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PREFACE

The 18th Symposium on the Interface between Statistics and Computer Science
follows in a long-standing series designed to provide a forum for numerical analysts,
statisticians, and computer scientists to meet, listen, and discuss topics of mutual
interest.

The 18th Symposium was held at the University Park Holiday Inn, Fort Collins,
Colorado, on March 19-21, 1986, hosted by Colorado State University.

The registrants reflected the international nature of the Symposium. Among the
300-plus registrants were statisticians, computer scientists, numerical analysts,
combinations of the preceding, and others from most states in the U.S., several of the
provinces in Canada, and six other countries. The organizers were pleased with the
distribution and magnitude of the attendance.

The official cosponsors of the 18th Symposium were Colorado State University, the
Statistical Computing Section of the American Statistical Association (ASA), the
International Association for Statistical Computing, and the Colorado-Wyoming
Chapter of ASA. After many years of discussion, the proceedings are being published
by ASA and made available the same year as the Symposium.

On March 19, 1986, two short courses were conducted at the Holiday Inn. Peter
Lewis presented material on his "Advanced Simulation and Statistics Package" from 9
a.m. to 4 p.m. At the same time several representatives from TCI Software
demonstrated the "T3 Scientific Word Processing System." Registration began at 6
p.m. and continued during the beginning of the Welcoming Reception/Mixer that was
held in the Fountain Court of the hotel. The keynote address by John W. Tukey,
entitled "The Interface with Computing: In the Small or In the Large," opened the
Symposium on Thursday morning. Thereafter, three invited and one contributed
sessions continued on Thursday and Friday. The Holiday Inn staff prepared delightful
buffet luncheons on Thursday and Friday, which provided the registrants with ample
time to pursue other interests and carry on further discussion over lunch. During the
conference eleven firms took the opportunity to exhibit their software or materials (see
the list on page v). The exhibit room also served as the coffee break location, thus
increasing the traffic to the exhibit area. As one might expect, much of the true
interface of information occurred during the informal discussions and demonstrations.
Our organizing committee made efforts to provide facilities and opportunities for these
activities. We encourage future Symposium organizers to expand on these opportunities.

As chairman of the Symposium, I gratefully acknowledge the help provided me by to, 1Fo
Jim zumBrunnen, the vice chairman, and Marilyn Lesh, our secretary. Without their GAR&I
encouragement and support, the success of the Symposium would have been in question. 1B 0
Then, too, we must reserve special thanks to the program committee who organized the Lned 0
invited sessions; their efforts to secure speakers and topics made the program -catio
outstanding. The committee consisted of: Daniel B. Carr, Pacific Northwest
Laboratory; Paula Cowley, Pacific Northwest Laboratory; James Dolby (deceased), Los
Altos, California; William Eddy, Carnegie-Mellon University; Dennis Friday, National ,ution/
Bureau of Standards; Richard Jones, University of Colorado; William Kennedy, Iowa btltty
State University; John Nash, BYTE and University of Ottawa; Wesley Nicholson, Pacific

Northwest Laboratory; Robert Schnabel, University of Colorado; G.W. "Pete" Stewart, .all and/or

University of Maryland; Paul Switzer, Stanford University; Mike Tarter, University of' Special

California, Berkeley; Bob Teitel, Teitel Data Systems; John Tukey, Princeton
University; and Paul Velleman, Cornell University. 88 2
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Local arrangements were carried out by Colorado State University's Office of
Conference Services. Jill Lancaster and her staff did an outstanding job with all of the
many details in running our Symposium. The staff at the Holiday Inn under the able
leadership of Jane Folsom made everyone feel welcome. As I have learned from Dr. W.
Edwards Deming, when people know what their job is and what their customers expect,
it is not uncommon to find that quality service can result. The hotel and Conference
Service staff knew our needs and exceeded our expectations. We praise them for their
efforts.

As indicated on page v of these proceedings, financial support for the Symposium
was made possible by three organizations. When bringing a diverse group of people
together, travel and related expenses must be covered for some of the participants.
This support was essential. In addition, this year for the first time we offered student
fellowships for graduate students in statistics or computer science. I hope that this
model will be continued in the future.

I offer thanks to the many other Colorado State University staff, students, and
faculty members who helped to make this Symposium possible. I would like to thank
Randall Spoeri, Associate Executive Director of ASA, whose advice and counsel was
sought often and was always helpful. Finally on behalf of all of the contributors to this
volume, I wish to thank Irene M. Stefanski, ASA Publications Manager, who served as
Assistant Editor for these proceedings, and Debra B. Shapiro, Publications Assistant.

Thomas J. Boardman,
Editor
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U.S. Office of Naval Research
Air Force Office of Scientific Research
Colorado State University

Cosponsoring Organizations

American Statistical Association
Statistical Computing Section
Colorado-Wyoming Chapter

International Association for Statistical Computing

Exhibitors

American Mathematical Society
Aptech Systems, Inc. (GAUSS Software)
BMDP Statistical Software, Inc.
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AVAILABILITY OF PROCEEDINGS

15, 16, 17th North Holland Publishing Company
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The 19th Symposium on the Interface will be held March 9-11, 1987, in Philadelphia,
Pennsylvania. The chair will be Richard Heiberger of Temple University.
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THE INTERFACE WITH COMPUTING: IN THE SMALL or IN THE LARGE?*

John W. Tukey, Princeton Unit, rsity, Princeton, NJ 08544

If "the interface" is to be a real interface, it needs to linear regression case, and by Eugene Johnson in the facto-

discuss problems that are real on both sides. If statisticians rial analysis case has made important progress, but I suspect

are to help the practice of analyzing data to even approach our computing science colleagues can help us further, if only

an economic balance between the decreasing costs of corn- about how to do the generalizations to non-linear fits.

putation and the advancing salaries of statistical consultants Configural polysampling (Tukey 1986), in which differ-

(and of statistical theorists), they must ask their computer ent weighting schemes allow a single set of sample configura-

- - and soon their workstation - - for much larger and more tions to be honestly taken as representing each of a few - - not

important computing tasks. just one - - tastefully selected parent distributional situations,

Either of these points leave statisticians seeking to for- is today our only effective way to learn about the possibilities

mulate problems very much larger than we have been accus- of robustness in real, finite samples. To make things work we

tomed to consider - - large enough to be a real strain for need to evaluate a few more-dimensional integrals for each of

computing-science specialists to consider (and often too hard a few parent situations, doing this for each of several hundred

for statisticians alone.) configurations. This can easily mean 10,000 multidimensional

We must also strain the statisticians! Problems that will quadratures, of smooth but somewhat nasty integrands!

challenge the computer scientists will not be found by sticking Location and scale together call for two dimensional in-

to simplicity, where simplicity is inappropriate! I shall return, tegrals; fitting straight lines calls for three-dimensional ones;

shortly, to this challenge to statisticians, but before I do, let regressions with 3 or more coefficients call for numerical inte-

me illustrate a few larger problems of computation. gration in even more dimensions. At the moment, by work-

There are a variety of major problem-classes, including ing hard, one can do a probably satisfactory job in two-

factorial data, and regression, where minimizing the sum of dimensions, and dream of doing the same in three dimen-

absolute (values of) residuals, conveniently "minimizing the sions.

Ll-norm" is a useful intermediate step to what we really want It is not satisfactory to "compute to death" such a prob-

to do. (Simplicity is already disappearing). When we are lem by adopting integration procedures that evaluate the in-

making a linear fit, the minimum-L' fit is rarely unique. tegrand at many, many points! In four dimensions, 100,000

Rather there is a convex subset of parameter space, evaluations, at 100 or so arithmetic operations per evaluation

bounded by hyperplanes, throughout which the Lnorm is would only be 10 million or so arithmetic operations per in-

constant at its minimum. In moving toward uniqueness, it is tegral, taking a minute on a reasonably available computer.

natural to first focus on the vertices (the corner points) of this For one integral this is fine; for 10,000 integrals its a week's

convex set, of which there may be many. (Each vertex turns work and one more dimension will surely ruin us! What to

out to correspond to a fit with many exact-zero residuals.) do?

It might be helpful to get a list of all these vertices; it might If we only want a few millions of arithmetic operations,

be even more helpful to get a list of those in a subset which we can have them easily. One thing we all ought to want to do

also makes extreme some second criterion (maximizing the with them is to have our workstations busily chewing over the

L-norm is often handy). Work by Peter Rousseeuw in the last set of data we put in, whenever it is not doing something

3 V., i~4



we explicitly asked for, to see what it can find. What sort of I have been slow to realize that omnicompetence has two

program should we write to do this? What sort of "cognos- sides, the one just mentioned, and an even more threatening

tics" should it look at? How should it schedule its attention "back side" which can be recognized/identified by these two

to different aspects (of a single body of data)? What sorts statements: "Don't bother me with procedures that are not

of reports should it make? How should it assess urgency of simple and transparent!" (If they weren't, I might not be

reporting? These are sample questions. Looking at them we omnicompetent!). "I admit data analysis has to be inductive,

can see the need for combining both real data-analysis expe- but understanding how to select ways to do it should be - -

rience and sound complex-computing-system experience, if nay, must be - - deductive"! (Else I might not be omnicom-

these questions are going to be answered effectively and well. petent.) The back side is the more threatening one, since

As a final example, think about the facilitation of prepar- its acceptance would keep us from polishing our methods to

ing and modifying what statisticians are happy to call expert make them work better, whenever that polishing would make
either arithmetic or natural heuristics more complicated, and 5

systems" (Some computer scientists think our systems are

would confine us to methods whose advantages we could de-too simple for such a title.)

duce, thus ruling out, in particular, heuristically-based sug-

Many of us are going to at least need aid in preparing gestions whose performance has been validated by simulation.

and modifying such systems. We all hope the tasks will be
It would mean tying our hands, keeping us far from doing as

simpler, nor harder. Within what framework should our sys-
well as we could -- in the interest of having a simple, rela-

tems be built and modified for this to be so? We can have tively teachable account of how our methods got that way.

ideas about this today, but it is almost certainly too soon How they got that way, NOT how they perform'

to freeze one or more standard frameworks - - however it is
The implicit assumption is that we are trying to teach

not too soon to start thinking about what will be important The i

how the then-current classic methods came about and can bewhen we start to freeze frameworks! - -- ,

extended rather than teaching how they behave and when
I turn now to the challenge more specifically aimed at to use them.

statisticians: The
Fred Mosteller and I have worked a lot together. I admire

"back side of omnicompetence"
his teaching skills so I asked myself how one could approach

- - which some might vender, less delicately, as the
such problems in a way that might satisfy both of us. One

"back side of incompetence".
possibility seems to be a two-layer approach, combining a

I have long complained of the heresy/fallacy of omnicom- very simple, easy-to-follow procedure for understanding with

petence, of the claim that "just tell me exactly what arith- _e
metica warning that that procedure was usually not good enough

and you ought to do better, as by using the following canned

results mean!" In other words: "If we look at a detailed de- program. which has thus-and-so properties. When I tried this
scription of some arithmetic that can be applied to data, it is

on Fred, he said that he and some colleagues were already

easy to understand just what that arithmetic does!" As most doing something close to this in a non-statistical field. So

of you know: no one of us, here or elsewhere, can correctly maybe it is a good idea.

make such a claim. To understand just what a given set of
There was time when it was felt to be the kiss of death

arithmetic does- - even so simple arithmetic as taking the
for a new statistics book to call it "a cookbook". I am sayingarithmetic mean - -is not easy (in that case, we were still -d

that this is no longer reasonable or wise. Who among you ]
would like to throw out all cookbooks from your household,

4
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and replace them by a text entitled "Principles of Culinary may doubt this, so I shall talk briefly about four examples.

Chemistry"? Do you think such a change would make your First, multiple comparisons. The first serious proposal

meals taste better? It's a pretty good idea to stick to "Fannie about multiple comparisons used the studentized range, for

Farmer'! interesting reasons that do not concern us here. Shortly

Let us also, for a moment, compare ourselves with an- thereafter, F-based methods became temporarily popular,

alytical chemists - - a respectable profession of comfortable perhaps because they seemed simpler, and more closely re-

antiquity. Analytical chemists live in a real world, they take lated to previous practice. It took a long time before it was

the occurrence of "interferences" seriously. They do not ex- generally recognized that they spent error rate where it either

pect to analyze for a single particular substance in the same wasn't needed or couldn't be effective.

single way, when that substance occurs together with very It took another decade or so to realize that there were sit-

different sets of other substances. Analyses in in one "ma- uations where much more complicated multiple comparisons

trix" - - in urine, for example - - need not be like analyses in procedures (like those of Ramsey, or even those of Peritz)

another matrix, either in blood or in distilled water. Many were needed, that there were several kinds and slices of mul-

details of the analytical procedures are important, for most tiple comparisons problems, for each of which different pro-

of them there are heuristics, for some there are none. The cedures, not necessarily simple one, were appropriate (cp.

test of a good procedure is how well it works, not how well it Braun and Tukey 1983c).

is understood. No one believes that, even from a highly de- Spectrum analysis, of the kind once called modern. also

tailed knowledge of chemistry, it is today possible to deduce started for unexpected reasons. The great thing that made

the operations by which we should analyze for a particular its techniques fly was giving up the simple picture of energy
substance.

at a few isolated frequencies, which was altogether too simple,

If we are to do as well as the analytical chemists, we and had led to procedures that were inadequate for - - and

will have to disavow simplicity and deducibility as absolute misleading when applied to - - many real-world problems.

standards.

We can retain simplicity and deducibility as secondary Omnicompetence has returned to spectrum analysis re-
cently, in the form of overbelief in maximum entropy esti-

goals - - as ways of choosing among otherwise equally qual- mtl, in oe in byidea e nt tif

ified candidates; as reasons for slight modulations of very m
you've calculated some moments, any fit you take seriously '

good procedures, modulations keeping nearly all - - but per- %

haps not all - - of the highest performance we can otherwise mst match these moments exactly!". For those of us who

have thrown off the shackles of the arithmetic mean - - itself
get. (I would always give up 1% of efficiency for simplicity - %- ,"

- and 0.4% for deducibility - - partly for the sake of the pro- an example of moment, matching - - this attitude hardly seems

cedure itself, but mainly because I would hope to do better either reasonable or wise. (There are places where maximum N-41%
entropy estimates will serve us well, not for esoteric reasons,with analogs of the procedure in more general or more corm-
but because they can be seen to perform well there.) _

plicated problems.) But we dare not accept simplicity and b aner m-

deducibility as major goals. Next, let us turn to robust/resistant techniques. Here

As I look back over more than four decades of experience there was a history of many decades of simple ideas: ideas

with both practice and theory, I have to conclude that almost like rejection rules and trimmed means. The Princeton Ro-

every major step with which I have been concerned offers an bustness Study (Andrews, et al 1977e), and its follow-on

example or two of the back side of omnicompetence. You %aves, looked at several hundred individual estimates and
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several thousand kinds of linear combinations of these esti-

mates. Out of this non-simplicity came the biweight (with a The challenge - - 160 undistinguished points

tuning constant of about 7). for which there is still no deduc- 0 O
tive approach, but for which experimental sampling - - both (S) O

0 ° oo iin its -swindled" form as Monte Carlo and in its even more a0 b 0
sophisticated form as configural polysampling - - has shown %
the high quality of its behavior.0 0 O0. 0

0 CO%0a
Recentl. I have seen a further stage of the same other 0 0 0 ) cc

side A paper h-owing how to fit a straight line better - -
0, 6

here "better- w*as demonstrated by experimental sampling %

i the face of very uncomfortably non-constant variance o C6 0 _ei
revolted referees and editor because the procedure was "too 0
'miplicated" If we are to do well in complicated problems, 0 0

we are almist sure to start with complicated solutions, which
we may later learn to simplify - but probably only to a -4 -z 0 2 d 6

limited extent U
Let ine urn finally to clustering, where there are reputed Now see what a carefully tuned, fully automatic proce-

to he review* articles with thousands of references - - almost dure - - which knows it is looking for 3 clusters, but makes no

ever) one starting with some simple procedure, possibly de- explicit use of Gaussianity, or of isotropy, or of equal sample

riing some ronceivably interesting possibilities, and taking size, can do! Here we have distinguished the 3 samples by

no thought at all for modification or fine tuning. tThe response: semientatlotn (artificially separated ,/ ,, )
The implied attitude is it seems to me 'we can always based on 150 undistinguished points and 'find V

isent the wheel (even if ours is square, we don't have to

modify it)"'

Recently Katherine Hanson and I have been trying the * 0
opposite approach itarting with a very simple test bed, and Vas

a somewhat more plausible initial approach, how can we mod- *tg.q)
ify and adjust and complicate the procedure until its perfor- 0 * a%

mance at least comes close to that of the human eye. -

Let me show you a couple of pictures, pictures that are

real and typical for a special situation, but possibly somewhat

mislading. because tuning for a wider variety of situations + +

nmay force us- to, degrade performnance in this special case+ (X + +
00 + +4First a challenge. a pictu re of 150 undistinguished points. + 4 +

+ +Some of you may be able to see 3 concenrations, some 1 0+

may guess that this is a mixture of samples, of nearly equal 0 0

size. from 3 circular Gaussian populations, populations that 0
clearly interpenetrate tine another quite a little. 14 misclasalfications, only a few more than forpopulation based discrlminants (8)
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usin diferet p~ttng carater - ad ase epartedtheI urge each of you to purge yourself of the "back side of
thre -custes" rontneanoter so e cn se boh th 01ric ompetence" as thoroughly as you can'oserlap of the %a:nples and the performance of the technique

As lho, last es~aniple suggests. the eye-braiin combination REFERENCES"5

is taut satiple If we are to make Al - -here Automnatic In- Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P.
%ight -. competitive with human processes. we cannot expect J., Rogers, W. H., and Tukey, J1. W. (1972e). Robust Esti-

to build effertive Al oin very simple rules; and then trust to mates of Location: Survey and Advances, Princeton Univer-

millions billions of ('ft' cycles t(. get the right answer sity Press, Princeton, 373 pp.

Large parts of the Al profession are badly infested with Braun, H. I. and Ttikey, J. W. (1983c). "Multiple
their version of the arne -back side" The combination of comparisons through orderly partitions: the maximum sub-

*very simple eleitietats arid verN massive computer processing range procedure," Principals of Modern Psychological Mea-

* is Ofilikel) to proavide either efficient or even effective support sure ment: A Festschrifi for Frederic M. Lord, Lawrence Enl-
for humnir purposes We shall need to choose subtle basic baumn Associates, Inc.. Hillsdale, New Jersey. 55 -65.
elements and to combine them creatively -- only then can T ukey, J. W. (1986). "Configural polysampling," to ap-

we make good use of all those CPU cycles, pear in SIAM Review.

If all my life I and a few others had taken the "back side *repared in part in connection with research at Princeton
of omrrnicornpot ence" seriously, there would have been long University sponsored by the Army Research Office (Durham).
delays in appearance and use of effective multiple compar- ""Letters match those in the bibliographies in J. W. T)ukey's
isons. effective spectrum analysis, effective straight-line fit- Colce Wrs, adwthMneeyCA

ting under very difficult circumstances, and, I hope, effective

clustering.
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COMMUNICATION IN PARALLEL
ALGORITHMS: AN EXAMPLE

G. W. Stewart
University of Maryland at College Park1

1 Introduction and R is upper triangular. From (2.1) and (2.2)
it follows that

Although the problem of distributing computa-
tions over networks of processors has received a A f XTX = RTR; (2.3)
great deal of theoretical attention, only now, as
commercial systems have become available, are
the practical limitations of parallel algorithms be- product matrix A. This suggests the following
coming apparent. In particular, communication three step algorithm for computing Q and R.
costs can render an otherwise attractive algorithm 1. Compute A from (2.3).
unsatisfactory. It is therefore necessary to have
analyses of parallel algorithms that indicate un- 2. Compute the Cholesky factor R of A.
der what conditions they will perform effectively. 3. Partitioning X and Q by rows in the form

The purpose of this note is to describe and
analyze a parallel algorithm for computing the ZT qT
QR factorization of an n x p matrix X (for ap- IT qT
plications of this factorization see [1, Ch.9]). The X Q
algorithm is designed to run on a ring of r pro- TI
cessors that communicate by message passing. In T qnT

the next section, we will describe the sequential solve the systems
algorithm and its numerical properties. The par-
allel version of the algorithm will be described in qTR = zT  (i =1,2,..., n). (2.4)
§3, and its analysis given in §4. The analysis sug-
gests some modifications of the algorithm, which for the rows of Q.
are sketched in §5. From a computational point of view, this al-

gorithm is quite satisfactory. The formation of
2 The Sequential Algorithm A, or rather its upper half, requires about np2/2

floating-point additions and multiplications; the
Let X be an n x p matrix with n > p. Then X formation of R requires pS/6; and the solution of
can be factored in the form the system (2.4) requires np2/2. Thus for large n,

the entire algorithm requires about np2 floating-
X = QR, (2.1) point additions and multiplications.

From a numerical point of view, the algorithmQTQ = 1 (2.2) is less satisfactory. On the positive side, becausethe q,'s are generated as solutions of (2.4), the

'Department of Computer Science and Institute for Phys- method has a backward rounding-error analysis.
ical Science and Technology. This work was supported Specifically, if the computations are performed in
in part by the Air Force Office of Sponsored Research t-digit decimal arithmetic, then there is a matrix
under Grant AFOSR-82-0078. E of order 10-tIXI such that

QR = X + E. (2.5)

11



A=O

for k-1 to r loop
A=A+A,
send(A)

receive(A,)

end loop

compute R
solve QiR = Xi

Figure 1: A Ring of Four Processors Figure 2: Program for Processor i

The idea of the implementation is simple. The
Thus little information about X is lost in the p matrix is partitioned in the form
sage to q and R.

However, the columns of Q may fail to be or- X,
thonormal; that is, (2.2) may fail to hold-even X(3.1)
approximately. If the columns of X are scaled so X = ,
that they have norm one, then this phenomenon ,

occurs precisely when R -  is large; for in this case X,

the system (2.4) will be ill conditioned, and Q will where each block has roughly K
be inaccurately determined. This means that we n
can at least recognize the problem when it occurs M -

by applying a condition estimator to R [1, Ch.11. 7

Moreover, the problem admits a fix. For if we rows, and block Xi is assigned to processor i.
apply the algorithm again to Q, we will obtain a Each processor initially computes
matrices P and S, with S upper triangular such . = XTX.
that A .

PS = Q + F (2.6) The A. are then circulated around the ring. As
If (2.6) and (2.5) are combined, the result is they pass, the processors add them together, so

that at the end each processor has a copy of the

PSR = QR + FR = X + E + FR. cross product matrix A = A A. It is then a
simple matter for each processor to compute R

Thus the factorization P(SR) also reproduces X. and solve the systems (2.4) to form Qj = Xj R - 1 ,
Usually P will have columns orthogonal to work- where Qi is the ith block of Q in a partitioning
ing accuracy. If not, the reorthogonalization can conformal with (3.1).
be repeated. Figure 2 contains a program implementing this

algorithm. In it the array A. is used both to hold

3 Parallel Implementation the initial A, computed by the processor and to
hold the A.'s from other processors as they circu-

The algorithm sketched above has a natural im- late around the ring. The function send sends a
plementation on a ring consisting of r processors. block of data (in this case whatever is currently in
Such a ring is shown for r = 4 in Figure 1. Here A. ) to the next processor. The function receive
we shall suppose that communication is clockwise, informs the system where to place incoming data.
as indicated by the arrows. An attractive feature of this algorithm is that

each processor ends up with a copy of R, from

12



which it can check whether a reorthogonalization first is the term np a/r, which decreases with ,
step is necessary. Since each processor will reach the number of processors. Since np a is the time
the same conclusion, the reorthogonalization can taken by the sequential algorithm, we could hardly
start forthwith without any initial communication expect greater speedup.
among the processors. The second part consists of the other terms,

which are linear in r and must ultimately domi-
4 Analysis of the Algorithm nate the first part. Although we may initially see

a decrease in time as we add processors, we must

We now turn to the analysis of the parallel algo- ultimately come to a point where adding proces-

rithm. The time required to complete the algo- sors actually increases the total time. This point

rithm may be divided into two parts: the time can be computed by adding (4.1) and (4.2), differ-
devoted to computing and the time devoted to entiating, setting the results to zero, and solving
communication. Let us look at the computing for r. The result is

time first. 1
We shall assume that it requires time a to [ 2n ] (4.3)

perform an addition and a multiplication in the min +
program of Figure 2. As is customary in this kind
of analysis, a includes all the indexing and loop- where we have introduced the relative parameters
ing overhead in the algorithm, so that it will be _ 0
considerable greater than the time for the bare a
arithmetic operations.

The costs of the various computations are sum- and _

marized below. T =

XTX 1 : mp2 a There are several things to observe about this
Summing : expression. The number r is an upper bound

Rp 2 a
R : a on the number of processors we can profitably use.m2a
Qimpa It comes from the fact that we must sum the Aj's

on each processor, and has nothing to do with
Since XTXi is symmetric, we need only compute communication time. However, poor communica-
half of it, which accounts for the factor of 1/2 in tion can certainly make things worse. For if the
the first item. Summing these items and making time take to transmit numbers is greater than the
the substitution m = n/r, we obtain the total time to perform arithmetic operations ' will be
computing time greater than one, and will dominate in (4.3). If p . %

[np2+ 1 2 + 1 I 2] is not too small, the relative setup time 67 will play IPA
r+ + mp2 a. (4.1) a smaller part; however, on some existing comput-

ers with a large startup time even this term can
For the communication time, we shall assume dominate.

that the send-receive sequence in the program re-
quires a fixed setup time o which is independent
of the length of the message. Thereafter, data is 5 Revising the Algorithm
transmitted at a rate of r-1 items per unit time. The importance of an analysis like the one in the
Since only half of the A.'s are being transmitted, last section is that it can suggest how to modify an
the total communication time will be algorithm to make it run better and it can indicate

T = ro + 1rp 2T. (4.2) features that it is desirable to have in a parallel

computer. The algorithm for the QR factorization
Looking at (4.1) and (4.2), we see that their is a case in point. The dominant terms come from

contributions can be divided into two parts. The passing the A, around the ring and from summing

13
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where beta is the time to transmit a single number
in brigade mode. Although we have not gotten
rid of the dependence on r we have reduced its
influence by a factor of p2.

We have been deliberately vague about the de-
j7J tails of this algorithm in the hope that the reader

will undertake the rewarding task of fleshing it '.

-± out. The program will be considerably more com-
plicated, as will be the analysis. However, at the
end you will have formulas by which you can com-
pare the two algorithms for yourself.

References

1. J. J. Dongarra, J. B. Bunch, C. B. Moler, and
G. W. Stewart, The LINPACK Users' Guide,
SIAM, Philadelphia, 1979.

Figure 3: Pairwise Summation

them on the processors. Let us see what we can
do about these two roadblocks, beginning with
the latter.

Although we cannot calculate A entirely in
parallel, we can reduce the amount of computa-
tion by a pairwise summation algorithm. Specif-
ically, the odd numbered processors send their
A,'s to the next even numbered processors which
add them to their own A,'s. Then the even num-
bered processors pair off to do another pairwise
summation-and so on until there is only on pro-
cessor left, which will of course contain A. An
example for r = 7 is given in Figure 3. From %
this it is seen that pairwise summation reduces
the time from r to approximately log12 r.

However, we still have a communications prob- .

lem; for at the last step we must pass a block of p2

numbers a distance of about m/2 processors. We
can do nothing about this unless we are willing to
assume something further about the how the pro-
cessors communicate. One possibility is that the
processors can link up and pass numbers bucket
brigade fashion from the source processor to the
destination processor. If the number of processors
in the brigade is d, then the operation will take
time

(d+ p 2 
- 1)p, (5.1)
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MATRIX COMPUTATIONS, SIGNAL PROCESSING AND SYSTOLIC ARRAYS

Franklin T. Luk, Cornell University

Abstract IAx -b 12 = min

Parallel matrix computing has become an essen- subject to
tial part of real-time signal processing. Systolic I Bx - d 12 <y.

arrays and associated algorithms for computing the Many systolic arrays have been proposed for
symmetric eigenvalue decomposition, the singular these matrix decompositions. Brent and Luk4

value decomposition and the generalized singular presented a systolic array for computing the sym-
value decomposition are described in detail. metric eigenvalue decomposition. SVD arrays are

ntrodutiongiven in Brent and Luk 4, Brent, Luk and Van
Loan 5, Finn, Luk and Pottle6, Heller and Ipsen 7,

Luk s and Schimmel and Luk 9, and GSVD arrays in
Numerical linear algebra is an important tool Brent, Luk and Van LoanW° and Luk 1 .

for modem signal processing practitioners, who must
solve systems of linear equations, compute eigen- The most effective parallel eigenvalue and S
values, eigenvectors, singular values and singular singular value algorithms for full, dense matrices
vectors( cf. Bromley and Speiser' I). The necessity are of the Jacobi type. Jacobi techniques are easily
that these matrix operations be completed in real implementable on mesh-connected processors.
time, together with the availability of VLSI/VHSIC Indeed, they were used for finding eigenvalues and
technology, has led to the development of special singular values on the ILLIAC IV, the first parallel
purpose multiprocessor systolic arrays. In this paper computer ( see Luk12 and Sameh 13 ). To compute an
we discuss systolic arrays and their associated paral- n x n SVD, a parallel Jacobi schemesA requires n 2

lel algorithms for computing the symmetric eigen- processors and 0 (nS) time, where S denotes the
value decomposition, the singular value decomposi- number of sweeps for convergence. The parameter
tion and the generalized singular value decomposi- S is a slowly growing function of n and is conjec-
tion. tured to equal 0(log n) 4. In comparison, the LIN-

PACK 3 SVD procedure requires time 0 (n 3). Unfor-A given symmetric n Xn matrix A can be tunately, Jacobi-SVD algorithms are applicable only
diagonalized via a similarity transformation: to square matrices. For a rectangular matrix A, an

A =VEVT , (1) obvious strategy is to first compute its QR decompo-

where the matrix V is n Xn orthogonal and Z is sition (QRD) of A :
ft Xnf diagonal The eigenvalue decomposition A = IR1, 5(EVD) is extensible to the diagonalization of an A- 0 1 , (5)
m X n ( m > n ) matrix A. Two different transfor-
mations are required to compute the singular value where the matrix Q is m x m orthogonal and R
decomposition (SVD. n X n upper triangular, and to then apply the SVD

procedure to the square matrix R. This approach isA ---U V , (2) particularly suitable for the case where m >>n ( cf.

where the matrices U (m xm) and V (n Xn ) are Chan14 ). However, we need to handle the interfac-
orthogonal, and the matrix E (m X n ) is nonnegative ing of different arrays. To alleviate the problem,
diagonal For applications and computations of these Luk8 suggested one "triangular" processor array for
decompositions see Golub and Van Loan2 and computing both the QRD and the SVD. Subse-
Dongarra et al.3. The SVD can be extended to a quently, a new GSVD algorithm implementable on
simultaneous dia onalization of two real matrices A the same array was proposed by Luk 1.

(m X n ) and B (p x n) by two orthogonal matrices Sa
U (m Xm) and V (p xp) and a nonsingular matrix S
* (nXn: .'The basic tool in a Jacobi method is the 2x2

U AX =D A  diag 101 ,.. e (3) plane rotation

and ~~cos@ inand =)' -sin' (6)
VTBX =DB diag ... I' -- in (4)

as the basic problem concerns the diagonalization of
The factorization (3-4) is called a generalized singu- a 2x 2 matrix by the rotation:
lar value decomposition (GSVD). It is useful for pqqId, 0J
solving various constrained and generalized least 1(0)2 q (0 ) d (
squares problems, e.g., d r"((7)
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Suppose q "1O ( else choose either 0 = 0 or 0 =7r/2 ). Jacobi methods lend themselves to parallel corn-
It is well known that t =_-tanG satisfies the qua- putations. Brent and Luk 4 developed a square pro-
dratic equation: cessor array and a "parallel" ordering that allows

8n/21 simultaneous rotations. Their new ordering ist+ 2pt-1=0, (8) amply illustrated by the n = 8 case:

where 
(j

where(i ,J) - (1,2) , (34) , (5,6) , (7,8),

p r _. cot2O (9) (1,4), (Z6), (3,8), (5,7),
2- "(1,6), (4,8), (2,7), (3,5),

The two solutions to (8) are (1,8) , (6,7), (4,5), (23),

t sign(p) (1,7), (8,5), (6,3), (4,2),
(1,5), (7,3), (8,2),(6,4),

co I + 1+ 2  ( (1,3). (5,2), (7,4), (8,6).

/1= 2 (0Rotation pairs associated with each "row" of the

sinO = i-s above ordering can be calculated concurrently. We
present a pallel Jacobi algorithm for A

and Algorithm EVD.

S--sign(p)[ Ip 1-- , do until convergence

cosO - 1 (11) for each (i,j) according to the "parallel" order-

sin0 -t cos . A -J AJ i

The angle 0 associated with (10) is the smaller of By convergence we mean that the parameter off(A)
the two possibilities; it satisfies 0 4< 10 1 < 7r/4, has fallen below some pre-selected tolerance. How-
whereas the one asociated with (11) satisfies ever, it is difficult to monitor off(A) in the settings
ir/4 K 10 I < 7r/2. We refer to a rotation through of parallel computations. Since convergence is fast
the smaller angle as an "inner rotation" and one ( ultimately quadratic ) it is a usual practice to stop
through the larger angle as an "outer rotation" ( cf. iterations after a sumfciently large number ( say
Stewart 15 ). The "inner rotation" is chosen in Brent ten ) of sweeps. Details on the processor array are
et al. 4-5 and the "outer rotation" in Luks . If the given in Brent and LukO. Important points worth
given matrix is diagonal (q = 0 ) then an "inner emphasizing are that only nearest neighbor connec-
rotation" means 0 = 0 and an "outer rotation" tions are required, that broadcasting can be avoided
implies 6 = rr/2. In the former case the matrix through a staggering of computations, and that one
stays unchanged, whereas in the latter case the sweep of the algorithm is implementable in time
eigenvalues are interchanged. O(n).

[ 0 [ 1= 0 01. Numerical experiments were performed on a
0 0 r 1 0 • VAX- 11/780 at Cornell University. Double floating

By solving a rdata types were used: each number is binary nor-
BY solving an appropriate sequence of 2 2 malized, with an 8-bit signed exponent and a 57-bit

EVD problems, we compute an EVD of a general signed fraction whose most significant bit is not
n X n matrix A The Jacobi transformation is represented. The accuracy is thus approximately 17

Tjj : A Jj A J , (12) decimal digits. The results are presented in Table 1.
We started with random n x n matrices whose ele- "

where Jij is a rotation in the (iJ) plane chosen to ments came from a uniform distribution in the
annihilate the (ij) and (j,i) elements of A. The interval (-1,1); we stopped when the parameter
transformation Tj will produce a matrix A satisfy- off(A) had been reduced to 10- 12 times its original
ing value. The rate of convergence was quadratic,

o A) = off(A) - 2a2, (1confirming theoretical predictions, and only eight or
) (13) fewer sweeps were required for n 4200. Empiri-

it., the matrix A is more "diagonal" than A The cally we find that S =0(logn), and there are
value of (i ,j) is determined according to some ord- theoretical reasons for believing this, although it has
ering, to be determined such that all the off- not been proved rigorously. In practice S can be
diagonal elements will be annihilated once in any regarded as a constant ( say 10 ) for all realistic N,
group of n(n-1)/2 rotations ( called a "sweep"). values of n ( say n 4 1000 ).%
A well known example is the cyclic-by-rows order- ,ing, illustrated here in the n =4 case:

(i ,j) = (1,2),(1,3)X(1A)X23)42A)X3A). 6
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Table 1. Average Number of Sweeps Tjj A -J A K (19)
Required by Algorithm EVD where J j and Kjj are rotations in the (i,j) plane

chosen to annihilate the (i,j) and (j,i) elements 9f
n trials # sweeps A. The transformation T , will produce a matrix A

4 5000 2.64 satisfying
6 5000 3.37 off(A) = off(A) - a2- a 2 (20)8 2000 3.79

10 2000 409 i.e, the matrix A is more "diagonal" than A.

20 1000 494 Luk8 proposed a triangular processor array that
30 1000 5.41 directly computes an SVD of a rectangular matrix.
40 1000 5.74 The associated SVD algorithm has two stages. First, a
50 1000 5.99 QR decomposition is computed of A as it is fed into

100 500 678 the array. Second, a Jacobi-SVD algorithm is applied
to the resultant triangular matrix. The pivot block

is restricted to contiguous diagonal elements, so as to
One may expect that software (or hardware) preserve the triangular structure of the matrix. This

for the symmetric eigenvalue problem can be used so called "odd-even" ordering is well illustrated by
to solve the SVD problem. For example, we may the n =8 case:
compute an eigenvalue decomposition of the matrix (ij) = (1,2), (3,4), (5,6), (7,8),

ATA or 0 T • 1, (Z3), (4,5), (6,7), 8.
r B t "Outer rotations" are required to ensure that allHowever, Brent et al.5 gave detaied explanations off-diagonal eements will be annihilated. Details

why we should nor approach the SVD problem as a ofdaoa lmnswl eanhltd ealsymericul e ngaeprobche roon the array are presented in Luk8 . Again the %symmetric eienvalue problem. important points concern the nearest neighbor con-
nections, the avoidance of broadcast, and the coin-l apletion of a sweep in 0(n) time. We present here

The basic problem here concerns the diagonali- the associated SVD algorithm for an n X n upper
zation of a 2X 2 matrix by the two rotations J (0) triangular matrix A:
and K (0. Algorithm SVD.

fW xj() Id1 021 do until convergence
K( zJ()= do "0 (14) begin

{ "outer rotations" are required) } .

A two-stage procedure is adopted. First, find a rota- for i = 1, 3,'". (i odd ), 2, 4, ... (i even ) do

tion S (q,) to symmetrize the matrix A = 1  A K£enl;

S(T)T w j= Ip1. (15) end. 0

Simulation experiments similar to the ones described
If x =y we choose --0, otherwise we compute in the previous section were performed at Cornell.

P= w+z =-cotu, The only difference was that the initial matrices
x-y were upper triangular. The results are presented in

sin---- sign(p) (16) Table 2, where we observe that S = O(logn).

S_+p2 Table 2. Average Number of Sweeps
cosob = p sin*. Required by Algorithm SVD

Second, diagonalize the resulting symmetric matrix:
p lj,) In trials # swees

q dr 0 (17) 4 1000 2.97

6 1000 3.76
Finally, K (0) is given by 8 1000 4.21

K(O)T = J(0YTS()T , (18) 10 1000 4.55
20 100 5.54

i., = 0 + p. Again, by solving an appropriate 30 100 6.09
sequence of 2x 2 SVD problems, we compute an 30 100 6.0
SVD of a general n X n matrix A. The Jacobi _! 100 6.40
transformation is 50 100 6.72

100 10 7.56
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Generalized Singular Value Decomtlsition triangularize both matrices ( cf. Paige 16).

We now present a parallel GSVD algorithm. How do these transformations affect the two
We nw peset a aralelGSVDalgritm. X n upper triangular matrices A and B ? We

Only the simple case where A and B are both ha e

square (nxn) and B is nonsingular is considered. h-
The first direct GSVD procedure was given by A -UT, A Q +', (27)

Paige 16. It implicitly applies a Jacobi-SVD algo- -VT+
rithm to the matrix C-AB-1, and is numerically B ii;I B
appealing in that only orthogonal transformations where U1 4+1, V1+1 and Q4 +1 denote appropriate
are applied to A and B and that the matrices B -I nxn rotations in the (i,i+l)-plane. Note that
and C are never explicitly formed. We assume that both matrices U1,. 1A and ViT. B have only one
both matrices A and B are upper triangular ( do non-zero subdiagonal element each, in the (i +1, i )-
two preparatory QR decompositions if necessary ). position. These two extraneous elements are annihi-
Orthogonal transformations U, V and Q are to be lated by the same rotation Q .' + 1, that restores both
determined so that the two resulting matrices A and B to triangular forms. Here is a parallel
U T AQ and V T BQ have parallel rows, ie, GSVD algorithm"1 for upper triangular A and B:

UTAQ = D'VrBQ, (21) Algorithm GSVD.

where D is some diagonal matrix. Defining the non- do until convergence
singular matrix X = B-V, we get the desired for i = 1, 3, ... (i odd), 2, 4p ... (i even) do
GSVID. begin

VTBX =1, { U1 4+1 and V1.+1 are "outer rotations" }
UTAX =UTAQ.QTX determine U4. 1 and Vi,+,1 to

= D.VrBQ.QTB- IV annihilate ci +1and cg+i1;
= D. A -U 4 A; B--T

On the other hand, note that find Q1 4'+1 to zero out a,+ 1 and b,.+ .1 ;

UT(AB-I)V =-D. (22) A --AQ.+ 1 ; B
So the transformations U and V can be obtained d. E

via an SVD procedure applied to C The gist of e.
Paige's method lies in its implicit computation of an By convergence we mean that the rows of A and BSVD of AB -t without explicitly forming the become parallel according to some predetermined

matrices B-1 and C measure. Algorithm GSVD is easily implementable

Luk" modified Paige's algorithm for parallel on the triangular QRD-SVD array of Luk8. We
computations by adopting the "odd-even" ordering, compute initial QR decompositions of both A and B
comuatiovnts hapti the upp-evtrnular oeri. as they are fed into the array. The SVD of C" +

A big advantage is that the upper triangular struc- and the triangularization of both A' + I and B'4 +ture ofbothA ad Bcan e peseved.Now if are performed in parallel on the processor array in a
both A and B are upper triangular, then so are the straightforward manner8 . The significant fact is
matrices B - and C As such, the two satisfy these that a GSVD can be computed in time 0(nS).
special relations:

(B -I)4+ 1 = (B'4+ l)- 1, (23) Addenda

C14+ = A'4+l(B-yA4', Real time signal processing is an exciting, new

where M 1 denotes the 2X 2 submatrix of M research area. We have described two different pro-
formed by intersecting its ith and (i +M)st rows and cessor arrays for finding eigenvalues and singular
columns. We have thus proved values. There are plenty of open problems that

Ci+'1 = A' 4+ t(B14+ 1)- 1, (24) await satisfactory solution. Two important examples
are data partitioning ( cf. Brent et aL5 and

the key condition for an implicit application of Schreiber 7 ) and fault tolerance ( cf. Huang and
Algorithm SVD to the upper triangular matrix C Abraham1g, Jou and Abraham'9 , Luk2° and Luk
We find rotations Y and Z for a 2x 2 SVD: and Park 21 ).

Y T C4++1 Z =S, (25) Acknowledgments

where S is diagonal. Then
YTAL'+=S.ZTBL+, (26)This work was supported in part by the Office

(26) of Naval Research under contract N00014-85-K-

i.e, the two rows of yT A'4+ and ZTB14 +1 are 0074.
parallel We can thus find one rotation W to
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PARALLEL ARCHITECTURE
A TUTORIAL FOR STATISTICIANS

William F. Eddy, Carnegie-Mellon University

1. INTRODUCTION AND SUMMARY sequential processes, executing in parallel, do not
For a number of years computer science research necessarily have to reside in separate memories nor

has studied the notions of parallel processing from do they have to be executed on distinct processors.
both a hardware and a software point of view. Thus. parallel processes can be implemented on real
Much of this research has had little practical impact machines in one of three ways.
up to now. However, this situation is rapidly
changing and the next few years will make systems 0 The processes can be multiprogrammed,
which incorporate the notions of parallel processing so that they share the memory of a
much more widely available to statisticians. The single processor. This is. of course.
Department of Statistics at Carnegie-Mellon precisely what a time-sharing system
University has experience using vector processors, does.
has an attached processor on one of the department
VAXes, and has experience using a network of 0 The processes can share a single memory
processors in a data-flow system. This experience but be run on separate processors. This
has led us to believe that the time is ripe for is usually referred to as multiprocessing
statisticians to begin a major use of parallel and obviously requires specially-designed
computation. hardware.

The purpose of this article is to provide a brief
introduction to the various notions of parallelism The processes can be distributed to a
and their realization in various hardware number of ndivrdual processors, each
architectures. Roughly speaking the article is having its own memory, connected by a
divided into two broad parts: the first is an haviniton memory c
introduction to the terminology and programming
notions needed in concurrent programming; the As mentioned above the two basic problems that
second is a short review of the particular classes of concurrent programs or rather the programmers who
parallel architecture that we have found useful. create the programs? face are process

The sections on concurrent programming will synchronization and interprocess communication.
introduce the two key notions that are necessary for Execution of a cuncurrent program car, be
an understanding of the parallel execution of represeed ny an acvc,.c directed graph v-'er each
programs: node represents a p'ocess and eact, aotecter] arc

ndcates that the process at its end nodf cannot

* Interprocess Communication execute until the process at its source no)de nas
completed. this giaph determnes the nrr t- .-

6 Process Synchronization. .Ynchronzation and ', called a ptoces, r,ow .!'ant:
Communication between concurrent processes can be

The sections on hardware architectures will disruss represented by an acyclic directed graph where each
the three broad classes of machines which we have node represents a read or write of data by a
used and which, we believe can be generall, ur.ri, process and a directed arc indicates the transfer of
to r statist,c,ans data from the process at its source node to the

process at its end node; this graph determines the

* Vector Processors interprocess communication and is called a data flow
graph. The graph is made acyclic by making

6 Attached Processors multiple copies of processes which send and receive
data more than once.

* Networks of Processors.

In the references a number of papers are listed 2.1. Coroutines
that are not explicitly referred to in the text; we One of the earliest notions for the specification
have found these papers very helpful in the of concurrent processes was the idea of coroutrines.
organization of our thinking about parallel Broadly speaking a coroutine can be thought of as a
computation. process implemented as a subroutine; the distinction

is that subroutines are initiated by a call and
terminated by a return in a strictly hierarchical way.

2. SPECIFICATION OF PARALLELISM Coroutines are initiated and terminated by a tesume
In order to think clearly about the specification statement in a non-hierarchical fashion; except, of

of parallelism it is necessary to remember the course, when they are initiated and terminated in a
fundamental concepts of sequential programming, hierarchical fashion (so that they are actually
The single most important concept, for our purposes subroutinesl. The crucial points to notice are that:
here, is the notion of a sequential process. A
sequential process is the actual execution of a * The resume command serves to
sequential program, a sequential program specifies synchronize the processes in the separate
the sequential execution of a list of statements. coroutnes so that all the processes

A concurrent program specifies the execution of implemented as coroutines can execute
more than one sequential program that can be on a single processor with no loss in
executed as parallel or concurrent processes. These execution time (except for overhead).
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6 Only one coroutine can be executing at a The two sidtements .an be executed in eilnre oider.time so that the switching between The end result of this concurrent program will beprocesses that can occur in a correct provided that one of the statements doesmultiprogramming environment is not use the shared variable X until thP othercompletely determined by the statement has set its value. equivalenth, the resultprogrammer. will be correct provided each statement is treated
The only process flow graphs for concurrent as an indivisible unit. These two types of
programs that can be implemented by coroutines are synchronization can be implemented in several
linear, distinct ways which are discussed in the followingsections.

2.2. Fork and Join
Another early notion for the specification of 3.1. Shared Variables

concurrent processes was the fork statement. The Perhaps the simplest way to synchronize two
statment specifies that the invoked routine should processes is to have one of the processes set a
execute in parallel with the invoking routine. The variable when a particular condition is satisfied and
invoking routine can execute a loin statement to to have the other process test the variable until its
force synchronization with the completion of the value indicates that the condition is satisfied. One
invoked routine. The fork-join mechanism is a very obvious drawback to this technique is that the
powerful tool for implementing parallel processing process which is waiting will be "spinning its
and , a feature of the Unix operating svzrem is wheels" testing the shared variable; this is an

obvious waste of CPU time. A less obviousonly major flaw is that definition of a process is drawback is that the programmer is compelled to
directly connected to its synchronization. An understand the synchronization that is necessary andarbitrary process flow graph can be implemented to explicitly program it. The most serious drawbackusing fork and join. is the possibility of a deadlock. A deadlock occurs

when two (or more) processes are waiting for
events which can never occur. As a simple example2.3. Cobegin and Coend consider the following concurrent program.

The statements cobegin and coend delineate These programs implement two concurrentblocks of statements that can be executed processes as the subroutines named ONE and TWO.concurrently. The essential notion is that all blocks The synchronization is implemented through the twowithin the scope of the cobegin-coend begin at the shared variables named START1 and START2; thesame time and the cobegin-coend terminates only variable STARTi has the value TRUE when process
when all blocks within its scope have terminated, numbered i is in the part of its program which
One distinct advantage of the cobegin-coend directly influences the process numbered 3-i. Thisstructure is that there is only one path in and one part is generally referred to as the critical section.path out of the construct; another advantage is the The subroutines WORK1 and WORK2 which are notexplicit specification of which processes are being given should contain the actual critical sections ofexecuted concurrently. All process flow graphs that the two processes. The important point to notice isare series-parallel can be implemented by cobegin- that both processes could enter the loops at aboutcoend; however, the implementation of arbitrary the same time with the result that neither one ofgraphs by cobegin-coend requires the introduction of them could continue doing anything productive.extra null processes. A fairly simple and straightforward modification

of Program 3-1 alleviates most of the possiblities
for a deadlock and is given in Program 3-2 below.3. SYNCHRONIZATION If the two processes executing subroutines ONE andWhile there is only one fundamental reason for TWO run at exactly the same speed and start at thebeing concerned with the synchronization of same time then this program will never actually

concurrent processes (to control the execute the subroutines WORK 1 and WORK2.
cooperationlinterference of one process with Peterson (1981) introduced a third shared variableanother), there are two distinct types of into this protocol; the third variable gtarantees thatsynchronization which can be useful. The first of both processes will eventually get to execute Ihthese types occurs when the values of some shared critical sections and is implemented in Program 3 3
variables are not "correct;" that is, one process below Ishould not use the variables until some other
process has changed their value during its (the 3.2. Semaphores
second process's) execution. The second of these A better and more detailed notion fortypes occurs when some subset of statements in a implementing the mutual exclusion above usng .process must be treated as an indivisible operation. shared variables is to use a seiaphore. AThe dividing line between these two types of semaphore is a non-negative integer. the,e are A(
synchronization is not always sharp, as can be seen operations defined on a semaphore %
by considering the following simple example.
Suppose a variable X has the value 1. Consider a 0 Signall's) which executes the assignment s ,%concurrent program which consists of the following * 1 S and
two assignment statements to be execute, in
parallel 0 Waitfsi which delays execution until s is

positive and then sets s - 1 .+ s.

Using a semaphore, the concurrent program with
3 •critical sections given in the previous section can be

rewritten as in Program 3-4 below.
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Program 3- 1: Mutual Exclusion Protocol subroutine two
with Possible Deadlock common startl,start2

block data logical starti, start2
commn sartistat:2do while (.true.)

logical startl~start2 c work that does not need to be synchronized
datastari/.alse/,strt2.fale./c with the other process can be done here

end tr2.re
if .not. startl then

subroutine one cl ok

common startl ,start2 stat2. fale
logical startl ,start2 sat=fle

c work that does not need to be synchronized c work that does not need to be synchronized

C with the other process can be done here c with the other process can be done here

startl=.true. enddo

do While (startl)en

if .not. start2 then
call workl Program 3-3: Peterson's Mutual Exclusion Protocol
startl=.false.

endif block data

enddo common startl,start2,process

" work that does not need to be synchronized logical startl,start2
c with the other process can be done here integer process

end data startl/.false./, start2/.faise./
data process/l/

subroutine two end
common starti ,start2
logical start , start2 subroutine one

c work that does not need to be synchronized common startl,start2,process
c with the other process can be done here logical startl,start2

start2= .true. integer process

do while (.start2) c work that does not need to be synchronized
if -not. startl then C with the other process can be done here

call woric2 startl=.true.
*start2=.false. process=2

endif do while (start2.and.process.eq.2)
* enddoenddo

" work that does not need to be synchronized call worki
" with the other process can be done here startl=.false.

end c work that does not need to be synchronized
c with the other process can be done here

enddo

*Program 3-2: Modified Mutual Exclusion Protocol end

blockdatasubroutine two
common startl *start2 common startl *start2,process
logical startl,start2 logical startl,start2
data startl/.false./,start2/.false./ integer process
end c work that does not need to be synchronized

c with the other, process can be done here
subroutine one start2 . true.
logical startl ~start2 proce 55=1
common startl. start2 do while (startl.and.process.eq.l)
do while (.true.) enddo

c work that does not need to be synchronized call work2
" with the other process can be done here start2=.false.

t startl= .true. c work that does not need to be synchronized
if .not. start2 then c with the other process can be done here

call workl enddo
enE.if end

startl= .false.

" work that does not need to be synchronized
" with the other process can be done here

enddo
end
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Program 3-4: Mutual Exclusion with Semaphores hardware. Second. programming a data-flow system
is simple; it is not necessary to have any special-

block data purpose languages nor any special understanding in
common s order to program such a system. A description of
integer s a primitive data-flow system developed for a
data s/l/ network of VAXes is given in Eddy and Schervish

end (1986). Third, a programmer need not worry about
the complex synchronization issues that are usually
attendant to parallel programs; this separates the

comoune o task of scheduling computations from the task of
common s programming them. The critical notion in any data-

integer s flow system is the granularity of the problems that
do while (.true.) are appropriate for it. that is, the size of the

c work that does not need to be synchronized computational tasks which will be treated as

c with the other process can be done here indivisible units. For example, O'Leary and Stewart

call wait(s) (1985) discuss a special-purpose data-flow system

call workl known as the ZMOB. One interesting and unusual
call signal(s) feature of data-flow systems is that the processor
cl sirthtna syd speeds need not be identical, and they can in fact

c work that does not need to be synchronized be stochastic. Additionally, the communications

c with the other process can be done here network used for interprocessor communication can
enddo have a bandwidth and latency which are stochastic

end also.
The essential feature of any problem that can be

subroutine two run efficiently on a data-flow system is that the

common s interprocess communication cost must be a smali
fraction of the process computation cost. We

integer s (elieve that any problem which is amenable to
do while l.truie.) parallel computation can be implemented in an

c work that does not need to be synchronized efficient manner on a data-flow system; the only

C with the other process can be done here dilemma is what are the correct size grains
call wait(s) (indivisible computational tasks) for the particular

call work2 application.
call signal(s) One interesting research problem is the use of a

c work that does not need to be synchronized data-flow system for the numerical computation of

c with the other process can be done here high-dimensional integrals. Briefly, the problem is
to decide how to decompose the integral across the

endo processors, for example:end

1. Should iterated integrals be performed
suoroutine wait (s) recursively with different levels of the
integer s recursion calculated on different
do while (s.le. 0) processors?

enddo

s=s-i 2. Is it better to use Gaussian quadrature or
return. adaptive Newton-Cotes techniques on a
enc. data-flow system?

3. How do Monte Carlo techniques compare

-. :r'=;': * . , a with iterated Gaussian techniques or with
,neger composite Gaussian techniques?

trL!r, A second interesting problem is the optimization
of high-dimensonal functions on a data-flow
system. Some work on this problem is reported by
Schnabel (1986). Again, briefly, the basic question

3.3. Data-flow Synchronization is how to decompose the computation, for example:
A data-fiow algorithm, in the sense of Treleaven,

Brownbridge, and Hopkins l1982). is a collection of 1. In a global optimization problem, how
statements together with a directed graph which often, relative to function evaluations.
represents the flow of data among the statements, should the separate processors exchange
We find the notion of a data-flow algorithm, as a information?
means for implementing a concurrent process,

compelling, for a variety of reasons. First, it is 2. Should the separate processors only
possible to implement a data-flow system on any evaluate the function or should the
network of processors which supports some simple decision making be decentralized also?
communication primitives; nearly every computer
installation has a network of processors so this 3. Should the computation of function
approach to parallel processing has very broad values be localized so that individual
applicability. Special hardware is required only for processors 'learn' about the local
those tasks which have a communication/computation behavior of the oblective function)
ratio which cannot be supported by standard
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Another interesting class of research problems is amount of buffer space to store the messages until
the stochastic modeling of the data-flow process. the receiving process is ready to read them. A sort
A data-flow system can be thought of as a multi- of intermediate protocol between totally
processor with stochastic service times. A typical synchronous and totally asynchronous communication
problem might be to minimize the makespan ithe is to have some fixed limited amount of buffer
expected value of the completion time- if space; this allows the sending process to operate
preemptive scheduling is not allowed and there s a asynchronously unless it gets too far ahead of the
cost associated with assigning tasks to processors. receiving process. In this case the communications
Related problems have beer. attacked by Bruno. protocol should not let the asynchronous write be
Downey. and Frederickson 1981) and otner!, executed because of a lack of buffer space.

4. MESSAGE PASSING
5. SEOUENTIAL PROCESSORS

The essential features of the "von Neumann"

4.1. Communication Channels model of a stored program digital computer are
A communications channel, in an abstract sense.

is the specification of a source and destination for 1. The data is represented by digits in some
messages. Such channels are usually implemented number system.
in by either direct naming where the process names
serve as source and destination or by mailboxes 2. The program and data both reside in the
where the mailbox name is global and can be used same memory.
by several source (or destination) processes
simultaneously. The use of communication channels 3. Instructions are executed one after
affects the interaction of concurrent processes in another.
another way. The processes may perform their
communication so that the output of each process In the last three decades the speed of serial
becomes the input of another process; such computers has improved enormously. While a large
communication is usually called a pipeline, part of this improvement has stemmed from
Pipelines are a feature of the Unix operating system. improved technology at least some of this

One common alternative mode of process improvement has come from the partial introduction
interaction is a client/server model. A client of parallel processing. In particular:
process requests some particular service from a
server process; upon completion the server process 1. Separate processors now handle the input
send a completion message to the client process. and output; this was previously a major
The client/server communications relationship is burden on the CPU because of the
usually implemented with a mailbox. A client relative slowness of external I/0 devices.
process can send a message to any possible server
process and a server process can receive a message 2. Execution of instructions is somewhat
from any possible client process. overlapped both because of the existence

of special processors for certain
instructions ano also because the

4.2. Synchronous/Asynchronous Communication individual instructions are decomposed
A critical feature of the interprocess into (and processed in separate parts

communication is whether the communications This decomposition is referred to as
protocol is synchronized or not. An additional pipelining and is discussed in more
complication is that the synchrony can be different detail in Section 6 below.
at each end of the communications channel. In
particular, each time an actual read or write is 3. Memory design now allows essentially
issued by a process it can, in principle, be executed simultaneous access to consecutive
with an implied "wait until completion" or not. storage elements without interference
Consider as an example a dedicated server process. (interleaving).
Presumably, the server process begins by issuing a
read with a wait until completion since the process Flynn (1966) introduced a nomenclature for
does nothing until it receives a request from a models of computation which has become, although
client. The client process on the other hand imprecise, the standard. His scheme classifies
presumably issues the request for service as a write machines on the basis of two attributes:
with no wait if the service is not time critical or as
a write with a wait if the client is unable to 1. whether the machine can process more
continue until the service is completed. When the than one instruction simultaneously; more

erver process has finished tf work it .ssues a tra

write iback to the chent without a wait and then 2. whether the machine can process more
reissues the read with a wait. The client process than one data item simultaneously.
issues a read from the serve, process with or
without a wait depend-nQ on the' esacr nature of thf The resulting four types of machines are:
,,!,,ce provided. Trie ponc nie ;s -aT wheine, .,
not the communication is synchronous or not 1. SISD single instruction, single data;
depends on the application. itsn nro ig a

In the case of asynchronous writes, one (often 2. MISO- multiple instruction, single data;
unanticipated) problem is that a large number of
writes may be issued without a corresponding 3. MIMD - multiple instruction, multiple
number of reads. As a consequence the receiving data.
process must have available an essentially unlimited
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4. SIMD - single instruction, multiple data. varying hardware architecture such as the Cray IS,
It will be helpful in the discussion that follows the CDC Cyber 205, and the two Japanese machines,

It il b hlpulinth dicusin ha fllws the Fujitsu VP-200 and the Hitachi $810. These
to describe various computer models by analogy to mhis Ve theomeal Seed Thuh

a fat fod estaran; te cutomrs or, machines achieve their phenomenal speeds through a
a fast food restaurant; the customers (or. number of unusual architectural features together
equivalently, their orders) represent instructions, the with the technology used to implement the system.
items ordered represent the data being processed, The single most important feature is that the basic
the servers represent processors and the Assistant machine cycle time is on the order of 10
Manager, if present, represents the control unit. nanoseconds; this is roughly 1000 times faster than

The von Neumann model describes the SISD a typcal personal computer
machines. In the fast food analogy there is a The design of these machines is optimized for
single queue of customers and a single server under the desig of the s e a ue s laredsfor
direction of the Assistant Manager; each customer's the processing of arrays because most large-scale
order is filled before the next customer's order is scientific calculations are based on linear algebraic
taken, operations. The critical architectural features include

It is generally agreed that MISD machines do not pipelining of instructions, parallel functional units
exist although some authors put pipeline machines in and the use of vector operations. A functional unit
this category. is a specialized part of the arithmetic/logical unit of

The MIMD machines are generally very the CPU which implements some specific portion of
specialized, even unique. Two early examples are the instruction set and operates totally
the C.mmp and Cm* machines built at Carnegie- independently of the other units. Although a
Mellon University. Cm* consisted of 50 procebsors. functional unit may require more than one clock
each with its own memory. in five clusters of ten period to complete its calculation, new pairs of
processors each. For example, memory references operands may enter each unit during each clock
could refer to memory attached to the same period. This is because data is moved into a new
processor, memory attached to a different processor set of registers (within the unit) at the end of each
r- the same cluster, or memory attached to a clock period. This is the notion of pipelining.

different processor in a different cluster. The times The use of vector operations is implemented by
required for access to data items in these three way of a set of special functional units and a set

case are in the ratio of 1:3:9. Obviously then, of special instructions which are executed by those

efficient use of Cm* requires programs to have a units.

certain "locality" in addition to their parallel nature.
An early commercial MIMD machine was the 7. ATTACHED PROCESSORS ,

Denelcor Heterogeneous Element Processor (HEP). An intermediate approach to gaining high
The HEP could have up to 16 processors attached to performance, between brute-force processor speed-
its memory bus; unfortunately only a very small up and large numbers of processors, is to use
number of these machines were built. See Kowalik special-purpose hardware which does not have the
(1985) for considerably more detail. The fast food full capabilities of a general purpose computer.
analogy for an MIMD machine involves a chain of Generally, these special-purpose processors are
fast food restaurants. If one restaurant runs out of, attached to some general-purpose processor. The
for example, strawberry milkshakes, it may obtain attached processor appears to be some sort of I/O
more from another restaurant in the chain or it may device to the general machine; the attached
send customers to another restaurant in the chain, processor performs its I/O through the standard

A different example of MIMD architecture which facilities of the general machine.
will have growing importance is discussed in There are a surprising variety of attached
Section 8 below. processors with quite diverse characteristics. A few

Turning now to the most important of Flynn's that should be of particuiar interest to statisticians
categories, there are several major types of SIMD are the Star Technologies ST-100, the FPS 164 and

machines: 264, the CSPI Mini-Map 211, the Mercury Zip, the

Analogic AP400 and AP500 and the Skye Warrior.
These machines ,ange in price from about $5000 to

1. array processors $500,000; their speeds ano capabilities cover an

equally broad range. Generally speaking attached2. associative processors processors are array processois in the sense that .41
their architecture is optimized for arra operatons

3. data flow processors they achieve speeds approaching that of the ',ector k
processors described in Section 6 above at e

4. pipeline processors fraction of the cost.

5. systolic processors '' ,

8. NETWORKS OF PROCESSORS

In the next sections some of these will be From our point of view, networks of similar
described briefly. processors provide the most exciting prospect for

parallel computation. The reason is simply that we
believe that the data-flow approach described in

6. VECTOR PROCESSORS Section 3.3 above is the easiest method of %
Vector processors are having a major impact on concurrent programming currently available and is

the world of scientific computing because of their simultaneously the only existing method which will _
raw speed and their ability to perform as general- scale up to a very large numbers of processors. By
purpose machines. This means that larger problems the words "scale up" here, we mean simply that
can be solved more rapidly and users do not have whatever works now for four or forty processors
to learn new concepts to use the systems. There will ultimately work for 400 or 40,000 processors.
are a number of such machines all having slightly The crucial detail in any system based on a network
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of processors is what sort of hardware 0 Eddy, W.F. and M.J. Schervish (1986).
intercommunications network exists among the Discrete-finite inference on a network of
processors. VAXes. Computer Science and Statistics:

Obviously, the most desirable situation occurs Proceedings of the 18th Symposium on the
when every one of the processors is able to Interface (T.J. Boardman, Ed.) (this
communicate directly with every other processor. In volume).
this case, the interprocessor communications
network is a complete graph. Obviously, and 0 Ff',nn, M.J. (1966). Very high speed
unfortunately, such a network will not scale up; ccmputing systems. Proceedings of the
simple geometrical considerations show that the IEEE, 14, 1901-1909.
number of hardware channels on a single processor
cannot increase without bound as the number of 0 Kowalik, J.S. (Ed.) (1985). Parallel MIMD
processors does increase. So a system with n Computation: HEP Superocmputer and Its
processors and n hardware channels per processor Applications. MIT Press, Cambridge.
does not scale up.

