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The work presented in this thesis deals with the development of a fast and

fairly accurate Computer Aided Design software for simulating very-large-

scale-integrated ( VLSI ) circuits. The methods rely on piecewise linearized

nonlinear elements in the circuits.

The piecewise linear approaches explored in this work are

1. A fast piecewise linear Gauss-Seidel waveform relaxation method.

2. A slower but more accurate piecewise linear method based on simplices.

3. A Gauss-Seidel piecewise linear method with dynamic partitioning.

Also described is a mixed method which combines the fast piecewise linear

I' method and the dynamic partitioning method. The circuit to be analyzed is par-

o, titioned into dc-connected subcircuits and then sequenced for analysis. Small

subcircuits are solved using the fast piecewise linear method while large subcir-

cuits, including the strongly-connected components in the circuit. are solved

Fusing the dynamic partitioning method.

A parallel implementation of the Gauss-Se:del piecewise linear method

Z with dynamic partitioning on a uniprocessor computer is studied. Algorithms

for the parallel implementation of the dynamic partitioning approach on a mul-

tiprotessor with shared memory (Alliant FX/8) are also explained in deiail.
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The piecewise linear methods presented in this work have been imple-

mented in a set of programs called PLATINUM. The waveforms generated by

PLATINUM are fairly accurate as compared to those for SPICE2. and the

speedup for a uniprocessor machine is over lwo orders of magnitude, while the

parallel implementation gives an additioral -4 to 6 times speed improvements.
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CHAPTER 1

INTRODUCTION

Fabrication of integrated circuits is expensive and errors encountered after

the process is completed cannot be corrected. Therefore, before the circuit is

fabricaled, it is important to design the circuits as best as possible and then

simulate the operation of the circuits to check if the performance matches the

specifications. In general, simulation can be divided into classes corresponding

to the different levels of the design:

I. functional level simulation

2. register transfer level simulation

W ,3. logic simulz'tion

4. timing simulation

5. circuit simulation

b. device simulation

7. proess simulation

Although simulation at each of these levels is important for successful

design, this work is aimed at developing fast and reliable methods for circuit

and t:mng simulations of large-scale circuits. Before describing the ne'w

methods. well-established techniques as well as recently proposed ones are

briefy reviewed below.

Circuit simu,ators. such as SPICE2 [1] and ASTAP [3o], provide accurate
resa!ts. These szindard circuit simulators basically follow the procedure :ndi-



caied below: a

1. Transform the nonlinear differential-algebraic equations describing the

dynamic behavior of the circuit into nonlinear algebraic equations

using implicit integration methods.

2.Generate linear equations by iteratively applying the Newton-Raphson " -

formula to the nonlinear algebraic equations.

3. Solve the linear equations at each Newton-Raphson iteration using

sparse Gaussian elimination techniques." "a

More recent circuit simulators apply tearing or partitioning methods to

lower the computation time. Tearing refers to breaking the original syslem into

subsystems, solving each subsystem separately, and then taking care of the

interconnections among them. The main advantage of dividing the original net-

work into subnetworks is that the inactivity or latency of the subcircuits can

be exploited. It has been observed that inactivity or latency in large digital cir-

cuits accounts for up to 80 percent of the network variables. The numerical ,

convergence and sTabilily properties of tearing methods are the same as those of

standard circuit simulators, provided direct methods are used -o solve the par-

titione I equations. One well-known tearing method is equivalent to reordering

the system variables into bordered block diagonaI (BBD) form [511

D v yI
P I I= .,

k T TW S*

w khere x- c is the vector of Learing variables and v t is ,he -eclor Of the

res' of the variables. T is a kxk tear.ng mnatrix. and D is an mxn bhxk diagona,

matrix. The tear:ng var~ables w are solved by elimina:ingz var:ablesv

;Aa,
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(T-Q7D-'P)w =s-Q7D-1y

Then the rest of the variables v are solved I
D, v = , y - w

where the subscript i indicates the C subcircuit.

One example of a circuit simulator that uses the above tearing method is

SLATE [2]. Due to the fact that only a small percentage of the total subnet-

works are active at a particular time. and hence only few subnelworks need to

be analyzed, this method can provide savings in computation time.

Another way to save computation time is to apply a relaxation based solu-

tion method [11], whiich can also be considered as a form of tearing. An exam-

ple of a circuit simulator that utilizes a relaxation-method is RELAX [11], '

which solves the equations at the nonlinear, algebraic-differential equation

level. In RELAX [11i, while solving for unknown variables assigned to each

subsystem for the time period [t,.tj, the rest of the unknown variables not

assigned to that particular subsystem are relaxed to waveforms of previous

iterations. The advaniage inherent in the waveform relaxation method is thal

each subsystem can be solved using its own time step, and Ithus can exploit

latency in a natural way. The main disadvantage is that for subsystems with

strong coupling among them the method converges very slowly.

Another way to reduce simulation time is to use timing simulators.

switched-level si:nulators [3.10], or timing verifiers [14,15]. Timing simulators

use methods similar to those used in circuit simulators, while swilchcd-ievei

s:rnuiaors and tlmin2 verfiers use approaches that are cornpieteiv differ(nt.

The speed and accuracy of these simuiators cover a broad rangL; :n general.



switched-ievei si rulators and timing verifiers are faster Than the (ircu:t-

oriented timing simulators: however, switched-level simulators and Timing

verifiers are less accurate. Some examples of Timing simulators that use

approaches similar to those of circuit simulators are MOTIS [5]. MOTIS-C [6]

MOTIS II [7]. SPLICE [411 and PREMOS [8]. To reduce the computation Time at

each time poin" a one-sweep Gauss-Jacobi rnetho.c is used in MOTIS [5] and a - j

one-sweep Gauss-Seidel approach in MOTIS-C [6] i.e., the iera-lon is not car-

ried out until convergence. In SPLICE [41] the relaxation method is applied to

the nonlinear difference equations. It is similar to MOTIS-C [6] except that the

,terations are carried out until convergence or until the number of iterations .

exceeds some predetermined value. In the latter case the time step is reduced

and the calculation is repeated. The iterations are performed to achieve accu- 0-

racy and convergence. PREMOS [8] appiies a Gauss-Seidel method similar to -

The one used in MOTIS-C [6], except that the unknown variables in the Gauss- ,

Seidel formulation are predicted based on previous values.

S.xit ched-'evel simulators are somewhat related to logic simula-ors in That

:.xv use levels defined as 0 , I and X {X is the undefined or unknown level'.

Nodes in a circu, are assigned strengths \',hnch de.ermine if the nodes can affect* 1.

or t affect-,d Iv oTher nodes. Each transistor in the circuit :s assigned a sla'e.

D'talsis the sta'es of the transistors are first heid fxed and the

nod es are 'ipdatc: the lransis*or states are then ified while 7he node stales

are kc-n' -xtd An' example of sinula~ors hat use this procedure is MOSSIM [3].

-rno1he-r ¢ppro'cA- 'o swilcht-d-level simulation :s presen'ed in [4] and is imnpe-

:..::'ed :n :. s -ulator E XPRE S. The m tthod relies on the evaluat on o: .. 4",

-V-

A LV
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symbolic logic expressions which are generated automatically by the simulaior. ;

The method is also able to handle faults injected into the circuits. Another

type of switched-level simulator is MOSTIM [10]. In this case, the third levei X

represents a state that is above a chosen low-threshold level and below another

chosen high-threshold level. Note that this level contains timing information

while the X stale of the other swilched-level simulators (MOSSIM . EXPRESS)

only represents undefined or unknown values, which means that the X level

can also be 0 or 1. In MOSTIM, delay tables for a basic inverter circuit and for

an inverter with transmission gale are constructed using circuit simulation runs

in a preprocessing step. Delay information is then extracted from these runs.

The delays of nonstandard primitives are obtained from the tables by using

scaling of existing primilives. The simulator is in many cases over two orders of

magnitude faster lhan SPICE, and the X level provides fairly accurate timing

information. One drawback is that the tables require a large memory space and

have to be constructed for each technology.

Timing verifiers, on the other hand. determine the timing of critical paths -,'

in a circuit. Timing verifiers use methods that are signal-value independent.

However, timing verifiers may report false critical paths. or paths that are

never activated in reality. To handle :his weakness some mechanisms are

incorporated by the timing verification programs. Two exaApies of timing IN.'r

verifiers are Crystal [14] and TV [15]. The difference between the two is that %

Crystal employs a depth-first search in determining the crilicai paths, while TVI

us-es a breadth-firs* search. The timing or delay calculation of 'he critical path

is based on approximating the ransistors by linear resistors and then deierm=n-

a..

:%?
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ing the dynamics of the resulting RC network based on some RC time constant

approximction, such as the one suggested by Penfleld and Rubinstein (21].

In this study a new method for fast timing simulation based on Diecewise

linearized transistor models is developed. The method has computational speed

comparable to that of switch-level timing simulation. and at the same time pro-

ctices waveforms close to those produced by star.dard circuit simulation. The

use of piecewise linear ( pi ) techniques for time-domain analysis of electronic

circuits is not new [32]. It has been used by Hajj and Skelboe in [121. where the

numerical properties of implicit integration formulas are analyzed when

applied to the solution of pul systems without partitioning. In [28] Laplace

transform techniques are applied to compute the solution in the linear regions

of the pci equations. In [13] Kaye and Sangiovanni-Vincentelli use Laplace

,ransforms and Gauss-Jacobi method to compute the solutions of r-%,l systems

of equations, where the set of equations is partitioned into systems of scalar

equations. A major time-consuming step when applying the Laplace transform

method to the solution of pcI equations is the computation of the intersection

of the soiution trajectories with the region boundaries. In [371 a Gauss-Seldei

technicue is used to solve pu,' circuits. In this case the circuit partitions are

fixed: in addition. Gauss-Seidel techniques are used to solve' the pcl equations

within each partition. The melhod can thus ,be too slow when strong coupling

exists among The circuit variables.

More recenly There have been a few papers dealing with methods related

in some respects to pw! techniques. mnost notably Elogic [16.17] and Cinnamon

[181. rela:ed in he sense that 1knear or ml rar.ssor models are -,sed. T.ese

4-
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two simulators will be described next.

In Elogic [16.17] the transistor model used is the small-signal model

1 linearized at the operating point, or line-thru-origin model. An n-dimensional ,.

table consisting of a Norton equivalent circuit for each output node as a func-

tion of controlling voltage states is constructed. Unlike the method applied in a

cor.xenlional simulator. Elogic discretizes the voltage level, calculates the total

concuctance and total current at each node. and determines the time when the

0next discretized voltage level is crossed. The time increment 6 t is computed as

follows:

At = (C.xAV)/(I.-(V'xGW ))

where CX is the capacitor at node N , IN is the total current at node N. V is

the voltage at node N at the present time point , and G.. is The total conduc-

tance obtained from the table for node N. Only transi:ions between adjacent

states are allowed by Elogic. Since waveform relaxation iteration is not carried

ou-, until convergence. Elogic might make a wrong transition to a new voltage

state. The solution to this problem is to use small voltage steps. A better ver-

sion ( Elogic2 ) which applies the trapezoidal method for ciscretizing the Time

derivat:ve and solves strongly coupled nodes together was developed. Solving

' slronglv couipled nodes Together eliminates the nonconvergence problem of the

wave!orm relaxation method as applied in Elogicl. Since it is more expensive to

ust Elo,.c2, the nro grain is used during ar.alysis only when Elogicl fails.

Cinnanon uses a method similar to the one used in Elovic in that the vol-

age level is discretized. However. the transislors are linearized at each T:me a

d:scei,7-ed vol'a-e ievel ,s crossed at each "evnt" ), ra-.er than obaining the



transistor model information from tables. The time when a vollage level is

crossed is determined by approximating the solution obtained using the Laplace

transform method. The approximation is that if the anipliude of the exponen-

tial term corresponding to the smallest (absolute value) of the system eigen-

values is smaller than the voltage step AV. then this term :s the dominating

term of the solution. This method of solution gives more accurate results than

the approach of Elogic, but the use of the Laplace transform method could slow"

down the solution process.

There are three pwl approximation methods described in this study. The

three methods construct pwl models at the outset in a preprocessing step of the

simulation - as is done in Hajj and Skelboe [12] and Kaye and Sangiovanni [131. 4

so it is not necessary to linearize frequently as is done in Cinnamon. Compared 0

to the tables for the transistor models used in Elogic, the table sizes in our

approach is smaller, since the tables are one-dimensional, and fewer breakpoints ,.. ".

are needed.

The first method is a modification of the Chien and Kuh method of per-

forming p l analysis on simplices [401. In the original method there is no

implication of piecewise linearizing the network elements, but rather the

method is applied to general pwi functions. In our case both the ne'twork ele-

ments and the solution curve are piecewise linearized. There are some advan-

tages to using this method. It is simpler than the more common Katzenelson

mtelhod [291, in that there is no need to explicitly calculate the boundary cross-

ings when tne solution curve enters a new pitl region. Moreover, there is no

need for the function "o have a derivative; that is, it is not necessary to con-

'2
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struct the Jacobian matrix as is done in the Newton-Raphson method. In fact.

the function describing the device characteristics need not be known. Only data

points on the curreni-voltage characteristih curves are needed. In addition, the

convergence of the method is the same as that of Katzenelson's method.

The second method combines a fast pwl method and the waveform relaxa-

tion approach. This method is based on the work of Hajj and Jung [391. The

idea is to partition the system into a set of scaidr pwl dynamic equations, solve
S

each equation by inspection, and iterate using the Gauss-Seidel waveform relax-

ation approach until convergence. It is found, however, that for strongly-

coupled nodes the method proposed in [391 converges very slowly. Modification

to the original method is described in the next chapter.

The third method is a completely novel one, which dynamically partitions

the network during the analysis so that the resulting linear matrix representing

the piecewise linearized circuit is as block-diagonal as possible. The dynamic f..

partitioning involves the comparison of integers representing regions of transis- A

,or operation. Fast computation speed without much loss of accuracy has been

obtained using the third approach. Another good feature of the method is the

inherent parallelism of the block-diagonal form as a result of the dynamic par-

titioning. and thus parallel processing can be efficiently used.

