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SURVEY OF EUROPEAN STUDIES ON THE FAR FIELD
CHARACTERISTICS OF A SOURCE OSCILLATING AND

TRANSLATING NEAR A FREE SURFACE

1. INTRODUCTION

Starting from the late 1940's and continuing to the present day, a number of significant papers
have been written in the European languages (French, German, and Russian) investigating various
aspects of the Green's function for a pulsating three-dimensional source which is translating in a
straight line below the free surface of an infinite fluid. This Green's function constitutes the basic
building block for many modern day computer programs which analyze the motions, forces, and wave
patterns of ships in a seaway. In addition, this Green's function contains as two special limiting cases
the widely used functions for zero frequency (Kelvin wake case) and zero forward speed (circular ring
wave case).

This report summarizes the leading papers written in French, German, and Russian on the for-
mulation, construction, analysis of wave pattern, and approximate evaluation of wave amplitude of
this important Green's function. Since many of the papers use similar methods in treating the above
topics, the approach taken here is not to present a detailed summary of each paper. Instead, for each
topic, the report describes in some detail the major approaches used in these papers. i

On the whole, the notation used in the equations follows that of the original papers. However,
for the sake of uniformity, the original equations have been rewritten (when necessary) to conform to
the coordinate system shown in Fig. 1 and the consistent notation for principal variables, shown
below. Figure 1 shows that the x axis is in the direction of motion of the source. In those studies
where the source is taken to be fixed, the x axis then coincides with the direction of the current. The
y axis is the horizontal axis perpendicular to x, so that the xy plane represents the undisturbed free
surface. The z axis is directed vertically upwards.

Principal Notation S

k wavenumber

r = (x - x) (y - y') + (z - z')2

r1 , r' = (x - x') 2 + (y - y') 2 + (Z + Z)2

R!(X -X ,)2 +r (y y ,)2 €,

U speed of source or current

x ,y ,z field point location

x'y' ,z' source location

Manuscript approved December 10, 1987.
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l,'y = tan-' (y - y')/(x - x'), spatial direction

O,u wave propagation direction

P = U wig, ratio of source speed to phase speed

W circular frequency

2. CONSTRUCTION OF GREEN'S FUNCTION

2.1 Basic Formulation

It is well known that the Green's function G(x,y,z,t) for an oscillating translating source
located at (x ',y ',z') should satisfy the following conditions in a fixed coordinate system

V 2G - 0; z < 0; (x,y,z) * (x',y',z') (2.1a)

___ OG(x, y, z, t) _

a2 (x,y,z,t) + g ' = 0 on z =0 (2.1b)
at2  az

lim _G = 0 (2. 1c)

Z--0 az

lim VG = 0. (2.1d)

In addition, a radiation condition of no incoming waves at R - is needed to ensure uniqueness of
the solution.

In a coordinate system moving with the velocity U in the x direction, the only explicit change is
that Eq. (2. l b) is replaced by

a2 a2G ~ 2
2

2G G + U2 G -OG onz1 =0 (2.2)
Ot2  2U axat xaZI

where the subscript I denotes independent variables for a moving coordinate system. This follows
from the well known kinematic relationship between time derivatives in fixed and moving coordinate
systems

a (2.3a)
at at ax.

a2  a2  a2  + 2 a2

a 2  - - 2U &+ ( 2 (2.3b)Ot at,? at 1 l I I

Grekas [2) shows that the free surface equation (2.2) also applies in a fixed coordinate system for a
fixed source in the presence of a uniform stream U in the -x direction.

2br
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The construction of the Green's function in most studies uses the Fourier transform approach.
Here, the description largely follows the lucid and detailed approach given by Bougis [1]. In particu-
lar, he gives the key differences between approaches using moving and stationary coordinate systems.
Others who have used similar approaches include Grekas [2,3], Haskind [4], and Sretenskii [5]. The
approach by Sretenskii, which gives a Fourier transform for the wave elevation itself, is also briefly
described. The convolution time domain approach used by Brard [6,71 is described in the next sec-
tion. The approach of Sinimgen [8], which obtains G as a distribution of dipoles and is given in
single integral form, is described in the last section.