The entire game then is to invent interprocessor 0 O'Leary, D.P. and G.W. Stewart (1985
communication graphs which have short paths (where Data-flow algorithms for parallel matr.-
each channel counts as length 1) between any two computations. Co/nmunications of the ACM,
processors and a number of communications 28, 840-853.
channels per processor which grows very slowly (if
at all) as a function of the number of processors in 0 Olson. R. (1985). Parallel processing in a
the network. Currently the most popular message-based operating system. IEEE
interconnection scheme is based on an n Software, July. 39-49.
dimensional hypercube. letting the corners be
processors and the edges be communication 9 Peterson, G.L. (1981). Myths about the
channels. If the hypercube has n=2k corners then mutual exclusion problem. Information
there are k=log 2 n edges per corner (channels per Processing Letters, 12, 115-116.
processor). At this time there are at least three
commercial hypercube systems: the Intel IPSC which 0 Satyanarayanan, M. (1980).
can have up to 64 nodes (i.e., a 26 hypercube), the Multiprocessing: an annotated
Hypernet System 14 which can have up to 256 bibliography. Computer, 13, 101-116.
nodes (i.e., a 28 hypercube). and the NCube Ten
which can have up to 1024 nodes (i.e., a 210 * Schnabel. R.B. (1986) Parallel computation
hvpercube). for optimization problems. Computer

The hypercube nterconnection scheme does not Science and Statistics: proceedings of the
scale up to very large numbers of machines and a 18th Symposium on the Interface (T.J.
variety of other schemes are likely to appear In the Boardman, Ed.) (this volume).
market place in the next few years.

0 Treleaven, P.C., D.R. Brownbridge, and R.P.
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DISCRETE-FINITE INFERENCE ON A NETWORK OF VAXES

William F. Eddy and Mark J. Schervish, Carnegie-Mellon University

SUMMARY facilitates partitioning of the numerical results into

Because all data are discrete and because all sums which can be accumulated with greater

digital computation is discrete, we investigate the numerical accuracy.

consequences of abandoning the implied
approximations involved in the use of continuous-
parameter models for continuous random variables. 2. DISCRETE-FINITE MODELS
In particular, we study models for discrete random Consider inference about a single observable X,
variables specified by probabilities which can only which can assume one of d possible values
assume a finite number of values. If we allow all x .. Xd. These values can be numerical or
possible models, the amount of calculation required nominal, vector or scalar; we will refer to the set
is really formidable; for one very simple example of possible values as the observation space. The

we estimate that one million years of cpu time are distribution of X consists of a vector p = (p 1 ... pd )T
,

required to determine the predictive distribution for where
a single future observation. Consequently, effort is p= Pr IX x 1, (1)
needed both to reduce the amount of calculation I J
required and to speed up the calculation that must and
be done. Of particular interest in this regard is the 7
use of multiple microcomputers as parallel p11 (2)
processors. This breakthrough has two important
advantages. Firstly, it dramatically reduces the Since all calculations we perform are discrete and

perform the discrete- finite, we assume each p is constrained to equal"wall clock time" required topefrthdict-
finite calculations. Secondly, it provides a one of say m possible values, v . v . For
numerically more stable algorithm for computing the simplicity here, we will only consider tPe case
results, where the {v ) lie on a grid that is equally spaced

in (0, 1]; that is, we suppose that

v = (k - 1)/(m - 1).
1. INTRODUCTION

We choose to investigate models for discrete One need only consider that subset of the collection
data which assume only finitely many values for of m "possible" vectors p which satisfy Equation 2.
several reasons. First, observed data are discrete; When p is specified, all inference about X can be
only finitely many different values are possible in based on Equation 1. We will refer to p as the
any particular situation. Second, all computations model vector and to the set of all possible p
are routinely performed in a digital computer; this vectors as the model space.
restricts the possible values at any stage of Next, assume that one is interested in making

calculation to be a discrete finite set. inference about a subset of some sequence
Third, we believe that the use of such models X1 , X2 , ... of observables which are exchangeable, in

forces researchers to focus their attention on the the sense that their labels provide no information

important issues in statistical modelling. We agree about their joint distribution. We assume that each

with Geisser (1971, 1980) that the primary purpose X must equal one of the values x. x1 . A
of probabilistic inference is predictive in nature, theorem of de Finetti (1937) (also see Hewitt and
That is, one models data statistically because one is Savage, 1955) shows that conditional on some
interested in making predictions about other, as yet vector p satisfying Equation 2, the X are

unseen, data. The reason that discrete-finite models independent with distribution given by Equation 1.
force the focus onto predictive inference is that the Once again, the model space is a finite collection .1' ,

models are simply vectors of non-negative numbers of vectors, say, (r ,...,r, with r. - (rI . .rds).

which add up to 1. We deliberately avoid For convenience, let the distribution of p be
expressing the models in terms of parameters which uniform. We use subscript i to index observations
might be mistaken for quantities of interest, and I to index possible values. Since, for each i,

Fourth the availability of substantial amounts of
computer time diminshes one of the major Pr (X x Pp) = pj, (3)
drawbacks to discrete-finite models. Calculation of
any function of the predictive distribution from a we can calculate the conditional distribution of p
discrete-finite model involves a sum over the given any finite subset X* of X, X ... as follows. •
various possible model vectors. Typically, the For 1,= 1, d, let n be the numaer of observed
number of possible models is very large; in a fairly X's in X* equal to x so that (n1 , n .... n ) has a
trivial example described in Section 3 below, the multinomial distributi6n conditional on p. Using
number of model vectors is 6 x 1016. We have Equation 3 and the conditional independence of the
developed some computational algorithms which, X given p, we obtain - "
combined with very high speed computation, will d n
make some previously infeasible discrete-finite Pr (p = reX*) = KX n I for sl,....t (4)
models computationally tractable. In particular, we whreor. (
have made use of a local area network of various where
models of DEC VAXes in order to perform most of t I f (rd .
the computations in parallel, thereby reducing u=1 J= Ju
elapsed time. Such parallel computation also The joint distribution of any further set of X 's is •

given by Equations 3 and 4 and conditional
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independence given p. For example, the predictive distribution of a single future observation for
distribution of a single future X is various values of n, d. m. and k. In the calculations ,

rr Pr .IX . ... tabulated here, we made the added restriction that
=r x 1 s I-r S (5 rs > 0 for all i and s.

The Carnegie-Mellon Statistics Department has an
attached processor which is optimized for floating

3. FINITE SAMPLE CALCULATIONS point arithmetic (a CSPI Mini-Map MM-211). This
An essential part of our investigations has been Table 2: Times in Seconds To Compute

implementation of various discrete-finite procedures Predictive Distribution
as Fortran programs. With Smoothness Restrictions

n d m k # of p's Time
3.1. The Simplest Case 15 10 20 5 46584 53

With n = 15 observations on a variable assuming 15 10 25 5 617283 630
d = 10 different values, the amount of time to 15 10 25 6 720577 698*4,
calculate the predictive distribution of one future 15 10 30 3 638896 524
observation on a VAX 11/750 for various grid sizes 15 10 30 4 1856064 1502
m is given in Table 1. The estimated time referred 15 10 30 5 3352218 2576
to in the last line of Table 1 is approximately equal 15 10 40 5 23237938 16196
to one million years. This is not to suggest that 1 20 30 3 6099480 9416
we should prepare to do calculations which require 1 50 54 1 19602 138
this amount of time, rather it suggests that serious 1 50 55 1 230444 1234
work is required to find ways to make inference 1 50 56 1 2123274 9409
more feasible in a reasonable amount of time. We 1 100 104 1 161702 2156
consider one direction in which this work rmay 1 100 105 1 3921519 40732
proceed in Section 3.2 below. This approacn is processor is attached to a VAX 11/750 and is able
Table 1: Times To Compute Predictive Distribution to perform floating point calculations at up to to

m # of p's Time(Seconds) twenty times the speed of the VAX without
degrading the VAX performance. We have also

10 48620 29.53 implemented the program described above on this
15 817190 431.5 processor. The results were, at best, disappointing.
20 6906900 3529 Over a range of problem sizes we obtained a speed-
300 6 x 1016 3 x 10 1 3 (estimated) up (for this program) of only 25 to 60 percent,

compared to the VAX 11/750. This "bad"
through restrictions on the model vectors. Another performance is explained by the fact that the
approach is to use parallel processing. We discuss attached processor is optimized for floating point
our efforts in this direction in Section 4 below, calculation and our program has very few such

calculations in it.

3.2. Smoothness
Consider the case in which each observable must 3.3. Other Approaches

equal one of d equally spaced numbers in the One alternative way to eliminate "rough" model
interval [x.,xd]. Assume x I < x < ... < x d. For vectors is to consider only those vectors r which
continuous probability models, if is common to are unimodal in the sense that i: r > c) is a set
expect that Pr IX near x) is close to of consecutive integers for all c. 'eWe have also
Pr {X near x ) if Ix - x I is small. This property is programmed this unimodality criterion for
the smoothness o tlhe distribution of X. The comparison. Table 3 below shows the times
traditional method of guaranteeing smoothness is to required to calculate the predictive distribution of a
require the distribution of X to be a member of a future observation based on a sample of size n = 15
parametric family of smooth distributions, from a distribution assuming d r 10 distinct values

The method we choose for anticipating ior various values of m. The restriction that every
smoothness is to reduce the set of model vectors coordinate of p be greater than 0 was also imposed
{r.) by eliminating all those wit i adjacent in these calculations.
coordinates which are too far apart. This option One method for choosing between the various A'x
has the potential for reducing the computational alternatives is to supply some small set of .%
burden dramatically compared to the first approach hypothetical data and produce the predictive
and is. thus, the option we will pursue in detail, distribution for a future observation by each
The reason is that the amount of time required to alternative method. These distributions can be
calculate a predictive distribution is proportional to easily plotted on a terminal screen allowing a user
the number of model vectors in the calculation. to choose the method which produces the moi.t

There are several ways to implement the Table 3: Times in Seconds To Compute
elimination of "rough" model vectors. The simplest Predictive Distribution
is simply to specify some value t and allow only With Unimodality Restriction
those vectors r with adjacent coordinates closer
than i. We have written some Fortran programs to m # of p's Time
implement this simple smoothness criterion. For 20 806 1
example, consider the bound with * = k(m-1). That 30 23028 24
is, we eliminate all vectors with Ir - r I > f 40 248912 231
Table 2 below gives the times in seconds Aion an 50 1604102 1406
11/750) required to compute the predictive plausible predictive distribution. The chosen method

can then be applied to the real data set. Of course,
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the amount of time required to perform the Carnegie-Mellon University has, in addition to its
necessary computations will also be an important VAX 11/750, several Microvax I's and Microvax Il's
factor in choosing between alternatives, which communicate via DECnet over Ethernet cables.

As an illustration, we can compare the predictive We have developed a set of FORTRAN subroutines
distributions produced by the models corresponding which allow us to create, on each of these
to machines, processes which can communicate with

each other and divide up the work in an efficient

1. the third row of Table 1, manner so as to dramatically reduce the elapsed
time required to perform the calculations described

2. the seventh row of Table 2, and in Section 3. In fact, the system is general enough
to be able to handle any problem in which the task

3. the fourth row of Table 3. is decomposable into parts which can be perfomed
independently of each other.

The results were all based on the same sample of The system we are using works as follows.
n = 15 observations of a variable with d = 10 There are essentially two programs and there are
possible values. The fifteen observations were 2, 3, two types of processes on the network. One
6. 6, 6, 6. 7. 7. 7. 7, 8, 8, 8, 9, 9. The predictive process will be called the parent, while the others
distributions corresponding to the three tables, will be called children. One of the two programs is
respectively are given in Table 4 below. run by the parent, and the other program is run by

Table 4: Three Predictive Distributions all of the children simultaneously. Both programs
for 10 Possible Values are required to perform interprocess communication,

which will be described in more detail below. The
1 2 3 4 5 6 7 8 9 10 parent program divides the set of model vectors

.02 .10 .10 .02 .02 .21 .21 .17 .13 .02 into groups which we call messages, and sends the

.06 .08 .08 .06 .07 .15 .18 .15 .12 .06 messages to the children via the communication

.03 .04 .05 .06 .08 .20 .24 .18 .10 .04 network. Each message consists of sufficient

It is worth noting that the predictive distribution information for the child to construct the model

derived from the unimodal restriction is itself vectors assigned to it and to calculate summands

unimodal, because most of the data values were which will be added together by the parent to obtain

consecutive. The distribution derived under the the predictive likelihood and the predictive 9
smoothness condition on adjacent values is distribution of a future observation. When a child

substantially smoother than the unrestricted finishes its work, it sends its calculations back to

distribution, and it is flatter than the unimodal one. the parent which combines them in an appropriate
fashion.

Making sure that the above scheme runs

smoothly requires careful attention to details.
4. PARALLEL COMPUTATION Because our system consists of three different kindsAn interesting feature of our initial programs is of VAX processors, timing can be a serious

that essentially all of the calculation is contained in problem. For example, a imicrovax I is slower thn
a single loop which is executed once for each p For example aMcvx is slower thanmode vetor Th reultof oe ieraionthrugh a VAX 11/750. which is slower than a Microvax II.
model vector. The result of one iteration through It makes sense to assign the slower machines less
the loop is independent of all other iterations work so that all children finish at about the same

through the loop. This means that these calculations time. Since our system is in constant use by other
are particularly amenable to parallel computation. In researchers in the Department of Statistics, different
particular, suppose there are L processors available rescrs i te Departto different
to perform the calculations. Let W be the time processors will be subject to different demands onreqire bytha pat o th col~uatin wich resources at different times. In order to avoid
required by that part of the comutation which having a calculation delayed by one or two slow
cannot be performed in parallel and let Wp be the processors, a flexible system of message
time required by that part which can be performed distribution is required.
in parallel, so that the time required to calculate a We have chosen to divide the work into a large
predictive distribution with one processor is number of messages and to send them to the

T = WS * Wp, children as they are needed. That is, when a child
finishes a message and returns the results to the

where W is typically many orders of magnitude parent, the parent then sends the child the next
larger than W . Obviously L processors can available message. The goal of creating the
complete the task in time messages is to make them approximately the same

T1 a WW/L W 0 . size while keeping the amount of effort required of
T L  Wthe parent to create each message relatively small.

where W is the added time to handle the overhead The reason is that a child may have to wait while
of the $,arallel processing. Hence, considerable the parent creates its next message. There are

improvement in speed of execution can be expected advantages and disadvantages to having small
if L is large and W and W are small compared to message sizes. One advantage of small sizes is
W . Unfortunately,S no matter how large L is the that a slow child (either a slow CPU or a busy
rario machine) will receive only a few messages, leaving

the bulk of the work to be performed by those
T LT ) (Ws . W IlWS . W p) > 0. children who have the time and resources to do it.

An added advantage to partitioning the
computation into small parts is that the numbers

4.1. A Network of VAXes being added together are more nearly the same size
We have actually begun implementing some of than with a serial algrorithm. This increases

our algorithms on a system with truly parallel numerical accuracy in a manner similar to the
architecture. The Department of Statistics at
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pairwise algorithm described by Chan. Golub, and until it runs out of children or is interrupted by the
LeVeque (1983). See also. Eddy and Jones (1985). arrival of a mailbox message. When it reads a

On the negative side, small message sizes can mailbox message saying that the child is alive, it
cause a communications bottleneck for the parent. issues an asynchronous read for a mailbox message,
In order to make optimal use of resources, we have sends data to the child, and then- issues an -

chosen to make the processor, on which the parent asynchronous read for data. When the parent reads

program runs, also run the child program. That is, data returning from a child, it accumulates the

one computer communicates with itself over DECnet results, sends more data, and issues another

as if it were a remote node. In order for this child asynchronous read for more data. The child on the

to get any work done, the parent will have to spend other hand, operates synchronously by reading data

most of its time in a quiescent state. A definite from the parent, performing its computations,

advantage to small messages appears when one writing the results back to the parent, and waiting

considers the possibility of one child "dying" for the next set of data. The key to this system

prematurely. All work done by that child, since it working is that (i) the parent goes back to whatever
last reported results to the parent, is lost and must it was doing after it issues an asynchronous read

be redone. Since the network is not as reliable as request and (ii) when an asynchronous read request

one would wish, and systems sometimes crash for is answered, the parent is interrupted from what it

unanticipated reasons, it pays to have small was doing and deals with what it reads. (The one

messages. exception to this is that if the parent is already ',

One drawback to our system occurs when the reading the answer to an asynchronous read when

number of processors becomes very large. The another one is also answered, the second and all

bandwidth of the communications channel will only later ones queue up and are dealt with in order of

handle a certain number of processors before arrival).

becoming overloaded. Also, the parent must have a
connection to every other processor, which can tax 4.2.3. The parent process
the resources of the processor on which the parent Because the answers to asynchronous reads
runs. This problem severely limits the size of the interrupt the parent and begin execution of a
system in theory, but few organizations own enough seperate set of code, they behave like subprocesses.

stand-alone systems to encounter difficulty due to In fact, the program flow following one of these
the bandwidth (for calculations of this kind.) asynchronous answers is completely seperate from

the basic parent program. The basic parent program
consists solely of the following:

4.2. Description of the System
The system we use is an example of a data flow

system as described by O'Leary and Stewart (1985). 1. Initialize with input data.

The concept of a data flow algorithm is that, once 2. Loop through the children one at a time.
the program has started, the flow of data takes care
of the distribution of work and the control of the
program. In our system, after each child begins 0 Open a link, if it is not currently
work, program control is handled by the return of open.
results from the children which initiates the 0 Issue asynchronous read request for
subsequent sending of the next message. In the mailbox message.
paragraphs below, we describe in detail the different
features of the network of VAXes. 3. Wait some fixed amount of time.

4.2.1. Network communication 4. Return to step 2.

Communication between parent and child is done All of the data handling is done by the

over DECnet. There are two communication subprocesses described below. Each subprocess is 4

channels, one called the mailbox channel and the initiated when a read is answered by one of the
other called the data channel. The mailbox channel children. Hence, the subprocess is associated with
is used to keep track of the network status. For that child for the duration of its existence.
example, when each child is created, the parent
sends no data until it receives a message in the
mailbox saying that the child has come to life. 4.2.4. The mailbox subprocessWhen a child dies, the parent gets a mailbox The first thing the mailbox subprocess does is ,

check to see if the message is a birth message or a
message saying the child is dead, and the parent death message. A birth message means that the
must reassign the task on which the child was child is alive. In this case, data is sent to the child
working, if there was one. The data channel is what and an asynchronous read on the data channel is
the parent uses to send its messages (data) to the issued for the results. A death message means that
child and what the child uses to return its results. the child is dead, and must be removed from the

list of living children. In addition, if the child had V ',,.-

4.2.2. Asynchronous communication been working on a set of data, the data must be .

The parent only deals with data arriving from a requeued for delivery to another child at a later

child when it arrives. That is, the parent does not time. If, on the other hand, the child is dead

wait for messages or data, but rather issues because the parent killed it (when there is no datais
asynchronous read requests and then goes on with left to be sent), we need only remove it from the

its work. For example, upon starting a child, the list of living children. When the last living child

parent opens the data and mailbox channels and dies and there is no data to be sent, results are
issues an asynchronous read for a mailbox message. summarized and execution ceases.
Then it goes to the next child and does the same
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4.2.5. The data subprocess and six Microvax l's. This is roughly equivalent to
The data subprocess begins when the ten Microvax Ii's.

asyncronous read for the first set of results issued The best timing obtained for the 15 node system
by the mailbox subprocess is answered. At that was 4,303 seconds, and the best timing obtained by
time, the results are accumulated. If there is no the 8 node system was 5,771 seconds. These 1

more data, a special data set is sent to the child numbers are 10.7% and 14.4% of the time taken by a
which causes it to cease execution and send a death single Microvax I . This is remarkably close to the
message back to the parent on the mailbox channel. best we could have expected, namely 10% and
If there is still data to be sent, the child receives 14.3%. The time which the parent spent on each
the next packet of data. The subprocess then issues message varied from .13 to .15 seconds regardless
an asynchronous read for the results and quits. of which system was used or how many messages
Notice that this last part of the subprocess is
identical to part of the mailbox subprocess. In fact were sent.
these two subprocess use the same code (which is Figure 1 shows the total elapsed time for each
reentrant for this purpose). system for several different sizes of message. The

horizontal axis is Log (Number of messages) rather
than message size. lehe pattern verifies our initial
conclusion that when there are few messages (hence4.3. Empirical Study of the System large ones), time will be wasted waiting for the last

Our initial investigations of the network of slow machine to finish its last message. And when
VAXes has dealt with the questions of how much there are too many messages (hence very small
improvement do we get with more processors, and ones), time is wasted while the parent deals with all
how large should each message be to make the best of the asynchronous read requests being answered
use of system resources. The example we used for almost immediately. It was generally true that the
comparisons had n=14 observations on a variable Microvax I's received about one-fifth as many
assuming d=19 values (0 to 9 in steps of .5) with a messages as the Microvax Il's when there were
model space having m=22 and a smoothness many messages, but not so many that each message
criterion k=2 as described in Section 3.2. The total was returned completed immediately.
number of model vectors is 38,226,040 and the Finally, we examined the numerical accuaracy of
calculation of the predictive distribution of one the computations. All of the calculations for the
future observation took 11 hours and 8 minutes on a cases plotted in Figure 1 were clone in double
single Microvax 11 (40,100 seconds). precision. We also ran the test case on the arrayWe ran the same case under several different processor attached to the 11/750, which only does
conditions using the network of VAXes described single precision arithmetic. The computation took
above. Since the 11/750 runs about 80% as fast and 35,036 seconds, and was incorrect by as much as
the Microvax I's run about 20% as fast as the 5% in some of the coordinates of the predictive
Microvax Il's, we constructed two systems. The distribution. This was verified by running the case
first system had 8 nodes: six Microvax I's the serially in single precision on a Microvax II and
11/750 and one Microvax I. This is roughly obtaining an identical posterior distribution (in 36,642
equivalent to seven Microvax Il's. The second seconds) despite the fact that VAXes and the
system had 15 nodes: eight Microvax Il's, the 11/750 secnd d espt h fc tht V esnd he

attached array processor do not round identically

Figure 1: Seconds vs. Ln(# of Messages)
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(c.f. Eddy and Jones, 1985). The parallel algorithm, either of these last two indicates that the
however, was able to overcome the rounding error communication link between parent and
problem. We ran the same case in parallel with child is not open.
approximately the square root of the total number By use of such a monitoring device, one can see if
of model vectors per message (6237 model vectors attention needs to be paid to a particular node
per message in 6129 messages), but still in single because the connection is not open. It also lets the
precision. The predictive distribution was identical user know if some of the children are not doing
to the double precision result to five significant their fare share of the work. If the user knows how
digits. This case took 37,151 seconds of total CPU many messages will be sent, it also indicates how
time on Microvax Il's. The message size was much of the problem has been completed.
chosen to be optimal for numerical accuracy, not
for speed.

5. FUTURE DIRECTIONS
The network of VAXes can actually be extended

4.4. Monitoring the System to include other kinds of processors, so long as a
In order to get the most out of the network of communications protocol is available. In addition,

VAXes, it may be useful to monitor the network any problem which is decomposable into arbitrary
activity. We have arranged for a terminal screen to sized pieces can be handled in parallel using the
display the current status of each child as shown in system. We explored discrete-finite inference in
Figure 2. One could display any information which detail because it was the problem which first
seemed relevant in such a display. We have chosen interested us in the system.
to display the following: The most important thing still needed is a

thorough analysis of system performance. It is
* The name of the node on which the child straightforward to see that, if all processors

is running and the time of the most perform their calculations at fixed (albeit different)
recent message on the first line. rates, the elapsed time will be minimized by sending

only one message to each processor with sizes
* Text describing the most recent message being an increasing function of the rates. The

on the second line. reason for this, is that the overhead of sending

messages is nearly independent of the size of the
* Numbers of messages on the third line. message. Of course, this might not be true for

The first number counts all incoming and other applications. Our system, however, is part of
outgoing messages to and from the a time sharing system, hence calculations are
parent. The second number is the performed at different rates by the same processor
number of data messages sent to that at different times. Sending a single message to
particular child. The third number is the each processor can be disastrous in this case, if
total number of data messages sent to one of the processors has considerably more other
all children so far. The number -1 in work to do the others. Evidence of this appears at

Figure 2: Typical Terminal Screen While Monitoring Network Status

EN'VY 16:32:22.24 TASMAN 16:33:31.98 HUBRIS 16:33:33.61

Message sent to child Message sent to child Parent disconnected

1057 3 527 1557 61 777 1574 -1 -1

ENNUI 16:33:33.68 DESIRE 16:33:31.80 SLOTH 16:33:30.72
MsA rcvd from child Message sent to child Message sent to child

1575 57 7701 1555 62 776 1547 58 772

BALTIC 16:33:32,55 GREED 16:33:32.28 CORAL 16:30:01.06

Parent disconnected Message sent to child Third party disconnect

1562 -1 -1 1559 65 778 38 -1 -1

CMSTAT 16:33:31,54 PLAGUE 16:33:31.10 PRIDE 16:33:32.83

Message sent to child Message sent to child Parent disconnected .-.

1553 50 775 1549 47 773 1565 -1 -1

COVET 16:33:31.33 LUST 16:29:40.41 ANGER 16:33:29.22

Me age sent to child Connection rejected Message sent to child

1551 48 774 1 -1 -1 1539 49 768

AEGEAN 16:33:33.07 SLOTH 16:33:33,35 DESIRE 16:30:41.28

Parent disconnected Parent disconnected Path lost to child

1568 -1 -1 1571 -1 -1 309 -1 -1
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the left hand margin of Figure 1. We intend to De Finetti, B. (1937). Foresight: Its logical laws
perform a probabilistic analysis of the system its subjective sources. Ann. Inst. Henri Poincare, 7,
performance, beginning with the case of discrete- 1-68.
finite inference, but hopefully extending to other
types of problems as well. Eddy, W. and A. Jones (1985). Array processors:
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A BRIEF OVERVIEW OF COMPUTER ASSISTED MEDICAL DECISION MAKING

Richard H. Jones, University of Colorado P

ABSTRACT DDe DiDe DD DD,

Decision trees are one of the most commonly Prob w ., u
used tools in medical decision making. This talk
briefly explains the use of decision trees, how Ex: I% 85% 10% 4%
Bayesian statistical methods are used to convert
prior probabilities before a test into posterior
probabilities after a test, and how costs or Table 1: Subjective prior probabilities for the
utilities play an important role. As an example, two disease case. (The bar denotes absence of
a decision tree for a patient presenting with the disease.)
jaundice will be discussed. Three diagnostic
tests for two diseases are considered. In this example the physician feels 85 percent

certain that this particular patient has disease

1. Introduction 1 and not disease 2. The probabilities at the
first chance nodes depend on the prior probabili-

The purpose of this paper is to provide a ties and the sensitivities and specificities of
brief introduction to decision trees, as used in the test for each disease. This is shown schema- S
medical decision making, for statisticians and tically in Figure 2 for the case a single test
computer scientists from the point of view of a for a single disease. While this diagram and the
statistician. The author is not an expert in terms used are very common in the fields of epi-
medical decision making, but has been working demiology and medicine, some translation may be
with two surgeons at the University of Colorado, necessary for statisticians and computer scien-
Ben Eiseman, M.D. and Brad Borlase, M.D., and a tists who have not worked in these fields.
Biometrics graduate student, Maureen Haschke, to In epidemiology, the prior probability of a
develop small, clinically useful, decision trees disease is referred to as the prevalence of the
for use in surgical practice. Part of this disease in the population being considered. This
effort is being supported by Rose Medical Center, has the usual frequency interpretation of the
Denver. Much of the terminology used in medical proportion of people in the population with the
decision making is different from the usual sta- disease. In the example presented here, the
tistical terminology. A second purpose of this prior probabilities are the physician's subjective
paper is to explain the medical terminology in assessment of the chances that a certain patient
statistical terms, has the disease. In most medical decision trees,

Decision trees have been used for medical de- the prevalence or frequency interpretation of
cision making for a number of years. A standard prior probabilities are used. Defining a popula-
reference on the subject is Weinstein and Fine- tion as the people who come to a certain surgical
berg (1980). A recent book giving decision trees practice with jaundice, the prevalence of gall
for use in surgical practice is Norton and Eise- stones is the proportion of these people with gall
man (1986). The Society for Medical Decision stones. This prevalence is baseline information
Making is a very active society that holds an for the physician. After taking the patient's
annual meeting and publishes the journal Medical history and doing a physical examination, the phy-
Decision Making. sician has much more information about this pa-

tient. This information is much more subjective

2. An Example since there is no longer a population, but a uni-
que person.

Figure 1 shows an example of a decision tree The sensitivity of a test is the conditional
for use in diagnosing a patient who presents at probability that a person with the disease will
a surgical practice with jaundice. The two pos- test positive for the disease. The specificity of
sible diseases considered in this example are the test is the conditional probability that a
gall stones (GS) and pancreatic cancer (PC). Two person without the disease will test negative. A
initial tests are ultrasound (US) and CT scan good test will have both the sensitivity and spec-

(CT). A more invasive test, ERCP, can be used at ificity near 1 being both sensitive and specific
a later stage to confirm or rule out a diagnosis. for the disease.
Decision nodes are shown as filled in squares, The probabilities of the outcomes of a test are
chance nodes as open diamonds, and terminal nodes
as filled in rectangles followed by an expected P(T+) = P(D)P(T+1D)+P(D)P(T+1D)

cost. Probabilities are associated with chance P(T-) = P(D)P(T-ID)+P(D)P(T-ID),

nodes. - P() P( ) ( -)

After obtaining the patients history and doing P(D)Sp+P(D)(1-Se)

a physical examination, the physician enters sub- and these are assigned to a two outcome chance
jective probabilities (priors) for the various node. Se and Sp denote the sensitivity and spec-
possible outcomes. The table below shows an ex- ificity of the test. If the test is sensitive %b

ample for the two disease case. and specific for two different diseases, and the 0%
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Prevalence (Prior Probabilities) Referring to the two by two table in Figure 2,

predictive values are conditional probabilities
P(D)=w, P(D)=w. obtained by normalizing across rows while the

sensitivity and specificity are conditional pro-
Disease No Disease babilities by column. For one test and two dis-

eases, a similar four by four table can be con-
structed.

Test + True + False + If the tree is traversed forward, probabili-
(TP) (FP) ties can be assigned to all chance nodes by recur-

sive application of Bayes' Rule. Today's poster-
ior becomes tomorrow's prior.

Test - False - True - Costs are assigned to the terminal nodes which
(FN) (TN) include: 1) costs of tests, 2) costs of hospita-

lization, 3) cost of incorrect diagnosis. The
last is an expected cost since it involves the
probabilities of various outcomes.

Sensitivity = Prob(T+:D)=TP/(TP+FN) The tree is then folded back to obtain the ex-

pected cost at each node. At a decision node,
Specificity = Prob(T- :D)=TN/(TN+FP) the branch with the minimum expected cost is used.

= The decision tree in Figure 1 was developed
using the software package SMLTREE. It has been

Figure 2. Two by two table of test results and decided to program this type of tree in C. The
definitions of sensitivity and specificity. goal is to develop a number of relatively small

special purpose decision trees such as this for
use in clinical practice. The actual tree will

outcomes of the test for the two diseases are be in fromithe phyicin ie a re of

statistically independent, a typical probability be hidden from the physician's view. A series of

would be screens will display only the information rele-

- P(D1 D2 )Se 1 (-Se 2)+P(D 1 52 )SeSp2  
vant to the physician.

+ P(DID 2)(I-Sp 1 )(I-Se 2 )+P(D1D 2 )(l-SP 1 )SP2. REFERENCES

Assumptions of statistical independence are often Norton, L.W. & Eiseman, B. (1986) Surgical Deci-

questionable. It is more likely that results of sion Making, W.B. Saunders.

a single test for two different and unrelated Weinstein, M.C. & Fineberg, H.V. (1980) Clinical
diseases are statistically independent than that Decision Analysis, W.B. Saunders.
the results of two different tests for the same
disease are statistically independent. The re-
sults of two different tests can be influenced
by the stage of the disease. As the tree is tra-

versed, both forms of statistical independence DECISION MAKER, Borland International, Scotts
are assumed. The only way to avoid these assump- Valley, California (TURBO Pascal).
tions is to obtain joint sensitivity and specifi-
city data for multiple tests and multiple diseas- SMLTREE, Jim Hollenberg, Pratt Medical Group, New
es.EnanMeiaCetr

The next step is called probability revision England Medical Center.

by medical decision makers. This is the applica-
tion of Bayes' Rule to obtain posterior probabil-
ities after a test is carried out. The usual
medical or epidemiological terminology for post-
erior probabilities is predictive value of a test:

Positive Predictive Value a

Prob(DIT+)=w,TP/(wTP+w,FP) .I '

Negative Predictive Value

Prob(DI T-)=w.FN/(rFN+iTN)
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TEACHING MEDICAL DIAGNOSIS USING COMPUTER FEEDBACK OF DIAGNOSTIC WEIGHTING

Robert S. Wigton, Kashinath D. Patil, University of Nebraska College of Medicine,
Vince L. Hoellerich, Johns Hopkins University School of Medicine, Roy Poses, UMDNJ-
Rutgers, Marjeanne Collins, Randall D. Cebul, University of Pennsylvania School of
Medicine.

In learning medical diagnosis, previous cases to that recommended by
medical students learn typical presen- the model. Weights are expressed as
tations of diseases, but there is percentage of total weight.
little formal learning about what Both outcome feedback and feedback
weight should be given diagnostic of weighting can be turned on or off
information in making a diagnosis or in under program control from any of 15
distinguishing one disease from possible outcome measures. This allows
another. Furthermore, although they investigation of diagnostic and
may learn the outcome of a case stu- treatment decisions as well as indepen-
dents are rarely given feedback on how dent predictions of the likelihood of
well they have combined clinical various diseases given the same cases
information in making diagnostic or (differential diagnosis).
therapeutic judgements.

On the other hand, Hammond has shown Application to Medical Diagnosis
that learners who were given feedback We first applied the method to
on how they appeared to have weighted examining the apparent weighting of
information in making judgements clinical information by physicians in
learned much more effectively than diagnosing pulmonary embolus.(2) (We
those given only the correct outcome. refer to this as "apparent" weighting
(1) because it is not known whether a

To test whether this kind of linear regression model is at all
feedback would have its predicted similar to how people use information
effect on the learning of medical in making such judgements.) The
diagnosis, we developed a microcomputer initial studies showed that physicians
program to present simulated cases, used these clinical factors in highly
obtain students' judgements for each variable ways and showed great hetero-
case and then, after several cases, geneity in apparent weighting. The
display the student's apparent weight- average weights were also different
ing of information along with the from those derived from analysis of
correct weighting. Initial trials have actual cases.
indicated that his model is effective
in teaching diagnostic relationships. Diagnosing Urinary Tract Infection
In this paper, I will describe two The first application of the inter-
applications of this program to medical active features of the program tested
decision making. whether medical students would learn

the diagnosis of urinary tract infec-
Design of Microcomputer Program tion more effectively if given feedback

The microcomputer program operates of weighting.(3)
by presenting simulated clinical cases The reference model was derived from
and asking for a diagnostic or thera- analysis of records of P28 patients
peutic judgement from the physicians or suspected of urinary tract infection,
student in the form of an interval seen in the Emergency Department of the
scaled measure. After each case, the University of Nebraska Hospital. This
student is given outcome feedback in was later expanded to 750 patients. A
the form of a score or probability five item rule was derived initially
calculated from a linear model. These using discriminant analysis with the
models have either been derived urine culture results as the outcome
empirically from analysis of large variable. This rule predicted the
clinical populations or, where feas- correct outcome in 80% of patients in a
ible, from published rules which have subsequent validation set.(4)
been validated on other populations. The variables were defined for each

The cases are constructed by loading of three levels and the cases were
descriptions of various levels of displayed according to an underlying
severity of each of the variables and fractional factorial design with 18
using a fractional factorial design to iterations.(5)
determine the levels for each case. After viewing each case, the student

After each series of simulated estimated the likelihood the urine
cases, the relationship between the culture would be positive and whether
clinical variables and the judgements they would begin antibiotic therapy.
made is calculated using dummy variable After each case, they received outcome
regression analysis and this result is feedback in the form of the probability
presented to the student as a bar graph calculated from the rule derived from
comparing the apparent weighting on the the actual cases.
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After each set of 18 cases, the Outcome feedback was again given as
students were given a display of their calculated probability. After each 12
weighting compared with that of the cases, the weighting calculated from
model in the form of bar graphs. After the answers was compared with that
viewing the display and determining how suggested by the rule.
his apparent weighting differed from The study consisted of 12 cases with
the model, the student would proceed on no feedback as a baseline measure
to 18 new cases. Each student in this followed by a lecture explaining the
study completed 3 sets of 18 cases. rule and its rationale.

We compared learning for students At one, two, and six months later,
who received this feedback with those there were paired sessions of 12 cases
who did not. Second year students were each. Each of the three pairs of
allocated to two groups. A control sessions consisted of 12 cases with
group received only the calculated outcome feedback after each case
probability after each case and the followed by lens model feedback. This
experimental group received the graphic was followed by 12 more cases also with
display of weighting. feedback.

Both groups began the study with an As in the previous study, the
average correlation between their weights calculated from the judgements
probability estimates and those made by the physicians began to
calculated from the model of .55. The converge on the model weights as the
experimental group learned more rapidly study progressed. Correlation of the
through the three sets, achieving a physicians' predictions with the
correlation of .80, while the control likelihood calculated by the rule rose
showed some learning but achieved a rapidly at first then continued a slow
correlation of only .67 at the end. increase after two months. The mean
The improvement was accompanied in the probability estimates corrected
experimental group by convergence of rapidly. The decision rule had been
their average weighting on the weights corrected for the 5% prevalence of
used in the model. positive cultures in the student health

population and the mean for the
Diagnosing Streptococcal Pharyngitis simulated cases was 6.5%. At first,

In a second experiment, we looked at there was considerable overestimation
the effect of these types of feedback (24%) but the correct probability was
on the calibration of predictions as reached after the first month.
well as how well the model's weighting A measure of calibration is the
was learned. Poses and colleagues had regression of the estimated probability
studied how 11 student health physi- on the actual probability; with perfect
cians at the University of Pennsylvania calibration falling on a diagonal line
used clinical information in diagnosing with a slope of 1 and an intercept of
and treating streptococcal pharyn- 0. Thus, if calibration improves, the
gitis.(6) He found these experienced slope approaches 1 and the intercept 0.
physicians greatly overestimated the In the early cases of this study, the
probability of streptococcal pharyn- intercept began at 2.7 and progres-
gitis in their cases. The apparent sively declined to equal 1.05 at the
strategies of these physicians had been last session. Similarly, the slope
extensively studied. Logistic regres- began at .17 and was .98 at the last
sion was used to model the relationship session.
of clinical findings to the predicted Both the lecture and lens model
and actual culture outcome. We decided feedback produced changes in the
to ask these same physicians to test appropriate direction and the changes
the effect of computer feedback of persisted over 6 months. The program
weighting on their subsequent diag- produced a rapid change in the mean
nostic performance. probability estimates and calibration

A well validated decision rule for continued to improve. These changes
predicting streptococcal pharyngitis occurred in simulated cases, but recent
had been described by Centor (7) and studies of these physicians after this
was used as the model for the learning intervention indicate they became more
exercise. The rule gives equal weight accurate and better calibrated in their
to 4 items: fever, absence of cough, real life predictions.
tonsillar exudate and enlarged anterior Thus, although these initial
cervical lymph nodes. Three additional applications are quite limited in
variables, important to the physicians, scope, the feedback of diagnostic
were added but given no weight in the weighting using simulated cases appears
rule. very promising in improving physicians' f

Simulated cases were constructed diagnostic and therapeutic predictions.
from a fractional factorial design with
2 levels and 12 cases. Each case
represented each of the variables as
either present or absent.
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TOWARD A SCIENCE OF EXPERT SYSTEMS

Eric Ilorvitz, Stanford University

ABSTRACT

Over the last several years, teams working on expert behavior by describing phenomenology without resorting to
systems have been exploring formal approaches for belief fundamental axioms. They capture the behavior of systems,
revision and information acquisition. The formalization of often through the postulation of relations that may be
major components of expert systems operation is useful for inconsistent with one another or with other accepted
understanding and characterizing system behavior and for knowledge. As an example, before Newton constructed the
predicting changes with modification. Formalization also theory of universal gravitation and Kepler developed
facilitates the involvement of investigators in more well- equations describing the motion of objects orbiting in
developed disciplines such as statistics. While the use of gravitational fields, astronomers often depended on epicycle
formal methodologies for diagnostic problem solving is machines. These machines could approximately describe
attractive because of the generality, power, and axiomatic the movement of heavenly bodies, as viewed from the earth,
basis of inference, the methodologies have been criticized with a complex tangle of gears and chains. They did not
for making inferences that are difficult to understand and explain the movement of heavenly bodies with a consistent
explain. I shall focus on the problem of explaining formal theory of fundamental relationships.
reasoning methodologies. The PATHFINDER system for
pathology diagnosis is presented as an example of current 2.1 Descriptive Expert Systems Research
research on aspects of the use of formal methodologies in Much of expert systems research can be characterized as
expert systems. I will demonstrate that a formal system is either axiomatic or descriptive. The descriptive expert
amenable to controlled degradation to enhance its system approach centers on the design and empirical
explanation capability. evaluation of algorithms that mimic aspects of human

behavior. Descriptive expert systems research is not
1. INTRODUCTION hindered by the lack of a formal axiomatic basis; it is the

intent of the research to discover useful strategies for
It is fitting that there be a focus of discussion on expert representing and manipulating expert knowledge regardless

systems in a session on computers and medical decision- of the availability or acceptability of a set of self-
making. Original ground-breaking research on expert consistent desiderata. Investigators in the descriptive school
systems was the result of attempts to build systems to of research view exploration of the sufficiency of informal
reason about complex medical problems [4]. Expert models of human problem solving as a more direct
systems research developed within the field of artificial approach to difficult problems. That is, given poor
intelligence over a decade ago and is now an established understanding, many expert systems researchers attempt to
engineering sub-discipline of artificial intelligence. It is capture expertise through building and experimenting with
the intent of expert system research to develop descriptive models in the spirit of the epicycle machines of
methodologies for the representation and manipulation of long ago.
the knowledge of experts in a variety of disciplines. As an example of the descriptive approach to expert

Artificial intelligence research is still in its youth. As in system design, the Present Illness Program (PIP) [23],
other new disciplines in which unifying theories have not developed ten years ago at M.I.T., was an attempt to
been developed, much work has focused on non-axiomatic, simulate the cognition of a physician's reasoning about
descriptive models. In this paper. I would like to briefly patients presenting with edema (swelling). A central aspect *.

introduce the descriptive and formal approaches to research of the design of the system involved an analysis of the
in artificial intelligence in general. I will stress the behavior of the clinician. Final versions of PIP had
usefulness of reasoning methodologies that follow from a descriptive cognitive structures called the supervisory
set of well-characterized axioms. I will then introduce program, the short-term memory, and long-term memory
current problems with the use of formal systems. One were constructed.
frequent criticism of formal reasoning strategies is that they
are difficult to understand and explain. I will focus on the A large category of descriptive systems is based on the
problem of explanation in expert systems that use formal rule-based methodology [4]. The rule-based expert system
methods for reasoning tinder uncertainty. In this regard, I methodology is the result of attempts to adapt the use of an
will present research on the PATHFINDER expert system automated logical inference methodology, called production
for pathology diagnosis as an example of research on systems [32, 7], to capture aspects of human expertise.
aspects of the use of formal methodologies in expert Production systems are comprised of sets of logically a
systems. In answer to some complaints about the rigidity interacting inference rules Of the form IF E THEN H,
and unnatural nature of formal systems, I shall describe where H is a hypothesis and E is evidence having relevance

to the hypothesis. In practice, rules of logical inference arehow a form al system is am enable to controlled degradation us d i ut m t d d e u t o . o x m p e o us p n nso that it can perform more descriptively, used in automated deduction. For example. modus ponens"'"
and simple rules of unification can be applied to a set or
knowledge base of rules to do proofs that consist of the

2. AXIOMATIC AND DESCRIPTIVE APPROACHES forward or backward "chaining" of rules.

Science has been marked by an ongoing attempt to One of the most prolific early expert systems was
explain observed patterns and relationships with models that MYCIN [31], a rule-based expert system for the diagnosis
provide reasonabte explanations and predictability. Useful of bacterial infection. The MYCIN reasoning framework
theories tend to simplify phenomena through explaining remains one of the most popular expert system
complexity with a relatively small number of empirically or methodologies. MYCIN's knowledge is stored as rules that ,

intuitively justifiable properties or axioms, capture the relationships among relevant medical evidence
and hypotheses. For example, a rule in MYCIN might be:

Unfortunately, theories based on a set of justifiable "if an organism infecting a patient is gram-positive and
axioms often do not exist; when a theory is enumerated, it grows in clumps then add support to the hypothesis that the
is often not obviously optimal, unique, or desirable, organism is staphylococcus." It was recognized early on in
Throughout the history of science, when useful axiomatic the MYCIN research that straightforward application of the
theories have not been available, scientists have resorted to production rule methodology would be insufficient because
descriptive models. Such models summarize complex of the uncertainty in the relationships between evidence and
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hypotheses in medicine, manipulating knowledge. Whether an investigator initially
chooses to become involved with descriptive or formal

In order to accommodate these non-deterministic research, a fundamental goal should be the construction of a
relationships, MYCIN uses certainty factors [4]. To each formal science. A strong theoreical basis for components
rule, a certainty factor is attached which represents the of expert reasoning systems would be extremely useful.
change in belief about a hypothesis given sonic evidence. While there have already been strides in the application of
Certainty factors range between -1 and 1. Positive numbers formal theories to expert systems, greater understanding
correspond to an increase in belief in a hypothesis while could facilitate the design, control, and characterization of
negative quantities correspond to a decrease in belief. An expert systems.
ad hoc calculus for evidence combination was presented in
the original research [30]. The subscription to axiomatic bases for components of

expert reasoning can be useful in a number of ways. It can
2.2 The Axiomatic Approach assure a system engineer that the behavior of his system

wil! remain consistent with a set of desired properties.
In contrast to the descriptive approach, investigators Basing a system on a formal theory also ensure that the

pursuing the formal axiomatic approach are interested in system will be self-consistent. If an axiomatic theory is not
exploring the adequacy of systems that satisfy desired used in building an expert system, it can he quite difficult
properties. That is, the) design expert systems that are to maintain self-consistency. The presence of
necessarily consistent with desired properties. When such a inconsistencies in complex computer systems often leads to
set is deemed optimal for reasoning in the context of unpredictable behavior.
particular tasks it is termed a normative theory for
reasoning. Recent research on the ad hoc certainty factor model

Investigators interested in the formal approach attempt to used for combining evidence in the MYCIN system
introduced above has found the original model to be self-

design expert systems that behave consistently with
established theories for reasoning under uncertaint. In inconsistent [16, 18]. Recent work has focused on

exloin te utmaio o rasnig ndr ncrtI in) removing inconsistencies in the model [16]. 'he consi+.,tent
exploring the automation of reasoning under uncertainty. reformulation of certainty factors demonstrates that the
investigators have focused on the use of theories for the belief revision theory is a specialization of probability ii* ~~consistent revision of belief in the context of preious ta supin fcniinlidpnec r moe

belief and for controlling information acquisition. Examples that assumptions of conditional independencae shimposed

of axiomatic theories that have been used in expert systems by the methodology. For example. it can be shovn that

research for belief revision include probability [24], fuzzy evidence must be conditionally independent given H and its

logic [39]. Dempster-Shafer theory [28]. certainty factors negation [16]. The determination of inconsistency and the

[30], and multi-valued logics [13]. Theories used for detection of constraints were facilitated by the

controlling information acquisition include information formalization of MYCIN's reasoning strategies.

theory [29] and decision theory [25, 26]. Formal models caii also assist aii engineer greatly when a

Alternative formalisms are often based on clear sets of system is modified. A formal system allows for the crisp

properties. An expert system engineer can base an expert prediction of changes in system behaior in response to

system on a set of properties that is viewed to be a system modifications. It can be quite difficult to predict

particularly intuitive or desired. For example, a set of the impact of modifications oii systems for which no

simple properties about continuous measures of belief can underlying theoretical structure is available. Having the

be shown to necessitate the use of probability theory to ability to control the effect of system modifications is
manage the consistent assignment of belief [6, 36. 20]. extremely important for the maintenance of systems, for the ..m%
Agreement with the properties necessitates the use of generalization of specific successes, and for the incremental %

probability theory. A small set of intuitive properties also refinement of techniques. Incremental refinement can be ,

lies at the foundation of decision theory [37]. Of course, particularly significant in the continuing development of a

there are differences of opinion among the formalists about theoretical framework for automated reasoning. 16-.

the optimality or necessity of particular sets of axioms. Most relevant for this conference, formalization can also
For example, there has been ongoing debate in the artificial be crucial for expert systems research to benefit from the
intelligence community regarding the alternative participation of investigators in other highlN-developed
methodologies for the revision of belief [5, 20]. disciplines. Issues surrounding descriptive and axiomatic

To date, there have been several attempts to base expert expert systems research are of special relevance in this

reasoning systems on well-defined formalisms. Three regard. For example, expert systems research would benefit

examples are the Acute Renal Failure [15] system, the if it could attract statisticians to assist in solving difficult

MFDAS [1] system for emergency medicine, and the problems. Formal descriptions of systems and %

PATHFINI)FR [17] system for Iymphoma diagnosis. These methodologies are important as they proside coiceptual

systems were designed to be consistent with well-understood handles recessar. for communication wih researchers ii,

formalisms for reasoning. other fields.

Both the descriptive and axiomaic approaches have led to "iI
the construction of systeis that perform at levels rivaling 4. PROBI FMS WITH TIfF FORMA( APPROACH,
experts in a variety of domains. Gisen the cornplexii tyof
problems at hand and the youth of the field, both Tlhl i
approaches have been useful in exploring techniques for Fv, central issues that arise i discussins of the
autonated reasoning. axiomatic approach are problems regrchng the pragmaticsat tmaed reso ing I general there hs beeni a heahh.' fe gn eiga dc mp tto .;sv l i ex l t .
interplay between the the descriptive and the axiomatic o eiiineering and coiputatioi. as "ell as explatti
research: a dy.namic research milieu is created by the co- 4.1 Irajctabh t, of Fnlilneering r id Cornpltllat ion
existinig approaches. ',More so than for any other reason, reseair%hers iin

artificial intelligence ha\e looked heyond axiomatic-based
3. TlF E NIEFITS OF FOR MAl I/A I ION techiirques for conplex doin,niiis because of the

cotputational o\erhead of inference and the requirement
A \orthy fundamental goal of researth s-hould be the for large amonits of kno\ledge, Formal methodologies ai e

eventual developmnent of uiseful thcorte. As ill :in sclence, \ieved as has rig an Insatiable thlst for data and Lctuiter
the stud y of automated reasontng wi.ould belief!i greal processing [8r t4].

from attempts to construct theories for representing and
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4.2 Explanation models. First I will present an information-optimizing
reasoning strategy that makes inferences that are difficult to

Another significant problem cited with respect to formal explain. I will then describe how a less efficient but more
methodologies is that it is difficult to explain explainable strategy could be generated.
recommendations to users. The explanation of expert
systems has been identified as an sigiificant factor in the 6.1 The Complexity of Reasoning Under Lncrtaini.
acceptance of expert systems [35]. In fact, the transparency
of reasoning has been cited as a fundamental feature of We have proposed [19] that a central aspect of the

expert systems, distinguishing them from numerical difficulty that investigators have had in explaining expert

programs and other kinds of reasoning systems in artificial system recommendations is based on the intrinsic

intelligence [3]. The important role of reasoning complexity of formal reasoning under uncertainty. As

transparency in expert systems has made explanation an often noted, a fundamental difference between simple

artificial intelligence research focus. deduction and more general reasoning under uncertainty is
the inference complexity: within a deductive system, any

It has been said that formal methodologies like particular path to a conclusion is considered to be a
. "bability theory and decision analysis lead to unavoidable sufficient proof; in contrast, reasoning under uncertainty
losses in comprehensibility to expert system users [8, 34]. usually entails the consideration of all paths [5] Formal
T'. manipulation of the equations of conditional theories of belief revision and information acquisition
probability or decision trees may indeed be quite difficult generally involve the parallel consideration of a greater
to succinctly explain. Such difficulties have provoked some number of propositions than simple logical deduction
of the ongoing work on techniques for justifying the results problems. For example, probabilistic reasoning systems
of formal reasoning strategies [33, 27, 20]. We shall focus calculate the values of single conditional probabilities to
more closely on this problem below, summarize many steps of inference. This complex

summarization process, so central in probabilistic inference.
has been seen as a problem in expert system

5. GRACEFUL DEGRADATION OF PERFORMANCE understandability [8].

The concerns about problems with explanation, knowledge What is the fundamental basis for problems with
acquisition and computational tractability of systems based complexity? Cognitive psychology results can lend insight
on formalisms for reasoning under uncertainty are valid, to this question. Problems associated with the
Indeed the methodologies demand large amounts of data and comprehension of complex problems such as the operation
computation. Complaints about the opacity of explanations of complex reasoning strategies have been a longtime
of recommendations are also justified. research focus within cognitive psychology [2]. Classic

Formal methodologies for reasoning under uncertainty research in this field has demonstrated severe limitations in

have been put forth as general theories. They have not the ability of humans to consider more than a handful of

been designed for use in complex reasoning systems that concepts in the short term [21]. In fact, studies [38] have

might be dominated by limitations in computational and discovered that humans cannot retain and reason about
engineering resources. An interesting and potentially more than two concepts in an environment with
fruitful area for investigation is the development of distractions. Such results underscore the need for managing

strategies for modifying formal methodologies to perform the complexity of expert systems inference.

under specified constraints. The process of identifying For humans to successfully understand, plan, prove, and
pressing resource limitations followed by an attempt to design in environments that are informationally complex.
reformulate theories (deemed optimal in a world with they must devise schemes for decomposing large unwieldy
infinite resources) to perform in constrained environments problems into smaller, interrelated sub-problems. I will
could be more useful than the outright dismissal of the present our work on the enhancement of explanation
theories. Such techniques could allow and engineer to through the decomposition of complex formal reasoning.
gracefully degrade a systems performance to reflect Before presenting the work, I must first describe the
diminishing amounts of available engineering or hypothetico-deductive architecture of PATHFINDER.
computational resource.

Theories of belief revision and information acquisition 7. THE PATHFINDER PROJECT
have not traditionally been accompanied by tools that allow
a well-defined relaxation of restrictions or requirements. It PATHFINDER [17] is a hypothetico-deductive expert
would be productive to develop such methodologies to system for the diagnosis of lymph node pathology based
generate well-characterized trade-offs such as between the upon the appearance of microscopic features in lymph node
accuracy of a recommendation and computation time. tissue. Disease manifestations in lymph node pathology are
Useful approaches to graceful degradation of various aspects microscopic features. Features are each subdivided into a
of reasoning behavior would make the disagreement with mutually exclusive and exhaustive list of values. Features
properties of general parent theories clear. The are evaluated by the selection of a value that reflects the
development of strategies for the controlled degradation of status of the feature in the case being reviewed. We say
reasoning would allow artificial intelligence researchers to that the assignment of a value to a feature constitutes a
continue to build upon the theoretical achievements of piece of evidence. The PATHFINDER system reasons
more mature disciplines. about 80 diseases, considering over 500 pieces of evidence.

We will now turn to an example of the degradation of 7.1 The Hypothetico-Deductive Architecture
expert system performance to satisfy constraints on the
complexity of inference. As we shall see, degrading .i The PATHFINDER system is based on the hpothetico-

optimal reasoning methodology can serve to enhance the deductive architecture. The hypothetico-deductive method

explanation capability in an expert system. (also referred to as the method of sequential diagnosis
[14]) has been studied in several expert systems research

projects including the Acute Renal Failure [15] system, the
6. EXPLAINING COMPLEX REASONING INTERNIST-] [22] system for diagnosis within the field

of internal medicine, and the MEDAS [1] system for
I would like to demonstrate an example (.1 the emergency medicine.

decomposition of a complex reasoning methodology. I hope
that it may serve as an example of a category of ,ti.iegies Hypothetico-deductive systems are presented with an
that can help investigators successfully apply axiomatic initial set of evidence. The initial exidence is used to
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assign a probabilistic or quasi-probabilistic score to each As each feature consists of a set of mutually exclusive
hypothesis and a list of plausible hypotheses is formulated and exhaustive values, we can denote the possible evidence
from the scores. Then, questions are selected which can associated with a particular feature. F, as El..En , where n is
help decrease the number of hypotheses under consideration, the number of mutually exclusive values associated with the
After a user replies to requests for new information, a new feature. Entropy-discriminate selects features which give
set of hypotheses is formulated and the entire process is the highest expected relative entropy
repeated until a single diagnosis is reached.

The question selection strategies are termed hypothesis- <H(DDFn)> = L'1 p(E,) H(DD.Ei),

directed in that reasoning strategies operate on the current where the quantity is summed over feature values EI..E n,
list of hypotheses under consideration to generate
recommendations for additional evidence gathering, and p(E,) is calculated using the expansion rule
Investigators in the INTERNIST-I and PATHFINDER
research groups have explored the usefulness of tailoring p(E 1 ) = 1"j P(Eilj) p(Dj)
different reasoning strategies to the current list of diseases
under consideration or differential diagnosis. For example, In an information-theoretic sense, the questions selected
the strategy selected to narrow the differential diagnosis by the entropy-discriminate strategy are optimal assuming
may depend upon the number of diseases on the that the goal of the pathologist is to reduce uncertainty in
differential, the probability distribution over the the differential as much as possible.
differential, or both. 7.3 Problems With the Optimal Strategy

The advice generated by hypothesis-directed strategies is Soon after the implenentation of entropy-discriminate
often difficult to explain because of the complexity of their mode, we discovered that several expert pathologists,
operation. This is especially true if recommendations are including the expert that provided the P.ystem's knowledge,
the result of inferences based on a large hypothesis list. often found that selected questions were difficult to
Hypothesis-directed strategies may consider the relevance of understand when the differential contained more than
hundreds of hypotheses in a single inference step. approximately ten diseases. The entropy-discriminate

The scoring scheme employed by PATHFINDER is based strategy of selecting questions that best discriminate among
upon the theory of subjective probability [9]. The all diseases on a differential diagnosis often seemed to be
subjective probabilities of experts are used to infer the too complex for experts. This is not surprising in light of
probability that each disease is responsible for the evidence the limitations of human short term memory discussed
that has been entered into the system. Depending on the above.
number and the distribution of probabilities among diseases We also had problems explaining the recommendations of
on the differential diagnosis, PATHFINDER chooses one of entropy-discriminate whenever there were more than two
several alternative diagnostic strategies for selecting diseases on the differential. Attempts were made to provide
questions. As in other hypothesis-directed systems, it is the textual and graphical explanations for the powerful
goal of the question selection strategies to suggest the strategy's recommendations. One such graphical explanation
optimal test to be evaluated next in an effort to reduce the justified questions b, listing, for each disease, the feature
uncertainty in the differential diagnosis. value that would most favor the disease. Physicians found

Several PATHFINDER strategies discriminate among such complex summarizations to be difficult to understand.
large numbers of diseases and features in the generation of 7.4 The Graceful Decomposition of Diagnostic Problem
advice. I shall not describe all of the hypothesis-directed Solving
reasoning strategies used by PATHFINDER. Rather, we
will look at issues surrounding the explanation of a The observed problems with the entropy-discriminate
particular PATHFINDER hypothesis-directed reasoning strategy stimulated our interest in strategies for simplifying
strategy termed entropy-discriminate and its descendant, and explaining hypothesis-directed reasoning. We
group-discriminate, discovered that pathologists often manage the comptexity of

7.2 A Strategy to Minimize Uncertainty the diagnostic problem-solving task by reasoning about a
very small number of disease categories or groups at any

The PATHFINDER entropy-discriminate reasoning one time. Questions that discriminate among natural groups
strategy was originally used to refine differential diagnosis tend to be proposed.
disease lists ranging in size from two to eighty diseases. The Specifically, the chief expert pathologist on the
strategy makes recommendations about information PATHFINDER team often imposes a simple two-group
acquisition by searching for tests that maximize a measure discrimination structure on the problem-solving task. As
of information contained in the differential diagnosis, opposed to a strategy of discriminating among all the
Similar information-maximizing strategies have been diseases on the differential, the pathologist's discrimination
examined in the MEDAS and Acute Renal Failure systems. task at any point in reasoning about a case is constrained to

Entropy-discriminate makes use of a measure of only two groups of diseases. As categories of diseases are
information known as relative-entropy. In this context, ruled out, the particular pairs of groups considered become
relative entropy is a measure of the additional information increasingly specific. For example, if there are benign and
provided by a piece of evidence E about a differential malignant diseases on a differential diagnosis, the pathology

expert often deems most appropriate those questions that
diagnosis DD. Formally, best discriminate between the benign and malignant groups

rather than questions that might best discriminate among all
H(D. E,) of the diseases. If all benign diseases have been ruled out,

= ' p(DjlEi) log[p(Dj)/p(DjIE 1 )]. leaving only primary malignancies and metastatic diseases
on the differential diagnosis, the pathologist will attempt to

where p(DJ) is the probability that disease D is present discriminate between the primary malignancy and the
before evidence E, is known, the prior probability of the metastatic categories.

disease, and p(D1E1) is the prohahilit) that disease DJ is We found that the expert's diagnostic strategy can be

present after evidence F, is known, the posterior probability described by the traversal of a hierarchy of disease
of the disease. For a justification of relative entropy as a categories. The problem-solving hierarchy (see Fig. I) is a
measure of information gain, see [29]. binary tree of disease groups. The hierarchy can he used to
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group the differential diagnosis at various levels of Therefore, a relative entropy of the grouped differential can
refinement, be defined. In particular,

It is interesting to note that several previous studies of HG(DD.Et) =
medical reasoning have identified similar problem-solving p* i 1og[p(GjIEi)/p(Gj)].
hierarchies (10, 11, 12] for managing the complexity of a
wide-variety of reasoning tasks. This quantity represents the additional information

The discovery of this expert reasoning strategy in lymph contained in Ei about the grouped differential diagnosis.
node pathology suggested the development of a new Group-discriminate selects those features which give the
question-selection strategy that could discriminate among highest expected relative entropy.
binary groups of diseases instead of individual diseases. It
was hoped that design and application of such a strategy Notice that the group-discriminate strategy ignores
would make explanation clear, as the user would only have information concerning the probabilities of diseases within
to consider the relevance of a recommendation to two each group. Only the probabilities that the true diagnosis
groups. lies within a group is considered in the calculations.

Our attempt to naturally constrain the discriminatory
focus of the entropy-discriminate strategy led to a new 8. DISCUSSION
reasoning strategy we named group-discriminate. The We integrated the group-discriminate strategy into the
group-discriminate strategy selects questions based on their PATHFINDER system so that it continues to refine
ability to discriminate between the most specific pair of differential diagnosis lists until all diseases remaining on
disease categories that account for all diseases on the the differential diagnosis are in a category at one of the
differential. leaves of the binary problem-solving tree. At this point,

For a given differential diagnosis, group-discriminate other hypothesis-directed strategies are applied to continue
identifies the most specific grouping possible and then pursuing a diagnosis. As the group-discriminate reasoning
selects questions that best discriminate among groups of strategy has a simpler discriminatory focus and more closely
diseases. More formally, suppose the differential is split follows the decision making protocol of the expert lymph

node pathologist than entropy-discriminate, it is quite easy
to explain.

Instead of having to present complex summaries
explaining how each piece of evidence might impact on
belief in the presence of a number of diseases, an
explanation of questions generated by group-discriminate
must simply demonstrate how possible responses affect the
two groups under consideration.

The PATHFINDER system justifies the usefulness of

questions selected by group-discriminate with a graphical
display. Fig. 2 presents a small portion of a PATHFINDER

WIWAI consultation. At the top of the figure is the differential
diagnosis, grouped into benign and malignant categories (at
the current level of refinement). Below, several lymph node
features recommended by group-discriminate are listed.
The group-discriminate strategy has determined that these
features can best discriminate between the benign and
malignant diseases. In this case, the user requested
explanation for the follicles density recommendation.

The positions of a set of asterisks in the justification
graph at the bottom of the figure are used to indicate the

Figure I: Heuristic problem-solving hierarchy degree to which each group of diseases is favored by each
possible feature value. Specifically, the position of an

into two groups, G3  and G?, of n, and n2 diseases asterisk is a function of the likelihood ratio
respectively: p(EilGi)/p(EilG 2). In the example, the values separated

and far apart strongly support diseases on the differential
G,= {D1. 0121 ... 01 .n} diagnosis that are in the benign group, while the values

back-to-back and closely packed strongly support the
G2= { 0 .1.. - 2 .) malignant disease hypotheses.

