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We are developing strategies for computer-aided protein design.
Our strategies emphasize simple geometric aspects of protein structure,
and our computer program (PDBPROTEUS) allows us to systerpatially
test a very large number of alternative sequences and conformations.

We have written programs to systemtically search a protein
structure for places where we can add disulfide bonds, new salt bridges,
or favorable aromatic interactions. We also search for places where the
backbone can accommodate glycine ->alanine mutations and for places
where prolines can be accommodated. (These changes -like the disulfide
bond- should stabilize the folded structure by reducing the entropy of the
unfolded form.)

We have tested each of these approaches by trying to design
thermostable variants of the lambda repressor. The most stable variant
- ala46ala4cys88lys93 - contains 4 mutations and is 17 degrees more
stable than the wild-type protein. Since mutations that reduce the
entropy of the unfolded form seem to have the largest stabilizing effect
on repressor, we are searching for ways to introduce new metal-bindipg
sites and chemical crosslinks between side chains.
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Computer-Aided Design of Thermostable Proteins

We are developing methods for computer-aided protein design
and are testing these strategies by constructing thermostable

variants of the lambda repressor. Repressor's DNA-binding domain
normally denatures at 540 C; out goal is to copstruct alvariant

that will bind normally to DNA and yet be stabliqp . A00 ° C. To
date, we have constructed a quadruple mutant that is stable to

710 C and binds DNA as well as the wild type protein.

Our fundamental goal is to develop mpthods for de novo protein

design, and we are proceeding by treating the problem of protein
-I design as an "inverted" version of the protein folding problem

(Pabo,_-1983)--In the protein folding problem, one is given an
amino acid sequence and must predict how this folds in three

dimensions. Protein design can be approached in quite a different
way - one can begin by chosing a folded arrangement of the

polypeptide backbone and then try to pick an amino acid sequence

that will stabilize this structure. "Inversion" eliminates the

problem of predicting long-range interactions, since residues which
will interact in the final tertiary or quaternary structure aiready

are close in space when they are added to the prefolded backbone.

One should be able to pick residues which will have favorable
interactions with their neighbors.
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We are developing a program, called PDB PROTEUS, for
'1 computer-aided protein design. Our program uses simple geometric

aspects of protein structure and frequently uses local coordinate
systems so that the geometric relationships are easier to visualize

(Pabo and Suchanek, 1986). There are many advantages to using a

computer program: A program can easily check millions of possible

sequences and conformations. Using a program also makes it easy to b
try several variations of a particular search strategy or to apply

the same strategy to many differrent proteins. ke L:(taiJ6.J d-aj.,

Much of our work during the past year has focussed on

developing and refining the PDB PROTEUS system. Although the

program is written in FORTRAN, we have tried to develop a

programming strategy that will be very flexible. The core of the
system is a library of subroutines. Each performs a discrete
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operation - like adding a residue or changing the coordinate system

- and our library now contains about 120 subroutines. The main

programs use these subroutines (almost like a higher level

programming language). Since we believe these subroutines -nd
programs could be useful for many other projects, we have paid

careful attention to our programming style and ajle making this

system available to other laboratories.

In our attempts to stabilize the repressor, we have written
programs to seach the repressor structure for the best residues to

change and then have experimentally tested bach of these
predictions. We have tried five different types of changes, and

our results are summarized below:

1) Disulfide Bonds: The search program used all the disulfide bond

conformations found in the Protein Data Bank and also used a
library of conformations that were closely related to the left

handed spiral configuration (Richardson, 1981). Modelling
suggested that an intermolecular disulfide bond could be introduced

by changing Tyr 88 to Cys (Pabo and Suchanek, 1986). Experimental

studies show that this disulfide bond forms spontaneously,

stabilizes the repressor dimer against thermal denaturation, and

increases the affinity for DNA (Sauer et. al., 1986).