2.2 Fourier Transform Approach

As is usual in this type of approach, Bougis expresses G in the fixed coordinate system as the
sum of two terms

G = Cos Wt + G(x,y,zx',y',z',t) (2.4)
r

where the first term is a Rankine source. Noting that the elemental wave solution

W(x,y ,z) = e kzeik(x cos O+y sin 0) (2.5)

satisfies Eqs. (2.1a) and (2.1c), G is written in the following Fourier transform form over
wavenumber k and wave direction 0 space

G, = l Re (I dO 1o cos6y Sin6)kdkl. (2.6)

For the sake of brevity, the use of a fictitious viscosity coefficient by Bougis, which serves to deter-
mine the proper sense of the contour of integration around the poles to satisfy the radiation condition
but which is ultimately set equal to zero, is omitted in the present description. The use of the ficti-
tious viscosity is described in greater detail in Chapter 4, in connection with Haskind's work [4].
Using the key identity

v 1 - (2.7a) 
r Re -/ 2 d 0(

where

w = (x - x') cosO + (y - y') sin0 (2.7b)

and noting that in a fixed coordinate system

dt U (2.8) "S

the free surface condition (2. 1b) leads to the following differential equation for the transformG1(O,k :1)

+ gk G 1(O,k;t) [(W1 + U2k2 cos2 0 + gk) cos ot -

3
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2iUk cos 0 w sin wti e eik(x cos0+v' sin8) (.
J k (2.9)

Bougis points out that it is not convenient to solve this equation since x' is a function of time. By
expressing cos wt and sin wt in terms of complex exponentials and the following transformation
between moving (x1 ,Yi ,z I) and fixed (x ,y ,z) coordinate systems

x = x1 + Ut (2. Oa)

Y = Y1 (2. 1Ob)

z = ZI (2.1Oc)

Eq. (2.9) becomes

T,2 + gk G(O,k;t) = -L e e -k(x cos +v sin)
at2  -2k

fe i  6)- Uk  [w 2 + U2k2 cos2 0 + gk - 2Uk cos 0 + •
i w+U o ~ 22COS )

e- cos)t 2 + U2k2 cos 2 0 + gk + 2Uk cos 0 Wo]. (2.11)

Solving this equation for G1 (O,k ;t), discarding the transient solutions, again using the key iden-
tify (2.7), and returning to the fixed coordinate system by using Eqs. (2. 10), the following form for
G is obtained

G= (x - x') 2 + cy,)2 + (Z _T z') 2 ]I/ 2

Re e r/2 dO e k (z'+iK')gk dkA (2.12)L J-/2 o ( F Uk cos 0) 2 
- gk

where the terms are summed for the upper and lower signs.
p,.'

4
i

Sretenskii 151 uses a similar approach to obtain G and proceeds further to ohtain an expression ",/
for the wave elevation " in Fourier integral form. He considers a fixed coordinate system with flow
U in the +x direction past a fixed pulsating source located at x' = 0, ' = 0, with depth of submer-
gence z'. Here, the sign of the term involving 2U in the free surface condition (2.2) is changed from
minus to plus, resulting in

a 2 G a2 G .2.13G aG
a2G + 2U a2 G  + u 2 

-
2 G + g - - = 0 on z = 0. (2.13)at 2 ax at a.x 2 az

As in the preceding formulation, G is taken to be the sum of a Rankine source, its mirror image
about the free surface, and a harmonic function, as follows

,0



G =OS wr t + G' C wt + G" sin wt(2.14)

where Q is the strength of the pulsating source. By defining G, as the complex sum of G' and G"

Gi = G' + iG" (2.15)

substituting Eq. (2.14) into the free surface condition (2.13), and using the key identity (2.7a), G, is
obtained in the following double integral form similar to the last term of Eq. (2.12)

Go keA(Ze')dk ei(x cos O+y sin 0)

4w3 [" 0-' gk - (o + Uk cos 0)2 d'