As we assume that only one lymph node disease is present A user can easily ascertain how a question discriminates
in PATHFINDER, we can consider the diseases to be among two groups of diseases; evidence is either supportive
mutuall) exclusive events. We are interested in the for one group or the other. Even in an environment filled
probability that the true diagnosis will be in each group. To with distractions, the behavior of the strategy is adequately
calculate this probability we add the probabilities of all the explained by such simple graphs.
diseases within each group. That is, the probability that a Unfortunately, the more explainable group reasoning
group contains the true diagnosis is strategy has some disadvantages. A predictable problem

with the use of group-discriminate is that the differential
p(GI) = :! p(Dj.k). J i 1, 2. diagnosis refinement process does not always proceed as

WeI) the probability of the final quickly as it does with the application of the optimalWe can also calculate p(Gi, entropy-discriminate. That is, group-discriminate is not as
diagnosis being contained in a group, considering a new efficient as the more powerful entropy-discriminate; on
piece of evidence F,. This is average, a larger number of evidence-gathering requests will

be made by group-discriminate to achieve a similarly
p(GI F ") 'b P(D lIF). j = I or 2. refined differential diagnosis. This must be the case as
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I believe that continuing research on the pragmatics of
applying formal models in the face of severe limitations in

> ask data and computation, as well in the abilities of system
users will be beneficial. The development and refinement

Discriminating: of methodologies for the controlled degradation of

Malignant reasoning will allow artificial intelligence researchers to
build upon the elegant achievements of other disciplines.
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Computer Applications of Bayesian Statistics in Medicine

Holly Jimison, Stanford University

ABSTRACT 1

The Bayesian statistical methodology is an appropriate for many medical domains where
especially important technique for computer- the relationships between variables are weak
assisted medical decision making because and noisy, and when a priori information has
there is often a shortage of data directly more influence. However, causal knowledge is
related to a given clinical decision or not explicity captured in strictly Bayesian
classification problem. Also, many clinical systems, so that there is no natural mechanism
relationships are noisy and weakly correlated, for providing a causal explanation of the
Under these conditions a priori information has resulting classification. Some Bayesian
significant influence on the ultimate systems that incorporate a form of explanation
classification rule. Bayesian statistics are described later.
incorporates a priori knowledge and Another characteristic of the medical domain
conveniently handles variations in costs of is that there is almost always a shortage of
misclassifications with a loss function. This statistical data relevant to the patient at hand.
paper shows how Bayesian analysis is A small data set also makes the a priori
appropriate for medical decision making, information more influencial in the classification
reviews problems seen with such systems, and rule. Again, situations like this favor a model
provides suggestions and examples of how that explicitly incorporates a priori information.
some systems have addressed these problems. A further feature of a Bayesian approach to

classification and decision making is that
VALUE OF A BAYESIAN APPROACH variations in costs of misclassifications are

Medicine is a very difficult domain for easily incorporated into the decision rule, as

decision making, and an especially challenging shown below. In medical applications it is
area in which to try and automate this process. often not appropriate to assume equal costs of
Medical decisions are characterized as being misclassifications, as many other approaches
important, in that the utilities of the possible do. Quite often in medicine false negatives
outcomes can be dramatically different. Also, are more serious than false positives. Trade-
the decisions typically need to be make fairly offs between the two types of errors depend
quickly, but with incomplete and noisy data. A upon the specific application.
priori information becomes an important part of
a model in such a situation, and Bayesian
analysis provides for explicit representation of CONCERNS WITH A BAYESIAN APPROACH
both a priori information and utilities. As one
considers problems from areas on the Although Bayesian approaches to medical
continuum going from physics and engineering decision making have certainly been popular

to biology, physiology, and clinical medicine, for many applications, there are caveats that

the appropriate models for systems in these need to be addressed when designing such a
areas become less deterministic and more ill system. What follows is a description of the

structured. For most clinical situations, there major concerns with Bayesian systems as well

are an intractable number of confounding as recommendations on how to rectify the

factors that may affect a particular variable of problems.
interest, in ways that are highly situation- 1. Assumptions Required
dependent. This leads to weak models with

weak correlations. Accurate clinical models The use of Bayes rule in its complete form

often need to make use of associational for the assignment of probabilities to a field of

relationships more than causal or mechanistic many diseases requires an immense amount of

relationships. This shift parallels the clinical data. The following formula shows that prior

reasoning used by physicians as they gain and conditional probabilities on combinations of

clinical experience. Medical students naturally features and diseases are necessary in order
have a tendency to rely on "textbook" to determine posterior probabilities for each

knowledge, which is mainly causal and disease. .,

mechanistic. As clinical experience is gained,
more use is made of associational knowledge, .,,16

and much of the reasoning for diagnosis and p(D)PF ) =
treatment seems to be pattern-matching.
However, causal knowledge is still relied on 2P(Dj)P(F IDj)
for explanation and for reasoning about new In this formula Di represents a particular
situations. A statistical model is very
appropriate for the pattern-matching reasoning. disease and F represents a particular feature
A Bayesian statistical model is especially vector.
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The following assumptions are usually made, say which diseases and disease combinations
not for theoretical reasons, but for simplicity, were actually present. A simple threshold on
ease of calculation, and due to lack of data. probability might be used, or one might choose
a. Conditional independence of features given a more complicated strategy like the

partitioning algorithm used in the INTERNIST
disease: Classification features are almost system from the University of Pittsburg.
always assumed to be independent of one
another. This greatly simplifies the calculation
of the posterior probabilities and significantly
reduces the amount of data collection c. Diseases are collectively exhaustive: This
necessary for such a system. If the individual assumption simply means that the model
features are conditionally independent of one covers the universe of possible events. All
another, one need only have data for each possible diseases should be represented, as

feature value given a disease instead of data well as the event "no disease at all." Of

on each combination of feature values. This course, this is not feasible in a practical

provides an exponential reduction of the system. What is usually done is to work

amount of data required. For a small feature within the context of a smaller domain,

vector F={fl,f 2,f3 } the formula now becomes covering the diseases or events of interest,
and leaving a final class of "other" for any
remaining diseases or events. The set then

P(D,)P(f11 1 )P(f,1D,)P(f31D) becomes collectively exhaustive.
p (o tl1 fl-f2-r3 =. -.-----------------............

'P(j)P(r'2I.)P(r)I-)P(f310J)

Probably the most common criticism of 2. Subjective vs Objective Probabilities

Bayesian algorithms in medicine is that the Naturally, objective probabilities, frequency
features used are not conditionally data derived from observations, should be
independent, even though the assumption is incorporated into a Bayesian system if
made. Actually, good system design involves sufficient relevant data are available. There
careful feature selection. The choice of are many reasons why sufficient relevant
features and their program-specific definitions objective data may not be available, and
can be optimized using an information metric, subjective probabilities must be obtained from
such as directed divergence. Indepence can experts. Firstly, data on humans is usually
also be tested for by observing the correlation very expensive and difficult to obtain. There
between features. For features that are may be quality data on rats or mice, but
correlated, the system developer has the subjective probabilities would be required to
option of creating a new single feature that is modify it for inference about humans. Even a
an index based on some weighting of the study providing good data on humans is not
correlated features. Thus, there are ways of likely to perfectly match a given patient in
dealing with the problem of assuming question. A clinician will want to subjectively
conditional independence, and it is also modify probabilities to account for patient-
important to note that other algorithm models, specific factors. More generally, causal
such as rule-based systems, often require knowledge about disease processes needs to
conditional independence, even though the be encoded subjectively if its effect has not

- assumption is not made explicitly, been accounted for in observed data from a
study. Another situation where subjective

b. Diseases are mutually exclusive: Although evaluation of probabilities for a Bayesian
it's possible to consider all possible system is necessary comes when one tries to
combinations of diseases as separate diseases incorporate data' from different studies. The
in order to hold to the same Bayesian structure results may conflict, definitions or study
and yet handle combinations of diseases, this designs may be different, the population
approach requires a significant amount of data sampled may be quite different, etc. The
that is usually not available. Unless diseases synthesis of these results is necessarily quite
are correlated or have a high prior probability, subjective, or at least heuristic. There have
there is not much of a chance of obtaining been Bayesian systems of both types that
sufficient data on combinations of di;eases. have provided expert level performance. For
This in itself suggests a solution to the example, de Dombal's system for acute
problem of combinations of diseases. That is, abdominal pain used observed frequencies
if the combination is prevelant enough for there from a teaching data set for its system's
to be data available, then perhaps it should be probabilities (the performance degraded when
considered as a separate entity to be experts' subjective probabilities were used),
diagnosed. Otherwise, the diseases could be and Gorry's system for management of acute
assumed to be independent of one another and renal failure achieved expert performance using
a meta-diagnostic strategy could be used to subjective probabilities from experts.
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Often clinicians find it easier to provide used to pick out a subset of the beats that are
quality information when asked to estimate especially likely to be normal. These are used
prior odds and likelihood ratios. This is to update P(Flnormal). It is important for this
appropriate for the odds form of Bayes rule. application that the learning continues, since
P(DIF) P(D) P(F ID) the waveform shapes of the beats can change

---= - -------- -with patient movement. They chose to keep

P(notDIF) P(notD) P(FInotD) the conditional probabilities for the abnormal
beats at their default values because there are
many types of possible abnormal beats. Also,
since cost of misdiagnosis and prior probability

3. Learning of Priors and Conditionals for each class is inversely related and difficult
A priori probabilities and conditional to assess, that portion of the decision rule was

probabilities obtained for use in Bayesian also left static at values that optimized
systems must be verified and possibly performance. This system has been shown to 6%

modified for application in different patient be very successful at smoothly and quickly
populations (new locations, new clinics, etc.). adapting to changes in the shape of normal
Also, the probabilities may change in time with beats. The overall point on automating the
changes in lifestyles, environmental factors, learning of probabilities for Bayesian systems
treatments, and general disease characteristics, is that one should think of using independent
Ideally, a system would be able to learn and classification algorithms that are optimized for
update these probabilities on its own. One updating.
fairly common mistake, that needs to be
avoided, is using the system's own 4. Explanation
classification or diagnosis on each event as Perhaps the most important feature of a
data for calculating new probabilities. This medical decision aid is its ability to provide
type of learning is decision-directed learning, quality explanation of the inference and
and the problem with this is that mistakes reasoning used in coming to a decision or
propagate mistakes. In fact, it is possible to diagnosis. This is a major focus of expert
equilibrate with inaccurate probabilities that systems research, but not a comfortable
produce poor performance. One solution is to concept for designers of statistical tools. For
have the classifications checked by a human, complicated medical decisions, physicians are
trying to avoid the bias of knowing the not generally content to be shown a list of
machine's classification ahead of time. Another regression weights as justification for some
solution that provides an automatic update of sort of action on their part. Even proven good
the probabilities, is to have a totally performance does not always inspire
independent classification algorithm just used confidence, since each new case is seen as
for updating purposes. At first glance this having some unique factors. Physicians are
seems like at least double the effort in most comfortable with explanations that
designing a system, but often there are tests simulate their own reasoning strategies. A
(or features) that are very sensitive but not couple of researchers have addressed this
specific. These would not be that useful for problem, and have provided explanation
classifying each event, but very useful for capabilities with their Bayesian systems. In the N
updating the conditional probabilities. In other gastroenterology decision-support system of
words, P(FIDi) does not have to updated every Spiegelhalter and Knill-Jones there is a display

time Di is diagnosed. The feature, or set of that provides a complete summarization of the
decision rule in an easily understandable

features, that were very specific but not format. Evidence for a disease is listed on
sensitive could be used to pick out cases that one side and evidence against the disease is
were especially likely to be Di and update listed on the other. Each feature has an
P(FID) only on those cases. Forbes et. al. at accompanying log-likelihood ratio that serves
Hewlett-Packard Laboratories did just that in a as its score If the score is positive, then the -.,,
Bayesian computer algorithm to classify feature and score go under "evidence for" the -
ambulatory electrocardiogram waveforms as disease. Otherwise, it is evidence against the
being normal or abnormal. For this application, disease. Since the log of the likelihood ratios
each heart beat has to be classified in real are shown, the scores add, and it is easy to
time. They use features of the waveform, see the relative importance of each finding.
such as polarity, amplitude, width, phase, etc., The a priori probability of disease is also
to classify each beat. The program is shown in log form and is added in to obtain a
initialized with conditional probabilities based final score. This is converted into the
on physiological principles and general resulting probability of disease. "Evidence for"
observations, but since the system allows for and "evidence against" is a natural
arbitrary lead placement, the shape of the representation of information for physicians.
normals must be learned very quickly. An The scoring may appear ad hoc to the casual
independent algorithm comparing relative user of the system, but to those that
widths and time intervals between beats is understand Bayesian analysis, a complete
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representation of the reasoning is presented in REFERENCES
a useful way. Sometimes system users may
be put off by the amount of detail provided by Atkinson, P., Training for Certainty, Soc. Sci.
such a scoring scheme and may prefer to have Med., Vol.19, No. 9, pp. 949-956, 1984.
it represented graphically in a histogram. Clancey, W.J., Shortliffe, E.H., Readings in

Reggia and Perricone came up with another Medical Artificial Intelligence: The First
form of explanation for their Bayesian system Decade. Menlo Park, CA: Addison-Wesley.
to classify strokes. After acquiring values for Forbes, A.D., et. al., A Dual Channel Bayesian
the features probabilities for the various types Algorithm for Ambulatory Electrocardiogram
of strokes are shown. The user has the option Analysis, Proceedings of Computers in
to justify any of them. Justification includes an Cardiology, 1986.
optional explanation of Bayes formula, and a Pople, H.: The formation of composite
list of the features, their values, and their hypotheses in diagnostic problem-solving: An
scores. Also provided is a list of features with exercise in synthetic reasoning. In
unknown values that might alter the results if Proceedings of the Fifth International Joint
their values were known. Conference on Artificial Intelligence, pp.

In general, it seems possible to provide a 1030-1037. Pittsburgh, PA: Carnegie-Mellon
good explanation and useful summarization of University, Department of Computer Science.
the analysis in a Bayesian system. However, 1977.
the explanations are by necessity associational, Reggia, J.A., Perricone, B.T., Answer
and we need to keep in mind that humans Justification in Medical Decision Support
usually reason causally for explanation, trying Systems Based on Bayesian Classification,
to find a mechanism or process that explains Comput. Biol. Med., Vol. 15, No. 4, pp.
the observations. 161-167, 1985.

SUMMARY Reiss, Eric: In Quest of Certainty. Am J of
Med; 1984; 77:969-971.

The advantage of using a Bayesian approach Spiegelhalter, D.J., Knil-Jones, R.P.:

to medical decision making is that a priori Statistical and Knowledge-based Approaches

information and costs of misdiagnoses can be to Clinical Decision-support Systems, With an

represented explicitly and easily. The Application in Gastroenterology. J R Statist

concerns usually posed regarding Bayesian A 18 147:35-77. J.

systems do not seem insurmountable. Three Soc A; 1984; 147:35-77.

assumptions are usually made for practical
reasons: conditional independence of features,
mutual exclusivity of diseases, and the
assumption that the set of diseases are
collectively exhaustive. It was shown that with
careful design, the problems with these
assumptions could be avoided. It was also
shown that subjective probabilities could be
used in a Bayesian system giving expert level
performance. Finally, automated learning of
probabilities and explanation features are new
areas for Bayesian systems, and the systems
reviewed suggest mechanisms for significantly
improving the performance and acceptability of '%
Bayesian systems for medical applications.
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MACSPIN: GRAPHICAL DATA ANALYSIS

Andrew W. Donoho, University of Texas, Austin
David L. Donoho, University of California, Berkeley

Miriam Gasko, University of Chicago, G.B.S.

Over the last decade, computer graphics researchers capability for augmenting the display w.In text ;rturmation
have developed systems for the dynamic display of data. allows one to identify datapoints (e.g. outliers) and correlate
These interesting and stimulating displays showed the qualitative information with the pattcrns yau observe in the
potential usefulness of interactive graphics in the analysis of display.
multivariate data. Videotapes of such displays showed MacSpin offers easy modes for inputting data and for
instantaneous graphical responses to researchers' queries, porting data from other programs and mainframes. It also has
However, these systems - like PRIM-9 (SLAC) and PRIM-H useful documentation capabilities, that allow one to produce
(Harvard) and the Orion (Stanford) -- were one-of-a-kind hard copy of screen views, or to insert such images into other
installations accessible to only a very few people. Because of computer documents.
their expense, there was not much prospect of widespread use And all these operations can be carried out by MacSpin
of such systems; as long as their primary purpose was seen as with the user simply pointing and clicking with the mouse.
the probing of theoretical horizons and the production of Here we illustrate the main features of the program by telling
videotapes to take to conferences, such important issues as the story of its application to two datasets.
ease-of-use and capability for working with real data on an The Cars Story
everyday basis could be ignored. The first dataset we consider consists of all the cars

A useful graphics system must have the following road-tested by Consumer Reports magazine between 1971 and
properties: first, it has to offer a graphical "toolbox" adequate 1983. The data will help us see how the auto industry changed
for interactive exploratory data analysis. Second, its user over the last decade or so. The names of the 418 Cars are listed
interface has to be simple to operate, simple enough not to in the events window on the MacSpin display (lower right):
distract the user from his main task, analyzing the data at the portion we see includes the Plymouth Barracuda and
hand. Last, but not least, it must have input facilities that Plymouth Fury I1, cars from the early 1970's. The variables
accomodate the researcher's existing files and output facilities window (partially obscured by the events window) shows the
that help him document his findings. We describe a dynamic variables we have measured for each car; things involving
graphics system, MacSpin, which meets these requirements performance (Gallons per Mile, Seconds to reach 60 MPH from
and runs on an inexpensive desktop computer - the Macintosh. a full stop), size (horsepower, weight, ...), and miscellaneous

MacSpin has advanced graphics capabilities. It goes (model year, continent of origin).
beyond two-dimensional x-y plots, and lets you view and X-Y Plots. The view in the plot window shows all the
interact with data in 3 dimensions - and more. You can view cars (American, European, and Japanese) in an x-y plot, with
x-y-z plots, rotating them in real time to get a true x=Gal/Mi (i.e. fuel usage per mile) versus y=slowness (Sees.

three-dimensional perception of the structure of your data. By 0-60). The points represent individual cars. By moving the
means of animation, you can make movies Of your data showing cursor to a point and clicking, we can find out its identity. The .u d

how the three-dimensional cloud varies as a function of a point at the upper left (slow but economical) is a VW pickup;
fourth variable. MacSpin is a useful tool for identifying trends, the point in the lower right (fast gas-guzzler) is a Plymouth
patterns, clusters and outliers in high-dimensional data. The Barracuda. By holding down the control and option keys as we

* File Edit Display Variables Subsets Euents Markers
10 Cars Variables

X Gal/Mi
Y: Acc/0-60 Cyl Subsets

Cu/In a Cylinders
0 Hpwr 6 Cylinders _

Z Wt/Lbs 4 Cylinders
Y Acc/-60 apanese

Year European I
-,* *Origin American J

X Gal/ni uvents
ford torino

I ford galaxle 500
chevrolet Impala

datsun 2-zx : plymouth fury iII
pontiac catalina

amc ambassador dpi 6.Plymouth cuda 340 dodge challenger se

,plymouth 'cuda 340
chevrolet monte carlo:,

Figure 1: Gasoline consumption and acceleration time for 418 0
cars reviewed by Consumer Reports between 1973 and
1981.
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identify, the full data record pops up. This shows us that the Ak"/O-65 4 Cyl
fast, efficient car in the lower left is a 1981 Datsun 280 ZX.

datsun 280-zH 1. I
Gal/Mi 0.03058104 .6 Cy
cyl 6
Cu/In 168 Cy
Hpwr 132 -
Wt/Lbs 2910 J
Figure 2: Information pop-up for the Datsun 280zx.

X-Y-Z Plots. The x-y plot shows the general trend of the
auto industry - what combinations of speed and economy are Figure 4: Highlighting subsets of 4, 6, and 8 cylinder cars.
available. By rotating the plot, we can get an extra dimension
into the display. We point at a rotation icon on the far right,
and hold down the mouse button. The 2-d plot becomes a
rotating 3-d plot, the previously hidden z-variable coming Animation permits us to study the effect of a fourthinto play. When we do this for the Cars data, and bring variable on a display. Suppose we are interested in how the

z=weight into the display, we see a cloud of points rotating American auto industry has changed over time. We can
smoothly in space. The cloud is shaped like a sausage and highlight the American cars, and then select Focus from the
shows the combinations of economy, speed, and weight being events menu. MacSpin now temporarily excludes imported cars
built during the 1971-1983 period. As we rotate this, we notice from the display. We then drag the Year variable to the
a few interesting things. First, one point turns out to be an scroll bar in the lower left. This will let us scroll through theoutlier. We stop the rotation and identify it; it is an data model-year by model-year. We begin at 1971. The cars
Iouteratio.a W este truoio and itik it slit ian made then are concentrated in the lower left of the display:
In~ternational Harvester truck. Somehow a truck has slipped in fasthaygs-uzigcmAwecrlsotlyfwrd
to a database on Cars! When we scroll to the truck's name in , heavy, gas-guzzling cars. As we scroll smoothly forward,
the events window, we see that Consumer Reports road-tested we see that the data drift systematically towards the upper
a few other trucks, too. By pointing at their names on the list, left - toward slower, lighter, more economical machines.
we can highlight them in the plot window. They are also
outliers. By choosing "Exclude" from the events window, we Acc/0-60 1983

can (temporarily) remove them from the display. The rotation
N has helped us identify and remove outliers.

ie Edit Oisplay Uariables Subsets Markers

cars Focus on Selection J= (;si
Include Selection Subsets

Y: HccIO-6O II d
Hide Euents Window ylinders

Z 'Vt/Lbs JapaneseY Acc/0-6 European

Year Ameri can

lain

IN 1200d Z: Wt/Lbs peugeot 504
H: Gal/Mi e saab 99e

Figure 5: Animation showing changes in the performance
amc remlin of American cars over time: the years 1971, 1978, and 1983 are

shown. "p

Transformations. The researcher can also transform
_ _ _ _ __ existing variables to create new ones. Features like this make

MacSpin useful not just for displaying data but also for
Figure 3: Highlighting and excluding trucks from the display. manipulating it to get the right display. We just saw that cars

became more economical over the period 1973-1981. Did they
Highlighting Subsets. Further rotation shows that the just become lighter and smaller, or was there an actual increase

data consist of three clusters. Seeking for an explanation, we in mechanical efficiency? Dividing Gal/Mi by Weight gives us
bring the Subsets window to the front. This shows some subsets a standardized measure of fuel efficiency in which the effects
of the data predefined (by us) as being interesting to look at. of weight are taken out. Looking at plots with this new
By pointing at the name of any subset, we can highlight its variable would give us insight into whether American cars got
members on the display. When we do this, we see that the 3 more efficient or whether they just got smaller over this
clusters consist of 8, 6, and 4 cylinder cars, respectively. We period. Variable transformations are all included in a special
could also highlight American, European, and Japanese subsets transformations window, and executed by pointing and clicking
in turn, and find out where they are on the display. with the mouse.
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i File Edit Display IMMIMSubsets Euents Markers as overt diabetic, chemical diabetic, or normal. Age and
Relative Weight turned out to be unimportant hence are

Now do you wish to transform 'Gal/Ml EWi? excluded from our analysis (as they were by Reaven and

Monodic Operations: Miller).
o n(m Il) O log( Ixl) 0 sin( H) 0 cos( x ) 0 tan( H The opening view of our demonstration has the
O ep( HI 10-m 0 arcsini H ) 0 arccos( x ) Oarctan( ) following variables assigned to the three axes: Fast Glucose on
o I/H O H2 0 sinh( H ) Q cash( H ) 0 tanh( H ) the X-axis, Test Glucose on the Y-axis and Test Insulin on the
o Ixl O Sq. Root 0 arcsinh( H ) 0 arccosh( H 0 0 arctanh( H Z-axis. (Figure 8).
SFuzz 0 Pas. Scale * File Edit Display iariables Subsets Euents Markers

Dyadic Operations: Enter y as a ... k 0liabetes t"l- Variables NOW
OX * y OH - y 0 Constant: @ Uariable: Y: GluTest Re

l
Wt ^

OHy H/y i Gal/Mi X GluFas
0HNy cy, Y GluTest

Icu/tn / Iz InsTest
O- Result Name: Ilt. -w SSPG

'J EClass
'Cancel'A CClass

'" Mi/Gas ltcc/O- °

Figure 6: Transformations menu window. Z: InsTest' X: GJuFast

Markers. MacSpin also makes it easy to get hard copy [
of data displays. (Since you can mark subsets with special
symbols, you can use these to convey some of what the dynamic
exploration showed you.) "Screen dumps" are generated using Figure 8: Glucose measurements of 145 patients who
the Command-Shift-3 sequence. The figure below is derived underwent a glucose tolerance test. 0,
from a screen dump. 1971 model cars are marked with a box,
and 1983 model cars with an asterisk. The resulting image was
cropped, and shadows and captions were drawn in, usingMacPaint. This view, showing the data distributed in aasausage-shaped cloud, supports the interpretation that there

Cars Plain XP is but one direction in which abnormality develops, as we

Y: Acc/o-60 " xi progress form normal patients to Chemical to Overt diabetics.
2X2 However, as soon as we start to rotate the data around the
X 7 3 X-axis, and tilt it a bit to better show the third dimension, Z

*o 97 5 x(Figure 9), we can see the pointcloud has, in fact, the shape of
6 : a boomerang. We can no longer accept that there is just one

X 7 5 X direction of disease developoment.
" " "I l q 4 . € 1 9 8 3 X 8 a

X al Hide Ail a
S a "/",' . " 

" ''  
' '"" Use Highlight u

=~~~ o o" Oldsmobile cull
eh o o Chrysler lebaroi !'

- ford granada I
- toyota calica gt

dodge charger 2 4
- chevrolet cama,.,'?i-.

Figure 7: American cars, with special markers given to ".
model years 1971 and 1983.

The Diabetes Story. %
These data were provided by Reaven and Miller of ._

Stanford University. The original graphic analysis of it was
done on the PRIM-9, and reported in Diabetologica in 1979.
The data describe 145 nonobese and nonketotic patients who
agreed to participate in a medical experiment. The purpose
was to assess the relationships among various measures of
plasma glucose and insulin in order to illuminate the etiology Figure 9: Rotation showing the boomerang aspect of the
of "Chemical" and "Overt" diabetes. Each patient underwent data.
a glucose tolerance test, and the following quantities were
measured: Age, Relative Weight, Fasting Plasma Glucose, Test
Plasma Glucose (a measure of insulin intolerance), Steady
State Plasma Glucose, and Plasma Insulin during the test. In
addition we have the doctors' classification of these patients
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The most natural question at this point is: What makes The examples show MacSpin's usefulness in exploratory data V
the two arms of the boomerang? As the doctors have classified analyis: how its dynamic graphics can reveal data structures
the diabetic patients as either Chemical or Overt, we can and the answers to focused questions about data. Among the
highlight each subset separately. As Figure 10 shows, each important features we illustrated were:
arm corresponds to one of the groups. We can also mark the

* rotation to show a third dimension

e identifying interesting points

1 1Diabetes Subsets =1 * highlighting important subsets
Normals * animation to look at a fourth variable

• et }Chemicals * transforming the data
* marking subsets

Our live demonstrations of these examples at the Interface
conference testified to the system's ease of use. While
MacSpin is not a replacement for standard statistical

Diabetes Subsets Z procedures (and, hence, has been designed to facilitate theNor su g porting of files between programs and mainframes), it is a
.valuable addition to the data analyst's "kit of tools".
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points corresponding to Overt diabetics with x's, and points of
Chemical diabetics with diamonds (Figure 11).
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Figure 11: The glucose measurements with the W,
"Chemical" and "Overt" subsets marked.

Whatever our notation, our conclusion is that Chemical
and Overt diabetes are two different syndromes, not just one
manifested at different levels of intensity.



GRAP - A Language for Statistical Displays

Jon L. Bentley
Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes Unix tools for preparing publication-quality graphical displays. A
general-purpose graphing language, GRAP, provides for automatic scaling and tick marks, input data
transformation and processing, multiple independent coordinate systems, and multiple graphs in a
single display. Specialized languages (implemented as GRAP preprocessors) deal with specialized
graphs, such as dotcharts, box plots and scatter-plot matrices.

Although originally designed for document preparation, GRAP has been used for such diverse
tasks as exploratory data analysis and prototyping new graphical displays.

1. Introduction packaging them for convenient use.

The Unix* operating system includes a family of
tools for document preparation. The basic tool is a 2. The GRAP Language
venerable text formatter called TROFF. That formatter In its simplest use, GRAP converts a set of x,y
does not deal directly with complicated material like pairs into a scatter plot, generates ticks automatically,
mathematics and tables. Instead, specialized kinds of and puts the result in a standard frame. Given pairs
typesetting are handled by preprocessors that translate showing remaining life expectancy as a function of age,
specialized languages into TROFF commands. For exam- GRAP produces this (simple) plot:
pie, a language called EQN translates expressions like

X bar =1 over n sum from i1 to n f sub i x sub i

into X 7=n- fixi. Other languages include TBL for 60-

specifying tables, and PIC for drawing simple line
diagrams. The Unix document-preparation tools are
described in [1]; a survey of the field can be found in 40-
12].

One area not served by the suite of programsmentioned above is the graphical display of data. In 20 -"•

most document preparation systems, the only way to
include a graph is by (mechanical or electronic) cutting
and pasting of a separately prepared figure. The GRAP _

language [3, 4] was designed to make it easy to describe I I I
a. graphs and to include them in documents prepared 0 20 40 60 80

with TROFF and related programs. This paper was
typeset by those tools, without benefit of scissors or A graph is often part of a larger document. The parts
paste, physical or electronic. of the document intended for GRAP are delimited by the

This paper will describe the elements of the GRAP commands .G1 and .G2; other text is copied through
language, and illustrate its use as a vehicle for experi- untouched. The input for the graph above is just the
menting with new forms of statistical display and data itself (the ellipsis marks omitted data items):

Unix is a trademark of AT&T Bell Laboratories.
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.G1 To illustrate, consider plotting expected age at

0 73.6 death rather than remaining years, for which the y coor-

5 69.8 dinate is the sum of age and expectancy:
10 64.9

.90.

85 6.5

.G2
85-

GRAP translates graph specifications into PIC com- Expected Age
mands. To format a document containing graphs, one at Death 80.

would normally use a pipeline of commands such as O

grap filenames : pic : troff 75 %..* "

The default display may be refined by specifying I I I I
more parameters. Labels may be added on any side, 0 20 40 60 80
ticks may be defined by an explicit list or an iterator, Present Age
data may be copied from a separate file, and the points
may be connected by lines of various styles: frame ht 1.3 wid 2

label bottom "Present Age" label bottom "Present Age"

label left "Remaining" "Years" left .1 label left "Expected Age" "at Death" left .1
ticks left from 0 to 70 by 10 define show { bullet at $1. $1+$2 
frame ht 1.3 wid 2 top invis right invis copy "life.d" through show
draw solid
copy "life.d" In a copy statement, each line of the source file is con-

verted into a call of the specified macro, with each field
becoming the corresponding argument. In fact, it is not

70 - necessary to define the macro separately:
60- copy "life.d" through 4 bullet at $1, $1+$2 1

50-
Remaining 40 - is equivalent, and notationally more convenient.

Years 30- As this example suggests, GRAP provides the abil-
20- ity to do arithmetic, both on input data and on vari-
10- ables. It also has an if-else statement and a for
0 -loop.0 1 loop. It is possible to show multiple curves on a single

0 20 40 60 80 plot; each set of values is independently scaled and

Present Age plotted. For example, this graph plots a second set of
data that shows the fraction of an original 100 people

The file life.d contains the age-expectancy data still alive at the given age:
shown above. The clause left . 1 moves the text from
its default position by that many inches. The . G1 and Percent Surviving -100
.G2 delimiters are not shown in this and subsequent 70 - S
inputs. 60 -

The core of GRAP includes commands for plotting Remaining -75 P
arbitrary text at any point, drawing arbitrary lines and Years
arrows, setting the range and optional logarithmic scal- 40_
ing of coordinate axes explicitly, and drawing grid lines. -50

GRAP does not provide a large variety of built-in 30-

graph types. Rather, it offers primitive operations out 20- -25
of which many different graphs can be built. One of 1
.he most important of these primitive operations is a 10
simple macro processor. The statement 0 F 0

define name ( replacement text) I I I I I I I I I

defines a macro. Subsequent occurrences of name will 0 10 20 30 40 50 60 70 80

be replaced by the replacement text. Instances of $1, $2, Age
etc., in the replacement text will be replaced by the
corresponding arguments in a macro call like
name(arg ,arg2 ... ).
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frame wid 2.5 using PIC positioning commands such as with.
label bot "Age" The examples above show that GRAP gives the
ticks hot from survivors 0 to 80 by 10 user a great deal of freedom in preparing x,y plots in
ticks left from expectancy 0 to 70 by 10 standard forms. It has also proven to be a useful tool
ticks right from survivors 0 to 100 by 25 for experimenting with display formats. The file
draw expectancy solid cars. d contains the mileage (miles per gallon) and the
draw survivors dotted weight (pounds) for 74 models of automobiles sold in
copy "life3.d" through wt Und s fo 74 model automob ile

next expectancy at expectancy $1, $2 the United States in the 1979 model year. A simple

next survivors at survivors $1, $3 scatter plot shows that as mileage increases, weight
decreases nonlinearly. A more interesting graph shows

"Percent Surviving" at survivors 65, 100 that inverse mileage (gallons per mile) is proportional to
"Remaining" "Years" at expectancy 5, 50 weight.

Data or parameters may be plotted in a particular coor- Miles per Gallon
dinate system by placing the name of that system before
the scalar value or x,y pair. 41 25 2018 12

One of the most useful features of GRAP is the 5000 1 [ 1 1 1
ability to combine several subgraphs into one overall
graph. As a simple example, the life expectancy and o 0

survivor data above may be plotted as two separate 4000-
graphs with a common x axis: o 000

graph Exp 3000-
frame ht 1.25 wid 2 Weight o
ticks left from 0 to 70 by 10 (pounds) oo 
tick bottom off 2000-- c 80
label left "Remaining" "Years" left .1 o o

draw solid
copy "life3.d" through { $1, $2 }

graph Frac with .Frame.north at Exp.Frame.south 1000-

frame ht 1.25 wid 2
ticks left from 0 to 100 by 25
label left "Percent" "Surviving" left .1 0-
draw solid 0 0.02 0.04 0.06 0.08
copy "life3.d" through { $1, $3 1
label bottom "Age" Gallons per Mile

The top ticks denote the extremes, quartiles, and
70 - median. The graph was generated by
60-
50- frame ht 2.2 wid 2.2

Remaining 40- coord x 0, 0.1 y 0, 5000

Years 30 -label left "Weight" "(pounds)" left .2
label hot "Gallons per Mile"

20- ticks bot from 0 to 0.10 by 0.02
10- label top "Miles per Gallon"
0- ticks top at 1/12 "12", 1/18 "18", \

100- 1/20 "20", 1/25 "25", 1/41 "41"

copy "cars.d" thru { circle at 1/$1,$275-
Percent In [51, Tufte proposes the "dot-dash-plot" as a k%

Surviving - means for maximizing data ink (showing the two-
25- dimensional distribution and the two one-dimensional

marginal distributions) while minimizing what he calls

0 "chart junk" - ink wasted on borders and non-data
labels. His graph is easy to execute in GRAP:

0 20 40 60 80

Age

The graph statement defines a subgraph with its own
coordinate systems, data, etc. Subgraphs may be posi-
tioned arbitrarily with respect to previous subgraphs
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frame invis ht 2 vid 2 The simplest example is a language for describingcoord x 0, 0.1 y 2, 50 "dotcharts" or "lolliplots" 161. The following dotchart
copy "cars.d" thru ( shows total Northern and Southern casualties (killed

tx - 1/$1; ty = $2 and wounded) in the major battles of the Civil War.
bullet at tx.ty
tick bot at tx
tick left at ty "" Gettysburg

Seven Days
Petersburg Siege .

which produces: Chickamauga
The Wilderness

Shiloh
Antietam •

Chancellorsville .. .. . .
- *2nd Bull Run

= *" *Spotsylvania
Vicksburg

Murfreesboro
m *. * Fredericksburg . 9

Fair Oaks
" Chattanooga

Cold Harbor
Franklin

Perryville
Nashville

Fort Donelson *

1st Bull Run .
Kennesaw Mtn *

I I IIIIII II I II I I II I

0 10000 20000 30000 40000

Although visually attractive, we do not find the result- Casualties of the Civil War

ing graph as useful for interpreting the data as the first
representation. Tufte's graph, however, does point out This straightforward GRAP program produces that 9
two facts not obvious in the previous format: there is a dotchart:
gap in car weights near 3000 pounds (exhibited by the label "Casualties of the Civil War"
hole in the y-axis ticks), and the gallons per mile axis is coord x 0 to 45000
regularly structured (the ticks are the reciprocals of an ticks left off
almost dense sequence of integers). nr = 0

A word on implementation: GRAP is implemented copy "civwar.d" through {
as a preprocessor for PIC so as to take advantage of nr - nr + 1

PIC's features for plotting and positioning text. GRAP yval - -Dr

itself handles collection of data, maintains the indepen- bulet at $ ,yval
dent input coordinate systems, and scales the outputs in 2 rjust at -0.02,yva

each. lastx = $1

The language is specified with a YACC grammar
and the processor is written in C; it is about 3000 lines "" at 0,0; "" at 0,-(nr+l)

of code altogether. GRAP went from initial conception frame ht (nr+1)*0. 125 wid 2.5

to use by people other than the authors in about a week The data items are counted as they are printed; the
and to books and published papers within several frame height is computed and the frame drawn after the
months. The total software development time is data has been plotted.
perhaps three or four person-months. If one is preparing only a few dotcharts, each can o%

be built with a text editor. If there are a large number
3. A Language for Dotcharts of similar graphs to be prepared, however, it is prob-

Macros provide one way to encapsulate a compli- ably worth automating the job. We therefore designed
cated or lengthy sequence of GRAP commands. More a DOTCHART language in which one can specify a large
interesting, however, is the notion of a "little class of dotcharts. The DOTCHART "compiler" reads a
language." If a particular class of graph is used fre- dotchart specification and generates GRAP commands
quently, one can design a small language for describing (only slightly more complex than those above) to print
instances of the class, and implement a "compiler" that the desired figure. For example, the dotchart above
translates from that specialized language into GRAP was specified as
statements. In that case, GRAP serves as an assembly
language.
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file "civwar.d" file "animal.d"

label "Casualties of the Civil War" label "Maximum speed, km/hr"
spread .125 coord x 10 to 120 log x
coord x 0 to 45000 ticks hot at 10, 20, 40, 80. 160

width 2.5 spread .125

quoted width 2.5

The file command specifies that input comes from a guide across
file civwar. d:

40000 *Gettysburg" 4. Other Specialized Languages

36000 "Seven Days" DOTCHART is not the only little language that
30000 "Petersburg Siege" prepares input for GRAP, although it was perhaps the
28500 "Chickamauga" easiest to implement. Another language, SCATMAT, is
28000 "The Wilderness" used for describing scatter-plot matrices [8].

2270 "Kennesaw Mtn" Given a set of n observations of k attributes, a
scatter-plot matrix is a kxk array of scatter plots. For

Other commands set parameters of the dotchart as example, this file contains data on the nine planets: dis-
needed, and any remaining lines (such as label and tance from the sun, temperature, mass and radius:
coord) are assumed to be GRAP commands that make
sense in context; they are copied through verbatim. 0.4 600 .05 .40.75 370 .8 1 ";

The implementation of DOTCHART is noteworthy 1 330 1 1
mainly for its small size - the first version, adequate 1.5 300 .11 .5
for dotcharts like the one above, is less than 25 lines 5 140 318 11
long (see 131). It is written in AWK, a general-purpose
string processing language [7]. 40 50 1 .5

With the basic design of DOTCHART in hand, it is (Temperature is degrees Kelvin; other attributes are nor-
easy to add features that express variations on the malized to earth's value.) This scatter-plot matrix
theme. For example, Cleveland advocates dotted lines shows the six pairwise relationships among the four
that go all the way across the chart when the baseline is variables:
at zero. Four lines of AWK code in the DOTCHART com-
piler and another parameter in the language implement 10- o o o o

the new style guide across: 50- oo o o 0

2 - Radius

Cheetah 0.5- 0 o 0 oo o__
Antelope ... 0

Wildebeest 10- 0

Lion o- oo 0

Gazelle . Mass

Horse * - o o 0 0 o

Elk . 0.1- 0

Coyote 500 -
Hyena - 500 0Zebra "200 _

Greyhound • -- o Temperature
Rabbit . 100-

Deer 50-Jackal •,,
Giraffe %10 -

Warthog .0. ' .. A0
Grizzly Distance

Cat -
Human

Elephant * l I I I I rF7 77I 1 1 1
Squirrel 1 50 100 200 50. 1 10 100 0.5 1 2 5 10

Pig
Chicken

I I Although it would be possible to specify a
10 20 40 80 160 scatter-plot matrix "by hand" using GRAP's facility for

Maximum speed, km/hr defining subgraphs, it would require an inordinate
amount of work, much more than for a dotchart. Thus
we designed another language, again to be processed
into GRAP by a small compiler, also written in AWK.
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The input language for SCATMAT is similar to the such little languages, some feeding TROFF directly,
DOTCHART language: while others compile into intermediate languages.

file 'planets.d" In most of these languages, it appears necessary
frames ht .75 wid .75 to provide some degree of programmability; otherwise,
spread 0 users are restricted to those things that the implementor
alllog thought of. For GRAP especially, the ability to program
name Distance the processor to define a new style has proven invalu-

field $1 able.
name Temperature

field $2 Acknowledgements
name Mass

field $3 We are grateful for the helpful comments of Rick
name Radius Becker, Bill Cleveland, Doug Mcllroy, Rob Pike, and

field $4 Chris Van Wyk.

The first version of SCATMAT was about 35 lines References
of AWK; the current version is about 100 lines. It pro-
vides many more parameters, and can also deal with 1. B. W. Kernighan and M. E. Lesk, "UNIX Docu-
variations like using the other diagonal and printing ment Preparation," pp. 1-20 in Document Prepara-
only one triangle of the matrix, tion Systems, ed. J. Nievergelt, G. Coray, J.-D.

It is useful to build languages for other particular Nicoud, A. C. Shaw, North-Holland Publishing

graphs as well; we have done so for box plots, and have Co. (1982), pp. 1-20.

seen one for pie charts. Such languages are easy to 2. R. Furuta, J. Scofield, and A. Shaw, "Document
build and can be easy to use because the common out- Formatting Systems: Survey, Concepts and
put language and (usually) common implementation Issues," Computing Surveys 14(3), pp. 417-72 (Sep-
encourage a similar style. tember 1982).

5. Conclusions 3. J. L. Bentley and B. W. Kernighan, "GRAP - A
Language for Typesetting Graphs," CACM 29(7)

Our original goal was a language for preparing (July 1986).
publication-quality graphs. That goal has been 4. f. L. Bentley and B. W. Kernighan, GRAP - A
achieved: with the addition of GRAP to the Unix docu- Language for Typesetting Graphs. Tutorial and User
ment preparation tools, we are now able to produce Manual, AT&T Bell Laboratories CSTR 114
complicated graphical displays with little effort. The (December, 1984).
quality is acceptable for books. Examples may be found
in Cleveland 16J, Aho, Sethi and Ullman [9] and Bentley 5. E. Tufte, Visual Display of Quantitative Information,

[101. Graphics Press (1982).

GRAP has also proven useful for exploratory data 6. W. S. Cleveland, The Elements of Graphing Data,

analysis, even though that was not our intent. This is Wadsworth (1985).
certainly not because it runs fast (for most graphs it is 7. A. V. Aho, B. W. Kernighan, and P. J. Wein-
much slower than, for example, the S system [11), but berger, "AWK-A Pattern Scanning and Process-
apparently because its textually based interface fits well ing Language," Software Practice and Experience 9,
with other Unix tools. It is easy to prepare data with pp. 267-280 (April 1979).
some program, massage it into the right format (either 8. J. M. Chambers, W. S. Cleveland, B. Kleiner, and 41K
with a general tool like AWK or with the input process- P. A. Tukey, Graphical Methods for Data Analysis,
ing of GRAP itself), then plot it to see what things look Wadsworth (1983).
like. 9. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:

GRAP has also turned out to be surprisingly useful Principles, Techniques and Tools, Addison-Wesley
for prototyping statistical displays. It has built-in facili- (1985).
ties for both display and computation, and provides an
easy escape to the Unix environment when the built-in 10. J. L. Bentley, Programming Pearls, Addison-Wesley

mechanisms are not adequate. (1986).

As a more general observation, many tasks can be 11. R. A. Becker and J. S. Chambers, S: An Interactive

profitably approached by designing and implementing a Environment for Data Analysis and Graphics, Wads- IrIP

"little language" specialized to that task. Users can worth (1984).

thereby express their solutions in terms closely related
to their view of the problem. Specialized languages for
graphs, dotcharts, and scatter-plot matrices are merely
examples from one domain. Indeed, the entire family
of Unix document preparation programs consists of
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BINARY IMAGE CLASSIFICATION

Carl N. Morris, The University of Texas at Austin

1. An Empirical Bayes Model for Image Data. (2) The {0j, in the wide sense, have a stationary,
Motivated by the LANDSAT problem of estimating isotropic distribution on the lattice with

the probability of crop or geological types based on ir = P(e, = 1) all i (I, k),
multi-channel satellite imagery data, Morris and Kostal and for -s < t,u < s,
(1983), Hill, Hinkley, Kostal, and Morris (1984), and pt,. = Corr(oj,k, 0 +t,k+U), all j,k.
Morris, Hinkley, and Johnston (1985), henceforth Ia- Some comments on this model are required.
beled MK83, HHKM84 and MHJ85, developed an em- The distribution (1), which says y, has mean ±b12
pirical Bayes approach to this problem. We return here and unit variance is equivalent via location and scale
to those developments, making certain improvements changes to any model for yi giving yi a normal distri-
and extensions, but restricting attention to the binary bution with means P0 or p1 when 0, = 0 or 9i = 1 and
case of only two attributes, variances o2 = a Then6=(pi-Io)/a. The

Label the pixels in a rectangular lattice as i= (., k), parameters (J0, JI, 0) and the form (normal) of the den-
= 1,2,...,J and k = 1,2,...,K. Each of these sity ofy are assumed known. In practice, these would

n = JK pixels has attribute 0i taking values 0i = 0 be known based on vast experience with "training data"
or 9i = 1 to indicate only two possible distinct types. A (where the values of 0i could be observed along with yi).
one-time vector Di of measurements is available for each The stationary assumption (2) for the parametersjus-
pixel, usually involving several bandwidths for several tifies letting the parameters ir and pt,, be independent
time points. In this simple version a one-dimensional of i (j, k). This assumption needs to hold only in
function yi of Di is all that will be considered (as noted the wide-sense because the inferential methods used do
in MHR85, if Di is multidimensional, then yi is the best not involve more than these first and second moments.
one-dimensional summary if it is chosen as the loga- The isotropic assumption would serve further to sim-
rithm of the likelihood ratio of Di for Oi = 1 and Oi = 0). plify pt,., and we do identify P,u = pu,t = pItIIi, but

An empirical Bayes model is defined as one that pro- do not take full advantage of the rotational invariance.
vides two families of distributions, one for the data, con- The hyperparameters a then are r + I = (s + 1)(s + 2)/2
ditional on the parameters, and one for the parameters. dimensional. For example, if s = 2, then r = 5 and
The descriptive empirical Bayes model specifies distri-
butions a = (, a2 ...,06 ) = (r, P1o, P1I, P2o, P21, P22 ) •

(1) p(y 10) for the data {y,}, conditional on the un-
known parameters {0}, i.e., the likelihood func- It is important to realize that the hyperparameters must
tions, and be estimated from the observed data {y, } in the target

(2) a parametric family p,,(O) of distributions for the site. Training data taken from other settings can be
parameters, indexed by hyperparameters a E A. used to determine the conditional distribution of {yi}

The inferential empirical Bayes model is mathematically for known {8j), i.e., the distribution (1), but different

equivalent to the descriptive model, but respecifies the hyperparameters, say 6, would prevail at the training

distributions as site, so training data could be used to estimate ak only

(1) p(y), the marginal distribution for the data, now if the unexpected assumption & = a held.

dependent on a E A, and 2. Results for the Inferential Model: The Dis-
(2*) p,(9 I y), the conditional distribution for the pa- criminant Function Approximation and Identity.

rameters {8} given the data {py} and a. Development of the inferential model proceeds as in

The distributional choices here are the same as for MHR MHR85, but with a more useful representation of the
85. The key simplifying assumption is that the corre- discriminant function. The model (1),(2) leads to a
lations between observed measurements enters entirely very complicated exact form for each marginal poste-
through the parameters, {O.} the observed data {V,} rior probability, given a, P($i = 1 I y,a). However, a
being conditionally independent, given 10j} good approximation to this probability, with accuracy •

improving as b -4 0, is of logistic form. We go further
DESCRIPTIVE MODEL: to approximate the logistic function by the discriminant
(1) Given 8,, i = 1 .. n, , = 0 or 1, assume function, which effectively predicts P(Oi = I I data) ''

y, 9i - N(6(O, - .5), 1) independently, with 6 a from the "ring" averages, these being averages of those
known constant. data values in specified locations (rings) relative to pixel

i, as in Figure 1.
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Figure 1: Ring locations, R0 , R1 ,..., Rr, centered and the mean 9 provide estimates of the hyperparame-
with pixel i at ring R0 . The four nearest points, ters. Let f" = .5 + g/6. Then
marked 1, are R1, the next four R2 , and so on. Pairs
(t, u) indicate similar correlation structure, with corn- (2.5) Eag = 6(6 - .5) , Es* = 0 and
mon values pt,, if (t, u) = (±t, ±u) = (±u, ±t).

(2.6) E(6*(1 - *) , I '
- .... ,. cO) - E C (O) .

3 Thus 6 is estimated by * and C(9) by
(0,2)

2 1 2 = (bt(1 - f) , C /6 . ..C rl)'.
( - 1 , 1i) ( , ) (1 ,1 ) C 6 ( - ) c / . c 1 )

3 1 0 1 3 Therefore (2.4) may be estimated, even when 0 is un-
(-2,0) (0,1) (0,0) (1,0) (2,0) known.

2 1 2 We now can specify the
(-1,-1) (0,-1) (1,-1) INFERENTIAL MODEL:

(0, -2). (1') The marginal distribution of the data y satisfies
(2.5)-(2.6); and,

(2') the posterior probability P(Oi = 1 1 y,a) follows
approximately the form (2.4).

Define the n x (r + 1) matrix X of "regressors" to
have the i"t row element and t'h column element as the 3. Empirical Bayes Estimation: Estimating Dis-
average of measurements at ring t, R, t = 0,1,..... crlminant Function Parameters from RemotelyThus, with i = ( 2 , k), £,o = y,, is the regressor for ring Sensed Data.
0s, wEmpirical Bayes modeling stops short of specifying

a unique method for approximating the function (T),

(2.1) Xil (Y k.t+ + Yk-i,t + Yk,t-i, Yk+lt)/4 but (2.5) and (2.6) provide obvious approaches. The
simplest estimate of 6 is f* defined by (2.5), since i is
unbiased in the empirical Bayes sense, E(* - 9) = 0 foris the regressor for R1 , and so on, as in Fig.1. Then aljonditbuoscnierdn(1-2,htifr

modify X so that all column totals add to zero, by sub- all joint distributions considered in (1)-(2), that is, for
tracting the column average from each column, all a. The approximately unbiased estimate C in (2.6)

tracingthecolmn verae fom achcolmn.of C(9) was used in MHR85 to replace C(O) in (2.4),
If all the parameters {i} were known, we would cal- a d in a R 5 forulae ( )n(2.4)T

culate the discriminant function as follows. Let C(O) = n
X'O/n, O = O/n. Denote works well when C has small variance. The estimator

of MHR85 results:

(2.2) R = nC'()(X'X C()1 = log(/(1 - +

as the multiple correlation coefficient between 0 and the (3.1) 1
2

columns of X, and _(*-.5) 1- _2

(2.3) RSS(8) = 6(1 - 0)(1 - R2) with

as the residual sum of squares. RSS 0 = (1 -)(1 -_ 2 ),

The discriminant analysis formula has the form (3.2) RSS/ -

(P(6, =1- (x'x)-'¢/f(1 - )

A, = log ~i =11)
=P = 0 10) The estimator (3.1) was shown to fare well in a variety of

nlg0l n xX,X)_-C(9)  settings, compared with the "ideal" estimator X, (which
(2.4) = lo ( - )) + RSS() is not available in practical problems).

R 2) Still, improvements to (3.1) may be necessary in cer-
-(-.5) 2 tain cases: because A, depends on the data being used

T1 - R n to estimate C(O), so that one is not guaranteed that

This form is equivalent to that of MHJ85, but is in more
useful form because the quantities involved are directly (3.3) Ex%(X'X)-C - r(X'X)-C(6).
related to standard linear regression output. for instance; and because \i is non-linearly dependentThe sample autocovariances cl, t = 1,2_ .. , r, being fointceadbcus ,snn-naryepdnt

on C(O), so that variability of any nearly unbiased es-

timator C will cause bias in non-linear estimation of
c = ,rIXa C(O).
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Recognizing that /i = exp( i)/(1+exp(i)) estimates Figure 2: Assignments of numerical weights for a

the posterior probability pi = E(Oi I data), since such horizontal 4 x 6 edge detector placed at the center of

calculations were used to justify the logistic form of pi, 24 pixels.

the data-dependency objection can be handled by re-
placing 0i by Pi in C(6), still using * for # (experience 1 1 1 1 1 1
shows that *" is very close to P' i/n). This suggests an 1 1 1 1 1 1
iterative rule:

(a) Calculate pi, 1 < i < k using (3.1); -1 -1 -1 -1 -1 -1
(b) Replace 0 with r and C(O) with (A:.....3 )' in -1 -1 -1 -1 -1 -1

(2.4) to get \i;

(c) Compute/ii = (1 + exp(-Ai))-; and, Similarly, vertical edge detectors would correspond
to turning Fig.2 on its side, and two possible corner

(d) Return to (b), using (A, ... detectors might be as in Fig.3 (these types would work

Initial experience with this rule has resulted in more best in a checkerboard setting). The first detector would
stable relative values of the regression coefficients P - be particularly sensitive to the meeting of two corners,
(X'X)- X'O, but their absolute values are too large the second one to the southwestern corner of a figure
after several iterations. This could be due to over esti- extending into a homogeneous area.
mation of the convex function 1/RSS(O).

The problem of quadratic dependence of R on 6 in Figure 3: Corner detectors for a rectangular grid.
(2.2) can be easily handled by methods conditional on
the data, since, with expectation conditional on X, and -1 -1 1 1
p =_ EO I X, -1 -1 1 1
(3.4)

EO'(X'X)-'O = tr ((X'X)-EGO') 1 1 - 1 _

=p'(X'X)-fp+tr ((X'X)-'Sx). 1 1 -1 -1

To implement this, however, the currently unavailable -1 1 .5 0
posterior probabilities of pairwise ocurrences of Gi and

Gj also are needed to compute Ex, the conditional co- -1 1 1 .5

variance matrix of the 0 vector. -1 1 1 1

4. Other Uses of the Spatial Logistic Estimator: -1 -1 -1 -1
Detection of Edges, Corners, and Shapes.

The technology of Section 2 also can be used for the Variables xr and x' might be coded as indicated by
purposes of determining the probabilities that edges of Fig.3 for each position i = (j, k), with the data values
shapes, or even part of a particular shape, exist at a lo- {yJ} assigned weights according to the values in the de-
cation. For edge and corner detection, it is convenient tectors (and zero outside the detector). Thus x4 would
to shift the entire rectangular lattice up and sideways be the sum of values of the eight nearest pixels to the
one-half pixel, so that points for this form of detection northeast and southwest minus the sum of the other
are relocated at the original pixel boundaries and cor- eight nearest values.
ners rather than at pixel centers. Then the matrix X of Detectors for other, more general shapes, could be ,

(2.4) is specified not as in (2.1) and the surrounding dis- set up in an analogous fashion, assigning positive values
cussion, but with other codings sensitive to boundaries, to data in locations where the shape would exist, and
For example, a "signed horizontal edge detector", as in negative values elsewhere. a
Fig.2, when placed at location i, adds the 12 y-values The true values O again must be defined as binary
above and subtracts the 12 y-values below, the sum pro- values, if the methods of Section 2 are to apply. For

ducing the value xi at location i = (j, k). Note that x, example, we might have 9, = 1 if a horizontal or ver-

has an expected value of 126 at locations for which all tical boundary exists at location i, otherwise O = 0.
12 pixels above are of type 1 and all 12 pixels below Then the X matrix might have two variables, row i be-

are type 0, still assuming yi I, ,O- N(6(Oi - .5), 1). Of ing (1, [i 1, Iii .... ), x, from the edge detector of Fig.2

course, -126 is obtained if all 24 pixels are reversed, and and i, as a signed vertical edge detector. Formula
values between -126 w,.4 126 result in more scattered (2.4) again is available, providing an estimate of P(Oi =

situations. Exi = 0 in the middle of a large homoge- 1 I data) via the discriminant function. However, es-
nous shape. Large values of 1x11 indicate the presence timates of 0 and C(O) are required, and will take a

of a horizontal edge, but without suggesting whether different form than given in Section 3. If such values U- ,

0= 1 to the north or the south. are available, these methods can be used in conjunction
with estimates of the probabilities of each classification 0
as given in Section 3 to give more accurate estimates at
the borders of those regions having significant sizes.
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Partial and Interaction Spline Models for the Semiparametric Estimation of
Functions of Several Variables.

Grace Wahba, University of Wisconsin-Madison

A partial spline model is a model for a response as a func- Theorem: (Kimeldorf and Wahba (1971) - KW ) Let
tion of several variables, which is the sum of a "smooth".. ... 0

m span the null space of J.. If the design matrix
function of sevaral variables and a parametric function of for least squares regression on span
the same plus possibly some other variables. Partial spline 4 11, ; 1 ..... ,p is of full column rank, then there
models in one and several variables, with direct and exists a unique minimizer (f .,,x) for any .>0 , and f ) is a
indirect data, with Gaussian errors and as an extension of polynomial spline function.
GLIM to partially penalized GLIM models are described.
Application to the modelling of change of regime in several The parameter as well as m can be choosen by gen-
variables is described. Interaction splines are introduced eralized cross validation (GCV).
and described and their potential use for modelling non- The appropriate function space here is the Sobolev
linear interactions between variables by semiparametric space W', however, J. (and W') can be replaced by any
methods is noted. Reference is made to recent work in seminorm in a reproducing kernel (r. k.) Hilbert space of
efficient computational methods. real valued functions on [0,1] provided that least squares
1. Introduction regression onto the span of the null space of the seminorm

is well defined - you get a Bayes estimate with the r. k.
Partial spline models have proved to be interesting related to the prior covariance. Details may be found in

both from a practical and a theoretical point of view, partly KW and Wahba (1978) but we will not discuss the Baye-
because of their dual nature both as solutions to certain sian aspect any further, other than to note that the prior
intuitively reasonable variational problems, and as Bayes behind J. is the most parsimonious member of a large
estimates with certain parsimonious priors. In these class of equivalent priors.
proceedings we will attempt to give a quick rundown con- Partial spline models with one splined variable were
cerning some of their more interesting manifestations, and introduced by several authors in different contexts, with
to report briefly on two new developments, first, the use of some interesting applications, see Anderson and Senthilsel-
partial spline models to describe discontinuities or changes van (1982), Engle et al. (1983), Green, Jennison, and
of regime, in two, three and higher dimensions, and, Seheult (1983), Shiller (1984).
second, the idea of interaction splines for use in studying
nonlinear interactions between variables semiparametri- 3. Partial Spline Models - Several Splined Variables
cally. Now, let the model be

2. Partial spline models - one splined variable Yi = x (i)) + N0.iP'(x(i); z(i)) + Ci  (3.1a)

A response as a function of the variables x ,z 1 ..... zj=
is modelled as where

P

Yi =f (x(i))+ ,O(i'j(x(i); z(i)) + i (2.1a) x =(x 1 .... xd) ,x(i)=(x(i). xd(i)). (3.1b)
j=t

Again, we find f in an appropriate space to minimize
where I,

z(i)=(z(i),.,z(i)) (2.Ib) (Yi -f (x(i))- , 9 1 '(x (i ); z (i )))2 +
" i=l j=1

the %pi's are given parametric functions and the Ei's are
independent, zero mean Gaussian random variables with X V (3.2)

common (unknown) variance. The estimate (f x,0)), where where now, we can use the "thin plate spline" penalty ",.

0X=(0jX,.... pX), is found as the minimizer, in an functional. For d=2, m =2, it is
appropriate space, of

y+ Jm(f)= f 2. +2f . +f2 (3.3) 0
-X;(Y, -f(Oi) - Jo_ ~~) ~)) Jf 1  1  X I +f+f 2 '2i=1 j=l

and for arbitrary d it is M

w here Jm (f ) - Xq ••c
whee ..+...+=m •

II

J. (f -. (f (m)(X ))2d. (2.2b) f jm 2dX .. . ]d 34

We have the following
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provided 2m >d. The null space of J,. is the span of the 5. Non Gaussian errors (semiparametric penalized GLIM

M= +d- monomials of total degree less than m, call models)

them 0 1 .. .,M. Again, there will be a unique minim-
izer (f k,0X) for every nonnegative 26 if the design matrix g (x, z) =f (x) + Oj PYj(x; z) (5.1)
for least squares regression on 0I1 ..... ,DM;1F1 ..... , Wp is but
of full column rank, and f is a thin plate spline function. 1.F

Partial splines with several splined variables were
introduced in Wahba (1984a), Wahba (1984b), Wahba For example:
(1985), and a discrete version has been proposed by Green, Yi -"Poisson with A i = e 9(x i)z i ,

Jennison, and Seheult (1986). Transportable code
(GCVPACK, Bates et al. (November 1985)) is available for Yi -Binomial with pi(l-pi) = eg (x()); z(i)),

fitting the partial spline models of (3.1)-(3.4) and comput- etc. Here, one finds f . to minimize
ing the GCV estimate X of X. This code does well with up

to around 400 data points on the VAX 11/750 in the Statis- L (f ,0) + Jm(f) (5.2)
tics Department at Madison. The work primarily depends

on n , and not d, but, of course good estimates with large d where L is the log likelihood. O'Sullivan (1983) and
will require large n. Diagnostics for splines (without the wheell isa he ogn ikelhoo.dOSulivr (198 3) nd

calne anicaedl httisor.iletndt ata also Green and Yandell (1985), Silverman (1982), Cox and
splineO'Sullivan (October, 1985), Leonard (1982). Further work
4. Indirect measurements on numerical methods for penalized GLIM and nonlinear ,

Let indirect sensing problems is reported in this proceedings

g(x;z) =f(x) + YOj'j(x;z), (4.1) by Yandell.
6. Use of partial splines to model functions which are

and now let smooth except for specified discontinuities

yi =Lig +Ei (4.2) Let d =I and let

where Li is a bounded linear functional, for example:

Lif =fwi(x;z)g(x;z)ndxTdz. (4.3) g(x;z)=f(x)+OIxx*l

This kind of data comes up in X-ray tomography, satellite that is, 'P(x; z) = Ix-x*l. Then the partial spline estimate
tomography, stereology, and in other remote or indirect of g will have a jump in the first derivative at x* of sizesensing problems in the physical and biological sciences. 20. In two dimensions we may use a partial spline to model
One finds f and 0 to minimize: a jump in the first derivative with respect to x 2 along a

Oe fgiven curve x 2.(x ): Let

n -Lf - 8jLi j)2 + &.Jm~f)" (4.4) 'Y(x) =Y(X 1,X2)= x 2-x 2* (x 1),

The use of variants of (4.3), and (4.4) may also provide a g(X; Z) =f W)+9(x 07(x)

good way to deal with heterogeneous aggregated economic where 0 may depend on x 1 . Then
data. For an application in stereology, see Nychka et al.
(1984). 1 1_ I - ag 20(x0

Data involving mildly nonlinear functionals can be ax2 x-=(x,)*_ ax2 1=x(,)
accomodated - then

If, for example
Yi = Nig + ei (4.5a)

where p
0(xI)= YOjqj(x1)

Nig = f fwi(x,z, (x; z))ndx ndz. (4.5b) j=1

One findsf and 0 to minimize where the qj's are given, then

n1(i )+ ,,(). (4.6) 'j(x; z) = q,(x )y(x).

The minimization can be performed using basis functions This fits right into the partial spline setup, and GCVPACK S
and a Gauss-Newton iteration and X chosen by GCV for may be used to compute the estimate. A generalization to
nonlinear problems, see O'Sullivan and Wahba (1985). d=3 with a jump in the first derivative with respect to x3
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along a surface x3* (x ,A 2) is straigtforward. For details,
and a description of an application to the three dimen- V [v, + + O 2  vc..-v <o HfTPL(8.3)
sional modelling of the tropopause in the atmosphere and v,.
the thermocline in the ocean, see Shiau, Wahba, and John- It can be shown that Hfg, will be a reproducing kernel
son (Dec. 1985). hilbert space with (8.2) as squared norm for any m > 1/2,
7. Linear inequality constraints and Hf?71,pL will be a reproducing kernel space with the

Expressions (2.2), (3.2), (4.4), etc. can be minimized squared norm (8.3) for any m > d/2. These spaces are not
subject to finite families of linear inequality constraints, equivalent, and reflect different ideas of what is "smooth".

