity is not easy to
interpret. It probably reflects the effects of dynamics in the
FTRXD system, innaccuracies in recording the displacement data,

and the details of the numerical process used in differentiation.
Higher order difference expressions and corresponding larger time

increments were tried. They smooth the peaks and valleys of the S
oscillations some, but they also seem to change the overall shape

of the velocity-time curve. This overall shape of the velocity 0

curve is apparent on Figure 4.9, and could be represented "o

approximately by the two-parameter hyperbola.

Figure 4.10 repeats the motion data of Figure 4.9 and also S

shows the comparable motion described by a two-parameter
hyperbola. The velocity data derived from the experimental
displacement data was not good enough to permit fitting the
hyperbola to it using a reciprocal axes plot. Consequently, the
limiting velocity, Vo, was estimated by examining the slope of
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the overall displacement plot in the latter part of the test
duration. The characteristic time, To, was obtained by trying
several values and selecting the one that produced the best .
visual fit of both velocity and displacement. The result is shown
on Figure 4.10. As with fitting of the linear-hyperbolic function
to stress-strain data, a more refined fitting procedure for the

upper pedestal motion of the FTRXD could be developed. However it

should be justified by the motion data, the wave analyses of the
specimen, and the analyses of the FTRXD system. Moreover, the
addition of accelerometers or other motion measuring devices to

the upper pedestal may be necessary to validate both the
mathematical functions used and the procedures followed to fit

them to the motion data.

Figure 4.11 repeats the data of Figure 4.10, but adds

acceleration data. Differentiating the measured displacement
twice to obtain acceleration data required smoothing the velocity
data first. The smoothing procedure was to average the eleven
velocity values nearest each time value (the velocity value at

the time value with the five velocity values immediately before
and after). These eleven values included about one period of
observed oscillation on each side of the time value. The smoothed
velocity-time variation was then differentiated to obtain

accelerations in the same manner that the displacement-time
variation was differentiated earlier to obtain velocities. The
acceleration data is less meaningful than the velocity data and

affected by the same unknown factors, even more strongly. The

overall variation of acceleration, however, does seem to follow
the fitted hyperbolic acceleration which is plotted through it.

Figures 4.5 through 4.7 show the variation of the

displacement of the top of the specimen with time during the very
rapid tests RDCFS69, 72, AND 74. In these very rapid tests the

displacement curves turn up more sharply than in the slower .

tests, especially during the latter part of each test. Recall

that to achieve test durations of two milliseconds, oil could not
be used in the lower chamber of the load cylinder. Consequently
the motion of the ram in these tests is not restricted by the

flow of oil through a valve.

Figures 4.12 and 4.13 show the results of an analysis of the
motion of the top of the specimen during the very rapid test
RDCFS74. As with the data from the slower test RDCFS56 (Figures

4.9 though 4.11), the displacement data and the results of
differentiating it to obtain velocities are shown. Oscillations

are again present, but the overall variation of velocity with
time is apparent. Clearly in these very rapid tests, a two-

parameter hyperbola cannot be used to describe the motion. The -
velocity was smoothed by averaging the thirteen values of
velocity nearest each time value. The data were reported at time

intervals of 0.02 milliseconds so that the six velocity values on

each side of the time value included approximately one period of
the observed oscillations. The smoothed velocity variation was
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then differentiated to obtain accelerations in the same manner as
was done earlier. Displacement, velocity, and acceleration data
are shown on Figure 4.13. It is worth noting that the calculated
accelerations are large. The initial spike at 0.05 milliseconds
is 2200 g's. The calculated acceleration reaches values of 400

g's several times during the test, and sustains them from about
0.9 to 1.4 milliseconds. At this stage in the project no attempt
was made to fit a mathematical function to the motion data of the
very rapid tests. The initial wave analyses used to model these

tests were based on an assumed constant acceleration of the upper
pedestal through out the test, which leads to an upward curving
parabolic displacement-time variation.

4.4 DYNAMIC STRESS-STRAIN DATA

The experimentally calculated values of stress versus strain

for the dynamic tests are shown on Figures 4.14 and 4.15. Since
the stress was calculated from the load cell readings, it
necessarily includes the effects of inertial forces in the

specimen and the dynamics of the FTRXD, if they are present. When 4.

these effects are significant, they will mask the stress-strain
properties of the specimen on experimental plots such as these.

For the tests with a duration of 28 milliseconds (Figure
4.14), the relationships are very similar to all of the slower

tests. The differences in the upper and lower load cell readings
are noticeably larger than they were in the slower tests, a-nd the
magnitudes of principal stress difference are larger also. These

curves can be represented by the linear-hyperbolic function
equally as well as the slower tests can be, though clearly the
magnitudes of the parameters MLS, EL, AND MS would differ. It
would appear that the 28-millisecond duration and slower tests on

0.75-inch-diameter by 1.5-inch-high specimens of the CARES-Dry
soil are not significantly affected by specimen inertia or the
dynamics of the FTRXD.

The tests of 2-millisecond duration (Figure 4.15) also show

a similar manner of variation of stress with strain - that is one
which can be reasonably represented by the linear-hyperbolic

function - when the effects of inertia and system dynamics can be
screened. Figure 4.15 shows the plots of stress and strain for

the very rapid tests using only the stationary lower load cell.
For test RDCFS74 at a confining pressure of 200 psi, the curve is
remarkably similar to stress-strain curves of slower tests.
Recall at this high confining pressure the specimen was strong

enough to not be dominated by the loosely controlled motion of
the piston and ram. The very rapid tests at lower confining
pressures are also shown on Figure 4.15. Stress and strain does
not track so well for these tests since the overpowering motion
of the piston and ram is evident. Attempting to calculate stress

directly from the upper load cell readings is not meaningful. The
moving upper load cell clearly registered significant inertial
effects of its motion as well as that of the rest of the FTRXD. ".
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Fig 4.3, LOAD-DISPLACEMENT TEST DATA
CONFINING PRESSURE = 200 pi, (RDCFWS)
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Fig 4.5, LOAD-DISPLACEMENT TEST DATA
CONFINING PRESSURE = 50 Pal, (RDCF39)
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Fig 4.7, LOAD-DISPLACEMENT TEST DATA
CONFINING PRESSURE 2.00 pi, (RDCF74)
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Fig 4.8, HYPERBOLIC UPPER PED. MOTION
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Fig 4.10, UPPER PEDESTAL VELOCITY
MEAS & HYP, TEST RDCFS,,
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Fig 4.12, UPPER PEDESTAL VELOCITY
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Fig 4.14, STRESS-STRAIN TEST DATA
DURATION = 28 me . RDCF 49, 52, 5.
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CHAPTER 5

THE ONE-DIMENSIONAL FTRXD SPECIMEN MODEL

S
5.1 BACKGROUND

The FTRXD soil specimen is a right circular cylinder whose
height is twice its diameter. For static or slow testing, it is
assumed to be a differential element of soil exhibiting load and A
deformation characteristics which can be measured and related
directly to its stress-strain properties. Displacements, strain
and stress are assumed to be uniform throughout the specimen. The
longer the cylinder is in proportion to its diameter, the less
are the effects of end restraint of the specimen by the test
apparatus on the assumed uniform stress and strain distribution
within the specimen. On the other hand, the longer the specimen
is, the more likely is the occurrence of buckling. A height to
diameter ratio of 2.0 is usually taken as the compromise that
will lead to satisfactory static or slow test results. For
dynamic testing an additional consideration is that the longer
the specimen is in relation to the product of its propagation
velocity and test duration, the more noticeable will be the

inertial or wave effects.

The cylindrical soil specimen is failed in shear by %
compressing it axially. The specimen shape and testing action .
naturally lead to a one-dimensional view of phenomena occurring

during testing. Most triaxial tests are run at a constant lateral
confining pressure so that the application of axial compressive
loads causes one to presume the presence of a controlling

uniaxial stress: the difference between the axial stress and the
lateral confining pressure or principal stress difference (PSD).
The relationship between PSD and axial strain is what static and
slow triaxial testing measures directly. This relationship was

discussed in Chapters 3 and 4 and its representation by the
linear-hyperbolic function described. When triaxial testing is

dynamic, that is when inertial effects and wave phenomena are
evident, the specimen can no longer be considered a differential
element of the soil. The FTRXD attempts to measure the initial
values and boundary conditions of the specimen. Further analysis
is necessary to ascertain any constitutive relationship between
PSD and axial strain.

There are decades of experience in static or slow triaxial

testing of.soils in which this one-dimensional approach has been
employed with good success. There is considerable more recent

experience in which one-dimensional wave analyses of triaxial

specimens have been accomplished. These employ a resonant or

standing wave of stress and strain along the axis of the specimen
at very low levels of stress and strain. They are carried out
with either compressive or torsional loading and measure either
rod or shear wave velocities, depending on the loading. They also D
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determine the sensitivity of the wave velocity to the confining
pressure and to rate effects. Rate effects can be observed by
changing the frequency or wave length of the specimen standing
wave. The wave length of the specimen standing wave may be
changed by using excitation frequencies at several successive
modes or by preparing specimens with identical properties but
different lengths. Reference 5 describes resonant column triaxial
testing.

The FTRXD is intended to obtain dynamic soil properties at a
wide range of stress and strain levels and loading rates. The
specimen shape and the compressive loading suggest that the
phenomena of interest may involve one-dimensional waves of

displacements, strain, and stress propagating back and forth
through the specimen along its axis. These waves occur as a
result of the monotonically increasing displacements imposed on
the top of the specimen by the FTRXD. Within the specimen, the S
resulting displacements, strains, ard stresses also increase,

though neither uniformly or simultaneously. The motion of the top -'

of the specimen essentially precludes a decrease in the
magnitudes of stress or strain from occurring 

in the specimen

during the test. Thus the relationship between stress and strain .
in the specimen need only reflect loading. Indeed unloading
cannot be measured. Figure 5.1 shows the physical model of the
one-dimensional FTRXD specimen and the end conditions imposed on M

i t.

5.2 THE ONE-DIMENSIONAL WAVE EQUATION

Shown also on Figure 5.1 is a cylindrical slice of the FTRXD
specimen whoEe diameter D is the same as the specimen's but whose --

height is the infinitesimal dx of the axial position coordinate
x. The top of the slice is shown displaced down from its initial
position by an amount,

u = u(x,t).

The bottom of the slice is displaced down an amount,

u + u dx.

The displacement u is of course a function of both the position x '5.

of the slice in the specimen and the time t elapsed since loading

of the specimen began. The symbol, u is the first partial ,..

derivative of u with respect to x; for small strain theory
E < 15% ), u equals the axial strain. Axial stress (a) andx

strain (E) are shown at the top and bottom of the slice, changed
by differential amounts. They too are functions of x and t. The
symbol a is the first partial derivative of stress with respect

to x and the symbol E is the first partial derivative of strain il
with respect to x. The differential changes in u, E, and a are
negative since the specimen is being increasingly compressed.

Moving down the specimen from its top in the positive x direction
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and recalling that the top of the specimen is displaced downward
during loading while the bottom remains fixed, displacements
within the specimen decrease and stress and strain become
increasingly compressive or negative.

Applying Newton's Second Law to the slice,

(o+u dx)(nD2/4) - a(vD 2 /4) = (gAdx)utt or

x gutt

The symbol u is the second partial derivative of u with respect
to the time t it is the acceleration of the slice. The symbol g

is the mass density of the slice and the specimen; it is taken as

constant.