= Q 00okek(z-z,)dkj e ik cos (0- y)  216

4w3 ,0 gk - (wi + Uk cos )2 dO (2.16)

where use has been made of the polar coordinate relations

x = R cos y, y =R sin-y. (2.17)
$

The wave elevation r is given by

"= Re + U - Je' at z = 0. (2.18)

Substituting G, given by the second equality in Eq. (2.16) gives in the following double integral w *

form

Re i dO o k(o + Uk cosO)eei klc~s( - ) "if. (2.19)
4 2  - 0  gk - (w + Uk COS 0)2

2.3 Convolution Time Domain Approach

Brard [6] starts with the two-dimensional case of a doublet at (x',z') moving in an arbitrary path
parallel to the vertical xz plane and with strength M varying as a function of t. Letting v = x + iz,
v' = x' + iz', the potential of a doublet in an infinite fluid is

F0 (v,t) - log (v - v')M(t) fo eik(v-v)M(t)dk (2.20)

Expressing G as the sum of F0 and F

G = F0 + F (2.21)

and further, F in terms of its Fourier transform P

F(vtf) = so eflivP(k)dk (2.22)

the free surface condition (2. lb) leads to the following differential equation for P

Sr
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+t g ] P gk] ekv(2.23) ,

where a bar denotes the complex conjugate. The solution of this equation for P and its substitution
into Eq. (2.22) results in the following final expression for F (v,t) in double integral form

F(v,t) = so - v)M(t)dk

-2 k e Ito J (eikV'M) cos - (t - r)dr (2.24)

where the first term on the right hand side corresponds to an image doublet which is symmetrically
located above the free surface.

For the generalization to the three-dimensional fixed coordinate system (x ,v .z). the doublet term
F0 is replaced by the source with strength S(t)

S°  - - .o ek(-z)JO(kR)S(t)dk
r 0

dkS(t) eiklw +z')ldO (2.25)
~2-7- s00

where w is defined in Eq. (2.7b). Comparing Eqs. (2.20) and (2.25) shows that the generalization %
from two to three dimensions involves an additional integration of the wave propagation direction 0
from 0 to 2w, and the following two related substitutions:

v =x + iz x cos0 + y sin0 + iz (2.26a)

V' = x' + iz =t x' cos 0 + v' sin 0 + iz'. (2.26b)

The resulting expression for 4,, the three-dimensional equivalent of F, the regular part of the Green's
function, then becomes

S(t) I oe i 2 icosO*% %in64::I(x,y,z,t) = - dOe
r ir d 

IoS

soos: -9 LixTcO+v'(r) sin O-it:(r)lS(T) × X.'

r0
Cos I gk (t -r) dr (2.27)

where, analogous to the two-dimensional case, the first term represents an image source symmetri-
cally placed above the free surface.

The above expression represents the Green's function for a source with strength S(t and loca-
tion x'(t), y'(t), z'(t) varying arbitrarily with time. To specialize to the case considered in the _
present report of a sinusoidally pulsating source moving rectilinearly, such that

6
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x'(t) = Ut, y'(t) 0 0, z'(t) = const < 0, S(t) = S cos wot (2.28)

4I becomes

*(x ,y ,Z ,t) r+ __ 2, d 2 -iklx s 0+y sin O+i(z +z')ldO X

77 4v 1?0 dk 1.

St [ii(kU cos0 + w) ei(kUc is+w)7 + i (kUcos 0 - w) ei(kU Ds 0) X

1 V.,

e-i"kreigt+e t-rg e -"g!d. (2.29)

2.4 Superposition of Dipoles

Simmgen [8] carries out his formulation in a fixed (x,y,z) coordinate system, with a uniform
flow U in the x direction. The double integral key identity in Eq. (2.7a) is rewritten in single
integral form, as follows

r = LT/ 2 Re 1 dci (2.30)

where

w = (x - x') cos a + (y - y') sin a + i(z - z') = p + i(z - z'). (2.31)