The pwl transistor model and the first and second pwl methods mentioned

above. namely, the pw! method on s-mplices and the Gauss-Seidel pwl WR

approach are explained in Chapter 2. Chapter 3 is devoted to dynamic parti-

Tioning methods. An 4mpementaton of the dynamic partitioning method on

,p ,lel orocessors is descriied in Chapter 4. The implementat;on of the % " '
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approaches for sequential and for parallel machines and some examples are

given in Chapter 5. Conclusion and suggestions for future works are described

in the final chapter. Modification to the pu'l transistor model to incorporate

short channel effects is described in Appendix A. A brief description of the pro-

gram PLATINUM. which is an implementation of the dynamic partitioning ,

approach. is given in Appendix B.
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CHAPTER 2

PIECEWISE LINEAR SOLUTION METHODS"
2.1. Introduction

•0

Simulating entire VLSI circuits using standard circuit simulation programs

such as SPICE is very time-consuming, due to the large size of the circuit. P1l

methods could be attractive because they simplify nonlinear model representa-

lion, and therefore. would reduce model evaluation time considerably. In addi-

lion, some pi,! methods offer better convergence properties as compared to the

standard Newlon-Raphson method used in standard circuit simulators such as

SPICE. In this Chapter 2 pwl methods, together with their advantages and

crawbacks. are explained.

Thu currents and voltages in a circuit are governed by the following equa-

ions:
,,..O

(ACL) A ib 0 (2.1.a)

(KX'L v = v (2.b)
(resistors) I f ,:v'.,,2 (2.1.c)

(reis, rs ) r = j rV' ,) (2.1.d)
'€.~~~(2 L.e),_ .

(cavacizurs ) q, f (vQ ) . - (2.l.e1

dlM 00

, %i ®r '

dg zv • ~w i>
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(inductors) = ( , =d- (2. l.f)
dt

where i. is the set of currents in the b branches of the circuit, v b is the set of

voltages across the branches, v . is the set of n node-to-datum voltages, and A

is an n x b reduced incidence matrix which contains - 1. -1 and 0 entries. v,

and 1, are voltages and currents across the resistors, q, is the charge of the

capacitors, v¢ is the voltage across the capacitors, () is the flux of the inductors,

and i, is the current through the inductors. The tableau equations in (2) may

be reduced to a smaller set using, for example, the modified nodal approach

[461.

Since the work presented here is based on piecewise linearization of the ' . ..

nonlinear elements in the circuit, pwl modeling of nonlinear elements,

represented by f[. Un. ff and f, in (2.1). will be explained in the following .A

sections. Note that the functions in (2.1) include linear elements and indepen-

dent sources. These elements, of course. need not be piecewise linearized.

2.2. Piecewise Linear Modeling %-
V

- U

2.2.1. Two terminal elements

The ru-1 approximation of the nonlinear characteristic of a 2-terminal ele-

men' is shown in Figure 3. In this case the pi,-l curve is characterized by a set

of breakpoints. The breakpoints define region boundaries. In each region 'he '

equation is as follows:

V h' x

wh ere *he subscript i indicates the region nu.7nber. The numrber of brE-aknoinis
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and their locations determine 1he accuracy of the pi approximation with

respect to the original function.

2.2.2. Multiterminal elements

In n-dirensional space the boundary between two regions is an (n-l)-

dimensional hyperplane. In each region the pwi function is of the form

f(x9=J x + w = y

where J. is a constant matrix and w is a constant vector. J, and w are

defined in each pwl region.

Modeling of multiterminal. nonlinear elements by pw! functions in gen-

eral requires multidimensional tables. However, if the functions of several

variables representing the terminal characteristics of a multiterminal element

can be expressed as the sum of single-variable functions, or the sum of nested

functions, then the p-wl representation can be expressed in terms of a set of

one-dimensional tables. This would save both storage and computation. In gen-

eral. howevcr, such a model decomposition is not necessary, since one can use

simplices, as will be described in section 2.4. In the next section, we show how

three-erminal elements, such as an MOS iransistor. can be decomposed into an

interconnection of two-terminal elements. Then each of the two-terminal ele-

:nents is piecewise linearized. Each two-terminal pwl mode' can then be stored

in a one-dimensional table.

NY

-'."

P.'.,
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2.2.3. Piecewise linear transistor model

The well-known simple equations of the channel current of an MOS

transistor is as follow [381:

Linear region:

IDS = 2 sTDS DS) "0 < DS I 'GS -- T (2.2.a) -.

Saturation region: P.4

'D =(GSI)2 0 , I VSVT
IDS = K(Vs- ) G - DS (2.2.b)

K = p. 0 , IV2t L

= average surface mobility of carriers in the channel of the device

Ex permittivity of the oxide .%,

t=X thickness of oxide under gate

L = length of the channel

W = width of the channel

The Vs, DS and VT are gate-to-source, drain-to-source, and threshold vol-

tage. respectively. The terms K and VT in the above equations are considered to

be constants. It is clear that a pwl approximation of (2.2.a) requires the genera- .s*

zion of a two dimensional table with V GS-V T and VDS as independent vari-

ables. Although interpolation on two or higher dimensional tables is feasible, it .5-

:s much more efficient from the computational and storage points of view to '.

have a one-dimensional tabular representation. Meyer [25] proposed the fol-

lowing model which transforms (2.2) into su:ns of functions of a single vari-

able each :

IDS = A( s-T )2 I GD - 2.3.a)

2 Z ",t
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=A f WGs) A G3(V )"

= 11-1=

(XGX~t' )2 for' 'GX >'"

i-here f -V0 for (Gx <1= r (2.3.b)0 for 'G<X'T

The model depicting Equation (2.3) is shown in Figure 1. The model can be

transformed into an 'Ebers-Molls-type' model as shown in Figure 2. The a s in -.

Figure 2 are equal to unity to keep lga'e = 0.
-

The next step is to approximate the quadratic equations in (2.3.b) by pwl,

functions. An example of a graph of I vs VGX and its piecewise linearized

representation is shown in Figure 3. For timing analysis a three-segment model

has been found to be adequate for providing acceptable accuracy. The resulting %

circuit. depicted in Figure 4. consists of a conductance and a current source.
.-.. *5

,where the value of the conductance is the slope of the linear function in a seg-

inentl and the current source is the intercept of the function with y axis (the I

axis). "" %. "

Using an impiicit integration formula, such as the backward Euler for-

muja. to approximate the time derivatives in (2.1e) and (2.1f). the resulting

"WI circuit equations at time t. are of the form .. N-,
, 'Ae" 4

P( x)=0 (2.4)

where x couid be the modified nodal equaion variables, and x the value of .,

x at tirne t.. Equation (2.4) is usually solved bv using Newton's method. At

evvrv ileration in Newton's method. the linearized eq-yations are of the form:'.

x = on.5) m
.-k num:'ber of iterations may be necessary before 1he process con' erges. provideJ .
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Fig. 3 The or:ginal and pwl current vs. voltage plots
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it does converge. The matrix A, which is usually sparse in circui analysis, is

solved bN sparse matrix solution methods to reduce the computational burden. -*

A modified Newton's method for pi equations, known as the

V-- Katzenelson's method, guarantees convergence. In Katzenelson's method the - "

next iteration point is chosen to be the intersection of the solution Traject )ry

with the boundary hvperplane unless the solution is found w~thn the region. A %

drawback of Katzenelson's method is the time it needs to determine boundary

,.N crossings. A variant of Katzenelson's method, the pwl method on simplices,

finds the boundary crossings in a simple and more efficient way. The pwl

method on simplices is explained next.

2.3. Piecewise Linear Approach on Simplices

This method was first proposed by Chien and Kuh [40]. It is conceptually

similar to the well-known Katzenelson method. The advantages of this method

are as follows: •

S1. There is no need to determine boundary crossings as is done in the

Katzenelson method. Instead. a vertex replacement is performed on simplices.

There is no need to calculate the Jacobian matrix as is required in-

A, 'he Newton-Raohson formula. In Ih:s sense the method is more general since

a lunction which does not h.ave a derivative can st] be solvec.

3. The functions describing the (urrent-voltage ardc charge-voit.e

charac'er;s'ics need not he known. Sampl points on .he ri.i:n~trcs~ondi

-aru ,'t.1S,' cS -r' su Lcitn- I or h n or a',ion. -r~s i:.is l;Ls :,L-

, %
-aC

-. °
o

*
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new devices based on new technologies can be studied without having

,he function governing the operation of the device derived.

In the next few paragraphs the definition of a simplex is reviewed. This is

followed by a description of the Chien and Kuh method. Finally. an algoriThm

based on the approach is presented. "?

Lei x . . ,x, fR. A simplex, known also as a closed (onvex hul. S ?

x o,0 ', ) is defined by

S(x ,. .x

X E R I x Tu, x .0-< u l.i =0.1.2.n and E =1)

x o , • x are called the vertices of the simplex S ( x o. • .x ). A simplex

S(x 0 . .... x ) is called proper if and only if tne n-l) x (n-I matrix

,s nonsingula:.

The boundary Hk corresponding to the vertex x . is defined as I
H.= x RIx = 

As will be explained later in the chaoter. this defini:ion of boundary is

very useful in deermining where the solution (urve should go. Due to !he fact

that there is a one-to-one correspondence belween a boundary and a vertex.

instead of deter:nining which boundary is to bt crossed by the soiution curvc.

,he corresoncding vertex to be removed is de'ermined. [his vertex rrmoval

Tur-ns out to be si-n:)icr in calculation and prgiThmr~ia.findin2 thc

V*.C: U I -I;% t C

*% rns.'
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boundary crossing. Reference [40] contains a compiele explanation and cieriva-

II tion of the method. The following paragraphs describe the idea and the algo-

rithm.

Let the original function to be piecewise linearized be f ( x ) = N where

f (.) : R" . A function g (.) approximating the original function f (.on

"S ' x , " x )is defined by

g~x)=[f( xo )  "-,f(x, )]/±

for S( xo. x, )and ju = [ouu .Af defined previously for the

reoresentation of x E S( xo, ,X ).

In summary, the representation of a point x in a simplex S ( xo .

) and the pwl function g ( x ) are as follows:

X ES(X 0 ,  x

1. 1X

f (xr

g ~ x ~ 0  f

the Once the boundary to be crossed is identiLed, then one needs to determine

, he new- simplex entered. Since corner crossing is not allowed, all vertices.

" except one. remain the same. It is shown in [40] that the new vertex :, is the

combination of the old value x k and two of its adjacen! vertices: that is,

x " X k-1 + X - X

wncre k indicates the pos;tion of the allered vertex.

I tL
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The solution algorithm g;ven below is a slightly modified version of the

one described in [40].

Step1: I.

Choose

x 0 and = x 2I+E. i=hr2 ..... n [.hcre E,=.

and e. > 0 is the i th component of E.

Step 2:

Let A 0 =[ ..... 1]T1(n+l) ; that is, x0 - x is the
(7 +1 ),=o

center of the initial simplex ).

Set i=O SS

.

Step3: 

Compute # according to the equation

f ... f 1

If every component of A' is non-negaiive, a solution is found

= [ X 0o -. ..x , ] ̂ : .S T O P %, . .

Se p 4:n

Otherwise. coinote A from , "

Au( i /I + s,( S.:.(O -1 A )!

such that

% a

i) 0 1 /t(: ( for 0 A A

ii *here exists one and on'A one index k satisfying (XI  = 0

III 1 > ,U 'A > ( for; k

Len i.

.-
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%

In practice • !

Find minimum t ( trmin ) from
0=Z A-k Sp ! "-u + I('U -' ) if -'U < 0

'-

- or - from 
k..

0: i. /x- ),f(Ax -^ , )>0

Then calculate ,

A (:mzn) = tmM(1 -A

Step 5:

Replace . by ( x +l + x -- x

Let i=i-,- 1 and go to Step 3. - -

\Ve found that the method is slow in analyzing circuits. To reduce the

computation time the nonlinear network elements are piecewise linearized and

tabulated. As a result, we piecewise linearize two things: one is the network .-."^ e

elements and second is the solution space which becomes the space of simplices. .

The piecew:se linearization o! the network elements is not proposed in the origi-

nal idea given in [.40]. A variable time-step method described in Wei's thesis

[431 is used. A 10-stage chain of inverters analyzed using this method requires

about 20 seconds of CPU time while SPICE needs about 13 seconds. --

Paraltl implemenTalion of the method could reduce the computailon Time.

Each veftex of the simplex consists of a se. of numbers representing a set of
%

'oltages. For example, an irverier with a oass transis:or is renresented by a
.0 % r% .0

sm;rnpiex with 3 vertices. Ea(h vtrtex consists of 2 nuambers. -tpresen*ingt he .
eita,.es in the c;rcuit. Each vertex, which is a column 4n the matrix of step 3

f "he al-orithm. can be solved in parallel. Bccaise each vertex prov:des a

I-S
*,5..,% %%



complete set of voltages, the en',ries of The corresponding column car, be corn-

puied concurrently. I his is performed until all The columns of the matrix are

calculated.

, , _-

The results of the implementation of the method on the Allant FX/8, a .

vector-parallel computer with shared memory, were found to be discouraging. 7 .1

..

The speedup was only a factor of less than two as compared to SPICE. . ,

Although parallezaion of the matrix entries is possible, the resulting cuanrix is

dense. and therefore, no sparse matrix technique can be appled to red-Lce con- i

putation. As the circuit becomes larger, the calculation of the dense matrix

v4

could become prohibtive.

Z

'a.