The constitutive relationship is the functional relationship

between stress and strain,

a f(E) so that (5.2)

= (df/dE)(E ) = (f E)(u ) or

= E u where (5.3)
X XX

E (=df/dE =da/dE) is the first derivative of f(E) with respect
to E; it is the slope of the stress-strain relationship, or the
tangent modulus, and is a function of E. The symbol u is the
second partial derivative of u with respect to x. _

Combining equations 5.1 and 5.3,

(E/g) u = u . (5.4)
x x tt

Examining the kinematics of the specimen and slice,

du = (dE)(dx) = (dv)(dt). (5.5) '

The term du is the change in the displacement from the top to the
bottom of the slice (through dx) during the time period dt. The
symbol v is the velocity of the slice during displacement and
deformation; it is equal to the first partial derivative of u
with respect to the time t. The term dv is the change in the

velocity from the top of the slice to its bottom (through dx)
during the time dt while the term dE is the change in the axial
strain through dx occurring during dt. Substituting the

appropriate derivatives and differentials into equation 5.5,

(E dx)(dx) = (v dt)(dt) or
x t

(E )(dx/dt)(dx/dt) = (v ) or %
x t

(u ) (dx/dt)2  = (ut) or
x x t t
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C2 = U (5.6) .,r

x x t tThe symbol C (=dx/dt) is used for the first derivative of the

position x of the slice (where the differential changes or
disturbances occur) with respect to time. It is the propagation
velocity of the disturbances in the specimen. Comparing equation
5.4 with equation 5.6,

C2 = Elg. (5.7)

Equation 5.6 is the one-dimensional wave equation where C is
the rod wave velocity. When C is constant, E must be constant '.

dimensional Hooke's Law ( a = EE ). When the linear-hyperbolic

constitutive relationship is in effect, E is a function of strain
once the maximum linear stress o. (MLS) and corresponding maximum
linear strain E (EL) are reacheA. The propagation velocity in
the specimen, therefore, is a function of strain (equation 5.7)
also. Equation 5.6, then, becomes the one-dimensional 6

linear-hyperbolic wave equation.

5.3 THE ONE-DIMENSIONAL LINEAR-HYPERBOLIC WAVE EQUATION

Figure 5.2 illustrates the linear-hyperbolic stress-strain
function discussed in Chapter 3 and shown on Figures 3.5 and 3.6.
The cur've plotted on Figure 5.2 is the lowest of the four plotted
on Figure 3.5. The equations defining it are,

= E E when E < E and (5.8a) •
01

(E-E
(_)= when E > E (5.8b)

(I/E )+(I/o )(E-El) '
0 h1*. 4

where, •
= axial stress, E = axial strain, %

a' = maximum linear stress (MLS),

a = maximum stress (MS),
max

ah= maximum hyperbolic stress (MS-MLS),

El = maximum linear strain (EL), and

E = slope of the linear part of the function and
Wo initial slope of the hyperbolic part.

When E<€I'E

da/dE = E = E and
0

C2 = C2 E/g
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Substituting into equations 5.4 or 5.6,

(C)2 u u (5.9)
0 xx tt

Equation 5.9 is the linear one-dimensional wave equation.

When E>E 1  (l/E

da/dE = E = 0 so that,
[(1/E )+(l/ h )(E-E 1)J2

(a /E )2h 0 o -

E/E h(5.10)
EI 0o [ (( h /E )+(E-E )]2 -. 5

Recalling equation 5.4,

(E/g) u = u andxx t

(1IE )(E/g) u = (1/E ) u . (5.11)
0 xx 0 tt

Substituting equation 5.10 into 5.11,

(a hE ) 2
u = (g/E ) u (5.12)

[(r /E )+(E-E )]2 0 tt

Rearranging and recalling that

C 2 = E /g and that E u

the linear-hyperbolic one-dimensional wave equation for E>Ei may .
be written,

u• uxx ut t 'xx .____=____(5.13)

[(a /E )+(u -E )]2 CC a /E ]2
h o x 1 o h o

40 5.4 THE FINITE DIFFERENCE GRID

Equations 5.9 and 5.13,

ut

for E< E u - tt (5.9)

(C 2~

0
u u

xx (C )

for E>E (5.13)
1I ((h /E )+(u - I )] 2 [C a /E 2

h o x 1 oh 0N

are a system of second order two-dimensional partial differential
equations. They are linear for strains (u ) less than E , and

x 1
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nonlinear for strains greater than E . They can be solved 1%14
numerically for displacements, u(xptf, by replacing the partial
derivatives of u(xt) with respect to x and t with finite

difference expressions.

Central difference expressions are convenient, accurate, and
well-suited to the wave equation. Three-point formulas are the
simplest possible when second derivatives are present and they

provide suitable accuracy as long as the finite difference grid

is sufficiently fine. The grid is made up of points in the x-t
space which are equally spaced in each coordinate direction. The
difference between any two successive points in the x direction,

Xmmand x M 1  is the spatial increment Sx. Similarly, the
difference between any two successive points in the time
direction, t and tn, is the time increment St. The index m

refers to position anb the index n to time. Thus, ,

xm = (m-l)&x, m=1,2,3, ......

t = (n-l)&t, n=1,2,3, ......
n

The central difference expressions are centered" on the point
(x ,t ) in x-t space, and are identified and located by the
i n2ces (m,n). Three such expressions are required,

u - Um+l ,n Um-l ,n ...a)
x 26x

u -2 u + u

u - m+ln m,n m-1,n (5.14b)
x x2

um,n.l -2 u + um n l m 9n M .-
u (514c)ut t " •

The terms subscripted by the indices m and n are the values of

the displacements at the corresponding five points identified in
x-t space by the indices as,

(m-, n)

(mn-1) - (m n) - (mn+l)

x (m+ ,n)

-
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The times of the initial arrivals of the incident and
reflected waves at a point in the specimen are determined by the
initial propagation velocity C of the specimen and the distance

the waves have propagated through the specimen to reach the

point. These times of arrival plot as straight lines in x-t space .

with slopes equal to C , or in dimensionless (x/h)-(C t/h) space
with slopes equal to one. The symbol h is the height of the

specimen. Figure 5.3 illustrates the dimensionless (x/h)-(C t/h)

space in which Sx has been set equal to C at and both are equal
to 0.10. The horizontal lines of points define position lines
within the specimen (x=x ) which begin at the initial times ofm
arrival of the incident wave. The vertical lines of points are

time lines (t=t ) which also plot only after the initial arrival

of the incident wave. The sloping lines are the plots of initial
times of arrival of the incident and reflected waves at points
throughout the specimen. Only three traverses of the initial
arrivals of waves are shown: the incident wave first propagating

down through the specimen; the first reflected wave propagating
back up through the specimen after reflecting off its bottom; and

*the second reflected wave propagating back down through the
specimen after reflecting off its top. The tic marks shown locate

the points (x ,t ) which may be identified with their
M

corresponding ingices (m,n). Figure 5.3 is referred to as the

finite difference grid.

5.5 THE FINITE DIFFERENCE ALGORITHM

Substituting the difference expressions (equations 5.14)
into the linear 1D wave equation (equation 5.9) results in,

u r -2u +U u -2u +u
C ln m,n m-,n m,n+l m,n mn-lC 2 =o0r 6,

0 5x2  &t2 .

C St
u 0 )2 (u 2 u +u + 2u - um.nm,n+l -m+lon- mon+m-l,n mon m,n-I l,

(5.15a)

Equation 5.15a can used to calculate the displacement at grid %

point (m,n+l) provided that the displacements are known at grid

points (m,n), (m+l,n), (m-l,n), and (m,n-l). With respect to N
point (m,n+l), these four points each are located at it, above
and below it by an amount Sx, and earlier than it by amounts St

or 26t as illustrated below.

45 N 'f % NN %4N N -W '



%

t 1 t t n5n-i n+ n+l S.

_+ + +_______ t 1

x r-I (m-1,n)

xrn + (mn-1) - (m n) - (m,n+l)

"m+1 (m+Jn)

x .

The numerical stability of the equation 5.15a is greatest when
(C 0 t/Sx) is set equal to one (see Reference 6). In which case,o

u -+ n u (515b)
m,n+1 m+l,n Um-l,n m,n-

Similarly, substituting the difference expressions
(equations 5.14) into the linear-hyperbolic ID wave equation
(equation 5.13) and setting (C ot/Sx) equal to one results in, "4

* 0

(a/E)2 (u- + u We
um,n+1 h 0 um+l,n -rn ,n M-mn + 2umn - m,n-1

h + m-,n m-),n E )2

E 26x (5.15c)o %%
Although equation 5.15c is more complex than equation 5.15b, both

are applied to the finite difference grid in exactly the same
way. When the axial strain is less than the maximum linear strain
(EI), equation 5.15b applies; when the axial strain is greater
than the maximum linear strain, equation 5.15c applies. Clearly
the values of displacement calculated using equation 5.15c will
depend on the values of the parameters (a,' E., and amax ) which
deterrine the linear-hyperbolic stress-strain function. Note "',

that,
E /- /%

o l 1

5.6 INITIAL VALUES AND BOUNDARY CONDITIONS 1

The application of the finite difference equations (5.15) to
the finite difference grid (Figure 5.3) requires that
displacements be known at the top and bottom of the grid and
along its sloping left edge. These grid borders represent
respectively the boundary conditions for the specimen and its
initial values. The finite difference algorithm is expressed in k
terms of displacements, so the boundary conditions and initial
values must also be known as displacements.
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Since the specimen and FTRXD are at rest prior to the start
of testing, the initial values for the specimen are all zero.
That is at time t = 0, displacements are equal to zero. Moreover, .

they are also equal to zero within the specimen after t = 0 and
until the initial arrival of the incident wave. Thus along the
sloping left edge of the finite difference grid the displacements
are known and are equal to zero.

For the one-dimensional problem, there are two boundaries:
the top of the specimen and its bottom. The bottom is fixed so V
that the boundary condition there is simply that displacements

remain zero throughout the test. It is stated mathematically as,

% ~Ub to = u(h,t) = 0 (5.16a) ..

The top of the specimen moves with the upper pedestal or .v
piston-ram of the FTRXD as described in Chapter 4 (Section 4.3).
For tests whose durations were 30 milliseconds or more, the
two-parameter hyperbola was found to represent the velocity of

the piston-ram with reasonable accuracy and is illustrated on

Figure 4.8. Recall that,

vto p = v(O,t) = v t/(to + t),

and its integral is,

u = u(O,t) = Vot - v t ln(1 + t/to), (5.16b)
top o 0 0 0

where a = initial acceleration

v = limiting velocity, ando

t 0= V0 /aa% o o 0'

Equation 5.16b is the boundary condition specified for the top of
the specimen when the test duration is 30 milliseconds or more so
that the two-parameter hyperbola is descriptive of the upper
pedestal velocity of the FTRXD.

For tests ruti with durations of about 2 milliseconds, the
two-parameter hyperbola does not describe the velocity of the

piston-ram. The displacement and velocity as a function of time 
-

for these tests are illustrated on Figures 4.12 and 4.13. The

displacement turns upward more sharply during that latter part of
the test than it does for the slower tests. For the purposes of
obtaining an initial analysis of the wave and inertial effects in
the specimen for these very fast tests with these complicated but
only roughly estimated boundary conditions at the specimen top,
the motion was approximated as one of constant acceleration.
Constant acceleration produces a parabolic displacement function,
whose curvature is a better fit for these tests than the integral

of the two-parameter hyperbola. The parabolic displacement is,
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utop u(O,t) = (a t2)/2 = (v t2)/(2t ) (5.16c)
0o0 0

where a = constant acceleration,o 
A N w

0A
v = velocity of the specimen top at the time

0
the incident wave first reaches the
bottom of the specimen,

t = time at which v is reached.
0 0

Equation 5.1bc is the boundary condition specified for the top of
the specimen for the very short duration tests in which equation
5.16b is not satisfactory. Note the constants v and t are

0
useful constants which are descriptive of the upper peaestal
motion, but which have different interpretations for equation
5.16c than for equation 5.16b.

The upper pedestal motion of the FTRXD (boundary condition
of the top of the specimen) is an essential part of the analysis.
Different results are obtained if the upper pedestal motion
changes. In describing the results of analyses of the FTRXD
specimens later in this chapter, the corresponding upper pedestal
motions will be illustrated also.