Since Re (i /w) represents a dipole in the complex pz plane, Eq. (2.30) shows that a Rankine source
may be represented by the integral over the inclination a of a distribution of dipoles. Similar to the
case of a source, the presence of a free surface for a pulsating dipole g requires the addition of a
harmonic function ka, as follows

g. = Re- + k, (2.32)

where the time-dependent multiplicative factor e"' has been omitted. The Green's function G 2 is
then obtained as the integral over a of g(,
) 1 .v/2

G2 =- -/2 gdio (2.33)

The harmonic function k( is determined by the free surface condition in the form "

L cosa+-- + a g =0 onz = 0 (2.34)Co CO2 O C, p Cos 2 o, az.,

where P = Uw/g and ko = g/U 2 . Adopting an approach used by Haskind [101 to study the Green's
function for the two-dimensional case of a pulsating, translating source, g,, is expressed in terms of -
the functions F ' 'NO

g= Re + + F (w) + F (w,) (2.35)
1 ,1

7 •
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where

w, w + 2iz' =p + i(z + z')
~l1

F+ = ke-ik'w ' e- ' tw t' I
F* _ koik 'v i i -dr e ___kle wdt - k 2e 0 (2.36)

cos'af k F2-0 ,V

k l+2 = + V Cos t - + P COS .-fI- vCCOS2Ot
2 4 vC~jCos Ca

- vcos 0 : -- Cos , v Cos a < --
1  c os I a 4

12 =1 k0 ,
VP COSCos U > -

cos 2 a 4

Upon integrating Eq. (2.35) with respect to ai, the following expression for G2 is obtained

G2/2 -S.
r r -,/2 [F+(wl) + F-(w)] da. (2.37) "?-',

In order to reduce G2 to single integral form, Simmgen defines the following changes of vari- '.

ables

kr = k0a k(w, - t) (2.38a)

cosh Y - c (2.38b) "I

The purpose of the first change is to convert the integral expression for F' in Eq. (2.36) so that use
can be made of the following relation

e ikt S..

-__ dt = 2ri. (2.39)

Eggers [91 points out that the complex variable -Y in the second change of variables is related to the
direction of wave propagation, 0, by means of the intermediate real variable t. as follows .

sin 0 = tanh u (2.40a)

= - . (2.40b)

The resultant final single integral form for G 2 is of the form"P
I__ - ,{ "11

'2y) I))C( (2.41)G r 1 j I oiL,+L.: p(y)
r r + -, P(-Y

8 0

,* 1 ' " " " " ". "t= • " % "% '. % .. ". '. . • .,- /' ,,I=t# ¢'_*'__-"==,' .".r=.=tr "=.' 'p
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where .'.

F 1
X(yl) = + cosh "y + (')cosh ]

p('y) = __1 cosh2y + v coshy ,

The paths L l and L 2 lie in two sheets of the -y-plane, as shown in Fig. 2, which is adapted from Fig.
3 of Simmgen. Eggers [9] points out that yo in this figure is missing the term i ?r/2

-o = x + iE + ir/2. (2.42)

Otherwise, the symmetry between +(y - y') and - (y - y') would be lost.

3. FAR FIELD WAVE PATTERNS ,/04/

,Bougis [11, Grekas [2,31, Haskind (4], Sretenskii [5], Brard [6,7], Becker [111, and Eggers [121 1"

study the far field wave patterns due to the Green's functions derived in the preceding chapter. With
the exception of [2,3,4], which are discussed in the following chapter, the investigations are limited to ,
obtaining the far field curves of constant phase, for example, the wave crests. Becker [I] points out
that sach a presentation may be considered to be an instantaneous photograph of the free surface with
neighboring wave crests differing by a phase of 2ir.

There are two principal methods for determining the curves of constant phase. The most com-
mon approach is to use the well known method of stationary phase [1,2,3,5,6,7]. For the Green's
functions obtained by using the Fourier transform approach the description here will largely follow
the concise and direct approach used by Sretenskii [5]. His unfortunate error in choosing the integra-
tion paths, which leads to an incorrect placement of his wave patterns, is clearly pointed out. The .,
wave patterns shown are those recently obtained by Bougis [1]. A description is also given of the
application of this method by Brard [6,71 to his convolution time domain Green's function, Eq.
(2.29). The other method is the approach taken in [11,12], where the wave patterns are constructed
from basic considerations concerning the frequencies of the waves observed in moving and stationary
coordinate systems. This may be considered a more physical alternate approach as compared to the
more mathematical method of stationary phase. The description here largely follows the formulation
given by Becker [Il]. The principal differences between the approach taken by Eggers 112] from that
of Becker 1 1 are also pointed out.