2) Salt Bride: The program searches for any position where a new

salt bridge could be introduced by changing a single residue. The

best position appeared to be at the C-terminal end of helix 5,

where changing Ser 92 to Lys should allow a salt bridge with Glu

89. This has no effect on the thermal stability of repressor, but
introducing Lys 93 (effectively adding a residue to the C-terminal
end of the helix!) does stabilize the protein by about 0.50 C.

Although this approach does not seem to be very promising, we need

to test additional positions.

3) Aromatic Interactions: Studies of aromatic-aromatic

interactions in proteins suggest that these can stabilize a protein

if the aromatic rings are about 5.5 A apart and are approximately

perpendicular to each other (Burley and Petsko, 1985). We have

searched for places were aromatic residues could be added to make
favorable contacts with an existing aromatic residue.



Unfortunately, the only position that appears plausible (residue

33) changes a key residue involved in nonspecific contacts with the

DNA. Studies in Robert Sauer's laboratory at M.I.T. have shown

that this mutant is stable (Hecht et. al., 1984) but it is not

useful to us because it disrupts DNA binding.

4) Glycine to Alanine Changes: Hecht and Sauer 11986) have shown

that repressor can be stabilized by changing two gIns to

alanines. We have set up a program that automatically searches for

places that Gly to Ala changes might be made. This does not find

any other plausible postions in repressor, but the program should

be useful with other proteins.

5) Prolinpq: Proline residues may stabilize proteins by reducing
the conformational entropy of the unfolded protein. Obviously,

they can introduce unfavorable strain if they are put at the wrong

postions, but we have search repressor for positions where the

backbone conformation should allow a prolife residue to be

introduced. Two positions appeared plausible and have been tested.
.We found that changing Tyr 60 to Pro has a mild destabilizing

effect, but changing Gln 9 to Pro stabilizes the protein by 0.60.C.

Since we expect tnat a set of changes will be necessary to

stabilize repressor to 1000 C, it was important to determine
whether the effects of multiple mutations are additive. Our

initial results are quite encouraging. To test the effects of

multiple mutations, we combined our disulfide mutant with the two

glycine to alanine changes in helix 3. We found that the wild type

protein denatured at 540, the Cys 88 mutant denatured at 620, the

Ala46Ala48 double mutant denatured at 620, and the Ala46Ala48Cys88

mutant was stable to 700 (Stearman et. al., 1988). More recently,
we have shown that that the Ala46Ala48Cys88Lys93 quadrupule mutant

is stable to 710. We are now introducing the Pro 9 mutation to see
whether this gives a further incremental increase in the stability.

During the last year we also have continued with the

crystallographic refinement of repressor, and it is clear that a
highly refined structure is very important for modelling and ".

design. Our initial predictions had used the repressor structure

obtained by fitting to an isomorphous electron density map at 3.2 A
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resolution (Pabo and Lewis, 1982). We have much better data from

our repressor-operator cocrystals (Jordan et. al., 1985) and this

structure has been refined to an R factor of 24.5% using data from

8.0 to 2.5 A resolution. Comparisions have shown that our

model-building predictions are very sensitive to differences

between these coordinate sets. The intial, less accurate,

coordinates gave several predictions (not discussei.qb,Ri because

they were not obtained with the better coordinates) that were

thermally unstable.

Although it is too early for a firm conclusion, our data

suggest that it may be easiest to stabilize a protein by

introducing mutations that reduce the entropy of the unfolded form,

and we will focus on this strategy during the final year of our

contract. Our disulfide search program can readily be rewritten to

search for any types of crosslinks between side chains. (The

program only requires that we can predict plausible conformations

for the crosslinks, because we do need to know the relative spatial N

arrangement of the proximal and distal residues that are connected

by the crosslink.) Specifically, we plan to introduce cysteines

that can be connected by reagents like dimercaptoethanol,

dithiothreitol, or can be bridged by a mercury ion. (Many other

crosslinking reagents can be used, but we think it will be

advantageous to begin with ones that react reversibly, since it

should be easier to analyze the products.) These approaches may

allow us to reach our goal of designing a repressor variant that is

stable to 1000 C.
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