5.7 FINITE DIFFERENCE DISPLACEMENTS

The finite difference algorithm (equations 5.15) may bie %
viewed as a pattern in the x-t space of the finite difference

grid. When the displacements at the four grid points shown below
at times t and t are known, the displacement at the grid point * ..
at time t can be calculated. The calculations would be started

4

1 2 3 4 5 n

+ 1,3) _- + + -

2 + (2,2) - (23) - (2,4) +

3 (3 3) + +

4 +. +

m x

by centering the pattern on grid point (2,3), which has space
time coordinates (Sx,26t). The displacement at (1,3) is known
from the boundary condition at the top of the specimen; the %

displacements at (2,2) and (3,3) are known from the initial
values in the specimen. What is missing is the value of the
displacement at grid point (2,3). Indeed, all the displacements
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along the sloping line parallel to the left border of the grid

and one time increment St later are needed to use the finite
difference algorithm. The process is to move the finite
difference pattern down the sloping lines of the grid which are

parallel to the left border. The process is begun at the top left

of the grid as shown. On each successive pass of the pattern down

such lines, displacements are calculated on the sloping line one

time increment later. These newly calculated displacements are
then used in the next two passes to calculate corresponding later

displacements. In this way, a complete array of displacements,

u , is generated at the grid points in x-t space which satisfy

tpLnwave equations (5.9 and 5.13), the initial values, and the

boundary conditions (5.16). '1'

The constitutive relationship is initially linear so that
equation 5.15b is used until the strain exceeds the maximum ..

linear strain, E Equation 5.15b does not require the value of
- 1*

the displacement, u , it is centered on. Thus displacement

values on the slopinline one time increment later than the left

border of the grid are not required for the first pass of the

finite difference pattern down that line. However, these values
are required for the second pass which is down the sloping line

two time increments from the left border. They would be required
also for other algorithms, such as beginning the calculations
with equation 5.15c for a specimen with an entirely hyperbolic

constitutive relationship. For a linear specimen in which only
equation 5.15b is employed, the pattern could be moved down"

sloping lines only at odd numbers of time increments later than

the left border. Thus the requirement to first obtain the

displacement values along the sloping line one time increment

later could be avoided. It cannot be avoided in a linear-

hyperbolic specimen since equation 5.15c requires the value of
the displacement it is centered on.

The displacements on that sloping line one time increment

later than the left border of the grid, at grid points (n,n+l),
may be obtained by applying the finite difference patterns

(equations 5.15) along the left border, grid points (n,n).
%: Recognizing that of all of the initial values are zero,

u =0,n,n •,
u - u a.,

v =0O, n,n+1 n,n-1 = 0  '
n,n

u -u

~n~nn=n+1 n,nEU1n+l,n n-l,n 0f

Substituting these relationships into equations 5.15 shows that

for either equation 5.15b (E<Ei) or equation 5.15c (E>Ei),

= u (5.17)
n,n+1 n-l,n

49

r' W orv*** .1 r''.VV~ % W........



I'

Equation 5.17 is the starting equation for the finite difference
algorithm. It states that the displacements along that sloping
line one time increment later than the left border of the grid .

are each equal to the displacement of the top of the specimen one
time increment after it begins to move. -

5.8 FINITE DIFFERENCE STRAINS AND STRESSES

The algorithm and starting equation, equations 5.15 and A
5.17, are the basic tools required to obtain the solution to the %
wave equation, the array of displacements, u , in the x-t spaceI mn
of the finite difference grid. However, the m gnitude of the
strain at each step in the calculations must be monitored to
determine whether the linear or hyperbolic part of the specimen's
stress-strain relationship is in effect. That is, strain E must
be calculated and compared to the maximum linear strain l and
equation 5.15b or 5.15c invoked as appropriate. 1.

In general, strain may be calculated with the three-point
central difference expression (equation 5.14a) used to develop
the finite difference algorithm (equations 5.15), or

u -u
m+ln m-,n (5. b)

m,n 2&x

The displacements at (m+l,n) and (m-l,n) are known just prior to
employing the algorithm to calculate the displacement at (m,n+l).
The algorithm is center-based also, centered on (mn). Thus E mCn
is calculated (equation 5.14b), compared to EI, and equation m
5.15b or 5.15c used as appropriate. 1

The array of displacements, u, once generated, is needed
to calculate the strain at a pointm n the specimen as a function
of time. The stress at that point as a function of time then may
be calculated using the specimen's stress-strain relationship
(equations 5.8). The stresses at the top and bottom of the
specimen are the ones most directly related to the force measured
by the upper and lower load cells of the FTRXD. Therefore the
strains at the top and bottom of the specimen must be calculated
from the displacement array to obtain these stresses.

At the very top and bottom of the specimen, central
difference expressions cannot be used for the strain calculation.
Instead, forward difference expressions, focussed on the grid
points at x = 0 (m=l), are neccessary for the strain at the top.
Backward difference expressions, focussed on the grid points at
x = h, are necessary for the strain at the bottom. Since central
difference expressions are more accurate than forward or backward
difference expressions, four-point forward and backward
expressions were employed in an effort to maintain the same level
of accuracy that the algorithm possesses. •.
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*, Referring to the finite difference grid (Figure 5.3), the
strain finite difference expressions were not allowed to extend
over the sloping lines which mark the initial arrivals of the
incident and reflected waves. The displacements and strains
immediately adjacent to either side of these lines can differ
significantly, especially if the specimen has been loaded with a

pulse approaching the severity of a step pulse. Thus near the
grid points where the sloping lines intersect the top and bottom

*i of the grid, the four point forward and backward difference
expressions could not be used. At the first grid point on either

side of the intersections, two-point formulas were used; at the
second grid point on either side of the intersections, three-
point formulas were used. At the other points on the top and
bottom of the grid, the four-point expressions were used. The
two, three, and four-point forward and backward difference
expressions employed were (Reference 6),

x1 x2  x3  x4

&x u (x1 -1 1 - -
x I

Sx u (x ) 1 -i - -

x u(x) -3/2 2 -1/2
Sx u (x) 1/2 -2 3/2 -

x3

Gienth u (x ) -11/6 3 -3/2 1/3 (51%
S x u x (x1) -1/3 3/2 -3 11/6 (5.1)N

5.9 DIMENSIONLESS VARIABLES AND PARAMETERS

Given the three parameters required to define the linear-
hyperbolic constitutive relationship of the specimen (E , a , and

E ), the specimen length (h) to identify the geometric sizemof
tIe specimen, the mass density of the specimen (g) to quantify
inertia in the specimen, and the two parameters (v and t ) to
define the upper pedestal motion or boundary condiTions o the

specimen, direct calculation of displacements using equations

5.15 will produce an entire array of displacements in x-t
space for each set of values of these seven parameters. If each
parameter were to assume only four values, 16384 such arrays
might be calculated. For finite difference grid points separated
spatially by one-tenth of a specimen length, each displacement
array might contain 4000 displacement values (lOxlOx40). The
result, of course, would be an enormous volume of displacement
data. However, combining the sevenI parameters into dimensionless
groupings and setting the finite difference grid so that Sx
equals C 0't, reduces the number of parameters to three so that0

the number of arrays will be reduced to a small fraction of the
number that would be required otherwise (64 vs 16384). That is,
only three dimensionless parameters would be required to
determine dimensionless displacements in dimensionless space and
time.
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Dimensionless space z is taken as the ratio of the spatial N
coordinate x to the specimen length h. Dimensionless time T is
taken as the ratio of elapsed time t to the time required for the
initial wave to propagate the length of the specimen. Thus,

z - x/h and (5.19)

= C t/h where (5.20)

C = 4(E /g) ando o

E T= /
o 1 l

The upper pedestal displacement for a hyperbolic upper pedestal
velocity was seen earlier to be,

U to p  v t - v t ln(l + t/t ) (5.16b)

or, U = T T 0 In( + i /) where (5.21a)

dt to0 0Udt =(U top/h) (Co/vo)

= C t /h, So o o .

t v /a,
o o 0

v = limiting upper pedestal velocity, and

a = initial upper pedestal acceleration. 0
o

For constant upper pedestal acceleration,

u = (V t2)/(2to) (5.16c)
top o 0

or, U = -r2/2 where again (5.21b) S

u = (u /h)(C /v ), but
dt top 0 0

v = a h/C , and
.0 

a.

a = constant upper pedestal acceleration. •

Consistent with equations 5.21 dimensionless displacement is,

Ud = (u/h)(Co/Vo). (5.22)
d 0 0

Dimensionless strain is determined as,

E (u u )/z -z) or
d d2 dl 2 1

(u /h u /h)(C /v )/(x /h x /h)
2 1 0 0 2 1

Ed " (C /Vo) (5.23) S
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Dimtensionless stress is determined by using the expression for

dimensionless strain (equation 5.23) on the stress-strain

relationships for the specimen (equations 5.8). The result is,

E d/E dhfor o< w wradh where (5.24a)
frd "max =E /E + 1

dl dh -

E dh = h (Co0 /V)

E = characteristic hyperbolic strain,

E -E o /E -E
0 1 max 0 1

(E - E )/(E +E - E + E~ /E
F d dl dh d dl + Cdl dh (52.

For E>E l ,  rd iq/Wqx = /E (5.24b) 
Cdl /dh + 1

S=E (C /v
dl 1 0 0

' F

The finite difference algorithm, equations 5.15, may be expressed

in term tof dim nP 4 dp1Ptm~nti hy wnq thP P~prerion 'N
for dimensionless displacement (equation 5.22) on equations 5.15. %.9

The result is,

for E< ,  Udmn+l = Udm+lpn + Udm19n Udmpn-l (5,5a

For C>E , . '
WU - Eu +u )

- (Udm+ln dmn dm_1 ,n _2u--

dmn+l dmon dmyn--
U -U
dml pn dm-1,n /Ed).

h+2 EdZ dl dh (5.25b)

where U dm,n+l m n+ (C a o/ 0

C = E (C /V),
dl 1 o o

Cdh Ch (Co/v ), and %

6z = 6(x/h) = 6T = (C t/h) . •
a

Finally, the starting equation (equation 5.17) may also be
expressed in dimensionless terms as,

Uu( 5.2P6)".,_,
Udnvn+l Udn-lyn

5.10 UPPER PEDESTAL VELOCITY LIMIT

Equation 5.7 showed that the propagation velocity of
displacement, strain, and stress disturbances in the specimen

was, S
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C = 4(E/g) , ..

where E and thus C are functions of strain (E) and therefore are

functions of (xt) or (zr). Clearly as time elapses after the
onset of loading, the propagation velocity decreases since the
tangent modulus E of the specimen's stress-strain relationship

decreases. Indeed, for large strain, the propagation velocity
approaches zero. On the other hand, the velocity of the upper
pedestal, in general, increases as time and strain increase. The
one-dimensional wave equation (equation 5.6) is valid only as
long as particle or slice velocities in the specimen are

controlled by Newton's Second Law and the stress-strain
relationship specified. Thus the velocity of the upper pedestal
nust not exceed the propagation velocity in the specimen.

From equation 5.10,
0(ah/E ) 2

E/E = o ________ or (5.10)

0 [(a /E )+(E-E )]2
h o 1

a h /E 0

C/C = o and 0
crh/E o + E'E

C o E ..

C oh h = h/E (5.27)

h 1

For hyperbolic upper pedestal motion,

v t v i

v t 0 (5.28)

t + t 0 + S

Comparing equation 5.27 to 5.28 reveals that the wave equation
calculations are valid for hyperbolic upper pedestal velocity as
long as, 'A

E = IC /v > (E + Ch - E 1) + Edl (5.29)
do 00 o h 1 + T

0%

At present it is difficult to achieve experimental values for

C smaller than about 30 (E <15) when the upper pedestal
dl % .1veocity is'hyperbolic. The Vargest that E will ever be is 15% or

0.15, E will be from 0.05 to 0.10, and E from 0.01 to 0.05. 0
o 1

Thus the limit indicated in equation 5.29 will never be reached.
Even when using a theoretical value of Edo as small as 5 ( dl<3),
the limit is not reached. d

For constant upper pedestal acceleration,
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v top a t =v . (5.30)

Comparing equation 5.27 to 5.30 reveals that the wave equation
calculations are valid for constant upper pedestal acceleration
as long as, -

E E C /v > (E +E E +E(.1
do o o + h - l T + Edl (5.31)

To date, experimental values of E of about 20 have been
achieved with a constant upper pegestal acceleration. Smaller
values might also be possible. A theoretical value as small as 5
(with a constant acceleration of about lO0Og and E = 2.5) is
useful to illustrate the limitation imposed by equa ion 5.31.
Taking the largest reasonable E (=0.15), E (=0.10), and the

0corresponding E (=0.05), the wave equation calculations would be
valid until at least a dimensionless time T of about 12. However
for these test conditions, that 15% failure strain will be
reached in a dimensionless time of about T=8 so that again the
limit expressed in equation 5.31 will not be reached.