3.1 Method of Stationary Phase Applied to Fourier Transform Approach-I

The usual procedure is to consider the double integral in the various expressions for Green's
functions (Eqs. (2.12), (2.16), or (2.19)) as a single integral of the form

I = h(O)eiRf (edO. (3.1)

For large R, the method of stationary phase states that I may be approximated by

1/2 0
/ = h (0) e f e (3.2)

9



*dI
where 00 is given by

f'(Oo) 0. (3.3)

If there is more than one root, i.e., point of stationary phase, then Eq. (3.2) must be summed over all
these roots. The entire Eq. (3.2) must be considered if one is interested in the wave amplitudes.
This would involve an evaluation of the integral over k in order to obtain h (00). However, if only
the curves of constant phase are of interest, then only Eq. (3.3) need be considered. From either Eq.
(2.16) for the Green's function GI or Eq. (2.19) for the wave elevation S', f(0) is given by

f(6) = k COs (0 - -y) (3.4)

where k1 2 are the roots of the denominator of the integrand in Eqs. (2.16) or (2.19)

gk - (a + Uk cos 0)2 = 0 (3.5a)

and are given by

kj, k2 = (g - 2 Ua cos 0) kg(g - 4Ua cos 0) (3.5b)
2U 2 cos 2 0

Eqs. (3.5) arise due to the fact that the residues of the inner integral in Eqs. (2.16) or (2.19) are %
evaluated at the poles given by Eq. (3.5b). Taking the derivative of f O) in Eq. (3.4) and setting it
equal to zero results in

sin (0 ) = -2U (a + Uk cos 0). (3.6)
sin3 g _

Substituting the values of kl,k 2 into Eq. (3.6) gives two equations relating the wave propagation S

direction 0 to the spatial direction -y

2 -

-ctn -y = tan 0 sin 20 4cos0 (3.7)

where the upper sign is for ki, the lower sign for k2, and P = U w/g. The term -4 v cos 0 under
the square root sign suggests that the characteristics of the wave patterns may he significantly dif-
ferent for , 5 1/4.

Since Eq. (3.7) holds for either G, or , this means that the far field curves of constant phase
are identical for both G1 and . The actual amplitudes are, of course, different since the integrands 6%

are different in Eqs. (2.16) and (2.19).

The proper ranges of 0 to be used in Eq. (3.7) are determined by placing the contours of
integration in the inner integral with respect to k above or below the poles k, and k, to satisfy the
radiation condition that the energy of all the wave systems move away from the source I 11. Sretenskii
chooses paths of integration which surround all the poles with upper semicircles. Unfortunately. this
leads to systems of divergent and transverse waves, which arise from the pole at k 1. lying upstream
of the source with the resultant propagation of energy toward the source. Haskind [41 (as does
Bougis [11) uses a fictitious viscosity u, which is ultimately set equal to zero. which serves to give the
proper placement of the contours around the poles. He shows that the contour should always pass
above k2 but the contour around k, depends on 0. In particular, for cos 0 > 0, i.e.. 0 < r/2. the

contour should pass below the pole k,. With this change, the wave patterns obtained by Sretenskii
would be similar to those of Becker I 11, who shows two sets of wave patterns for 1, 1/4.