2.4. Relaxation Methods IN

The circuit ananlysis method descrbed so far solves (2.) as well as (2.5) .

direcAly i.e.. no relaxation is used. Alternatively, relaxation te nques could

be used to solve (2.5) (c.g.. linear Gauss-Seidel or Gauss-Jacobi) or (2.-4) ( non- *

linear Gauss-Seidel or Gauss-Jacobi ). In these mehods the ime step s con-

rolled as the global circuit level, and thus are referred tio as poinwise relaxa-

lion methods. The pointwise Gauss-.Seidel method of solving (2.,4) is as follows: "

repeat i foi-each (jin N\{ ,

_, , .. .x. ... .x\)k 0 for . : ( . ),

2.4. Reaato Methods )

The foreach uitpaes alis the codepulaion for each value j in he Ordered se .

-. " .

hset ove (2.5) ... inThordear a seie by r seor(2.
or I- W )=0fr(.)a
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%
i The pointwise Gauss-Jacobi method of solving (2.,1) is ,

repeat I forall ?in .Nt

*]NE g.( k Xk+=' 0 for. x' ( 2.7)

k ..

INu n t i l ( 1I 1 x X I I I )

IThe forall implies that the computation for all values ol in the ordered set A'

ma-y proceed concurrently, iLe.. in parallel and in an\- order. :

"-" Relaxation technques can also be applied at the differential equation level; ,,

,.'.-.i.e., each subcircuit can be solved using its own time st ep. The Gauss-Seidel

waveform relaxation method of solving a system of nonlinear dferertial equa-

teons of the form i

• x f (x t )(2.8),.

solve g .... , . ,..x9= -fx " "K (2.7) .

x f ( x 1 .. . X X- (2.9) '1 ' X

x (0) = x .(0) ".
while Gauss-Jacobi waveform relaxation mehod is ih e

" x = f . x X .. . . : x . ,P .' .x ) (2. 10 )

-. ' -.- 1

x ( ) x . 0.)
"The veclot x in the above equaion corresponds th the varentin tie subclr-

"i. In the waveform relaxatton method ofhe susligrcassie varibles ire solved-

i or a *,me window T. In %10) circutlis. subc:rciits are of'cn obt.-ined b\- parti- %'

"thnin (:i crcuil into dc-connecled comniprens. Fioae!:ng (a : ., sicn as.._i

(a ttors ofus thea form~dt aiIP2S'(IC .I

' • 'z~aie-source and ga' e-dral pa~ac:'oscueit ed akgHtP' ,I)ICG " ,  n"

,,,. : m m g analysis ' hese smal floari.- capac:lors are rt pla, ct! h% vC- 11!.a'.tn, c ip- ,.,

c~tn~e :r : h-n nod~es , c .e rouind [271..As a r : . ' k t, a 2t-(t !)c. oad'-'

i f ( x .t) .b. oo. . . .o
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among the subcircuits caused by he Boating capacitors are eiminated. When

applying the (Jauss-Seidel method, sequenc;ng the subcircuits for analysis could I
lie

reduce the computation time. In The following subsection, sequencing of the

subcircuits for analysis is described.

91

2.5. Analysis Sequencing

A.-nalysis sequencing is applied after the circuit is partitioned. While parti-

computation time. The idea is that if it is possible to partition the circuit into

[.one-way" subcircuils. then only one sweep of Gauss-Seidel analysis is needed

or so1v ing , he circuit. 

A circuit which has been partitioned into dc-connected subcircuits can be-.1

reresented bv a directed graph G(V.E) wkhere V is a set of vertices representing

subcircuits and E is a set of edges depicting signal lines from fanout to fanin.

In he circuil, an edge e E E with an arrow from vertex x to vertex y is the ,9

resul" of dependent current sources due to MOS transistors in subcircuit Y. The

folowg def..niions about gaphs wil be used in the description of the

secq::nc:ng aigor:lhms. ,

Iefinition A•

(e:vnr a Vrlex v oi G('.E). ,he se, of anin vertices and fanou" vertices of \er-
I-

W.%.

HA' V "

:et:("=!, t \ !ix.vw) ,E [I

4

% %%

:1' -40
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IN

where (x.y) denoies an edge from vertex x lo vertex v. The number oi fanin p

and fanoui vertices of v ar- denoted by nfln(v) and nfout(v), respectively. In

the following definitions and theorems we will consider ordering or sequencing

the vertices of graph G(V,E) when the graph G(V",E) does not contain any feed-

back. This case arises in combinational circuits consisting of simple transistor

models.

Definition B:

7Vertex v in G(V,E) is a predecessor of vertex v if and only if there is a

directed edge from v. v

If . is a predecessor of v,'hen v is a successor of v.

Definition C:
I

A linear ordering or sequencing is called a Topological order if for every prede-

cessor v' of '. in the graph G(K.E), the vi precedes v, in the linear ordering.

.Theorem a [31]

Thc vertices in a d':rected graph can be arranged in a topological order if and

o!%- if the directed graph is acyclic.

The theorem implies that for any combinational c:rcui, the graph

rcpresenting the circuit is acvclic and. therefore. the subcircuits can be arranged1£J%

n the topological orders. One realizes 'hat many circuits contain fcedbac.Ks.

anc. therefore. the corresponding graph is cyclic. The parts of the graph :t I
(orlain feedback edges ( known as h.e strongly connected component or sc)

arc (Lt-it(te using Dep*th-First Stcrch Techniqlies. Each strongy connecteu,"
¢" 'I

-% • ,
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component is replaced by one new node. After the repla( nient tn resulting

new graph G' is acyclic and the sequencing method for an acvdhc graph. can be |

applied. The Tarjan's Depth-First Search algorithm [24] to find strongly coi,

nected component is as follows

Step 1:

initialization step) Mark all *he edges "unused." For every E E V let

k(v) ,-- 0 and f(v) be undefined. I f(v- father of v I. -

Empty S { S is a stack that stores the vertices in the order in which

they are discovered }.

Let 0 and v =s s is the 0 node or source node . -

Step 2

--1. k(v) -iL(v)= iand put vonS. ,.

Step 3 - -

If there art no "unused" incident edges from v, go to Step 6. .i

S-ep

Choose an unused" edge v u. Mark the edge e "used."

Slen 5

(iI If k(u=O, then f(u)=v, v u . Go to Step 2. t

iJ I' k(u) > k(v)( e is ? orward edge Go to Step 3.

(i) If k(u) < k(v) and if u is not on S ( u and v do no, belong to

'he same component ). Go to Step 3.

(iv) If k(u) < k(v) and if both vertices are in the same component

(That, :s. u is in S), let L() = min Lv). k(u) } and go to Step 3.

I
, w1' i,
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If U =Iv.dcele all the verlies I roir, S clow n l0 and i. cludingv

these vertices form a strongly, connected corn p'rnit.

Stp

VV
hi) If f( v) is defined ahnfthrisavte u~) forIIM (v) whc (v=O

then let v 4- u and go to Step 2. I

If all vertices have been traced then STOP.

After the strongly connected components have been identified using the

above algorithm, and each scc is replaced by one node. the resulting acyclic *

graph G' is levelized using the f ollowing algorit hm.

Ag.ori-thr [44]1 (assign level to each vertex in G*2.

BEGIN

pAssign input vertices of the accAgraph G* to level 0 .k 0 2

L. FOR each vertex v in level k DO

For each ver-ex w -E foiit(v) DOm

BEGIN

IF nfin(w,- =0 THEN

assign w to lt- - 1

LEND

IF level k s no, eni THEN

'Al
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4"

,

Go to L

K +--k- 1 ,

END k-

After the subcircults are assigned levels using the above algorithm, they are

analyzed starting from subcircuits connected to inputs (level 1) to the ones

connected to the outputs.

Algorithm 3

BEGIN

k -- 1

L. FOR each vertex v of G' at level k DO -

time domain analysis of corresponding subcircuits

IF level k is not empty THEN -

(0 TO L : . '

k 4--k-1i•;

END - ,.

In many cases in digital circuits only some portion of *he output nodes are

o; inlerest. Each one of the,e nodes is sometimes affected by only a small por-

ion of tihe subcircuits. This implies that only some subcircuits are needed to be

analvzed even ff in reality the rest of the c:rcuils are active. Since only some

narts ot The sxslem are analyzed, the compwiation time :s reduced. The method ii
armlied to take advanta2e of th:s ;act is known in olhcr areas as "back-

chaining." BasI.all' star',,nv al ,hc hack End Ml ,he Iranh ( that :s the oulput1

Vi
or

~ P w~"' ~~ -~- %C%4~~W7
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nodes of interest ) one traces back until reaching *he froni end of The graph

the input nodes ). The vertices traced cnurirg the process are "he subcirculls

that need to be analyzed. A typical algorithm that performs tnis back-chaining

Z. task is given in [43].

There are three ways of solving the strongly connected components. The

obvious one is to solve them as one block. The problem with this approach is

that the block might be too large. For instance, when the feedback connections

are from subcircuits at the back end to the ones at the front end then the

strongly connected components are practically the entire circuit, and if the cir-

cuit is large then the block may be too large to be solved at once. A better way

is to apply a dynamic partitioning method, which will be described in the next

chapter. The third solution involves breaking the strongly connected com-

ponent into even smaller subcircuits. This is done by removing some edges from

, the scc so that the original scc becomes acyclic and then apply a relaxation-

based solution method to the scc that has become acyclic.

S Having described the Gauss-Seidel waveform relaxation method for circuit

analysis and the piecewise linearization of transistor models, the fast pwl

method will now be defined.

2.6. Fast Piecewise Linear Approach

Consider a circuit or a system descrbed bv rwl cont~nuous equatiens of

the form

p% %

,0 ' • . . . . .
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x = f x (t . , (z ))= ._ x (Zt y', . n-I ..... (2.11'

where x (.!. y (.) [U.T] -. P where R' is dividec bV v Lperplares into r -

polyhedral regions. A. is a (onslani nxn matrix and w - a constant n vector

cicfined for each region in.

Kave and Sangiovanni-\'incentelli [13] use Laplace transforms and the '"

(jauss-Jacobi method to compute !he solutions of the pwl systems of equations.

The set of equations is partitioned into systems of scalar equations. A draw-

back to applying the Laplace transform method to the solution of pw equations

is the time-consuming effort of computing the intersection of the solution tra- wi

leclories with the region boundaries. The method presented here is based on the

work by Jung and Hajj [301. I1 combines the waveform relaxation method [I]

and the Gauss-Sedei iterative method to solve the piecewise linearized equa-

iions. The orig2nal method [39] s-uffers from a slow convergence problem when

light coupling exists between the equations. Modification to decrease the corn- C:

puta'ion Tme is explained in The following paragraphs.

The solu'ion of Equation (2.11.' based on a Gauss-Seidel ,-'l WR algorithm

[391 :s as foilwws:

Cpse:(O) S' x. r == (0) .-- .. . : ([r( ].

U.&

*.,

A\ N

for

A. - 7 b r AAv, _ - - ( v=:'

• ""-:- - "- " ".. ". *- ".-..:... .... :, . . .-.,- .-........ ,.. ................ ,,.., . -p. , ¢,"" :"'"
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X, (t 4- a x (

.. k ISolve (t a x (t
:•-1n'"

., -,,I ,.- %

. oLz o forx() , t A

k

,,. Solve x. (t ) = a. x".(t )

i" + ~[ Z 2 ,1 .-:(T ) + ,,... + ,j t )],.?

xr(t 0 ) ,(to) for x, )(t t E [t o, I -

At each step, instead of solving n coupied differential equations, one needs to
'S 'I;

solve onlyV n decoupled ones. The process is repeated until convergence is

S.obla:ned.

Each of the abovc equations ,s of the form I
Th solitio. o :his :inear firsi-order differential equaLion is

.r " )= _ ,4- ( . -C (C

I-J

* ~ ,.g .. -aU
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1 i v.(1 is a constant ,he solu:ion can bc Iound bv inspection: "

if 2. :0 .y ( I [.1,. (to) .a :,, r :,.Q : -0 le Lln

Ifa.. =O'x.(t) x.( 0 )+( ,., + )(t -)

In the process of finding x,(t):[O,T- the values of a ,,. %:, change due to 'he

fact thai the solution trajectory moves from one region to the next. Hence "1is

necessary to be able to find Iwhen a new region is entered. whih can be dont.

Ifa L,;.O : t = to +  (1ln (I' )) a,,.

where + = C [a1 L][X(t)+ccI:]"

Ifa =0:I = t + (b - x (t ) ) c

The conditions for t ) 0 are

1. if 21 >0 then v >0 or,"

2. if a., <0 then 0<v < I or.

3. it (2. =0then (1,-x(to))-cA>0.

In general N, (t) is not a constant. However, it v: (t) is approximated by a "stair-

case" function, that is.y i) is divided into intervals and in each inlerval ir :s
',-,

represented b" a step input, 'hen the solution x.(t) for each interval can be

found by inspection as derived above.

As an example. consider a ,1l inverter circuit sho n :n F.gurt 5. TLe

"rans'sor ;nociel and .ts pw" approximation are explained .r. secion 2.2.3. So!v-

,.ng the node eqcualion a* the outpul node g!',es

+.C." + I + I- I _

( . + 'g,*.sd + :s - *g~.J - JJ - :*gS- sl

0€• *2! ""-d/=0

\v.. ,,- - 5
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The output is low initially and a falling step input is applied. At t=O the 'npul

falls to zero. Checking the p4l model gives ,s! as the only nonzero lerm. Fhe

above equation becomes %X

C -N isl (2.12)

The solution to this equation is: C-

o " = + isl*t;C."ou o',un&

\I-here :.:: is the initial value of Vo"

If t is sufficiently large, then at some point in time V becomes so large

that the linear model is not valid anymore. In other words, a new region in the

Transistor p4. characteristics is entered. When This happens. which in our case

is at . = 3.25 volts, the time when the new region is entered is calculated :' ,,

using (2.12) and the pwl elements that are affected by V0. are updated. Now .

the gdd and idd Terms are also nonzero, and the output node equation is of the

form

C, I o, +  ." i-:iR = I R. ,1 -

ar.d the solution is

*:: =V (V, -V, )*cx(-t tc) (2.13)

where V. = PR

V, = init:al I'_. (=3.25)

tc = R*C. -1-.