See Villalobos and Wahba (March 1985). However, each can be written as the direct sum of 2 d

8. Main effects and interaction splines orthogonal subspaces, namely, Ho, the "main effects

The thin plate spline is defined on Euclidean d space subspaces of the form
for any d with 2m-d > 0, provided there are enough data Ha = span [*v.(xa), va=1,2,...) ctl.
points for m th degree polynomial regression, but unless the (d) fir d
there are very large data sets, in many applications will be 2 t order interaction spaces of the form
desireable to reduce the amount of structure involved. Ha = span vj(x )vo(x p), v., vp>0), l_<z<-a .:d,
Several authors have suggested modelling f as a linear
combination of functions of one variable, that is, and so on.

dLetting
f(x)=fo+ "fa()lL 1 1

a=1 J(f) = If . If (x . xd)l dx  JI, (8.4)

where x =(x 1i....xd) , and fa(xa)dxa=0. (Note the 0 0 a

0 the squared norm (8.2) on HfEJDR can be shown to be equal
switch to the unit cube.) See Friedman, Grosse, and Stuet- (in Hf epR) to
zle (1983), Stone (1985), Burman (June, 1985). We have Jo(f)+jTHPL(f),
been working on generalizations of this idea, whereby f is (8.5)
modelled successively as linear combinations of functions where
of one variable, functions of one and two variables, func- jTHPL(f) = I
tions of one, two and three variables, etc. The resulting a,+...+a ...i ! 9
estimates may be called main effects splines, first order

interaction splines, second order interaction splines, etc., by 2

analogy with analysis of variance. We consider here two f 0 f dx 1 ... dXd (8.6)
quite different but interesting penalty functionals which we 0
will refer to as TEPR (for "tensor product"), and THPL (for
"thin plate"). We will briefly sketch some early results of is the thin plate penalty functional.
some work in progress, by describing the simplest exam- For lack of space we will not discuss the thin plate
ples. spaces further, but analyses similar to but slightly more

The main ideas are most easily explained by first con- complicated than those below can be carried out. In what

sidering only spaces of periodic functions on the unit d- follows, we will only consider the tensor product case and

dimensional hypercube, that satisfy certain linear equality sub or superscripts TEPR are to be understood.

or boundary condtions, and then removing these condi- Let
tions. Let 40,(xj) = cos2tvxj or sin2nvxj (with some abuse I I I
of notation), and let 0=l,,0v=27rv,v > 0, and let HfpR and Ja(f) =Jdx If l'-rd x p]2 (8.7a)
Hr1[pL be, respectively, the collections of all functions f of 0 0 0 ax 0

the form .

f(x . xd) J(f )= 00 0 fl daxa x (87b)

Scv,...,,,l,(x ) ... .,,(xd) (8.1)

with J.... I dxd.(8.7c)

i [0v, " '0V, 2nC , .. , _ 1f 
0 1 ..a

vs., v... v, <co, HfP (8.2) Then the squared norm (8. 1) on HrOR can be shown to be
equal to
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d Lvg=O,v=,l....m. Letk v = , v=Ol .... m, where
J(f)+ YJa(f) +  JY(f)+ "". +Jt..d(f).(8.8) V-

a1l a<c the b v  are the Bernoulli polynimials, we have

As an example, we will consider below fH'EpR which Lk,=O41 v,Lvkv= l,,v=0,1....m, and thus kv is

consists only of a mean, all d main effects and the first not in Ha. Let W°=span (k0 ..... k,._ and let W 1 be

order interaction between x jandx 2. Thus f is of the form isomorphic to Hd[km). Then it can be shown that W'
d endowed with the inner product

f(x 1 . .X d )=fo+ Xfa(Xa)+f12(xt,X 2), (8.9) 1

g ,h>w =-,LvgLh +fg()(u)h()(u )du (8.13)
where f0 is a constant, f EH a, and f 12EH 12. We can v 0
now define the periodic interaction smoothing spline as that satisfies
function f), of the form (8.9) which minimizes W2 = W°eW 1. (8.14)

n d

'(y, -f(x(i)) 2 + .[ YJa(f a) + J 12(f 12)],(8.10)
i=1 a~t Letting g EW2 with g = g 0 + g 1 , g OWO. g IeW I we

where x (i )=(x 1(i),...,Xd(i)), can call g the polynomial part of g, and g I the "smooth"

part. Now let
Using Lemma 5.1 in KW it can be shown that there is a pat ... ldt8
unique minimizer of (8.10) in HoeD -IHrSH 12. An expli- HTIHPL =  WV' d times (8.15)

a

cit representation for it may be found using this lemma and =(Wo-OWt)4D... O(WoWt)

the fact that the reproducing kernel K (x ,z) for YJ-/a,)H 12 d da =
is given by a1 a=1

K (x,z) = Bn(xa,Za) + Bn(x 1,Z )Bm (X 2,Z 2 )(8 .11 a) W !a
where a4 "aj

B.(s,t) = 
d

(flw-),

Y e; 2"[cos21cvs cos2nvt + sin2nvs sin2nvt 1(8.1 lb) where the Greek subscripts make explicit which variables
V=1 are involved. We can now identify the "polynomial" sub-

A closed form expression for Bn may be found in Craven space
and Wahba (1979). GCVPACK may be used to compute d
fX. In principle, J a( X) can be replaced by XwJa(f X), H0 =

a a a=l

where the w, are positive weights, but problems concern- the main effects subspaces
ing their estimation from the data have not been studied to d
date. H a=W 1 0= Wen]"lWo , at= 1- .... d,

We will now sketch how to remove the rather restric- a
tive periodicity conditions from HfE&R. For g a function of the first order interaction spaces
one variable, let Ha0lV'~v f_ Wj,

Log = Jg (u)du (8.12a) etc.W
0

The induced tensor ,roduct inner product in HTrpR is

Lvg =Jg(v)(u)du = g(V-I)(l) -g(V-")(0), (8.12b) a natural extension of the inner product of (8.7) and (8.8).
0 Letting J, be the induced norm on Ha , etc., we can now

and let Lv(,,j mean L v applied to f as a function of xa seek f X in the new, non periodic version of, for example

Then Lv(.,)f =0 for v--O,1 ...... n,a=l,2,...,d, any f in HoE)YHae1HI2 to mininize
a

HPE&R. Now, it can be shown that Ha is that subspace of I
the Sobolev space o I (Yi -f xx (i))2 + X [Yj a(f a) + J 12(f 12)]" (,16)

W [0,1]= (g: g, g'. i=1)abs.cont. g(m)eL2) i a
2, =Existence and uniqueness for any ). > 0 can be shown via

of co-dimension m+l which satisfies the m+l conditions Lemma 5.1 in KW provided the design points
x(i), i=l . n are such that least squares regression in
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Ho is unique. The reproducing kernels for the various sub- Burman, P. (June, 1985), Estimation of Generalized Addi-

spaces then follow:- The r. k.'s R 0 and R I for W0 and W' tive Models, Rutgers University. (manuscript)

can be shown to be Cox, D. D., and O'Sullivan, F. (October, 1985), Analysis of
R O(u ,v) = J k v(u )k v(v), Penalized Likelihood-Type Estimayors with Applica-

v=o tion to Generalized Smoothing in Sobolev Spaces,

R 1(u ,v) = km(u)k(v) + B,(u,v), manuscript.

and the r. k. for HTEpR with the inner product induced by Craven, P., and Wahba, G. (1979), "Smoothing Noisy Data
(8.13) is with Spline Functions: Estimating the Correct

d Degree of Smoothing by the Method of Generalized
11 (R o(x a,z a)OR I (x a,z,)), Cross-Validation," Numer. Math., 31, 377-403.
o=1

thus, for example the r. k. for YHae H 12 is now Engle, R., Granger, C., Rice, J., and Weiss, A. (1983)
a "Nonparametric Estimates of the Relation Between

Q(x,z)=YRI(x.,za)1I R
0(xp,zp)+ Weather and Electricity Demand.." Discussion paper

a O 83-17, San Diego: Dept. of Economics, University of

R I (x ,z )R 1 (x 2,z 2) II R O(x p,z p). California,.

PsI,2

Given the r. k. an explicit representation for f X can be Eubank, R.L. (1986), "Diagnostics for Smoothing

given, and, again GCVPACK can be used to calculate f k. Splines," J. Roy. Stat. Soc. Ser. B, 47. (to appear)

For m = 1, R O(x a,z ) = 1, H 0 is one dimensional as before, Friedman, J. H., Grosse, E., and Stuetzle, W. (1983), "Mul-
and we only replace Bm in the discussion of periodic tidimensional Additive Spline Approxmation,"
spaces by R 1 and the same expressions hold. For m> 1, a SIAMJ. Sci.Stat. Comput., 4, 291-301.
typical element of Ha with, say a = 1 is now of the form

f(xt . .xd)= Green, P., Jennison, C., and Seheult, A. (1983), "Com-
ments to Nearest Neighbour (NN) Analysis of Field

rn-I Experiments by Wilkinson, Et. al.," Journal of the

f..(k " k(x). (8.18) Royal Statistical Society, Ser. B, 45, 193-195.............. vI=O

The V2 =' =Vd 0 term depends only on x 1 but the Green, P.J., and Yandell, B.S. (1985) "Semi-Parametric
other terms do depend on the other variables albeit in a Generalized Linear Models." Technical
parametric ( i. e. polynomial ) way. The case m =2 is prob- Report#2847, Math. Research Center, U. of Wiscon-
ably of special interest, then x p with 3 a enters at most sin.
linearly in functions in Ha.
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TABLES AND GRAPHS AS LANGUAGE

Nancy Clark, Editing and Design of Textbooks; Language of Data Project

The theoretical framework of the Language of or subsets of variables, to be related in some
Data is discussed in Dolby, Clark, and Rogers context external to the database. Although any
(1986). This paper describes the "language" table can be used for this purpose, a table also
half of the theory in further detail, has a communication structure; the limits of co-

Although we are not accustomed to thinking of herence require that the columns of a table have
visual displays as having formal language proper- some logical relationship to each other. Thus for
ties, tables and graphs follow all the rules of tables the design decision relates to primary and
written language, from the larger organizational secondary functions, with the levels of access for
structure of text down to the sentence grammar of each use organized accordingly. Archival tables
ordinary English. In tables these properties are are usually organized for access first at the
reflected directly in the tabular form. To iden- retrieval level, and next at the communication
tify their counterparts in graphs it is necessary level.
to look more closely at the common structure of The difference in design objectives is more
visual and verbal language. apparent in graphs. One type of graph designed

explicitly for data storage is the standard heat-
The Medium of Communication for Data transfer diagram. However, the very qualities

that make such graphs useful for their intended
Data differ from other forms of information in purpose make them correspondingly unuseful as

two respects. With data the usual activities of communication devices. Although the most common
information gathering, organization, and synthesis problem is an effort to use a graph designed for
are carried out independently by people who have one function for an entirely different function,
little or no direct contact with each other. As the concept that information is stored in the
a result, what is ordinarily a simple sequence of data leads, at a deeper level, to a confusion of
events is, for data, a chain of communication. efficient storage with efficient communication.

The second difference is the focus of these It also leads to the more important question of
activities. With written information the entire where the information does lie in a display.
process is directed toward synthesis of the con- The distinction between analysis and presenta-
tents into final form for dissemination to others. tion, the second branch of the diagram, hinges on
With data, however, synthesis does not lead to a an equally fundamental issue. The most obvious
single end product. Analysis is a multiple activ- difference is the difference in audience--self-
ity, and while the communication chain does not communication versus communication to others. For
end with the analyst, the activities are directed the author of the communication, however, the two
primarily toward this stage. functions are related only by the fact that one

Both of these characteristics imply that, for
data, the issue of communication arises long
before the presentation stage. The full communi- FIGURE 1 Basic functions of data displays
cation chain runs from data collection, through From Clark, Statistical Presentation--of What, to
editing and revision, and storage and retrieval, Whom, and for Which Purpose (1983)
to analysis and presentation. At every interface
information is transferred from one stage to the Data display
next through a visual intermediary; "data" is not
a spoken language. Although tables and graphs are
the primary conceptual structures for data, it is
their visible form that does the communicating.

Because the communication function of data dis- Storage Communication Primary
plays is usually treated as a presentation issue, hunction
the problems tend to accumulate at that level.

However, some of the issues defined in Figure 1
arise as early as the data-collection stage. One
is uncertainty about whether data displays are nalysi Presentatf-n Intended
supposed to communicate at all--that is, whether use
tables and graphs should be viewed as a communica-
tion medium or as storage containers for data.

All tables have a capacity for communication
which is inherent in the tabular form. For exam-
ple, microdatabases and tables both have an infor- Tostimulate Top Muad Toinform Presentation
mation structure that corresponds directly to the goal
organizational structure of text. A microdatabase,
however, is specifically designed for information
retrieval--the selection of individual variables, Pure Persuasive Information Relevant brarch

graphics graphics graphics of design

Language of Data Project, Box R, Sausalito, CA 1 1
94966. Research supported by a grant from the Rulesof Rulesof Rulesof Coveming
System Development Foundation to San Jose State aesheics retoric exposition pnnciples
University.
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often (but not always) follows the other. Analy- the set of operational relationships, and their
sis is the process that generates the content to resultant meanings, limited to the set of possible
be communicated; its transmission to others is meanings in data displays:
essentially a writing problem.

Of course, analysis also takes place on the Data operational
reader's side of the page, often so immediately elements + relationships = meaning
that the transition from reader to analyst is too
fleeting to grasp. As a result, the distinction The data elements consist of all the elements of a
between comprehension and analysis is similarly complete datum, with the meaning of each descrip-
blurred, and the information appears to communi- tor cleanly defined by the classification scheme
cate itself without the aid of any vehicle, discussed in Dolby, Clark, and Rogers (1986).

Although the further distinctions at the bottom These elements, including the values, constitute
of Figure I relate to presentation, some of them the "words" in a data sentence. Since the rela-
might also apply in other branches of the diagram. tional statements in a table or graph are limited
(The three branches of graphic design are described by the allowable operations on data, the set of
in Clark, 1983). For example, the three purposes meanings in the Language of Data is limited to
of presentation narrow the communication goal at statistical meanings.
all preceding stages to the communication of infor- Because the results of comparisons are often
mation, and this is in fact the goal to which the supplied by mental arithmetic, the derived data
Language of Data is limited, are commonly thought of as the information in a

Some of the methodology of information graphics display. The information, however, lies in the
may also apply to the design of analytic tools, entire relational statement, which may or may not
For example, perceptual persistence is utilized in include the derived datum. For example, in a
textbook design to relegate successive levels of statement of equality, a + b = c., the term c has
information to context as the ideas are absorbed, information value only with respect to its com-
a process not unlike that in analysis, where dis- ponents--or as one of the components of a differ-
covery results from the accumulation of insight rent relational statement at the next level of
gained through successive views of the data. derivation.

Unfortunately the advantage of perceptual per- The corresponding formulations for data dis-
sistence during analysis backfires at the communi- plays refer to the visible counterparts of the
cation stage. We all have trouble seeing our own content elements. In tables, as in verbal lan-
material from a state of innocence, but visual guage, the syntactic relationships of the terms
representations are particularly susceptible to are implicit in the terms being related. For ex-
the "Eureka problem." Once a particular meaning ample, the form of a word usually specifies its
has been discovered, it seems to leap out of the functional role in a sentence. In a table these
page in almost any view of the data. As a result, roles are denoted instead by spatial relation-
the author of a visual display tends to read into ships. In tables the verbal elements carry the
it what he or she meant to show and assume that burden of communication:
the table or graph actually communicates this
information. Verbal implicit implicit

What the reader sees, of course, is the meaning elements + relationships = meaning
(if any) to which he or she is visually directed
by the table or graph. Since this last condition In visual language the situation is reversed.
also holds for analytic tools, it is worth looking The most visible component in a graph is the set
more closely at where the meaning lies in a data of relationships:
display.

Visual visible visible
The Relationship of Form and Content elements + relationships = meaning

The information value of a table or graph This formul.ation is a decomposition of a set of
depends or the utility of the information it properties which are usually defined as single
contains. Communication value, however, is the system. The properties themselves are discussed
extent to which the form and content are a one- at length in Bertin's Semiologie Graphique (1983),
to-one match. This definition immediately implies a detailed application of Kandinsky's classic
the need for a formal separation of form and con- Point and Line to Plane (1926) to statistical 4
tent, and as a next step, a definition of meaning data.
at the content level. As Bertin points out, the properties of the

Dolby's definition of the two components of graphic system are independent of content. In the
information as the data and the operations on data communication of information, however, the objec-
involves a distinction so basic that it is rarely tive is to relate them. One of the obstacles ha
articulated (Dolby and Clark, 1982). However, it been a mismatch in definitions. Whereas the en-
extends immediately to the corresponding compon- tire graphic system is commonly thought of as
ents of language, the words and their syntactic visual syntax, the set of relationships at the
relationships in a sentence, content level is defined primarily in terms of

The meaning of a sentence, however, lies in the data component.
what the sentence says. Thus a third component Although an exact match requires better articu-
of information is the intended meaning--the net lation of the set of relationships in statistics
result of a particular set of elements and their the three formulations above provide a framework
operational relationships. for defining the properties of data displays

These three components of information can be directly in terms of the content elements they
described in generic terms as the data elements, express.
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The Language Properties of Tables In a formal table all three discourse variables
are named in the table title. The topic component

Although the descriptive information in tables of the title, which states the topic of the table,
is usually limited to the elements needed to refers directly to the elements in the table field.
identify the contents, a table is essentially a The next two components usually appear in the par-
highly condensed form of text. In fact, when the tition rules. The subject component names the
descriptive elements are classified under Dolby's variable listed in the stub, and the statement
formalism for a complete datum, the resulting component names the category in the column heads--
descriptor set is an even more condensed form of generally in that order. Thus a properly con-
text (see Dolby, Clark, and Rogers, 1986). structed table title provides a useful structural

Most of this information is given in the table description of the table for retrieval. Data are
title, which generally identifies the universe of stored (and later, used) by classification cate-
discourse. In Figure 2, for example, the title gory, they are retrieved by discourse category.
covers four of the five dimensions of descrip- Although most dictionaries give only circular
tion. The space is U.S., the function discussed definitions of subject and topic, the difference
is consumption, and the matter consumed is energy, between them shows up in their higher-level struc-
The observer is rarely specified in derived data, tures. The chief characteristic of the subject
but in this case the observers (EIA's respondents) is unity, whereas coherence refers to the topical
were the end users. progression. Thus at the publication level the

There is an important distinction in classifi- subject is a constant across the publication; top-
cation between the information specified in the ics, however, come in sets by definition. Once
description and that supplied from external the subject has been partitioned off, the contents
knowledge about the data. The aspect descriptor, are organized into some logical topical sequence,
for example, does not require an inference; the with the discussion under each main topic parti-
BTU is formally defined as the unit of heat con- tioned into topical subsets, which also have a
tent. Heat content, of course, is merely the progressive relationship.
aspect discussed in this representation of the The same properties show up in tables as a
data, not the aspects (various) represented by single variable in the stub and a set of variables
the primary data. in the columns, often grouped into subsets by

The same words that describe the contents of spanner heads. One of the requirements for the
the table, however, also have another function, stub is that the subject elements be an aggregat-
At the data level they become the words in set of able set. In contrast, the columns may be related
highly structured sentences all dealing with U.S. by any signs of operation; the only requirement is
consumption of energy. In short, we are looking that they all belong to some category that can be
at an ordinary paragraph--a series of sentences named. In some cases this higher-level node may
all of which are expansions on a single topic. be fairly high up in the topic structure. The

The subject of the table is the variable topic structure itself is an aggregation tree, of
arrayed in the stub--in Figure 2, the end-use course. However, the fundamental operations on
sectors. The topic of the discussion is energy data apply not only to nominal variables, but to
consumption, and the specific topic is the amounts the domain of visual variables in graphs.
of consumed, the set of values in the table field. The relationships between visual and verbal
The column heads comprise the third discourse language is easiest to see in tables. A table,
variable, the "statement variable." As a set, like any other visual representation, exists at
they specify the nature of the statements made in the most fundamental level as a set of visual
the table, in this case the change in consumption events which are perceived and organized by the
over time. In other words, the stub describes eye in successive stages of resolution. The
what the table is about, and the column heads process is similar to the effect of decreasing
describe what the table says. distance. For example, if a page of text is held

far enough away, the only discernible form is the
page. As the distance is decreased a printed

FIGURE 2 The descriptive elements of a table image becomes visible, first as a gray area and
then as a pattern of uniform lines. Well beyond

U.S. CONSUMPTION OF ENERGY, BY END-USE SECTOR reading range, the lines become recognizable as
AND YEAR: 1977-1980 strings of words, and eventually enough letter-

forms become discernible for the words to be read.
Quadrillion BTU's For material at close range, the corresponding

progression from peripheral vision to attention
End-use sector 1978 1979 1980 and perception is merely an instantaneous change

of focus.
With tables, then, there is quite a lot that

Residential & goes on before the reader gets to the data. The
commercial 28.159 27.462 28.283 first perceptual task is bounding the set of

events to be organized, and the next is locating
Industrial 29.373 31.551 30.284 the visual characteristics that identify the image

as a table. With some tables this is a nontrivial
Transportation 20.612 19.950 18.628 problem, but even beyond reading range most tables

have two identifying features: they contain a
matrix area, with a discernible pattern of rows

Source: James L. Dolby, Data Analysis: Tables In, and columns, and they consist of material that is
Tables Out, Online '84, 1984. Data from Monthly to be read.
Energy Review, June 1981, p. 18.
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__________________________________XXXM( nxxXXXXXXXXXX axUXX

XXXX XXXXIX XXXXXXX XXXIX

XX 000 000 .0

0 1 00 00 .0

(a) The scanning stage (b) Reading and primary comparisons

XXXXX Xxxxxxxxxxxx~x

KMXX XXXXXXXXX XXXXXXXXXXX

(c) Second-level comparisons

XXXXXXX 000 000

FIGURE 3 Visual syntax in tables
From Dolby and Clark, The Language of Data (1982) xXoxxX 000 0

The second characteristic provides an important In the first table the most immediate observation
cognitive cue: recognition that material is to be is that the prison population increased consid-
read immediately directs the viewer to the start- erably from 1976 to 1980; in fact, the female
ing point for reading. In Western cultures this population almost doubled. In the second table
is the upper left corner of the image--usually the the first observation is that the ratio of males
beginning of the table title. to females is more than 20 to 1. Although both

From this starting point the rest of the table conclusions can be drawn from either table, the
is scanned to locate and identify its structural orientation of the table matrix determines the
members. This search for visual structure takes order in which this information becomes visible.
place with all visual displays, but the scanning The reading stage in Figure 3b reduces each row
pattern for tables follows a specific sequence. of the table to a result, a new datum at the next
With all written materials scanning tends to be level of derivation, so that the set of results
vertical, in the sense that it starts at the top can be compared--this time in a vertical column.
and progresses downward. Reading is horizontal, Thus, if we stick to the primary comparisons in
however, so that the scan usually consists of a the table, there is another right-angle change
horizontal sweep of the column heads, followed by which now brings the result column into focus.
a vertical sweep of the stub. Although data are compared horizontally, numbers

This sequence of directional responses narrows
the scan down to the critical area--the values in
the table field. Whereas the preceding responses FIGURE 4 Effect of orientation of the table
are universal, the processes that go on in this matrix on meaning
part of the table vary widely with the reader's
experience, interests, and ability to handle num- California state prison population:
bers.

Experienced data users will usually look at the 1976 1980
field as a whole to determine the range of values,
and then scan horizontally, vertically, and perhaps Males 15,891 20,608
along the diagonal axis for any obvious patterns
of increase or decrease. The general reader may Females 590 1,039
scan the table field only for obvious exceptions
to uniformity, or simply begin reading across each
row as soon as the column heads and stub have been Males Fenales
identified.

At both ends of the experience scale, however, 1976 15,891 590
before the data can be analyzed they have to be

read--and even numbers are read from left to right. 1980 20,608 1,039 t
As a result, it is the directional preference for
reading that determines the order in which the
comparisons are seen in a table. For example, Data from California Prisoners, California
both tables in Figure 4 contain the same data. Department of Corrections, 1979 and 1983.
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are easier to compare in a column. Hence taking ence, and in the second table it was a ratio. The
the primary comparisons across the table now puts only place in the table these column relationships
the next level of comparison into the most advan- are expressed is the column heads--the statement
tageous position for the higher-level operations variable. It is the relationships stated in the
of statistics, column heads of a table that are shown in the

Because the last stage in Figure 3 is often the field of a graph.
starting point for the analyst, it is easy to miss
the language structure at the preceding stages. Statements of Comparison in Graphs
However, the visual sorting that goes on at the
scanning stage merely establishes the discourse Although the properties of visual language are
structure of the table, the framework for communi- usually defined as a system, they partition easily
cation. Communication itself takes place at the into to the two components of a relational state-
reading level. This means that the elements being ment, the set of terms and the set of relation-
read have to have some syntactic relationship that ships. In tables the focus is on the terms in
results in an intelligible statement, the equation, and in graphs it is on the signs of

The most immediately available syntax in a operation.
table lies in the spatial relationship of its The distinction between the discourse structure
parts. Unlike prose, in tables each structural of text and communicative syntax, which are not
element partitions directly into its grammatical usually thought of as connected in prose, provides
counterpart at the sentence level. As a result, us with a second partition. The visual structure
all table sentences have the same basic form. The of an image, as opposed to the syntactic relation-
subject is the item listed in the stub, and each ships that convey meaning, is the direct counter-
column entry is a statement of quantity about that part of the discourse structure of text. In a
subject. Thus, across the whole row, the sentence table, for example, the process of visual sorting
is a simple sentence with a compound predicate. that takes place at the scanning stage identifies

In the first table in Figure 4, for example, the subject, topic, and statement categories--
the first row might be expressed in telegram style which also corresponds (or should correspond) to
as the information structure of the contents.

Like a table, a graph also consists of a series
(California prison population for) of sentences all of which are an expansion on a

Males: 15,891 in 1976 and 20,608 in 1980 single topic. In graphs, however, the starting

point for reading is not the upper left-hand cor-
Unlike prose, the subject of a table sentence cor- ner of the image; it is the most prominent visual
responds directly to the subject of the discussion, element. The first sentence in the graph is the
The only verb in a table sentence is is or was (or relationship of this element to the next most
for predictions will be); hence the values in the prominent element, where the prominence hinges on
columns form the main predicate, and the column common aspect. Although a number of factors are
heads function as governing clauses. Although the involved, the levels of subordination in a graph
device holds unpleasant memories for many, these are essentially a change in common aspect at each
relationships are easiest to see in sentence level.
diagram: The role of aspect as a structural link in data

(in) 1976 (in) 1980 classification is discussed in Dolby, Clark, and
in 76 20 n),980 Rogers (1986). It applies here in the same sense,

Males I(was) 15,891 f(and) 20,608 as both the name of the variable and the specific
topic. The three aspects of color--hue, chroma,
and value (light/dark)--are well known. However,

The point of the statement, however, is the visual elements also have shape, size, orienta-

comparison of the two populations--about 16,000 in tion, and so on. The relational elements all

1976 compared to about 20,500 in 1980. That sub- have direction as well as extent, and a common

stitution for and is the link between statistics direction may be the common aspect.

and simple prose. It is also the source of mean- In a table, for example, the aspect descriptor

ing in a data display. All the statements in a links the topic elements in the table field to the

table or graph are statements of comparison-- common topic at that level, the topic term in the

statements of additivity, proportionality, and title. Where the variables differ in aspect, the

so on. The meaning in any particular instance common aspect is their relationship, for example,

depends on which of these relationships is speci- Boyle's law in the case of pressure, temperature,

fied. and volume. The higher-level structure of aspect

For example, the transpose in Figure 4 changed is independent of the topic structure; however, it

the subject (but not the topic) of the table. In is often of particular interest in exploring data.

the first table the subject was gender, and in the Aspect also serves as the pivot term between

second table it was the year. But it is the state- variables. In a table it functions as a hinge be-

ments about the subject that are of interest, so tween the subject variable in the stub in the stub

a more important consideration is that the two and the common topic--the difference between "tem-

tables have different predicates. As a result, peratures in patients" and "temperature in malaria."

they convey different information, despite the As in verbal language, the change in antecedents

fact that they contain exactly the same data. represents a transfer of attention from one object

Notice that the comparisons in Fig. 4 were at to another. As a result, although the statements

the variable level, not the data level--a compar- communicated by a graph are not limited to ele-
ison of whole columns across thr' table. In the mentary comparisons, they can all be decomposed

first table the primary comparison was a differ- into a sequence of simple comparisons. All visual
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effects stem from a comparison with some visible
or imaginary reference. At the "reading stage" in
graphs this reference shifts, with the endpoint of
one sentence becoming the starting point for next.
The meaning, however, lies in the resultant. In --

general, graphs follow the concepts of vector Avedlyme,
algebra rather than linear algebra. milorbaies/W

In graphs as well as tables, however, the basic 10
reference level is the horizontal axis. For example,
if the image in Figure 3b is visualized as a bar AA
chart, the first information it shows is the
lengths. If the page is turned 90 degrees, to
make the image a column chart, it now shows com-
parisons of lengths--again read across the graph. 6
As with the two tables in Figure 4, both pieces of
information can be extracted from either graph,
but the orientation of the graph determines the
order in which this information becomes visible.

All graphs, in fact, show both levels of deri-
vation. In a graph, however, the order can run in
either direction--as a forward projection to the
next level, with the focus on the relationships at
first level, or as a backward projection to the
components, with the focus on the derived level. 0 0 IF M A M I I A S 0 N D
As a result graphs are capable of much finer 1978 1979
degrees of meaning than tables, but they also Includes imports ot crude oil to the Strategic Petroleum Reserve. Data from the Monthly
require a decision that takes care of itself in Petroleum Statistics Report, January 1980.
a table. In a graph the focus has to be on one
level of derivation or the other, since the dis-
cussion cannot progress simultaneously in both (a) A proportional relationship of two quantities
directions.

Because the data elements are the carriers of
meaning in tables, the column heads of a table are,
in effect, an equation with elliptical signs of
operation. These are the relationships stated in
graphs; hence in a graph they have to be specified.
For example, the graph in Figure 5a shows crude oil
imports in relation to total imports. In opera-
tional terms the statement is a simple proportion.
The primary comparisons are the change over time, Averledaily v lume,

so the proportion itself is a second-level com- millim barrek/day
parison, a comparison of the structure of the
two horizontal comparisons.* CrudO Ae

It is easy enough to deduce from the two curves 6.5
that crude oil imports accounted for most of the
fluctuation in the total. But suppose the whole
point of the discussion is the fluctuation of
crude oil in relation to the stability of other
commodities. Fluctuation and stability are two
different aspects of the data, so the relation- 0 o . O. 'e
ship in this case is a ratio, not a proportion. - . .
The graph in Figure 5b shows exactly the same data, F a
but instead of a component relationship, the two=-
separate curves enable the reader to see the o I F A I A S 0 N
ratio of fluctuation to stability. 1978 1979

Again, the secondary information in the graph
can be deduced; total imports is simply the sum of Includes imports o crude oil to the Strategic Petroleum Reserve. Data from the Monthly

the two quantities. Notice, however, that this Petroleum Statistics Report, January1NO.

deduction involves mental arithmetic, not percep-
tion; the two fall in different domains. In fact, (b) A ratio of two properties: fluctuation and
although the graph shows the ratio of two quanti- stability
ties, the primary visual comparison is not the
quantitative ratio. It i"s the ratio of fluctua- r
tion to stability. FIGURE 5 Operational relationships in grphs:

If the point were the amounts, the most appro- Fromlark, Sample Pages and Speciticatone:_
priate form would be one that focuses on this Monthly Petroleum Statement (1981)

*At the time of his death Dolby was working on
a statistical basis for the comparison of compari-
son structures.
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Current source: Clark; 1981 precise specification of the intended meaning.

Original source: EIA; 1979-1980 In Figure 6, for example, the aspect descriptor
links structures in more than one domain of

Observer: Petroleum importing companies representation.

Matter: Crude oil Conclusion
Function: Imports
Space: U.S. Although the issue is usually posed as "tables
Time: 12/78 to 12/79 versus graphs," for interactive use the answer may

Aspect: Volume, mbbl [-- Imports (F)] be both, depending on the analytic step. There
Domain: 9.2, 9.0, 8.4 are a number of situations in which the analyst

may want to switch back and forth from one mode of
Aspect: Fluctuation [ Imports (F)] representation to the other, either to focus on a

Aspect: Fltaton [f va iport () particular aspect of the data or to move to a com-
Domain: Amount of variation putational step. A table manipulator designed
Domain: AmountVariation specifically for interactive use is discussed in
Domain: Variation with respect to reference Rogers (1986).

Once the applicability conditions for relating

FIGURE 6 Possible descriptor set for Figure two variables have been defined, the descriptor
sets will have a communication structure as well.
Specification of the form of display will then be

aspect of the data instead, a table. There are a matter of matching the aspect of the data the
two factors involved. One is the focus on the analyst wants to see, first to its domain at the
particular aspect of the data most efficiently content level, and then to the aspect of repre-
communicated by numerical symbols. The other in- sentation that makes this information visible.
volves screening out factors that distract from The development in this area has just begun, but
that focus, and in particular those elements that there is reason to think the language of data will
show something else, ultimately be trilingual.

The visual variable that makes fluctuation and
stability explicit in Figure 5b is shape; thus in
another view of the data this variable will be the REFERENCES
chief source of noise. Removing it altogether
implies a table--unless, of course, the focus is Clark, Nancy: Sample Pages and Specification:
on some other aspect of the data, expressed by a Monthly Petroleum Statement, Language of
different visual variable. Data Project, 1981.

The descriptor sets for data, discussed in
Dolby, Clark, and Rogers (1986), have especially ---: Statistical Presentation--of What, to Whom,
important implications for graphs. Whereas the and for Which Purpose?, presented at the Joint
data component is the visible information in a Statistical Meetings, Toronto, 1983.
table, in graphs the entire descriptive structure
has to be supplied through another domain (as with Dolby, James L., and Nancy Clark: The Language of
the labels on graphs). In an interactive system Data, Language of Data Project, 1982.
this information would have to be available re-
gardless of the mode of representation. Dolby, James L., Nancy Clark, and William H. Rogers:

Descriptor sets play a more immediate role, as The Language of Data: A General Theory of Data,
a mechanism for specifying the meaning to be com- presented at the 18th Interface Symposium, Fort
municated by a table or graph. The form developed Collins, CO, 1986
for the classification of individual variables in
a microdatabases is designed as independent mode Rogers, William H.: Implications of the Language
representation which summarizes the information of Data for Computing Systems, presented at the
structure of the variable as well as its contents. 18th Interface Symposium, Fort Collins, CO,
The variables in a graph, however, require more 1986.
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IMPLICATIONS OF THE LANGUAGE OF DATA FOR COMPUTING SYSTEMS

William H. Rogers [1]
The Rand Corporation and the Language of Data Project

The Language of Data (LOD) is a program of The individuals (cases) form the stub of the
basic research into the communication of quanti- microdatabase and the variables are named in the
tative information. The concepts developed under column heads. Each variable comes with a set of
this umbrella range from the formal definition descriptors that make up the second story of the
of a single datum through formalisms for micro- house, and the attic consists of descriptor sets
databases, tables, graphs, and the relationships at the topic level that tie the columns of the
between them. The theoretical aspects are cov- microdatabase together. The field--the two-way
ered in companion papers by Dolby, Clark, and matrix of numbers--is the portion of the data
Rogers [2], and Clark [3]. structure statisticians and statistical packages

This paper discusses the kind of computer sys- focus on. The overall structure might be viewed
tem envisioned under the Language of Data, includ- as a shorthand device for summarizing the descrip-
ing applications which have been implemented and tive content of each individual datum. However,
elements not yet developed. As such, the system this is a case in which the whole is greater than
represents a design consideration for future soft- the sum of its parts.
ware developers rather than a finished product. LOD is not concerned with relational struc-
Moreover, the set of programs discussed here tures and other features of certain existing
should not be confused with the theory itself. databases. Statisticians typically view these
The understanding of the structure of the datum as expanded matrices and aggregate them to a more
and of tables developed by this project could be convenient unit of analysis, and then merge the
applied to other programs as well. results with other data having comparable units

The envisioned programs focus primarily on of analysis.
three themes: First, they focus on a principal The first step is to find our way around by
application of LOD, the documentation of large means of the descriptor sets. They themselves
databases. Second, they illustrate some of the form a matrix in which the columns correspond to
formal ideas (computation with descriptors and the descriptors and the cases are the variables of
applicability conditions) in ways familiar to the microdatabase. This is the transpose of the
statisticians. Third, they incorporate some of way they appear in the house structure. The com-
the insight into table structure to provide sev- puterized tool for doing this is a descriptor
eral natural and powerful tools for the data manipulator called IDEA [4].
analyst. IDEA is an experimental program which operates

on the transposed matrix of descriptors, using
The Overarching Computing Plan both familiar and novel tools of data analysis.

It is especially good for moving around in the
The "grand plan" for a computing system is data to gain a view of the whole, and for visually

represented by the diagram in Figure 1. This selecting and arranging data (in terms of their
diagram is especially relevant to a large survey verbal descriptors) using techniques for holding
study such as those Rand or many federal agencies some of the data fixed and sorting others. There
would perform. Individuals are surveyed in sev- are also operators that uncover hierarchic struct-
eral different ways and the data are collected ure through a highlighting technique sometimes
into a microdatabase. The organizational struc- called "slipping." More details about the program
ture of the survey itself results in a houselike are given below.
structure for the microdatabase, as shown in This kind of analysis was especially popular
Figure 2. when statisticians kept data on wall charts. It

Descriptor

I icrodatabase I Manipulator

I ! d Information s

I access programs .11

Tsesaurus Z n Xand Glossary I III-

VARIABLE (JOI) NAMES

Table Table Graphical /
Grabber Manipulator tDisplay

FIGURE 1 FIGUrE 2



became unfashionable when computers made it more operates on tables in the standard format. In
difficult to find one's way around a large data addition to select and arrange operators charac-
set than it was to do a regression analysis. In teristic of the descriptor manipulator, the Table
my experience as a consulting statistician, forc- Manipulator can combine tables and perform trans-
ing the client to visually confront his or her formations and statistical analyses. Exploratory
data is more effective in revealing truth than data analysis methods are available. The table
the most powerful of statistical tests, structure and the contents of the table, including

The upper levels of the microdatabase struc- verbal information, are used (in conjunction with
ture also provide indexing possibilities, for the glossary) to guide the computation and to
locating individual variables or subsets of var- check applicability conditions. For example, if
iables at the lower levels. This is important in the user requests dggregations, it checks that all
a large study which may involve many collaborators the appropriate partitions are represented.
and 10,000+ variables. One can envision library- An important property of the Table Manipulator
style searches of the descriptor sets, together is that it operates on tables to produce objects
with browsing capabilities among similar sets. which are themselves tables.
These possibilities are currently being explored The Table Manipulator shares with spreadsheets
at Rand. the fact that changes in the data can be immedi-

Moving down to the next level of Figure 1, we ately reflected in the results. However, it
have the key undeveloped piece, the "Executive differs from spreadsheets in several important
Intermanipulator" and its slave, the ubiquitous respects. The Table Manipulator is aware of table
statistical package. The job of the Executive structure and its implications, whereas spread-
Intermanipulator is to convert data in micro- sheets require the user to specify what this
database form to tabular form by aggregation, structure is. The Table Manipulator can compute
tabulation, summarization, or the more complex with the labels, the spreadsheet cannot. Taking
operations of statistical analysis. This activity advantage of the first two properties, the Table
is usually performed by the primary statistical Manipulator can invoke statistical methodology
analyst. without requiring specification at the individual

To aggregate successfully, the Executive Inter- datum level of what to do. The Table Manipulator
manipulator must know the rules of aggregation. has available a library of related information
It should check the glossary to determine whether (via the Gateway program or other statistical
the quantity being aggregated is additive and the analysis) to draw upon the analysis. Finally, itthesaurus to know whether the units being aggre- permits revision and editing, with full access togated oer form an exhaustive partitiong a step-by-step reanalysis of the data.

If the Table Manipulator is a tool of analysis,
The output of the Executive Intermanipulator what constitutes an adequate audit trail for such

might be a table or a graph. Adequate titles, work? Most interactive statistical packages create
column heads, source information, units, and a file of commands that have been executed. The
labels would be generated from the microdatabase. Table Manipulator also has this capability. The
These might be awkward in wording; they would be analyst can then go back to a previous step by re-
generated algorithmically and automatically. running the sequence of commands up to the given

The Executive Intermanipulator is also respon- point. The analysis can also be repeated with newsible for operations on microdatabase variables data, making it possible to do "yesterday's anal-that create other microdatabase variables. For
example, it would draw on the glossary to deter- The Table Manipulator (and the descriptor
mine that population divided by land area gives manipulator IDEA) go beyond this by giving the
population density and it would query the user if user full access to displays in previous steps,he or she attempts to subtract land area from mean recorded as a state of the data and display ratherJanuary temperature, since that constitutes an than a fixed screen of characters. The analyst
invalid comparison (incommensurate units of inas- can go back to a rrevious state and continue from
urement or descriptors that differ in more than there simply by pushing a few keys. Moreover, if
one dimension). editing changes have been made, the refreshed dis-

If the result of the operation is a table, then plays can reflect the new information.
the table should be in standard computer table Elaborating on this technology leads us to a
interchange format. This computerized format cool that enhances or clarifies the structure of
breaks down the table into its structural compon- the comparisons in tables. A comparison struc-
ents. (The structural components of a table are ture is a systematic way of making comparative
described in Clark [5].) inferences from the contents of the table. For

Tables may also be drawn from online sources, example, each column or row might be compared with
Gateway, an experimental program developed by the its neighboring column or row. The place to start
San Jose State University Mathematics Clinic 16] is by elucidating comparison structures employed
under the sponsorship of the Language of Data by naive and epert readers. More complex tech-
Project, can query the Lockheed Dialog informa- nologies move toward exploratory data analysis
tion retrieval system for certain types of online ideas pioneereL by Tukey 17].
tables. These tables are also generated in the The Table Manipulator is a considerably dif-
standard interchange format. Additional informa- ferent tool from a table-producing language suchtion on the Gateway program is contained in tht' as TPL [8]. TPL is designed to produce attrac-
Mathematics Clinic report 16]. tive tabular displays from data sets but is not

The key tool for secondary analysts is the designed to operate on the data in the tables,
Table Manipulator. This program, developed by except though certain formatting commands. That
Rogers, is written in a general-purpose language is, TPL does flot simulate the structural elements
and has been implemented in experimental form on of tables, but simply produces them line by line.
an IBM-PC. The Table Manipulator displays and
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The Table Manipulator is more like a spread- statistical matrix as shown in Figure 3b. The de-

sheet in its feel, but differs from a spreadsheet scriptors for the stub, generated at an earlier

in several respects. First, it takes advantage of stage, contain information that would be crucial

table structure, including the inherent row and in a real data set.

column structure and verbal information, such as IDEA, the descriptor manipulator, processes a

"Total". Second, it has two-way table operators, matrix of descriptive values consisting of the

such as analysis by means and exploratory data entries for Source,..., Domain. (Recall that this

analysis operators, built in. Third, it has the is the top section of Figure 1.) Like any matrix
ability to track what has changed and to go back of numerical values, the descriptive values can

and forth between displays. Fourth, there is a be selected and arranged in useful formats. The

library of information available through sources following examples are from an LOD classification
such as Gateway that may be combined with the of the General Social Survey [11]:

given table for use in making comparisons.
Some related work has also been done on the GSS83 Version 0/ 0

kind of mathematically rigorous language and table
structure needed for the overarching system out- 1 2 3 ... 7
lined here. Graves and Blaine [9], working in ID Observer Matter Funct... Domain
collaboration with the Language of Data Project,
have described a computer language called ALGOS I I Adult mem Adult mem Type ... Professio
which facilitates the description of statistical 2 2 NORC Adult mem Occup... 0-9, 10-1
methods in terms of algorithms or applicability 3 3 Adult mem Adult mem Emplo... Self-empl
conditions. ALGOS has extensible data types, so 4 4 Adult mem Adult mem Type ... Agricultu
that the descriptive component of a datum can be 5 5 NORC Adult mem DOT o... Relationa
carried and processed with its numerical compon- 6 6 NORC Adult mem Relat... Synthesiz
ent. Graves and Manor [10] have discussed the 7 7 NORC Adult mem Relat... Mentoring

structure of a table in this framework. 8 8 NORC Adult mem Relat... Setting-u

Descriptors and the Descriptor Manipulator

A basis of the Language of Data theory is that 20 20 NORC Spouse Occup... Lowest le
the datum contains both a descriptive and a num-
erical part, where the descriptive part consists On 0
of a common, one-level classification of informa- Row 1 Col 7

tion. The terminology in the following examples
is defined in Dolby, Clark, and Rogers [2]. The display fills the IBM-P display (25x80)

Thus we might create two data, as shown in Fig- and has function key commands which instantly
ure 3a, which would be combined with the stub in a scroll through the database. The function keys
statistical matrix as shown in Figure 3b. The de- expand or contract fields.

One can arrange rows and columns in a specific

FIGURE 3 Structural Details of MICRODATASE order, as shown in the next display:

(a) Two data

Source: Rand
Observer: Rand Nurse Source: Rand

Hatter: Mary Jones Observer: Rand Nurse

Function: Systolic Blood Pressure Matter: John Smith

Space: Rand Examination Center Function: Systolic Blood Pressure

Time: 8 am, January 6, 1986 Space: Rand Examination Center

Aspect: Pressure, mm Hg (F) Systolic BP Time: 8 am, January 6, 1986

Domain: 120 Aspect: Pressure, mm Hg (F) Systolic BP
Domain: 135

(b) Data in microdatabase form

Stub Variable

Source: Rand Rand
Obsvr: Survey Ctr. Rand Nurse
Matter: Patient Patient
Functn: Identity Systolic Blood Pressure
Space: Universal Rand Examination Center
Time: Universal 8 am, January 6, 1986
Aspect: Name (F) Id. Pressure, mm HS (F) Systolic BP
Domain: Alphabetic 120,...,155

Values: Mary Jones 120
John Smith 135
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GSS83 Version 0/ 0 The number in the upper left of each display is the
display number generated by the program.

1 2 3 4 ... A command to total the columns would produce
ID Space Observer Matter Funct... display 2:

1 1 Continent Adult mem Adult mem Type ... 2. U.S. CONSUMPTION OF ENERGY,
2 2 Continent NORC Adult mem Occup... by END-USE SECTOR and by YEAR: 1977-1980
3 3 Continent Adult mem Adult mem Emplo...
4 4 Continent Adult mem Adult mem Type ... (BTU x 10*49)
5 5 Continent NORC Adult mem DOT o...
6 6 Continent NORC Adult mem Relat... YEAR
7 7 Continent NORC Adult mem Relat...
8 8 Continent NORC Adult mem Relat... END-USE SECTOR 1977 1978 1979 1980

Residential & comm 27.569 28.159 27.462 27.283
Industrial 29.024 29.373 31.551 30.284

. . . Transportation 19.735 20.612 19.950 18.628
20 20 Continent NORC Spouse Occup... All end-use s[2] 76.332 78.150 78.968 76.201

--------------------------------- -------- Total 76.328 78.144 78.963 76.195
ARR 4 1 2 3 On 0

Row 1 Col 7 SOURCE: Monthly Energy Review, June 1981, p. 18

NOTE 1: 07/05/84,JLD
It is also possible to sort on any particular row NOTE 2: Totals may not equal sum of components
or column, due to independent rounding

The descriptor manipulator has two interesting
operators used in conjunction with its sorting Command? total
capabilities. The FIX operator highlights a set Command?
of rows and columns and keeps them in a fixed The rows or columns may be sorted with a
position on the screen, sorting or arranging command:
around them wherever requested to rearrange data.
This makes it possible to compare a set of fixed Command? sort 1980
information with another set physically located
in a different part of the display without having Suppose we now want to look at a table of sport
to create an artificial sort key or otherwise parachuting deaths which is stored as 'dpara' on
disturb the key information, the disk in our table interchange format:

The SLIP operator uses bold (high Intensity) to
display hierarchic structure. If an item and all Command? read dpara
the items left of it are the same as in the pre-
vious row, then the item is not in bold. When a We might then calculate both the row and column
column entry changes from the one above it, that totals:
entry and all those to the right are shown in bold.

The descriptor manipulator also has the ability 5. DEATHS FROM SPORT PARACHUTING,
to transpose the data matrix, revealing expanded by JUMP EXPERIENCE and by YEAR
detail in the descriptor sets.

YEAR
Operation of the Table Manipulator Number

of jumps 1973 1974 1975 TotalThe basic operating format of the Table Manip- 1-24 14 15 14 43
ulator is a display approximating the desired form 25-74 7 4 7 18
of the table: 75-199 8 2 10 20

200+ 15 9 10 34
1. U.S. CONSUMPTION OF ENERGY, Unreported 0 2 0 2

by END-USE SECTOR and by YEAR: 1977-1980 Total 44 32 41 117

(BTU x 10 '9) SOURCE: Metropolitan Life Insurance Company,

YEAR Stat. Bull.:3 p 4 (1979)
NOEE:AR1386N

END-USE SECTOR 1977 1978 1979 1980 NOTE 1: 03/13/86,NC -
Residential & comm 27.569 28.159 27.462 27.283 Command? read dpara
Industrial 29.024 29.373 31.551 30.284 Command? totals
Transportation 19.735 20.612 19.950 18.628 Command?

All end-use s[2] 76.332 78.150 78.968 76.201
The Table Manipulator also produces transforma-

SOURCE: Monthly Energy Review, June 1981, p. 18 tions of the data. When a transformation is done,
a question arises of what to do with totals. Or-

NOTE 1: 07/05/84, JLD dinarily a total should be eliminated, but a mean
NOTE2: otas ma no eqal um o coponntsshould be recalculated; so the program is designed

due to independent rounding to do this.
------------------------------------------------- The command to do a square-root transformation
Command? would produce display 6:
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6. (TRANSFORMED) DEATHS FROM SPORT PARACHUTING, 8. DEATHS FROM SPORT PARACHUTING,
by JUMP EXPERIENCE and by YEAR by JUMP EXPERIENCE and by YEAR

YEAR YEAR
Number Number
of jumps 1973 1974 1975 of jumps 1973 1974 1975 Effect
1-24 3.7 3.9 3.7 1-24 0 2 0 6
25-74 2.6 2.0 2.6 25-74 0 -2 0 -1
75-199 2.8 1.4 3.2 75-199 0 -5 2 0
200+ 3.9 3.0 3.2 200+ 5 0 0 2
Unreported 0.0 1.4 0.0 Unreported 0 3 0 -8Effect 0 -1 0 8

SOURCE: Metropolitan Life Insurance Company, E

Stat. Bull.:3 p 4 (1979) SOURCE: Metropolitan Life Insurance Company,
Stat. Bull.:3 p 4 (1979)NOTE 1: 03113/86,NC

NOTE 2: values transformed by sqrt(*) NOTE 1: 03/13/86,NC
- -NOTE 2: two-way analysis by medians

Command? totals ----
Command? sqrt(*) Command? back
Command? Command? analyze medians

Command?
We can also calculate percentages or other

functions of the data, using either the entire
value field or specific rows and columns. The
program asks whether an analysis should be done
by means or by medians. If the response were
means, the result would be the table shown in
display 7: 9. DEATHS FROM SPORT PARACHUTING,

by JUMP EXPERIENCE and by YEAR
7. (TRANSFORMED) DEATHS FROM SPORT PARACHUTING,

by JUMP EXPERIENCE and by YEAR YEAR
Number (Hypothet)

YEAR of jumps 1973 1974 1975 Effect 1980 jumps
Number 1-24 0 2 0 6 336
of jumps 1973 1974 1975 Effect 25-74 0 -2 0 -1 525
1-24 -0.2 0.2 -0.1 1.3 75-199 0 -5 2 0 642
25-74 0.1 -0.3 0.2 -0.1 200+ 5 0 0 2 2023
75-199 0.2 -1.0 0.7 -0.0 Unreported 0 3 0 -8
200+ 0.4 -0.2 -0.2 0.9 Effect 0 -1 0 8
Unreported -0.6 1.0 -0.5 -2.0

Effect 0.1 -0.1 0.0 2.5 SOURCE: Metropolitan Life Insurance Company,
Stat. Bull.:3 p 4 (1979); Imaginary

SOURCE: Metropolitan Life Insurance Company, Sport Parachuting Club (1982)
Stat. Bull.:3 p 4 (1979)

NOTE 1: 03/13/86,NC
NOTE 1: 03/13/86,NC NOTE 2: two-way analysis by medians
NOTE 2: values transformed by sqrt(*) NOTE 3: 03/19/86,WHR
NOTE 3: two-way analysis by means -- --- --- -----

-------- ---- Command? join njumps
Command? sqrt(*) Match categories (linear interpolation)? exponent
Command? analyze Means or medians? means Command? a
Command?

The Table Manipulator has a cursor that can be
After looking at the means, we might now wish to moved from field to field. For example, we could
back up to the original counted data and request move the cursor to row "Unreported" and column
an analysis by medians, shown in display 8. "1974", and then revise the original value 2 with

We might then spot a flaw in these data: we the command sequence ,,
should not be comparing across number of jumps
without some denominator. If we had information Command? recall 4
on the number of jumps by various categories in Command? revise 1
1980, we could join these (hypothetical) data in
the table as shown in display 9. The first command takes us back to display 4, and

Note the need in joining data to understand the second command changes the value to 1. This
differences in the stub values. In this case, the new value is carried through to all subsequent
data joined were not classified in precisely the analyses. Thus we can now move forward in the
same way as the data in our existing tables, so displays to track the effect of that revision
some interpolation rule had to be employed. The through the analysis. The effect on display 14,
rule employed in display 9 was one based on the for example, would be as shown. Notice the auto-
exponential distribution. matically generated footnote in this display.
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14. DEATHS FROM SPORT PARACHUTING. To summarize, the Table Manipulator is an ex-
by JUMP EXPERIENCE and by YEAR perimental tool for secondary data analysis using

existing tabular material. It embodies design
YEAR objectives dictated by the Language of Data and

Number (Hypothet) demonstrates some areas in which the design of
of Jumps 1973 1974 1975 Effect 1980 jumps existing interactive packages might be improved.
1-24 0 2 0 6 336 It is one of many possible tools in a Language of
25-74 0 -2 0 -1 525 Data computer system and should be viewed in this
75-199 0 -5 2 0 642 context.
200+ 5 0 0 2 2023
Unreported[2] 0 *2* 0 -8

Effect 0 -1 0 8 NOTES:

SOURCE: Metropolitan Life Insurance Company, [1] Address: The Rand Corporation, Santa Monica, CA
Stat. Bull.:3 p 4 (1979); Imaginary 90406; Language of Data Project, Box R, Sausalito,
Sport Parachuting Club (1982) CA 94966. This work supported by a grant from the

System Development Foundation through San Jose
NOTE 1: 03/13/86,NC State University.
NOTE 2: original 1974 value was 2; 03/20/86,WHR
NOTE 3: two-way analysis by medians [2] Dolby JL, Clark N, Rogers WH: A General Theory
NOTE 4: 03/19/86,WHR of Data, Presented at the 1986 Interface Meetings,

--------------------------- -Fort Collins, CO, March 1986.

Command? forward
Command? forward (3] Clark N: Tables and Graphs as Language,
Command? Presented at the 1986 Interface Meetings, Fort

Collins, CO, March 1986.

Finally, an illustration of the automatic
comparison capabilities. The Table Manipulator [4] Franzen A: The Descriptor Manipulator: A Pre-
determines the amount of fuzz in the table and liminary Reference Manual, (program by W Houchin),
uses that to suggest a set of cut points, which LOD Technical Report, Language of Data Project,
are subject to acceptance by the analyst. 1986.

16. DEATHS FROM SPORT PARACHUTING, [5] Clark N: Sample Pages and Specifications:
by JUMP EXPERIENCE and by YEAR Monthly Petroleum Statement, Language of Data

Project, 1981, pp. 16-18.
YEAR

Number [6] San Jose State University Mathematics Clinic:
of jumps 1973 1974 1975 Pattern Recognition and Automatic Data Translation,
1-24 14 15 14 Mathematics Clinic, San Jose State University,

<< << << 1985.
25-74 7 4 7 ,.

[7] Tukey JW: Exploratory Data Analysis, Addison

75-199 8 > 2 << 10 Wesley, 1977.
<< << <<

200+ 15 9 10 [8] US Bureau of Labor Statistics: Table Producing
>> >> Language, Version 5: Language Guide and Print Con-

Unreported 0 2 0 trol Language, US Department of Labor, Bureau of
Labor Statistics, Office of Systems and Standards,

SOURCE: Metropolitan Life Insurance Company, Division of General Systems, 1979.
Stat. Bull.:3 p 4 (1979)

[9] Graves H, Blaine L: ALGOS: A Foundation for
NOTE 1: 03/13/86,NC the Representation of Knowledge, Algos Project,
NOTE 2: comparisons cut at 3.1 and 6.2 Department of Mathematics and Computer Science,

-------------------- San Jose State University, 1984.
Command? recall 4
Command? compare 3.1/6.2? [10] Manor R, Graves H: ALGOS as a Knowledge
Command? Representation System: Representing Statistical

Data and Tables, Language of Data Project, 1983.
The Table Manipulator also has the ability to

move rapidly around the display, save tables on [11] National Opinion Research Center: General
the disk and print them out, calculate simple test Social Surveys, 1972-1984: Cumulative Codebook,
statistics such as chi-square, reorder rows or Roper Public Opinion Research Center, University
columns on the basis of clustering algorithms or a of Connecticut, Storrs, CT, 1984.
determination of an optimal linear ordering (non-
linear unidimensional scaling), compute subtotals,
and do regressions of rows or columns.
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THE LANGUAGE OF DATA: A GENERAL THEORY OF DATA

James L. Dolby, San Jose State University;. Language of Data Project
Nancy Clark, Editing and Design of Textbooks; Language of Data Project
William H. Rogers, The Rand Corporation; Language of Data Project

This paper, adapted from a recent talk by the There is, for example, no formal provision for
late James L. Dolby, was prepared for presen- including a description of the phenomenon that
tation by Nancy Clark and William H. Rogers. was measured as an integral part of the data. In
It represents theoretical developments by fact, the reported values are commonly referred
Dolby and Clark, with a focus on Dolby's work. to as "the data," a definition that disconnects the
Because the paper was written in two halves, measurements from what was measured at the first
the first by Clark and the second by Rogers, pass. The accompanying documentation may describe
it reflects a shift in perspective. We felt the measurement process in copious detail, but the
it appropriate to retain the two perspectives essential ingredients have not made it into the
to give the reader some flavor of the cross- record.
disciplinary nature of the Language of Data.

The Formal Structure of Data
The Language of Data stems from some practical

problems that affect more than one discipline. The foundation of the Language of Data is a
Most of these problems are old. Analysts have to formalism for incorporating the essential elements
work with data that are so poorly identified that of description, based on a faceted classification
there is often no clue to their ancestry, let scheme originally developed in information science.
alone to the phenomenon they represent. One prob- Most classification structures are hierarchic. In
lem is that this information is not documented--or biological classifications, for example, all the
at least not documented in a form in which it can species are organized into a single hierarchy. In
be passed along, a faceted structure each object or event is iden-

Another problem is the lack of any mechanism tified in terms of a set of descriptors, each rep-
for transmitting information, in unambiguous form, resenting a different facet of that phenomenon.
through an entire chain of communication. Although The Dolby model is based on a facet structure
the communication of information is usually treated originally designed as a universal scheme for
as a presentation issue, for data the problem is library classification, in which the contents of
more fundamental. At every point in the communi- all documents were described in terms of five
cation chain information is transferred from one fundamental dimensions of description--
stage to the next through a visual intermediary,
a table or a graph. Thus unambiguous communica- Observer, Matter, Function, Space, and Time
tion depends on a precise definition of both the
information to be communicated and the medium of with the author name added for unique identifi-
communication. The properties that convey infor- cation. In less formal terms, these categories
mation in tables and graphs are discussed in Clark are the standard Who, What, How, Where, and When
(1986). This paper focuses on the components of of reporting. They are, in fact, the minimum
information, the content of the communication. requirements of description for any reported

The general sequence of events for data is event. The application of this model to scien-
shown by the diagram in Figure 1. Each of these tific data is discussed in Dolby (1983). For
stages involves a different use of the data, and data, of course, a further level of specifica-
the activities at any stage may alter the content, tion is needed--the aspect observed and the
generate new information, or lose information, values of the observation.
The biggest loss of information is at the data- The result is a formal definition of a complete
collection stage, where there is a wealth of datum, shown in Figure 2. Dolby defined a datum
descriptive information, but no criteria that as an ordered pair consisting of an observation
cover the essential elements of description, component and a descriptive component--a finite

set of terms that identify the phenomenon the data
represent (Dolby and Clark, 1982). Notice that

Language of Data Project, Box R, Sausalito, CA unique identification works in both directions in
94966. Research supported by a grant from the this model. The set of descriptors uniquely iden-
System Development Foundation to San Jose State tifies the phenomenon being described. The part
University.