5.11 PROGRAM FTSP 'a?

The one-dimensional linear-hyperbolic wave equation was 0
solved in dimensionless terms employing equations 5.21, 5.25, and
5.26. Dimensionless strain and stress at the top and bottom of -'
the specimen were calculated from the resulting dimensionless
displacements using equations 5.23 and 5.24.

To compare the calculated top and bottom stress, which
accounts for one-dimensional inertial effects in the specimen,
with the stress usually derived from triaxial testing, a third

astress, termed gross stress was also calculated. Gross stress is
the stress obtained when the displacement of the top of the
specimen divided by the length of the specimen is entered as
strain into the specimen's constitutuve relationship. The strain S
so used is termed gross strain. Gross stress and strain were
obtained in dimensionless form using equations 5.21, 5.22, 5.23,
and 5.24.

The equations were coded for solution on a computer in A
FORTRAN (F77) as Program FTSP. A complete listing of Program FTSP 0
is contained in Appendix A. The code runs interactively with a
minimum amount of input required from the keyboard. The boundary- '
conditions are established by providing a value for Tr , one of
the three dimensionless parameters. ',

T = C t /h = 0, for a step velocity and linearly
0 O0 0increasing displacement of the

the upper pedestal,

'o > 0, for hyperbolic upper pedestal velocity, and
0

T 1000 for a constant upper pedestal acceleration. 0
0
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The finite difference grid is defined by specifying the
number of increments which the specimen length is divided into

and the duration over which the calculations will be made.
Specifying the number of increments allows the calculation of Sz

and ST. The duration is set by stating the maximum even integer
value of T. For slow tests (duration = 28 milliseconds) in which
S(=C t/h) was about 125 at E=15%, good numerical accuracy was
achieved with Sz=0.10. Rapid tests (duration = 2 milliseconds),
in which T was about 9 at E=15%, required 6z=O.05 to achieve
satisfactory numerical results.

Finally, values for the remaining two dimensionless

parameters, t (= E C /v ) and a/ la (= MLDS), are entered.

The program tngenerates an array mf imensionless displace-
ments in dimensionless space and time, and calculates the

dimensionless top, bottom, and gross stress and strain.

Program FTSP was compiled with the Microsoft FORTRAN
Compiler (version 3.3) both with and without a math coprocessor.
With the coprocessor, the compilied code requires 295 kilobytes

of random access memory and takes 1-3 minutes for one data run on
an IBM PC/XT. Without the coprocessor, 302 kilobytes of random

access memory are required and a data run takes 7-15 minutes. The
bulk of the random access memory requirement occurs because FTSP
is written to accomodate up to 50 increments in a specimen length
(Sz=0.02) and up to 1000 dimensionless time steps (maxT=10006z).

A sample run from Program FTSP is contained in Appendix B.
In this run, •

0 = C t /h 5.0,

Edo C /v = 10.0,

1(l max MLDS = 0.25,

S z = ST = 0.05, and -'

max T = 40.0

5.12 SPECIMEN TOP, BOTTOM, AND GROSS STRESS -..

Figures 5.4 through 5.20 are plots of the top, bottom, and
gross stress data generated by Program FTSP and illustrations of
the details of the upper pedestal motion used. The plots attempt

to portay a spectrum of specimen behavior as the values of the
dimensionless parameters change. Five values of 0 were used to
vary the upper pedestal boundary conditions. These were,

T= 0.0 step velocity pulse, "V..
o e rl
= 5.0 extremely rapid hyperbolic velocity,
- 10.0 very rapid hyperbolic velocity, .

= 20.0 rapid hyperbolic velocity, and
= 1000 extremely rapid constant acceleration. S
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Six values of Ed were used to reflect a range of ,
constitutive behavior of the specimen from soft to stiff relative
to the rapidity with which the specimen is loaded. These were,

E = 5.0
do-10.0

= 20.0 p
= 30.0

40.0

In general for a given test rate (v ), the stiffer specimens have
higher values of C (E C /v ) than the softer specimens do.

do 00a 0

Only one value of a./c (= MLDS = 0.25) was used. This
parameter essentially relecT the overall shape of the specimen
stress-strain curve which translates directly into the overall
shape of stress-time or stress-gross strain plots.

Figures 5.4 to 5.7 show the stress-time and stress-gross
strain behavior of a FTRXD specimen subjected to a step velocity
pulse of upper pedestal motion. The motion is simple; the top of
the specimen displaces linearly with time so that plots of stress
versus time are identical with plots of stress versus gross
strain. The step velocity pulse, however, is a very severe d%

loading of the specimen in the initial phases of the test. It
requires an enormous acceleration for a very short time at the
beginning of the test. Consequently, significant inertial
effects occur at the arrival of the incident wave and each
reflected wave at each point in the specimen. Though the step
velocity pulse cannot be achieved presently in the FTRXD, it is
included here because it illustrates clearly the differences in
the top, bottom, and gross stress due to inertial effects.

On Figures 5.5, 5.6, and 5.7 the gross stress plots as a
smooth linear-hyperbolic stress-strain curve. The stress at the -N

top of the specimen jumps instantaneously to a value comensurate
with the step loading and a wave propagates into the specimen.
The disturbance propagated is a change in strain proportional to
the step velocity imposed on the specimen top. The change in
strain may be interpreted as a change in stress using the
specimen's constitutive relationship.

The stress at the bottom must await the arrival of the
incident wave (at 7=1.0). Because it is reflected off the rigid
stationary lower pedestal, the stress at the bottom of the .

specimen jumps instantaneously at T=1.0 to a value equal to twice
the value of the stress change in the incident wave. A similar S
event occurs at the top of the specimen when this first reflected
wave arrives there (at T=2.0) and is reflected off the rigid
downward moving upper pedestal. The stress at the top then
increases instantaneously by an amount equal to twice the value J,

of the stress change in the incident wave so that stress
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at. the top now becomes equal to three times the value of the %
stress change in the wave. The process repeats at each subsequent V

initial arrival of the wave at the top and bottom of the %d

specimen, increasing the stress there each time by an amount
equal to twice the value of the stress disturbance in the wave. -s

In the early part of the test when stress varies linearly
with strain, the process is clear and simple and is illustrated
on Figures 5.5, 5.6, and 5.7. When stress and strain begin their -
nonlinear relationship, the stress change in the wave as a
consequence of the strain change is progressively smaller, in
conformity with the nonlinear stress-strain relationship. The
smaller stress change means that less resistance can be offerred

to the inertial forces so that the severe step pulse on its
arrival causes an overshoot and minor oscillation as it reflects.
These phenomena are evident in the figures. The smaller stress

change also means that the stresses at the top and bottom
increase by progressively smaller amounts on each reflection.
This latter result causes the stress-time and stress-gross strain
to display a nonlinear shape characteristic of the specimen's
stress-strain relationship.

Clearly in a test with a large enough step velocity pulse
imposed to cause failure (E=15%) to occur within just a few wave

traverses of the specimen (say T=10), the top, bottom, and gross
stress. would differ greatly. However if the top and bottom

stresses were carefully plotted, a curve drawn through the 'their
intersections would trace the specimen's actual stress-strain

relationship quite reliably. Such plots could be made by plotting
upper and lower load cell readings divided by an appropriate area
against the gross strain (upper pedestal displacement divided by
the specimen length).

If the specimen were more slowly loaded so that failure did
not occur until after many traverses of the wave, the differences

among top, bottom, and gross stress would be insignificant, and
perhaps not discernible. Then either the upper or lower load cell
readings divided by the specimen area and plotted against the
gross strain could be used directly as the specimen's stress-
strain relationship.

The overshoot and minor oscillation observed with the step

velocity pulse on each reflection after the stress and strain
levels in the specimen became high enough to exhibit a nonlinear
relationship, technically invalidate the data displayed. The

finite difference algorithm and Program FTSP have no provision
for stress-strain unloading. This is because except for the step S

pulse, unloading was not anticipated and never observed.
Moreover, this unloading (the oscillations) with the step pulse
is thought to have little effect on the important aspects of the
analysis. An unloading routine could be incorporated into Program
FTSP, but it would enlarge the memory requirements for the code



.0

and increase its computation time. It does not appear to be
justified at this time.

Figures 5.8 through 5.15 show the top, bottom, and gross
stress in specimens subjected to hyperbolic upper pedestal -
velocities. The Figures 5.8 to 5.11 are for T =5.0, the fastest

0
hyperbolic loading of a specimen shown. A hyperbolic upper V
pedestal velocity with a characteristic time t =0.9 millisecond
imposed on a 1.5-inch-long specimen whose rod wave velocity is
700 ft/sec would have T =5.0. At t=0.9 milliseconds half its
limiting velocity would0be reached; three-quarters of its
limiting velocity would be reached by t=2.7 milliseconds. Even
so, the top, bottom, and gross stress-time plots shown are much
less severe than they were for the step pulse. There is no
overshoot and the differences among the top, bottom, and gross
stress are much less.

Figure 5.10 shows the first quarter of Figure 5.9 expanded
for closer observation of the early part of the loading.
Differences among top, bottom, and gross stress are evident and %
perhaps would need to be accounted for. To observe stress-gross
strain behavior, Figure 5.11 graphs the second highest curve of
Figure 5.10 (do =10.0) as stress versus gross strain. Gross

stress plots as a linear-hyperbolic function as expected while
top and bottom stress oscillate in a minor way above and below

it. Because the velocity of the upper pedestal and thus the
strain and stress changes in the propagating wave are nonli'near,
the top and bottom stress oscillations about the gross stress
line are not symmetric as they were for the step velocity pulse.
Nonetheless, a trace of the intersections of the top and bottom
stress still provide a good representation of the specimen's

actual stress.

Figures 5.12 and 5.13 are for T =10. The curve for E =30 on
Figure 5.13 corresponds to the 28-millisecond duration tesas run
on the FTRXD and shown on Figures 4.1 to 4.4, 4.9 to 4.11, and
4.14. Clearly within the one-dimensional model of the specimen,
there is little difference in the values of top, bottom, or gross

stress. The differences evident on Figures 4.1 to 4.4 and 4.14 in
upper and lower load cell readings are probably not attributable
to inertial or wave effects within the specimen. Instead, they
are more likely the result of the dynamic behavior of the FTRXD
as an assemblage of deformable components possessing mass and the
instrumentation employed during testing.

Figures 5.14 and 5.15 portray the behavior of a specimen
whose upper pedestal velocity has T =20.0. From the point of view
of wave propagtion, these results are essentially static.

The truly dynamic tests were those run rapidly enough to
show significant inertial and wave effects. The fastest tests run
to date were those whose durations were about 2 milliseconds. The ."

results of these tests are shown on Figures 4.5 to 4.7, 4.12,

5 '
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4,13, and 4.15. The upper pedestal motion of these tests was
complex and could be only roughly estimated (Chapter 4, Figures
4.12 and 4.13). Consequently, constant acceleration of the upper
pedestal, a simple approximation of this motion, was used for the
analytical study of the inertial effects in the sample under very
rapid loading. Figures 5.16 through 5.20 show the results of this

study. Since only one parameter is needed to define the upper
pedestal boundary condition instead of two, only two
dimensionless parameters are required for the stress-time data
instead of three. These are a /a (= MLDS = 0.25) and E (
E C /v = 5, 10, 20, 30, 40, 1 5W Note that for constant
00 0upper pedestal acceleration, v is the velocity of the upper

pedestal at the instant that tee initial wave reaches the bottom J,
of the specimen; it is not a limiting velocity as in the case of
hyperbolic upper pedestal velocity.