.Again the model is only valid unti:l another region is encountered, which in our

case ,s at V =4. The Time when the new region is entered is calculated using ,

2.13): :he rl%% eicnents are updated and *he same process contxnues. i

. Va
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'\\hen , reaches 5 volts, the current sources of The load cancel each

other (the driver is still off) and there is no more change to the ouiput as long

as the input does not change.

Suppose the output of this inverter is fed into another inverter. Then this

ouTpul is approximated by a "staircase" function, as shown in Figure 6a (for

faling waveform the approximation is shown in Figure 6b) and the same

-- analsis as above is carried out for each time interval. 0

The above solution of x.(t) assumes an input time function approximated

*.. by a "staircase" function. Actually, the input can be approximated by other

-ypes of functions. for example a ramp function. However, the solution would

, hen contain terms proportional to t and cxp(-k-t ), and so there is no simple

and "ast way to gel the time when a new region or interval is entered.

As mentioned earlier, in some cases the method described above converges

slowly. This is true for strongly coupled circuits, such as pass transistor net-

works, circuits with internal nodes. and circuits with floating capacitors. The

reason is that an approximate waveform representation used in the waveform

iterative techninue does not give good convergence for strongly coupled nodes.

In tIe following subsections various techniques to reduce the computation

needed in solving coupled subcircuits and to ensure convergence are derived.

2.6.1. Pass transistor networks

From FigLure 7 i* is clear that The waveform at the output node depends on

the other nodes. Applying the Gauss-Seidel mcl WR method it is found *!hat

more than 10 iteralions are reauired for convergence. which is relatively slow.

C.M
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k-
An approach which is an extension of the Elmore [201 ,ime constant approxima-

tion for an RC tree to the pw! case is given here.

The Elmore time constant is related to the impulse response of an RC tree.

An RC tree is defined as an interconnection of resistors and capacitors with no

loops. The resistors are restricted to be between nonground nodes only while

the capacitors are only between nonground nodes and the ground. An example

of an RC tree is depicted in Figure 8. The Elmore time constant or the delay is

defined to be

T, = R1, C

T is ihe time delay of node e. R:e is the sum of the resistances common to the

paitl btween input and node i and to the path between input and node e and C,

Is The capacitance of node i.

The Elmore time constant has been used to approximate r~sing and falling

tuies of an RC tree, such as the one reported in [211. The method in [21] does

no, work for the pwl approach, since it gives the upper and lower bound of the

waveforms. Also, the function approximation is neither an exponential nor a

straight line. so it is difficult to get the time when the transistor crosses to a

new i,- interval. Consider, for example, a circuit consisting of an inverter and

a nass transistor as shown in Figure 9a. Note that according to the above equa-

iaon of the Elmore time-constant, the time-constant at node 1 depends on

wk htther there is a path between node I and node 2. If that is the case, then the

u:ne constant used in so!ving for node I is

-A-7-P- k
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Node 2 is more difficult to analyze. There are three cases to consider. 1f 'he pass

transistor is off, there is no change to node 2 (Figure lOa). If there is a resistive

path beTween node 1 and node 2 (Figure 10b), the time-constant used is

T- = R *(CI+C,) + R *C,
~ae z~zer:e- duie pass ,~a nszs.:ar

If the pass transistor is in the saturation region then the Eimore approach is not

applicable because the equivalent resistor of the pass transistor is infinite (actu-

ally the pass transistor is represented by a controlled current source in str:es

with a resistor, which is in parallel with a current source). Deptnding on

whelher node 2 is being charged up or being depleted. one ol the f ol'owmg

equaiions is used. In the former case (Figure 10c),

C,- current supplied to node 2
it

' gat e - paS + pass

The solution to 'his equation is either a straight line or an exponential. If node

2 is being depleted (Figure lOd),
'I - v, ..

C,- = current out of node 2

;.1_
iv, 

.

= egate los P

:s !-eld constant at its initial value until a new re2:on is entered. The solu-

'-, to "~is approxiimation is a straight line. The simulation result in F.gure 0 b

of 'he c:rcuil in F:gure 9a indicates that the pw!' result is reasorabiv close to the

'-)PI( E result.

%.

• "**; "- ; * " , * ' '-5 % -t. "- ", - " " V' " S- % " - " " "" " ' "" "" " " . " "*-" **5- " "% " , - . , , .- . e

. P;" s- ' .' " . , . , ," , , ' , . - , - . - . -'v * .S . A .' - . . -" ." ,' ,. ' , . ' . ,. ,J, ' ," . ,.e,,,, f. S S,',; S,, ' ' '
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a Pass transistor is off

C.2

b Pass transistor is in the resistive region--

II

ic

%

Ap r

Cz

a Pass transistor is in saturation ith node 2 being charged up

*.T * -.

d Pass bransastor is ir. saturation tih node 2 e ing dep oied

C . ,-

Fig. 10 Piecew+ise linear model of a pass transst or ' ""
JN

I ;i~1
c Pass transstor is in sturation wih node 2 beig charged u
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%! 2.6.2. Circuits with internal nodes

The eouaions of a circuit with inlernal nodes (e.g., Nand gates) ar o, Ihe

form (assuming all capac~tances are connected to the ground) C::i = a Ilx +

I 2'i- a 3 xi 2 ... - ln+lin w

%. CM .1 = a-, lx -a 2 X, l- a2 3 xi2 a ...- n- I Xin+ W

C,-anxal n2 x1 a n3 xi2 + ann-lin

-: where x.. (j=l,2.....n) is an internal node variable and w. is a constant.

One way of simplifying the above equations is to "lump" all the capacitances at

the output and neglect all internal capacitances. In this case the equation

becomes

I ICX -C.I)1 -allxl - a 1 2 i Ia 1 3 x 2 -.. ,-aInx lin-

0 -x

n I 1  2i1 a2  -- -1-,nn-in -

:i :-'o nF1: n-2 iI - a"\,s"  "- nn-:i -in -n

Sirnulaion o: a rand gate :s shown in Figure 11. From 'he simuladon r-sul:s

we , o.,... a. , the : n*,nal .oc.E cc c.,an . -.s te one .... cf T-t?

% , 0

I--. ."- ,g'~""',d"Z"""..,.. .2'-# i ' 2 ¢ v'." "," " ," . O
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pil capacitance our approximation gives reasonable results. If the internal node

capacitances are too large then the direct method is employed.

2.6.3. Circuits with floating capacitors u

For simplicity, we consider a two-dimensional problem of the form

C 11 .< +C, ,=a llmX1 - rn Vl(t) ,

C 124 1 + C - { 2 1m X!21 Ilm° I I

The Elmore time-constant approximation is not applicable in this case since

there is a capacitor between two nonground nodes, and in some cases resistors .

may be connected from the nodes to the ground. In this case, when applying the
.', ,.,

Gauss-Seidel method to this problem, the "staircase" approximation of the ,

waveform does not work since the lime derivative at the breakpoints is infinite. .

Therefore. a ramp approximation is made for falling and rising waveforms. The

derivative of a ramp gives a constant function which is suitable for the

approach described above. For a test circuit a bootstrap circuit as shown in Fig-

ure 12a :s used. The waveforms are shown in Figure 12b. The ramp approx.ma-

tion is chosen as dv/dt at the midpoint of the rising or falling input. Four -w

il(ra!!ons are needed to get convergence. . t

The above aporoximation methods have their drawbacks. The method !n-

which the Elmore lime-constant approach ,s utilized gives good resu'As when--

the Dass transistor network is small. When the network consists of more than *"_

ihree pass transistors, the error of the nass transistor voltages becomes large. .-

-- erfore. for pass *rans~s*or n(r.works th. conventional approach, whert thet

* .. a ww , , %% %' * X - X X
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t:me derivative is discretzed using the Backward Euler Method and where

analysis at the linear level is performed, is utilized. Similarly, when the inter-

nal capacitances become large compared to the outpui capacitance, the approxi-

maTion method for nand-gale type circuits as described above becomes less

qI accurate. To obtain more accuracy the subcircuit needs to be solved in the same

wav as it is done by standard circuit simulation; that :s, !he time derivative is

discretized using Backward Euler Formula, and then Ihe equations are solved at

the linear level.

The method of the Gauss-Seidel waveform relaxation pwl is fast for %

analyzing simple gates such as inverter, nor, nand gates. The computation |

efficiency is due to the fact that there is no need to calculate the voltages at each

time point. As long as the transistors remain in the same regions, the solution of

the equation is either a straight line or an exponential. Another advantage is due

to the fact that the solution is obtained using the waveform relaxation .9

approach. which solves the equations at the differential equation level, and
Ik L

hence. there :s no need of transforming the differential equation into the linear

"-9 ievel. The drawback is that the method works wcll only for simple circuits I
such as the inverter. nor and nand 2ates, while for other Types of circuits the

mthods can be very slow. In summary, the irst method, the pwt analysis on

' smplices. which has good convergence and gives accurate waveforms, is very

slow. The second pwi method, which solves the pwl circuit by insacion, is

-" Las' bw, limited in ,he tyNpe of circuits that can be accuraltely solved. Realizin2

*he drawbacks of tht methods descr:bed above, a Pl method wh.ch is cl,,le

:as: but accurate is des:rable. To obtain resu,'s as accurate as those from s:an-

LI

e V, or W
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dard circuil simulators. an iterated r.laxat ion-based p'wi Ixelhod :s Iollowed.

To speed up convergence, and thus reduce computation imie, a dynamic parti-

thoning method is developed. Solving the pN%'l circuit equations with a new par-

titioning method. which is performed dynamically and efciently, is described

in Chapter 3. "

i-. %:

'S
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CHAPTER 3

DYNAMIC PARTITIONING APPOACH
FOR PIECEWISE LINEAR CIRCUITS

S-

.-" 3.1. Introduction

The two pwl methods described in the previous chapter, namely the fast

pwl and pw[ on simplices methods, require that the strongly connected com-

Rponents in a circuit be solved either as a whole or using a relaxation method.

Solving the strongly connected components as a whole might be too expensive

because the blocks could be large. The relaxation method is preferable. How-

ever, where to break The loops of scc to start the relaxation melhod so that the

number of iterations of the relaxation method is minimized is no,, known. The

* - method followed is to cut the loop randomly and assign the corresponding node

voltages to the previous values and star, the relaxation process. Note that

where the loop is cul is fixed throughout the simulation.

In this chapter we will aescribe a novel way of breaking the strongly (on-

nected cornponer.ts dvnamialv and naturally. so that the srnaller parlitoned

- subcircuits are mninahcahle for analvsis. RevieA of other mehodis are nmen-

'ioned hrst.

--- --
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3.2. Dynamic Partitioning .

There has been an interest in partitioning large circuits into loosely cou- , r

pled subcircuts. Specifically, in [33] the partition of MOS circuits is obtained by ;

calculating the equivalent conductances and capacitances of two adjacent nodes.

If the calculated values exceed some predetermined values then the two nodes 7

are grouped together. This partition is done only once at the beginning of the

sunulation oI the MOS circuits. A similar approach for bipolar circuits is -s

described in [341, except here the partition is performed dynamically. The

calculation/partition is not done at each iteration, since this would be too ..

costly. Only when an iteration threshold is exceeded is a repartitioning per-

formed. At this point it is expected that the speed up in computation is dom- ,

inant over the repartitioning. Recently. a partitioning based on checking the

coupling terms of the following nodal equation is proposed [181.

C. -- .-G. C G " = (3. ) 

where V- is the voltage al node n. V. is the voltage at node j , J is the set of .A

nodes connected ,o node n. C_ is the sum of capacitances connected to node n ,

C.. is the sum of the capacitances connected between nodes r. and j. G. is the

sum of conductances connected to node n and G is the conductance beTween .

node n and node j. I is the t'.rrent source connected to node n. If the coupling ,

terms E C.. -- and G.. V, are ne-.ligible coimparcd to the right-hand

sie. *hen the (oupilin between node n and node j E J :s negligible. and 'here-

ore ,e parttion is :performed between n odes n and •

v5
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In our case the dynamic partitioning is applied to circuits consisling of h

transistors that have been piecewise linearized. The transistor model used is

the Meyer's model [251. The model is piecewise linearized; at each p/ region a

particular type of transistor (load, driver or pass transistor) is represented by a

ORF conductance and a current source. These conductances and current sources

values are stored in a table so that during transient analysis a table-lookup

method can be employed. More details of the model are presented in section

2 .3 and Appendix A. The partition relies on the comparison of integers indi-

cating regions of piecewise linearized transistor operations, and it is done at each

(€ iteration of the Gauss-Jacobi or Gauss-Seidel method. |

4'p

3.3. Piecewise Linear Dynamic Partitioning

Let the system of pwl algebraic-differential equations describing the circuit

be written as

whr C )(t)=A, x (t)+b. + y() i=1.2 ..... r (3.2)

where C. -E R is the matrix representing piecewise linearized capacitors in the

circuit. .4 and b. represent piecewise linearized transistors and y (t) the inpul

waveforms. The subscript denotes a particular region of the piecewise linear-

ized elements.

Applying an implic", integration formula to (3.2), we get

C. =A. x *_. -b. +

The Newon-Raphson iterative scheme is used to so've the nonlinear a'?eiraic

¢oqaaions. Then a: each Itrnt sie". one solves

Of-

'K ,#S*, '°." ,. -, .7 .. , .- -... .. ."',.," " ".-'--" '"-.. . .-.. . . . .,.; ,/ '," " -',"- , ," T '
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Sp.o

(C.-h.)x . =h(b. + y(: 1 )+C. x, .',

C. C.-
-- -A. x = b + y(t, 1 )+ -x =s. (3.3)

Consider first *he case where C, is diagonal (no floating capacitors) with capaci-

tors from nodes to ground. Equation (3.3) can then be written as

[.A ] x ."- s.:.

where tht off-diagonal elements of .A. are created by the resistive part of the I
circuit. The alm of our dynamic partitioning approach is to order the circuit

variables so that the matrix A4 is block diagonal, with each diagonal block being

as lower triangular as possible. At every iteration point the values of the off- I.

diagonal elements of .4.. and consequently the structure of A,, are determined

by the local and global connectivity of the nodes in the crcuit.