10 •%



Bougis, who carries out a systematic and detailed implementation of the above procedure, shows
that there are actually three regions: 0 < v < 1/4, 1/4 < v < I/'/2, and l/'/2 < v. These pat-
terns are reproduced in Fig. 3. This figure shows that for , < 1/4 there are five waves, a set of
ring waves and two complete sets of Kelvin like waves, each composed of transverse and divergent
waves. For v > 1/4, there are four waves with a region in front of the source which is now distur-
bance free. The ring waves and the inner transverse and divergent waves remain, but the outer set of
transverse waves has disappeared leaving only the divergent waves. The only difference between the
cases 1/4 < v < i/,2 and 1/V/2 < v is that in the former case, the forward part of the ring waves,
near the wedge lines defining the boundaries of the disturbance free region, has 0-values which
correspond to forward propagating waves. This fact had previously been noted by Eggers [121.

3.2 Method of Stationary Phase Applied to Convolution Time Domain Approach

Brard [6,71 also uses the method of stationary phase. However, instead of the single application
noted above, this method must be applied three times to the triple integral time domain Green's func- 0
tion given by Eq. (2.29): first with respect to 0, then with respect to k, and finally with respect to r.
This last application leads to a solution of

d*(r)/dr = 0 (3.8a)

with *,(r) given by

'I'(r) = g(t - r)2 T W r (3.8b)
4R,

where R, is defined in Fig. 4. This figure shows a sketch of a triangle whose vertices are the field
point m, and s, and s, the projections of the positions of the source at times r and t onto the undis-
turbed free surface. The lengths of the sides are R, R, and Ut - r), and the base angles of the tri- .

angle may be interpreted as being y and 0, respectively the field point angle and wave propagation
direction, as above. Upon noting that

dR Tdr- U cos 0 (3.9) u.

d*'(r)/dr = 0 leads to

2R1  4R7
Cos U(t- r) U 2(t - T)2  (3.10)

Using the relation

R, _ sin -y
U(I - r) sin (0 + -()

converts Eq. (3.10) to an equation between -y and 0, similar to Eq. (3.7). Physically, Eq. (3.10)
corresponds to the finding of the positions of the source at times r, s7, which give waves which reach .A

field point m at current timet. t

3.3 Geometrical Construction Technique

Becker considers the case of a fixed pulsating source in the presence of a uniform stream U in
the -x direction. He starts by noting that for an observer fixed in space, all wave processes occur at

II
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the source oscillation frequency f. Also, relative to a fluid at rest, the wave crests propagate in the
direction 0 at phase velocity V, which is a function of wavelength X. In the presence of the current
U, which retards the wave motion by the velocity U cos 0, the resultant velocity is therefore
V - U cos 0. The frequency f of waves propagating past a fixed point is then related to this vel-
ocity by

V(A) - U cos 0X f. (3.12)

Since f must always be positive, the signs in the numerator must be switched if V(X) < U cos 0.
With this understanding, Eq. (3.12) may be solved for V(X), as follows

U cos 6 = f X = V0X) (3.13)

where the upper or lower sign is taken according to whether U(X) is greater or less than V cos 0.
The intersections of the two straight lines

fI (X) = U cos 0 + f X (3.14a)

f 2  ) = U cos 0 - f X (3.14b)

with the V(X) curve gives the wavelengths as a function of 0, X(0).

In order to obtain a 0 - y relation, similar to the preceding Eqs. (3.7) and (3.10), Becker uses
the following two properties of the n th curve of constant phase

(x,y;0) = nX(0) - xcos 0 - Y sin 0 = 0 (3.15)

__ = n - + x sin0 - v cos 0 = 0. (3.16)

An expression for dX/dO is obtained by using Eq. (3.13). It turns out that the same 0 - y relation is
obtained by using either the upper or lower sign. Differentiating Eq. (3.13) (with the upper sign)
with respect to 0 results in

-U sin 0 = dV ___ - f -. (3.17)
dX dO dO

Using the following relationship between the phase velocity V and the group velocity V1 to obtain an
expression for dV/dX

=X v(×) -x X--v (3.18)
dX

converts Eq. (3.17) to

dX _U sin 0
dO g (3.19)

Using Eqs. (3.12) and (3.15) to eliminate f and X from the right hand side of the above equation
results in

12

9W -, 'd9.' ~9 9 9~99?JV-I 9 .