The curves for Edo =20 are the closest approximation for the
2-millisecond duration tests run on 1.5-inch-long specimens of
the CARES-Dry soil. These are replotted on Figures 5.18 and 5.19
to T=10, the dimensionless time at which E is approximately 15%
for constant upper pedestal accelerations of 300 to 400g (see
Figure 5.16). Examination of Figure 4.13 suggests that the •
2-millisecond duration tests might be approximated using constant %
upper pedestal accelerations of from 300 to 400g.

Gross stress plots as a smooth curve between top and bottom
stress as expected, and as the linear-hyperbolic function on the
stress-gross strain plots of Figure 5.19. There are clear
differences among the three stresses. Top stress plots entirely
above gross stress and bottom stress entirely below it. The only
exceptions appear to be at T=2 and 7=4 where all three stresses
come together.

Figure 5.20 shows the curves for E =5 plotted to T=8. A S
1.5-inch-long specimen whose rod wave veocity is 700 ft/sec and r
which is subjected to a 1200g constant acceleration of its top,
might possess E =5. In addition, C=15% would be reached in about

do1 millisecond or T=8 and v =83 in/sec. The differences among top,
0

bottom, and gross stress are clearly much greater for this much
more rapidly loaded specimen. Nonetheless, gross stress plots
against gross strain as a linear-hyperbolic function, the correct
constitutive relationship for the specimen. It is bounded by top '1
stress above it and bottom stress below it as it was in Figure
5.19. Though neither top or bottom stress by themselves represent
the specimen's constitutive relationship well, some functional
combination of the two could be found which would. No attempt was
made to find such a functional relationship since it is not clear
yet whether constant acceleration for the upper pedestal is the
most reasonable representation of the upper pedestal boundary
conditions for the very rapid tests. 1

The clear differences between the upper and lower load cell
readings and the significant oscillations in the upper load cell

i

.,
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readings as shown on Figure 4.7 for the 2-millisecond duration

test, RDCFS74, cannot be explained from the specimen's dynamic

behavior alone. They presumably reflect the dynamic response of

the FTRXD itself and perhaps the instrumentation employed.
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FIG 5.1, FTRXD SPECIMEN PHYSICAL MODEL -
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Fig 5.4, UPPER PEDESTAL MOTION
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Fig 5.69 TOP STRESS & GROSS STRESS otI
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Fig 5. 8, UPPER PEDESTAL MOTION
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Fig 5.10, TOP, BOTTOM, & GROSS STRESS
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Fig 5412, UPPER PEDESTAL MOTION
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Fig 5.14, UPPER PEDESTAL MOTION A
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Fig 5.16, UPPER PEDESTAL MOTION
PARABOLIC DIMENSIONLESS PLO0TS

20
ig- NOTE: Vo Is mool a Ilmrnng vtellty

0 Is5 Yo = A)(h/Co)
17- A* ConO4ant

O 15 VELOCITY

14-

12 -,

11 - ACCELERATIONx 10
10- (=15% Ao~lg--

7-,

E=I56 Ao=143g--"

5- =IW~ Ao=187g-

21 .7 ElaK AOM400- -- DISPLACEMENT/20

'I 2 4 5 0 1 1~4 1'5 185 20

DIMENSIONLESS IME (Co&I/')

Fig 5.17, TOP, BOTTOM, & GROSS STRESS
U.P. ACCEL =A* MLDS =0.25

1.-

tA 0.8 E oCo/Vo=s

(A 0.6-
U) ."

'- 0.5-

CA

0.4-
z

FA 0...'.

z

0.2 0

0.1

0 2 4 6 8 10- 1 12 114 i6 18 20

DIMENSIONLESS TIME (ColA,)

71

%a



Fig 5.18, TOP, BOTTOM, & GROSS STRESS
U.P. ACCEL = Ao MLDS = 0,25

0.9

0.5

_ 0.7

t - 0 .1 -

0 . 5 E c ek v o 2 0

0 pz
LaA

2 0.2-

0 10
0 2 4 5 5 10 F .

DIMENSIONLSS TIME (Cet/9)

Fig 5.19, TOP, BOTTOM, & GROSS STRESS
U.P. ACCEL = Ao MLDS = 0.25 .:

0.9 - Plotted to Cot/h - 10.0

0.8 -

\ 0.7

0.5-

U- 0.5- 
0.

U) oCo/Vo 2-

w~ 0.4-

-- z
0

" ~ i 0-3v

z
0.2-

0.1 %I

0 20 40

DIMENSIONLESS GROSS STRAIN (kCo/Vo)

72
J IL



Fig 5.20, TOP, BOTTOM, & GROSS STRESS
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The FTRXD has demonstrated its ability to load a 1.5-inch- N.

long specimen to failure (E=15%) in 2 milliseconds. What is not
yet clear, however, is the meaning of the readings from the upper
and lower load cells and the Kaman displacement gage when ..4

specimens are loaded at this rate. For slower tests, those with a

duration of 28 milliseconds or more, these readings can almost
certainly be converted directly to the specimen's principal
stress difference (PSD)-axial strain relationship for the loading
conditions imposed. In these slower tests, the effects of loading
rate on the specimen constitutive behavior could then be
investigated by testing identical specimens at different loading

rates.

The lower load cell readings were always lower than those of
the upper load cell. The differences in magnitude between these
readings is not totally understood. It occurred in all of the
test results examined from the very slow to the very fast. The

faster the test, the larger the difference - from less than 1% in
the tests of 120-second duration to about 40% in the tests of 2-
millisecond duration. Some of the difference in the fast tests
can be accounted for by the wave and inertia effects in the.
specimen on the stress at the top and bottom of the specimen.
These effects are apparent on Figures 5.17 to 5.20. However, a
major part of the difference cannot be accounted for in this

manner. It must be attributed to the dynamics of the FTRXD itself
and perhaps to the instrumentation employed. Whatever the source,
it must be identified and either eliminated or quantified, if the
specimen's constitutive behavior is to be obtained from the load
cell data. As suggested in Chapter 5, the stress-strain behavior
of the specimen might be deduced from these rapid tests, but only
if reliable data are available from the load cells. In the very
rapid tests, data from both load =ells will be needed; in the
slower tests, data from one of the load cells will be necessary.

In the 2-millisecond duration tests, major oscillations
occurred in the upper load cell readings while only minor
oscillations were recorded by the lower load cell (see Figure
4.7). This phenomena cannot be explained from the wave and
inertia effects within the specimen. Instead, the dynamics of the
FTRXD must again be the source. The fact that the oscillations
were essentially only recorded by the upper load cell suggests
that the dynamics of the moving upper pedestal may have a major
effect on the upper load cell and little or no effect on the
lower load cell. Again, the stress-strain behavior of the
specimen might be deduced from these very rapid tests, but only
if reliable data from both the upper and lower load cells are
available. ,--
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The 500-pound load cell, used in the tests of 28-millisecond
duration or longer, had a natural period of 0.11 milliseconds.
The 1000-pound load cell, used in the 2-millisecond duration
tests, had a natural period of 0.07 milliseconds. Although the
response times of the load cells were not an important factor in
the test results examined, they must have contributed to the
minor oscillations recorded in the load cell readings. The
response times could be an important factor for tests in which
failure occurs in less than 1 millisecond.

The 2-millisecond duration tests on specimens with low
confining pressures were chaotic (see Figure 4.5 and 4.6).
Perhaps the weaker specimens (lower confining pressures) were
completely dominated by the dynamics of the upper pedestal.

Clearly the control and definition of the upper pedestal
motion is vital to the successful operation of the FTRXD and the
analysis of the test results obtained. The displacement-time plot
of the upper pedestal provides the upper boundary condition for
the specimen which in turn has a dominant effect on the
stress-time and strain-time plots. It also forms the basis for
the abscissa (strain) in stress-strain plots.

Differentiating the measured displacement-time data for the
upper pedestal in the very rapid tests to obtain upper pedestal Z

velocities, revealed oscillations in the calculated velocity
data. Although the source of these oscillations is not clearly
understood, measuring the acceleration of the upper pedestal in
addition to its displacement should help to clarify what is

happening. To measure the displacement of the upper pedestal, the
Kaman gage uses a 1.625-inch-long by 0.385-inch-thick aluminum
cantilever target rigidly attached to the moving pedestal. The
natural period of the cantilever is 20 to 30 milliseconds. More
reliable displacement data would be obtained if its natural
period were 10% or less of the test duration.

The most controlled motion of the upper pedestal occurred
when there was oil in the lower chamber of the load cylinder of %
the FTRXD. This resulted in an upper pedestal velocity that was
reasonably represented as a two-parameter hyperbola. The
simplicity of this motion facilitated the wave analysis of the
specimen. However, the design of the load cylinder, at present,
precludes bringing a specimen to failure in lessi than about 20
milliseconds when oil is in the lower chamber. Additional and
larger orifices for the oil to leave the lower chamber during
loading would increase the speed with which testing can be i".i1
accomplished in this way.

With no oil in the chamber, the upper pedestal moved much
faster, taking the specimen to failure in about 2 milliseconds.
It can doubtless run faster yet if stronger tubular shear pins I
are employed in conjunction with higher pressure in the upper
chamber. However, the motion will still be loosely controlled and
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complex. It must be recorded definitively so that relevant
boundary conditions for a wave analysis of the specimen can be
employed. Clearly in faster tests, the dynamics of the FTRXD will
be even more important and must be understood.

Several recommendations regarding the evaluation of the
FTRXD are in order:

1. Install an accelerometer in the upper pedestal at the point of
the Kaman gage cantilever target so that both the displacement
and acceleration data of the upper pedestal may be obtained. The
accelerometer must be able to record accelerations accurately and
withstand very large acceleration "spikes. "

2. Install a cantilever target for the Kaman gage with a natural
period of 0.1 milliseconds or less. The shorter and the thicker
it is, the better. An aluminum cantilever of the same general 0
shape as the present one but 1.25 inches thick should possess a
natural period of less than 0.1 milliseconds.

3. Modify the load cylinder so that oil in its lower chamber can

be expelled faster during testing. More and symmetrically
positioned orfices of larger diameter would be desirable.
Recognizing the need to open the orifices simultaneously and very
rapidly, more than one orifice may be impractical. As a minimum,
the present orifice might be doubled in diameter. If simultaneity

of openings can be achieved, additional orfices will be a great

improvement.

4. Conduct a detailed examination of the load cells, their %
calibration, their response times, and the manner of recording
data from them. The purpose of this study would be to either
verify that the difference in upper and lower load cell readings

is not caused by the load cells themselves, or if it is, to
identify and remove the source or quantify its effects. The study
could also assess the limitations of the load cells in terms of

their response times. "1

5. Conduct a detailed dynamic analysis of the FTRXD as an
assemblage of deformable components possessing mass. Such an V
analysis has been begun by the author. The FTRXD was modeled as a 9
two degree of freedom system with a linear-hyperbolic massless
spring representing the soil specimen, and lumped masses and
linear springs representing the remainder of the system. The
model shows promise, but needs refinement. Better excitation data
(displacement-time or force-time) might be employed, mass might
be added to the nonlinear spring, and the analysis might be
extended to more than two degrees of freedom. The purpose of the
analysis would be to ascertain what the upper and lower load
cells should read during the very fast tests, to provide insights
into when and how the dynamics of the upper pedestal can dominate
the effects of the soil element, and to suggest ways to improve
the FTRXD so that more usable test data may be obtained. S
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6. Conduct a series of rapid tests with the FTRXD on a well
established soil, such as CARES-Dry soil, prepared in specimens
whose lengths vary from 1.5 to 3 inches and whose diameters
remain at 0.75 inches. The purpose of the testing would be to
validate the modifications to the FTRXD suggested above, :o

validate better the one-dimensional wave analysis of the specimen
described in Chapter 5, to investigate the effect of specimen
strength (confining pressure) on the dynamic response of the
FTRXD, and to validate and complement the dynamic analysis of the
FTRXD as recommended above.