The local connec'jvitv of the nodes is then determined by the slopes of the

characteristics of the resistive elements at the iteration point. In the p 4 1 case. %

these values depend on the region combination of the characteristics equations. ; -

which .n our case are the MOS transistor characteristics. Let us consider The

transistor as a three-terminal device, as shown in Figure 4. The contribution of

a given transistor to the circuit matrix is as follows •
I

0 0 0 7.1
No*e that s.nce the gate-to-drain and the gate-to-source capacilances are

'Yert ar-e ihree reions in each of the two two-terminal pw,' branches in .ne

'ar.sis'or nocie, as described n Chanter 2 above, there are rine possible region
4. %
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" combiinations in which 1he transistor operates. Tht- values of F, . and ,-

in each of the regions are lised below.

Table I Transistor connectlivitv.

REGION gj) gS 9 -9S connectivity
(1.1) 0 0 0 Figure 13a

(1,2) 0 g2  -gs, Figure 13b

(1.3) 0 gs3 -gs

(2,1) 9D 0 Figure 13c

(3.1) gD3 0 gD, U

(2.2) gD- gs 0 Figure 13d

(33) 9D D 0 "

%4 (2.3) gD, gs3 gD -gs3 Figure 13e
( ,3,2) 9D3 9s. 2 -2-g s,

! where the valaie of g is equal "o 2s. and the value of LyD 3 is equal to ges'" Note

,.That there are only Two regions, namely. regins (2,3) and (3.2). in which The

o --.,entries in rows D and S in (3.A) are all nonzero. The local Transistor (onnec-

~tivity is Then determined by checking the reg',on as shown in TaI'.e I and Figu~re

,-"'-"13. Noie that if the drain or the source is (onnecled *(o hew Fro'ind, only one

-ow in (3.-4) needs to be considered. Consequently. lhe connectivity of The c:r-

wh'.it depends on the operating reons of he ransistors. Hcnce. *he strc rN or
. "enie zero-nonzero pattern of ndcan be leternnined fro he lc -ans.sor -rions

-- wi.OU an iompuation. Thisouce is conneso the reasi odlil o nl fone,

L.:c:ent dynamic partitionin2. T E ioca' connec*tviyii in turn aC ts .e gFoixl

% %%
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connectivity that is. the local interconneclion of drai , gae and source defines

the overall interconnection of nodes in the circuit. The global connectivily of

the nodes is then determined by applying a depth-first--search technique [14).
U I.

Because of the nature of digital MOS circuits, the above partitioning pro-

. duces a block-diagonal circuit matrix with most of the blocks in lower triangu-

lar form, even for sequential circuits. The partitioning, of course, varies with

the iteration points. \Ve assume that there is a capacitance from every node to

ground; therefore, for finite time step h the diagonal blocks are nonsingular.

Thus at each iteration, the linear system in (3.4) in most cases is solved in one

sweep using forward substitution, with the possibility of the diagonal blocks

* ,%"being solved in parallel.

'When floating capacitors are allowed in the circuit, then the matrix cannot

- be in Block Diagonal or Block Lower Triangular form anymore: hence, one-

sweep iteration is impossible. A typical matrix at one iteration when floating

capacitors exist in the circuit is shown in Figure 14. In this case a combination

L of dynamic partition and Gauss-Seidel type of iteration is employed. The

dynamic partition is applied To the transistors in the circuit, assuming the

small-valued floating capacitors, such as the gate-source and the gate-drain

capacitors. do not exist. A large-valued floating-capacitor such as a bootstrap

capacitor is assumed to establish a connection between the nodes where it is

- connected. From experiments on some circuils the threshold value is the sum

of the grounded capacitors which the floating caDac:Ior is connected to. The

floating capacitors that are not included in the parlilioning will create feed hack

and feecforward lerms within and hetween the d!a2or.zl blocks crea'ed by :1'e
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* . partitioning. In this case. Gauss-Seidel iteration is used in solv:ng (3.4).

When a full-blown nonlinear transistor model is Lsed, the melhod of

checking the local connectivity needs to be generalized. Instead of region com-

. parison, voltage comparison is performed on each transistor. For example, from

Table I. in pwl case one concludes that the gate is independent of the source-

d .,.'

drain par! when the gate-drain region is equal to the gate-source region. In the

- -general case the gate is independent from the source-drain part when the

difference between the gate-source voltage and the gate-drain voltage is within

some tolerance A, V. Physically, it means that the source-drain current is
'

. ,. independent of the gate voltage when the gate-source voltage is close to the

, ~gate-drain voltage.

As an example consider a simple 5-stage-ring-oscillator shown in Figure

r 15. A worst-case partitioning approach would treat all nodes as one block. In

I, our case this one block is partitioned into smaller subblocks. A Newton-

Raphson. Gauss-Seidel method is used to solve The c.rcuit. Let us consider a

!'a piecewise linearized driver transistor w-ith breakpoints 0, 1.5. 2.75 and 5 ( Fig-

, *-ure 3 ) and similarly a load transistor with breakpoints -5. -1.75. -1 and 0.

A
Assume that a falling step input is applied and dc values for the nodes have

. been calculated [ (node.voltage) (2.0). (3.5). (4.0), '5.5), (6.0) ]. By checking

,J , the table of the driver and comparing the reg:ons of the transistor operation.

one concludes that at this initial state all the nodes are decoupled from on,

anolher. .\: ether iterations the partition changes. For :nstance, at the 9

, .4 r.anosconds the volages of fthe nodes are [ (node.vol'age, (.2.885 '. .2.815
I

-. 0.15). (5.5). 'b.0.15) ]. Checking the criver labie one o.mans 'ht regions o

"

4
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the driver ot the first inverter to be (1,1). The regions of the driver of Ihe

second inverter are (2.3). This indicates that in the matrix The drain of this

driver depends on its gale. Similarly. the regions of the driver of the third

inverter are (3.2) and hence the drain node depends on The gate node. As a

4 result, the nodes 2. 3 and 4 are in one subblock. By applying the same pro-

cedure one finds that node 5 and node b are in two separate subblocks. Figure

16 shows the partitions at three instances. Figure 16a shows that the nodes 2.3 V

and 4 are in one block which is lower triangular: node 5 is in one block and

node 6 is in another. All blocks are completely decoupled. Solving the matrix

using the Gauss-Seidel iterative method dynamic partitioning and worst-case

partitioning have the same effect, in that the voltages are obtained in one sweep

of calculation. Figure l6b shows another partition using the dynamic partition-

ing method at a different instance while Figure 16c shows a partition using The

worst-case one at the same instance as Figure 16b. Using the dynamic partition-

ing method (Figure 16b) the solution is obtained in one sweep. Nodes 6 and 2

are solved together as one block while the rest of the nodes are in separate

blocks. On the other hands, using the worst-case partitioning approach (Figure

lOc) would require more Than one iteration due to the existence of the upper-

diagonal element. Figures 1 7a and 1 7b show the corresponding graph represen- ,

:altion of Figures 16a and 16r. respectively.

To reduce the computation time even further, the nonactive parl'ioned

subc:rcuiTs could be ident;Led. The nonactive (latent) subcircuits do not need

analysis. The active subcircuts consist of transistors that do not change regions

i,,tJ their Terminal nodes are active. An acltve node of a circuit is the one that

..,-,.
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(node.injtual vol4tage) (2.2.885) (3.2.815) (4.0.15) (5.5.0) (6.0.15)

time 0.9000d-08 nodes (2.3.4.5.6)

0.130d-03 0 0 0 0
0250d-03 0.130d-03 0 0 0 -.

0 0.150d-03 0.230d-03 0 0
0 0 0 0. 160d-03 0
0 0 0 0 0.380d-03

node voltages 0.2885d-01 0.2626d+01 0.3287d+00 0.5000d+01 0.1500d+00

Fig. 16a Matrix of the ring oscillator at 9ns j

(node.initial voltage) (2.4.867) (3,0.15) (4.4125) (5.0.1684) (6.1.663)

time 0.2300d-07 nodes (6.2.3.4.5)
-r

0 130d-03 0 0 0 0 4

0 lOOd-03 0.160d-03 0 0 0
0 0 0380d-03 0 0
0 0 0 0.160d-03 0
0 0 0 0 0.380d-03

node voltages 0. 1663d-01 0.4765d+01 0. 1500d+00 0.4109d+01 0.1684d-00

Fig. 16b Matrix of the ring oscilator at 27 ns (dynamically partitioned)

0 160d-03 0 0 0 0. 1 OOd-03
0 0.380d-03 0 0 0
0 0 0. 160d-03 0 0
0 0 0 0.380d-03 0
0 0 0 0 0-130d-03

Fig. lbc Matrx of :he ring osci:lator at 27 ns (worst-case parri*ioned)

- -'Ps -'-
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violales al leasl one of' 1he following [21:"" ',

E )  
+ - max.

V

m= 1,2.... i

w.here E, and E,. are the absolute and relative error iolerances for vol- "

lages. ,

(")l r.)-l (t_ 1 <. , +  t- max( (t )l ( )

re=l,2 ....

where E, is the absolu e error tolerance for current.

tag (T. I -I (t_.
(3) hr._1  >1

Q,. (t.)- Q j -9_l

m= 1,2....

where hN_1 is the time step taken by the program at r,_1 and Q, is the

charges of the capacitor at node m.

In timing analysis only the first and second rules are checked.

As an example let us consider the ring oscillator example. The following

table shows how partitions change during the solution process. The numbers in

the parenthesis show the node numbers that are in the same block, for examnpe

(2.3) indicates node 2 and node 3 are in the same subcircuit.

There are two important numerical processes that can be deduced from the

table.

1. Repartilioning.. .

From time 0 to 5 ns the partition stays the same. At 5 ns. the partitioning

changes. and stays 1he same until 9 ns when the partit:ons change again.

,.. "Y

, ', ', ,. ."j. , ,,: 'Z'~ **-**, *-*; .':- *-.* *j ** J 4 ... - ', - ..?,.. ",, ~
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'Table II Partitions of the ring oscillator circui'

Time Iteration Partition
Ons 0 (2).(3),4).(5),(6)

1 (2)A3) (4) .(5) ,(6)
5ns 0 (2)- (3) .(4) .(5). (6) ,

l (2,3), (4). (5). (b)

2 (2,3) (4) (5) (6)
9ns 0 (23), (4) (5), (6)

1 (2,3.4) .(5) . (b)
2,o (2,3) , (4) ,(5) , (6)

3 (2,3). (4).(5). (6)

Only those transistors that change regions are ,ncluded in the repartition-

ing process.

2. Analysis. '-

All subcircuits that go through repartitioning must be analyzed. The

subcircuits that are not repartitioned but whose node voltages change -1

-'p considerably must also be solved. The rest of the circuit that is not ,.

repartitioned and is latent need not he solved. For example. in the ring

oscillator above, from Lime 0 to 5 ns. although the partitionng stays I
unchanged. nodes 2 and 3 start oscillating while nodes 4.5 and 6 remain ,

latent. This means that only volta2es of nodes 2 and 3 need *o be solved.

The ring oscillator, which is analog in nature, represents an extreme case: I1L
' when time advances. all node voltages change. Digital circuils typically

exhibit a greater degree of latency.

The above dvnar. ic partitioning approach 4s performed on top of worst-I

cas parti"io,,g. "h;ch is nrforred onc at 1he preprocessing step. The

or ' - - - -'r . . . . . .. e y i_ .* _ .
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. ]

worsT-case partitionirg is necessary to dttermine which parTs of a circuit are

large enough to require dynamic partitioning. Wors,-case partitioning, which is

also known as partitioning into dc-connected subcircuiis. is based on worst-case

transistor local connectivitv as shown in Figure 13e.
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V, i CHAPTER 4 .

PARALLEL-VECTOR IMPLEMENTATION OF

PIECEVISE LINEAR DYNAMIC PARTITIONING METHOD

In the last few years there has been a growing interest in developing CAD

tools to run on parallel and on vector computers. The idea of parallel computa-

lion is that using N processors a program should run N times faster than if only

one processor is used. In reality, the computing speed up is often smaller than

the theoretical one. The -idea of vector or pipeline computers is that by dividing

a Task into subtasks and by maintaining a flow of operand pairs in the analysis

process the speed up can be increased.

., To utilize the maximum capability of a ,vector and/or parallel computer,

one needs to use the appropriate languages and algorithms. From the user's

point of view, very little can be done about ,he language since usually it is

given by the manufacturer who already tailors the language to the specific
%

archiecures of the machine. Given a particular machine architecture, one needs

to design algorilhms that can provide the best possible results.

The dynamic parlitioning method described in Chapter 3 is well suited for
S .

iMplemenlation or a parallel machine with shared memory. The reason is that

durno the iierations exchanges of vertices and nodes among the blocks in the

" graph representing the circuit occur. In otier words, there are exchanges of

'ransistors among .he parti:ioned subcir(uis. Iinpementat:on of the method on

-p, a parailel mach:nc with local memory would have a high cos! of

ii
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inlercomrunication among tLne processors. 1he machine ised in Ihis siudv is

Ailiant FX/8. It a parallel-veclor machine with 8 proessors and a snartd

memory and. therefore, is suitable for implementation of the dynamic parti- -

Tioning method.