dX 1 U sin 0dX = V U s (x cos 0 + y sin 0). (3.20)dO n Vg - U cos 0

Substituting this equation into Eq. (3.16) and expressing x and y in terms of the polar coordinates R
and y results in the desired -y - 0 relationship

tan ("-y ) V Ucos 0 (3.21)

which may also be transformed to the more direct form

V sin 0
tan y = os-U. (3.22)

For the deep water case considered in this report, Vg is given by

v - V = -L IY. (3.23)

Becker then considers a velocity triangle whose sides are U directed along the x axis, Vg at
angle 0, and the resultant energy transport VE given by I,

VE = U + Vg. (3.24)

He shows that the angle which VE makes with the x-axis, 3*, is given by

U sin e
tan(,y* - 0) = - U cos (3.25)

i.e., comparing with Eq. (3.21)

"* =y. (3.26)

That is, at a given point (x ,y) in space, a wave normal is directed at angle 0, but the resultant energy
is transported at the polar angle ' of the point.

Eggers [12] starts with the same frequency condition as Becker, Eq. (3.12). However, he car-
ries out his analysis in terms of k instead of X, and explicitly introduces the deep water relation (Eq.
(3.23) expressed in terms of k = 2w/X) from the start instead of at the end. As a result, his analysis
is of a more mathematical nature and to a large extent resembles the method of stationary phase
described in section (3.1) of this chapter.

4. ESTIMATES OF FAR FIELD WAVE AMPLITUDE

Only Grekas [2,31 and Haskind [41 give explicit formulas for the amplitudes of the far field
waves. As shown below, the formulations are for small values of the parameter Y = Uwig or the
velocity U.

4.1 Grekas's Approximate Formula b

Since Reference 131 is basically a summary of Part 1 of the doctoral thesis [2], the description
here summarizes the derivation given in Chapter 4 of [2]. The analysis is carried out in a fixed coor-
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dinate system for a pulsating source fixed in the presence of a horizontal stream. Grekas actually
considers the stream to have components in both horizontal directions x and y. To conform to the
convention used in this report, with no actual loss of generality, his analysis will be given for flow U
in only the +x direction. The crucial simplification of his approach is to consider U small such that
U2 can be neglected everywhere. In the case of the free surface condition, Eq. (2.13) is simplified to

i9G +_U_ 2G  0
t-- + 2U _ + g -az = 0onz = 0. (4.1)

Taking the strength of the pulsating source to be given by

Q = Q* cos W1 (4.2)

G is then decomposed into the usual sum of a Rankine source and a function which is harmonic
everywhere in the lower half space

G = G, + G2 = Q* cosWt + G2- (4.3)
4rr

Putting G2 in the usual Fourier transform form, Eq. (2.6), and again noting the key identity (2.7), the
use of the free surface condition (4.1) leads to G in the form

-Q*cosWt 
1

4w r r

Q, O ek(z + z'+iw) gk dk (44)
Re fe f1 S ogA(4)

4 2  -T ( - 2kwU cos 0 - gk)J

where w is defined in Eq. (2.7b). The neglect of U2 in the free surface condition simplifies the
denominator of the integrand to gk + 2kcoU cos 0 - w 2, which has a simple pole in k, whereas the
more general free surface condition (2.2) leads to the more complex denominator in Eq. (2.12),
gk - (w : Uk cos 0)2, which has a double pole in k.

The equation for the "meridian" lines (or wave crest contours) of the deformed free surface is
taken to be

h -I + h2 (4.5)
g at

where h Iis a near field solution which goes to zero as IIR, n > , and h 2 is the far field solution. %
It should be emphasized h is not the total wave elevation since this would include the convective term
(U/g)ao/8x. This term can, however, be easily obtained from the final form for h2, given below in
Eq. (4.9). The far field solution is put in the usual form

iW1 00
h2=_ Q*o Re fe-  f(0) egd (4.6)
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where

g(0) k cos (0 - j3) W 2 Cos (0- /)
g + 2wU cos 0

f(0) ko e koz'

g + 2cdU cos 0

B tan- y/x is the spatial angle.