7. Conduct a two-dimensional axisymmetric wave analysis of the
specimen initially as a linear elastic material. The purpose of .

this analysis would be to define the limits of the validity of
the one-dimensional wave analysis. As required, it would be
extended to a specimen possessing a postulated nonlinear
constitutive relationship which reflects the yielding and shear
failure anticipated in the triaxial testing of soils.

8. Conduct a series of rapid tests with the FTRXD on a variety of
soils prepared in specimen sizes from 1.5 to 4 inches. The FTRXD
would first be modified to accomodate specimens with diameters of
1.0 inch. The purpose of the testing would be to validate the
analyses of the FTRXD and to assess its utility in testing a
variety of soils for their engineering properties at very rapid
loading rates.
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APPENDIX A

PROGRAM FTSP (FORTRAN 77)
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C PROGRAM FTSP BY WF CARROLL, PROFESSOR, DEPT CEES, UCF

C
C THIS CODE SOLVES A 1D NON-LINEAR WAVE EQUATION FOR NORMAL STRAIN
C AND STRESS AT THE TOP AND BOTTOM OF A TRIAXIAL SPECIMEN WHEN ITS

C UPPER PEDESTAL TRAVELS WITH A CONSTANT OR HYPERBOLIC VELOCITY OR
C WITH CONSTANT ACCELERATION AND ITS STRESS-STRAIN RELATIONSHIP IS

C INITIALLY LINEAR AND THEN HYPERBOLIC.
C THE SOLUTION IS A FINITE DIFFERENCE ONE.
C
C THE VARIABLES ARE DIMENSIONLESS:

C CTH - DIMENSIONLESS TIME (TIME TIMES INITIAL PROPAGATION
C VELOCITY (C) DIVIDED BY SPECIMEN LENGTH (H))

C CTOH - DIMENSIONLESS CHARACTERISTIC UPPER PEDESTAL TIME;
C CTOH=C*TO/H WHERE TO=VO/AO:
C TO - CHARACTERISTIC U.P. TIME
C VO - LIMITING U.P. VELOCITY

C AO - INITIAL U.P. ACCELERATION
C CTOH = 0 YIELDS A CONSTANT U.P. VELOCITY

C = 1000 YIELDS A CONSTANT U.P. ACCELERATION
C 1000>CTOH>O YIELDS HYPERBOLIC U.P. VELOCITIES

C CVO - C DIVIDED BY VO.
C UHCVO - DISPLACEMENT DIVIDED BY H AND MULTIPLIED BY CVO.
C ECVO - STRAIN MULTIPLIED BY CVO; IT ALSO INCLUDES STRESS S
C DIVIDED BY THE MAX STRESS (MAX LINEAR STRESS PLUS

C MAX HYPERBOLIC STRESS).
C NSS - NUMBER OF INCREMENTS IN THE SPECIMEN LENGTH (H).

C NCTH - MAX NUMBER OF TIMES THE WAVE TRAVERSES H.
C AB - RATIO OF MAX HYPERBOLIC STRESS (I/B) TO INIT SLOPE (1/A)

C FOR A HYPERBOLIC STRESS-STRAIN RELATIONSHIP, AB IS A 0
C CHARACTERISTIC STRAIN FOR A PURELY HYPERBOLIC MEDIUM. .

C D - AB MULTIPLIED BY CVO.
C SL - MAX LINEAR DIMENSIONLESS STRESS.
C EL - MAX LINEAR STRAIN.
C EO - SUM OF EL AND AB, A CHARACTERISTIC STRAIN FOR A
C LINEAR-HYPERBOLIC MEDIUM.

DE - EO TIMES CVO.

COMMON /CINIT/ NSSNCTH,NTS1,DCTH,CTOH,DE,D,SL,EL,CF :4.1
COMMON /CU/ UHCVO(52,1052),ECVO(7,1052)

OPEN(9,FILE='FTSP.PRN',STATUS='NEW')

ALL INIT 5
S DALG

.- STRAIN

F -, ,ATUS='KEEP'

., ::,'
_']

I'1. -

:-1:,

'. K~l

'p
.................................................-....~*,- '



SUBROUTINE INIT
COMMON /CINIT/ NSS,NCTH,NTS1,DCTH,CTOH,DE,D,SL,EL,CF
COMMON /CU/ UHCVO(52,1052),ECVO(7,1052)..
WRITE(*, 100)

100 FORMAT(//1X,'ENTER THE CTO/H FOR UPPER PEDESTAL MOTION'!
@8X,'0 FOR CONSTANT U.P. VELOCITY, OR'/
@8X11>0 FOR HYPERBOLIC U.P.VELOCITY, OR'/
@BX,'1000 FOR CONSTANT U.P. ACCELERATION'//)
READ(*,*) CTOH
WRITE(*, 110) 5

110 FORMAT(//1X,'ENTER: THE NR OF INCREMENTS PER SPECIMEN',
@1X,'LENGTH (NSI)'/
@15X,'(MAX IS 50 AND MIN IS 4)'/
@BX,'THE MAX EVEN INTEGER VALUE OF CT/H'!
@15X,'(MAX IS 1000/NSI)'/
@8X,'THE SUM OF EL AND AB (=E0) MULTIPLIED BY CVO, AND'!
@8X,'THE MAX LINEAR DIMENSIONLESS STRESS (MLDS)'//)
READ(*,*) NSS,NCTH,DE,SL
ANSS=NSS
DCTH=1 ./ANSS .

NTS 1=NSS*NCTH+ 1
D=DE*( 1-SL)
EL=SL*DE
CF=1 ./(1 .+EL/D)
DO 120 N=1,NTS1

* DO 120 M=1,NSS+l
OHCVO(M,N)=0.

*120 CONTINUE
CTH=0.
DO 140 N=2,NTS1

*CTH=CTH+DCTH w:

IF(CTOH .LE. .00001) THEN

GO TO 130
END IF
IF(CTOH .GT. 999.9 .AND. CTOH .LT. 1000.1) THEN
UHCVO( 1,N)=.5*CTH**2

GO TO 130
END IF
UHCVO( 1,N)=CTH-CTOH*ALOG( 1.+CTH/CTOH) 5'

130 ECVO(1,N)=CTH
ECVO(4,N)=UHCVO( 1,N)
IF(ECVO(4,N) .LE. EL) ECVO(7,N)=CF*ECVO(4,N)/D p %5~

IF(ECVO(4,N) .GT. EL) THEN%
ECVO(7,N)=CF*((EL/D)+(ECVO(4,N)-EL)/(D.ECVO(4,N)-EL) I

ENDIF
140 CONTINUE 0

RETURN N
END
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SUBROUTINE FDALG
COMMON /CINIT/ NSSNCTH,NTSI ,DCTH,CTOH,DE,D,SL,ELCF
COMMON /CU/ UHCVO(52,1052),ECVO(7,1052)
DO 100 N=2,NSS
UHCVO(N,N-1 )UHCVO( 1,2)

100 CONTINUE
DO 110 N=3,NTS1
DO 110 M=2,NSS
NN=M+N-2
IF(NN .EQ. NTS1) GO TO 110
UHCVO(M,NN+1 )UHCVO(M+1 ,NN)-UHCVO(M,NN-1 )+UHCVO(.M-1 ,NN)
ET=(UHCVO(MNN+1)-UHCVO(M'1,NN+1))/DCTH
IF(ET .GT. EL) THEN
UA=UHCVO(M+1 ,NN)-2.*UHCVO(M,NN)+UHCVO(M-1 ,NN)
UB=(l.4-((UHCVO(M-1,NN)-UHCVO(M+1,NN))/(2.*D*DCTH))-EL/D)**2
UHCVO(M,NN.1 )=UA/UB+2.*UHCVO(M,NN)-UHCVO(M,NN-1)
ENDIF

110 CONTINUE
RETURN
END

SUBROUTINE STRAIN
COMMON /CINIT/ NSS,NCTH,NTS1,DCTHCTOH,DE,D,SL,EL,CF
COMMON /CU/ UHCVO(52,1052),ECVO(7,1052)
DO 110 I=1,NCTH/2
INSS=2*( I-i )*NSS
DO 110 N=2,2*NSS+1
NT=N+INSS
NB=NT+NSS

IF(NB .GT. NTS1) NB=NTS1
IF(N .EQ. 2 .OR. N .EQ. 2*NSS) THEN
ECVO(2,NT)=-(-UHCVO(1,NT)+UHCVO(2,NT))/DCTH
ECVO(3,NB)=-(-UHCVO(NSS,NB))/DCTH
GO TO 100
ENDIF
IF(N .EQ. 3 .OR. N .EQ. 2*NSS-1) THEN
ECVO(2,NT)=-(-1.5*UHCVO(1,NT)+2.*UHCVO(2,NT)-.5*UHCVO(3,NT))/ -

@ DCTH
ECVO(3,NB)=-(.5*UHCVO(NSS-1,NB)-2.*UHCVO(NSS,NB))/DCTH
GO TO 100
END IF
ECVO (2, NT)=--(11 ./6. )*UHCVO (1 ,NT) +3. *UHCVO (2, NT) -1 5*
@ UHCVO(3,NT)+(l./3.)*UHCVO(4,NT))/DCTH
ECVO(3,NB)=-(-( 1.13. )*UHCVO(NSS-2,NB)+i .5*UHCVO(NSS-1 ,NB)
@ -3.*UHCVO(NSS,NB))/DCTH

100 IF(ECVO(2,NT) .LE. EL) ECVO(5,NT)=CF*ECVO(2,NT)/D
IF(ECVO(2,NT) .GT. EL) THEN
ECVO(5,NT)=CF*((EL/D)+(ECVO(2,NT)-EL)/(D+ECVO(2,NT)-EL))
END IF
IF(ECkJO(3,NB) .LE. EL) ECVO(6,NB)=CF*ECVO(3,NB)/D
IF(ECVO(3,NB) .GT. EL) THEN
ECVOt6,N4B)=CF*( (EL/D)+(ECVO(3,NB)-EL)/(D+ECVO(3,NB)-EL)) '

END IF

110 CONTINUE
RETURN
END



SUBROUTINE WRTOP
COMMON /CINIT/ NSSNCTHNTS1,DCTH,CTOHDED,SL,EL,CF
COMMON /CU/ UHCVO(52,1052),ECVO(7,1052)
WRITE(*,100)

100 FORMAT(//IX,'ENTER THE DATA OUTPUT INDEX:'/

@5X,'1 : FOR ALL OUTPUT'/
@5X,'2 : FOR THE VALUES AT EVERY 2ND TIME INCREMENT'/

@5X,'3 : FOR THE VALUES AT EVERY 3RD TIME INCREMENT'/@5X,'ETC'//)

READ(*,*) ND
WRITE(9,110)

110 FORMAT(//!X,'DIMENSIONLESS STRESS-STRAIN-TIME DATA FOR AN',
@IX,'ELASTIC SPECIMEN WITH'/
@lX,'STRESS-STRAIN BEHAVIOR THATS INITIALLY LINEAR AND',
@IX,'THEN HYPERBOLIC')
IF(CTOH .LE. .00001) THEN
WRITE(9,120)

120 FORMAT(1X,'AND WITH CONSTANT UPPER PEDESTAL VELOCITY'/)
GO TO 150

ENDIF
IF(CTOH .GT. 999.9 .AND. CTOH .LT. 1000.1) THEN
WRITE(9,130)

130 FORMAT(1X,'AND WITH CONSTANT UPPER PEDESTAL ACCELERATION'/)
GO TO 150

ENDIF
WRITE(9,140)

140 FORMAT(1X,'AND WITH HYPERBOLIC UPPER PEDESTAL VELOCITY'/)
150 WRITE(9,160) DCTH
160 FORMAT(1X,'FTSP FINITE DIFFERENCE SOLUTION: D(X/H) =',F6.3//)

