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Abstract

It is shown that the basis in a class of linear programs arising from material

requirements planning can be triangularized. This allows for efficient adaptation of

the Simplex Method similar to those for network problems. It also suggests that for

finite-loading (i.e. capacitated) MRP, a decomposition approach exploiting both

subproblem structure and parallel processing can be effective for handling complex

problems in multiproduct, multistage, multiperiod production systems.
.

Keywords: Production and Operations Management, Material Requirements

Planning, Linear Programming, Parallel Processing, Decomposition.
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1. The Single-Product Infinite-Loading MRP Model

The manufacturing of a product usually consists of its assembly from parts

which are themselves the products of other parts. A schematic representation of a

product structure (also known as a Bill of Materials) is examplified in Figure 1.

Each oblong represents an item indexed by the number in bold type. A basic

assumption of the model studied in this paper is that each item except the first

contributes directly to the production of only one other item, known as its parent.

We shall call this the tree property of the product structure. Item 1 is the finished

product. The number of units of an item required per unit production of its parent is

given in parenthesis in the figure.

In Material Requirements Planning (MRP). the net demands for each item in

every time period over a finite planning horizon are given. The purpose is to

determine the levels of production and inventory for the items so as to meet the

demands at minimum costs. For the present purpose, we assume the cost function to

be linear in the production and inventory variables. Since the assembly of an item

takes time, a lead time in units of time periods is specified for each item. In our

example, the lead times in the following Table apply.

Item Production Lead Time (in number of time priods)

II

2 1

3 2

4 1

5 1

Table 1. Production Lead Times in the Example.

We first consider the case with a single finished product (Item 1) and no

production capacity or inventory storage limits on any item. The absence of

capacity constraints is commonly known as infinite-loading in the MRP literature.

1.
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We call this the Single-Product Infinite-Loading MRP model (SPILMRP). The

more important case of multiproduct, capacitated (finite-loading) MRP will be

discussed later.

2. The Linear Programming Formulation

To formulate the above MRP problem as an LP, the following terminology is

used.

Given the parameters:

N = number of items in the product structure; "

T = number of time periods in the planning horizon;

dit = net supply of item i at the beginning of period t;

hit = unit holding cost for item i inventory in period t;

cit = unit production cost for item i in period t;

j(i)= index of parent of item i (i~l);
m i= number of units of item i required per unit of its parent item

Li= production lead time for item i; I-%

define the variables:

P= number of units of item i to be completed at the beginning of

period t;

lit= number of units of item i in inventory at the end of period t;

where i = 1,...,N and t = 1,...,T throughout.

Because of production lead times, certain variables defined above may be set to

zero and eliminated from the model. For example,
Pit =  0 ;  i=l,....,N, t=l,....,L i .  "

Also, let R1 = T and R i = Rj(i) - Lj(i) for i=2,...,N be the production horizon for

item i. Then production of item i in periods t>R i will be too late to be useful.

2
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Therefore,

Pit 0; i=2,...,N, t=Ri+,...,T.

Finally, IiRi 0 since allowing ending inventory will incur unnecessary holding
cost. p.

Then the LP for the SPILMRP model can be written as (LP1):

N Ri

minimize X X { hitlit + citPit
i=l t=l-.

subject to "Ii,t-1 + lit - Pit + miPj(i),t+Lj(i) =dit; i=l...,N

Pit it0; ijl,)...-N, t=lt....iLi;,.,

Ii0 0; IiR i =0; i=l ...N.,-

Pit 0;

lit >0; i=l.....N; t=l.....R i.

The coefficient matrix of the LP for our example is depicted in Figure 2. k'
Denote the constraint matrix in (LP1) by M and let its dimensions be m rows by n

columns.

3. Triangularity of the Basis

Observe that although (LPI) consists of essentially flow-balance type

constraints, it is not a network LP. While the coefficients m i can be considered as

gain factors in a generalized network, the proportionality requirement on the

production of items supplying a common parent still needs to be expressed

separately. For formulations of this type of problems as networks with side

constraints, see e.g Chen and Engquist 1 2 ] ,Steinberg and Napier [ 7 1, and Zahorik

3 1
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et al [ 8 ]. However, the following result shows that (LP1) has a very important

network-like property, namely, that any basis can be triangularized. Figure 3 shows

a basis consisting of the shaded columns.

Theorem. A basis in (LP1) can be transformed to a lower triangular matrix by

row and column permutations.

Proof. Given any m by m nonsingular submatrix B of the coefficient matrix

M in (LP1), there exists either a row with a single nonzero coefficient (row

singleton), or a column with a single nonzero coefficient (column singleton).