The main iteration loop of the dynamic partitioning method consists of

determining local connectivity, determining global connectivity and solving :- ,:

each partitioned subcircuil block. Figure 18 depicting the steps is shown on the

next page. The box enclosed by broken lines will be explained later. This box

later is modified to make the approach more efficient. Each process can be done 1

in parallel as described in the following paragraphs. A general approach applied

to each of the processes is described first. %

In general, complete parallel vectorization is not feasible. Since vectoriza-

tion of a loop prohibits subroutine calls, only parallelization is useful for most

cases. The parallelization on the Alliant is performed by setting up a do loop, £1
with a directive for concurrency. A typical format is as follow

cvd concur

do 1 i=l.n ;i
call routine -

I coninue

-ht loop contains a call to a routine ,hal does a task. The concurrency is

automatic: that is. no particular assignment of processors 's necessary. Each of

the avamlabie processors performs a subroutine call. When one processor hnishes

a .oh. ,it would automalically perform another call until ali the n nitrber of

ca. s are completed. Each routine inside he concurr(nT do loop. in general. cen-

°:1P/','j' ~ I~p P'~~...3'. aA..-.~.. . ',*.'w **%* p-.-.. .. %-;-N~.,'N *
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': Start

Input circuit topology,circuit parameter values,
initial voltage values

Determine companion
- models of nonlinear

elements

Local connectivity checks
(region checks)

CVishkin algorithm)

models of nonlinear

elements

Local connectivity checks
(region checks)

NewA regions =Old regions ?

GIlobal connectiv~tv No\
(Vishkin algorithm') t > Imax ?

Y es
Stop

Fig. 18 Flowchart I dynam:c par*itionmg aigo-:t-.m

::X
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tains a set ot common blocks of global variables and a so of local variabies.

\When concurrency is invoked, a stack is created so that each local variable has

n different copies where n is the number of processors (at oresent n=8 on the

Alliant). Each of the global variables is potentially accessible by many proces-

sors at the same time. This is not desirable because incorrect values would be

stored. A lock is applied during the execution of the code thal updates the glo-

bal variable to prevent the concurrent execution by multiple processes. A spe-

cial feature that the lock must have is that one instruction must check if a

variable is free and if it is to set ( or loci ) the variable. This is important since

if *he setting is not done instantly, another processor might consider the vari-

able to be free and aTempt to set it.

The determination of local connectivity, global connectivity and solution

of the variables follow The pattern described in the above paragraph.

For local connectivity The loop is

cvd concur

do 2 i=l.nurnber of transistors

call mostbl

2 continue

The input parameters to mostbl are the voltages of source. gate and drain, and

the outputs are the regions of gate-drain and gate-source and the associated con- -

duc-ances and current sources. In this routine the connecivity of each ransis-

,or is delermined and The corresponding edges between The source. dran and

!a-e nodes arc Creadt ci if applicable ). l;cse edges are need. d for globa. con-

.. .. . . " ... ."' . ... -... .j" V ' '.T". " r € '' ' " " " " -
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The global connectivity is determined after Iransislor connectivilt is con-

pleed. Before explaining the implementalion details, parallel algorihtms to

determine the connectivity of a graph problem are described next. Hirschberg

W eta!. proposed a method that solved the connected component problem of an

undirected graph in O(log- n) time using n-2 lg n processors [521, where n is

the number of nodes in the graph. A variation of the method which requires an

even smaller number of processors of max (n ,e) is given in [53]. where e is the

number of edges in the graph. Another algorithm that determines the con-

nected component of an undirected graph and uses an approach that is different

rom the ones above is proposed by Shiloac and \,ishkin [541. This algorithm

% determines the connected components in O(log n), but it requires 2e+n proces-

sors. Since the number of processors in a parallel computer is bound to increase

in the future, this algorithm which requires more processors but determines the

connected components in shorter Time is chosen for our work. Another advan-

,age is that the amount of temporary working memory in this case - O(log n) -
II :

:s much sinaller than for the one proposed in [52], which is of O(- . Such a

memory space requirement can be prohibitive when the size of the c:rcui, is

The input to the algorithm of Shiloac and \ishkin consists of

' ht- verlices represented by the numbers I ..... r

-!,c- edges specified by a vector e of ieng h 2e in which edge (i.j) anpea.-s as a

: i d:rected edges <i.j> and <j.i>.

I hi-. pni is a vector D [I:n] where D [!] po:nts To the root node to which

.. v ,q ct Ci

% ... ~ *~ %% :4 ~ ~ ~ %f~V* 4 ~, ~ Wf 4~j. ~ . \ iv~
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A temporary memory Q of length n is needed. [Ie Two main optralons of

the algorithm are

(a). Shortcutting decreasing the height of a tree

(b). Hooking : reducing the number of trees.

An informal description of the algorithm is given first, followed by the

more formal one. The notation D.(i) = j means that vertex i points to vertex j

after the sl iteration. Initially, each vertex points to itself, that is, Do(i) i

for i=l....,n.

Informal description of the algorithm

Step 1: First shortcutting Ds (i) D5 (DS_(i)):

If", in s- h iteration. node i points to some node j and node j oints

to another root k. then after the s' iteration, point node i to node k

(shortcutting). X"

Sitep 2 : Hooking trees onto smaller vertices of other trees. For all vertices

that point to a root at the end of the previous iteration check if their

neighboring vertices point to smaller vertices. If such a neighboring

vertex j exists for a particular vertex i. then hook the tree io which i

belongs onto D, )"

Definition D: A tree is stagnant in the s' iteration if it has not betn (hanged in

lhe first two sleps of this iteration: That is. A has not been subieclted lo any

shortcuw operation. no iree has been hooked oro i'. and it has not been hooked

ono any other tree. A rool of a sa ~nar tret is a staardr. ro'.

p 3 " ltooktnQ slagnant ¢re.us: ,

o1
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For all processors of vcrtices Ih-al poin, to a sT,.gnan" oi. check if

their neighbors point to a verlex of another tree. !f such a verex j is

found, hook its tree onto D .,

Step 4 Second shortcuting Ds(i) D 1 (i )):

. , Sarne as st ep I

IN . A graphical procedure is given next.

Initially. each node points to itself.

) '

After the hooking operation ( on the edges ), the nodes start to point to their

:0: neighbors with smaller node numbers.

Then afer the shortcutting operation ( on the nodes ). the nodes point to other

nodes further down.

The hooking and shortcuiting operations are repealed until finally al, the nodes

poirt to the root.

A more complele descriplion of the algo.ithm and the necessary arrays

.. ,d a-c F,,vcn next. The algorithm contains the vectorQ which sat:sfivs

41 ( l s .f aiF'-.r the stcond step of the s iteration. lh re exists -I ;eas? one

V 4c
Nr n2OI I ol . :hal dots nol )o~r~l 1o i z,, - er the s-I )1h i tra-

, , "it) r..
I ev lSv

:/F
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Q(i) < s otherwise.

S'ep 0: Initialization. DOi) - i, Q) 4-0. s4- 1. s' 1 

In the following steps, i K, n indicates that the processors are work-

ing on the nodes, and i > n indicates that the processors are accessing

the pairs of edges (i 1 ,i,). " -

While s'=s do

Step 1 : i - n

then Ds(i ) - (DS-1(i

if Ds(i) D 51(i

then Q(Ds(i)) -s

Step 2 If i > n

then if Ds(i 1 ) = D,_l(i1)

then if Ds(i,)<Ds(i1 )

then Ds(D5(ij)).-Dj. 2'1

Q (D s (i,)) ,..s

Comment :If D,(ij ) has not been changed in Step 1. that is, it has '- ,,

pointed to a root, then the processor checks if i, is pointing to a smaller

vertex. If that is the case, then it hooks the root which is

Ds(i ) onto D(i). Simultaneously. all the processors for which 24
Ds( j =Ds(i 1) and D,(k ) < Dj(i 1 ) try to update D, (Ds(i 1)).

Sep 3: If i > n
then if D5 (i = D, (D(i) and Q (D ) s

then ifDi 1) D

lheri~ ifD (;1 S(



thenDD( ) - D, J

Comment : The processor checks if DS (1 1 is a root. 11 so. it checks by .

using Q if it is a stagnant root and if it is so it tries to hook it onto

another tree. This is tried simultaneously by the processors such that

D.S()=DS 1 ) DS (k)

Step 4 If i Kn

then D. (i)+-D s (D (i))
0

Step5:Ifi K nandQ(i)=s

then s' -- s'+ I

S +-S-i 1

end while

Comment : As soon all the trees are stagnant, Q(i) < s for all i,

1 I i < n, and thus s' will not be incremented while s is incremented,

and the algorithm terminates.

In steps 1.4 and 5 the concurrency is across the nodes. In steps 3 and 4 the con-*! 0

currency is applied to the edges.

During iterations the nodes in the graph remain the same while the edges

change. The result is a graph that is reparlitioned into blocks where each block ,0

is so;led using one processor. A block consists of a root node and its

corresponding leaves. The number of leaves varies from none ( only I node in

,he block ) to n where n is the number of nodes in the circuit. In the program

the loop for solving the blocks is

rot cvd concur

do 3 i=l.nurbhr of blocks

'U'b

isp

V. P~~*~%
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call solve

3 continue

The output of the solve routine is the node voltages.

The next step is to concurrenlly do lable-lookup for the transistors with

the new volta2es. If the resulting new gate-drain and gate-source regions are

The same as the old ones, and if the new node volages are within a tolerance of '

the old node voltages, then the solution is found. Time is then incremented by

an automatically determined time step. Otherwise, the iteration ( local connec-

tivity, global connectivity, and solve is repeated until convergence is

obtained. Note that repartilioning is only done during the dc solution phase.

During transient analysis the circuit could be repartitioned a large number

of Times since repartitioning is potentially carried out at each iteration. It is

then desirable to reduce the cost of repartitioning as much as possible. The

algorithm described in the previous paragraphs repartitions the entire circuit. S'

Since only a small part of the circuit experiences region changes, and therefore

edge changes, the repartitioning needs to be performed only on this changing

part. A modification of the original Shiloac and Vishkin algorithm which only

repartitions part of the circuit is described next.

Modified Shiloac and \'ishkin algorithm:

Once the Shiloac and Vishkin algorithm is applied to the entire circuit, the

repartitioning is performed on selective parts of ihe circuit as follows

Sep 1. The gale-drain and gale-source edges of a 'iransislor of the

n- -1: ileration are compared to Thy ones of the ,l ilem1iTofl. I! :,,

Si

.5 .
,',,
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different, then check if the root of the source has been flagged. 1,e ',c

flag indicates if the root has been added to 'he list of nodes thaT need

repartitioning. If the root node has not been flagged, flag it and add

the root node to the list. The same checking is performed on the root I
of the drain ( and the gate if necessary ).

Step 2. Each root node in the list has pointers to the Lsi of transistors.

These transistors have their source and drain nodes as the leaves of

the root node. The edges from these transistors represent edges ( that

is ordered pair <i,j> where i and j are the nodes connected to the

edges ) in the Shiloac and Vishkin algorithm. The original algorithm

considers all the edges in the graph to be partitioned. The nodes of ,

the transistors are the vertices in the algorithm. Again, in the origi-

nal algorithm, all nodes in the graph are considered.

An example showing the method is given in Figure 19. where the circles are the

nodes. a circle enclosing a star is a root and the solid lines are the edges of The

graph. The edges are created during local connectivity checks of the transistors.

The broken lines with dots are also edges; however. these are either new edges

created or old edges removed on the n' iteration. The d:rected broken lines are
.0

. pointers created during the Shiloac and Vishkin algori'hm. On the top figure

't :Teraiion ) There are three subgraphs with three roots. During the r ilera-

:oin on edge :s deietcd and one edge is crealed. fhtse edge (d-anges aff eci or.iv

, o1 ,E si:b2raphs. I herefore. -he reparl.:tion is ptcrfornicd orly on thest col-

*e. iens of eCges ar nodes. The hird subgrzp. !s rko" aJttd by edgc an (h s .2C.

7

wsI

U'
.. ~. . *N'
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store in the list of root nodes for repartitioning

. .. . '-:

*.

. I %

added at n +1 h iteration

deleted at n + I th iteration nh iteration

n + I h iteration not affected €F,

Fig.1o epatitonin ofonl soe prts f te crcu*. ,'a
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so there is no need To repartition this part. The resulting repartitioned graph ai

n +1 1. iteration is shown at the bottom of the Figure 19.

Besides repartitioning only the necessary parts, the computation time can

be reduced even further by analyzing only the active subcircuits. Selecting the I
active subcircuits is explained in the preceding chapter. An example showing

parts that need repartitioning ( and analysis ) and those that do not need repar-

titioning but require analysis is shown in Figure 20.

The symbols of solid lines, broken lines, broken lines with dots, circles and

circles enclosing stars in Figure 20 have exactly the same meaning as the ones in

Figure 19. At the top of Figure 20 is the graph at n iteration. There are four

subgraphs with four roots. Note that there is one edge being formed at n

iteration. The two subgraphs affected by the new edge are repartitioned, while

'. the other two subgraphs do not have any edges deleted or created; hence. no

repartition is necessary on these subgraphs. However, one of these two sub-

graphs contains active transistors. This particular subgraphs is solved ( no

repartitioning ) and the other subgraph is neither repartitioned nor solved. The

new graph at n +1' iteration is shown at the bottom of Figure 20.

i Flowchart II. showing the modifications, is shown on page 85. The

modifica'ion is done to the box enclosed by broken lines on Flowchart I, which

is shown in page 7.3. Filter I separates the roots at the end of i' iteration into

-wo groups. one conlaining roots affected by changes of edges. This is The group

Thai is being repariitioned using the Vishkin and Shiloac algrorithir- and is later

solved. The rest of the roots are parlitionecd even further inlo Two groups, one

(ontaing roois wi'h som act:ve rrs:sl,,rs. This group is iater solved. ThcI NI
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N

nh iteration aciv

active

I , .

repartitioned . .
-" " .. not repartitioned . .

-/ not aff'ected

n +Ith iteration

Fig. 20 Figure si.owing repartitioned, active and latent subcircuits

,., ''i*
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New regions - Old regions ?,

Filter I: separate roots into 2 groups.
Group A is for roots with some leaves

change regions. These go to path A below.
Group Tis for the rest of roots. These

Igo to path Bbelow.

I A BI

Vishkin algorithm to Filter 1: separate these roots into 2 groups.
I determine connectivity. Group C is for roots with some active:, transistors. These go to path C below

Group D is for the rest of the roots (latent).
These go to path D below.

I

I c

! (notLatent subcircuits
V o to be included in Solve)!