WRITE(9,170) CTOH,DE,SL
170 FORMAT(//2X,'CTO/H =',F8.2,9X,'EO*(C/VO) =',F6.1,1OX,

@ 'MLDS =',F8.4//)

WRITE(9,180)

180 FORMAT(7X,2(7X,'TOP',4X,'BOTTOM',5X,'GROSS')/

@3X,'TIME',3(4X,'STRAIN'),3(4X,'STRESS'))
WRITE(9,190) ((ECVO(I,N),I=1,7),N=1,NTS1,ND)

190 FORMAT(1X,F6.2,3FI0.3,3FI0.4)
RETURN

END
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APPENDIX B

SAMPLE DATA RUN FROM

PROGRAM FTSP (FORTRAN 77)

Hyperbolic Upper Pedestal Motion,

C t /h = 5.0
0 0

Linear-Hyperbolic Stress-Strain, .

q T max = MLDS = 0.25 A9

E = 10.0

N

0

.B11

4 1%



DIMENSIONLESS STRESS-STRAIN-TIME DATA FOR AN ELASTIC SPECIMEN WITH

STRESS-STRAIN BEHAVIOR THATS INITIALLY LINEAR AND THEN HYPERBOLIC

AND WITH HYPERBOLIC UPPER PEDESTAL VELOCITY

FTSP FINITE DIFFERENCE SOLUTION: D(X/H) = 0.050

CTO/H = 5.00 EO*(C/VO) = 10.0 MLDS = 0.2500

TOP BOTTOM GROSS TOP BOTTOM GROSS 0 ,

TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS

0.00 0.000 0.000 0.000 0.0000 0.0000 0.0000
0.20 0.038 0.000 0.004 0.0038 0.0000 0.0004

0.40 0.074 0.000 0.015 0.0074 0.0000 0.0015

0.60 0.107 0.000 0.033 0.0107 0.0000 0.0033 S

0.80 0.138 0.000 0.058 0.0138 0.0000 0.0058

1.00 0.167 0.000 0.088 0.0167 0.0000 0.008

1.20 0.194 0.077 0.124 0.0194 0.0077 0.0124

1.40 0.219 0.148 0.166 0.0219 0.0148 0.0166

1.60 0.242 0.214 0.212 0.0242 0.0214 0.0212

1.80 0.265 0.276 0.263 0.0265 0.0276 0.0263 0

2.00 0.286 0.333 0.318 0.0286 0.0333 0.0318

2.20 0.382 0.387 0.377 0.0382 0.0387 0.0377

2.40 0.472 0.437 0.440 0.0472 0.0437 0.0440 . .,

2.60 0.556 0.485 0.506 0.0556 0.0485 0.0506

2.80 0.635 0.529 0.577 0.0635 0.0529 0.0577

3.00 0.708 0.571 0.650 0.0708 0.0571 0.0650

3.20 0.777 0.688 0.727 0.0777 0.0688 0.0727

3.40 0.842 0.797 0.806 0.0642 0.0797 0.0806

3.60 0.903 0.898 0.66 0.0903 0.0898 0.0888o~o .
3.80 0.961 0.994 0.973 0.0961 0.0994 0.0973

4.00 1.016 1.083 1.061 0.1016 0.1083 0.1061

4.20 1.145 1.168 1.151 0.1145 0.1168 0.1151

4.40 1.265 1.247 1.244 0.1265 0.1247 0.1244

4.60 1.378 1.322 1.338 0.1378 0.1322 0.1338

4.80 1.484 1.393 1.435 0.1464 0.1393 0.1435

5.00 1.583 1.460 1.534 0.1583 0.1460 0.1534

5.20 1.677 1.601 1.635 0.1677 0.1601 0.1635

5.40 1.766 1.733 1.738 0.1766 0.1733 0.1738

5.60 1.850 1.857 1.843 0.1850 0.1857 0.1843

5.80 1.930 1.973 1.949 0.1930 0.1973 0,1949

6.00 2.006 2.083 2.058 0.2006 0.2083 0.2058

6.20 2.155 2.187 2.168 0.2155 0.2187 0.2168

6.40 2.294 2.285 2.279 0.2294 0.2285 0.2279

6.60 2.426 2.379 2.392 0.2426 0.2379 0.2392

6.80 2.550 2.467 2.507 0.2549 0.2467 0.2507

7.00 2.667 2.551 2.623 0.2663 0.2551 0.2621

7.20 2.778 2.708 2.740 0.2768 0.2702 0.2733 V.

7.40 2.884 2.854 2.859 0.2866 0.2838 0.2842

7.60 2.985 2.993 2.979 0.2956 0.2963 0.2950
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TOP BOTTOM GROSS TOP BOTTOM GROSS

TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS
7.80 3.082 3.125 3.100 0.3040 0.3077 0.3056
8.00 3.175 3.250 3.222 0.3119 0.3182 0.3159
8.20 3.321 3.371 3.346 0.3240 0.3280 0.3260

8.40 3.474 3.486 3.471 0.3362 0.3371 0.3360
6.60 3.621 3.596 3.597 0.3475 0.3456 0.3457

8.80 3.762 3.702 3.724 0.3580 0.3536 0.3552
9.00 3.898 3.805 3.852 0.3678 0.3612 0.3645

9.20 4.028 3.909 3.961 0.3770 0.3686 0.3737
9.40 4.153 4.074 4.111 0.3855 0.3801 0.3826

9.60 4.274 4.230 4.242 0.3935 0.3906 0.3914
9.80 4.391 4.382 4.374 0.4010 0.4004 0.3999

10.00 4.504 4.528 4.507 0.4082 0.4096 0.4083

10.20 4.614 4.669 4.641 0.4149 0.4183 0.4165
10.40 4.723 4.806 4.775 0.4215 0.4264 0.4246

10.60 4.871 4.939 4.911 0.4301 0.4340 0.4324
10.80 5.042 5.067 5.047 0.4398 0.4413 0.4401

11.00 5.203 5.192 5.184 0.4487 0.4481 0.4477
11.20 5.354 5.313 5.322 0.4567 0.4546 0.4551
11.40 5.503 5.431 5.461 0.4644 0.4607 0.4623
11.60 5.650 5.546 5.600 0.4718 0.4666 0.4693
11.80 5.792 5.665 5.740 0.4768 0.4726 0.4763

12.00 5.929 5.822 5.881 0.4853 0.4802 0.4831
12.20 6.062 6.002 6.023 0.4915 0.4887 0.4897
12.40 6.193 6.158 6.165 0.4974 0.4959 0.4962
12.60 6.321 6.321 6.308 0.5031 0.5032 0.5026
12.80 6.446 6.476 6.451 0.5085 0.5099 0.5088

13.00 6.568 6.625 6.595 0.5137 0.5161 0.5149

13.20 6.689 6.776 6.740 0.5188 0.5223 0.5209
13.40 6.826 6.919 6.8B5 0.5244 0.5281 0.5267

13.60 7.002 7.059 7.031 0.5313 0.5335 0.5325
13.80 7.182 7.199 7.178 0.5382 0.5389 0.5381

14.00 7.340 7.334 7.325 0.5441 0.5439 0.5436 PIP
14.20 7.509 7.465 7.473 0.5503 0.5487 0.5490

14.40 7.662 7.596 7.621 0.5558 0.5534 0.5543
14.60 7.823 7.724 7.770 0.5613 0.5579 0.5595
14.80 7.972 7.850 7.919 0.5664 0.5623 0.5646

15.00 8.125 7.987 8.069 0.5714 0.5669 0.5696 .1%
15.20 8.270 8.152 8.219 0.5761 0.5723 0.5745
15.40 8.416 8.339 8.370 0.5807 0.5783 0.5793

15.60 8.557 8.513 8.521 0.5851 0.5837 0.5840 •
15.80 8.695 8.674 6.672 0.5893 0.5886 0.5886

16.00 8.834 8.845 8.825 0.5934 0.5937 0.5931
16.20 8.966 9.004 8.977 0.5972 0.5983 0.5976

16.40 9.101 9.164 9.130 0.6011 0.6029 0.6019
16.60 9.232 9.322 9.284 0.6048 0.6073 0.6062
16.80 9.374 9.475 9.438 0.6087 0.6114 0.6104 -
17.00 9.534 9.630 9.592 0.6130 0.6155 0.6145
17.20 9.718 9.775 9.747 0.6178 0.6193 0.6186
17.40 9.908 9.927 9.902 0.6227 0.6232 0.6225
17.60 10.074 10.068 10.057 0.6268 0.6267 0.6264

17.80 10.240 10.214 10.213 0.6309 0.6303 0.6303
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TOP BOTTOM GROSS TOP BOTTOM GROSS

TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS
18.00 10.413 10.352 10.370 0.6351 0.6336 0.6340
18.20 10.579 10.493 10.526 0.6389 0.6369 0.6377
18.40 10.737 10.629 10.684 0.6426 0.6401 0.6413
18.60 10.903 10.769 10.841 0.6463 0.6433 0.6449
18.80 11.060 10.912 10.999 0.6497 0.6465 0.6484
19.00 11.214 11.073 11.157 0.6531 0.6500 0.6519
19.20 11.373 11.251 11.315 0.6564 0.6539 0.6552
19.40 11.521 11.444 11.474 0.6595 0.6579 0.6586
19.60 11.674 11.627 11.633 0.6627 0.6617 0.6618
19.80 11.822 11.797 11.793 0.6656 0.6651 0.6650
20.00 11.967 11.962 11.953 0.6685 0.6684 0.6682
20.20 12.114 12.139 12.113 0.6713 0.6718 0.6713
20.40 12.256 12.310 12.273 0.6740 0.6750 0.6744
20.60 12.399 12.471 12.434 0.6767 0.6780 0.6774
20.80 12.543 12.635 12.595 0.6794 0.6810 0.6803
21.00 12.688 12.802 12.757 0.6820 0.6840 0.6832
21.20 12.849 12.961 12.918 0.6849 0.6868 0.6861
21.40 13.020 13.116 13.080 0.6878 0.6895 0.6889
21.60 13.212 13.280 13.243 0.6911 0.6923 0.6917
21.80 13.403 13.431 13.405 0.6943 0.6948 0.6944
22.00 13.589 13.585 13.568 0.6974 0.6973 0.6971
22.20 13.759 13.739 13.731 0.7002 0.6998 0.6997
22.40 13.927 13.889 13.894 0.7028 0.7022 0.7023
22.60 14.103 14.035 14.058 0.7055 0.7045 0.7048
22.80 14.280 14.187 14.222 0.7082 0.7068 0.7074
23.00 14.451 14.332 14.386 0.7108 0.7090 0.7098
23.20 14.613 14.478 14.551 0.7132 0.7112 0.7123
23.40 14.779 14.631 14.715 0.7156 0.7135 0.7147
23.60 14.951 14.784 14.880 0.7181 0.7157 0.7171
23.80 15.112 14.951 15.045 0.7203 0.7181 0.7194
24.00 15.271 15.133 15.211 0.7225 0.7206 0.7217
24.20 15.432 15.322 15.376 0.7247 0.7232 0.7239
24.40 15.594 15.518 15.542 0.7269 0.7258 0.7262
24.60 15.751 15.707 15.708 0.7289 0.7284 0.7284
24.80 15.903 15.882 15.875 0.7309 0.7306 0.7305
25.00 16.062 16.055 16.041 0.7329 0.7328 0.7327
25.20 16.217 16.227 16.208 0.7349 0.7350 0.7348
25.40 16.363 16.403 16.375 0.7367 0.7372 0.7368
25.60 16.518 16.585 16.542 0.7386 0.7394 0.7389
25.80 16.671 16.758 16.710 0.7404 0.7415 0.7409
26.00 16.820 16.922 16.877 0.7422 0.7434 0.7429 o
26.20 16.975 17.090 17.045 0.7440 0.7454 0.7448
26.40 17.136 17.261 17.213 0.7459 0.7473 0.7468
26.60 17.305 17.430 17.381 0.7478 0.7492 0.7487
26.80 17.482 17.597 17.550 0.7498 0.7511 0.7506 A
27.00 17.672 17.755 17.718 0.7519 0.7528 0.7524
27.20 17.870 17.918 17.887 0.7540 0.7546 0.7542
27.40 18.063 18.085 18.056 0.7561 0.7563 0.7560
27.60 18.250 18.245 18.226 0.7581 0.7580 0.7578
27.80 18.433 18.401 18.395 0.7600 0. 759eo 0.7596 1