FIGURE 1 The chain of communication for data
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DATUM STRUCTURE

Descriptive identification

Source Descriptive component ObservationI _ __ 1 1 I I I
1 to n Observer Matter Function Space Time Aspect Value

FIGURE 2 The formal structure of data

bracketed as "descriptive identification" refers (Clark, 1986). The first link relates to the role
to unique identification of the values. As a of the observer in specifying the aspect observed.
storage system, faceted classification provides In any description of reality we have to know
a unique address for every number in the data- the perspective from which the objects and events
base. are being viewed in order to tell what we are

Some of the structural details are easier to looking at. In a direct observation the original
see if the descriptors are represented as an un- observer determines the viewing point. Under
organized set, as shown in Figure 3a. The symbols these circumstances the focus of the observation
0, M, F, S, and T refer to the descriptor categor- might be any aspect of the phenomenon, depending
ies--Observer, Matter, Function, Space, and Time-- on the observer's interest. However, data are
and X denotes the aspect and its domain of values, collected about a phenomenon of interest to the
The classification scheme sorts the descriptive data collector. In this case the original obser-
elements of data into five facets. Each descrip- ver is responding to questions framed by the data
tor belongs to some variable in one of these collector, in connection with the event about
facets, which specifies its meaning in a particu- which the data collector is gathering informa-
lar context--the difference, for example, between tion. Thus the only vantage point represented
a camel's-hair brush and a camel's hairbrush. The even in raw data is that of the data collector,
result is a set of descriptors, each defined in the person known as "source." The identity of
terms of its own underlying variable, but struc- the original observer, the witness who reported
turally independent of each other. This is an the values, is part of the formal record of the
exceedingly useful arrangement for later manipu- data collector's observation.
lation of the terms during analysis, an applica- This is true even where the data collector and
tion discussed in Rogers (1986). the observer are the same person; the researcher

From the standpoint of description, however, frames the questions in one role and records the
we still have only a set of descriptors--a collec- observations in another. In subsequent publica-
tion of words, each with a cleanly defined meaning, tions of the data the identity of both observers
but with no relationship to each other. Faceted may be available through the source chain. It is
classification specifies the semantic content of the author of the current source document, how-
the description, but not the context. To connect ever, who specifies the aspect of the data being
the data to the phenomenon they represent, we need discussed.
a basis of organization for a coherent description Notice that as soon as we get into the struc-
of the phenomenon. And to connect the observation ture of description the role of aspect begins to
to the phenomenon under study, we also need the emerge. From a grammatical standpoint, aspect is
formal link between aspect and the phenomenon. a "relative term"--one that requires an antece-

Neither of these structures lies in the classi- dent. The distinction between "aspect measured"
fication scheme. However, the missing elements and "aspect discussed," for example, is in effect
are provided by Clark's development of the role a transfer of attention from the object that was
of aspect in the information structure of tables measured to the object of study, the topic term in

FIGURE 3 Descriptive structure of a datum

T F S T

F Event of interest

M X S
1-: 7 - Datum, described from
O- 0-I's perspective

0

where X = xl, . . . ,xn 0-I Data collector
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[Observer, Matter, Function, Space, Time]; Aspect, Value

[Observer, Matter, Education, Space, Time] Dimension of interest
(topic term)

Other SAT scores Aspect of interest
aspects (specific topic)

Other Observed Values of interest
values values

(topic elements)

FIGURE 4 The role of aspect in classification

the descriptor set. However, aspect also implies The Classification Process
a part/whole relationship--the aspect of the event
that is the focus of the observation, and in par- The purpose of an initial classification is to
ticular, the one about to be discussed in further provide the analyst with an accurate representa-
detail. Thus, from the standpoint of faceted tion of the author's meaning, as a starting point
classification, aspect is merely further speci- for analysis. This means a consistent picture of
fication in the dimension of interest, the author's descriptive structure, not the clas-

The data structure in Figure 2 is shown at the sifier's, and not the analyst's; that comes later.
top of Figure 4, represented as an ordered pair. Figure 5 shows the information requirements for
When we start with the phenomenon instead of the faceted classification. Although the source chain
values, the observation component shows up below is technically a part of the observer facet, the
the descriptive component as a direct expansion two source entries are sorted out here to keep the
from the topic term in the descriptor set. In event structure straight. The source entries refer
this case the topic of the discussion is educa- to the events of publication and data collection,
tion, and the specific topic is the aspect of and the kernel set--the next five descriptors, plus
education described by the data, SAT scores. The aspect and its domain--refer to the event described
values of interest, at the next level, are the by the data. The last entry is also a trace back
recorded values, compared to other possible sets to a prior event.
of values. From the bottom up, of course, aspect In most cases the secondary analyst is working
is also the name of the variable. Thus the val- with variables that have passed through unknown
ues of the variable are part of a fully connected hands and may be in various degrees of removal
structure, describing the particular aspect of from the original source. However, the only de-
education that was observed. scriptive structure we can classify is the one we

Aspect also serves as an important structural can see, the current representation by the author
link between tables and graphs. However, of more of the current source document. The first source
immediate interest, its role as part of the topic entry therefore identifies the author whose de-
structure gives us a basis for using descriptor scription is represented by the classification.
sets to summarize the information structure of the The same author descriptor in both source cate-
data as well as the content. gories identifies the data as primary data. Note,

FIGURE 5 Information requirements for classification
From Clark, Classification Procedures (1984)

Current source: Author of current document; publication date
Original source: Data collector; time of data collection

Observer: Reporter/respondent, as described by author
Matter: Entities involved in event described
Function: Nature of event described
Space: Location of event
Time: Time of event

Aspect: Aspect discussed by author J+ topic term]
Domain: Nature of values

*Aspect: Aspect described by data collector 1+ topic term]
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ATTITUDES ON SOCIAL CONTROL

Current source: NORC; July 1984 (b) Descriptor set for a variable
Original source: NORC; spring 1983

Observer: Adult member of household 
CODE NAME: GRASS

Matter: Adult member of household Current source: NORC; July 1984
Function: Social control Original source: NORC; spring 1983
Space: U.S./world
Time: Current Observer: Adult member of household

Aspect: Attitudes [-.- Social control (F)] Matter: Marijuana
Domain: Civil liberties, sexual behavior, Function: Legalization

women's rights, criminal justice, vio- Space: Continental U.S.
lence, religion, suicide/euthanasia, Time: Current
economic controls (national spending) Aspect: Opinion [-..Legalization (F)]

Domain: Should, should not, don't know, no

*Aspect: Same as current aspect answer, not applicable

(a) Descriptor set for a main topic 
*Aspect: Same as current aspect

FIGURE 6 Descriptor sets for a main topic and a
variable in the General Social Survey

however, that the time of publication is not the tell from the descriptor set for the variable what

same thing as the time of data collection. The the question was and who answered it.

aspect entry at the bottom, once it is captured The descriptor sets in Figure 6 contain a dense

in the primary data, specifies the original con- pack of information, including some that is not

text in which the data were collected. obvious. For example, not all the information is

Although the formalism is defined at the datum in the words. The visual grouping of the categor-

level, the classification scheme extends to the ies is part of the information structure, and in a

level of a whole database or any level in between. highly condensed description this visual informa-

At the highest level the descriptor categories tion is essential for rapid comprehension. Once

contain what are, in essence, the title elements the analyst is familiar with the data, the infor-

for the whole database, with the purpose of data mation at this level is no longer needed--except

collection as the function descriptor and the set by the next user. At a later stage the descrip-

of main topics as the domain of values. The next tors are converted to a different display form

breakout is an expansion on each of the main top- for manipulation. This application is discussed

ics, and the domain at that level lists the sub- in Rogers (1986).

topics at the level below. Descriptor sets can also be used to summarize
For example, one of the main topics in the Gen- the contents of a table. The table in Figure 7

eral Social Survey is attitudes on social control, contains several function terms--deaths, sport,

shown in Figure 
6a. The GSS is an annual survey parachuting, jumps. However, the event being

consisting of about 300 questions, designed as a described is deaths from sport parachuting. The

program of social-indicator research. The data- matter descriptor is the entities involved in

base consists entirely of primary data, and the this event, the parachutists. The space and time

data-collection agency, the National Opinion
Research Center, is the author of the codebook.
The respondents were adult members of households, FIGURE 7 Descriptive elements in a table
the observer descriptor. They were being asked
about themselves, so at this level of generality DEATHS FROM SPORT PARACHUTING
they are also the matter component, and the func-
tion descriptor is social control. The variables Year

cover domestic and world events, as shown by the
space descriptor, and the time was current, the Number of jumps 1973 1974 1975

respondents' attitudes at the time of interview.
The aspect entry consists of two terms--the

aspect term and a pointer back to the topic term 1-24 14 15 14

in the main descriptor set. These two descrip-
tors, plus the arrow, specify the focus of the 25-74 7 4 7

discussion, the underlying question the data were
designed to answer. The topic term is a function, 75-199 8 2 10

social control; therefore the subsets of this top- '

ic are also functions--civil liberties, sexual 200 or more 0 2 0

behavior, and so on.
Figure 6b shows a descriptor set for one of the

variables in this subset. At the variable level Source: Velleman and Hoaglin, ABCs of EDA,

the domain describes the set of values. At this p. 224. Data from Metropolitan Life Insurance

level, if each variable is visualized as the set Company, Statist. Bull. 60, no. 3 (1979);

of answers to a question, it should be possible to reprinted by permission.
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descriptors identify the place and time of occur- DEATHS FROM SPORT PARACHUTING

rence. In this case the space might be either [by jump experience and year]

U.S. or world; however, unless tH.s information
is stated elsewhere in the source document, the Year

appropriate descriptor is "unspecified." The time Total,
descriptor is the time period covered by the data. Number of jumps[?) 1973 1974 1975 1973-1975

The source note gives both the current source and

the original source, but who reported the values?
In secondary data the original observer is often 1-24 14 15 14 43

a missing element. The values are counts, so the
aspect is simply number--number of deaths. 25-74 7 4 7 18

In this data set the anonymous observer does
not affect most uses of the data. In medical data 75-199 8 2 10 20

the identity of the observer would be critical; it

is important to know whether the responses were 200 or more 0 2 0 34

supplied by the doctor or the patient. The ambi-

guity in the space facet, however, might easily All experience

lead to misinterpretation of the data. In working levels 44 32 41 117

with existing data, descriptor sets are a useful

tool for pinpointing what is and is not known

about the data. Source: Velleman and Hoaglin, ABCs of EDA, p. 224.

Descriptor sets are also a useful tool for Data from Metropolitan Life Insurance Company,

determining whether two data sets--or two vari- Statist. Bull. 60, no. 3 (1979); reprinted by

ables--can in fact be compared. Two data are permission.
"simply comparable" if they differ in only one

descriptor and the differing descriptors are in FIGURE 8 Aggregation of descriptors

the same facet (Dolby and Clark, 1982). In the
first row of Figure 7, for example, the only
source of variation is time; jump experience is The medium of communication for data is a vis-

common to both data, and all the other descriptors ual representation. The communication of meaning

are constant over the set. By the same token, in therefore depends on the visible counterparts of

the 1973 column, all the data have identical de- these content elements. In tables, as in verbal

sccriptors except for jump experience, in the language, the syntactic relationships of the terms

function facet. If one were interested in a are implicit in the terms being related. Thus in

comparison of deaths from sport parachuting in a table the verbal elements carry the burden of

1973 with U.S. motorcycle deaths in that year, communication:
pairing off the descriptors in each category would
identify a possible mismatch in the space facet, Verbal implicit implicit

and hence a confounded comparison, elements + relationships = meaning

Data Relationships In graphs this burden falls instead on the rela-
tional component:

The operations on data are discussed below, but

in brief, for every algebra that operates on the Visual visible visible

numbers, there is a corresponding algebra that elements + relationships = meaning

operates on the descriptors. The total column in

Figure 8, for example, is an aggregation over the This part of the theoretical framework, a general

time period as well as the number of deaths. The theory of data representation, is discussed in

total in the stub raises some questions about table more detail in Clark (1986).

construction. The stubhead is number of jumps, First, however, there are some other pieces to

but the subject of the table is "jump experience," cover. The picture so far has been a bird's-eye

and the aggregation is over categories of jump view of the communication diagram in Figure 1.

experience, not number of jumps. The remainder of the discussion is a description

Whereas the classification scheme provides the of the Language of Data from a more familiar per-

semantic content of the Language of Data, the re- spective, that of the data user.

lationships in a data set constitute its syntactic

structure. Both components together produce mean- The Communication Problem from the Analyst's

ing, the information derived from data. The result Perspective

in tables is a set of "data sentences" that follow

the grammatical rules of ordinary prose (Dolby and Each person in the chain of communication for

Clark, 1982). At the generic level, however, the data needs to understand what happened earlier in

components of information can be stated as the chain. Analysis, a form of self-communica-
tion, is a key part of this sequence. However,

Data operational each member of the chain has his or her own per-

elements + relationships = meaning spective. If Dolby writes a paper about energy
data which you read, you need to know Dolby's

The set of possible statements in a table or graph frame of reference. You want to know that he

is limited by the allowable operations on data. started with data published by the Energy Infor-

In the Language of Data, therefore, the meanings mation Administration, the original source, and

are limited to statistical meanings. you want to know that the observers who supplied
the values were the energy companies. If you dig
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S
deeper, you may also want to know how Dolby got UT
his numbers. How did he do the computations? T
What other decisions did he make about the data TREE

that affected the outcome of his analysis?
We will discuss the chain of communication from DMAS~lfroR

three perspectives: the careful reader (who could SE"
be anyone), the secondary analyst (in this case,
an analyst who starts with the derived data and
has weak access to the original source), and the VAIABLE(OD1 NA IES
primary analyst (who has primary data and strong S

access to the original source). T
The careful reader will want to know where the S

numbers were obtained. This always includes B
"source" information, but a careful reader will
also want to know how the numbers were calculated
and what the units are. He or she may also re- FIGURE 9 Structure of a Microdatabase
quire a detailed understanding of the row heads
(the stub) and the column heads. Are all the
possible row and column categories represented? the operation that produces the contingency table,
What kinds of summary statistics were used? What is a good example of analysis that starts with
are the omissions? microdata and produces a table as the end result.

If the reader is also a data analyst, he will Tables may also be manipulated into new tables, a
want an understanding of the link between the subject discussed further in Rogers (1986).
microdata and the aggregated data in the table and
will be curious about what was not said, as well The Statistical Microdatabase
as what was said. What did the author of the data
find along the way that influenced his choices? At this point, however, let us take a new look
Even better, what hidden assumptions was the at a familiar object, the statistical microdatabase.
author operating under? The analyst may want to The top-down classification outlined above for the
revise the methods, or to repeat yesterday's anal- General Social Survey results in the conceptual
ysis with today's data. He will want to combine structure of a microdatabase shown in Figure 9.
his own data with the table to shed more light on The variables are organized into columns, and each
trends observed in the table, or he may want to number is comparable to each of the other numbers
manipulate the table further to reveal a more in the same column. Ideally they are simply com-
complex structure in the data. parable--that is, the descriptors differ in only

If a secondary analyst has access to a micro- one dimension of description. The one descriptive
database, he will repeatedly ask questions like dimension that differs between cases corresponds
"What is in this data set?" or "What does this to the stub.
particular variable mean?" We have all spent The following examples are two data that Rand
many long hours poring over someone else's un- might collect as part of its medical studies:
decipherable codebook.

Both the reader and secondary analyst live at Source: Rand
the far end of the diagram in Figure 1 and depend Observer: Rand Nurse
on the primary analyst to supply the right infor- Matter: Mary Jones
mation in a usable form. Function: Systolic Blood Pressure

The primary analyst has parallel but different Space: Rand Examination Center
concerns. He is often in charge of a very large Time: 8 am, January 6, 1986
microdatabase (in some Rand work there may be Aspect: Pressure, mm Hg (F) Systolic BP
10,000 raw variables and 1,000 derived varia- Domain: 120

s bles). He must be able to track down and elimi-
nate errors caused by programming mistakes or Source: Rand
misunderstood instructions. Observer: Rand Nurse

Part of the problem relates to storage and Matter: John Smith
retrieval. Primary analysts usually work in a Function: Systolic Blood Pressure
constantly changing setting, with data arriving Space: Rand Examination Center
continually and moving through various stages of Time: 8 am, January 6, 1986
processing. They must be able to find derived Aspect: Pressure, mm Hg (F) Systolic BP
variables created by their colleagues in order Domain: 135
avoid reinventing the wheel (or worse, a slightly
different wheel). Communication is at various These are two simply comparable data about the
times communication to other audiences, self- systolic blood pressure of Mary Jones and John
communication, or communication with colleagues. Smith (-he matter facet). All the other descrip-

How does the Language of Data theory fit into tors are the same, and the two data share a common
these problems? We began with a definition of the aspect and unit of measurement. The value of the
datum and then we examined this structure in terms measurement is placed in the domain.
of microdatabases and tables. We could think of To represent this, we create a header for each
a microdatabase as a form of table. What are the variable which consists of the descriptors common
differences between them? The data in tables are to that column. Any descriptor that corresponds
aggregated. The values are usually the downstream to the stub is elliptical. The stub has a descrip-
product of analysis, the results of statistical tor set which describes the sample. The result is
manipulations of microdatabases. Cross-tabulation, a picture like that in Figure 10.
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STUB VAR 1 VAR 2

Source: Rand Rand Rand
Obsvr: Survey Ctr. Rand Nurse Patient
Matter: Patient Patient Patient 1.
Functn: Identity Systolic Blood Pressure Satisfaction w MD
Space: Universal Rand Examination Center U.S.
Time: Universal 8 am, January 6, 1986 Answered Quest.
Aspect: Name (F) Id. Pressure, mm Hg (F) Syst BP Level of Satisf.
Domain: Alphabetic 120,...,155 1=Very Satisfied,..

5hfVery Unsatisfied

Values: Mary Jones 120 1
John Smith 135 4

FIGURE 10 Structural details of a microdatabase

The individual patients (Mary Jones, John reported values for gender were M, F, P, and Q.
Smith) are listed in the stub and identified by In the same data set gender also differed depend-
category name as "patient" in the matter slot. A ing on the observer. Because existing systems do
second variable is also shown. Notice that for not embody concepts of domain and observer, this
this variable "patient" is also the observer. To was a major problem to uncover and repair.
analyze this variable with the first one we must How do we formalize the relational structures?
assume that it does not matter that a different One way is through a thesaurus and glossary. The
observer observed each patient, and that the ob- thesaurus holds the possible classification struc-
servztions were made at a different time on each tures and the glossary contains the specialized
patient. These data are not simply comparable. definitions. It is very important in each appli-
Otherwise, if we think time or observer affect the cation that the user be able to add his or her
quality of the observation, we have to include own thesaurus and glossary information.
time or observer information in our model, which Finally, we need a record of interactions with
complicates the analysis. the data. The need for a time-stamped record of

So far, we have a set of one-way tables with a the editing and revision process is something that
common stub. A statistical database usually has survey data processing centers and fiscal admini-
an added piece of structure represented as the strators have known all along, but the process
attic in Figure 10. This is the topic structure, seems to be foreign to analysts. Nevertheless,
which cements the database together. The topical this is the only way we can gain access to assump-
organization captures the relationships between tions that the analyst may not have been aware of.
variables intended at the time of data collection.
In a secondary analysis, we might use the data for Implications for a Computing System
a new purpose, leading to an entirely different
organization of the variables, and hence a new Up to this point we have been talking about a
topic structure. Curiously, we have found in theory of good documentation, ideally as part of
experiments with the General Social Survey that the database, not external to it. The classifica-
statisticians tend to invent unique topic struc- tion scheme provides the initial documentation.
tures--unique from each other and different from However, the initial classification is essentially
those produced by the nonstatistical classifiers, static: it is a description of the given data in
who tend to agree. Perhaps this reflects analytic the context in which they were collected. This
structuring even without numbers, documentation has to reach the analyst, but each

The topic structure is a hierarchy, and hier- analyst is working in a different context, and
archic structure also shows up in the descriptors the analyst's description of the data also has to
themselves. Gender is divided into female and be documented. Incorporating this documentation A

male. Races may be partitioned White, Black, Ori- in the database as well increases the likelihood
ental, American Indian, and Other. Decades are that it will be passed along and supplemented by
divided into years, then months, then days. A others.
good deal of statistics is devoted to the discov- We also want to go deeper than documentation.
ery and identification of classification categor- A Language of Data computing system should be able
ies. Problems arise in comparing data from two to manipulate the descriptive component of the V
sources that use different partitions of the same data as well as the numbers. To get to dynamics
concept: for example, fiscal years and calendar we need to understand what statistical manipula-
years. We need the equivalent of relational tions are like. We have already discussed simply
structures to handle this situation. related data--data that have differing descriptors

We also need concepts of balances and forbidden in only one facet. We can go on to the applica-
values. For example, the inventory at the begin- bility conditions for aggregation:
ling of the month, plus additions and subtractions,c

should give the inventory balance at the end of I The data must constitute a simply related data
the month. The whole is the sum of its parts, so set (differ in only one descriptive dimension)
proportions should sum to 1. For most data a var-

iable such as gender takes only two values, and if 2 The set of items to be aggregated must form an
there are more than two something is wrong with exhaustive partition of the concept to which
the data. In one data set, for example, the they are being aggregated.

102

w- ' . V %



3 The aspect must be a measure (in the formal of analysis (for example, the standard ANOVA

sense). table).
Finally, we have manipulations on tables that

A valid proportion is the ratio of a datum to a produce other tables. These manipulations are

valid aggregate of which it is a part, and the do- mostly exploratory (since tables usually contain

main is further restricted to be nonnegative with aggregated data). Dolby has cataloged manipula-

a meaningful zero (this collection of restrictions tions on tables in three groups: select, arrange,
is sometimes called "ratio measure"). If we knew and transform. Here is where classification is

that a certain proportion had passed the applica- most important: does a rearrangement of a table's

bility conditions, we could be sure it obeyed the rows violate the aggregation structure? Is a

value restrictions, particular column total a reasonable aggregation?

As a more complex example, monotonicity re- Is a subtraction a valid comparison? It depends

quires two simply related data sets. The descrip- on the data as well as the nature of the manipu-

tor that varies in -ach of the data sets must be lation.

the same descriptor, and the two data sets must
match up on this descriptor. In other words, Summary S
they must form a table with a common stub. For
the numbers, we have the usual condition. The The general theory represented by the Language

second data set (Y) is monotone increasing with of Data has a number of implications for the com-

respect to the first (X) if X2 > XI implies Y2 > muication of information, a documentation system

Y1 for all possible pairs (XI,X2). for databases, storage and retrieval systems,

What about more complex computations? First, computational aids for analysis, and the construc-

we must recognize that statistical manipulations tion of survey instruments. More important, it

take place at several levels. At the microdata provides a general framework for a systematic

level we may manipulate one or more variables to approach to the communication of information

produce derived data. The computation may be as through data.

simple as changing "No, I did not go to the doc-
tor, if yes, how many visits?" to "zero visits."
It may be a standard balance equation: net income REFERENCES

equals gross income minus taxes. Population di-
vided by area gives population density, but mean Dolby, James L.: Meaning from Data: Implications

January temperature divided by land area gives for Data Analysis and Database Management Sys-

nothing. We might be able to see this from the tems, presented at the 149th National Meeting

units, or better, from the glossary, of the American Association for the Advance-

Derivation at the microdata level also may ment of Science, Detroit, 1983.

involve comparing data from different sources: A 0
patient is adult-onset diabetic if the doctor says Dolby, James L., and Nancy Clark: The Language of

he has diabetes and the patient says the symptoms Data, Language of Data Project, 1982.

appeared after he was thirty. Or the derivation
may involve complex estimation techniques, such as Clark, Nancy: Tables and Graphs as Language,

residuals, that depend on the whole data set. presented at the 18th Interface Symposium, Fort

In the transition from microdatabases to tables Collins, 00, 1986.

the manipulations are the standard statistical
techniques--mostly confirmatory analysis. Classi- Rogers, William H: Implications of the Language

fication structures for tables are derived from of Data for Computing Systems, presented at the
values in the microdata or created from the method 18th Interface Symposium, Fort Collins, CO, 1986.

I "L

103



INTELLIGENT DATA MANAGEMENT

Henson Graves, San Jose State University
Ruth Manor, San Jose State University and Tel-Aviv University

Abstract inference capability used to check applicability
Intelligent computer support for statistical conditions and to perform operations on the

data analysis requires a system in which objects of analysis (data and tables) using,
descriptive information is represented and used possibly, auxiliary information (e.g.,
deductively to answer questions from data, assumptions and definitions).
definitions and assumptions. The knowledge 2. Data Management Requirements
representation requirements for supporting data Computer support for data analysis require
analysis include flexibility in interacively dealing with interesting knowledge represen-
introducing changes in the system and the tation problems. One basic problem concerns
capability of handling data revision and data what are the primitive objects to represent,
discrepancy. We outline a formalism for i.e., what is a datum Dolby, Clark, 1982).
representing descriptive information and Although discussions of data bases and AI
auxilary assumptions for data analysis, This address some of the general issues of data
formalism is currently being developed and modeling, i.e., how to represent, they hardly
implemented in the Algos computational system. considert what primitive statistical entities
1. Introduction should be represented. Data analysis must deal

Data analysis involves a variety of with the problems of data discrepancies and data
activities whose results are communicated revision. These are species of the more general
between individuals with very different problems of reasoning in the presence of
perspectives. Much of the information that data inconsistencies and temporal and context depen-
analysts use will only be available on a dency, discussed by logicians by the AI community.
computer. Computer systems are used to perform 2.1 Statistical Micro Databases and Tables
analytic operations on data, and serve as the Too much data with too little information
medium for conveying the results of analysis. about what they represent is a rapidly growing

Computer systems used in data analysis such affliction of the information processing world.
as data base systems and statistical packages do Data travel through a chain of communication
not keep sufficient information to support that proceeds from the first steps of data
analysis. The data analyst has to obtain (and collection, through the processes of editing,
remember) what definitions and conventions were revision and data analysis, to presentation and
used to produce the data. As the chains of new use -- with the concurrent need to store and
data derived from old data become longer, it retrieve at each interface (Dolby, 1984a). Data
becomes even more important for computer get seriously misinterpreted as a result of
information systems to carry the descriptive specific ambiguities regarding who collected the
information necessary for the determination of information, which event was measured, where and
the meaning of data, and to use this information when the event occurred, what was measured and
in drawing conclusions from data and in how it was measured. To correct this situation
performing operations on data and tables, analysts must have systems that can process

This need for developing more intelligent descriptive and numerical information together.
software system to support data analysis is rypically, data is gathered by distribution S
matched by the existence of Artificial of questionaires and collected into a micro-
Intelligence (AI) technology which can be used database. The data in the micro-database is
to build such systems. However, current efforts analyzed and presented in a summary form (tables
to build expert data analysis systems (Gale, and graphs). Further analysis consists of
Pregibon, 1983, 1985; Portier, Lai, 1983; transformations on these forms. At any step of
Thisted, 1985a, 1985b), as well as discussions this sequence, analysis may require back-
of future development of intelligent software in tracking, revising an earlier step or
statistics (Hahn, 1985), focus on the expertise restarting at an earlier step.
of data analysts rather than on representing the
objects of analysis. Data analysis is a Figure 1: A Micro-database
relatively well defined activity, which makes
designing and building a representation system Distribution of energy to user sectors in the U.S..
supporting it extremely useful in solving 1977-80, as reported by the distributors
knowledge representation problems. (Source: Department of Energy)

In this paper we describe the knowledge End-Use Distributer Year Amount
representation requirements needed to supprt Sector in Quad. STU
data analysis, and how the system IDA (in
development) satisfies them (Graves, Manor, Industrial PG&E 1977 2.14 0
1985). IDA makes use of the theory of data Industrial P&E 1978 2.57
description developed by the Language of Data Industrial PMSE 1979 3.02
Project (Dolby, Clark, 1982), and it is Industrial PMSE 1980 3.91
implemented in the knowledge representationIdrl-l92
system Algos (Graves, Blaine, 1984, 1985). .

IDA is not intended as an "expert" system in Res&Coa PC" 1977 1.96
the sense of knowing what date analysis
activities to perform. Rather, its intelligence Transport. ...
lies in its expressiveness and in the deductive
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A micro-database (lIDB) is a two-way matrix 2.3 Data Discrepancy and Data Revision
(e.g.. Fig. 1.). Analysis of a MDB leads to a A significant activity of data analysts
table, which is a typical vehicle for consists of resolving inconsistencies in the
cosmunicating and manipulating data. Statistical data they use. A data analyst is constantly
tables are basic information units. Their searching for additional information from the
utility lies in their representation of data at hand, and discrepancies in the data
collections of facts about related phenomena, often give him clues about where to look for
arranged to make simple comparisons readily information. A typical cause of discrepancy in
apparent, as well as that the applicability data is the ambigous use of terms whose meanings
conditions are met. For example, the MDB chande with contexts. A resolution of the
presented in Fig. 1 might have served as a basis discrepancy consists of identifying the contexts
of the table TI. Fig. 2 (Dolby, 1984c). in which the terms should be interpreted

Figure 2: Table 71 together with the interpretation. Whitmore
(1984) describes the following example: in 1979

U.S. CONSUMPTION OF2 there were headlines about how the Department of
BY END-USE SECTOR and BY TZAR Energy and the Bureau of the Census were

reporting different amounts of oil imported into
(Quadrillion BTU's) the country. The amount reported by the DoE was

End-use sector 1977 1978 1979 1980 higher by close to 70 than that reported by
Census. After tracking down the sources,

Industrial 29.024 29.373 31.551 30.284 Whitmore concluded that "It turns out - for
completely legitimate reasons - these two

Residential & government agencies were using different
cosmercial 27.569 28.159 27.462 27.283 definitions of some elementary concepts. These

Transportation 19.735 20.612 19.950 18.628 were 'oil', 'the United States' and 'month'.'
Data statements and tables have sources. The

Source: Dolby, 1984c source can be viewed as identifying the context
in which statements should be interpreted.

A table can be obtained as an answer to a Since agencies may occasionally revise the
question, e.g., "What is the energy consumption definitions they use, and often revise their
in the U.S. in 1977-80, by end-use sector and by data, it is important for the data analyst to be
year?" and it is used to make comparisons among able to find out not just what is the most
data and to study how comparisons change over reliable information, but also the history of
time. It can be used to answer questions such the revisions. Hence, an intelligent system
as "What is the industral energy consumption in should enable users to represent data revisions
the U.S. in 1977?" by extracting from the table and trace its evolution.
that the industrial consumption of energy in the 3. Knowledge Representation in Algos
U.S. in 1977 (in Quadrillion BTU's) is 29.024. The basis for an intelligent systems is a
The table may also be used to answer the computational system which can represent (user
question "What is the total end-use energy specified) theories about some domain. To
consumption in the U.S. in 1977?". However, to represent the domain adequately, the theories
compute the answer to this question correctly, must have a rich language and deductive
requires inference on the basis of additional capabilities, we employ the "logic" approach,
assumptions, in using the Algos computational system (Graves,

We want a computer to be able to answer Blaine, 1985) which implements a deduction
questions like these (formulated, of course, in system for a higher order function calculus.
the appropriate language) correctly. Hence, we Logical languages have been used as a
need to represent in the system the numeric paradigm for knowledge representation languages
values (e.g., 29.024) together with their for a long time both in AI (McCarthy, Hayes,
associated descriptive information (i.e., that 1969) and in Database theory (Codd, 1970). The
the industrial consumption of energy in the U.S. traditional formalization of the Relational Data
in 1977 (in Quadrillion BTU's, as reported by Base Model represents facts as sentences in a
Dolby 1984c) is 29.024. Moreover, for the first order language. Question answering
system to represent the meaning of the data involves retrieving the answers from a data base
accurately, we need also to represent auxiliary which is viewed as a model (in the logical
information (definitions, classification, etc.), sense) of the language.
which may not be explicit in a table display. Our problem was to find a logical system
For instance, the meaning of the table Tl which is sufficiently expressive for data
depends on whether the years are defined as analysis. The language must represent entities,
calender years starting on January 1, or they relationships, data structures (such as records,
are defined as fiscal years starting on April 1. reports, and tables), as well as properties
2.2 Expendability about these objects. For analysis, the language

What is needed to support the interactive must represent algorithms or mathematical
nature of data analysis, is that the user be functions. For reasoning the language must
able to add or change assumptions and represent assumptions used in reasoning about
definitions (including definitions of data the domains (e.g., the assumption that a
operations) whenever he wishes. In designing function with Boolean arguments is an additive
the system, we do not try to predict, all the measure). Such a language requires quantifying
possible definitions and assumptions a user may over functions, and is, therefore, higher order.
need. An expandable system offers the user the We use a language of a higher order function
means to "engineer the changes in information", calculus which has been specifically engineered
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to represent data structures and algorithms, is the integer type.
The language of Algos is based on topos In addition, Algos has lists, numbers and

theory (Goldblatt, 1984) which is expressively strings. We use the LISP notation for lists,
comparable to set theory and has been suggested e.g., the list of the first three natural
as a foundation for mathemetics (Lawvere, 1976). numbers is represented as '(0 1 2)'.
The difference between these theories lies in Algos has the empty list, 'nil', and the list
their choice of primitives. Set theory is built operations (as in LISP). The definition
on the single primitive membership relation, in -df (lam a,l)(if empty[l] then false
Topos theory is built on the primitive notions else (if a - first[l] then true
of function (map) and type. else in[a,restfl]]))
3.1 Primitives and Definitions tests if an element is a member of a list, so

The syntax of Algos uses elements of simplify in[3,(l 2 3)];
mathematical and programming language notation. evaluates to 'true'.
Algos has a data language of terms which are Algos has a power type construction which is
used to represent the various kinds of data used to represent relations. We use 'POW(X)'
considered here: numeric and string data, to represent the power type of a type X.
descriptive data, algorithms, and assumptions. Relations on a type correspond to subtypes.
It has commands for introducing definitions and Further, a relation corresponds to a formula.
assumptions, and for making inquiries. A For example, we can introduce a function to
collection of definitions and assumptions represent 'is a male' with the statement 'male
constitutes a knowledge base (theory) of the HUMAN -> OMEGA'. The formula 'male' determines
system. The Algos system uses deductive a relation '(male)' which has the value type
inference to answer questions on the basis of POW{HUMAN). This relation represents the data
the definitions and assumptions in the knowledge elements of HUMAN having the property of being
base. The model of computation used is term males.
evaluation (simplification) which is a special Many data operations involve aggregating the
case of deduction. Simplification uses values of measurements of parts of some domain.
deductive inference rules in the form of term We use relations to represent the "containment"
reduction rules which correspond to the and partition relationships. For each type
different kinds of term constructions (e.g., there are a zero (empty) and unit relations, and
tuple, functional abstraction, etc.). For the Boolean operations '+', '*' and '-' (union,
example, the command intersection and complement, respectively).

simplify 2+2; E.g., if 'a' is a relation, then the command to
evaluates to '4'. A formula is a term which simplify 'a+O' returns 'a'. The definition
evaluates to 'true' or 'false'. Thus, 'a - 0' sum -df (lam 1)(if empty(l] then 0
is a formula. We can declare a map, p, to be a else first[l]+sum[rest[l]])
formula with the statement 'p : OMEGA'. If provides a function to total lists of relations.
'a' is undefined, the command In order to represent validity conditions for

simplify a > 0; totaling lists we need to represent partitions.
cannot be simplified and returns 'a > 0'. Informally, a list (al ... an) partitions a if
Users can add names and definitions. For both 'a - suml(al... an)]' and
example, we can enter definitions by 'for any b,c in (al ... an) not(b - 0) and

density -df count/area (if not b-c then b*c - 0)' evaluate to 'true'.
months -df (Jan feb march april may june Partition is defined as the test:

July aug sep oct nov dec) partition -df (lam e,l)(e - sum(l] and
The names used in these definitions, 'count', (any b)(if in[b,l] then not(b - 0)) and
'area', 'Jan'. 'feb', etc., need not have been any b,c)(if in[a,l] and in[b,l] and not(b - 0)
previously defined for the definitions of then a*b - 0)
'density' and 'months' to be legitimate. An additive measure is a function, whose
3.2 Some Map and Type Constructions arguments are additive over partitions, defined:

Algos has a product type construction and a measure -df (lam m)(lam e,l)(partition~e,l]
corresponding tuple map construction. Products implies m[e] - sum[map~m,l]]).
serve as record types and tuples serve as 3.3 Assumptions
records. For example, an employee record type We distinguish between a formula as a data
may be introduced with the declaration 'EMPLOYEE object, and assuming it. Having the formula as
- product(NAME,AGE,SALARY)' and a map of record an assumption means that we can use it in
type with the declaration 'a : EMPLOYEE'. We deduction. For example, entering the commands

use a tuple notation to specify a record assume a > 0;
a -df <John,34,3232.22> simplify absolutevalue[a];

A function is a term which can be "applied" returns 'a', because the evaluation of
to an argument. We use a "lambda" syntax to 'ablsolutevaluela]' utilizes the assumption that
specify function definitions. For example, an a > 0. The user may want to see the assumptions
algorithmic definition of the absolute value which were used in the simplification. To
function can be expressed by: obtain this the simplify command followed by '

absolutevalue -df (lam x)(if x >- 0 then x will result in displaying the assumptions used.
else -x) simplify absolutevalue[a]?

This function can be applied to numeric returns 'a; depending on a > 0'.
arguments. The command to simplify In data analysis one often has only partial
'absolutevalue[-31]' results in the system using information about a function, such as knowing
the definition to return '3'. The type of the its values for specific arguments without having
function is the expenential type, III, where I an algorithmic definition. We represent such
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information with commands of the form entity with two values at the two times. Thus, I
assume f[a] - k; simplify a/tl;

The equality symbol '-' in this context evaluates to '5', while

represents the simplification relation. The simplify a/t2;
command to simplify 'f(a]' results in 'k'. evaluates to '6'. Similarly, we may specify the

The statement "the kinds of coal are source of a definition. E.g., the commands
anthracite, lignite, and bitumunous" is a -df 3/DOE;
represented as an assumption. We represent a -df 4/Census;
'kind' as a function which when applied to specify values for a for each of the two
'coal' yields a list. Namely, sources, DOE and Census.

assume kind~coall - (anth lign bitum); 4. Satisfying the requirements in Algos
Note that the terms in this formula such as Statistical tables are viewed as linguistic
'kind' and 'coal', may not be defined. The entities. The language of data is, however, a
question "what kinds of coal are there?" is very restricted linguistic context in that data
represented as the simplification request statements, in general, represent the values of

to simplify 'kind[coal]' which simplifies a measurements of some observed "chunk of
as the list '(anth lign bitum)'. reality". The enterprise attempted here is to

For data analysis it will be important for us represent these notions within a formal
to total numerical lists on the basis of the deduction system. We answer questions using

information expressed in data, and in
assumption that the list represents the values assumptions and definitions. However, as with
of an additive measure over a partition. For any language, sentences may mean different
example, on the basis of: things to different individuals. Successful

assume measure[m]; communication depends on consensus of meaning
assume partltion[a,(al a2 a3)1; regarding the descriptive terms of the data
assume m[(al a2 a3)] - (1 4 2); sentences. LOD approach to this problem is to

the command to simplify 'm[a]' returns '7', as a choose classes of descriptors and index their
result of the inference: meanings by context. This theory represents

m[a] - sum(map[m,(al a2 a3)]] statistical data in terms of an explicit set of
- suml 4 2] descriptors. This appears to be adequate for

3.4 Context Dependency representing a large class of data.
Knowledge representation for data analysis is 4.1 Statistical Data

dynamic. Objects get added and their relation- Following Dolby, the basic communicated
ships change during the span of existence of the entity is a datum, which is a statement
system. In order to represent reasoning about concerning the value of a measurement. The
the dynamic aspect of knowledge acquisition, we measurement is associated with an observed
need to represent the context dependency of "event", and the descriptive information in the
information.sentence identifies the event, the object
temporal and source relations. To require that measured, how it was measured and the result of
all contextual dependencies be explicitly stated the measurement. Dolby has suggested that the
by the user, or that all assumptions used in a descriptive part of statistical data statements
deduction be of the same sources, is too strong. has the following components: Aspect (of
A user may not be aware what these are, and he measurement), Object (of measurement), Unit (of
may sometimes want to use information from measurement), Event observed, Observer, Matter,
different sources anyway. Activity, Space, Time, and Source.

By representing context dependency we mean Information lies in the comparison of related
that the user may choose to specify contextual data, and not in singular data (Dolby, Clark,
dependencies explicitly, or he may choose to 1982). One of the problems we face, therefore,
omit it. In this case the system will record a is to characterize ways in which data are
contextual reference, which may be recovered at related, in order to validate data comparisons.
will. For instance, the system can record the Analysis of examples yields that it is the
time the definition or assumption was entered,
the terminal used, etc. Similarly, in deductive descriptions and, specifically, the event
inference, one may choose to ignore the fact descriptors, which serve to check data
that assumptions used have different contextual comparability, and we need to indicate how.
dependencies (e.g., we may want to ignore the Consider for instance the descriptions: "the
fact that definitions were given by different amount of total end-user consumption in the U.S.
sources, or entered in different times), or we in 1980 in quadrillion BTU's (as reported by
may want to specify that only assumptions of a HER)"' and "the amount of industrial consumption
specified source should be used. A typical case in the U.S. in 1980 in quadrillion BTU's (as
of discrepancy arises when we ignore contextual reported by CT1)".We need to represent these
dependencies, derive a contradictory conclusion descriptions in such a way that their
and the we try to resolve it by restricting the comparability can be verified. The question of
context of the assumptions. characterizing the "relatedness" of data can beIn Algos commands which modify the knowlege reduced to questions regarding relations between
base index the new information by their "origin" the corresponding components of the descriptors.
which is the time and source of the statement. For example, table Tl (Fig. 2) displays data
For example, consider the commands which share all their descriptive components

a -df 5; except those in the observer and time slots.
a -df 6; Similarly, the comparability of the data quoted

and let tl and t2 be the times in which these above follows from the fact that they differ

commands are executed. We view 'a' as one only in their users. However, as we have noted,
different sources often use the same terms in
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different ways. Hence, even in this simple used, and the contradiction may then be resolved
case, elementary parsing is insufficient and we by introducing further contextual distinctions
need also to check that the terms used in these in the contradictory hypotheses. Thus, we can
descriptors, e.g., 'consumption', do indeed consider the contradictory hypotheses as
carry the same meaning. creating alternative theories. Moreover, we can

Following Dolby (1984b), we represent the consider a theory identified by some context
datum as the assumption that the value of (e.g., all assumptions associated with the DOE
measuring the amount of energy source) and trace its evolution through time.
associated with the observed event is 76.201. A data analysis system will use a number of
Amount (aspect of measurement) is represented as primary external data sources such as the DOE
a function whose arguments are: energy (object and Census. These sources use relatively stable
measured), q-btu (unit of measure), and the definitions of their terms and stable
event observed. We can represent the above assumptions about them. However, they may
datum as the following assumption which may be change over time. The terms occuring in a table
entered into the Algos system with whose origin is some beaureaucratic entity such

assume amount[energy,q-BTU, as DOE are indexed by that source. Each source
<all-end-users, energy, consumption, entity such as DOE has a collection of

U.S., 1980,MER>] - 76.201; definitions and assumptions indexed by it.
The representation of MDB exploits our basic The discrepancies discussed in Section 2 can

representation of a statistical datum. Namely, be resolved by adding the following assumptions
the MDB presented in Fig. 1 is viewed as a in which contextual dependency is explicit.
collection of statistical data, and is assume sum[ I - ..../CTl;

represented as a function in the argument assume (state or district)[USJ -
<energy,q-btu, (alabama ..... ) /census;

<<distributer,sector>, assume day(month] -
energy,distribution,,U.S,year,DOE>>. (15[month] .. .l4[month+l])/census;

The MDB is represented as an assumption about assume day[month] -
the function 'amount'. Thus (firstfmonth] .... last[month])/DOE;

assume amount[energy,q-btu, The strategy for resolving inconsistencies
<<distributer[energy],sector[end-user]>, the data is based on the principle that any
energy,distribution, non-identical entities should have different

U.S.,year[1977-1980],DE>] names. We attempt to resolve inconsistencies by
- (2.14, 2.57, disambiguating the descriptions. Data are

Tables are viewed as displays of (comparable) usually aggregations over partitions. A first
data, and are represented in terms of lists of step is to look in the conflicting data, for the
components. The information in the list is partition used, and to identify the terms used
sufficient to support operation on data. Table to describe the aggregation and its components.
Tl (Fig. 2) describing the "U.S. consumption of Typically, a discrepancy arises by using
energy in 1977-80 by end-use sector and year" is different partitions of the same aggregation.
represented as the list In these cases we distinguish them by reference

(<end-user,energy,consumption,US,1977-80,MER> to the context as above.
<amount,energy,q-BTU> In Algos there are no restrictions on what

end-user could serve as a context dependency, although in
(industrial res&com transportation) data analysis the dependencies of interest are
1977-80 relative to time and source. Given appropriate
(1977 1978 1979 1980) temporal assumptions, we can consider a theory
(29.024 29.373 ....... identified by some source, e.g., all assumptions

. )) associated with the DOE) and trace their
4.2 Dependency, Inconsistency and Revision evolution, compare conclusions based on

An Algos theory is a collection of different assumptions, and decide on their
definitions and assumptions from a knowledge relative reliability, without having to delete
base. Users are free to enter new assumptions any information from the knowledge base.
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A Front-End for GLIM

J.A. Nelder and D. Wolstenholme, Imperial College.

1. INTRODUCTION describe the logical structure of a problem

GLIM is a package built round an algorithm directly instead of being forced, as with con-

for fitting generalised linear models (GLms) ventional procedural languages, to describe in

(McCullagh and Nelder, 1983). It is currently detail the steps the computer must take to solve

distributed to more than 900 sites in 50 countries the problem. This makes PROLOG a good tool for

It has in addition facilities for data handling, expressing knowledge, since the knowledge can

tabulation, scatter plots and histograms, stand alone, uncluttered by computer control

and an interpretive language with control instructions.

structures for branching and looping. For A typical logic, or PROLOG, program describing

a full description see Payne et al (1986). knowledge about why a car might fail to start is:

Like most current statistical packages GLIM fails-to-start (_.any car) if

assumes that the user knows how to do an analysis, has-flat-battery (any-car)

and provides him with easily-used tools for doing

it. This paper describes a knowledge-based fails-to-start (__any-car) if

front end (KBFE) for GLIM, currently under con- not has-petrol (_any-car)

struction, which embodies statistical expertise has-petrol (my-car)

to aid the user in the choice of models for his

analysis. The front-end will not be a black has-flat-battery (my-car) 9
box, delivering the 'correct' analysis to the where an underscore symbol at the beginning of

user, and requiring from him little more than a a word, as in any-car, indicates that the ward

description of his d a. Our aims for the KBFE is a variable.

are three-fold:

(i to give good advice to the user on the

analysis The PROLOG interpreter can use this program to

(ii) To do so in a way that encourages the solve certain problems, such as

user to do better next time fails-to-start (my-car)?

(iii)To satisfy the requirements of a range using the necessary inference rules. PROLOG may
of user skills also be seen as a high-level procedural pro-

The front-end will be one with fixed rules, gramming language, since it employs an inference

i.e. it will not be intelligent in the sense of mechanism known as 'resolution', whereby the

Student (Gale, 1985), which learns from its ex- first rule shown may be seen as having the pro-

perience of users and modifies its rules accord- cedural reading: to show that a car fails-to-

ingly. It will be an expert system in the start then show that the car has-flat-battery.
sense that it contains rules which encapsulate LPA sigma-PROLOG is a dialect of PROLOG, written
expertise t in C, which is suitable for use on machines that

support UNIX, such as the VAX 11/750 used in %

2. TOOLS this project. It is a low-level implementation,

The front-end is being written in Prolog, a with a LISP-like syntax, suitable for systems
declarative language for logic programming. GLIM development. It may have front ends, such as

is the algorithmic engine for the system, and APES, added to it, to provide additional features

the Prolog being used has its own front-end in or alternative syntaxes. Thus the first rule given

the form of APES (see Section 5.1). Communication above, in standard sigma-PROLOG syntax is

between the front-end and GLIM is controlled by (ails-to-start any-car) ) 1

Unix, which is the operating system for the (has-flat-battery any-car))

development. Sigma-PROLOG's most useful features for the de-

2.1 GLIM velopment of the GLIM KBFE are modules and the

We use GLIM 3.77, which is written in re- FORK primitive which permits the spawning of child

stricted Fortran 77. The interpretive language processes in UNIX, e.g. FORTRAN programs such as

has statements in free format each beginning with GLIM. Communication with these processes is carried

a directive name of the form $letters, e.g. $FIT, out simply using UNIX pipes as shown in Figure 1.

$SORT etc. These are followed by none or more glimin

arguments, usually scalars or vectors; however GLIM

$CALCULATE allows expressions with vectors and i

scalars as operands and the $FIT directive uses glimout %

a model formula for the linear component of the

model (Wilkinson and Rogers, 1973). A set of Figure 1

statements may be named as a macro, and the dir-

ectives SLOOP and $SWITCH with macros as arguments 3. GENERAL PROPERTIES OF THE FRONT-END '

allows looping and branching. Subfiles may con- There are two general characteristics of the

tain any mixture of data, statements to be front-end which deserve discussion

executed and macros. The program may be dumped 3.1 Transparenc .

at any stage, and its current state restored An important property of Unix is its trans-

later. parency, by which we mean that all the tools

2.2 Sigma-PROLOG available to the operating system are also avail-

PROLOG is the most widely-used logic programming able to the user. Compare this with the older-

language (Hogger, 1984). Its basis is a subset style operating systems where, for instance, tools

of first-order predicate logic, with certain for creating and searching directories would

extensions. Using PROLOG, the programmer may certainly have been created by the originators but
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would not be accessible by the user for his own mental or observational), etc., de-
purposes. We think that expert systems should signed to establish whether GLIM is
ba similarly transparent, so that if the system suitable and to give guidance about
uses certain procedures to obtain information on forms of analysis likely to be
which to base advice, the user should have access appropriate.
to the same procedures for his own activities. DV data validation
We believe that transparency will aid the trans- - detection of gross errors and incon-
fer of expertise and encourage the user to learn sistencies.
from that expertise; at the same time we recog- DE data exploration
nize that the user who does not wish to think for - mainly graphical techniques, to
himself, but rather hankers after a black box, determine possible transformations
may not like the system. We do not aim to cater and initial settings of link and
for this class of user. variance functions.
3.2 Libertarianism MS model selection

An authoritarian system is one that controls - procedure tor selecting one or more
the sequence of operations for a user, in the parsimonious models for the data.
sense that if a certain state is reached, then MD model display
other future, and hitherto possible, options may - display of statistics, e.g. fitted
now be barred. Thus it might be that if in a values and residuals, associated
simple linear regression a quadratic term is with models selected.
found to be significant then future actions in- MC model checking
volving the use of the linear fit only would be - checking the adequacy of models se
barred. An authoritarian system is one in which lected using various techniques.
the system knows best - always. The alternative, MP model prediction
which we favour, allows that the user may have - summarising results of models found,
background knowledge that the system does not including calculation of summary
know about and cannot easily discover. There is statistics and measures of
a pragmatic argument for libertarian systems in uncertainty.
statistics, quite apart from more philosophical The nodes can be thought of as the nodes of a
ones. Thi is that the rules for such systems graph and the strategy of an analysis may be %
are themselves abstractions from whatever fields summarized by the particular path taken through
of application the originators know about, and the graph, together with variables defining the
that particular knowledge of those fields cannot state at each node. The path will reflect the
be part of the rule system; thus the user will user's choice of methods, previous analyses and
always bring background knowledge to his analysis prior knowledge of the data set.
which must be given full opportunity for expression. 4.2 Tasks
4. LARGE-SCALE STRUCTURE A new command language is being developed to

Prolog er se is too low-level a language to allow various tasks to be invoked by high-level
use in an unstructured way for constructinga KBFE. commands. These tasks may be broadly divided
Thus higher-level structures must be developed into two categories:
for expressing the large-scale structure. In i) those providing general facilities

addition a general facility is needed for time- such as
stamping information. In Prolog an assertion access to the operating system,
once made stays true; such a property is not direct access to GLIM
suitable for a system involving trial-and-error background information
learning. The method of time-stamping infor- changing activity
mation is described in Section 4. Another changing mode of use; e.g. from

feature of Prolog that needs attention is the giving tasks directly to
assumption of negation as failure; this says obtaining advice
that a fact that cannot be established to be true quitting the system;
is taken as false, i.e. (ii) those concerned with the details of

not established to be true = established statistical analysis using the front-
not to be true end, such as

This closed-world assumption must also be modified inputting data
by use of a predicate defining 'established' if creating analytical trees
trial-and-error learning is to be correctly finding basic statistics

modelled, plotting graphs.
4.1 Nodes The syntax for invoking both categories of task

The analysis process has been split into a set is the same. Each task is invoked by a keyword,
of activities, each defining a node. These, with e.g. 'find', 'create', etc., possibly followed by
their two letter abbreviations and brief indication a sequence of keywords and variables. The syntax
of scope, are: of each task is designed to facilitate both check-

SE set-up user environment ing and prompting, since a given keyword uniquely
DI data input determines the sequence of variables following it,

- get data, with names of variables, together with the set of keywords from which the
for analysis. next keyword can come.

DD data definition When the user specifies a task to be done, a

- user provides information about four-level checking process is first undertaken._
variables (e.g. whether con- i) Pattern matching - the first syntax

tinuous or counts?, the data check - whereby the task specified is
structure (i.e. whether experi- matched against the syntax of possible
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tasks. Failure to match results in when GLIM executes commands. Therefore, the GLIM
prompts which tell the user how much of output from any command that might cause error is *
the task specified, working from left to checked for error messages. Since errors can
right, matches a possible task, and how leave the state of GLIM in an unknown, inter-
this might be completed, mediate state, detection of an error leads to
For example, the three tasks available for restoration of the previous state.
entering data from the keyboard take the 4.3 Time stamping
forms: Both GLIM and the user are sources of infor-

keydata vector -name _values mation for the front-end. During an analysis,
keydata rows names values however, the state of the GLIM environment changes.
keydata columns names _values. Similarly, the user's mind may also be considered

If the user specified task to change 'state' as knowledge is acquired and
keydata (A B C) (1 2 3 4 5 5 6 8 7) actions are carried out. Information found from

i.e. with the second word missing, no either of these sources cannot therefore be
pattern match would be found, and the assumed to remain valid throughout a session.
following message would appear. A simple solution is to assume that an answer

holds true only when asked: this solution would,
the first part of the task given however, be unacceptable since the user might

keydata then be asked the same question many times over.
may be completed as follows Instead, all information found from the user or

vector <name of vector> GLIM is time-stamped so that the interpreter can
<bracketed list of values of later 'decide' whether or not such information

vector> still holds true following certain actions. Only
rows <bracketed list of vectors> if its validity is doubtful will the user or GLIM

<bracketed list of values of be re-queried.

given vectors> 5. THE USER INTERFACE
columns <bracketed list of vectors> The lowest level of the user interface is pro-

<bracketed values of given vided by APES, the Prolog front-end.
vectors>. 5.1 APES

APES, Augmented Prolog for Expert Systems, was
(ii) Basic type checking - the second syntax developed by Hammond and Sergot (Hammond, 1982)

check. Following a successful pattern to provide a logic-programming environment suited
match, the type of each variable, if any, to the creation and development of knowledge-
is checked. based systems and other logic-programming software.
For example, if the user specified the Many modifications have been made to it for this
task project.

keydata rows (A B C) (1 2 3 4 5 5 6 8 7) The main features of APES useful for KBFE develop-
the list (A B C) would be checked to en- ment are:
sure that each item on the list was a i) Declarative dialogue handling
valid vector name, and the second list to In a KBFE, some facts must of necessity be
ensure that each item was a number, obtained from the user. Therefore, the system

Failure of any type check results in must query the user for the relevant data
failure of the task; the user could then when needed. APES handles this interaction

explore the reason for failure, using the with the user declaratively (Sergot, 1982).
explanation facilities of APES, if (she The main concept of query-the-user is that
wished. the program available to the interpreter

(iii) Context-free checks - the first check on can be seen as a combination of rules and

semantics. Checks to ensure that the facts within the computer and the extra
task is feasible in some context, information in the user's mind. If the
For example, if the user specified the query to be solved concerns a relationship
task not defined in the computer, it is assumed

keydata rows (A B C) (1 2 3 4 5 6 8 7) that the user can supply the necessary infor-

checks would fail since the number of mation. The interpreter obtains this infor-
values is not a multiple of the number of mation by printing a question and accepting
vectors named. As with type-checking, an answer. For example, if the query to be
failure would be open to explanation and solved is
exploration, has-age (Fredyears)

(iv) Context-sensitive checks - the final where "has-age" is not defined in the program,
semantic check. Checks to ensure that APES evaluation results in the interaction
the task is feasible or acceptable in the which (_years : has-age (Fred yearsf)?
current state of the analysis. For ex- Answer is 17
ample, if entering data, the names of where 17 is the user's response.
vectors being defined should not already This approach should be contrasted with the
hive been used. Full explanation of more usual procedural one, in which "has-age"
failure would again be available, might be defined by a rule such as:

The actions to be carried out for a particular has-age (_person _years) if
task may involve sending commands to GLIM, print- print (How old is person?) and
ing output to the screen, asserting facts to the read (_years)
database, accessing files, or some combination of Such an approach is rejected in APES because
these. Although the checks reduce the likelihood the rule has no acceptable logical reading,
of error, these may occur(e.g. division by zero) i.e. it is not true that a person's age is
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the logical conclusion of printing and reading. pursued in great detail. Again we plan limited

(ii) Explanation facilities amounts of information, which will provide a back-

the user may ask: ground to the strategies embodied in the rules.

why a question is being asked; (iii) Advice on strategy

how a solution or answer was reached; The user's question is here 'what would you do?',

why a solution was not reached, and in the answers are embodied the expertise of

(iii) Natural language templates the system. The advice is given in terms of the

The explanations given by APES are in terms of primitive tasks available at the current node, in-

the rules used. To improve their readability cluding of course the general tasks of moving to

the programmer may specify natural-language another node etc. In the final section we out-

equivalents of the rules and conditions used line the advice available at the important model-

in the explanations, selection (MS) node of the front end.

e.g. instead of 6. AN EXAMPLE OF STRATEGY

fails-to-start (_any-car) if At the model-selection (MS) node the user can

has-flat-battery (any-car) get the following background information on the

the explanation might state organization of the node

any-car will fail to start if Background on MS organization

it has a flat battery. Activity MS helps develop some parsimonious

Similar natural-language templates may be used models for the data. It first establishes

to improve the wording of questions, basic information about the GLM:

(iv) Validity constraints the response variate 1
In order to ensure that the answers given by the set of possible explanatory

the user are sensible, the programmer may variables

specify validity constraints on any answers the link function I (1)
given. Thus, if asking Fred's age, a simple the variance function

check would ensure that the answer is a non- prior weights, if any

negative integer. Failure is open to ex- offset, if any. j

planation. MS then searches for suitable sets of terms to in-

(v) Advice clude in a linear predictor. During the search

The user may be asked either for hard, objective a tree of possible models is constructed and for

facts or for opinions, each node of the tree the current set of possible

In the latter case, it might help the user if terms in the linear predictor is divided into

the system could offer its own suggestions, three categories

which the user could then accept or reject. (i) the kernel - terms currently thought

To provide such advice the programmer may of as necessary

specify secondary, "consultative" relations (ii) free terms - terms whose status is
which should be used to provide such advice. currently doubtful
This advice is only offered if requested, and (iii) rejected terms - terms removed from
even then can be rejected, so the user remains further consideration.
firmly in control. Each node has a number and is associated with two

(vi) Visual prompts basic nodes holding information given in (1)
During a dialogue, the user may be asked a above.
question of a graphical nature, e.g. "is Y There is a set of tasks available, which are
linear against X?". To help him answer this useful steps in model selection procedures and
question, the user may demand to see a are used by the system's own strategy. They are
"visual prompt", e.g. a plot of Y against X. also available to the user for his/her own
These prompts are given only if asked for. purposes.

5.2 User questions at the statistical level The strategy used by the front-end is currently
On top of APES' query-the-user we have allowed described as follows:

for higher-level queries by the user on stat- Background on MS strategy

istical aspects of the front-end. These are of The strategy has two main stages. Stage 1 AN
three types. looks for sets of primary terms that give

(i) Definition of terms parsimonious models. A primary term is a

The user may not understand the meaning of a factor or a variate chosen from the initial set
question because a word, e.g. 'aliasing', is un- of possible explanatory variables. Stage 2
familiar. A system may need to supply such looks for additional compound terms that may

definitions (the lexicon of Gale and Pregibon, improve the fit. These include squared (x***2)

(1982)) to help the user, particularly if (s)he and cross-terms (x x2) of variates, interaction V'
is fairly inexpert in statistics. Clearly a terms of factors (A.B), or mixed terms like A.x,
lexicon, if provided in great detail, would amount where the slope for x varies with the level of a
to an on-line statistical text-book; we do not factor A. In more detail:

plan to provide such detail, but to restrict Stage 1

ourselves to possibly less familiar words. A series of nodes is created, each represent- %
(ii) Explanation of questions ing a tentative model as a kernel K of currently

More generally the user may want to reply to accepted terms, and a set of free terms F whose

a question with 'why are you asking me this status is currently doubtful. By implication

question?', i.e. (she may want some background there is also a set R of terms originally free
or information on why a particular line is being but now rejected. At each cycle the current set

pursued. As with definition, this could lead to of free terms F is split into 3 subsets

the writing of very large amounts of text if
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FK : those transferred from F to K REFERENCES

FF those remaining in F

FR those transferred from F to R. Gale, W.A. (ed.) (1985). Artificial Intelli-

At cycle 0 the kernel K contains necessary gence and Statistics. Addison-

terms, specified by the user as being essential, Wesley, Reading (Mass).

and F contains the rest of the initial set of

explanatory variables. The three subsets Gale, W.A. and Pregibon, D. (1982). An expert

FK,FF,FR are obtained as follows: each free term system for regression analysis.

is tested by forming two F-values; the forward Computer Science and Statistics:

F-value is obtained by adding it singly to the Proceedings of the 14th Symposium

kernel and the backward F-value by removing on the Interface. Springer-Verlag,

it from the maximal model K+F which includes all New York.

the free terms. The denominator of the F-

statistic is either a prior value of the baseline Hammond, P. (1982). APES: A user manual.

mean deviance or is obtained from the fit of the Research Report DOC 82/9, Department

maximal model. Two critical values for forward of Computing, Imperial College,

and backward F-values are defined, and an F- London.

value exceeding its critical value is called

positive, else negative. Any term yields one Hogger, C.J. (1984). Introduction to Logic
of four possible results and these are allocated Programming, Academic Press, London.
as follows:
forward F-value backward F-value allocation McCullagh, P. and Nelder, J. (1983). Generalized

+ + FK Linear Models. Chapman and Hall,

+ FF London.
+ FF

FR Payne, C.D. (ed.) The GLIM System, Release
Default settings for the critical values are 3.77 (Manual). Numerical Algorithms

both 2. This cycling process continues until Group, Oxford.

either (i) the set F becomes empty or (ii) the
set F is non-empty but unchanging. If (i) occurs Sergot, M.J. (1982). A Query-the-User facility

the stage-1 model selected is unique; if (ii) for Logic Programming. Integrated

occurs each remaining free term is transferred to Interactive Computer Systems, (eds.
the kernel and the cycling repeated. The result Degano, P. and Sandwell, E.), North-
is a tree of possible stage-1 models. Holland, New York.

Stage 2
For a selected stage-i model with initial kernel Wilkinson, G.W. and Roger, C.E. (1973).

KI and free set F1 and final kernel K2 and free Symbolic description of factorial

set F2 (which may be null), second-order terms models for analysis of variance.

(cross-terms) are generated as follows: Appl. Statist. 22, 392-349.
Let K'=Kl+Fl, i.e. all primary terms originally

considered. Then generate all compound terms of

the form K'x(K2+F2), and assign (subject to
marginality constraints) these terms to a set

FC. Using K' as a working kernel we find for-
ward F-values for elements of FC. Often there

will be too many terms to obtain backward F-values,

so we get a working set of free terms by select-

ing the positive terms from successive forward

selections. This working set is then used with

a stage-) procedure to make a selection of com- :4
pound terms. .Finally all simple terms not

occurring in any of the accepted compound terms 5
are re-checked for inclusion by a stage-i

procedure.

The advice given by the system is in terms of

the tasks defined for the node, and background

information about these is also available to the

user.
This strategy will undergo further development

and refinement as the project proceeds. Data

sets suitable for modelling by a wide variety of

GLMs are being accumulated, and will be used

to test the strategy both here and at other \4
nodes. P

117

Nsa-I



ARTIFICIAL INTELLIGENCE TECHNIQUES FOR RETROSPECTIVE HELP IN DATA ANALYSIS

William H. Nugent, Harvard University

With the advent of personal computers modifications, and deletions. I have
and workstations with the computing power developed a program which provides
and storage capacities of the main frames precisely this kind of automation: the

of 15 years ago, it is a simple task to SAT program. SAT is a set of Script
run interactively multiple analyses on a Analysis Tools.
single dataset. We can now do in hours SAT is a general purpose program which
which used to take days or weeks in the can be easily modified so that almost any
batch environment of 15 years ago. But computer language can be analyzed. SAT
the ability to so easily explore a data is currently working with ISP (1), but by
set in a relatively short period of time, adapted to a different language by
begins to strain our capacity to keep changing the parser. SAT is similar in
the data analysis organized. The record purpose to the Programmer's Apprentice
of commands, or script, becomes so developed at MIT's AI Lab, for providing
lengthy and complicated by the various -a means to analyze a program. SAT allows
branchings and dead ends in the process the user to examine his/her data analysis '
of exploratory data analysis, that it from a more abstract level. SAT has been
becomes difficult to determine the devel-ped on an IBM PC using Gold Hill
origins and interdependencies of the Computers' Golden Common LISP.
objects and data structures in the SAT's parser generates a database
computer workspace. To help the analyst which is then referenced by simple
understand the evolution of his data functions that look for definitions,

analysis, statistical software must references, or all occurrences of
provide the tools for this meta-analysis variables and commands. The relationship

problem. This paper presents a tool between different variables can also be

which has been developed to address the examined, resulting in forward and
meta problem of script analysis: the reverse dependency chains. The ability
determining of the definitions and to generate dependency chains between
interdependencies of commands and commands is a very powerful tool for
variables. This is a natural area to examining what the analyst has done in
automate for three reasons: the data analysis, by showing how one

command uses the results of an earlier
1) Searching through a script to find a command. What I have described so far is

variable or command reference is a an interactive cross-reference program

tedious process. which can highlight items of interest.

2) An analyst makes mistakes when It is more efficient at finding specific
searching manually through the script, occurrences in script than either a

3) We have proven A.I. technology which manual search or a search with a text
can be applied to this problem, editor. .'

Because of the limitations on memory
This problem can be partially solved space, SAT is currently only familiar

with the use of a search command in a with the syntax of the statistical
text editor. But this is not a very package ISP. SAT's ability to understand
efficient solution. For example, in a script currently includes only a
searching for the definition of a general description of ISP commands and
variable, all occurrences must be functions, however even with this
examined, even if only a definition is restriction it can perform useful
sought. The analyst is forced to perform meta-analyses.
the following subtask before the variable ISP commands and functions have order
definition can be found (Fig. 1). dependent input and output arguments.