Fi2. 21 Flowchari II: modi{caiior, :o Flowchart I

U •

• -,
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rest of the roots are latent subcircuits that are thrown to Filter I to be checked

later if new edges formed affect these roots.

As mentioned before, unlike on the uniprocessor, on the parallel processors

the partitioning is applied to the entire circuit. Most of the time the number of

nodes in one connected component is less than three. For these small-size con-

nected components a direct method is used to solve for the unknown variables. .

For larger connected components ( number of nodes larger than three ) the

blocks are made as lower triangular as possible by applying Tarjan's depth-first

search method [24] ( to obtain strongly connected components within the large

blocks ) followed by the analysis sequencing method described in Chapter 2.

These nearly lower triangular blocks are then solved. An example of the ,

resulting matrix is shown in Figure 22. As mentioned earlier the large blocks

do not occur often in circuits that we simulated.

In summary, the circuit is decomposed into blocks where each block is

solved using -,he direct method by one processor. If the size of the block is small

no reordering is done. If the size is large then the block is made as lower tri- "

angular as possible and 'hen solved using one processor.

An alternative approach is to solve one block using all the available pro- , '"£

cessors; Thal is. 117e unknow-n var,,ables in one bitl are determined in paralie' ,

Parailel nurnerical linear algebra such as nescrbed :n [50 is needed. The draw- - I
back of this method is that in many cases the sizes o! the blocks are small. This

means ihere are more processors assigned to a block than needed to solve for the I
unknowns in that block. Therefore. thcre would be idle processors most of The

inme.
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If floating capacitors exist in the circuit then in ihe matrix the floating

capacitors will create feedback and feedforward terms within and between the I

diagonal blocks created by the partitioning. U nlike in the uniprocessor case i

where the Gauss-Seidel relaxation method is employed, in the parallel case ,he

I

•..
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CHAPTER 5

IMPLEMENTATION AND RESULTS

All three algorithms described in the preceding chapters have been imple-

inented in computer programs to run on VAX 11/780 and SUN workstations.

RThe parallel implementation of the dynamic partitioning method is for Alliant

SFX/8, a parallel-vector computer with 8 processors. The programs are written

in FORTRAN and each has over 7800 lines of code.

The input file containing MOS network descriptions is similar to the one

for MOTIS-C. except in our case the MOS network description can be in the

transistor level or the predefined subcircuit level. The predefined subcircuits are

nand. nor, inverter. and-or-inverter, and pass transistor net.

For the uniprocessor implementation the following steps are performed in

The preprocessing stage. For each type of devices a pwl table is generated

automatically. If no device information is given then default values for typical

long channel devices are used. Next, the circuit is partitioned into dc-connected

subcdrcui:s [15]. If there exist floating capacitors then each one is checked if it is

,a:ger than the sum of the grounded capacitors to which the floating capacitor is

(onnected. If it is. a dc-path is assumed to exist between the two nodes for par-
-'

ti;ioning purposes. If the capacitors are pwi. worst case values are assumed.
?:.

T is worst-case partitioning is performed only once and is based on the worst-

case graph condition of tne transistors (Figure 13e). Each subcircuit

#9 9, U* S 5 ' *.l ..



90

representing a predefined or a dc-connected component is replaced by a node in

a graph representing the circuit. The strongly connected components of the

graph are identified using Tarjan's depth-first search described in Chapter 4.

Then, analysis sequencing is performed on the new acyclic graph where each scc

has been replaced by a new node. The strongly connected components are 7

solved using Ihe dynamic partitioning method, while each subcircuit of the rest "

of the circuit is solved using the direct method. If the user knows that some

simple subcircuits, such as nand, nor, inverter, and-or-inverter, are not a part

of an scc, then in the input file the user can specify these simple subcircuits as

gates. This causes the program to solve those simple gates using the fast pwl

method described in Chapter 2. The dynamic partitioning method automati-

cally partitions the scc into smaller, completely decoupled blocks. In the cases

where the blocks are too large ( size of block is larger than three ) those blocks

are made as lower triangular as possible by applying Tarjan's depth-first search

approach and analysis sequencing method described in Chapter 4. In almost all

cases in practice the dynamic partitioning breaks the feedback paths in the scc.

Information of regions of transistors needed for dynamic partitioning is

obtained during the equation formulation process when the conductances and

current sources are fetched from the pwl device tables. Based on this

knowledge of regions, the program determines the local connectivity of the

ransistors. This local connectivity in turn is used to determine the global con-

nectivity of the transistors in the scc by applying depth-first search [14). This

1 .



depth-first search is not costly, since the size of an scc is usually not large. The

subblocks are now solved in a sequence which usually does not include an,'

feedback: and thus convergence is obtained in one sweep.

Waveforms of some examples are shown. The first one is a 5-stage ring

oscillator circuit (Figure 15) containing floating capacitors. The example is used

to show that fairly accurate results are obtained by the p,l method.

Waveform SPICE is obtained by SPICE using level I model with external capa-

citances between any two adjacent nodes included. Waveforni PWLFULL is

obtained by using the pwl approximation and solving the entire circuit without

partitioning or relaxation. Wav..forrn P\VLRELAX is obtained by dynamic par-

titioning and relaxation iteration to take into account the effects of floating

capacitances between subcircuits. From the figures one can conclude that the

pwl method gives accurate wavel orms.

The second example is a tally circuit (Figures 24-25). Worst-case parti-

tioning would define the entire circuit as one block while dynamic partitioning

decomposes the circuit into small subblocks that can be solved separately: as a

;result, computation time is reduced.

The third example is the 10-stage inverter circuit (Figure 26). The output

of the first, fourtn. seventh and tenth inverters, together with SPICE

waveforms, are shown in Figure 27. In this example the circuit is specified as

inverter gates and the fast pul method is applied. Note that for simple gates

such as an inerter the fast pwl method is fairly accurate.

The fourth example is a full-adder circuit containing pass transistors (Fig-

ure 28). The waveforms of the sum and carry nodes are shown in Figure 29.
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The last example is the pla circuit (Figure 30. The waveforms of the out-

put of the last inverters of the pla and SPICE waveforms are shown in Figure

31. This pla contains a strongly connected component which is solved using the

dynamic partitioning method. The rest of the circuit, which consists of simple

gates. is solved using the fast pwl method.

It can be seen from the figures that the pwl approximation is cuite accurate

compared to SPICE.

I'he computation time as compared to SPICE is shown in the following

table.

Table III Comparison of the pwl method and SPICE

Analysis time 9
circuit devices dynamic no dynamic SPICE

partitioning partitioning
5-stage ring %

oscillator
(no floating 11 1lOs 1.417s 50.13s
capacitor)

5-stage ring
oscillator
(with floating II 1.17s 3.000s 45.20s
capacitor) a
tall- circuit 18 2.550s. 3.167s 132s

pla 140 6.383s 14.22s 977s

cmos alu 1-42 4.171s 2.77s n.c.

n.c. :no convergence

Ihe table shows s:muiatior results performed on soni- circuits. One obscrves

thai (omputation tirne is reduced when *he dynamic partitioning is anit-d io 

2 ."
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the c:rcuins. For small circuits ( less than 50 transistors ) the speedup is about

40 as compared to SPICE. For a larger circuit. such as the pla. the speedup is

o vce - 100. ,

Computation time comparison with respect to RELAX2 [26], which applies

worst-case partitioning method , is shown in Table IV. The table shows thai

,zwl method is more than 10 times faster than RELAX2, even for these rela-

tivelv small circuits.

Table IV: Comparison of the pl method and RELAX3.2

Analysis time
circuit pwl with RELAX3.2

{number of dynamic
devices} partitioning

5-stage ring
oscillator
(no floating 1.1Os 14.02s
capacitor) 11P
pla 114cI 6.383s 155.36s

To ohain the rate of growth of computation time vs. the number of dev- P

ices. an n-stage ring oscillator circuit is simulated. The CPU-times for the

analysis times for various n are shown in Table \ and plotted in Figure 32. We

observe that the time grows fairly linearly as n increases.

r.

" " N
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Table V. Computational complexity

CPU-time vs. n
Number of devices (n) Analysis time in s

19 4.367
39 9.183
59 13.933
79 18.567
99 23.183

119 27.717
139 32.55
159 37.167
179 41.833
199 46.383

From the table above one can conclude that the CPU time taken by pwl

method ( method 3 ) grows linearly with the circuit size.

The dynamic partitioning method ( method 3 ) implementation on the .,

Alliant FX/8 is similar to the one for the sequential computer. The difference is

chat in parallel implementation there is no need to partition the circuit into dc-

connected components at the outset. Instead, the partitioning is applied to the

entire circuit. Also, there is no need to sequence the partitioned subcircuits since
a.'4

'hey are either completely decoupled from one another, or a Gauss-Jacobi

method is used when a small capacitive coupling exits between sabcircuits.

However, the parallel implementation contains a locking mechanism that the

sequential one does not have.

The following table shows the results of two circuits run on the Alliant

FX/8. The circuits chosen consist of more than 100 transistors and are expected

lip
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to show some simulation speed advantage on the parallel computer due to the

presence of large, strongly-connected components in the circuits. Speedup

obtained for the pla circuit is over bOO times as compared to SPICE, while the

speedup of the barrel-shifter circuit is over 400 times as compared to SPICE.

The SPICE results are from a uniprocessor implementation. Compared to 1 pro-

cessor, using 8 processors is over 3 times faster ( for pla circuit ), about 5.7

times faster ( for the barrel shifter ) and about 5.3 times faster ( for the digital

filter ); this means, for the pla. the efficiency of processor utilization is over 37

percent, for the barrel shifter the efficiency is about 71 percent and for the digi-

tal filter it is 66 percent.

Table VI: Analysis time on the parallel processors

Analysis time on Alliant FX/8 % %
dynamic dynamic ;- .

circuit devices partitioning partitioning SPICE
(8 processors) 0 processor)

pla 149 1.14s 5,433s 977s

barrel shifter 256 1.983s 11.3s 862s % 1. .
digital filter 698 11.6s 61.31s -

Another version of the program contains filtering routines to do seleclive ".

repar'itioning and latency checks. The aim is to do repartitioning and solve

only on some part of the circuit. For the pla circuit the computation time is

reduced from 1.417 seconds to 1.1 seconds. For -he barrel shifter no speedap is

obtained: this is due to a large number of reparltioning and solvirng. The t;rne

spent on selective repartitioning and lalency checks for the pla is 0.133 seconds

or about, 12 percent ol *he total CP time ). while f ).- the xarrel shifter it is

[. ,°



0.28 seconds ( or about 14 percent of the total CPU time ). For ,he digital fllier i

the time spent on the selective repartitioning and latency checks is 2.717 "-

seconds ( or approximately 20 percent of the total CPU time ). -
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The piecewise linear approach, as described in this thesis, is an attractive

n-method for solving circuit problems. This is due to the fact that simplified

pwl transistor models are used yielding a lower memory requirement and

faster computation time, and yet the method produces results that are close to %

those from other circuit simulators. Moreover, convergence is glaranteed in the

pwl Katzenelson method and its variants.

A pwl MOS transistor model approximation is described in Chapter 2 and

Appendix A. The model contains two parts: namely. the gate-drain and the

gale-source parts. Each part consists of a current source. a resistor and a depen-

dent current source. The dependent current source.Is inserted to satisfy *he

recuirement That the sum of currents al 1he gale node is equal to zero. Higher

order effects are modeled by the use of tabulated nested functions, as described

in Appendix A. The p'w, approximation method is also easily applicabie Eo *he

Ebers-Molls bipolar transisior model.

I wo rwl methods are also dtscribed in Chapter 2. The Frst s a

-mod:fication of the px,'l method on sinpiices. The. method is suitable for cir ui's
.

That dtriand more accurate ana',ysis. The idea is similar to the -%l meihod

d-vtloped h\ Kaizenelson. except in h:s method. rather Than fEnding binaiirv

., ( rossin-s, a ver~cx "o be ren.oved is selected. This ,tr*ex rco\ al. pr7oEss :I-

f~I



much simpler than determining which boundary is crossed. The original %

method is general and slow. For timing analysis some speedup is obiained h"

piecewise linearizing the transistor model. Even after piecewise linearization o I

the model and parallelization of the calculation of the matrix entries, the

method is not fast enough compared to the standard ircuit simulator SPICE. .

The second method is a fast p " method where the solution is obtained by par-

Titioning the circuit into one-way subcircuils. where each subcircuit has one

output with one capacitor lumped .t the output. The waveform solution at thc

output of each subcircuit is found by using pwl Thevenin's equivalent circuit.

\Vaveform relaxation is applied when feedback exists among the subcircuits.

The method is fast and fairly accurate for simple circuits such as nand. nor and .

inverters. Larger circuits such as pass transistor networks require direct

methods, since the fast pwl method is not accurate enough and tends to become

slow. 

Described in the third chapter is a new idea of dynamically partitioning

the pwl circuit. The method is fast because the partitioning is based on compar-
,

ing integers representing the gate-source and gate-dran regions of a transistor. '- ,

Simulation results on a typical example show that more than two orders of -

indgniTude sxedup is obtained. The dynamic partitioning method is suitable for

solving strongly connected components. or dc-conneced subcircuis where the

number of transstors is 'arge. Smaller subcircuits can also be solved this way.

A:

or with the fast pwl method described in Chapter 2. or with The direct method.

Another advantage of the dynamic partitioning method is its suitability for

parallel imrpiemenlation. This is described in Chanter -1. Thc local conntctivitv. .

ke

11 aA %' * ,%-
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global connec:ivitv and solving the dvnm !ca~lv partilioned subcircuiTs can b,

__rformed in *he concurrent mode.

The de'ailed parallel impiementalion of The civnamiL par!itioning method

:s described in Chapter 4. The si;ulalion of a number of circuit examples

shows good speedup and efficiency of utilizing the parallel processors. Because

:he dvnamik partitioning method partitions the circuit :nto completely decou-

pled small sub.ircuits. the gain in compu*at:on speed is fairly linear as the

number of available processors increases.