Otherwise, each column has at least two nonzero coefficients. For columns

corresponding to inventory variables (I-type), there must be exactly two

nonzeros, a plus one and a minus one. For columns corresponding to

production variables (P-type), there is a minus one and one or more mi's.

Starting from the last item, assign a multiplier to the set of rows corresponding

to the same item recursively as follows. For a row containing a minus one in a

P-type column with mi's, the value is the sum over the rows containing the

mi's of m, times the multiplier of its row. For all other rows, the value is one.

Then assign the maximum value found for the set to be the multiplier for the

set. Since there is no row singleton, multiplying each row by its multiplier

and summing over all rows results in the zero vector. This contradicts the

nonsingularity of B.

In the case of a row singleton, permute the nonzero coefficient to the

upper diagonal. In the case of a column singleton, permute the nonzero to the

lower diagonal. Deleting the row and column corresponding to the singleton,

the remaining matrix has exactly the same structure as before and must also be

nonsingular. Therefore, the same procedure can be repeated until B is lower

triangularized. 0

4



The assignment of multipliers is illustrated in Figure 4. Rows for the last two

items do not contain a minus one in a P-type column with mi's. The multipliers for

these two sets are one's. The last three rows for Item 3 have values of 4. The first

two have values of 1. Therefore the multiplier for the set is 4. Rows for Item 2 do

not involve P-type columns with mi's and their multipliers are one's. Finally, the -.

value for each row corresponding to Item 1 is (1 + 2 x 4). Hence the multiplier for

the set is 9. Total cancellation results when summing the given multiples of the rows

because of sign patterns guaranteed by the absence of singletons. 141
Note that except for illustration, there is no need to physically permute the

basis in triangularization. It suffices to identify a pivot sequence specifying which ;e.

row and column to use at each step of eliminating a variable from the system of

equations. The pivot sequence for the triangularization of the basis in Figure 3 is

displayed in the left-most column in Figure 5. The pivots are enclosed in circles.

The first pivot uses row one and column one, the second row two and column six,

the third row seven and column eleven, and so on.
With a triangular basis, the major operations in the Simplex Method are

greatly simplified. Both the computation of the simplex prices and the updating of a

column reduce to back-substitutions. It should be remarked that basis triangularity

in this case does not imply integer solutions as the mi's may appear on the diagonal.
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5. The Multi-Product Finite-Loading MRP Model

Most real production systems involve a multitude of finished products. The

assembly of these products and their parts requires production capacity at every

stage. When production capacities are limited, we have the finite-loading model.

For a survey, see Billington et al [ 1]. Suppose there are K types of capacities with

Skt units of type k available in time period t. Let aik be the unit requirement of type

k capacity in the production of item i. Then the LP for the Multi-Product

Finite-Loading MRP model (MPFLMRP) is (LP2) below.

N Ri B

minimize X Z { hitlit + citPit
i=l t=l "

subject to N
I ai~it <Skt ;k+l,...,K; t=l,...,T (LP2. 1) •%,

i= l."

+ it - Pit + mi = dit; i=l,...,N (LP2.2)

t=l""R i

Pit= 0; i=l,...,N, t=l,...,L i or t > Ri ; p.

Ii0 = 0; IiRi = 0; i=l ,...,N;

Pit 0;

Iit >0; i=l,...,N; t=l,.....R i.  ::

Here, the N items can be partitioned into mutually exclusive subsets, each

corresponding to a distinct finished product. Therefore (LP2) has the block-angular

structure with (LP2. 1) as the coupling constraints and (LP2.2) decomposing into as

many independent blocks as there are finished products. In [ 6 ] McKenney proposed

to solve (LP2) using Dantzig-Wolfe decomposition [ 3 ]. Generalizing the concepts

of networks, trees and paths, he devised a network-simplex type procedure to take

6
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advantage of the triangular basis property of the subproblems.
Ongoing work in LP decomposition with parallel computers (Ho [4], Ho et al

[5]) will be specialized to solve (LP2). For a 10-period MRP system with 100

products, each with 100 parts, (LP2.2) alone will have on the order of 100,000

constraints and 200,000 variables. For this reason, most previous attempts to

MPFLMRP are deemed impracticable due to "prohibitive" computational

requirements (see, e.g. [7]). However, multicomputers having 2 n parallel

processors are becoming increasingly cost-effective. Currently, practical values of

n are already between 6 and 8 (i.e. 64 to 256 processors). The power of individ,. I

processors is also well suited to handle the subproblem for one product (say, with

about 1,000 constraints) if one exploits the special property discussed in this paper.

Therefore, the implementation of Multi-Product, Finite-Loading Material

Requirements Planning systems on parallel computers should be an important '-

advance in production and operations management in the near future.
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