28.00 18.604 18.559 18.565 0.7617 0.7612 0.7613
@



TOP BOTTOM GROSS TOP BOTTOM GROSS
TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS

28.20 18.775 16.718 18.734 0.7634 0.7628 0.7630
28.40 18.957 16.876 18.904 0.7652 0.7644 0.7647
28.60 19.137 19.028 19.074 0.7670 0.7659 0.7663 -
26.80 19.316 19.181 19.245 0.7687 0.7674 0.7680
29.00 19.492 19.340 19.415 0.7703 0.7689 0.7696

29.20 19.659 19.499 19.586 0.7719 0.7704 0.7712
29.40 19.826 19.655 19.757 0.7734 0.7719 0.7728
29.60 19.998 19.820 19.928 0.7750 0.7734 0.7743
29.80 20.174 19.999 20.099 0.7766 0.7750 0.7759
30.00 20.346 20.180 20.270 0.7781 0.7766 0.7774
30.20 20.505 20.365 20.442 0.7795 0.7782 0.7789
30.40 20.670 20.564 20.613 0.7809 0.7800 0.7804
30.60 20.839 20.763 20.785 0.7823 0.7617 0.7819
30.80 21.001 20.954 20.957 0.7837 0.7833 0.7833
31.00 21.169 21.141 21.129 0.7851 0.7848 0.7847
31.20 21.332 21.320 21.302 0.7864 0.7863 0.7861
31.40 21.485 21.496 21.474 0.7876 0.7877 0.7875
31.60 21.647 21.673 21.647 0.7889 0.7891 0.7889
31.80 21.813 21.848 21.820 0.7902 0.7905 0.7903
32.00 21.969 22.029 21.992 0.7914 0.7919 0.7916
32.20 22.125 22.217 22.165 0.7926 0.7933 0.7929
32.40 22.284 22.397 22.339 0.7938 0.7947 0.7942
32.60 22.446 22.569 22.512 0.7951 0.7960 0.7955
32.80 22.611 22.739 22.685 0.7963 0.7972 0.7968
33.00 22.775 22.909 22.859 0.7975 0.7985 -0.7981
33.20 22.943 23.083 23.033 0.7987 0.7997 0.7993
33.40 23.122 23.258 23.207 0.8000 0.8009 0.8006
33.60 23.311 23.431 23.381 0.8013 0.8022 0.8018
33.80 23.502 23.605 23.555 0.8026 0.8034 0.8030
34.00 23.697 23.771 23.729 0.8040 0.8045 0.8042
34.20 23.893 23.932 23.904 0.8053 0.8056 0.8054 -W
34.40 24.090 24.100 24.078 0.8066 0.8067 0.8066
34.60 24.266 24.274 24.253 0.8079 0.8078 0.8077
34.80 24.472 24.440 24.428 0.8091 0.8089 0.8089
35.00 24.648 24.602 24.603 0.8103 0.8100 0.8100
35.20 24.825 24.766 24.778 0.8114 0.8110 0.8111
35.40 25.005 24.926 24.953 0.8125 0.8120 0.8122
35.60 25.186 25.089 25.128 0.8137 0.8131 0.8133
35.80 25.366 25.254 25.304 0.8148 0.8141 0.8144
36.00 25.549 25.419 25.479 0.8159 0.8151 0.8154
36.20 25.735 25.581 25.655 0.8170 0.8161 0.8165
36.40 25.919 25.740 25.831 0.8181 0.8170 0.8176
36.60 26.096 25.902 26.006 0.8191 0.8180 0.8186
36.80 26.266 26.071 26.182 0.8201 0.8190 0.8196
37.00 26.435 26.248 26.359 0.8211 0.8200 0.8206
37.20 26.609 26.423 26.535 0.8220 0.8210 0.8216
37.40 26.788 26.596 26.711 0.8230 0.8220 0.8226
37.60 26.966 26.780 26.888 0.8240 0.8230 0.8236
37.80 27.141 26.978 27.064 0.8250 0.8241 0.8246
38.00 27.313 27.177 27.241 0.8259 0.8252 0.8255
38.20 27.482 27.372 27.418 0.8268 0.8262 0.8265
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TOP BOTTOM GROSS TOP BOTTOM GROSS
TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS

38.40 27.650 27.568 27.595 0.8277 0.6273 0.8274
38.60 27.819 27.766 27.772 0.8286 0.6283 0.6284
36.80 27.969 27.959 27.949 0.6295 0.8293 0.8293
39.00 28.159 28.146 26.126 0.8304 0.6303 0.8302
39.20 26.329 28.333 28.303 0.8312 0.6312 0.8311
39.40 26.500 26.514 28.461 0.8321 0.8322 0.8320
39.60 28.664 26.669 26.658 0.6329 0.8330 0.6329
39.80 26.623 28.665 26.636 0.8337 0.8339 0.8336
40.00 26.986 29.049 29.014 0.8345 0.8346 0.8346

1p

N



DISTRIBUTION LIST

DEPARTMENT OF DEFENSE Commander/Director
US Army Cold Regions Research and

Director Engineering Laboratory
Defense Nuclear Agency ATTN: Technical Library
ATTN: DFSP (Dr. G. W. Ullrich) 72 Lyme Road

SPSD (MAJ M. A. Reed) Hanover, NH 03755-1290
SPWE (Dr. C. Canada)
SPWE (MAJ M. Pelkey) Commandant
Technical Library US Army Engineer School

Washington, DC 20305-1000 ATTN: ATZA-CD (COL Fred Parker) "V
Technical Library

Defense Nuclear Agency Ft. Belvoir, VA 22060-5281
Nevada Operations Office
ATTN: TDNV (Mr. J. W. LaComb) Commander .
P. 0. Box 208 US Army Laboratory Command
Mercury, NV 89023 ATTN: Technical Library %

2800 Powder Mill Road .-

Director Adelphi, MD 20783-1145 %
Defense Advanced Research Project Agency
ATTN: Technical Library Director S
1400 Wilson Blvd. US Army Ballistic Research Laboratory
Arlington, VA 22209 ATTN: Technical Library

Aberdeen Proving Ground, MD 21005-5066
Director
Defense Intelligence Agency Commander
ATTN: Technical Library US Army Nuclear and Chemical Agency
Washington, DC 20301-6111 ATTN: Technical Library

7500 Backlick Road, Bldg. 2073
Defense Technical Information Center Springfield, VA 22150
Cameron Station
ATTN: TC (2"cys)
Alexandria, VA 22314 DEPARTMENT OF THE NAVY

Naval Civil Engineering Laboratory
DEPARTMENT OF THE ARMY ATTN: Technical Library

Port Hueneme, CA 93043
Commander
US Army Corps of Engineers Naval Facilities Engineering Command
ATTN: CERD-L (Ms. Sharon Vannucci) ATTN: Technical Library

CERD-M (Mr. B. 0. Benn) 200 Stovall Street %.
CEEC-ET (Mr. R. L. Wight) Alexandria, VA 22332
CEIM-SL

Washington, DC 20314-1000
DEPARTMENT OF THE AIR FORCE

Division Engineer
US Army Engineer Division, Huntsville Air Force Institute of Technology
ATTN: CEHND-SR Air University
P. 0. Box 1600, West Station ATTN: Technical Library
Huntsville, AL 35807-4301 Wright-Patterson Air Force Base, OH .53 3

District Engineer Air Force Office of Scientific Research
US Army Engineer District, Omaha ATTN: Technical Library
ATTN: CEMRO-ED-S (Mr. Bob Kelley) Bolling Air Force Base, DC 20332

CEMPO-ED-SH (Mr. Bill Gaube)
215 N. 17th Street Air Force Weapons Laboratory (AFSC)%%
3maha, NE 68102-4978 ATTN: NTESG (CPT C. W. Felice)

Technical Library
Director Kirtland Air Force Base, NM
''S Army Construction Engineerlng

Research Laboratory Air Force Engineering an Ce-vi-es
ATTN: Technical Library Center (AF2
P. O. Box 305  ATTN: Technicai '.ibrarv -".3Cnampaign, 1'- 61820-1305 Tyndall Air Force Base. F_ 32"03 '%

Air Force Armament Latoratory 'AFCS'
ATTN: Technical Library V
Eglin Air Force Basp, FL 325-

-O.'



DISTRIBUTION LIST (CONTINUED)

DEPARTMENT OF THE AIR FORCE (Continued) Dr. K. C. Valanis
Endochronics, Inc.

Commander 8605 Northwest Lakecrest Court
Ballistic Missile Office (AFSC) Vancouver, WA 98665
ATTN: MYEB (LTC D. H. Gage)

Technical Library Technical Library
Norton Air Force Base, CA 92409 New Mexico Engineering Research Institute

University of New Mexico
Box 25, University Station

DEPARTMENT OF ENERGY Albuquerque, NM 87131

Lawrence Livermore National Laboratory Dr. Don Simons
ATTN: Technical Library R&D Associates
P. 0. Box 808 P. 0. Box 9695
Livermore, CA 94550 Marina del Rey, CA 90291

Los Alamos National Laboratory Mr. L. S. Melzer
ATTN: Technical Library Science Applications International
P. 0. Box 1663 Corporation
Los Alamos, NM 87545 505 West Texas Street

First City Center, Tower 2, Suite 1335
Sandia National Laboratories Midland, TX 79701
ATTN: Technical Library
P. 0. Box 5800 Dr. John Schatz
Albuquerque, NM 87185 Science Applications International

Corporation
Sandia National Laboratories P. 0. Box 2351
ATTN: Technical Library La Jolla, CA 92038-2351
Livermore, CA 94550

Dr. H. E. Read
S-Cubed

DEPARTMENT OF DEFENSE CONTRACTORS P. 0. Box 1620
La Jolla, CA 92038-1620

Mr. J. L. Bratton
Applied Research Associates, Inc. Dr. Lynn Seaman

4300 San Mateo Blvd., NE, Suite A220 SRI International
Albuquerque, NM 87110 333 Ravenswood Avenue

Menlo Park, CA 94025
Mr. J. D. Shinn"-'

Applied Research Associates, Inc. Mr. S. J. Green
South Royalton, VT 05068 Terra Tek, Inc.

420 Wakara Way
Mr. J. L. Drake Salt Lake City, UT 8410,
Applied Research Associates, Inc.
3202 Wisconsin Avenue Dr. M. G. Katona ..

Vicksburg, MS 39180-2610 TRW Defense Systems 3roup
P. 0. Box 1310 ..

Dr. J. G. Trulio San Bernardino, CA 92 02
Applied Theory, Inc.
930 S. Labrea Avenue Dr. I. S. Sandler
Los Angeles, CA 90036 Weidlinger Associates

333 Seventh Avenue
Dr. Y. Marvin Ito New York, NY 10001
California Research & Technology, Inc.
20943 Devonshire Street Dr. W. F. Carroll (10 cvs' *

Chatsworth, CA 91311-2376 Department of Civil Engineering
and Environment3l ,-c-ences

Dr. E. J. Rinohart University of Central Flgrlda
California Research & Technology, Inc. Orlando, FL 32816
2017 Yale Blvd., SE
Albuquerque, NM 87106

Dr. Hon-Yim Ko '-""

Department of Civil, Environmental, and
ArohItectural Engineering

University of Colorado at Boulder
Boulder, CO 80309



.

I i.. .

, -'. '

-A %"~

i ,.-..V

/ *

- V -:.N: :.-'