For example, the linear regression
SEARCH FOR THE FIRST OCCURRENCE OF THE VARIABLE command REGRESS can have two input

WHILE (NOT A DEFINITION) variables. The first is the independent
SEARCH FOR NEXT OCCURRENCE OF THE VARIABLE variable, the second the dependent. SAT J

does not distinguish between the two
Figure 1. inputs. The inputs are treated the same;

The user is doing the filtering; why not as inputs. This is also true of results . .

off-load this task to the computer? returned by commands, SAT only notes they
To automate this subtask requires a are outputs. SAT's knowledge of command

program which has a syntactical knowledge parameters also suffer from similar
of the computer language being searched shortcomings. Global parameters are
by the analyst. That is, the program recorded, but SAT does not know which
must be able to determine the difference parameters are used by the various
between commands, functions, variables, commands. To understand why these .e
and user defined command procedures. shortcomings are only superficial and not
Further, such a program must be able to a major design flaw, a deeper
distinguish between the different types understanding of the internal structure
of uses of a variable and procedures, of SAT is required.
their definitions, references,
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When SAT builds the database from the 2) The traditional command language
user script, cross-reference lists of all interface is that the commands will
occurrences of commands, functions, become too complicated to use,
variables, and procedures are generated, possibly even for experienced users.
When a variable is being entered into the 3) The natural language interface was
database, it is noted how the variable is chosen because it seemed possible to
being used: as a definition, reference, design a natural language interface
modification, or deletion. This task is that would be easy to code, and yet
made easier by the general uniformity of still have the ability to understand
most ISP commands. complex commands. Another important

advantage, is that the system would be
able to give a higher degree of

iap-command operands > results/parameters(=value) feedback; if a command is not
understood, the system can ask the

let result = operand user a question. When a command is
understood, a generic statement could
be echoed to the user telling what the

Figure 2. system is doing. With feedback of
this nature, the user could learn what
the limitations of the system are, and
how to get around them. More
experienced users could even teach the

In the first form in Figure 2, the system new phrases and words.
first word is the command name, the next
group of words up to the greater than The natural language interface
sign are the inputs, and any words after developed for SAT was inspired by the
the greater than sign are outputs. In computer program ELIZA written by Joseph
the second form, to the left of the equal Weizenbaum of MIT (2). This type of
sign is the output and everything after natural language interface, or engine,
the equal sign is the input. Parameters has an outstanding feature, its
can occur anywhere on the line and are simplicity. This kind of engine only has
preceded by a slash. But over all, it is a superficial knowledge of the english
very easy to tag the different language. In brief, the way ELIZA works
occurrences of variables because of the is to process each line of input from the
position dependencies of ISP commands, user by searching it for the presence of
At this time, SAT does not incorporate a keyword. Associated with each keyword
knowledge about the positional is a list of transformation rules. The
dependencies of ISP operands and results, appropriate transformation rule is
This would require a special handler for applied to the input, and the program
each command to label further each would answer back with a question based
variable. Currently, only the commands on the input. SAT, rather than asking a
which are the exceptions to the question, performs an action. The input
generalized ISP command syntax have their is transformed into a command which is
own handler; about a dozen of the seventy then executed by the interactive
plus commands diverge from these two cross-reference subsystem.
general command layouts. For example, if a user types in "WHERE

WAS VARIABLE PRICES DEFINED LAST", SAT
WHY A NATURAL LANGUAGE INTERFACE? would first print out a generic statement

of what it understood the user request to
During February 1986, a natural be. Then SAT would search backwards from

language interface was added to the the current position looking for the last
interactive cross-reference program. A definition of PRICES. If the definition
natural language interface was chosen is found, it is displayed on the screen B
instead of a menu driven system or in reverse video along with any comments
command language for the following on the same line.
reasons:

I) Both menu driven systems, and command SAT> where was variable prices defined last
languages interfaces are well known. Find the previous definition of variable prices.
Both systems have their own advantages
and disadvantages. The majority of
menu systems are easy for the new The keyword in the above example is
user, but become burdensome for the the word "variable". The associated
advanced user. The tree structure of action rule requires the words "where" P
most menus causes the advanced user "defined" and "last" to appear in the
much trouble when having to repeatedly approximate locations shown above. The
transverse up and down the branches, action rule allows for synonyms. The
One area which should be explored for word "where" could be replaced with
menu driven systems, which seems to be "find", "locate", or "show". The same is
overlooked, is the ability to easily true for the other two words, "defined"
jump between branches; similar to how and "last". Symbolically, the
INFO, the EMACS help facility, works. transformation rule is shown in Figure 3.
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computer or data analysis language. With
a full parser, SAT would be able to
differentiate between the modification of
an array cell and the definition of the
array. SAT will also be able to
differentiate between order dependent
arguments to commands and functions.

The next area in which SAT can beF find enhanced is its supporting complex and
locate[ zero or l[variableFword assigned1[ last 1 compound natural language commands. Thesho wor d varde jL- nLe .d Lrev iousy[where user needs to be able to specify a

compound natural language command, such
as

Figure 3.

"SHOW THE GSCAT FUNCTION WHICH USES
VARIABLES DATES AND PRICES"

The action rule in reality is more
complicated than what is shown. It is The ability to process 'and', and 'or'
able to represent many types of sentences clauses is necessary for further
in a single rule by allowing some words flexibility and functionality.
to be translated to symbols which are SAT also needs to be able to
passed to the underlying LISP function, understand user macros or command
The above example has been simplified for procedures. When a macro is read in, SAT
the sake of understanding and brevity, should treat that segment of code in a

If not enough information is typed in special manner. When the macro is later
by the user, SAT will respond with a invoked in the script, some guesses can
question. For example: be made as to which variables will be

modified as a result of the macro
execution. Since a macro may have

SAT> where was variable xmax ( user input) commands which are conditionally
WHAT ABOUT VARIABLE XMAX? (SAT response) executed, some variables may not be

modified when a particular macro is
invoked. It is possible that there is

At this time, the help system is not information outside the scope of the

as good as one would like. It should static code image that SAT analyzes.
help the user by listing some possiOle Therefore, SAT has to make a guess about
keywords that would make the user's input how these code segments affect variables
into a valid action statement, in the code segments. SAT needs to be

The types of questions SAT interprets able to flag these variables as being in
are about the location of commands, a gray area of SAT's ability to
functions, and variables. SAT is also determine, and what are known facts
able to build both forward and reverse concerning macro execution.
dependency chains on either variables or Another area which SAT could help the
command lines. A dependency chain can user is by providing special graphics for
best be thought of as a question such as building a graph of the analysis tree as
"WHAT DEPENDS ON VARIABLE PRICES?" or performed by DINDE (3). The ability to
"WHAT DOES VARIABLE PRICES DEPEND ON?". group sequences of commands together and
In searching for the occurrence of a displaying them as a node in a graph
variable, SAT is able to distinguish helps the analyst to abstract his/her
between definitions, references, and work and to think about it at a higher
deletions. The user is able to request level. By providing a graph with the f
searches in either the forward or reverse results of analysis, reviewers can easily
direction with only the next or all see what was done without having to read
occurrences being sought. the particular statistical language.

At the present, SAT is not able to Finally, SAT needs to be included into
interpret complex user commands. A user the design of a statistical computer
input of "SHOW ALL REGRESSION COMMANDS language. By incorporating SAT into the
USING VARIABLE X AS THE DEPENDENT design, SAT would gain clear knowledge
VARIABLE" is too complicated and, as was about what occurs inside macros, what the
mentioned earlier, SAT does not currently different array dimensions are and how %
have a parser sophisticated enough to these affect commands. Further, by .%
differentiate between input and output integrating SAT into a statistics package r

arguments, along with an editor, SAT could provide
feedback on script changes as the user -V

FUTURE DIRECTIONS FOR SAT: makes them.
SAT is a first step in providing a

The power of SAT could be greatly comprehensive set of meta-tools for a
enhanced by integrating it with a full statistical computer language to help the
parser for the underlying computer analyst document and understand what has
language, such as S, C, or some other been done. When fully integrated, the
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power of the tools will increase because ACKNOWLEDGMENTS:
the information about a workspace
environment can be directly accessed by I would like to thank Roy Welsch and
SAT, rather than guessed at. The full Tom Boardman for inviting me to present
extension of SAT would share many ideas this paper. I would also like to thank
with DINDE, but with a major difference; Russel Almond and Lenn Roseman for
SAT would have an underlying command helping shape this paper and for useful
language. suggestions on SAT. The Office of Naval

Some of the options such an Research for support with my Graduate
environment would provide are: Fellowship, and Peter Huber for his

support in the preliminary research of
-- A script cleaning tool similar to Lint this project with his NSF and ONR grants,

to provide the user with diagnostics and for suggesting the idea of a natural
about his/her script as to which language interface.
commands are only informative,
unnecessary, and the like, would help REFERENCES:
the analyst to streamline the code,
and to help find potential trouble 1. Donoho, D.L. (1981), ISP 1.5 Command
spots. Descriptions, Harvard University,

-- A Macro Learner, a tool that searches Department of Statistics.
through multiple scripts looking for Donoho, D.L. (1982), User's Guide for
common commands sequences which could ISP on VMS, Harvard University,
be generalized as a new macro. A Department of Statistics.
prototype has already been written by
Russell Almond, a graduate student at 2. Weizenbaum, J. (1966), ELIZA -- A
the Department of Statistics at Computer Program for the Study of
Harvard University. Natural Language Communication

-- A Storage Manager which stores on disk between Man and Machine, Comm. ACM,
the various scripts, session records, 9:36-5.
workspaces, and graphs so they can be
retrieved and modified with full 3. Oldford, R.W. and Peters, S.C. (1985),
context. DINDE: Towards mor2 Statistically

-- A Perspective Help Daemon, which Sophisticated Software, Tech.
monitors the data analysis session Report No. 55, CCREMF MIT.
progress and suggests potentially
useful macros. The Perspective Help
Daemon would work by comparing the
user input to the macro library, and
if a close match was found, it would
suggest use of the macro.

-- Creation of the SAT program marks the
beginning of a data analysis
environment where many tedious
housekeeping chores are assumed by the
computer. Also, the computer can
compare what the analyst is doing to a
known database of previous sessions
and libraries of macros to suggest
alternative methods.

Right now, we are enjoying the
hardware and software of small powerful
machines. Analyzing large databases and
more importantly doing multiple analysis
quickly is something we can all do.
Dreams of 15 years ago are our reality.
Along with this reality, we have
discovered the meta problem of
maintaining coherency in our analysis
paths. We can do so much so quickly we
now must pay attention to organizing and
knowing our voluminous output.

Developing the software, such as SAT,
is going to be an exciting area of
research both because of tough technical
problems and to provide easy access for
the unsophisticated user to these new
high power tools.
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P.C. CARP: VARIANCE ESTIMATION FOR COMPLEX SURVEYS

Dan Schnell, Gary Sullivan, William J. Kennedy and Wayne A. Fuller
Iowa State University

Taylor approximations for the variances of the where
approximate distributions of statistics computed m
from complex surveys are outlined. A program . ij
implementing variance estimation on the IBM-PC X = wijk Xijk
for use with large scale surveys is described. kfij
The program will compute estimators and estimated
variances for totals, ratio subpopulation means Xijk  I if the individual is an employed

and regression coefficients. female 26 through 30 years of age

I. Introduction = 0 otherwise,

Most large scale surveys of human population Y jk = 1 if the individual is a female 26
are of relatively complex design. Typically the through 30 years of age

population is subdivided into subgroups, called
strata, and independent samples selected from = 0 otherwise,
each stratum. Sampling rates are often different
in different strata. Also it is common to select w(ijk) is the weight for the k-th individual in
individuals in clusters. Examples of such clus- the J-th cluster of the i-th stratum, m(ij) is
ters include all persons living in a geographic the number of individuals in the j-th cluster of
area such as village and all persons in a the i-th stratum, n(i) is the number of clus-
particular housing unit. Stratification and ters in the i-th stratum, and L is the number
clustering do not exhaust the complexities of strata. The clusters are the primary sampling

present in most surveys, but they are sufficient units and the estimator of 8 is the ratio of
to explain why most samples cannot be treated as sample means of cluster totals. As such, it is a
simple random samples of individuals, nonlinear function of the cluster means. It

The description of stratified cluster samples follows that a method appropriate for nonlinear
also establishes the three main components that functions must be used to estimate the variance
determine the way an observation is treated in an of the approximate distribution of the esti-

analysis of survey data. These are the (1) mator. See Wolter (1985) for a discussion of

stratum to which the individual belongs, (2) the variance estimation for complex surveys. The

primary sampling unit (cluster) to which the Taylor method (method of statistical differen-
individual belongs, and (3) the weight (equal to tials) is used in PC CARP. For the ratio

the inverse of the selection probability) for the estimator, the variance is estimated by

individual. The data record for an individual n
used in a statistical analysis must contain these L I

three components. V{e} = E h(ni, N )I E (dij. - d. )2

The second dimension of survey analysis that Ni) i-

requires special consideration is the volume of
estimates produced. The basic output of most where
surveys is a large number of tables, most of l)-Nn(

(I
-1 -1

which are two-way tables. Given the typical h(ni, Ni) = (n( - - N n
survey design, each entry in the table is a m
rather complex function of the observations, ij

Consider an estimate of the fraction of females d j" - X.-I E wijk(Yijk - e Xijk)
26 through 30 years of age that are employed. k-i
For a stratified cluster sample, this estimate is n m
defined by L i ij

SE E z I wijk  XiJk

nmji I j-1 k=l j j

L n
"' ~ -I kfi

= i-l J-1 k-l d WlkX i.. = n 
I  

E d iJ.

L n i wij and N(I) is the population number of clusters in

w E E wijk YiJk the i-th stratum. The variance of the ratio
i-i J-1 k-l estimator is given in such standard tests as that

of Cochran (1977).

The project to develop statistical software P

L i.-1 L i*for complex surveys is a joint undertaking
E between Iowa State University and the Inter-I j " 1- J. national Statistical Programs Center of the U.S.

Census Bureau. The objective is to provide

developing countries with software that can be

used locally to process survey data collected
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locally. The Iowa State University project on in either fixed or internal (binary) format.
variance estimation is a part of a larger project Along with the data, the user has the option of
that includes the development of software for providing stratum sampling rates (f(i)) . These
survey management, data editing and tabulation, rates are kept on a diskfile separate from the

Beginning in the early 1970's, based on the data and are used in variance computations.
work of Hidiroglou (1974) and Fuller (1975), a The program can be used to compute variances
program was developed at Iowa State University for one or two stage samples. An example of
for the computation of regression coefficients variance estimation for the ratio estimator in a
and the estimated covariance matrix of the one stage sample is given above. The relevant
coefficients for survey data. The program, variance is within strata-between cluster vari-
called SUPER CARP, was later expanded to include ance component. In a two-stage sample, a second
total estimation, ratio estimation, subpopulation component, the within cluster variance component,
statistics, two-way tables and two stage also enters the variance expression. The program
samples. The last revision of SUPER CARP took computes within cluster sampling rates (f(ij))
place in 1980. That program furnished the from the stratum sampling rates and the individ-
starting point for the development of PC CARP. ual record weights. The within cluster sampling

The IBM Personal Computer XT was chosen by the rate is f(ij) = 1/(w(ijk)f(i)) . These are
Census Bureau as the equipment for which the sequentially written into a diskfile. The second
software was to be designed. The personal component is added to the variance estimators if
computer seems an ideal machine for developing the user selects the two-stage option.
countries for several reasons. First, it is For purposes of variance computation, the user
relatively tolerant of its environment, both may instruct the program to eliminate one cluster
physical and personal. When compared to strata by selecting the collapse option. If this
mainframe computers, the personal computer can option is chosen, a one cluster stratum is
accept greater variation in temperature, grouped with the following stratum in the data
humidity, and of electric current. The personal set by changing the stratum and cluster identifi-
computer also has imch lower requirements for cations on the involved records. To illustrate
trained operators and maintenance personnel. See stratum collapse consider a simple data set
Diskin (1985) for a description of the problems composed of three strata, one of which contains a
developing countries face in maintaining trained single cluster.
staff. The personal computer is under the direct
control of the user and if a personal computer is Input Data: Str Clus Data
placed in a survey unit, access to the computer 1 1 Record 1
becomes relatively easy. (Nothing is ever 1 2 Record 2
guaranteed in a bureaucracy.) Finally, the 2 1 Record 3
personal computer is inexpensive. A superior 3 1 Record 4
configuration for the program under the develop- 3 2 Record 5
ment costs about $6,000.

The IBM Personal Computer XT is equipped with The algorithm combines the second stratum,
a hard disk drive, one floppy disk drive and a

monitor. In addition, PC Carp requires that the represented by only one cluster, with the third
stratum. The number of data records and uniquemachine have 256K bytes of memory and a math clusters is unchanged. The collapsed data set

coprocessor. The program Is written almost
entirely in FORTRAN. The FORTRAN language was

chosen because it is the most widely known Collapsed Data: Str Clu- Data
scientific programming language; hence, if
necessary, the program can be easily modified to 1 1 Record 1 %

suit particular needs of the user. The IBM 1 2 Record 2
Professional FORTRAN compiler was selected for 2 1 Record 3
the project. A small portion of the code - some 2 2 Record 4
sections of the user interface - is written in 2 3 Record 5 V.
IBM Assembly language. The program runs under &
DOS operating system, Version 3.0. The renumbered records are written to a new

"collapsed" data file which is retained after the
II. Program Capability user exits the program. If stratum sampling

rates are present, new rates are defined by
PC CARP is capable of handling both large and --

small data sets with equal ease and efficiency. fi = (n I/f + n i+l/f +l) (n + nt) ,'

It is most desirable to store large data sets on
the hard disk because of its large capacity and where stratum i , with n(i) = 1 cluster, has
the speed at which data can be transferred. If been combined with stratum i+l . These new
the hard disk is not available, large data sets rates are saved in an auxiliary rate file. One
may be stored on a series of floppy diskettes. A can see from the example that different orderings
single floppy diskette is usually sufficient for of the strata may produce different collapsed
a small data set. The program is also capable of data sets and different collapsed stratum
accepting data entered from the keyboard during rates. A preliminary pass through the data is
execution. The program sets no limit on the necessary when either the collapse or the two-
number of strata or clusters that can appear in a stage options is selected.
data set and a data set may have up to 50 input
variables. The program accepts disk data files
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III. Available Analyses - Cell totals along with marginal row and

Table 1 contains a description of the types of column totals

statistics available to the user and of the
nature of the computations required to obtain the - Conditional row proportions for each cell
estimates. A "Y" in the column headed "Cov" - Conditional column proportions for each cell
means that the covariance matrix of a vector of
estimates of the type listed on the left can be - Cel proportions along with the marginal row
obtained. The design effect, denoted by DEFF, is and column proportions.
available as an option for many of the statis-
tics. See Kish (1965) for a description of the Standard errors are computed for all of the above
design effect.esgn poltin Testimators. Also, a test statistic for the

The population (Total and Ratio) analyses and hypothesis of independence is ouitput.
stratum analyses are performed in a straight- the wei deledtnquars rgsoali
forward manner. Some details pertaining to The weighted least squares regression analysis

Subpopulation Analyses, the Two-Way Table and the computes coefftcient estimates and an estimated

Regression Analysis are given below.

Table 1. Analysis capability of PC CARP

Analysis Coy DEFF Comments

Total Estimation Y Y I pass; 40 variables

Ratio Estimation Y Y I pass; 50 variables
without covs. 15 variables

with covs.

Stratum Totals Y Y I pass; 40 variables

Stratum Means N Y I pass; 50 variables

Stratum Proportions N Y 2 passes; 50 variables

Subpopulation Analyses:

Totals N Y

Crossed classifications;
Means N Y Multiple dependent

variables; Multiple passes.

Proportions N Y

Two-Way Table N N 50 cells; 1 pass/dependent;

Tests of independence

Regression (WLS) Y N 2 passes; 35 variables; p
Multiple degrees of freedom
hypotheses tests; Residuals
and predicted values

NOTE: Coefficients of Variation are computed for all estimators.

The subpopulation analyses give the user the varLaqce-covariance matrix, which takes into 0:

option of crossing classification variables, account the sample design. These calculations
This allows the user to create new classification are given in Fuller (1975) and outlined in
structures from two or more input variables. For Hidiroglou et al (1980). Mlultiple degrees of '
example, suppose the input data includes the freedom F-tests for sets of coefficients and the
classification variables age, sex and education usual t-statistics are available. The user also
with six, two and five levels, respectively, has the option of obtaining residuals and
Then, by crossing age with sex with education, a stLmated true values.
new classification structure with 60 levels is
produced. The user may then obtain estimates for IV. Program Details and User %nterface¢

a'y aumber of dependent variables under this-%

classification structure. In PC CARP, certain tasks must be performel
The Two-Way Table analysis is defined by two repeatedly, regardless of the analysis. These

classification variables and at least one include data management, error handling and
dependent variable. Four tables are then program output.

computed for ,och dependent variable:
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The program relies on a single data management unscathed. The program routinely performs checks

subroutine which performs the following to avoid computational errors such as division by

functions: zero.
The user has the option of sending program

- Reads data from the diskfile and passes it output to any combination of diskfile, screen or

onto any of the subroutines performing data printer. Within the program, output is formed a

organization or analysis. line at a time. First, the output line is writ-
ten to a "buffer", which is actually a character

- Retrieves and sends rates (stratum or two- array. The character array is then sent to a

stage) associated with each data record. subroutine which, in turn, routes it to the
proper output device(s). As with data manage-

- Manages the set of files in which the data ment, this approach prevents the unnecessary

and rates are stored. repetition of output statements.
Two primary concerns at the program develop-

Isolating these functions in one routine allows ment stage were to have a friendly user interface

an analysis routine to be readable and unclut- and to minimize the number of passes through the

tered with data management code. Also, this data. The interface was made user friendly by

allows all analysis routines to be structured in implementing an interactive, screen oriented

a similar way. response system, while a single pass algorithm

In constructing the error handling system, the for variance estimation helped minimize the

most important consideration was to avoid program amount of reading from data files.

termination caused by user misspecifications that When information is needed by PC CARP, the

could be easily corrected. These include checks user receives a full screen of short response

for omitted responses, improper file names and questions along with detailed instructions. The

invalid analysis variable specifications. If first set of screens displayed to the user ask
such an error is detected, PC CARP allows the for information pertaining primarily to data

user to re-enter information or exit the program organization and location. One such screen is
pictured below.

PC CARP - Problem Specification

INSTRUCTIONS: Key the problem identification and press the ENTER KEY. Next

use the "arrow" keys on the numeric keypad to position the cursor. Key a
response to each and every requested item. Responses replace slashes shown on
the screen. When you have finished keying responses, press the "END" key on
the numeric keypad (lower right side of keyboard).

1. Type a problem name(id) on the next line, replacing the slashes

2. Give the total number of variables input (Replace //, Example 09) . . . /

3. Do you wish to have an intercept variable generated? (Respond Y or N) . /

4. Do you wish to enter the variable names using the keyboard? .. ...... /

5. Specify (Y or N) in each case whether the following items will be input
with the observations. (Unit weights are the default)

a. STRATUM ID ..... ............... . /.
b. CLUSTER ID ...... ............... /
c. WEIGHT ....... ................. /

6. Do you wish to enter the data using the keyboard? (Respond Y or N) . . . I

7. Will stratum sampling rates be provided? (Respond Y or N) Note that the t
response to 5a. above must be "Y" if sampling rates are provided . . . . /

8. Is this a two stage sample? (Y or N, if -Y" then response to 7 is "Y') /

9. Output from analysis is routed to (Y or N) %

a. PRINTER ......................... /
b. SCREEN ....... ................. /
c. DISK ........ .................. /

10. Do you wish to collapse strata (to avoid single unit in a stratum) . . /
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THE STATUS OF COMPUTER-ASSISTED TELEPHONE INTERVIEWING

2illiam L. Nicholls II, Bureau of the Census and Robert M. Groves, University of Michigan

Computer-assisted telephone interviewing, or are linked or networked to a common host. This
CATI, lies on the interface between computer permits many additional case management features
science and statistical data collection. It including: system assignment of cases to inter-
employs interactive computing systems to assist viewers; shared workloads and system scheduling
interviewers and their supervisors in performing of telephone calls and callbacks; online visual
the basic data collection tasks of telephone and audio monitoring of interviewers from super-
interviewing. This paper: (1) presents a visory stations, and common record keeping.
definition of CATI; (2) reviews its growth and While some of CATI's consequences for survey
current status as a new data collection tech- costs and data quality derive from online inter-
nology; and (3) summarizes available evidence on viewing features shared with CAPI and one-
its consequences for survey interviewing costs station CATI systems, others result from the
and data quality. case management and supervisory capabilities of

multi-station systems.
1. Definitions A CATI system may provide the equivalent of a

blank questionnaire on which the interviewer
Computer-assisted telephone interviewing is enters a case number and other input data before

part of a broader family of technologies called placing a call. More commonly the system
"computer-assisted data collection." In addition contains a file of sample cases identified by
to CATI, this family includes: (1) computer- case numbers. The interviewer may access a case
assisted personal interviewing (CAPI) which in one of two ways: (1) by case call-up, where
employs portable microcomputers for interviews the interviewer enters the identification number
in respondents' homes or offices; and (2) of a selected case; or (2) by online case
computerized self-administered questionnaires assignment and call scheduling where the inter-
(CSAQ) in which similar equipment is operated viewer indicates readiness for an interview and
directly by respondents. All three technologies the system supplies a case appropriately called
may employ similar hardware and software; but at that time. This reduces the need for inter-
their data collection characteristics probably viewer maintenance and review of paper or
vary with their usage and with the settings in displayed listings in choosing cases to call.
which they are employed. Current CATI systems differ greatly in their

At least in principle, CATI and CAPI provide use of online call scheduling. Some lack this
interviewers with the same types of online capability, some limit its use to previously
interviewing assistance. In state-of-the-art uncalled cases, and some employ it only up to
CATI systems: the point where the sample household or office
a. The system displays instructions, survey is reached. Others use it for virtually all

questions, and response categories on the calls except problem callbacks, such as recalls
interviewers' screens, to initial refusals and missed appointments.

b. The screen may contain "fills" or The range of circumstances to which online call
alterations of the display text based on scheduling is applied should affect both inter-
prior answers or batch input, viewer productivity levels and measures of data

c. Answers to closed questions may be entered quality dependent on the frequency and effici-
by numeric or alphabetic codes. These and ency of calling.
other numeric entries may be edited by sets
of permissible values, by ranges, or by 2. History and Status
logical or arithmetic operations.

d. Edit failures result in: (1) an unaccepted Market research agencies in the private
entry and error message requiring another sector created the first computer-assisted tele-
attempt; or (2) in display of additional phone interviewing systems and established
probes or questions to be asked, initial expectations of CATI's data collection

e. Extended text answers may be entered to characteristics. Based on experiences in the
open-ended questions. first CATI survey, conducted by Chilton Research .

f. Branching or skipping to the next item is for AT&T in 1971, Nelson, Peyton, and Bortner
automatic and may be based on logical or (1972) described "three distinct advantages" for %
arithmetic tests on any prior entries or cathode ray tube interviewing (as it was then
input data. called) in comparison with conventional data

g. Interviewers may interrupt and resume collection methods, These were: "accuracy,
interviews in mid-course; review, backup speed, and reduced costs."
to, and (when permitted by the survey Throughout the 1970's and early 1980's, the
design) change prior entries; and enter number, size, and sophistication of commercial
interviewer notes at appropriate points, market research CAT! systems increased rapidly

This paper focuses on computer-assisted tele- (Dutka and Frankel, 1980; Fink, 1983; Smith and "6
phone interviewing and even more specifically on Smith, 1980). Single installations of 100 or J-
multi-station CATI systems. One-station CATI more stations now exist, as do networks of P*.
systems exist (Philipp and Cicciarella, 1983) in geographically dispersed field sites. At least
which each interviewer independently operates a 100 CATI installations are in operation by 0
stand-alone microcomputer to complete online commerical market research agencies. The
interviews with assigned batches of cases. In majority are in the United States; but market
multi-station systems, the interviewing stations
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research firms using CATI are also found in automatic call scheduling systems (Ferrari, 1986
Australia, Canada, Italy, Great Britain, the and Nicholls, 1983). A related application with
Netherlands, New Zealand, Sweden, Switzerland, special promise for longitudinal demographic
and West Germany. surveys is use of CATI for second- and later- .

University research centers began their visit interviews after an initial interview in
largely independent development of CATI five person. In such designs, personal visits 1
years after its introduction in market research. (eventually by CAPI) may continue for households
The UCL!A Center for Computer-Based Behavior unreachable by telephone. Other potential uses
Sciences led the way; and the Center's Director, by governmental agencies include failed-edit
Gerald Shure, coined the CATI name and acronym follow-up and reconciliation reinterviewing.
(Shure and Meeker, 1978). Development work at
the Berkeley, Michigan, and UCLA Survey Research 3. CATI's Data Collection Characteristics
Centers and the Wisconsin Survey Research
Laboratory followed shortly thereafter (Groves, Survey organizations considering adoption of
1983; Palit and Sharp, 1983; Shanks et al., CATI frequently ask the following questions:
1980). Academic survey research centers greatly (1) How much will CATI cost to install and
expanded the range of CATI capabilities, operate?; (2) How will CATI change the time
especially for probability (rather than quota required to design and complete a survey?; and
control) sampling, call scheduling and callback (3) What effects will CATI have on data quality
routines necessary for high response rates, and compared with conventional methods?
greater freedom of interviewer movement. Today In a previous paper, the authors (Nicholls
at least 18 university and private research and Groves, 1985) attempted to summarize the
organizations, such as RAND, RTI, Westat, and existing literature on CATI to determine how
Mathematica, employ CATI. fully each of these questions could be answered.

U.S. governmental agencies demonstrated an Our general conclusion was that the past litera-
early interest in CATI, but steps to acquire ture provided few firm answers about CATI's
their own CATI capabilities did not begin until effects on survey costs, timeliness, or data
1980 when the the U.S. Department of Agriculture quality. This paper will take a somewhat more
Statistical Reporting Service and U.S. Census encouraging stance. Published and unpublished

Bureau both established internal staffs for this research released during the last year is
purpose (House, 1984; Nicholls, 1983). Both contributing to a better (although still far
completed their first tests of CATI in 1982 and from complete) understanding of at least some of
have continued CATI testing and production data CATI's data collection characteristics. These
collection since that time. In the Netherlands, include key factors in interviewing costs and
the Central Bureau of Statistics began CATI data selected consequences for data quality. The
collection for continuing surveys in 1984. remainder of this paper will focus on these

A major expansion of governmental CATI areas.
installations began in 1985. The USDA Statis- By most standards, this evidence is still
tical Reporting Service started placement of relatively weak. Four studies have been
production CATI facilities in state offices with published which are (or closely approximate)
the goal of completing this task by January controlled experiments in which probability '"

1989. The Centers for Disease Control began subsamples of the same survey are interviewed by
installing CATI in 25 state offices (most of CATI and paper methods at the same time by the
these two-station sites) for use in a continuing same staff under controlled conditions. These
survey. The Bureau of Labor Statistics began are the SRC-Michigan RDD Health Survey Test
testing CATI production on three surveys. The (Groves and Mathiowetz, 1984); the USDA
U.S. Census Bureau opened a 40-station CATI California Dual Frame Cattle Inventory Survey
facility for production data collection and (House, 1984 and Tortora, 1985); the USDA
expanded programs of testing on demographic Nebraska Hog Survey (Coulter, 1985); and the
surveys while its Business Division began auto- Westat Florida Colo-Rectal Cancer Kin Survey
mating selected economic surveys with a system (Harlow, et al., 1985). Most of these
including CATI functions. The Census Bureau is experimental studies employed relatively small
currently developing plans for full CATI and samples, ranging from about 130 to 1,200 CATI
CAPI implementation on the Current Population cases and as few as four or five CATI stations.
Survey and the National Crime Survey. If All also represent relatively early use of CATI 6%!6-

further evaluative tests prove successful and by their organizations. Comparable information
the survey's sponsoring agencies approve, this from organizations with at least three years
major change in data collection methods should CATI production experience is generally avail- %

be completed in the 1990's. Outside the U.S., able only in the form of summary impressions
Statistics Sweden began procurement in 1985 for rather than quantitative data (Palit and Sharp,
an integrated prototype CATI/CAPI system for its 1984).
major surveys; and this year Statistics Canada Comparisons of CATI and paper-and-pencil data
will begin testing CATI in its Labor Force collection are also available from four compara-
Survey. tive studies which do not meet the requirements

Applications to governmental data collection of fully controlled experiments. The SRC-UCLA
have placed new demands on the design of CATI Earthquake Survey (Fielder, 1985) and the SRC-
surveys. A common government application is in Berkeley Malignant Melanoma Survey (Coleman,
telephone follow-up to mail nonresponse. This 1985) approximate before-and-after designs.
has required systematization of procedures for Earlier waves of these surveys were conducted by
telephone tracing of difficult to reach respond- paper methods and later waves by CATI. The
ents for inclusion in CATI interviewing and comparisons are limited to first-visit inter- %*
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views in repeated cross-sections or control measurement are present in all five studies,
samples. The U.S. Census Bureau also completed collectively they suggest that CATI interviews
tests of CATI for telephone follow-up to mail tend to be at least somewhat longer than
nonresponse in the National Survey of Scientists comparable paper-and-pencil interviews.
and Engineers (Ferrari, 1984) and the 1982
Census of Agriculture (Ferrari, 1986). Each TABLE 1
test assigned probability subsamples of 7,000 or
more cases to each treatment, but the CATI and MEAN LENGTH OF COMPLETED INTERVIEW
non-CATI staffs worked at widely separated sites IN MINUTES BY MODE IN FIVE SURVEYS
which followed different hiring, supervisory,
and management procedures. These uncontrolled
factors and difficulties encountered in recover-
ing all field work records from the the non-CATI Survey CATI Non-CATI
site requires caution in interpreting their
results. --.--

While each of these studies is limited in
sample size, design, or experience with CATI, USDA Cattle Multiple Frame
they have the collective strength of represent- Survey (House, 1984) .......... 8.2 8.2
ing largely independent efforts by seven SRC-Michigan National Health
different investigators in six different Survey Test (Groves and
organizations utilizing five different CATI Mathiowetz, 1984) ............. 52 46
systems. Where consistent results are found, Westat Colo-Rectal Cancer Survey
they suggest generalizations which may apply (Harlow et al., 1985) ......... 28.5 25.1
across varying organizational settings. Malignant Melanoma Study

(Coleman, 1985) ............... 10.9 8.9
4. Data Collection Costs U.S. Census Bureau Survey of

Scientists and Engineers Tele-
The total costs of CATI data collection will phone Follow-Up (Ferrari, 1984) 20.8 13.7

depend on many factors, including the costs of:
(1) hardware and software acquisition,
installation, and maintenance; (2) CATI survey
design, setup, and debugging; (3) interviewing Although CATI relieves the interviewers of
costs; and (4) data preparation costs. Summary the task of turning pages and of finding the
impressions have been published which suggest next question to ask, several hypotheses, none
that total costs of a CATI survey will be less confirmed, have been advanced to explain the
than those of a comparable survey conducted by apparently longer length of CATI interviews.
paper-and-pencil methods, but these impressions First, experienced paper-and-pencil inter-
have not been accompanied by supporting detailed viewers often begin asking the next question
evidence (Nelson et al., 1972; Palit and Sharp, while recording the last. With CATI, this is
1983). more difficult because the next question often

Quantitative evidence is available bearing on is not displayed until the answer to the prior %_

only one cost component, interviewing costs, question is entered. Second, entering responses
Telephone interviewing may be divided into three to open-ended questions may take longer in CATI
main tasks: (1) placing calls to reach desig- because most interviewers write somewhat faster
nated respondents; (2) interviewing respondents than they type (Groves and Mathiowetz. 1984).
when reached; and (3) post-interview clerical Third, to the extent that CATI ensures comple-
tasks, such as editing completed forms for tion of items, probes, or other interviewing
consistency, maintaining records of calls, and tasks occasionally missed with paper-and-pencil
transcribing data between forms. Research on methods, this also will lengthen CATI inter-
CATI has most frequently focussed on interview views. Further increases in length will occur
length once respondents have been reached, when the CATI questionnaire includes edit checks

The results of three experimental and two requiring added probes or other interviewer
comparative studies are summarized in Table I. actions to reconcile apparent inconsistencies
House (1984) found the mean length of CATI and (Morton and House, 1983).
non-CATI interviews to be equal but reported Although CATI interviews tend to be longer,
problems of obtaining comparable timings across CATI interviewers may spend less time between

modes. The remaining four studies found CATI interviews. With efficient online call sched- NP
interviews to be longer. Groves and Mathiowetz uling and case assignment, CATI systems should
(1984) and Harlow et al. (1951) reported CATI reduce interviewer time selecting cases to call
interviews about 13-14 percent longer in surveys and maintaining call records. Automatic
where the telephone was the primary mode of data branching between items, online editing, and the
collection. Coleman (1985) found CATI recording of entries directly on computer files
interviews 22 percent longer but part of the should reduce the need for post-interview
difference was attributable to added questions clerical review of completed forms and trans-
in the CATI questionnaire. Ferrari (1984) cribing data between forms. The net effect may
reports CATI interviews 50 percent longer in one be an increase in interviewer productivity.
use of telephone interviews for follow-up to Nelson et al., (1972) reported a 10 percent
mail nonresponse, but the CATI timings included increase in interviewer productivity in the
additional activities and also were accompanied first CATI survey conducted in 1971. In 1983,

by substantially lower rates of item Palit and Sharp (1983) reported a 20 percent
nonresponse. While some uncertainties of increase in interviewer productivity (measured
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in sample points contacted per production hour) Interviewer productivity is only one v
compared with paper methods in random digit component of total interviewing costs. The
didling telephone surveys. Neither paper initial training of CATI interviewers is often

describes the methods by which the comparisons believed to take longer since they must learn to
were made nor presents supporting data. operate a computer terminal or microcomputer.

Estimates from two recent studies, shown in CATI's consequences for interviewing supervision

Table 2, suggest that the productivity of CATI are less clear and may depend on the tasks that

interviewers may depend on the use of online supervisors are assigned. Initial supervisory

call scheduling and case assignment. Using a training may require more time for CATI, but a
CATI system without these features, Coulter system with online call scheduling, case assign-
(1985) reported CATI interviewers 12 percent ment, and automatic record keeping should free
less productive than paper-and-pencil the supervisors of most clerical and report
interviewers when productivity was measured by preparation tasks and eliminate the need for

the combination of completed and refused inter- clerical support. This may provide more time 0..0
views per hour. By contrast, in the Census of for direct supervision and monitoring of

Agriculture telephone follow-up which made interviewers. 13/

extensive use of online call scheduling and case To date, only one study has attempted to
assignment, Ferrari (1986) found CATI include these elements in cost comparisons of
interviewers 45 percent more productive than CATI and non-CATI data collection. Table 3
paper-and-pencil interviewers when measured by presents cost, projections Ferrari (1986) based

completed interviews per paid interviewer hour. on comparative data from the Census of Agri-
Productivity appears to'have been increased by culture but adjusted for the differing pay rates

reducing the time spent between interviews. The and supervisory practices at the CATI and
CATI interviewers placed 23 percent more calls non-CATI sites. Data entry salaries also are
per hour and spent 31 percent more time on the included since CATI data entry occurs simultan-

phone than the paper-and-pencil interviewers. eously with interviewing. Searching telephone
directories for respondents' numbers when

TABLE 2 unknown and agricultural analyst review of
completed interviews for content consistency and

ESTIMATES OF INTERVIEWER PRODUCTIVITY BY MODE completeness were assumed to require the same
IN TWO SURVEYS cost per case in both methods.

TABLE 3

Survey and Measure CATI Non-CATI PROJECTED INTERVIEWING AND KEYING SALARY COSTS
PER CASE: CENSUS OF AGRICULTURE*

USDA Nebraska Hog Survey
(Coulter, 1985) Activity CATI Non-CATI

Completions and refusals

per interviewer hour .... 5.3 6.0
Sample size in cases ...... (550) (575) Interviewer training... $1.09 $ .39

Interviewing ........... 2.48 2.07

Census of Agriculture Telephone Interviewer supervision .77 .44r

Follow-Up (Ferrari, 1986) Clerical support .......-- .18
Tel. number research ... .11 .11

Completed interviews per Data keying ............. -- 1.26

paid interviewing hour.. 1.06 0.73 Analyst review ......... .08 .08

T e l e p h o n e c a l l s p e r p a i d ...... ....

interviewing hour ....... 10.42 8.45 Total per case .... $4.53 $4.53

Minutes phoning per paid Total per complete $8.83 $9.79
interviewing hour ....... 49.39 37.77

Sample size in cases ...... (7,688) (5,427) *Ferrari, 1986.

In Ferrari's analysis, CATI has higher costs

The increased productivity reported for CATI per assigned case in three areas: interviewer

by Ferrari is inflated by CATI's higher response training, interviewing, and interviewer super-

rate and perhaps by: (1) failures of the paper- vision. The higher supervisory costs include

and-pencil interviewers to accurately record the both added training for the supervisors and a

number, timings, and outcomes of calls; (2) by higher supervisor-to-employee ratio than used

analysis methods necessary to circumvent the previously in this survey. At the same time,

loss of many paper call records; and (3) by CATI achieves savings by eliminating clerical %

previously mentioned uncontrolled factors in staff and data keying. When summed, total

this comparative study. Nevertheless, the salary costs for CATI and paper methods are

direction of the results is consistent with the equal per assigne case. However, since CATI

ummary impressions of agencies which conduct obtained a higher response rate in this study,

CATI surveys. CATI's total salary costs per completed
interview were less, by 11 percent.
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These projections are based on the use of staff obtained a significantly lower refusal
CATI for telephone follow-up to mail nonresponse rate. This may be the result of the additional
and may not apply to other applications or calls and time on the telephone made possible
organizational settings. However, the analysis for the CATI staff by automatic call scheduling
suggests the types of data required to begin and case assignment. The CATI staff placed 76
assessments of CATI's cost-effectiveness as a percent more calls and averaged twice as much
data collection method. Future analyses should time on the phone with cases finally classified
include the salaries of professional and as refusals. The difference also may be attrib-
technical staff in survey design and in utable to the previously described uncontrolled
processing as well as nonsalary costs, such as factors in this comparative study.
amortization of CATI and key entry hardware and
duplication of paper forms. TABLE 4

5. Data Qualit REFUSAL RATES BY MODE IN FIVE SURVEYS

One of the most common speculations of the
small literature on CATI is that CATI will
improve the quality of data collected in tele- Survey CATI Non-CATI
phone surveys (Groves, 1983; House, 1984; Nelson
et al., 1972; Nicholls, 1978; Rustemeyer et al.,
1978; Shanks, 1983). Others have suggested ways
in which CATI may lower data quality (Harlow et Colo-Rectal Cancer Survey
al., 1985; Presser, 1983). We will look at (Harlow at al., 1985) ..... 8% 8%
available evidence in four areas: (1) unit Nebraska Hog Survey
nonresponse, (2) item nonresponse, (3) data (Coulter, 1985) ........... 9% 8%
consistency, and (4) the recording of textual Cattle Inventory Survey
material. (House, 1984) ............. 8% 8%

Survey of Scientists and
5.1 Unit Nonresponse Engineers (Ferrari, 1984). 21.7% 21.2%

Census of Agriculture
CATI can affect survey nonresponse through (Ferrari, 1986) ........... 5.2%* 12.5%

the interviewers' and respondents' reactions to
this new medium or through its special features,
such as online call scheduling and case assign- *Statistically significant difference between
ment. The small but consistent literature on CATI and non-CATI at the .05 level.
interviewer and respondent reactions suggests:
(1) that interviewers either prefer CATI to A second major component of unit nonresponse
paper-and-pencil methods or are about evenly is failure to reach sampled respondents because
divided in their preferences between these two their telephone numbers cannot be found or their
modes; and (2) that respondents accept CATI as numbers are not answered when called. Table 5
well as other forms of telephone interviewing or compares CATI and non-CATI contact rates, the
are unaware of the interviewing mode employed. percent of assigned cases whose households were
(Coulter, 1985; Groves and Mathiowetz, 1984; reached, whether that contact resulted in an
Morton and House, 1984; Nicholls, 1978.) While interview, a refusal, other noninterview or a
these reactions may change with time or special determination of ineligibility. In telephone
circumstances, both interviewers and respondents follow-up to mail nonresponse in the Survey of
appear to regard CATI as an acceptable method of Scientists and Engineers and in the Census of
telephone data collection. Agriculture, current telephone numbers and

There is little reason to anticipate,
therefore, that interviewers' or respondents' TABLE 5
reactions will affect survey response rates.
Coleman (1985) reports identical response rates CONTACT RATES BY MODE IN THREE SURVEYS
for CAT! and non-CAT! treatments in the
Malignant Melanoma Survey. Similarly, Groves
and Mathiowetz (1984) found nearly identical
reponse rates in two of three replicates of the Survey CATI Non-CATI
RDD Health Survey Test. A statistically signif- J.
icant difference occurred only in the first
replicate, during a period when the CATI system
could not maintain acceptable response times Survey of Scientists and
between questions. Under these circumstances, Engineers (Ferrari, 1984)... 50.2%* 44.4%
interviewer or respondent reactions to CATI may
have lowered the response rate. Census of Agriculture

Other investigators have focused specifically (Ferrari, 1986) ............. 84.3%* 79.0%
on refusal rates, that is the percent of
contacted households who refuse an interview. Cattle Dual Frame Survey
Of the five experimental and comparative studies (House, 1984) ............... 72%* 57%
summarized in Table 4, four found no difference
between CATI and non-CAT! refusal rates. In the
Census of Agriculture, where telephoning was *Statistically significant difference between
used for follow-up to mail nonresponse, the CATI CATI and non-CATI at the .05 level.
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addresses frequently were not available; and the system for the Survey of Scientists and
interviewing assignments included tracing such Engineers was this type of application. As
respondents through directory assistance and shown in Table 6, the CATI staff obtained sub-
other sources. The CATI system included these stantially lower rates of item nonresponse than
tracing steps in its call scheduling and case the comparison paper-and-pencil staff. The
assignment procedures. The paper-and-pencil greater difficulty of omitting applicable
interviewers were given guidelines with the same questions in CATI apparently contributed to this
procedures but independently selected cases to difference, but since the results are not based
call within batched assignments. In both on a fully controlled experimental design they
surveys, the CATI telephone follow-up staff must remain only suggestive.
obtained a significantly higher contact rate
than the non-CATI staff. While online tracing TABLE 6
and call scheduling appears to have produced
this result, uncontrolled factors in these MEAN PERCENT ITEM NONRESPONSE BY TOPIC AND MODE %,-
comparative studies also may have contributed. IN ONE EXPERIMENTAL AND TWO COMPARATIVE STUDIES

House (1984) reports a similar result for a
CATI system without online call scheduling. In
this survey, however, CATI stations were in
short supply, and to make maximum use of the Survey and Topic CATI Non-CATI
available equipment, a supervisor stood behind
the four CATI interviewers and chose cases for
them to call. The non-CATI interviewers worked
independently. Online call scheduling may be Health Survey Test (Groves
viewed as automation of such manual supervisory and Mathiowetz, 1984)
support. Sex, age, education ..... 0.7% 0.9%

Race, income, marital... 14.6% 15.0%
5.2 Item Nonresponse Sample size ............. (942) (1,137)

SRC-UCLA Earthquake Survey
Item missing data arise both from interviewer (Fielder, 1985)

failure to ask questions or enter responses and 15 Demographic items .... 0.3% 0.5%
from respondent failure to provide substantive 11 Opinion items ........ 2.3% 5.3%
answers. One of the most frequently cited Sample size ............. (536) (516)
advantages of CATI is rigid control over ques- Survey of Scientists and
tion flow and recording of responses, forcing Engineers (Ferrari, 1984)
the interviewer through each question appro- 14 Items asked of all
priate to the respondent and requiring an entry respondents** ........ 7.1%* 24.6%
at each question displayed. In principle, this 12 Items asked of most
feature can eliminate errors from interviewers respondents** ........ 7.5%* 26.6%
inadvertently or intentionally skipping items. Sample size ............. (3,056) (16,159)
While it is possible to prevent interviewers
from entering "don't know" responses by limiting
acceptable entries, in practice interviewers *Statistically significant difference between
generally are permitted to enter "refused" or CATI and non-CATI at the .05 level.
"don't know" to any question, just as in paper- **Excludes imputed items and those constructed
and-pencil interviewing. Forced entry at each during post-interview computer edits.
question does not ensure recording of a
substantively meaningful value. 5.3 Data Consistency

Three studies comparing item nonresponse by a

mode are summarized in Table 6. Groves and The data for a case may be described as
Mathiowetz (1984) found the same levels of item "consistent" if the entered values do not
nonresponse for CATI and paper interviews on six contradict one another. Consistency may be
demographic and income items. Fielder (1985) limited to the responses to one interview or
reports smaller levels of item nonresponse for extended across successive interviews and to
CATI, although none of the differences reach prior information from records and other
common levels of statistical significance. In sources. Paper-and-pencil methods strive for
these two studies, which employed the telephone data consistency by asking the interviewer to 0,

a as the primary data collection mode, CATI seems probe obviously inconsistent responses, by .
to have little or no effect on item nonresponse. supervisory or clerical review of completed

The consequences of CATI for item nonre- forms, by batch computer editing after the
sponse, however, may depend on the content of interview is keyed, and by reinterviewing cases 0
the items, the design of the questionnaire in which fail these edits. Data consistency
each mode, and the training and supervision of ensures neither validity nor reliability but is
the interviewers. In cases where the number of generally regarded as a useful measure of data
items asked is partly left to the interviewers' quality.
judgment, CATI may produce large reductions in Computer-assisted telephone interviewing may
item nonresponse. This can occur in telephone contribute to data consistency in two primary
follow-up to mall nonresponse where the inter- ways. The first is through automatic branching 'U

viewer must reconcile the conflicting goals of between items to ensure that all applicable
obtaining as much information as possible and questions are asked, or at least displayed for

v not antagonizing possibly reluctant respondents. the interviewer. (Inapplicable questions are

The first test of the U.S. Census Bureau's CATI omitted or appropriately marked if previously
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asked and later found to be inapplicable.) The Morton and House (1983) summarize field staff

second is through online editing in which impressions on two CATI surveys which suggest
apparently inconsistent responses require addi- that the recording of textual material is not a
tional actions by the interviewer, such as: problem. They say: "... we found that the lack
backing to correct prior entries; or making an of typing speed did not seem to be an irritant
additional entry to explain the reason for the to the respondent, and the speed did improve as

inconsistency, interviewers felt more comfortable with the
Two studies with controlled experimental keyboard." No quantitative data have yet been

designs have provided first evidence of CATI's presented to compare the quality of CATI and
effects on data consistency. Groves and non-CATI responses to open-ended questions; but
Mathiowetz (1984) analyzed a sequence of 28 Harlow, et al., (1985) found that CATI inter-
questions with complex skip patterns and found viewers entered 25 percent fewer comments than
that 8.8 percent of the entries by the non-CATI interviewers; and this contributed to a
paper-and-pencil interviewers had consistency lower rate of unresolved "don't know" responses
errors compared with 1.8 percent of the entries after comments were employed in clerical
by CATI interviewers. Contributions of CATI to editing. These differences were not statis- F

data consistency through online editing have tically significant in the small samples
been reported by Tortora (1985) in the Cattle examined, but they are supported by similar
Inventory Survey. When data sets from CATI and observations by Tortora (1985). Further
non-CATI interviews were submitted to the same research on these topics is clearly needed.
batch computer edits, the CATI data were found
to contain 75 percent fewer critical errors than 6. Summary
the paper-and-pencil data. Critical errors were
defined as those requiring another contact with The remarkable growth of CATI in commercial
the sample case. market research, in university research centers,

Placing a survey on CATI does not necessarily and in the planning of government agencies has
improve data consistency across all items. The proceeded largely without firm research results

effect will occur only where automatic branching on its consequences for survey costs and data
and online editing enhance consistency. quality. Detailed evidence about CATI's data
Improved consistency also may be difficult to collection characteristics have begun to appear
detect if comparisons are made only after the only in recent years.
data are clerically edited and imputations made When compared with paper-and-pencil methods,
for missing data and out-of-range entries. CATI typically entails higher costs in comput-
Ferrari (1986) reports only a trivially lower ing hardware and software and perhaps in survey
(although statistically significant) overall design. Offsetting savings are most likely to

edit failure rate for CATI than for non-CATI be realized in interviewer productivity and
telephone follow-up data in the Census of post-interview processing. Due to the typically

Agriculture when submitted to the same batch longer length of CAT! interviews, interviewer
computer edits after the close of field work. productivity may not be increased by CATI
Moreover, the CATI edit failure rate was systems without online call scheduling and case
significantly higher for some key items not assignment. But with these capabilities, major
included in the CATI online edits. For maximum increases in interviewer productivity seem
gains in data consistency, online editing must possible.
be extensively employed and parallel the key The effects of CATI on data quality generally
requirements of the batch editing programs. appear to be small or negligible except when

specific data quality enhancement features are

5.4 Recording of Textual Material employed. CATI typically has no effect on the
response rates and refusal rates of telephone

Computer-assisted telephone interviewing is interviews, but may increase contact rates in

generally viewed as most effective in obtaining some applications with efficient online call
numeric and precoded responses. Concerns are scheduling and tracing routines. Similarly,
more frequently expressed about the quality of CATI typically has little or no effect on item
textual materials obtained, such as entries to nonresponse except in applications where
open-ended questions and interviewer notes automatic branching encourages interviewers to
qualifying or explaining respondents' answers, ask questions they might otherwise omit. CATI
Most CATI systems permit entry of extended does increase data consistency but only where
answers and qualifying notes to any question, its automatic branching and online editing
but their entry may be more awkward in CATI than features are used. At the same time, CATI may
with paper methods. CATI interviewers often are result in less complete entries to open-ended
required to have minimal typing skills, at least questions and less frequent interviewer
20 words per minute, and trained to inform comments.
respondents that they are using a keyboard when CATI remains a promising technology for
unable to keep up with the respondent's answers, survey data collection, but like other data
Nevertheless, the slower rate of textual entry collection methods can be expected to have its

in CATI may reduce the completeness of answers own strengths and weaknesses. Further research
to open-ended ;uestions and discourage entry of is required to identify these more fully, both
qualifying notes. Separate actions required to to guide appropriate choices of method for
access the notes function also may discourage specific surveys and to stimulate corrective
its use. measures in areas where weaknesses are found.
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INFERENCE FROM COARSE DATA USING MULTIPLE IMPUTATION

Daniel F. Heitjan, U.C.L.A.

Donald B. Rubin, Harvard University

Inference from Coarse Data Using Multiple not known.
Imputation Multiple imputation

Multiole imuutation is a procedure for han- Multiple imputation, in contrast to single im-

dling inadequate data by filling in several plau- putation, replaces each missing value not with a
sible values for each inadequately reported value, single value but with a vector of Ma2 imputed
The basic ideas underlying multiple imputation values. The M values are ordered in the sense
are reviewed and then applied to a data set with that M completed-data sets are created from the
coarsely reported ages of children. Sensitivity vectors of imputations! replacing each missing
analyses and diagnostic displays are included, value by the first component in its vector of

I. Multiple Imputation imputations creates the first completed data set,
and so on. Standard complete-data methods are

Pervasiveness of inadequate data used to analyze each data set. That is, standard
Essentially all data collected in surveys are complete-data methods of inference and diagnosis

inadequate in some aspects. Commonly for example, are used on each completed data set. When the M
survey data suffer from nonresponse: some sam- sets of imputations are repeated random draws un-
pled units do not provide answers to some ques- der one model for nonresponse, with each set cor-
tions. Usually such nonresponse leads to missing responding to an independent drawing of the para-
values, but a less extreme form, perhaps called meters and missing values from their posterior
"partial nonresponse" leads to data much coarser predictive distribution, the M complete-data in-
than desired. For instance, in many surveys in- ferences can be combined to form one inference
come questions suffer from either nonresponse be- that properly reflects uncertainty due to nonre-
cause some individuals refuse to divulge their sponse under that model. When the imputations
incomes, or partial nonresponse because only are drawn from two or more models for nonre-
coarse information, such as above or below $20,000 sponse, the combined inferences under the models
is reported. can be contrasted across models to display sensi-

Imputation tivity of inference to models for nonresponse, a

Imputation is the process of filling in each particularly critical activity when the precise

missing value with a specific value, such as the reasons for nonresponse are unknown. Thus multi-

respondents' mean for that variable or a value ple imputation has the advantages of single impu-

predicted from variables that are observed for tation but rectifies both disadvantages. The

that unit. For example, if income is missing for only disadvantage of multiple imputation over

a group of individuals, it might be imputed using single imputation is that it takes more work to

predictions based on a regression of log income create the imputations and analyze the results.

on fully observed background characteristics us- The extra work in analyzing the data, however, is

ing those individuals who reported income. With really quite modest in today's computing environ-

partial nonresponse, such as coarsely reported ments since it basically involves performing the

income, a specific value for income consistent same task M times instead of once.

with the coarsely reported value would be imputed. Multiple imputation was first proposed in
Rubin (1978). A comprehensive treatment is given

Advantages and disadvantages of imputation in Rubin (1986a); other easily accessible refer-
The practice of imputing for missing values is ences include Rubin (1986b), Herzog and Rubin

very common because it has the obvious practical (1983), and Rubin and Schenker (1986).
advantage of allowing standard complete-data meth- (For3in sudarybinferener a1mltpl
ods of analysis to be used. This advantage is Forming summary inferences from a multiply

extremely important not only when forming infer- imputed data set

ences but also when conducting diagnostic analy- Forming summary inferences from a multiply im-

ses. Imputation also has an advantage in many puted data set is quite direct. First, each data AR

contexts in which the data collector (e.g., the set completed by imputation is analyzed using the

Census Bureau) and the data analyst (e.g., a uni- same complete-data method that would be used in

versity social scientist) are different individ- the absence of nonresponse. Let 61, U,
uals, because the data collector may have access t = 1, ... ,M be M complete-data estimates and

to more and better information about nonrespond- their associated variances for an estimated e,
ents than the data analyst. For example, in some calculated from M repeated imputations under one

cases, information protected by confidentiality model. For instance, when estimating a propor
constraints such as zip codes of dwelling units, tion 0 from a simple random sample of size n, 0
may be available to help impute missing values is given by p. , the proportion of successes cal-

may e aailble o hlp mpue misin vauesculated using 9.th set of imputed values for the
such as annual incomes. The obvious disadvantage missing values and Ui. is given by pth(l -pj)/n,
of single imputation is that imputing a single
value treats that value as known. Consequently, at least for modestly large n and p. not too near

without special adjustments, single imputation 0 or 1. The combined estimate is

cannot reflect sampling variability about the M
correct value to impute even supposing the rea- -M IM.
sons for nonresponse are known, nor can single R 9.
imputation represent the additional uncertainty The variability associated with this estimate has

that arises when the reasons for nonresponse are two components: the average within-imputation
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variance, dard diagnostic techniques to help criticize pos-

M ited models and (ii) the assessment of sensitivity

S= / UM, of inference to various models. These points will
M I be illustrated here using a particular survey of

nutritional status of children in Tanzania that
and the between-imputation component, suffers from coarse reporting of ages. Far more

B ( 5 2 /M1)comprehensive presentations of the data and these

M  Y- -1) analyses are given in Heitjan (1985) and Heitjan

2and Rubin (1986).

(with row vector 6, () is replaced by ()T().) 2. The Tanzania Nutrition Data
The total variability associated with (M- ) is

The data base

- M+ 1 The data set that we use to illustrate multi-

TM = UM 
+ 

- Im' ple imputation for coarse data consists of anthro-
pometric measurements on children under six years

where M+ is an adjustment for small . With of age from eight poor rural areas in Tanzania

scalar 8 and small M, the reference distribution taken by nutrition researchers interested in esti-

for interval estimates and significance tests is mating the extent of malnutrition in the various

a t distribution, regions (Kimati, 1985). Approximately five thou-
sand children comprise the full data base; we

(6 ) T focus on the 270 children from the Dodoma region.
( - v In addition to sex of child and age, as provided

where the degrees of freedom, by the mother, weight, height, mid-arm circumfer-
ence and head circumference were recorded by the

S(U (lBM)
1 2  

researchers.
IM ) + 1 M Objective of complete-data analysis

is based on a Satterthwaite approximation (Rubin A simple way to measure the extent of malnu-
and Schenker, 1986). When M is large, the infer- trition among such a group of children is to cal-
ence for 0 is based on the normal approximation culate the percentage of them that are classified

S-!Ias stunted or not and wasted or not. Stunted re-
(8 - em) TM N(O, 1). fers to being short for age and wasted refers toMto

being light for height, where the definitions are
For 0 with r components, significance levels established for boys and girls from data collect-

for null values of 0 can be obtained from M re- ed on groups of known normal healthy children
peated complete-data estimates, bk, and variance- from the U.S. (Hamill, et al., 1979). Children
covariance matrices, UZ, using multivariate ana- who are classified as stunted but not wasted may
logues of the above expressions. Less precise p- simply be short, and children who are classified
values can be obtained directly from M repeated as wasted but not stunted may simply be thin, but
complete-data significance levels. Details may simultaneous stuntedness and wastedness in a single
be found in Rubin (1986a). child are regarded as clear evidence of malnour-

Although multiple imputation is most directly ishment. Assuming accurate measurements of sex,
motivated from the Bayesian perspective, the re- age, height and weight in the 270 children, in-
sultant inference can be shown to possess good ference for the extent of malnourishment would be
sampling properties. For example, Rubin and based on p, the ptoportion of stunted and wasted
Schenker (1986) show that in many cases interval children among the 270, and its standard error,
estimates created using only two imputations pro- SE = [p(I - p)/n] where n = 270. The data as re-
vide randomization-based coverages close to their ported give p = 5.9% and SE = 1.4%.
nominal levels. Age-heaping

Missing information The problem with this simple answer is that,

The ratio UM/BM estimates the quantity even though height and weight are accurate meas-
(1 -y)/y where y is the fraction of information urements, age as reported by mothers is quite
about 0 missing due to nonresponse. This frac- coarse. For ages over a year, most ages in months
tion is important in two ways. First, it affects are reported as divisible by 6 -- this phenomenon
the adequacy of the distributional approximations is common and is known as age heaping (e.g., see
proposed above. Second, y governs the efficiency Ewbank, 1981). The problem is possibly more ser-
of OM as an estimator of 0; specifically, the ious in Tanzania than the United States in the
variance of OM is larger than the variance of 6. sense that precise date of birth is not very im-
by the factor portant in Tanzania, ond so mothers may not even

know their children's ages to the nearest month.
If+ j|. Also, some evidence suggests that, as opposed to %

M the situation in the United States where reported

Beyond one summary inference from a multiply- ages are typically truncated, reported ages may

imputed data set often be rounded to the nearest year or six

Although the ability to form one summary in- months. Figure I displays the reported ages for

ference when the multiple imputations are re- the 270 children. 01
peated draws from the posterior predictive dis-
tributions of the missing values is important,
equally important is the fact that the creation

of complete data sets allows (i) the use of stan-
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possible given their reported ages, the resulting
proportion of the 270 that will be classified as
malnourished, Ppes, will be as large as possi-

e. ble -- pes is for pesimistic. In other words, if
we impute true ages that are as young as possible,
we obtain the estimate Popt with associated stan-

a dard error SEopt - Lpopt(l -popt)/n) 1. Table 1
gives the results, and indicates substantial sen-

fl sitivity of answers, especially considering that
each 1% represents many hundreds of children.

to- TABLE 1. Extee vaus for proprton malnourished
i - I estimate

(standard error)

Reported Age in Months Interal widths
_____________________ medium wide

FIGURE 1: Reported Age Histogram -- od pessimistic ages 6.7% 8.2%

(overstate malnutrition) (1.5) (1.7)

Restrictions on true age imposed by reported age optimistic ages 3.3% 1.51
We consider two versions of the possible inter- (understate malnutrition) (1.1) (0.7)

vals for true age given reported age, where for
both versions, all ages reported as under 12
months except six month reporters, are correct to
the nearest month. With "medium" intervals, all ,
ages that are reported to be a full year (i.e., Plan of attack
reported age in months = 0 mod 12) are considered Since the extreme tables analysis suggests
to arise from possible true ages within ±6 months that the coarseness of the reported ages does
of the reported age, and all ages that are re- have an important practical effect on inferences
ported to be a mid-year (i.e., age in months - 6 about the proportion malnourished, v, we proceed
mod 12) are considered to arise from possible to perform more sophisticated statistical analy-
true ages within ±3 months of the reported age. ses specifically designed to take the coarseness
With "wide" intervals, the bounds are twice as into account. In particular, our plan is to use
large, that is, ±12 months for full-year report- multiple imputation to create a sequence of data
ers, and ±6 months for mid-year reporters. We sets with various values for true ages from which 1*
label the width factor W - 0 (medium) and I the standard complete-data inference for it can be
(wide). The status of the six month reporters is calculated. These imputations will be created
determined by another factor R - 0 (rounded) and using a variety of Bayesian models that relate
1 (exact). If R = 1, a reported age of six true age Y to reported age X and the other re-
months is treated as correct to the nearest month, ported characteristics Z = sex, height, weight,
whereas if R - 0, a reported age of six is treated mid-arm circumference and head circumference.
as rounded, within ±3 months if W = 0, and within The analyses of the imputed data sets within each
±6 months if W - 1. It is important to realize model are combined to form a valid inference un-
that at this point, absolutely no assumption re- der that model, and then these inferences are
garding the distribution of age within these in- contrasted across models to display sensitivity
tervals is being made. of inference to modelling assumptions. Further-

Extreme tables imputation more, the data sets completed by imputation are S
Of course, it is perfectly possible with these used to help diagnose the adequacy of the under-

definitions of possible true ages that the re- lying model.

ported age data are accurate enough for purposes 3. Models for True Age and Resulting Inferences
of inference about the proportion of malnourished and Diagnostics
children, even if no further assumptions are
made. Specifically, since height, weight and sex A naive and obviously incorrect model
are reported accurately, the wasted classifica- A naive first pass model corresponds to as- S

tion is accurate and the height component of the suming that true ages Y are uniformly distributed

stunted classification is accurate. Perhaps no within the allowable intervals defined by the
matter what the childrens' true ages within these value of reported ape X and the levels of the

rounding intervals, inferences for the proportion factors W and R. Imputed true ages are created

malnourished will be stable. by drawing from these uniform distributions.