The implementation issues of the program PLATINUM which is based on

!1,e dYnami( partitioning method is described in Chapter 5. Severa waveform

e\amiples and comparison with respect to other simulawors are given To show '

*he validity of the methou.

PLATINUM as an experimental ining analysis shows good results for

MOS circuils. More enhancements to the program are needed: in particular. it

could be extended to hand'e bipolar circus. I should not be a dilcult task.

since the bi-olar transisior model is already in the Ebers-Molls configuration

which is exactly what is needed for applying the dynamic partitionng method.

,F1i-ure work would also involve more lesting on larger circuits and on other

"ypes o! !cchnology such as gailium arsenide c:rcults. Also. since the method is

?'. h:?niv paraiielizabcl, il would be nTeresT:112 To implemen the ;nelhod on a

:i' assively parallel machine, sini:iar "o the rtcen' pirailel implementation. of the

relaxation nmethod [48].

.-An tlereslin2 I ,11re work is To incorcra'e -he dvnam:c :)crT:!:onlr.n

:n'lhod md"sc:bvci ,. his hosts :nto s.:',.ator s h as RIl.AX2 ,h:ch

~ip

V P 'P.
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employs accurate transistor models. Although PLATINUM uses simple pwl

transistor models, iterations are necessary when floating capacitors, such as

from the gate-drain and the gate-source capacitances, exist in the circuit. Since

iterations are performed even for the simple models, it would be a good idea to

use more accurate transistor models.

The questions that need to be answered in this case are

1. How does the selection of breakpoints affect the number of iterations to
I

reach convergence.

2. If the selection of breakpoints affects the iterations, would it help,

for accuracy, to have multiple pwl models for each transistor. The multi-

pie pwl model is based on a nested tabulated functional represented and Y

is described in Appendix A. A tradeoff between speed and accuracy is an

issue here.

3. Compared to the heuristic partitioning method currently used in RELAX2.

how much speedup does the dynamic partition provide.

1" is possible that when more accuracy is desired the dynamic partitioning

method based on a simple pwl model can be used to partition the circuit. while

more accuraie functional models are used in formulating and solving *he equa-

tions.

1
'~'•p'
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APPENDIX A

SHORT CHANNEL PWL TRANSISTOR MODEL

This Appendix contains the more complete Meyer's model that includes

the effect of the body-source and body-drain voltages. The simplified Meyer's

model is given in Chapter 2. Instead of using

f (VG.) =(VGX -V r ) ,

one needs to use [25] :

, W 3/2

f (\XGX)=("GxVT )+ -k 1B + 2 * 4), (A.1)

k = tx E.(2q Esz V )

where 1'.X is the x to body voltage ( x is either source or drain ). C, is the

Fermi potential of the substrate, Es: is !he permittivity of the substrate, N is

The substrate concentration, and k is a constant. Note that the inclusion of the

body effect preserves the one-dimensionality of the tables. Only one additional

table for the body effect is needed to represent the second part of (A.1) for each

dcvxce. ThE short channel effects on the threshold voltage V T and the mobility

4 .... can also he easi!y included in the labular representation. The threshold •

s 2 ,,e ve [55] 1h P

\K = B " " 2, - + yFs(2(D, - V1ss ) - '

B, , - s) A.2)
. ....

,%7 q

-u -b?: 2..h:4.p v-uI.. - " , '"".["J.~* I """" ; . "
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FS = correction factor for short channel ec 4-4c"

I A -- correction factor for narrow channel e f ",

- = bulk threshold parameter

o = coefficient of qatic ffeedback

= ETA , 'here
C I L

ETA = con stan,: satic feedback effect parameter

£2 = empirical constant

C .= oxide capacitance

L = channel length

The mobility IEFF is defined in two regions as follows:

For 'he saturation region . .

L'O ' "

'EFF ='S - (A.3)
1 + THETA( Gs- T)

while for linear region

A.S
AEFF = ,5 );AS (A.A)

1+ DS
S'NIAXD*L,

UO is the surface mobility. THETA is the empirical mobility modulatron

parameter and VMAX is the maximum drif: velocnv of the carriers. After

,ekin2 .nto account the short channel effects the equation becomes as fo'lows

DS= A GS' V Ds)[G Ts " BS,'DS } + -k B' * 1, )-

- GD ~-' rT' .35 )t -~ -- ( %'8*2* )3 2: (-153

",vhcre K'(Xj. ., V ) -- r:.r,~ >. L" /

=D T, RS rsA LB> Y
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A table based on Equation (A.5) would b( multidimensional. To alleviatc this

difficulty we choose a set of discrete values of V.'S VDS and "s* Each combina- 1

lion of VBS. VDS and IGS is used to obtain the threshold voltage VT and the
N

mobility -EFF. Then for the pairs "T and A-EFF we generate a set of values of

conductances and current sources as the piecewise linearized model. For the n-

type device the values of VDS used in the table are 0,1.2.3,4.5. Similarly, the

values for 'VBs are -5.-4,-3,-2.-1,0 and for VGS 0.1,2,3,4.5 ( '"GS K 0 indicates

the device is off ). If more accurate results are desirable then more combina-

tions of VBS, V DS and VGS are used to construct the table. The advantage of this

method is that simple table lookup methods can be used to incorporate some of

the short channel effects.

The above method can be considered as a nested modeling of the device.

First, one determines the values of the variables at the lowest or deepest level

of the equation. In our case the variables are Vr and A. Then using these a
values, values of the variables of the higher level such as currents and conduc-

lances of the device model are calculated. Since in our case the independentl

variables VBs'S and VGS for the tables are determined a priori and pu'l

transistor approximations are tabulated in thE preprocessing step. no calculation

of a transistor characteristic is performed during the transient analysis. and

hence the compuLation time is reduced. The calculation for the device elements OL

is done during the preprocessing step and ,he values are stored in a table. This

method of nested device modeling is similar to the one in [501. The difference is

as follows. In [56] the currents and conductances at verious combinations of

voltages are tabulated. Extrapolation and in'er-olation are necessary for any

N~r'6- ".

~/~?- v - %~j'% P~ * ~ V '.'.. ,
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combination of voltages outside the tabulated ones. In the approach described

here the tabulated currents and conductances are the results of piecewise

linearizing the original function. As a result, the currents and conductances for

all combinations of voltages are defined, and therefore neither extrapolation nor

interpolalion is necessary.

F. To study the accuracy of the pwl approximation method described above, a V

CMOS laLch with short channel transistors ( 1 micron length ) is analyzed

(Figure 33 ). SPICE outputs using simple model ( level I ) and semiempirical

model ( level 3 ) are shown in Figure 34. It is clear that there is a noticeable .|

difference between the SPICE outputs when using level 1 and level 3. Figure 34

also shows the outputs using the pwl model. It can be seen that there is good

agreement between the output of SPICE level 3 and the output using the pwl

model.

. V

F'~k
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APPENDIX B

DESCRIPTION OF THE PRO)GR-M PLATINUM

This appendix contains information on how to use PLATINUM: Piecewise

LineAr TImiNg simUlation for Mos circuits. The input to the program,

.-. referred to as the circuil input file, is similar lo the input fle for the programi ,
PREMOS. PREMOS is a simulator developed by NVei [43]. PLATINUM is more

general than PREMOS. Some of the features of PLATINUM are

.~.., 1. It handles circuits described at the transistor or subcircuit level.
II

2. It has a built-in table for a typical pwl MOS driver, pull-up and pass

Stransistor. The input file may contain user-specified transistor parameters

which are used by the program to generate new pw! tables.

3. Capacitors are specified either from a node to ground or from a node to

another node.

The types of subcircuits that can b, handled by PLATINUM are nand. nor.

and-or-inverter and pass transistor nelwork. The model is described as
i

MODEL rnodnam lype (parameters)

" where modnam is a user-specified name. type is any one of the following

rand. nor. and-or-inverter. pass transstor. voltage source, and a set of

appropriawe parameters. The appropriate parameters for each type are ( please

: reler to Figures BI-B- )

.[PE PARAMETERS

nan(: wle. A.! c c1 cI

rnor wo wi co ci

b~'M

p. t r "wf " I" f 1 '• ' I' "I . . . .
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For example. MODEL nd2 NAND ( 1 0.2 1Of 1Of 1001)

The models are used in the circuit description. The circuit description is of the %

name node 1 node2 ... modnam /

"name" is the name of the circuit element. The nodes "nodel node2 ... c" on-

iains the node connections. "modnam" is one of the model names. The node con-

nctions must follow the order given below
.. .

TYPE ORDER OF NODE NUMBERS

nand a lail 

nor ol 02 1

andoi al a2 ... ol o2 ... I ... i(na-I H

canr r 7.1 n2

SO Ir n -

Besdes in ht subcircuil hvt-i. a circuit can be descrbed in the Transislo:

.The orma for *he transisior leve-l descr:ption is

i- dra;r. gat source 5od V lranlvpe

whetre "h.ain" i tht. name of ',he lransis*,or elk icnr. "drain, gale. source body"

are he MO nodes, anid "'ranvpe' is thle ransslor "ype such as PASS.

I)RI\ 1:R. LOAD ). Drain ar:d source nodes ore init-rchanatable. ; - ,

Besides c rc,,i desi riw1ion 'he in:ul hlv zilso onlains op' ions ,*nMnanus,

rirt .va am , O lt~(on' nS art,

N
%.' *5 5S *""
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7,1111 ITsOP tSIep W

)I

time is the command, istop is thc length of ana.\sis T ma . and Isiep is 'he

time step.

preset (nl.vl) (n2,v2) ...

preset is the command to preset at the beginning of simulation a node to a

sp:tifi, voltage. nl,n2.... are the node numbetrs. and vl are the nod e

voltages.

send rIn2?...

send is The comimand to print out the node voltages, nI n2 ... are the node
"3 '

nui1,bfes. "

- " abie ( w~l .kappa,vi,v 1.v2.v3.n)

table is the command to generate new table with user-specified paramne-

lers. %k is the width, I is the length. kappa is the transconductan~e

paraneter. vt is the threshold voltage. vl.v2 v3 are tne selectee voltage

brez kpo:nts. and n is the type of Transistor (n=l ,s for driver, n=2 is .or

lzac and n=3 is for pass transistor;.

,nd

tnd is a command indicazing the cnd' of the input Lle.

"An I'.aiple of a complete :ntu, bie is given next. It is a .ma circu:t Thal :s

e terred .o :n the thesis.

So ..

PI A 5nite-state mach:ne ;:nplemen' ing the light cont:,), 'r
- *5ulsblr(cu;I UTmodel card

:xot-i inv nor2 (5 1 101 I 100
:t elnor andoit 5 5 1 I01 (1 1Of I(lOf 0 3)
m)cl nor-I andoi(5 5 1 101 !(If lOf 100! U 4)

%1r0, :t1 no*rl I ra ns 5 1 2 101 1001 1( Of 1 1 I

3'..

• g;-.
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model notr2 trans(5 1 2 lOf lOOf lOf 50f 2 1)
model notr4 trans(5 1 2 10f 100f 10f 50f 4 1)

model notr5 trans(5 1 2 10f lOOf lof 50f 5 1)
model pass passT
model cap capcr(50f)
model clkl source (4 1 1On 5n 1On 5n)
model clk2 source (5 0 5n 5n 5n 5n)
* AND plane
xlI 11 17 19 1 nor3
x2 13 17 192 nor3
x3 12 14 17 19 3 nor4
x4 15 18 1Q4nor3 -.

x5 lb 18 19 5 nor3
xb 12 13 18206nor4
x7 11 18207nor3
x8 14 18208 nor3
x9 15 17 20 9 nor3
xl0 16 17 20 10 nor3
* OR plane
x l 56 78921 notr5
x44 21 5b 28 pass
x12 3 4 5 6 22 notr4
x45 22 56 29 pass
x13 3 5 7 8 10 23 noir5
x4o 23 56 30 pass
x!-4 6 7 8 0 10 24 notr5
x47 24 5 31 pass
x15 4 5 25 no,,r2
x48 25 56 32 pass
x1o 1 2 3 4 5 2O notr5
x4( 26 56 33 pass
x17 ( 10 27 notr2
xSO 27 5 34 pass

*output registers
x18 28 35 notrl
x51 35 55 4P pass
xlI 2o 36 notri '.

x52 36 55 48 .ass
x20 30 30 37 mv
x21 31 31 38 mnv,
x22 32 32 3P IV

x23 33 33 40 inv
x24 3-4 34 41 i."
* capacitors of pass trans
x5o 28 0 cap
x57 21 0 cap
x58 30 0 cap
x5l1 0 cap

t..

'
% - ~ .~ ~ ~~' ~ .'S ~~ V--
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xU{O 32 0 cap
x1 33 0 cap
Ntx62 34 0cab20cap

Nbb 48 0 cap
x67 49 0 cap
* input buffers

- x25 57 42 noirl
x53 42 55 45 pass
x2b 58 -13 notrl
x54 43 55 46 pass
x27 59 44 noirI

V x55 44 55 47 pass
x3 45 0 cap
\6-1 46 0 cap
xb5 47 0cap
* input registers

x28 45 45 50 inv
x2 9 46 46 51 inv
x30 47 47 52 inv
x31 48.48 53 mv

.p\- x32 49 49 54 inv
x33 50 50 11 inv
x34 45 45 12 inv
x35 51 51 13 inv
x36 46 46 14 mv
x37 52 52 15 inv
x38 47 47 16 inv
x40 53 53 17 i nv
x41 48 48 18 1nv
x-42 5-4 54 19 inv
x43 49 49 20 inv

rr nput sources

val 55 0 clkl 0 1 000 1 000 1 000 1
%a2 560 clkl 00010001000100
vaO 57 0 clk2 I11 1 0 0000 1 11 1 1 1
xbO580clk2 I I 1 1000000000000
vcOS9Oclk2 1111 1 111111111
*anaivnis requests

4 preset (35.0) (3b.0)
ime 120n In

send 37 38 39 40 41
'5

* " v- 5

t . tn d

- V

S. .2
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