The quantity ko is the wavenumber in terms of the intrinsic frequency cWo  i_?

w2 (w - U cos 0 k o)2

ko = - = - (4.7a)
g g

- 2o U cos 0k o  ,47.g (4.7b)
g

where Eq. (4.7b) results by again neglecting the U2 term. Solving Eq. (4.7b) gives ko in terms of w
as follows

ko  W (4.8) ,,
g + 2 wU cos 0

Applying the method of stationary phase to Eq. (4.6), the following final form for h 2 is obtained

2f r u) 6)RCS(4.9) "'Q*Wo i lko(O,)R cos (00o- 0)- i,/4 - wtI .:

h2 = - Re (00) e g"9(00) ( /•

where y

- g cos (00 - 0) W2

g " + 2U cos 00)2 (4. la)
(g+ w

and 0o is the root of the 0- / relationship given by

g'(00 ) = gsin (/3- 00) + 2wU sin 0 0. (4. lOb)

Grekas's expression for g "( 0 0) erroneously has the denominator raised to a power of 3 instead of 2..
Figure 5 shows that there is only a set of ring waves, as opposed to the ring waves plus two sets of
ship transverse and divergent waves shown in Fig. 3 for i' < 1/4.

4.2 Haskind's Approximate Formula

Haskind [4J uses a moving coordinate system, for which the free surface condition is given by .

Eq. (2.2). The Fourier transform technique is also used to obtain G2 in the expression

Ge- + G2e"~.(.1
O' =[r r'
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A fictitious viscosity 14 is included in his formulation. This viscosity, although ultimately set equal to
zero, serves to indicate the proper way of surrounding the poles in the integration with respect to k.
Basically, the semi-circles surrounding the poles must be chosen such that their imaginary parts must
have the same sign as the imaginary parts of the poles ki, k2 when As *0

k'. 2 = k 1,- if() (4.12)

where k,,k 2 are given in Eq. (3.5b). He shows that

sign Im k = - sign cos 0 (4.13a)

sign Imk = - sign v - sign . (4.13b)
g

For v > 0, he gives the following definitive integral representation for G2 , including the paths of
integration for the integral with respect to k

G 2 = FI(x,y,z) + F 2 (x,y,z) + F 3 (x,y,z) (4.14)

where

F 1 =r/ Go k I e jk(z +z'+iw)l dF,- A do ..
T 1-/ 2 1O(L') (k - k ) 1 + 4 P cos 0

I i/2 00 k e(k( z + 
z ' -iw)l-- - /2 dk dO

, -' ,0(L, (k - k)I- 4 4 cos 0 A

Fr 61 ke[k(z +z'+iw)l dk dOF I + - o kO, A.,, 0 dO
2 r +6( f0(L,) (k - k2) 1 + 4, cos 0

K +0° kelk(z+z'+iw)l d
F3 = dkoo dO3 '2 f(k - kj) (k - k 2) cos 2 9

k 1.2 (0) = k 2 (0 + r) A

signifies that the integration is to exclude the interval (-00, +60)

K = w2 /g

00 0 for v <- 4

..

I i "= cos- for v > -.

S 4 40
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The contour L1 connects the points k = 0 and k = o by passing above k = k1, the contour LI con-
nects these points by passing below k = k-1, and the contour L 2 passes above k = k,.

For values of < 4 - Haskind gives the following asymptotic far field formula for G2 in4'
terms of the polar coordinates R, /3

2i/2k elk(1+2P cos 0i)1z + z'.T- ilR -x' cos 0-y' sin O)I] ir/41 7G2 = 2(1 + 2 a, cos )3) R"s e (4.15)

where the upper sign is to be used for positive values of t, and the lower sign for negative values of
a,. Unfortunately, Haskind does not provide any details of the derivation. However, similar to the
formulation by Grekas, Eq. (4.9), the above equation gives rise to a single system of ring waves
which propagate in all directions from the source. This again suggests that the free surface condition .
(2.2) gives rise to a simple pole in k. Since the term U2 a2/lX 2 gives rise to a square term in k, it
must have been neglected in the derivation.
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