If all children are considered as young as This model is obviously incorrect given the ex-

possible given their reported ages, the resulting istence of background variables Z because it im-

proportion of the 270 that will be classified as plies, for example, that two children with the

malnourished, Pp, will be as small as possi- same sex and reported age, of say 36 months, have

ble -- the subscript opt is for optimistic. Sim- the same distribution of true ages despite the

ilarly, if all children are considered as old as fact that one is taller, heavier, and has larger
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head and mid-arm circumferences than the other, on 4 *,, values of true ages were independently
Clearly, the bigger child is probably older than imputed by drawing from the confined distribution
the smaller child, and the imputed true ages of true age given X and Z for each of the 270
should reflect this fact. children. This process was effectively repeated

Notation independently hundreds of times for each of the

Let g be the generally unobserved indicator 24 models to create hundreds of data sets with

for the degree of rounding; g takes on three val- known nutritional status. Each data set was sum-

ues indicating: reports to the nearest month (0), marized by the standard complete-data statistics
p and p(l -p)/n and these were combined within

reports to the nearest mid-year (1), reports to models according to the methods of Section 1 to
the nearest year (2). This indicator is observed create 24summary inferences about ir. Results

as 0 when reported age is neither a mid-year or

full-year (X 0 mod 6), but is either 0 or 1 when are summarized in Table 2 which gives the esti-

age is reported as a mid-year (X= 6 mod 12) since mate p, its standard error SE, and the fraction

a child with reported mid-year age might be that of information missing about 7 due to coarse

age to the nearest month and would have reported rather than precise age data.

to the nearest month no matter what his true age.
Similarly, g is either 0, 1 or 2 when age is re-
ported as a full year (X - 0 mod 12). The statis- TABLE 2: Sensitivity of Infereno for v across 16 models

tical problem is to model the joint conditional
distribution of g and Y given Z = (sex, weight, SM.",,w F,.2tF-i. 0.f.-
height, mid-arm circumference, head circumfer- pool itot. .1 1 of t -P) mtIm 1.t 1W
ence). Reported age, X, is a fixed function of I t M' 1. 20.4

Y and g, and so its conditional distribution giv-
en (g, Y, Z) is fully specified a priori. 0 0 0 0 1.G46 L 1.4 LO 0M 14.3

The regression of Y on Z 0 0 1 1. .01 3.49 .0 00.9 -0.

The joint conditional distribution of (g, Y) 0 a I S.3 -. 1s 3.04 .0 3.3 4.4

given Z can be defined by first specifying the 0 s.3 1 L. .0 . . 30.4 -0..

conditional distribution of Y given Z and then I 1 0 0 .4 -." I .47 - .03 3.S .

the conditional distribution of g given (Y, Z). 0 SAS .0 3.47 .0 32.2 0.0

We assume a standard normal linear regression for 0 0 M . 3.00 -. 01 1.4 0.7

YS given Z where the exponent or scale a is 4 1 3 1 4.7 .30 3.49 .40 n.s 0.0
either 0 or . Thus the factor S has two levels, 1 0 0 1.07 .23 3. .01 0.2 -2.
0 = raw scale, I - square root scale. 1 0 a I . .0 . . 1.0 -0.

The final specification for g 1 0 3 0 S.63 .0 I.4 .01 34.3 -. 1

One class of models that we fit as a baseline 1 0 3 1.87 .0 , . 33.9 0.0

assumes g is fixed and known from the value of a 0 0 I.M .34 3.49 .01 9.0 0.0

reported age X. In particular, if reported age I 1 0 3 3. .00 3.01 .00 0.3 -0.1
is a mid-year, then g is fixed at 1, and if re- I 1 0 S." .3 3.s .01 09.) -0.s
ported age is a full year, then g is fixed at 2. a I ." .0 I.1 .0 1S.1 0.0
otherwise, g is 0. Thus, all children with mid-
year reported ages are regarded as always being
mid-year reporters, and all children with full-
year reported ages are regarded as always being

full-year reporters. This model is intuitively Discussion of Table 2 - sensitivity analyses
not very satisfying and in fact does not fit in
well with our stated objective to specify the Table 2 also gives the Yates' 24 ANOVA decom-

conditional distribution of g given (Y, Z), but position into effects from the four factors in

it is relatively easy to fit. The second class the design (Daniel, 1976). With respect to the

of models treats g as a random variable and pos- point estimate p, factors I, S and W have fairly

its a proper joint conditional distribution of g large main effects, but none is bigger than one-

given (Y, Z), basically of i problt form -- g is third of the associated standard errors, which

created by trichotomizing an unobserved normal, are basically unaffected by the various models.

HeitJan and Rubin (1986) provide details. The The fractions of missing information are quite

factor indicating whether the intervals are fixed variable: all main effects except R are nonneg-

or random is I with levels 0 for "g is fixed from ligible, and the IW interaction is also present.

X" and I for "g is a random variable." It is rather obvious that wider intervals should
lead to larger information loss but it is inter-

Creation of imputations esting to see that the variable intervals models

Under each of the 24 models being considered, also lead to less information loss. Actually,

posterior distributions were estimated for the after some thought, this is not surprising since
regression parameters under a noninformative for each child the possible interval under the

prior distribution. An EM algorithm (Dempster, random intervals model can be narrower and is

Laird and Rubin, 1977) was used in conjunction never wider than under the corresponding fixed

with Newton's method to find the mode, and then intervals model. For all models, however, the

the posterior distribution was approximated as information losses are such that far fewer than

normal with mean equal to the mode and variance 100 imputations under each model (say ten) would

provided by the second derivative at the model. have provided essentially the same inference as

A regression parameter was then drawn from this an infinite number of imputations.

posterior distribution, say 0,, and conditional
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Diagnostic checks
One of the benefits of multiple imputation is 4 Model {I.O.S.O.W.OR.1)

the ability to draw valid inferences, such as sum-
marized in Table 2, under a variety of models us-i
ing standard complete-data statistics. Another [-
advantage accruing from the creation of complete- 

-

data sets using multiple imputation is the abil- C

ity to use standard complete-data diagnostic tech- h

niques. For instance, residual plots using im-
puted data are displayed in Figure 2 for models
{I = fixed, S = raw, W = medium, R - rounded} and n

{I = fixed, S - square root, W = wide, R = round- P..
ed}. Such displays consistently support the con-
clusion that the square root scale is superior to
the raw scale. Also, average (across imputations
within a model) histograms of five imputed true h e
ages were produced in Figure 3 for models A. in. m onth
{I = fixed, S = raw, W = medium, R - rounded) and
{I = variable, S = square root, W = medium,
R =rounded}. Such displays consistently support
the random interval-medium width models since
they did not have the objectionable underheaping Model {I-IS-Iw-O.R- l)
at full-years and overheaping at mid-years pre-
sent in the fixed and wide interval models.

3-
C
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-is 0 10 20 20 0 00 0 Summary

I~to rontl~td dt• r~rle~onIn summary, the procedure of producing multi- _

ple imputations under a variety of models gener-
ated the following conclusions.

3 Model *(I-O,S-IW=1,R=I1
1. The square-root scale model with medium,

variable intervals was preferred on the
t__ - basis of diagnostic displays. ,
d - 2 evi in tervlsm l

S {" "3. The point estimate of fraction malnour-

,"V_. , " ished was relatively insensitive to rea- O-

. .# . . sonable model specifications when con-
- , ;0 sidered as a fraction of its standard

• - ' " ""error. ,"

+a-For further research Durposes, a multiply im-

puted data set is available with five repeated

draws of true ages from the preferred model

* 3 4I - variable, S - square root, W medium,
fits Cres Lmputed sets rogrsee on R - rounded). From Table 2, the information

loss for Tr with this model is approximately
FIGURE 2: Reoidua! rzot 8.6%, which means that estimates based on the %, ".

five imputed values have 1.7% more variance than
those based on an infinite number of imputed

values, and the number of degrees of freedom in

reference distributions is unaffected by the
finiteness of the number of imputations.
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EXPERIENCES WITH A DATA ANALYSIS MANAGEMENT PROTOTYPE

Paula J. Cowley, Daniel B. Carr, and Wesley L. Nicholson
Pacific Northwest Laboratory *

1. ABSTRACT graphics library developed in-house.
Rather than converting the library to run

We have been evaluating our prototype in the EUNICE environment, our computer
data analysis management system, which scientists developed a strategy that
was designed to aid the analyst in allows an S process running under EUNICE
keeping track of the course of a data to create a VMS subprocess that handles
analysis. This paper describes some of the graphics portions of ADAM. Borrowing
our experiences using the prototype and a phrase from science fiction, the
summarizes our evaluation. Evaluated computer scientists refer to this
features include capabilities to technique as going through a "wormhole,"
graphically depict the course of the a wormhole being a way of moving between
analysis, the ability to return to parallel universes.
previous milestones in the analysis, the A standard feature of S is the diary
ability to use segments of the log that function. While using S, the analyst may
describe the course of the analysis, and turn on the diary so that all commands
the ability to associate both written and given to S will be recorded in a file.
spoken documentation with milestones of This file forms a temporal record of the
the analysis. course of the analysis. We have modified

the S diary so that it records additional
2. INTRODUCTION information for ADAM's use.

Use of ADAM is optional. When the
The Analysis of Large Data Sets (ALDS) user invokes S, start-up procedures will

Project of the Pacific Northwest ask whether data analysis management is
Laboratory, operated by Battelle Memorial to be used. If the user indicates that
Institute, has implemented a prototype it will be used, the modified diary is
data analysis management system named opened and date and time stamps are
ADAM [3-6]. ADAM is currently running on inserted. When the user wants to access
a DEC VAX 11/780 using AT&T Bell ADAM to perform data analysis management
Laboratories' S statistical analysis functions, ADAM is invoked by entering
system [I]. ADAM is implemented as a
function within S, wh'.h means that the ?adam
analyst can invoke AAM from S at any
time during the course of the analysis. 4. DEPICTING THE ANALYSIS

ADAM was designed and implemented to
evaluate how software could be used to When we examined the data analysis
help the analyst track the course of the process, we noted that analysts could
analysis. A team of statisticians and identify significant milestones in the
computer scientists considered the data analysis. These milestone could be
analysis process and the way data points at which some significant
analysts interact with the available discovery was made, points marking the
tools. While the quantity and quality of completion of a phase of the analysis, a
tools to support data analysis are dead end from which no more analysis
improving, there has been very little to would be performed, or points at which
aid the analyst in keeping track of what there were several alternative paths to
was really going on during the analysis. be investigated. We also noted that
ADAM was designed to address the these milestones could be logically
shortcomings of existing software in the linked together to form a tree. Since
area of data analysis management. analysts often wish to pursue alternative

paths from a given point in the analysis,
3. THE ADAM ENVIRONMENT we wanted to provide a facility to allow

the analyst to recreate the state of the
ADAM runs in a relatively unique analysis at that point. We named these IL

environment on our DEC VAX 11/780. The S points "save-states". ADAM depicts the
package is normally run using the UNIX course of the analysis as a tree of these
operating system, but since we had such a save-states (see Figure 1). The save-
large investment in software developed states are depicted as labelled boxes.
under the native VAX operating system, The lines joining the boxes represent the
VMS, we did not convert to UNIX but are analysis steps that occurred in moving
running EUNICE, a UNIX derivative that from one save-state to another.
allows UNIX software to run on a VAX A number of tunctions can be pertormed
using VMS. on save-states. The analyst may use the

As will be described in more detail CREATE function whenever the analyst
below, ADAM is graphics-oriented. We decides that a significant point has been
wanted to take advantage of an extensive reached in the analysis. Once an analyst
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FIGURE 1: ADAM SAVE-STATES FIGURE 2: SCANNING A SAVE-STATE

has created a save-state, the analysis icon); the save-state's data sets; and
can continue from that point, or the documentation about the save-state.
analyst can chose to RESTORE a previously While the course of an analysis is
created save-state. In this way, an primarily a tree, the process is not
analyst can change the course of an completely tree-like. At any point in
analysis. When an analyst restores a the analysis, it may be useful to use a
previous save-state, the environment will data set that was not derived as a part
be the same as when the save-state was of the process that created the most
originally created. Only the data sets recent save-state. To address this
that were active when that save-state was issue, we allow save-states to inherit
created will be available to the analyst data from other save-state. To reduce
when the save-state is restored. the clutter on the screen, these "data

In addition to depicting the from" paths are not normally displayed,
relationships between the save-states, but the analyst can choose the SHOW
ADAM can also display more detail about a NETWORK option in order to see what data
selected save-state through the SCA1N has been associated with a save-state
command (see Figure 2). The analyst from non-ancestor save-states. The ERASE Np
selects the save-state to be scanned and NETWORK is used to remove the "data from"
a window opens with an overview of the arrows when the analyst is finished
save-state. On the actual ADAM display, viewing them.
the selected save-state is a different The menu window of Figure 1 shows four
color from the other save-states. In other menu options. The MOVE WINDOW
Figure 2, the selected save-state's box option allows the user to reposition the
is heavily outlined. The analyst can various windows that ADAM uses. Every
open another window to see previously menu has a HELP option that explains the
edited comments about the analysis or can various menu options. Many menus have an
listen to comments recorded on a cassette S-MODE option that allows the user to
tape deck that is operated under computer leave ADAM and return to the S
control. The analyst can also scan the statistical package for further analysis. 1'
log (called a diary in S) to see the When the S-MODE option is used, the
commands that led to the creation of the display of save-states is erased. The
save-state being scanned. RETURN option is used to erase an

Certain information about a restored existing menu and return to a higher-
save-state can be modified through the level menu. For example, the RETURN
MODIFY command. This information option on the SCAN menu of Figure 2
includes the save-state's name; its erases the large SCAN window and paints
author; icons that indicate the existence the state menu of Figure 1 on the screen.
of plots (the eye icon), written comments
(the keyboard icon), and spoken comments 5. USING THE LOG S
(the ear icon); an icon to indicate that
special insight was gained in this We have modified the standard S diary
portion of the analysis (the lightbulb function and refer to it as the ADAM log.
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In addition to recording the analysis reconstructing the analysis. If an
steps taken in S, ADAM also records data analysis has to be performed again or the
analysis management steps. Time-stamped same analysis is performed on a different
information is recorded in the log every data set, having the commands readily
time a new S session is started and when available can save much time. The
a save-state is created or restored. S documentation is useful for quality
treats the ADAM entries as comments so assurance purposes. For example, dead
the analyst can use segments of the log ends are useful in demonstrating that
containing ADAM entries with no impact on alternatives were examined. The
S. documentation records insights, purposes,

The ADAM log depicts the temporal and relevance of the various activities
sequence of the analysis while the ADAM in the analysis. In addition, the
display depicts its logical sequence. documentation can be used as sample
ADAM entries divide the log into segments analyses for training others.
that describe the development of a save-
state from its parent save-state. 7. ADVANTAGES AND DISADVANTAGES

There are a number of functions the
analyst can perform on the log segments. Our evaluation of ADAM has pointed up
The contents of the log segments can be both advantages and disadvantages to the
displayed. In addition, because of the current implementation. Many of the
importance of graphics in analysis, the disadvantages of ADAM can be rectified
analyst can choose to display only the through the use of tools that were not
plot commands. The analyst may edit log available to us when the design of ADAM
segments to remove superfluous entries or began. ADAM makes extensive use of
errors. The analyst may also edit the windowing but its windowing is too slow.
log to create procedures (called "macros" Many workstations have built-in windowing
in S) that can be invoked at a later software that would not only provide
time. greater speed but would also provide a

built-in mechanism so that experienced
6. DOCUMENTATION users could skip some levels of menus.

It would also be advantageous to have
One of the strongest points of ADAM is multiple windows active at the same time.

its documentation capabilities. There With the current implementation, the
are three ways that an analyst using ADAM analyst is either in the ADAM mode doing
can document the course of the analysis. data analysis management or is in S doing
(1) The analyst can insert comments into analysis. It is time-consuming to move
the log while S is being used. This is a from one mode to the other. In a
normal S function and can be used to workstation environment, a data analysis
provide a running commentary on the management system could run in one window
course of the analysis. (2) The analyst while a data analysis system is run in I
can edit an optional comment file another.
associated with a save-state. (3) The ADAM does not actively participate in
analyst can record spoken comments the data analysis. Although the log is
associated with save-states. The tape recording during the analysis, there is
deck on which the comments are recorded no intervention of ADAM in the process.

dis under ADAM's control so that ADAM can As a result, the analyst can do things
track which selections on the tape are that will cause data analysis management
associated with which save-state. This to fail. For example, the ability to
option is useful for analysts who feel restore a save-state is based on the
comfortable dictating. assumption that the data sets still

Analysts can use all three exists. In this prototype, the analyst
documentation modes as desired, can delete a data set that ADAM needs for
Inserting comments into the log while restoring a particular state. If ADAM
using S is valuable for recording the actively participated in the analysis,
sequence of events during the analysis. ADAM could inform the analyst of the
The comments associated with the save- impact that deleting a particular data
state are intended to capture information set would have. If the analyst wanted to
surrounding the creation of the save- delete the data set anyway, the affected
state as well as discoveries and insights save-state could be marked as non- "
leading to iLb creation. The spoken restorable.
comments can be used in the same way and Another way in which a data analysis
could, in addition, be used to record management system should actively
discussions between analysts. participate in the analysis concerns the

The documentation is useful for a cleaning up of the log. In ADAM, the
number of purposes. It can provide a analyst can use the standard text editor
historical perspective on the course of to make changes to the log. It is
an analysis. This is of particular possible that an analyst might remove
significance if an analysis is examined necessary information from the log in
remember exactly what was done. The Rather than having the analyst clean up
documentation can be used as a basis for the log, the data analysis management
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system could do the cleanup in 8. CONCLUSIONS
consultation with the analyst. This
would prevent the analyst from Much has been learned in designing and
inadvertently removing necessary implementing the prototype data analysis
information. Work on the auditing of management system. It has validated many
data analyses [2] demonstrates how logs of the concepts we saw as being basic to
can be processed to determine the understanding the data analysis process.
evolution of data sets and serves as one We believe that the concepts of
approach to cleaning up data analysis graphically depicting the course of the
logs. analysis through save-states and the

ADAM allows analysts to create save- ability to restore a save-state for
states as desired but provides no further analysis are powerful and useful.
mechanism for imposing a superstructure Further work will continue to incorporate
on the save-states. The analyst may wish these concepts. Our next data analysis
to group a set of save-states into a management system will be based on a
higher-level structure and label it. We workstation. This will be done to take
would like to provide a capability so advantage of the software available on
that this grouping would normally be seen the workstation and to take advantage of
on the tree. The analyst could choose to the speed at which graphics can be
zoom in on that structure and see the generated on the workstation. However,
save-states that make it up. Such a we will continue to use the VAX as the
facility is available in DINDE [7], a machine on which the analysis is
prototype statistical system running on a performed since statistical analysis and
Xerox 1108 personal workstation. DINDE graphics tools already exist there.
graphically depicts the analysis but has
no concept of save-state.
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Tools for Data Analysis Management

Ronald A. Thisted, The University of Chicago

ABSTRACT way we think about and carry out data analysis, andthey all exist only in prototype systems not generally

Interactive statistical computer programs represent available for public consumption. What they also have
one class of tools which have made it easier for statis- in common is that at least part of each can, and should,
ticians to carry out the computations associated with be put into use today by practicing statisticians. What
data analysis. We discuss additional tools, both soft- can be done (and how) is the subject of the remainder
ware and hardware, which can be combined with in- of this paper.
teractive statistical packages to make it easier for the Three concerns.
statisticia, to . nplement a personal strategy for analyz- [1e conserns
ing data. An I !,tegrated collection of tools for data anal- 11 Statisticians have acquired familiarity with certain
ysis is cal,.d a computing environment. We describe the software tools, such as SAS, S, Glim, Minitab, and many
DAMSL computing environment which is built around others. Most data analysts know one or two such pack-

ages intimately and likely have at least passing acquain-off-the-shelf hardware and software costing less than

$4,000. This environment is aesigned to alleviate many tance with others. This constitutes a major investmert
of the managerial burdens which arise in analyzing data. of time and energy spent. What can we do that builcs

on this investment rather than making it obsolete? As
Crecine (1986) points out, users of computer systems

0. INTRODUCTION must be able to learn a transferable technology which

Adventures in Tomorrowland. The fascination and will not become obsolete or unavailable tomorrow.

the value of the Interface meetings for statisticians is [21 Statisticians have adopted strategies for doing data

that we discuss new methods of data analysis, new com- analysis using computer packages. What tools can be
puting methods, new hardware. We learn about new provided which make it easier or more natural to imple-putig mthod, nw hadwae. W lern aoutnew ment those strategies, and which also make it possible
programs that people are working on that employ new t those strt and wich u poile

metaphors for data analysis that arise from, or make to think about and to reflect upon the strategies them-

good use of, new computing technologies. We explore selves?

new ideas for using computer hardware and for build- [31 What can mere mortals (defined to be those with
ing computer software that may in the future radically limited pocketbooks, limited time to learn new systems,

transform the practice of data analysis. It is the glimpse and limited access to prototype systems) do today to
of the future that these meetings afford that makes them make data analysis more productive, to help manage
so attractive for many of us. Let me note some examples the data-analysis process, and to start thinking about
from this year's Interface. personal statistical strategies?

John Tukey (1986) writes of every statistician having The DAMSL system described below addresses these
a background program running on his or her personal concerns by integrating nonstatistical tools based on off-
workstation which will study and diagnose interesting the-shelf technology costing less than $3,000 at today's
aspects of a data set. This program will do its work prices. The system is designed to be a computing en-
during the statistician's off hours: during lunch-at vironment that is equally useful to someone using Glim
night, during faculty meetings-in short, whenever the as to someone using Minitab, as the tools it incorpo-
statistician is not using it for other useful work. Paul rates exist on top of existing software rather than built
Tukey (1986) reports on his work developing "cognos- into a particular statistical program. As a consequence,
tics," algorithms and heuristics for an otherwise unas- what the statistician knows about a particular statist:-
sisted computer program to use to select interesting cal package does not become obsolete-it becomes more
views of a multivariate data set worth further scrutiny useful! Moreover, the tools we introduce are gener- "
by the program's owner (perhaps when he returns from ally transferable, so that exactly the same tools can be

breakfast). Richard Becker and John Chambers (1986) used if one switches from Minitab to do a rough plot to
discuss the notion of "meta data analysis," in which the Glim to do a logistic regression in the middle of a data-

steps taken by a statistician during the course of ana- analysis session. What we do presuppose is that every .. , P.

lyzing a data set themselves become the raw data for a data analyst has, and will continue to have, access to

higher-level analysis, and tools for collecting such data standard interactive statistical programs such as those

using the notion of an audit. Wayne Oldford and Steve we have already mentioned.

Peters (1986) outline their approach to building sta-
tistically sophisticated software-programs which know 1. STATISTICAL STRATEGY
something about the process of data analysis. Paula When an experienced data analyst sits down at the
Cowley and her colleagues (1986) present their experi- keyboard to examine a data set, he or she employs gen-
ence developing a system for managing and organizing eral strategies for learning what the data have to say.
the data-analysis process. These strategies include heuristics both for combining

What these approaches have in common is that they specific techniques and methods of data analysis an I
are all exciting, they all have potential to change the for using the chosen computing system. The strategies
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may be conscious or not. Loosely speaking, they con- Northwest Laboratories have made considerable progress p
stitute the data analyst's "style." Statistical strategy in developing computer tools whose function is to as-
has not been systematically studied until very recently, sist in the management aspects of data analysis (Carr,
yet is is extremely important, for several reasons. First, Cowley, and Whiting, 1984; Cowley and Whiting, 1985;
in teaching statistical methods, what we seek to im- Cowley, Carr, and Nicholson, 1986). The ADAM sys-
part is really a collection of fruitful approaches rather tern which they have developed is integrated with the
than a catalog of formulas. Second, if we can bring the S statistical language. Although ADAM only exists in
strategies that we (individually) adopt to the conscious prototype, some of the features which make ADAM at- I,

level, it becomes possible to examine them, to identify tractive enhance the productivity of data analysts and
successful ones, and to refine them. Doing so makes it are realized in DAMSL.
possible to recognize more readily situations in which
particular approaches may not be fruitful. If statisti- 3. COMPUTING TOOLS TO FACILITATE
cal strategies can be verbalized, they can then be dis- DATA ANALYSIS MANAGEMENT
cussed, taught, and debated. More generally, improved AND STRATEGY
understanding of statistical strategy leads to better and We now turn to some ideas for creating a computing
more productive data analyses. Third, if there is any environment which realizes some of the more important
hope to construct expert systems that can assist in data features of prototype systems such as QPE and ADAM,
analysis, it is essential to come to a more complete un- and which can do so at low cost. The system we de-
derstanding of the nature of the data analysis process, scribe can be obtained immediately, for less than $3,000.
including statistical strategy. Many of the chapters in (As an existence proof, we name names and list prices.)
Gale (1986) are devoted to the problem of collecting and The emphasis will be on providing tools for data anal-
representing knowledge about the strategies adopted by ysis management and for analysis and implementation
data analysts. of statistical strategy.

Reflection about "what we did" in a data analysis is Computer tools for assisting data analysis can be di-
difficult to carry out, since after the fact, many spur- vided into three groups. Intelligent software incorpo-
of-the moment decisions will have been forgotten, ideas rates knowledge about the process of data analysis.
lost, and inter-relationships among pieces of the analysis DINDE, described in Oldford and Peters (1986) is an
obscured. Reasons for following a given line of attack- example of a program which knows a moderate amount
particularly unfruitful ones-may have evaporated: "it about such things as collinearity and means for diagnos-
seemed like a good idea at the time." Specially designed ing its effects in different situations. Smart programs
computing environments (Thisted, 1986) can help by incorporate structural knowledge about particular sta-
looking over one's shoulder during the analysis, and by tistical software, but know nothing directly about how
making it possible to record information about both the software could be used to perform a data analysis.
the intentions which lead to each step being taken and Examples in this category include QPE and ADAM,
the deductions resulting from that step (Thisted, 1985). each of which knows something of the structure of S,
These ideas lie behind the notions of auditing a data but nothing of the structure of data analysis. The last .
analysis ii l Becker and Chambers (1986). The QPE class consists of the dumb software, which knows noth-
system, in which data auditing is being developed, is a ing of data analysis or of statistical programs. DAMSL
prototype system. Some of the features of data auditing is dumb software. But it is available.
can be immediately realized using DAMSL. The advantages of the dumb approach are many. It

2. DATA ANALYSIS MANAGEMENT is cheap. The product is portable. It is hardware-
independent, in the sense that it does not depend upon

Except for the most trivial data analyses, the anal- the particular type of machine on which you do your
ysis process is a long and involved one, requiring the interactive computing; it is as much at home on a UNIX
statistician over several days to keep track of a plethora machine as on a DECSystem-20. In addition, it is
of modified and transformed variables, subsets of the software-independent, in the sense that it can be used
data, results of intermediate analyses, loose ends to fol- with S, Minitab, Glim, SAS, SCSS, or any other statis-
low up on later, tables and graphs, side computations tical software, in a fashion that is insensitive to changes
that must be done outside the main statistical package, that may be introduced into any of these programs.
and the like. This has become particularly difficult to do The idea is to take a set of ordinary programs and ma-
using the standard interactive computing systems with chines which can be adapted to perform tasks involved
which most statisticians are now familiar, for example, in developing statistical strategy or in managing data
using Minitab on a timesharing computer via a 24-line analysis. This hardware and software is then integrated
video-display terminal. Much of the statistician's men- into a coherent computing environment within which
tal energy and organizational skills are diverted from ordinary data analysis can also be conducted. The com-
the data per se and redirected to these essential, yet ponents of DAMSL are listed below. We shall discuss
peripheral, matters. the capabilities of the hardware components in section 4

Although courses in statistical methodology rarely 4, the capabilities of the sof'ware components in set-
address the issue, the practice of data analysis involves tion 5, and the integration of these components with
projects of moderate to high complexity, the manage- each other and with statistical software in section 6.
ment of which is nontrivial. Researchers at Batelle
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4. THE SET OF HARDWARE TOOLS FIGURE 1

The hardware needs of a statistical computing envi- First, one can save the transcript of the terminal ses-
ronment could be met by any of a number of personal sion to disk, either for later perusal or for archival pur-
computers. The features which are important (which poses. This transcript includes everything that tran-
the Macintosh, for instance, includes) are: high resolu- spires on the screen, including both input and output.
tion display capable of both text and graphics process- Thus, one has the option of retaining everything that
ing, adequate memory for multiple applications to run one would otherwise have from a session conducted at a
simultaneously, printer interface, and a telecommunica- (much slower) hard-copy terminal. What is more, this
tions (modem) interface. These are included in the price stream-saving feature can be turned on or off at any
of the Macintosh; systems based on other personal com- time by moving the mouse to the "Save Stream" item
puters (such as the IBM PC) would generally have to on the menu, so that is can be used selectively.
take account of the additional expense these items en- A second related feature is that the stream (of both
tail. The Macintosh has the advantage that it is partic- input and output) can also be echoed to the attached
ularly easy to learn to use, thus minimizing the amount printer. Thus, if the data analyst knows that he or
of time that must be invested to learn the system. she will want particular results for permanent reference

The printer selected is integrated with the computer. (or even frequent reference during the terminal session),
It is a modern dot-matrix printer that has good resolu- that work can be printed automatically as it is gener-
tion and is capable of printing high-resolution graphics ated. This feature, too, can be toggled at any time by
as well as text without additional hardware. A second selecting the item "Print Strcam".
disk drive is an essential component of the system. The Versaterm (when configured as in DAMSL) also re-
1200 baud modem is the means for communication with tains eighteen previous VT1OO screens, as well as the
the remote timesharing computer on which the statisti- current screen. The information on these screens really
cal software will be accessed. Such devices generally can should be thought of as a single screen of some 450 lines,
operate at either 1200 or at 300 baud interchangeably, any 24 of which are visible at a single time. The par-

ticular 24 lines are determined by the position of the
5. TttE SET OF SOFTWARE TOOLS scroll bar on the right-hand side of the display. The

As with the hardware, other software components white box can be thought of as an elevator car whose
could serve our purposes to similar effect; the partic- position in the elevator shaft corresponds to position in
ular combination discussed here works particularly well the 450-line terminal memory. The mouse can be used
with the Macintosh and with each other, at any time to move the elevator box to any desired po-

Versaterm. This program is a terminal-emulation sition. It is also possible to scroll forward or backward

program which makes it possible to use the hardware a line at a time. This feature makes it very easy to go

of the previous section as if it were a very smart ter- back to a recently performed part of the analysis whose

minal. Versaterm can (simultaneously) emulate both a importance may not have been obvious at the time.

standard video display terminal, the DEC VT100, and a In conjunction with the scrolling feature, it may turq
standard graphics terminal, the Tektronix 4010. More- out to be useful to have a hard copy of a portion of the
over, the terminal emulator can run at 9600 baud using analysis, say a plot of the data, or a listing of potential
dedicated communications lives. Thus, at a minimum, outliers, or a table of summary statistics. Versaterm
the DAMSL system can simply act as the terminal on makes it easy to go back to that portion of the output,
which data analysis is done. But Versaterm has many select any number of lines from it, and then to print the

features which are particularly useful in data analysis. selection on the printer. Such a selection could also be *

Several of these are illustrated in Figure 1. They are saved on a disk file on the Macintosh as well.
selected by pointing the mouse to particular choices in In addition to the features listed above, Versaterm
a menu, which temporarily overlaps the main display. has a separate graphics screen for Tektronix emulation,
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from which it is possible to produce quite adequate hard gram which makes it possible to run different programs
copies of graphics output. The Tektronix output can on the Macintosh simultaneously. In DAMSL, we run
also be saved to disk, for later processing. a word-processing program (Word) in one area of the

Finally, Versaterm has several protocols for transfer- Mac's memory, and a terminal emulator (Versaterm) in
ring files between the Macintosh and other computers, the other. Each program acts as if it had the Mac to it-
including Xmodem and Kermit protocols. (The text self when it is the active program, and each has its ow
for this paper, for instance, was written on the Mac- set of windows in which computation is done. Switcher
intosh and transferred using Versaterm to a computer makes it possible to move from one program to the other
with typesetting software.) in less than a second, by simply clicking the mouse once,

Microsoft Word. The second workhorse of the or by typing a single key (your choice). What is more, it
DAMSL system is a word processing program, some is possible to move contents of one program's windows
of whose features are illustrated in Figures 2 and 3. into those of the other programs. Thus, for instance, I
Word is one of several similar programs available for can copy a scatterplot created by Minitab in Versaterm
the Macintosh which allow use of multiple fonts, resiz- directly into the middle of a manuscript I am working
able windows, and a screen display which corresponds on using Word. Alternatively, I can extract a Minitab
very closely to printed output. The features of Word command embedded in a Word window (such as a line
which make it the choice for DAMSL are its ability to from the "glucose mtab commands" window in Figure 3) 5"

have up to four windows open simultaneously, in which and cause it to be executed by the mainframe program
four separate documents can be processed, and the fact being run using Versaterm.
that Word has keyboard equivalents for most options Switcher makes two things possible: to change focus
which can be selected by the Mouse. almost instantaneously from a program where work is

As Figure 2 illustrates, a single document can be carried out (Versaterm) to a program where information
viewed in two different places at once, by splitting a about the work is recorded (Word) and vice versa, and
window, so that comments can be typed in, say, the to move information back and forth between these two
lower window, while observing the contents of the up- areas of focus.

per window. Figure 3 demonstrates that several differ-
ent windows, with quite different contents, can be in 6. DAMSL: AN INTEGRATED SYSTEM
use simultaneously. By clicking the mouse on any one DAMSL is a somewhat strained acronym standing
of the windows, that window becomes the active win- for Data-Analysis Management and Strategy Liberator.
dow; by clicking twice on the top of the window next to The DAMSL system consists not only of its individ-
the title, the window automatically increases in size to ual hardware and software components, but the ways in
occupy the whole screen. Another double-click returns which they are integrated with one another and with un-
the window to its smaller size and position. derlying statistical software such as Glim and Minitab

It is possible, with a few mouse movements, to move running on a remote computer. The integration is ac- %
or copy any portion of any window into any position complished through the environment-switching capabil-
in any other window. Additions and insertions again ities of Switcher, the multiple text-window capabilities
require only a mouse click to initiate. Changes of font- of Word, and the graphics, marking, saving, and file-
both style and size-can be accomplished either with transfer capabilities of Versaterm. Viewed in the large, %,.a4 %
the mouse or with one or two keystrokes. DAMSL can be thought of as providing up to six dis-

Switcher. Although most of the real work is done by tinct windows onto the data analysis process, within
Versaterm or by Word, the ingredient that makes the each of which separate aspects of the overall task can
system work is the program Switcher. Switcher is a pro- be accomplished. They make it possible to focus more
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easily on just one aspect of the data analysis at a time, Switcher has been launched, at the upper left corner of
yet moving from one aspect to another involves no more the screen is a pair of arrows. By moving the mouse to
than a second to accomplish. When these tasks overlap either arrowhead and clicking once, Switcher moves in
or interact, information can be transferred readily from the next application program. Clicking the arrow now,
the context in which it is generated to another context for instance, immediately moves us to Word.
in which it may prove useful. The next step, then, is to enter Word and to set up

For managing the data-analysis process, and for mon- three windows. The first I call "glucose notes," the sec-
itoring and evaluating statistical strategies, the key lies ond "glucose variables," and the third "glucose mtab
in the ways these windows and the other features of the commands." These will contain, respectively, a running
constituent software are used. These are perhaps best commentary on the most important aspects of the anal-
illustrated with reference to an example. ysis in progress; a workspace in which I can keep track

The example involves the reanalysis of a published of the contents of the Minitab worksheet and its vari-
data set from Smith and Choi (1982) concerning glu- ables, matrices, and constants; and an area in which I
cose metabolism in 26 healthy male volunteers. Each can keep track of the sequence of Minitab commands
was given a standard glucose challenge dosage, and the that I have used in the analysis. This uses three of
levels of plasma glucose (mg/dl) were recorded one hour Word's four available windows. I reserve the fourth for
and three hours after the challenge (X2 and X3). In ad- possible temporary use later in the analysis. The Wor I
dition, each subjects weight in pounds was also recorded side of DAMSL is now ready to go.
(XI). Smith and Choi used the data to illustrate a tet We then switch to Versaterm, and immediately choose
comparing two dependent regression lines; they con- the option to "Save Stream" under the File menu. This
cluded that the regressions of X2 on X , and of X3 on means that our entire session with the remote computer
X, were different. The question leading to the reanal- will be automatically recorded on the Macintosh disk.
ysis was whether some simple model could be found We can then examine it later, or print it out, or discard
that satisfactorily represented the relationship of glu- it, or even edit it. Next, we dial the remote computer
cose metabolism to weight. Although this is a relatively (by selecting an item from the Phone menu), and we
simple problem, it is sufficient to illustrate many of the login as usual and launch Minitab.
ways in which DAMSL can assist in the data analysis The preliminaries come first: we load the data set (a;-
process. Because Minitab 82.1 is widely familiar, I shall ready saved, for convenience, in a Minitab worksheet),
use it as the statistical package for my data analysis. and ask for the brief information stored with the work-

The first thing that we do is to insert two disks con- sheet. This information I select using the mouse and

taining the DAMSL system into the computer; the Mac- then I copy it into the Word window "glucose variables",
intosh shows the contents of the two disks as in Figure 4. where it can serve as a constant reminder, both of the
One disk contains Switcher and Word (DAMSL Mas- contents and the source of the data set. I then return
ter), the other contains Versaterm, a file called DAMSL, to Versterm, this entire process having taken just a few
and other files and documents related to the current seconds.
data analysis. Generally, the first disk is the same for As a matter of course, I always obtain simple de-
all applications, while each different project will have its scriptive statistics for the variables in the data set, and
own incarnation of the second disk. To start DAMSL, histograms as well. This is starting-point information,
one clicks twice on the file named DAMSL. This au- and may well be referred to at many later stages of the

tomatically starts Switcher, which in turn starts both analysis. I select this information, and copy it into the
Word and Versaterm in areas of memory of prespecified Word window "glucose notes", and the result is shown
size (160K for Word and 256K for Versaterm). Once in Figure 5. Actually, as the figure makes clear, about
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thirty lines of the terminal session were not transferred In copying the Minitab output to "glucose notes", I
to "glucose notes". I had made a trivial mistake in copy only those portions which are important in shap- h

Minitab which I had no reason to perpetuate. The win- ing my understanding of the problem or of the course 'I

dow "glucose notes" is to contain only those parts of of the analysis. Other aspects are merely summarized;
the analysis which are important or useful in my chain for such summaries, I use boldface type. This is illus- C"

of reasoning about the data; I edit out that which is trated in Figure 7. Note that the boldface entries record
useless, and I do so "on the fly." When I review the something I looked at, but which did not contribute to
analysis (after having taken a lunch break, for instance) the unfolding story. Using this system dead ends don't
I examine "glucose notes" rather than leafing through simply disappear, they actually contribute to the over-
the last 400 lines of computer output. all understanding of the problem. At the same time,

Already, I have begun to organize and to assist my the landscape is not cluttered with fragments of corn-
own thinking about the problem. In the sequel, I do putation that must be waded through in order to recon-
so in a moderately systematic way. Note that Figure 5 struct an analysis. When used in the manner outlined
contains material in two different fonts-a monospace here, "glucose notes" represents an implementation of
font (Monaco) in which Minitab input and output is the "three-ring binder" ideas of Thisted (1986).
displayed and a boldface font (New York) in which I If at any time it becomes clear that there are several
have inserted commentary about the computing pro- lines of attack to examine, I write them all down in a
cess. I use an additional lightface font (Geneva, seen in list as part of "glucose notes", and then I copy the list
figure 6) for my plans and for my own analysis. These to a new (fourth) window, in which I keep temporary
fonts visually represent different aspects of the compu- notes-in this case, a list of things "to do." As I do
tations I undertake, and I use them systematically. each one, I can check it off in this fourth window.

Before going to Minitab to do a sequence of com- Occasionally, something passed over as insignificant
putations, I jot down a few notes in "glucose notes" (and hence not copied to "glucose notes") will later turn
concerning what I am about to do, and why, using the out to be relevant. The terminal memory is usually j.%
Geneva font. I then follow this idea in Minitab until I sufficient to cope with the problem; anything done fewer
have done what I set out to do, or until it seems as if than 450 lines ago can be retrieved in a few seconds and .
my plan is changing somewhat. At that point, I pause, pasted into its proper place in "glucose notes", along
and I copy relevant portions of the Minitab output into with the corresponding notes about its importance and
"glucose notes", using the Monaco font. I then record how it came to be realized. If the 450-line boundary has
in a few words my interpretation of what I have seen, passed, however, there is still the complete transcript
and how that has changed my view of what should be of the terminal session that has been silently recorded
examined next (using Geneva again). It is also a trivial throughout which can be used to retrieve anything of
matter to annotate the Minitab output that has been interest that transpired during the session.
copied to "glucose notes", and it is often useful to do One of the three windows that we originally set up
so. If a regression coefficient in one analysis is close to has not yet been mentioned. It is sometimes useful to
its theoretical value, I can note that fact "on the out- record the sequence of Minitab commands used in an
put," as it were, and I can do so in real time. I then analysis. These can easily be extracted by copying, say,
write down a few words about what I am about to do several hundred lines at a time from Versaterm mem-
next, and then I repeat the cycle. This is illustrated in ory into "glucose mtab command", and then in a sin-
Figure 6, in which an interpretation of a plot is coupled gle pass, removing the Minitab output. Remarkabl,,,
with its implications for what to do next. Word makes it possible to do this with little effort, even
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though it is done "manually." What is more generally in our example), particularly when compared against

useful is to copy the contents of "glucose notes" (which the entire session transcript, can be a powerful tool for
contains Minitab input as well as output and comments) reflecting on the strategies adopted in the analysis and

into "glucose mtab command", and then to strip out on their effectiveness.

the non-commands. This was done, for instance, in the
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STATISTICALLY SOPHISTICATED SOFTWARE AND DINDE

R.W. Oldford and S.C. Peters, Massachusetts Institute of Technology

Abstract 2.0 What's an Analysis?
We describe a prototype system, which we call The simplest, and least satisfying, view of a

DINDE, and the directed network model of statistical statistical analysis is as a specified sequence of steps.
analysis on which it is currently based. DINDE is a An example would be regression modelling by a
highly interactive display oriented system where the forward selection procedure, where variables are
user carries out the analysis by building and added to the current regression model one at a time
maintaining a network representation of it. An according to some criterion.
example analysis is used to describe this interaction This model of statistical analysis seems to
and the analysis management tools required. underlie the batch-oriented statistical packages of

the late 1960s and early 1970s, or, at least, to
1.0 Introduction underlie their common usage. The sequence of steps

By statistically sophisticated software, we do not to be taken in the analysis is defined in advance and
mean software that implements a sophisticated the corresponding set of packaged routines is run.
statistical method, but rather, software that In light of the results, this sequence may be modified
contains information on how and when that method and the resulting new set of procedures run. Each
is most frequently used in practice. run is regarded as a different analysis. The

As shown in Figure 1, there are at least three refinement of the analysis continues until the
analyst is satisfied that the final one is "correct" for
the problem. In this paradigm, novices typically
would not substantially modify their original

Statistical - Statistical analysis.
Strategy Guidance A more accurate view of statistical analysis,

based largely upon a scientific modelling paradigm
as expressed, for example, by Box(1976], is that it is
an iterative procedure whereby statistical models

Analysis are alternatively fitted and criticised.
Management Unrolling this iterative loop produces a different

kind of sequential process, one whose steps are not

Figure 1: Three interrelated objectives predetermined. Instead, the analyst decides what to
do next based upon the results of the preceding step.
Rather than a specified sequence that is continually

reasons why one might attempt implementation of refined, this model of an analysis is a dynamic
such software: first, to have software which guides sequence, one that grows as more is learned about N.,the user to a better statistical analysis (e.g. Gale and the problem and the data. The analysis is "%Pregibon[1982], Oldford and Peters[19841); second, represented by the entire sequence, not just by a

to use the software as a medium for studying final revision. Here, novices would typically
statistical strategy (e.g. Pregibon[1985] or Oldford produce shorter sequences than would experts.
and Peters[1984,1985ab]); and, third, to have As such, this model fits well with modern
software which helps the user manage the analysis interactive statistical systems like S (Becker and
(e.g. Carr et al [ 19841, Becker and Chambers[ 1985], Chambers [1984]), where each step of the analysis
Oldford and Peters[1985b]). corresponds to a command issued to the system.

These objectives are interrelated and software After examining the results of each command, the
for one often leads naturally to software for another, analysis is grown by issuing another command. A
For example, to successfully guide the analysis one macro facility is usually available to allow the user
needs to understand and implement the supporting to compress many small sequential steps in the-
statistical strategies. To study the strategies of good analysis into a single larger one that is easier to ".'
statistical data analysis with software, one needs to comprehend, and use, as a unit. In this way, new

Abe able to manage the analysis. In developing analysis steps are defined by the analyst. Diaries
DINDE, we have repeatedly found ourselves reinforce this model of analysis by recording the
concentrating on each objective in turn; entire sequence of steps.
advancement toward one objective has often The dynamic-sequence model suggests that
produced insight on one of the others, results and information from actions taken early in

Whether the chief interest is to guide, study, or the analysis influence later actions only through the
manage the analysis, some model of an analysis is chain of steps given by the time ordering. But this is
required. The next two sections address this not an accurate description of an analysis. At any

* question rather generally. The remaining sections step, a number of different actions can be, and often
* describe the current implementation of one such are, taken. A model of analysis based only on the
* model in DINDE. Like any model, the current time order of actions hides this logical relationship

model of statistical data analysis used in DINDE is between actions, and, hence, is seriously incomplete.
temporary and will improve with experience. The This is an important shift in focus: from the time
last section indicates some of the modifications we ordering of statistical and arithmetic procedures to
already foresee. the conceptual steps of the analysis and the logical
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connections between the steps. Now, the simplest Second, in each step, information is incorporated
model of the analysis is a tree, where branches as to which steps are often taken next. This simple
indicate a logical connection between one step and a addition makes the step more powerful at no loss to
number of others. For example, at different times, its range of application.
different actions or decisions may be taken from one In DINDE, commands sometimes produce steps.
step, resulting in many branches from it. With this but, steps are never commands. The steps in DINDE
model, novice analysts would likely produce short, are quite different; they are collection points for
sparse trees and expert analysts long, bushy trees, possible actions (commands). Instead of specifying a

A little reflection, however, shows that the tree sequence of actions to be taken, the abstraction in
model also falls short. Suppose that two branches of DINDE is to collect together a set of possible actions
the tree represent two different sub-analyses that and the information that may help the analyst
are pursued in parallel. It may happen that a new decide among them. A sequence of actions identified
tack is taken in the analysis that is based on the and captured in DINDE would simply be a more
combined results of both independent sub-analyses. abstract action, not a step.
Where should this new sub-analysis be attached? At present, the steps that have been developed in
The obvious answer is to attach it to both of the DINDE are either analysis goals or analysis
previous ones, forcing the whole analysis to become artifacts.
a directed network rather than a tree. For example, an analysis goal might be a

This directed network model of statistical data reasonable description of the regression of yon x (i.e.
analysis is currently the basis for DINDE. While it the conditional expectation of y given x). This goal
provides a better description than any of the is represented in DINDE by the step
previous models, it too has shortcomings. We BivariateRegression (bivariate since two variables
discuss some of these in the last section, and indicate are involved). A variety of information is
our planned modifications to the network model, immediately available at this step: which vectors x

and y refer to, what set of actions are generally
3.0 What are the steps again? reasonable to take next (various plots and fitting

Implicit in the models considered above is the routines), and which of these actions it is considered
assumption that every analysis has identifiable wise to take first (visually inspect the data via a
steps: decision points where some action is taken. scatterplot and histograms).
Further, it is assumed that many of these steps are Choosing to do the scatterplot of y versus x would
generic enough to be usefully recorded. What, then, produce a Scatterplot as an artifact. Again, since it
are the steps? is a new step, particular actions would be made

With current statistical systems, the steps are available for this kind of artifact (like fitting a
equivalent to the commands that are issued to the straight line or a smooth curve to the points in the
system. The first thing to notice is that the steps plot).
have varying granularity. The smallest grains Clearly, a number of steps are necessary for an
include those steps where the actions are simple, analysis with even the relatively simple goal of
arithmetic ones taken on scalars, vectors, matrices, describing the regression of one variable on another.
and the like. Good statistical systems will always The challenge, then, is to make the steps generic
allow actions to be taken at this low level of enough to be useful in a variety of analyses.
analysis. Larger grains include strictly statistical 4.0 DINDE
actions, like regressing y on x, where the lower level The challenge of DINDE is to produce and
steps needed to accomplish the task are suppressed implement a model for statistical analysis that is
from consideration. The regression step is really an both reasonably accurate and natural to use.
abstraction of many lower-level analysis steps, an Sections 2 and 3 indicate the underlying model;
abstraction that becomes a powerful tool for the here, and in the sections which follow, we discuss its
analyst. implementation and use.

More abstract steps are typically more powerful DINDE is an enrichment of an extensive
(i.e. do more for the analyst), but also have more interactive programming environment: Interlisp-D
restricted ranges of application (e.g. regression is a with LOOPS which runs on the Xerox 1108 personal
powerful tool but has smaller range of application workstation (see Teitelman and Masinter [1981],
than the matrix operations used to construct it). In Stefik et al [1983]). The combination of high
designing useful steps for statistical analysis, there interaction, extensive graphics, powerful dedicated a.

is always a potential tension between the range and computing, and powerful programming tools
the power of a newly proposed step. available in this environment has proved to be

In DINDE, our working philosophy has been to enormous leverage for designing and building
begin with steps that are reasonably generic and to DINDE.
increase their power in two ways that do not restrict The hardware is described in more detail in
their range of application. Oldford and Peters [1985b]. We note only twoFirst, we specialize some steps to become more features here: first, an illusion of an infinitely large
context specific. The specialized steps are to be used memory is maintained for the user (1.5 - 3.5 MBytes
in place of more general steps when the context of real memory, 32 MBytes virtual), and second, the
warrants it. Therefore, the necessarily smaller display is a high resolution bit-mapped display
range of applicability of the specialized steps does (about 1000 by 1000 individually addressable pixels)
not inhibit the analysis. Instead, given the right that can be interacted with using a "mouse"
context, they become powerful tools. pointing device.
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The software environment is at least as shows a generic window in DINDE and the basic
important as the hardware. Interactive mousing that can be done with them. There are two
programming environments are the most mouse sensitive areas in these windows: the title bar
appropriate and productive locales for doing the sort and the body. Mousing in the title bar allows
of experimental programming that is involved in interaction with the displayed contents as a whole;
building a system like DINDE (and, we would mousing on individual objects displayed in the body
argue, in carrying out statistical data analysis). allows interaction with the mouse-selected object.
This point is forcefully argued by Sheil [1983]. We The mouse that is used on the Xerox 1108 has
have found the object-oriented programming two buttons, yielding three different combinations of
paradigm, as available in LOOPS, to be especially depressed buttons: left, right, and middle (both
useful: it is the backbone of DINDE (see Goldberg buttons) depressed. Depressing any one of these
and Robson [1983], Bobrow and Stefik [19831, or typically causes a menu to pop up (at the mouse
Stefik and Bobrow (1985] for details on this position) from which one of a number of items can be
programming paradigm). selected. Selecting an item causes some action to be

In the object-oriented paradigm, there are taken.
classes, which contain generic properties and We try to follow the principle that a button
behaviours for a large "class" of individual objects, combination should yield a similar kind of menu
and objects, which are individual "instances" of a regardless of what is being moused. So, in the
particular class. For example, the class Car would toolbox and the analysis map. left-buttoning always
represent the common properties and behaviours of produces menus whose items have something to do
all Cars, while the object MyCar would be a with either accessing or storing information on the
particular instance of the generic class Car, as thing being moused. If the title bar is moused, then
would EdsCar, KarensCar, and so on. In DINDE, the information pertains to the toolbox or analysis
each analysis step (goal or artifact) is represented as map itself. If an individual object in the body is
a class; the steps actually taken in a particular moused, then the information pertains only to that
analysis are objects, instances of their corresponding particular object. Right-buttoning always brings up
classes, a menu containing items that allow the user to

The idea in DINDE, then, is to select the kind of manipulate the window (move it, reshape it, shrink
step (class) which one wants to take next and to it, etc.). Middle-buttoning causes menus to appear
incorporate an instance of it (representing the step whose items indicate the messages that the thing
actually taken) at an appropriate place in the selected can respond to. Typically, these will be
analysis (directed network). action items such as "fit a smooth curve to your

The set of possible steps (i.e. classes) that can be points" if the thing selected is a Scatterplot object.
taken in an analysis are displayed in an interactive The toolbox and the analysis map are discussed
window called the toolbox. Using the mouse, the in turn in the next two sections.
analyst selects a step from the toolbox, as necessary, 5.0 The Toolbox
and attaches it (now an object) to the appropriate All of the classes of objects that can be used in a
place in the analysis. statistical analysis in DINDE are arranged in the

Recall that our model of an analysis is a directed toolbox and displayed to the user. Figure 3 shows
network whose nodes are the steps actually taken, the contents of the toolbox as it currently exists in
The analyst works with this model within another DINDE.
window called an analysis map. Here, the network We have tentatively established a coarse
representing the analysis is actually displayed and partition of the possible classes into five basic
the analysis progresses by interacting with the element types: (i) Data (currently represented as
network vianthemouse. Arrays or TreeStructures), (ii) Graphics, (iii)This mouse interaction, called "mousing" in Situations, (iv) Models (e.g. probability models), andwhat follows, is possible in both the toolbox and the (v) Tables. To date, only the first three of these existanalysis map. In both windows the mouse in DINDE. Only these were necessary to build the 41
behaviours follow some general principles. Figure 2 in I e lese wn cessa bu il the

_________________________prototype regression analysis, but we anticipate
Title Bar .m =Interaction that eventually Model and Table representations

with will also be required.
interior as In the toolbox of Figure 3, the classes are

OBJECTI OBJECT2 a unit displayed as nodes on several trees. Traversing the
trees from left to right is equivalent to moving from
generic steps to more specialized ones. For example,
BooleanArrays, StringArrays, and FloatArrays, are
all specialized Arrays (specialized to have array

OBJECT3 elements whose values must be booleans, strings,
and floating point numbers, respectively). Once
more tools are available in DINDE, other

Interaction arrangements may be of interest (different indexing
with depending on interest). Indeed, it will likely become
individuals desirable to group tools together into smaller

toolboxes, or toolkits, as the number of tools grows.
Figure 2: Mouse sensitive areas of DINDE windows At present, however, the classes are displayed only
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BooeanArray - BooleanScalar - BooleanVector - BooleanMatrix

Array StringArray - StringScalar - StringVector - StringMatrix_-

FloatArray - FloatScalar - FloatVector - FloatMatrix

TreeStructure

tOPlot - Histogram/ ~/ Residual VsFit

Graphic 
ScatterPlot - ResidualScatter

Grpic, ______'__ _ ResidualVslndex
XYPIot -IndexPlot -- ResidualVslndexI

QQPIot - QQEmpirical
"Q" "' QQGauss

BivariateLeastSquares
BivariateRegression

/ a BivariateResistantFit
Situation

BivariateFit - BivariateLinearFit / Bivariatel-eastSquares

Figure 3: The DINDE Toolbox

according to their specialization, have access to all information and actions that are
In general, a specialization has access to all the available to any of their "parent" classes.

information and actions available to a more general This ability to mix together classes encourages
step, and more. Thus, what seems to be a the abstraction of common aspects of different kinds
counterintuitive relationship between a FloatMatrix of analysis steps. The abstractions are then
and a FloatVector makes sense, because a represented as generic classes that can be usefully
FloatMatrix has access to actions, such as taking the "mixed into" more than one step. This is perhaps
singular value decomposition of itself, which would one of the most challenging aspects of creating a
make little sense for a FloatVector. sophisticated system like DINDE. It requires an

Those specializations which have been identification and grouping of the elements that are S.
undertaken to increase the power of steps are more practically important in a statistical analysis.
intuitive. For example, ResLdualScatter is a The nature of this research can be seen by
specialization of Scatterplot which always has considering those analysis steps that are classified
residuals plotted along the vertical axis, Given this as Situations. There are five different classes, of
context, ResidualScatter has access to actions which which only one can really be regarded as a goal
would not make sense for an arbitrarv Scatterplot, (BivariateRegression), the others are better
like the ability to smooth the positive and negative described as artifacts.
values of the vertical coordinates (although The analysis step BivariateRegression represents
smoothing all the vertical coordinates will be the goal of regressing y on x. It contains the
available to both kinds of plots). Similarly, the necessary information on which vector is y and
ResidualVsFit plot has access to actions which are which is x, has access to various plotting methods
helpful in determining whether the residual error is (Scatterplot and Histograms of y and x), various
heteroscedastic. fitting procedures (a straight line via least-squares

Notice that these relations between the classes or an outlier resistant procedure and a running
do not really conform to trees. LOOPS allows one to linear least-squares smooth). Selecting any of these rN_
create classes that are specializations of more than actions will produce an artifact (a plot or a fit), and I
one class (e.g. ResidualVslndex). Such classes are hence a new analysis step. There are four kinds of
identified by having a box drawn around them fit artifacts. In order of increasing specialization
whenever they are repeated in the display. They they are as follows: BwariateFtt, which is used to
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represent arbitrary fits (such as those from internal software structure. (Note that a right
smoothers), contains information like y, x, the arrow on a menu item indicates that a more detailed
residuals, and the fitted values, and has its own set menu can be had by sliding the mouse to the right,
of actions, including the production of various along that item.)
residual plots; BivariateLinearFit which, in addition Left-buttoning in the title bar of the toolbox
to the information and actions available to it from produces a menu offering the user information on
BivariateFit, also contains a slope and intercept for the toolbox itself, its contents, and the associated
the fitted line; BtvariateLeastSquares and mouse behaviours. Other mouse buttons
BivariateResistantFit. each of which has access to manipulate the display.
more specialized information that is relevant to its Rarely, in the course of an analysis, should the
particular fitting procedures (e.g. R2 or t-statistics user need to retrieve tools directly from the toolbox.
for BivariateLeast- Squares). Other factorizations If the classes are defined well, then the tools made
are certainly possible. available through the actions at any given step

In the toolbox, information is available on any of should suffice.
these steps. Selecting the class in question with the 6.0 Analysis Maps
left mouse button depressed produces the menu Figure 5 shows an analysis of the relationship
shown below in Figure 4. between the average brain and body weights of 62

riortgSummmy mammals (taken from Becker and Chambers
-umma short 'LongSummaryI [1984]). Each node in the network represents a step
RequiredVriarleeee e in the analysis. The label displayed at each node is
FinWherei supplied by the object it represents, and consists ofIem erition the name of the object (if there is one), its class, and,occasionally, capsule information on its contents
Figure 4: Left-button Menu for a Class (e.g. BodyWts is the unique name of a particular

FloatVector object having 62 elements).
By selecting the appropriate item with the Mousing on a node permits interaction with the

mouse, the user can get a short, or long, summary on object it represents. For example, selecting a node
that class, find out what variables it requires, get with the left button down causes the menu of Figure
relevant references to the statistical literature, find 6 to appear. This menu allows information to be
out the classes from which it gains access to its either added to, or, retrieved from, the selected
information and actions, and a description of its object.

BodyWts FloatVactor (62) BrainWts FloatVector (62)
-j,

WhyLogs? Memo DeadEndRegression SubMap

LnlrainWts FloatVector (62) LnBodyWts FloatVector (62) %

ivariateRegression

ScatterPlot

Biv riateLestSquares

QQGAuss Residua1VsFit ResidualScatter

Figure 5: An Analysis Map
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NameThis Item 5. (As in other DINDE windows, the mouse provides
.A TNote. r convenient way interaction with the displayed

EclitNote 5 objects.)
ReadlNotes The most important use of the Zoom facility is to
ShortSummary retrieve the details of some sub-analysis.
StartNewAnalysi3MapFromThisNode Sub-analyses can be represented in DINDE as
IemoveFromDisplay objects called SubMaps, an example being the one

o _rn named DeadEndRegression in Figure 5. Zooming in
lInspect on this SubMap produces the analysis map of Figure

Figure 6: Left-button Menu for an Object 8. Except for its contents, this map is identical in

Information is added either by giving the object a I . a le-- -s a'o
meaningful and unique name, or, by adding notes to - •

the object (the word processing capability of BivariateRegression_
Interlisp-D used to construct this paper is made
available). Both of these can be used to make the
analysis easier to understand: the name at the node
can make the display easier to follow, and the notes -,p,,
can record the analyst's observations on some facet Histogram Histogram ScatterPlot
of the analysis.

We consider the ability to make notes to be Figure 8: Zoom on a SubMap
important enough that we include Memo objects as every respect to that of Figure 5; both are instances
possible steps in the analysis. In Figure 5, a Memo, of the same class.
called WhyLogs?, was inserted between the two The analyst can focus attention on this map,original data vectors, BodyWts and BrainWts, and continuing the analysis there, without affecting the
the two derived FloatVectors, LnBodyWts and contents of any other map. Indeed, this map might
LnBrainWts. The latter two are the natural also contain SubMaps, each representing a yet finer
logarithms of the raw data, so the Memo is used to sub-analysis. These, in turn, may contain others,
record the reasons for making the transformation, and so on, so that the whole analysis, in DINDE, is

Information is accessed in a variety of ways: by actually a directed network whose nodes might also
reading the user-recorded notes (ReadNotes), by be networks, each one representing a new level of
printing a short summary on the class of the object detail.
(ShortSummary), by inspecting the internal program The inverse of Zooming, in DINDE, is
structure of the selected object (inspect), and, by Compression. Middle-buttoning on the title bar of
examining the detail contained in that node (Zoom). any analysis map produces a menu whose items

The last of these is uniformly used in DINDE to correspond to operations on the displayed network. %
access further detail on any node in the analysis. One of these items is Compress. Once selected, the
"Zooming" on a Graphic (e.g. Scatterplot or user is required to identify nodes in the analysis
QQGauss) will cause a window containing the plot (usually by mouse-selecting them) to be compressed
to appear. Zooming on other objects produces a into a single SubMap. All of the relationships
window containing the "Zoomed" object and the data between these nodes are maintained, so that _.
it can access. Figure 7 shows the effect of Zoom on Zooming on the new SubMap will reproduce the -
the BivariateLeastSquares node of the map in Figure necessary detail. -.-

mDD Zoo Widw .
I OegreesOfFreedon: 60.0

RSquared: .901827

//SlopeTStat: 23.4769
VarSlope: .001002139

,InterceptTStat: 20.43935
>---Varlntercept: .01140997

6ivariateLeastSquares SigmaHatSquared: .5962624

U\ -Slope: .7431984

Intercept: 2.18328

Residuals: FloatVector (62)%

\FittedValues: FloatVector (62)%

Y: Ln~raanWts FloatVector (62)
X: LnBodyWts FloatVector (62)

Figure 7: Zoom on BivariateLeastSquares
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The other middle-button menu items from the 7.0 Concluding Remarks
title bar include the following: AddAnalysisNode We began by suggesting that there are three
which allows the user to select a new step from the interrelated objectives that one might have for
toolbox and attach it anywhere in the network, statistically sophisticated software: Guidance,
MakeLink and BreakLink wich allow the user to Management, and Strategy. We close by pointing
make and break links in the network in order to out how DINDE pays some attention to each of
make the analysis easier to understand, and, these.
InterposeMemo, which allows the user to insert a The guidance in DINDE is minimal and quite
memo between two nodes in the network. Together local in nature. This is in keeping with our view as
with Compress, these network tools should enable to what sort of guidance it is possible to competently
the analyst to construct an analysis of arbitrary give in a statistical analysis (see Oldford and Peters
complexity, whose display can be understood [1985a] for further discussion).
without much difficulty. The guidance consists of the identification of the

It is not necessary to select each new step in the useful steps in an analysis, made available in the
analysis from the toolbox. Middle-buttoning on a toolbox, and, of the actions and suggestions made
step, already in the analysis map, will produce a available via menus at each analysis step. At
series of menus that contain the actions that step present, the guidance is data-independent, in the
can take. The consequence of many of these actions sense that it does not depend on the data in hand.
is a new step that is attached to the selected one. This does not rule out the possibility of

IF't
= . Summ=fOittl

LOClMetlt ; 1o!Re$1duals- I .plo tllnheritedMethodJq 'R e sid u a l s v e r tu 3X

I AF esid~ualaVersus1ndlexl
esidualsVereusFit

Figure 9: Some Menus from BivariateLeastSquares

Figure 9 shows some of the menus of actions that data-dependent guidance, provided it too is of a
are accessible from a BivariateLeastSquares step (as quite local nature (e.g. noticing collinearity in
in Figure 5). Here, the mouse has been moved to the regression).
right over the item LocalMethods, in the first menu, Management of the data analysis is made easier
and over the item PlotResiduals, of the second menu, in DINDE by having the analyst work with
to display a menu of the possible residual plots that identifiable steps within a network metaphor for a
can be performed. The three steps QQGauss, statistical analysis.
ResidualVsFit, and ResidualScatter, of Figure 5, With identifiable analysis steps, menus can be
were produced by selecting from this menu the items used to make those actions, which are often taken
QQPIot, ResidualsVersusFit, and ResidualsVersusX, next, immediately available to the analyst.
respectively. Further, notes can be added at each step, or inserted

All steps in the analysis have access to menus between steps, which will help the analyst recall the
that make sense for that step, and, typically, the logic of the analysis. The computing environment
analysis is constructed by selecting items from these also allows the notes, plots, and even snapshots of
menus. The step BivariateLeastSquares was parts of the analysis, or individual analysis steps, to
produced by selecting the item be inserted directly into a report.
AddALeastSquaresLine from a similar set of menus The network paradigm is used to organize the
on the Scatterplot in Figure 5. steps. Much of this organization is done

The system of menus available at each step automatically at each step. When it is not, tools are
makes the analysis easier to carry out; it does not available to organize the steps as the analyst sees
restrict it. At any time, the analyst has access to a fit. These tools include the ability to Zoom in on "
wide range of possibilities. For example, the analysis steps, to yield detail, and, to Compress
analysis can proceed from any step in the network, many analysis steps into a single SubMap, to
including SubMaps and their contents, not just from suppress detail. Arbitrarily many levels of detail
the most recent one. Alternatively, a new step can are thus available to the analyst. Finally, by
be selected from the toolbox and added anywhere in actively using the network paradigm during the
the network. Finally, the menus can be ignored analysis, as opposed to after the analysis, the
entirely and the analysis performed in the analyst is encouraged to organize the analysis as it
[nterlisp/LOOPS environment using DINDE objects proceeds.
as they seem useful. DINDE never restricts access As regards strategy, DINDE is based on our
to the underlying programming environment, which present view of what constitutes statistical strategy,
means that the powerful tools we have available to and, on how that strategy can be fruitfully studied
us, as system builders, are also available to the user, with software. We begin with a simple, yet general, -'

as an analyst. model of statistical analysis: the directed network.
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How a statistical strategy is implemented within use. DINDE is one such attempt that is currently
this framework depends on the level, in the overall based on a simple network paradigm for statistical
analysis, at which it is expected to operate. For analysis. As we improve the underlying model,
example, one low-level strategy might be a heuristic DINDE will come closer to meeting these objectives.
used to determine the outlying points in a plot, 8.0 References
while a high-level strategy might address the .0 Refers
organization of a multiple regression analysis (see BecercR.A. a nm Cmr [94 An
Oldford and Peters [ 1985ab] for further discussion). Interactive Environment for Data Analysis and
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Abstract

The Data Viewer is a system for the exploratory analysis of large, high-dimensional

datasets, being developed on a Lisp Machine. Suppose we have a multivariate dataset
consisting of up to 1000 observations on an (arbitrarily large) number of quantitative
variables, how can we examine it? The data viewer tackles this problem using Grand

Tour techniques: by moving projection planes it displays a scatterplot "movie". Design
issues are crucial in the development of this system, in particular with regard to
questions of user interface. The Lisp Machine supports object-oriented programming

and the use of constraints, and these features are influential in our implementation.

Moving Scatterplots
Any two dimensional orthogonal projection of the data can interpolation between successive views such that the illusion
be displayed as a scatterplot. A moving scatterplot results of continuous motion is preserved. In order that moving plots
when the projection plane is modified every fraction of a be a technique adaptable to a wide range of data analytic
second. If this is done as often as 10 times per second then situations, the data viewer provides a number of schemes for
the scatterplot appears to be in continual motion. Clearly, generating this sequence of views, and allows consideration
this means that a user may see more data views in a shorter to be reduced to more specialized sets of views.
time period; whether this is helpful or not depends on how
the updating is done. If successive plots differ substantially
then the advantage of dynamic plotting is lost: a user has Specialized Views

difficulty assimilating even one new plot a second. However, The most general kind of view is an arbitrary 2-plane, and
if the scatterplot appears to move in a continuous manner the corresponding plot is the linear projection of the p-
then we gain by seeing more data, and by seeing it move. A dimensional variable space on to this plane. This means that
static plot is confined to displaying two dimensions, whereas no particular orientation of the plot is specified. If a subset
motion presents an additional two dimensions of information, of the variables is of particular interest to the user, he can
as given by the speed vectors. This allows a perception of indicate this by classifying these variables as "active" and the
depth and shape of the pointcloud. remainder "inactive". Only active variables can have non-

zero projection coefficients, so this achieves a reduction in
Creating Moving Scatterplots dimensionality of the space being explored.

A moving scatterplot is constructed by generating a family of Specialized views arise when the data to be displayed
2-planes called views (v,t > 0), where t represents time. At consists of two disjoint groups of variables, of sizes p and q
each time, the corresponding scatterplot is the projection of respectively, described by the matrices X,,, and Yn,,. An
the data onto vt . As t is increased in small increments, the example of this is the canonical correlation situation. Then
view v is updated, and the new point coordinates recomputed the views of interest consist of linear combinations of the X
and replotted. In order that the scatterplot appear t,* move variables plotted versus linear combinations of the Y
smoothly the family of views need to fullfill certain variables, so that consideration can be reduced to particular
requirements, as discussed in Asimov. The scheme which we kinds of 2-planes. Notice here also that an orientation of the
have successfully implemented operates by constructing a plot is specified. Views of this type are obtained when
sequence of views [vi, i = I 2...), by random sampling, for variables are classified as either "X-variables", "Y-variables"
example. Then interpolation is done between successive or inactive, so that a variable cannot have more than one X el.

views to obtain [v1, t a 0). Methods have been derived for or Y non-zero projection coefficient.
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This setup has a number of important special cases. Variable example , this enables us to discover how sensitive the
scatterplots arise when p =q = 1. Regression also fits into projected plot is to local changes in the optimizing view.
this framework, where there is one response (q = 1) and p Provision is also made for user specified views, and variable
predictor variables. The data-viewer user controls the type of scatterplots are particularly easy to obtain.
view generated by attaching classification labels to each
variable, X", "Y" and "A" for X, Y and active variables; To summarize, the essential capability of the data viewer is

the moving scatterplot. The user has a measure of control

Schemes for Generating Views over the motion via a choice of algorithms for generating
views, and specification of the type of view to be generated.

1. Scanning Other data viewing tools can be considered in one of three

A brute force approach to examining a high dimensional g

pointcloud is to look at all possible projections onto planes. (i) Tools particular to the data viewer:

Schemes for scanning high dimensional space are termed For example, a backtracking capability, which provides

Grand Tour methods (Asimov, Buja). One such method the ability to rewind or to play back the scatterplot

approximates all possible data views by sampling planes movie, is useful. We would also like the ability to save

uniformly and interpolating between them. So, with some away views for retrieval and re-examination at a later

time and patience a user may come arbitrarily close to every stage.

2-d data projection. We have used this scheme successfully (ii) General graphical capabilities:
with up to 1000 data points, and there is no restriction on the This includes multiple plots for easy comparisons,
number of variables. In practice, human vision and interactive painting (or brushing) and point

understanding limits our perception to 3-d, so discerning identification utilities.

higher dimensional structure can be difficult. (iii) Data related tools :

This includes facilities such as variable scaling and
2. Optimization transformation, and subset selection.

We use projection pursuit techniques to augment the
scanning procedure. The aim is to avoid views that look like Design of a Data Viewer
featureless "blobs", concentrating instead on projections As outlined above, the data viewer supports a high degree of
showing structure. Commonly, context knowledge and functionality. It should be extendable to include other
information gained from the analysis to date dictate how the statistical methods, for example new view generating
analysis should proceed, so that exploration is done with schemes. We aim towards a system with a unified graphical
particular questions in mind. For example, are there interface to simplify user communication. These
relationships between groups of variables, are outliers requirements necessitate a careful system design. The data
present etc. It follows that he wishes to see views that help viewer is being developed on a Lisp Machine, which has the
provide answers to these questions. The data viewer can cater computational power necessary for the demanding task of
to this situation by displaying a movie of informative views. scatterplot motion, and provides an environment and
The user selects (or defines) a measure F of how interesting language features that encourage experimentation
a view is, then the sequence of views is chosen such that (McDonald & Pedersen).
F(v 1) 2) ... .. Gradient methods are used to obtain Our approach to the design of the data viewer is to factor the Ak
successive views. Suggestions for suitable choices of F are system into various components and sub-components. Each
given in Friedman & Tukey, and Huber. This scheme component has its own specific task with well-defined
corresponds to an interactive, real-time optimization, connections or interfaces between them. This design can aid %
interactive because both the starting plane and stepsize are both system programmer and user. From the programmer's
under direct user control. This has the advantage that typical point of view it is highly modular, so that different '

sources of difficulty with optimization methods, for example, components can be implemented independently except for
the presence of function "flat spots",are no longer a problem. the specified connections. It also means that a certain amount,*,
Also, since our emphasis is on exploration, finding views of flexibility is inherent in the design: components can bewhich are local maxima suffices. .-modified internally, for example a new view generating

scheme added, without affecting the rest of the system. This ,,
3. Other Schemes design helps to provide a coherent user model, reducing the j
Another method for generating a view sequence permits initial time overhead necessary to gain familiarity with the
exploration in a neighborhood of the current view. For system. Also, a knowledge of the various components and
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their interrelationships means that the capabilities of the following information is displayed:

system are better understood; its power and flexibility should - the variable name

be transparent, not obscure to the user. - the coefficient applied to this variable in the current
view [

Object Oriented Programming and the Data Viewer vie

The ymblic Lip Mchie prvids te "lavrs"- the variable classification i.e. X" "Y" "A" or""

The Synbolics Lisp Machine provides the "Flavors" We can think of the plot window as being a mirror of the
extension to Lisp for a style of programming called "object dataset and view-maker objects. This we refer to as the

oriented " (Weinreb and Moon). An object consists of data "display constraint". The point-cloud reflects the dataset and

and procedures bundled together. ( In Flavors terminology the view supplied by view-maker. The variable-boxes display

these are termed respectively the "instance variables" and the variable names from the dataset, and the variable

"methods" of the object.) One way to think of it is as a record claiaions and p nt viake

in Pascal or structure in S, with its own internal procedures. Tlisimior and pot e cot hs somewpower.
The object oriented programming style is by nature modular, This mirror analogy for the plot has some powerful
because it allows a data structure and the procedures that consequences: the plot always shows the current state of the
beaseon it allows ae codesure ainde et pce lres underlying objects. So, changes to the dataset or view-maker
operate on it to be considered a single entity. The Flavors are immediately reflected on the screen. Motion results as a

system gives us a natural way to factor the data viewer into tri iaensequece o the splay c otin c es in t
compnens: n ojectis reaed orreponingto ach trivial consequence of the display constraint; changes in the

components: view supplied by view-maker imply a corresponding update

component, of the displayed point-cloud and projection coefficients. This

We can regard the data viewer as an object for displaying means that eizcept for the display constraint, the plot window

data views. Its components or instance variables are: and the pair of objects view-maker and dataset operate

a dataset independently. Once this part of the user model is grasped,

a "view-maker"; an object whose task it is to supply the user becomes aware of some interesting data-analytic

* views or projection planes. applications.

* a plot; a window object which shows the moving point-

cloud. Some implications of this design.

The data viewer has a "draw-plot" method, which carries out A typical data analysis involves the comparison of two or

its primary task. Draw-plot applies the projection from more datasets, for example males and females. One way of
view-maker to the dataset and shows the result in the plot doing this is to put a number of plots each in its own window
window. This is a one sentence explanation of the operation together on the screen, and examine, say, height plotted

of data viewer. A further level of detail is got by considering against weight for each set. If a data viewer is created

the data viewer components and their respective tasks. corresponding to each dataset, and these viewers have a
common view-maker object, then both displays will

The "view-maker" simultaneously reflect the same view-maker object. At a

The view-maker object generates new views, so it has a particular time r, one display shows the males dataset

"new-view" method for this task. In order to obtain a new projected onto the corresponding view v, and the second

view the following information is needed: display shows the projection of the female dataset, also onto
v,. When the view is modified by view-maker, both displays

the current view update themselves to reflect this change. This dynamic

an algorithm (user specified) for generating views dataset comparison makes it possible to explore questions

the (user specified) classification of each variable i.e such as: are interesting views common to datasets? We ,
"X" "Y" "A" or" " (inactive) describe these data viewers as being linked or connected by a

*speed; the amount by which the view is incremented, shared view-maker object.

These items are represented as instance variables of the Similarly, two or more data viewers can be linked via a

view-maker. The new-view method updates the current view common dataset object, each with its own view-maker.

by the amount "speed", according to the specified algorithm Suppose the dataset object contains a component which

and variable classifications. defines a color (or any drawing symbol) for each case. The
display reflects this information by drawing each point with

The plot window the appropriate color. Then a shared dataset object means
that two data viewers show different views of the same data,

The plot has two major components, which are: but with points linked by color.

point-cloud; the projection of dataset onto the current For further discussion on the applications of automatic
view updating see Stuetzle.

variable-boxes; for each variable in dataset the
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A scheme for user interaction. vol13,no.2.

How can user interaction be explained by this model? Friedman, J., Tukey, J. (1974) " A projection pursuit
Suppose a user wishes to identify the outlier in a scatterplot. algotithm for exploratory data analysis" IEEE Trans. Comp.,
An obvious solution is to make use of the pointing device ( a C-23, 881-890. -
mouse) to indicate the particular point, and have the case
identification label appear in response. We interpret this McDonald, J.A., Pedersen, J., (1985) SComputing
action by realizing that we are communicating with Scientific andStatistical Computing. 6(4), 1004-102 1.
underlying dataset "case" via its plotted representation, a cnad Stati Comeuseng. 6) 004-1021.
point on the screen. So, the role of the display is extended McDonald, J.A., Pedersen, J., (1986) "Computing
from being simply a dumb reflection, to provide us with Environments for Data Analysis, Part 3", to appear in SIAM
communication mutes to the constituent objects. J. Scientific and Statistical Computing.

Communication with data viewer components can also Stuetzle W. (1986) "Plot Windows", preprint, Statistics

include modification. For example, the plot window has a Department, University of Washington, Seattle.

dial or gauge which shows the value of the view-maker speed Weinreb D., Moon D., (1985) Lisp Machine Manual.
component. This gauge is what is termed "mouse sensitive",
so that it can respond to mouse clicks by changing its value.
In fact, what changes is the view-maker speed value, and the
display modifies itself to remain up to date. A similar scheme
can be used for changing variable classifications: variable
boxes are mouse sensitive and provide hooks into the
variable classification quantities which are part of the view-
maker. Direct manipulation is the term given to this style of
interaction, because the illusion is that the plotted
representation or icon is actually the underlying data item,
not just a picture of it. One gets the feeling that the plot
window is somehow alive, and has knowledge, so
communication can be more expressive.

Conclusion

A moving scatterplot is both an efficient and informative
method for displaying high-dimensional pointclouds. The
data viewer system enables this technique to be used for
purposes of exploration. A variety of view generating
schemes, and the capability to specialize views mean the user
can adapt the system to the data analytic task at hand. In
designing the data viewer we aim towards a coherent user
model; this can aid system development and extension, and
more significantly, its utility. The notions of object oriented
programming provide the basis for our design. The user
communicates with the system via directly manipulating
plotted items. These features combine to make the data
viewer good for a large range of approaches to exploration.
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INTERACTIVE COLOR GRAPHIC DISPLAY OF DATA BY 3-D BIPLOTS

K. Ruben Gabriel, Anup Basu, Charles L. Odoroff and Terry M. Therneau +
University of Rochester o .tm.yo,,,c,

I. SIPLOTS. This paper discusses our experience in projections of a viewing cube or dodecahedron,
displaying data as 3-D biplots by means of two and by using various depth cues. We have now
alternative graphics devices, (1) standard high implemented the ANIMATE system, due principally
resolution graphics terminals with attendant to Terry Therneau, which adds color and shape cues
printer plots or pen plotters, (2) the Raster and is semi-animated in that it simulates the effect
Technologies Model ONE/20 frame buffer color of depth by rapidly displaying successive views from
device with attendant black-and-white laser slightly different angles (Odoroff et al, 1986).
printer. Rocking" the picture back and forth through a

Biplots (Gabriel, 1981a) are particularly effective series of about 6 such views may create an impres-
for exploring multivariate data matrices and for sion of three-dimensionality. (We distinguish this
diagnosing models that fit these data or subsets of from a truly animated system, such as PRIM or
them. A 3-D biplot displays a rank three approxi- MACSPIN, which is capable of calculating the
mation to the data matrix (which is usually coordinates of any number of views and displaying
centered) by means of row markers a[i], i = 1...,n them in real time.)
(= the number of rows of the matrix) and column
markers b[j], = 1,...,m(= the number of columns TABLE 1: FEATURES OF THE BGRAPH AND OF ANIMATE SYSTEMS
of the matrix5. The lower rank approximation may
be obtained by least squares or by resistant BGRAPH ANIMATE
methods (Gabriel and Odoroff, 1984a). The
markers are obtained by factorizing the approxi-
mation as AB and using the rows of A and B, Markers Pontsor vectors Vectorssquares, circles
respectively, or spheres with options

In view of this construction, the fundamental of shading and color
property of all biplots is inner product representa-
tion of the data, i.e., the inner product of any alil Labels Available Available
and any b[j] approximates y[i,j], the corresponding
element ot the data matrix (Gabriel, 1981 b). Depth Perspective cues Perspective cues on

Special types of biplots further approximate the on labels marker shapes
variances and covariances of the columns by the or
configuration of of the column markers, and the Stereograms (needs Rocking through views
Mahalanobis-type distances between the rows by stereo glasses) of small angular
the biplot distances between the row markers or separation
(Gabriel, 1971). Analglyphs (need

A particularly useful feature of biplots is that color or polarized Hiding of markers

patterns of their markers may be used to diagnose display and glasses) behind other markers
the type of model that would fit the data, e.g., if
the atl's were all on one line and the bi]'s on Rotations Transformationstoany Transformationtoany

another line then the data would be fitted either viewpoint and angle angle (not in real
by an additive model or by a one-degree-of- (Not in realtime) time)
freedom-for-non-additivity model, depending on
whether the two lines were perpendicular to each Zoom and

other or not. A limitation of biplots is that they are Window Available Available
available only for data in matrix form. However,
h ig h e r-w a y la y o u ts m a y a t t im e s b e u s e f u lly ----- ..--- ------------ ................... .......................
biplotted by collapsing them into a two-way table Matnframe UNIX VAX 11/750 UNIX VAX 11/750

(Kester, 1979; Gabriel, 1981b; an example will be
given below). Display Graphics terminal Raster Technologies ONE/20

Biplots can display data only as well as the data device (no local 24 frame buffer device

can be approximated with lower rank. Planar (rank computing) which can storeseveral

2) biplots are often very useful, but 3-D biplots pictures simultaneously

often do better (Gabriel, 1981 b). We expect to do and then display them
even better in higher dimensions and are studying in rapid succession
the application of Banchoff's ideas (1986) for the
displays of 4-D biplots, on which we hope to report Hardcopy Printer or pen Laser printer or slide
at a later date. plotter photographs of screen

Our 3-D biplots are produced by a number of
techniques, each of which displays row markers and
column markers, and allows these to be labelled to Attributes can be changed and displayed
indicate the particular rows and columns repre- dynamically via keyboard or "mouse". ANIMATE
sented, makes use of certain features of the hardware, such
II. DISPLAY DEVICES AND SYSTEMS. We have as the ability to rapidly change the color table, and
routinely produced these on standard graphics the ability to rapidly change the sector of the
terminals by the BGRAPH system, due mostly to image memory displayed. However, it is
Mike Tsianco (1981). BGRAPH produces static constrained by certain features of the hardware
displays of biplots by three dimensional perspective such as the necessity to update displays from the
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remote host computer. We should like to ignore some of the slide views. In view of these difficulties
the constraints of hardware, but they will remain of reproducing the semi-animated color display,
with us until the next generation of graphics the discussion of the examples will be very brief
workstations are available. The newer graphics and the conclusions which we state will have to be
workstations will not require some of the taken on trust until the reader has an opportunity
commands presently needed for ANIMATE. They to see a demonstration of the ANIMATE system.
will circumvent many of our present hardware lila. THE IRIS DATA. For the well-known Anderson
limitations. (1935) Iris data, we have a 150-by-4 matrix, the four

A command language to manipulate the columns being allocated to the variables of petal
graphics display is implemented in yacc, lex, and length and width and sepal length and width, the
RATFOR on a VAX 11/750 with the UNIX operating 150 rows to the 150 Iris flowers, the first fifty rows
system. The displays are built up from graphics to I. setosa flowers, the next to I. versicolor, the last
primitives provided with the Raster Technologies fifty to I. virginica.
Model ONE/20. The biplot of these data, after variable means

The basic strategy is to compute the display had been subtracted, is shown in Figure 1 with
features on the host computer using the principles vectors for the four variables' markers and indi-
outlined in Newman and Sproull (1980). A set of vidual Iris markers being circles of different shad- J.
pictures is written into the frame buffer memory, ings for I. setosa (the leftmost scatter), I. versicolor
one at a time (about ten seconds per picture). (the middle scatter) and I. virginica (the rightmost
When the host has completed computing all the scatter). The configuration of the variables shows
displays, control is returned to the frame buffer petal width and length to be very highly correlated
and the pictures are displayed in rapid succession to with each other and highly with sepal length, but
simulate motion. sepal width is not well correlated with any of them;

The Raster Technologies Model ONE/20 is a the scatter of the flowers is seen to consist of clearly
frame buffer device which displays a picture of 512 distinct clusters for the three species; the separa-
by 512 pixels on a color video monitor. Each pixel is tion of the species' clusters is along the direction of
addressed by a 24 bit word. The 24-bit word can the first three variables, showing that I. setosa is
partitioned flexibly to trade more pictures for the smallest species on these measures, I. versicolor
fewer colors. By using hardware pan and zoom is larger and I. virginica somewhat larger, though
functions additional pictures can be obtained by the latter two are not as well separated from each
sacrificing picture resolution. By these artificial other as they are from I. setosa.
means, ANIMATE can store either 192 pictures in Rotation of the biplot to another view empha-
four colors or 3 pictures in 256 colors. Colors are sizes the species separation and shows 1. setosa to
chosen from a palette of more than 16 million, be less variable than the other species. It also

The frame buffer device provides the ability to suggests that two outliers existed and points to a
use a large palette of colors in displays and since it surprising crescent-shaped distribution of I.
is a raster device, motion can be simulated by virginica.
animation. The host computer computes the WHAT WE HAVE LEARNED FROM THIS
attributes of the display and communicates via a EXAMPLE. In exploring unlabelled data, we looked
9600 baud communication link to the frame buffer for shapes of distributions, for clusters and their
device. As noted, up to 192 pictures may be written separation, and for outliers. Graphical exploration
into the frame buffer memory before control is of this kind was helped by the following features:
handed to the display processor. The system is thus COLOR was very useful, as was SHAPE;
limited in the rapidity with which a display can be (PERSPECTIVE was not tried on this example).
changed by the speed of the host computer and the ROTATION was crucial, and it needed to be fast to
communication line. Modifications of color, choice help in exploratory analysis. ROCKING did not add
of the sector of frame buffer displayed are rapid; much to feeling of depth, HIDING did a little.
modifications requiring the host to compute a new It seemed more important to be able to move a
picture are slow. When more local processing viewing plane through space than to get a feeling
power is available this problem will be solved, of depth, of space. WHY? Are the tools

We have found that 6-24 pictures displayed at inadequate? Or are our questions essentially one
ten frames per second in the frame buffer are and two-dimensional?
adequate to simulate motion. We also have avail- Study of covariance configuration needed
able the use of perspective, eclipsing of points by LABELS. The lack of clear DEPTH cues hampered it
their neighbors, and the representation of points as more than it had hampered the study of scatters.
illuminated spheres to aid in the simulation of Does this indicate that higher dimensional space is
depth. more important in studying configurations than
Ill. SOME EXAMPLES. We now discuss several sets scatters? Are we able to imagine covariance
of examples, some of real data and some of artifi- configurations spatially, but distributions planarly?
cially generated matrices. Each example told us Or is the effectiveness of more dimensions merely a
something about the graphics systems and the use- result of the relative sizes of the collection of units
fulness of their various features. At the Interface (150) and variables (4). Can it be that we can
Symposium we accompanied our paper with a visualize a few objects in higher dimensional space
series of color slide photographs of displays on the than a larger set of objects?
ONE/20 screen. We tried to imitate the rocking of IlIb. TWO ARTIFICIAL 20-BY-15 DATA MATRICES.
views on the device by rapidly flipping back and Figures 3 and 4 are biplots of two 20-by-15 matrices
forth through a set of slides in a projector carousel - o data, generated from certain models (Gabriel
- we hope t is gave a sufficiently clear impression and Odoroff, 1986a,b,c). Each has 20 column
of the capabilities of the ANIMATE system. We markers (dark spheres), and 15 row markers (light
cannot hope to achieve the same impression in this spheres).
black and white printed report, so we show only a No pattern is evident on Figure 3, but Figure 4
small number of laser printer reproductions of reveals a clear pattern, the column markers
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appearing to be on a an oblique plane. Comparing interaction in higher way layouts. To do so we
the two figures it is clear that it is use of perspective obviously need LABELS and ROTATION. But a sense
in Figure 4 that makes its pattern apparent. The of DEPTH has also been needed. We found it most
pattern that generated Figure 3 is not at all strongly suggested by the PERSPECTIVE cues on the
apparent because that biplot was displayed SHADED SPHERES; ROCKING was less useful
without perspective, because the labels tend to jump about and make

Suitable rotations would show both biplots to identification of individual markers very difficult.
have the row markers on one plane and the column Another most important help was the use of
markers on another. In Figure 3 the two planes are AVERAGE MARKERS. This allowed us to disen-
perpendicular, in Figure 4 they are not. It has been tangle the effects of single factors which had
shown (Chuang, Gabriel and Therneau, 1984) that originally been cross-classified with other factors.
this diagnoses models r[i] + vij] + ttilw[j] and More generally, we think an important diagnostic
R + s[i~v[jl + t[iJw[jI, respectively, aid to a graphics system is the ability to FIT MODELS

WHAT WE HAVE LEARNED FROM THESE ON THE PLOT itself. For example, if a set of markers
EXAMPLES. It is possible to MODEL data by dis- is thought to lie on a plane, or line, it is extremely
cerning patterns of biplot markers. Display by useful to be able to fit and display such a plane, or
means of SHADED SPHERES is effective when line, on the plot itself. Our system cannot do that
PERSPECTIVE cues are used. This was a major aid in yet.
discerning patterns. Easy and rapid ROTATION and IV. SUMMARY. We can MODEL by using biplot
ROCKING are also of help. graphics, and we can also EXPLORE data.
IlIc. AN EXPERIMENT ON SOLAR WATER HEATING The requirements for effective graphics are first
SYSTEMS. The last example uses the results of a of all DISPLAYS THAT ATTRACT THE EYE !! This is
four factor experiment (Close, 1967, quoted in Box, furthered by the use of COLOR, SHADING, and
Hunter and Hunter, 1978). The data appeared SHAPES.
naturally in a four-way layout -- high-low levels of I DEPTH is also important for inspection of
(insolation), high-low levels of S (size of tank), of W biplots, and it is most effectively simulated by
(water flow) and of D (discontinuity, or intermit- PERSPECTIVE rather than by MOTION. That, at any
tency of sunshine). To biplot it, we arranged it in rate, is the impression we got from using the
matrix form with factors I and S cross-classified in BGRAPH and ANIMATE systems.
the four rows, and factors W and D cross classified ANCILLARIES that we consider essential for any I
in the columns. Before biplotting, the data were graphics system that is to be used for data analysis
centered on the overall mean. are: LABELS !I!, ROTATION 1! and CAPABILITY TO

The biplot of these data -- Figure 5 -- has four MODEL ON THE DISPLAY!
row markers (dark spheres), labelled is, iz, js, and jz,
for all combinations of the upper and lower levels i ACKNOWLEDGEMENTS. This work was supported
and j of factor I and upper and lower levels s and z in part by the Office of Naval Research under
of factor S. Also, it had four column markers (light Contract N00014-80-C-0837 on Biplot Multivariate
spheres), labelled wd, wt, vd, and vt, for all combin- Graphics (K.R.Gabriel, Principal Investigator).
ations of the upper and lower levels w and v of %
factor W and upper and lower levels d and t of REFERENCES
factor D. Inspection of this biplot, and of suitable
rotations, allowed diagnosis of all the main effects Anderson, E. (1935). BULLETIN OF THE AMERICAN
and of the interactions between I and S (no inter- IRIS SOCIETY, 59, 2-5.
action) and between W and D (which did interact).
(For a detailed discussion of the logic of these Banchoff, T. (1986). In STATISTICAL IMAGE
diagnostics see Kester, 1979 and Chuang, Gabriel PROCESSING (E.Wegman and D.DePriest, eds.). ,
and Therneau, 1984, as well as Gabriel and New York, Dekker.
Odoroff, 1986a,b,c.)

To inspect the IW, ID, SW, SD interactions we Box, G.E., Hunter, W.G., and Hunter J.S. (1978).
required markers for each factor averaged over the STATISTICS FOR EXPERIMENTERS. New York, Wiley.
levels of the other factor of the pair. Construction
of these averages on the biplot was therefore an Bradu, D. and Gabriel, K.R. (1978).
important diagnostic tool. The resulting biplot -- TECHNOMETRICS, 20,47-68.
Figure 6 -- has the markers for the averages dis- S
played. Thus, for example, the average for d, the Close, D.J. (1967). SOLAR ENERGY, 11, 112.
upper level of factor D, is displayed by label *d
which is located midway between markers wd and Chuang, J.C., Gabriel, K.R., and Therneau, T.M.yd. Similarly, half way between vd and vt, one (1984). Geometrical diagnosis of linear/bilinear
should find the v* label which marks the upper models with the biplot. Paper presented at the
level of factor V, but the v* marker is partly October 1984 ASA-IASC-SIAM Conference on
obscured by the sphere marker for is. Frontiers in Computational Statistics at Boston.

We now look at the (*d,*t) and the (w*,v*) (Paper in preparation.)
directions, relative to the (i*,j*) and (*s,*z)
directions. The (*d,*t) direction is found to be Gabriel, K.R. (1971). BIOMETRIKA, 58, 453-467.
perpendicular to the IS-plane, and this allows us to
conclude that D does not interact with I or S. On Gabriel, K.R. (1981a). In ENCYCLOPEDIA OF
the other hand, upon rotating the biplot about the STATISTICAL SCIENCES, Vol.1 (S.Kotz, N.L.Johnson
X-axis we find the (w*,v*) direction to be oblique to and C.Read, eds.). New York, Wiley, 262-265.
the IS-plane and so conclude that W does interact -
with I and/or S. Gabriel, K.R. (1981b). In INTERPRETING

WHAT WE HAVE LEARNED: We cannot only MULTIVARIATE DATA (V.Barnett, ed.). London,
model, but also observe effects, additivity and Wiley, 147-173.
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ALGORITHMS FOR BAYESIAN VARIABLE SELECTION IN REGRESSION Ph.,

Toby J. Mitchell and John J. Beauchamp. Oak Ridge National Laboratory 1

ABSTRACT assign to o" the standard "noninformative' prior. i.e.. In a, is
locally uniform, independent of the P's. We shall also take

We have developed a Bayesian approach to the problem f to be arbitrarily large.
of deciding which subset of a proposed set of p predictor We are interested here in the posterior probabilities of 0
variables to include in a linear regression model that is to be the submodels. where each submodel is identified by the
used for prediction. The direct implementation of this requirement that each member of a particular subset of the
method requires the computation of the usual regression P's is O.
statistics for each of the 2P possible submodels. We have It can be shown that the posterior probability of the m'
developed a branch and bound method which yields the submodel is
same results much more quickly by eliminating from con-
sideration those submodels which are destined to have negli- WM
gible posterior probability. Implementation of the algorithm P. - W .
on the Cray X-MP supercomputer is discussed.

1. Introduction where the logarithm of the "weight' w,. is given by

Our setting is that of standard linear regression. There n(w)- km (-in(v) + Yin(r)) + ln((n -k )/2)
are PL observations on p predictors X 1.x2.. .xp and one
dependent variable y. We shall assume the first order - V21n I V. I - -V(n -km )nS 2

model:
where k. is the number of terms in submodel m. V. is a."- 2

Y =- P + t x, + e times the variance-covariance matrix of the least squares
+= estimates of the P's omitted by submodel m. and S. is the

residual sum of squares for submodel m.
where e is normally distributed with mean 0 and variance From this posterior distribution, one can compute and
a 2 . and all cases (runs) are independent. plot various quantities of interest as functions of -. e.g.. the

At some point during the statistical analysis. one may be posterior probability that each P is 0. A useful way of
interested in the possibility of omitting some predictors assessing y is to plot the posterior probability of goodness of
from the model. The search for a *best' submodel (or set of fit as a function of y; this is the sum of the posterior proba-
submodels) is called variable selecion or subset slection. It bilities at all submodels that pass a standard F-test for
is undertaken for a number of possible reasons: (1) to goodness of fit at a specified level of significance.
express the relationship between y and the predictors as
simply as possible. (2) to reduce future cost of prediction. 3. Computations
(3) to identify 'important' and *negligible' predictors, or
(4) to increase the precision of statistical estimates and In principle, this kind of analysis requires the computa- %.. ,
predictions. tion of S.2 and V. I for all 2P submodels. Although there

We have developed a Bayesian approach to the problem are efficient methods for doing all possible regressions [Fur-
of variable selection, the details of which will be submitted nival and Wilson. 1974]. we really need only those submo-
for publication elsewhere. In the next section. we summar- des that have non-negligible posterior probability.
ize this approach. We define a "negligible' posterior probability as follows.

Let m* refer to the best submodel. i.e., the one with max-
2. The Bayesian Model imum posterior probability. If PIPf* < 10- . say. then

Pm is negligible. Even though one can conceive of situations
We assume that the predictors have been "suitably in which assigning posterior probability of 0 to all sub-

scaled.' and shall avoid discussing this aspect any further models classified as negligible by this definition will not
here. In addition, we shall let the j "s, J =1.2. • • .p. be result in a good approximation to the true posterior distri-
independently and identically distributed a priori, where bution, this is what we shall do. Our rationale is that such
the form of the common marginal distributions is similar to submodels would not have practical interest, since a much
that of Box and Meyer [1986]. i.e.. more acceptable alternative submodel exists.

We have developed a branch and bound algorithm that
P(P)=0) - h2  finds the weights for all non-negligible submodels. First. a
P(j < b., peo) = h, • (b +f). - f < b < f forward selection routine is used to find a reasonably good
P(I I > ) - , submodel of Ai that we can use as a standard. (We would

use m' if we could, but we don't know it until the algo-
where hi >0. h 2 • 0, and 2hIf + h2 = 1. This is a rithm is finished.) We then define a cutoff value c for

'spike and slab' distribution, i.e.. a mixture of a Aniform ln(w, ). where
distribution over the interval (-f J ) and a distribution
with all its probability mass at 0. We shall take f and - as c = ln(wA,) - n(10') %
the parameters of this distribution, where ol

The branch and bound algorithm finds all m and w. such
= h 2/hl . that ln(w,) exceeds c. This catches all the non-negligible

submodels (by the definition above) plus a few others. %
i.e.. y, is the height of the spike divided by the height of the which can then be weeded out.
slab. We consider - to be a measure of one's prior inclina- The algoritlun is based on a tree of nodes, where each_
tion to omit any predictor from the model. We shall treat it node is a collection of submodels. The root node consists of
as an adjustable parameter of the Bayes model, that is, we all submodels. All other nodes are characterized by a set of
shall not asign a distribution to it. However, we shall predictors that are in all submodels in that node and
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another set of predictors that are excluded from all sub- with many (> 50. say) predictors. At present, the largest
models in that node. By computing the properties S2 and cases we have tried have 25 predictors: this takes roughly
I V. I of the largest and smallest submodels in a node. one one second of CPU time on the Cray. Future timing studies
can find upper and lower bounds on the posterior probabili- will need to take account of the fact that the computing
ties of all submodels in the node. as functions of k.. If a time depends on the value of -y. since for some values of y
node is found to be "bad." in the sense that none of its the number of non-negligible submodels is considerable.,-
members have ln(w,) that can exceed c. the node is not We have also begun to modify our Fortran program to
considered further. Otherwise. the node is "split" into two explicitly utilize the multitasking capability of the Cray X-
daughter nodes, where assignment of a submodel to one or MP. which has two processors.
the other of the two daughters is made on the basis of the
presence or absence of a specified predictor. A heuristic
choice of predictor is made for this purpose, the idea being REFERENCES
to choose an apparently important one.

We have implemented this algorithm in a Fortran pro- Box, G. E. P. and Meyer, R. D. (1986). "An Analysis for
gram that runs on our Digital Equipment Corporation VAX Unreplicated Fractional Factorials," Techno-
11/780 with Berkeley UNIX 4.2 and on the Cray X-MP at metrics. 28, 11-18.
the National Magnetic Fusion Energy Computing Center at a
Lawrence Livermore Laboratory. Our motivation for run- Furnival. G. M. and Wilson, R. W.. Jr. (1974). "Regression
ning it on the Cray is that we would like to consider models by Leaps and Bounds," Technometrics. 16. 299-511.
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SIMULATION OF RADAR AND SURFACE MEASUREMENTS OF RAINFALL

V. Chandrasekar and V.N. Bringi

Introduction an assumed form for the RSD. Hence, it is possible
The radar remote measurement of rain intensity to relate ZRSD and rain intensity, and to translate

Is a problem of continuing interest to radar these relationships to radar measured Z versus rain
meteorologists. For example, the remote moni- intensity. However, statistical correlations
toring of flash-flood producing storms is an between ZRSD and R must be understood before such
important applications area. Even though deductions can be made. If the RSD is approximated
considerable progress has been made in the by a gamma distribution, the three parameters of the
development of new radar measurement techniques, gamma distribution namely, particle number
e.g., using dual-polarized, dual-frequency or density, shape parameter and scale parameter, are
differential phase shift, the problems associated generally unknown but are often estimated using
with the error structure of remotely sensed measured RSDs via moment methods or MLEs, Ulbrich
precipitation estimates appear to have received (1983), Mlelke (1976), Wong and Chidambaram (1985).
little attention so far in precipitation research, Again, statistical correlations between the
AGU (1984). various moments of the RSD must be understood before

A pulsed, meteorological radar illuminates a deductions regarding the physical fluctuation of
radar resolution volume which depends on range, the gamma parameters can be made.
antenna pattern and pulse width; typically the Our paper is organized as follows: Section 1
volume is approximately 0.1 km

3 
for a range of 50 km, describes the RSD model and intercomparison between

10 beam width and 1 psec pulse, Doviak and Zrnic radar reflectivity and rainfall intensity.
(1984). Within this volume, hydrometeors are Section 2 considers the theoretical correlation
assumed to be randomly positioned, and constitute a between ZRS and rain intensity (as well as other
random medium from which radar measurements are RSD momentsP for a gamma RSD. Section 3 considers
obtained. Furthermore, the fractional volume the statistical fluctuations inherent in the radar
concentration of the scatterers is generally very measurements of Z. Simulationmethods for radarZ,
small (W 1.) so that the independent backscatter and gamma RSDs (including moments) are given in
approximation is valid. Hence, the average Section 4 along with a description of computational
backscattered power (or reflectivity) is complexity and the use of the CSU/Cyber 205

proportional to the (incoherent) sum of powers supercomputer. Section 5 describes the results of

backscattered by each particle within the our simulations and shows examples of a few possibly
resolution volume. Statistical fluctuations of incorrect deductions about physical processes that
the received power are related to the Doppler have been made which can be accounted for by
velocity spectrum of the particles within the statistical fluctuations only.
resolution volume. Conventional Doppler radars
measure the mean power (or reflectivity, Z) as well I. Raindrop Size Distribution (RSD).
as the first moment of the Doppler spectrum, i.e., The space-time evolution of the raindrop size
the mean velocity. Rainfall rate, or the vertical distribution (RSD) is typically due to a variety of
flux of raindrops contained within the resolution physical processes, e.g., evaporation, collision-

volume, Is to Z by power law coalescence, collisional breakup, drop sorting,
equations of the form Z - aR , where a and bdepend on etc. Both cloud models and measurements of RSDs at
the unknown raindrop size distribution (RSD), the surface show that a gamma RSD can account for
Ulbrich (1983). The radar measured mean power (P), many of the natural variations in the RSD, Ulbrich
an electromagnetic signal, is related to Z (a (1983):
quanjity of meteorological significance) by P -
CZ/r where C is the radar constant and r is the N(D) - N0 D

m 
exp(-AD) (I)

range to the resolution volume. The parameters a
and bof the Z-R relation are generally estimated by where N(D) is the number of raindrops per unit
comparing radar measurements of reflectivity (z) volume per unit size interval (D to D+AD). In
with surface instruments such as raingages (which terms of the conventional gamma pdf, N(D) can be
estimate rain intensity) or raindrop sizemeasuring written in the equivalent form, %
devices (or eledrometers) which estimate the RSD. N
These surface devi es have extremely small sampling N(D) T -
volumes (0. 1 to I mi x -/ (2)) 

compared to the radar sampling
volume. Thu.%, even under ideal conditions, it is NT
difficult to separate statistical fluctuations0'
from fluctuations caused by physical processes where 1',O, DO, 0). We note that 0 ( )ea
(e.g., the changing RSD) with respect to the m - a-I; - -. A physically meaningful parameter
relationship between radar 7 and surface measured known as the median volume eiameter Do can be
R. defined by,

In order to overcome the problems associated 1)
with acquiring simultaneous radar/surface rairfall 0
data, radar meteorologists often measure the RSD D D N(D) di) 1 3" N(D) dD (3)
(either at the surface, or in-situ, using 01D,
instrumented aircraft) or approximate the RSD by
some functional form, and calculate both where Do is such that all drops with diameter < DO
reflectivity (ZRSD) and rainfall rate from the size contribute to one half the total liquid water
spectrum. We use the subscript RSD on Z to denote content. Ulbrich (1983) has shown that ADO-
that it is calculated based on a measured RSD or on 3.67+m. Reflectivitv (?RSD) and rain intensity

183



can be formulated as various moments of N(D): on higher moments of the RSD. This procedure
places more weight on the larger drop sizes as

ZRSD f D6 N(D) dD .e6-m3  (4) compared to MLEs which place more emphasis on drop
0 sizes having a higher frequency of occurrence, Wong

D3 -1 and Chidambaram (1985). Pig. Ic shows a scatter

Rh (5) plot of logO 0NO versus m taken from Ulbrich (1983).0 From this data, Ulbrich concludes that physical

processes result in a No-m relation, and that,
where v(D) -=CD3  is the raindrop still air fall effectively, the three-parameter gamma RSD reduces
speed. to a two-parameter form. We have simulated this 0,

RSDs can be estimated by using surface experiment and show in Section 5 that the
instruments, e.g., disdrometers (drop size relationship between No and m is due to the
meters), or using probes mounted on instrumented statistical correlations between estimators of the
aircraft. The Joss-Waldvogel (1967) disdrometjr higher order moments of the RSDs. The above two
is a momentum device with a sensor area of 50 cm , examples imply that statistical fluctuations must
and estimates N(D) for D in the range 0.5 mm-5 mm be separated from variations induced by physical
with typical integration times of 30 sec - 1min. A causes. Simulations offer a powerful method of
number of authors have used N(D) data from Joss- studying the statistics of radar and surface
Waldvogel disdrometers, Ulbrich (1983), Joss and measurements where the "natural" fluctuations can
Gori (1978), Bringi et al. (1982), Goddard et al. be introduced separately. However, such simula-
(1982). tions involve large scale computations on a

To define the radar measured reflectivity factor supercomputer since the physical parameters must be
we assume that the radar resolution volume is filled varied over a wide range.
homogeneously with raindrops. In the Rayleigh
scattering limit the radar reflectivity factor Z is 2. Surface Disdrometer Measurements.
then defined as, Certzman and Atlas (1977) have shown that, in

raindrop sampling devices such as disdrometers, the
1 VD 6  6 -3 measurement variability is due both to statistical

Z X I m (6) sampling errors and to real fine-scale physical
vr
variations which are not readily separable from thestatistical ones. Sasyo (1965) and Cornford

where the summation applies to raindrops within a (1967) have shown that, for a constant mean rain
volume AV. Since the range of Z can be quite large intensity, the total number of raindrops observed
we define dBZ = 10 loglo(Z). There is a general will be distributed about its mean according to the
correlation between Z and rain IT.ensity expressed Poisson distribution. This property has been used
by a power law of the form Z-aR . by Joss and Waldvogel (1969), Gertzman and Atlas

Zavadzki (1984) has intercompared radar Z (1977) and Wong and Chidambaram (1985) to obtain the
measurements with surface disdrometermeasurements fractional standard deviations of higher order '.
of rain intensity. He has analyzed a number of moment estimators (which correspond to radar
factors which can cause discrepancies between measurements) of RSDs. In this work we use a
radar-derived rain rates and surface-measured rain somewhat different approach so that the correlation
rates. Sampling errors affect both the surface structure of higher order RSDmoment estimators can
measurements (due to inadequate sample volume) as be computed.
well as the radar measurements of mean power (or We re-write Eq. (2) in the form of a gamma pdf,
dBZ) due to the finite Doppler velocity spectrum.
Systematic errors can be caused by radar M+ m
calibration problems, as well as by the non- f(D) - D exp(-AD) (7)
coincidence (in space-time) of the raindrops r(m+l)
measured by the radar as opposed to the raindrops
which actually impact or the surface disdrometer. In the following development we assume that the
Fig. Ia taken from Zawadiki (1984) shows a scatter sar ling volume, V, is constant and does not vary
plot of rain intensity versus ZRq (estimated from a with raindrop size. If V does vary with D, then
Joss-Waldvogel disdrometer using Eq. (6)) while this dependency csn be introduced by multiplying
Fig. lb shows rain intensity versus radar-measured f(D) by the sampling volume function V(D).
Z. Zawadzki notes that the variability in R for a If n raindrops are observed with a fixed sample
given ZRSD is significantly less (%- factor of 3) volume Vwith diameters Dl, D2... D_, then this RSD
than the variability in R for the same radar- is a composite distribution of t~tal number of
measured 2. By assuming that the discrepancies raindrops (or equivalently, the concentra:tion of
between Figs. Is, b were due to physical causes, drops within any interval D to D+AD) and the drop
Zawadzki noted that, ". . . wemust conclude that the diameter, where the diameters are distributed
variability of the drop-size distribution is a according to the gamma pdf, and the total number of
relatively minor factor afftcting the precision of raindrops (n) are distributed according to the
radar estimates of rain rate " We have sirmlated a Poisson dist ributicn.
vimilar experiment corresponding to the data of Conventional estimators of higher order RSD
Figs. Is, b and show in Section 5 that the moments are expressed as follows:
discrepancies between Figs. Is, b can be accounted n
for by statistical fluctuations only. z - h M6 6 M3 (8a)

As another example, we consider the relationship t
between No and m (see Eq. (M)) derived by Ulbrich -3 .

(1983) using RSDs meastred by a Joss-Waldvogel 7. ........... .7=M hr- I (8b)
disdrometer. Ulbrich estimates NO, m, and D. based i.1

194

NUR -% 1 10 1 .



(8c) By conditioning on k the covariance can be written
LWC D 3  gmm as,

= D a  k )  
.Ea

where LWC stands for liquid water content. The cav( I

above estimators can be written in general as, i-1 i.]
+ (14)-("E

P =  n a i Dia where p, - CfDN(D) dD. (8d) iD 1ifil
wr ESince the Di are id, cov[D)f, Di] = c when i J.

e tTherefore, the first term on tre rght hand side of
We can now find the mean of pwas, Eq. (14) simplifies to MR) cov(D t , while theEap C second term simplifies to E(DODE(DAvar(n). Thus,

( " ED a)as
i,,I r E( ) E(Da + )  (15a)

where V ) stands for the expected value. The above CaCNo r(m++1+l) (15b)expectation to that of a random sum. Assuming the - V A+++
Die are lid we have, A a++

k Combining with Eq. (llb) we get the correlation
E( D Dla )  E( E{ DiU (9) coefficient p a,$ as

i~l i 1 r(nePaB+ I (16)

EA(k ) E B(Dc )  
{r(m+2a+l) r(m+2B+Il

where EA( ) is the expectation with respect to the It is interesting to note that the correlation
total number of raindrops and EB( ) is the coefficient between p and p is independent of No
expectation with respect to the Ramma pdf. Hence, and Do . In Fig. 2 we show plots of p versus m,

EA(k) VNT - V NO r(m+l) where p6 = ZRSD (radar reflectivryB) whilep 8
AM+ l  

(lOa) represents estimators with 8 - 0 (concentration),
8 - 1 (mean raindrop size), B - 2 (optical
extinction), B - 3 (liquid water content), and B =

EB(D )  r(m+a) (lOb) 3.67 (rain intensity, R). Note that estimators of
rim+l) Aa  ZRSD and R are highly correlated and nearly

independent of the shape (i) of the gamma pdf.
(00c) Hence, experimental data which show scatter plots

and, E(pa) = C N T Of ZR§D versus R obtained from diedrometere must beT +i Aa  carefully interpreted, i.e., experimentally
It is easily verified that pa 4 an unbiased derived correlations will contain the effects of
estimator of p,. Similarly, both physical correlations as well as statistical

C 2 k correlations.
var(P) - -- va( Dills) In order to simulate P we need to derive its

a 2  . distribution function. gince P. is a moment

2 estimator with a random sum, analytic derivations
C N r(+2a+) (llb) are hopelessly complicated especially for values ofV 0 M+2a+) a>O. Hence, we resort to simulating i. (fora -6

V A and 3.67) by first simulating the RSD. Ty cal
We note that the variance decreases with increase in c'ncentrationsofraindropsvary from 10 sol1 per

sample volume, as expected. The fractional m , Gordon and Marwitz (1984). Considering a 100
standard deviation (FSD) of p is litre (0.1 *3) sample volume, the number of

raindrops can vary between 10 to 10,000 and the
F" m+q l} m+2a+l)  number increases with sample volume. "o simulateSD )" '1-- (12) the variability in concentration we hive to useINOVI r(m+ +I) Poisson deviates. Then for each of these numbers

(q) we need to simulate k gama delates to
Eq. (12) is identical to Eq. (29) of Gertzman and represent the RSD. Next the physical jarameters
Atlas (1977). (NO, m and D0 ) of the gases SD must be varied over

We now derive the correlation between two the range of obervid values. For example,
estimators p and pB defined as, consider NO = 8000 m m -3 , D7 2 m and m - 0

(exponential RSD) and V - O.? m 3 . To obtain a
C t ascatter plot of ZRSD versus R under these ccnditions

P. Die it takes 125 seconds of execution time on the
a Vi- CSU/Cyber 180/830 computer. It is appar,,nt that

C large computing power is needed to hancle such

P8 V Dig intensive computational needs.

3. Radar Measurements.
The covariance between a end pI is, Radar measurements of reflectivity Z involve

C C a n n estimation of Z from the measurement of mean (time
" cv ̂  o, " biC1 (13) averaged) backscattered power (7) from a given

c(Jp ~ cov( D D 8Ll~
(' P) i-I radar resolution volume, Doviak and Zrnic (1984).
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The sample backscattered power is the incoherent 4.3 Timinjt.
sum of powers backscattered by each raindrop within Simulation of 50 samples of ridar and surface
the resolution volume. The fluctuation of the measurements withN 0 =8000 'mm- m- D0  2mm, m-0
backscattered power is due to relative motion and V = 0.1 m

3 
took 125 seconds on the CSU/Cyber

between the various drops, and can be related to the 180/830 whereas the vector code took 2.9 seconds of
width of the Doppler velocity spectrum. To obtain execution time on the Cyber 205. A complete
the mean power, P, power samples must be averaged simulation with NO, D and m virying took 160
over a large number of pulses. The total number of seconds on the Cyber 20 for a 1 m sample volume.
pulses depends on the radar pulse repetition time
(PRT), and the dwell time of the antenna beam on the 5. Discussion and Results.
resolution volume. Doviak and Zrnic (1984) show We now apply our simulation results to two types
that the power samples have exponential marginal of problems, namely
distributions. Zrnic (1975) has developed a a) radar-surface disdrometer intercompari-
procedure for simulating the time series of power sons, and
samples assuming a Gaussian Doppler velocity b) inferences on gamma RSD parameters using
spectrum. We use his method in our work and refer surface disdrometer measurements.
to Zrnic's paper for details. The principal
assumptions we make are as follows (for a typical 5.1 Radar/Disdrometer Intercomparisons.
meteorological radar): In Section 1 we discussed Zawadzki's (1984)

interpretation of radar/disdrometer intercompari-
Doppler Spectrum Gaussian, 2 = 6ms' sons as shown usInghis Figs. Ia, b. In Figs. 3-6we
Radar Reflectivity No r(m+7){D0/(3.67+)n} show our simulation results where Figs. 3a-6a show
Pulse Repetition Time 1 millisec scatter plots of surface rain intensity versus
Number of Samples 128 ZRSD, while Figs. 3b-6b show scatter plots of rain
Radar Wavelength 10 cm intensity versus radar Z. The physical parameters
Receiver Power Law (no noise) No, Do and m are varied differently in each Fig. 3-6.

For example, in Fig. 3a, b we 1renresent one rainfall
Our radar simulations, for a given mean power (or, condition with N 0 -8000mm m'I Do - 2mmand m - 0.
reflectivity) involve length N(128) exponential Fig. 3a shows very good correlation between R and
deviates, and length N complex FFTs. As the ZRSD whereas in Fig. 3b, R appears uncorrelatedwith
reflectivity is varied (by changing N0, Do, or m) we radar Z. In Fig. 3b note that the distribution of R
see that the radar simulations are also is asymmetric. We now vary the physical parameter
computationally intensive. m from 0.5 to 5 in Figs. 4a, b with the same N , Do

values as before. The correlation in Fig. 
4
a is

4. Simulations, significantly higher t an in Fig. 4b. In Figs. 5a,
As discussed in Sections 2 and 3, the surface b we keep N0 = 8000mm tm , m = 0.5 and vary D0 from

disdrometer and radar simulations are computa- 0.8 to 2.8 mm. in Fig. 6a, b we vary No, D and m
tionally intensive requiring simulations of gamma, simultaneously over a broad range of values ;%at can
Poisson and exponential deviates, as well as physically occur. Again, the same feature is
complex FFTs. These simulations are repeated many deduced, i.e., R versus ZRSD is more tightly
times as the physical parameters, namely, N0 , Do and correlated than R versus radar Z over a wide variety
m of the RSD are varied over a considerable range of of physical rainfall conditions. Wealsonote that
values commonly found in rainfall. Thus, these the magnitude of the discrepancy is of the same
simulations are ideal for implementation on a order shown by Zawadzki's (1984) Fig. Is, b. Our
vector computer like the CSU/Cyber 205. results are obtained for an ideal, noise-free radar

with the radar resolution volume completely filled
4.1 Exponential Random Deviates. by a homogeneous rain medium identical to that

The inverse CDF technique for generating sampled by the disdrometer. This implies that even
exponentials is used here. We generate them from without considering the various physical factors
uniform (0,I) deviates and take the negative enumerated by Zawadzki (1984), we can observe a
logarithm. This method is easily vectorizable similar variability in our simulations as was
since the CDF is in closed form and conditional observed in the experimental data shown inFigs. Is,
checks for specific values can be avoided. b. Our variations were obtained solely by the
Exponentials with means differing from unity are statistical nature of the measured quantities
needed here. Some timing runs made on the without any physical changes or instrumentation
CSU/Cyber 205 indicate that a length 100 string of problems. Thus, it is not possible to conclude
deviates can be computed 2.2 times faster than the that the discrepancy between Figs. la, b can be
scalar method, whereas the speed-up factor accounted for by physical causes as enumerated by
increases to 4.8 and 6.4 for strings of length 500 Zawadzki (1984). Therefore, it is also not
and 2500, respectively. This speed-up factor is possible to agree with Zawedzki's conclusion that
important in our work since a large number of these the variability of the RSD is a relatively minor
simulations are needed. factor affecting the precision of radar estimates

of rain intensity.

4.2 Gamma Random Deviates.

Kennedy and Gentle (1980) discuss a number of 6.2 Disdrometer Inferences.
methods of simulating gamma random deviates. In Section I we discussed Ulbrich's (1983)
Among the various algorithms, the one proposed by conclusion that the three-parameter gamma RSD in
Cheng (1977) appears to be most suitable for vector fact reduces to a two-parameter 9a RSD with No
Implementation. This method is an adaptation of a b rela by o - V1--.2 a), see
the envelope rejection technique and is described Fig. lc. Ulbrich (1983) estimates the parameters

in Appendix A. N0 , Do and m from disdrometer measured RSDs using
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three moment estimators, viz., are obtained from surface instruments. Previous
6 interpretations have ascribed this feature to
D N (D) dV (17a) physical causes. While physical factors are

G' 0 (6+m)(5+m) important when comparing radar measurements of
DM3 70N(D) dD rainfall to surface measurements of rain intensity,

D40N(D) dV (17b) it is important to have a good measure of

D _44 statistical variabilities before ascribing the
"0 -(3.6' D features to physical causes alone, Zawadzki (1984).

"D N(D) dD (17c) We have also applied our simulations to show that

LWC 0 D3N(D) dD o.52D( +m)N- 4 N0 -m relations, as derived by Ulbrich (1983) using
67 + 

0  6
' -experimental disdrometer raindrop size distri-

0

Using experimentally measured RSDs, G', Dm and LWC butions and certain higher order moment estimators,
are calculated using discrete versions of the cannot be ascribed to physical causes. The
integral in Eqs. 17a, b, c, from which the gamma RSD simulation results indicate that the moment

parameters No, Do and m are inferred. The result of estimators are correlated resulting in a high
this "inversion procedure is given as a scatter degree of correlation between No and m, even when
plot of log 0N versus m in Fig. Ic which is taken the gamma distribution parameters were widely
from Ulbricht1983). If a linear relationship varied. Though our simulations do not preclude the
between logloNo and m exists for natural gamma- existence of a physical N0 -m relation (which is
parameterized RSDs, then in essence the gamma RSD is important for radar measurements of rain
reduced to a two-parameter form. intensity), it suggests that other methods may be

To study the statistical fluctuations in the needed to confirm this.
moment estimators defined by Eqs. 17a, b, c we use
the Ulbrich inversion procedure with simulated Acknowledgements
gamma RSDs. In Fig. 7weassume ammaRSDswithN 0  The authors are grateful to Dr. Hari Iyer of

8000 mm 
1
m
"
, - = 0 and V 1 m, while D0 = 1 mm. Colorado State University for many helpful

Observe in this figure that estimate of logI NO discussions and for a critical reading of this
varies linearly with estimate of m, and the slope paper. This work was supported by the U.S. Army
is within the range theoretically derived by Research Office via NCAR Subcontract #S3024. One
Ulbrich (1983). In Fig. 8 NO, Do and m are varied oftheauthors(VC) isaFellowofCSU'sInstituteof
over a wide range to encompass the full range of Computational Studies which provided Cyber 205
naturally occurring RSDs. Our scatter points lie computer resources for this study.
within the two straight lines in Fig. 8 derived

theoretically by Ulbric.1 (1983) using a large APPENDIX A
number of empirical Z = aR relations. Comparison

of Fig. 8 with Fig. Ic also shows that our simulated The standard gamma has the following distribution
(N0 ,m) pairs lie within the experimental scatter function:
derived by Ulbrich (1983). This raises the obvious
question of whether the N1-m relationship derived f(x) =-le -x (Al)

byUlbrich is due to physical causes or whether it is -r(x x e ;

due to statistical correlations between the various Using Cheng's notation, let
moment estimators defined in Eq. 17. Note that our
simulations do not preclude the existence of a M - max { (x) (A2)
physical No-m relation; the implication of Fig. 8 is x g(x)

that other methods may need to be used to determine be finite. Take a pair of independent u(Ol)
if a physical N0 -m relation indeed exists. variables U1 and U2 say. Let x = G_ (Ui. Then if
Finally, in Fig. 9 and lOwe show scatter plots of m [f(x)J/Mg(x)1 > U2 accept x, otherwise reject it.
versus D0 , and No versus Do using the simulations. Each accepted x-has density f(x). Cheng suggests
Since these scatter plots indicate the correlation using f(x) same as (Al) and

between the estimates is quite low it implies that
if ailnificant correlations between these g(x) = X 2 W)

parameters are observed, then it is a real physical (G+ x )
observation, where a

Conclusions. M, the expected number of trials varies between
We have considered a class of statistical 1.47 and 1.13 as a varies from I to -. The

simulations which are computationally intensive advantage of this method is it gives a reasonably
and amenable to implementation on a vector small rejection ratio which translates into

computer. We have simulated two totally different starting vector length of uniform deviates not much
types of measurements, viz., radar, and surface greater than the length of string of gamma required.
disdrometer, measurements of rainfall. These This method also has one decision taking spot which
simulations involve exponential, Poiison and gamma can be easily accommodated by using control bit
random deviates. The problem is a large scale one vectors that would have bit value "l" for accepted
since the parameters describing the rainfall must elements of the vector that can be gathered later.
be varied over a wide range. Thus, we E.ave complete The following steps show equivalent vector form for
control over the physical and statistical Cheng's algorithm. (We denote vectors with an

variables, arrow above the symbols.)
We have applied our simulations to explain why

the correlation is less in plots of radar measured Step It Generate a pair of uniform random vectors
reflectivity verses surface measured rain I and 2

intensity as compared to plots when both quantities 
2
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Step 3s If b+CVX> log [U U 21Oceanic. Tech., 1, 22-27.
set bit vector elements to Jameson, A.R., 1985: Nicrophysical interpre-
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Fi. 6a. Comprehensive scatter plot of rainfall

rate versus MB, both of which are derived from Fig. 6b. Same as Fig. 6ia with dBZ "measured" by

ground observations. Variation of No , m and DO are radar. The Doppler spectrum variance has been

done to cover a wide range of suggested Z-R varied linearly between I and 6 m/s in proportion to

relationships, Ulbrich (1983). the values of reflectity.
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Fig. 7. Scatterplot of Nil versus m estimates for m
averagevalues of N -. 8000, mN0 o t e k. The
estimates are tightly correlated with log N. and m Fig. 8. Global scatterplot of N0  versus
being linearly related with slope - 0.45. est mates where No is varied between 200 to 2 x 10

(Mmm 1-m), Do between 0. 5to 2. 5 mm,and mbetween
0 to 5. Note that the scatterplot exhibits a
correlation structure between log No and m. The
two dotted lines indicate the boundaries of (N,)

...............................-- I relationships derived theoretically by Ulbrich
(1983).
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Fit. 9. Scatterplot of (m, DO) estimate pairs for D
parameters as in Fig. 7. Note the very weak
correlation between the estimates. Fi. 0 Scatterplot of (N0 9'Dn) estimate pairs

for parameters as In Fig. 7. Note the very weak
correlation between the estimates.
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STATISTICAL DATABASE MANAGEMENT ON MICROCOMPUTERS: THE BENCHMARK PROBLEMS

Robert F. Toitel

TEITEL DATA SYSTEMS

Bethesda, MD 20814

The purpose of this paper is to present the data files and data manipula-

tion problems posed for the participants of the session on "Benchmarking
Data Managoment Capabilities of Microcomputer-based Statistical Systems"
The data files described herein were distributed to 10 vendors of micro-
computer-based statistical software, with the intent that they prepare
solutions to the problems. These solutions would then be presented at the
lth Interface Symposium, and would be subjected to comparative perform-
ance benchnarking on a common machine by the author.

1. INTRODUCTION The problems were designed to elicit

responses to three fundamental questions

The data management problems described a typical user would have when confron-

herein have a long history. They were ted with the analysis of non-rectangular

first used to provide a focus for my data, as is becoming Increasingly more
discussant role at the "Workshop on High common. The first question would be "can

Dimensional Files: Large or Complex", a potential system perform the necessary
held as part of the l1th Interface data management at all ? ". The second
Symposium in 197S. Though the problems question would be "what do 1, the user,

circulated in the statistical computing have to do to get the system to perform
community for some time thereafter, they the necessary data manipulation ? ".
were not published until Proceedings of These two questions were the basis of
the 13th Symposium in 1,61 [Eddy 19811. the earlier functional bonchmarking ex-
For that Symposium, data tapes were ercises. The third, and final, question
created and distributed, and six vendors a typical user would ask is "what re-

of statistical software on main-frame sources does the system consume while
computers presented solutions to the performing the necessary data manipu-
problems. The problems wore published lation I ". Hence our present interest
again in the Proceedings of the First in comparative performance analysis.
LUL Workshop on Statistical Database
Management IWong 19621, together with Though appearing at first glance to be
the solutions of another set of sin an adhoe set of data descriptions and

database and statistical system vendors. tabulatory requests, the problems art
based on an underlying concept or model

The problems were published a third time of statistical database management
as the appendis to a paper on "Statisti- articulated elsewhere [Teitol 19S2a3.
cal Database Management: A Benchmark
Comparison Among Statistical and Data-
base Systems" CTeitel I942b3 which con- 1I. THE PROBLEM SET
centrated on the different results
obtained for one of the problems. Since The problem set consists of the descrip-
the results of the required data manipu- tion of two data collections, and two
lation were to be presented as simple data manipulation esorcises for each
cross-tabulations, it was quite vurpri- data collection. The data manipulation
sing to discover solutions in which exercises are stated in terns of the
the cell counts differed. desired result, that is, simple cross-

tabulations. The format or structure of
For the present round, the problem de- the tabulations is not of primary

scriptione and floppy disks containing concern herei it is the data manipula-

the data files were sent to 10 vendors tion necessary to prepare the data for
of micro-computer statistical software, the tabulation stop which is of interest
(All has agreed in principal to partici- here.

pate in the esercise.) A ds'arture from
the previous rounds, in which only data A. The TRIPS Data Collection
manipulation functionality was stressed, TRIPS Is a large collection of data

this round included a BArformac compo- cosisting of four groups of variables
nest. Each of the vendors would send to (variously called segments, relations,
me their completed solutions to the tables, levels, or record types). The

problems, and enough of their system to groups of variables are related to
permit me to replicate the solutions on each other as shown in the following

a common machine (or two). The results diagram, and further esplained in the
of these performance measures are pro- tet.
sented in a subsequent paper.
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+---I HOUSEHOLD I ---- trip I model year of car

I ------------- i count 1.. 1970 1971 1972 ..

- ------ ...... ... ... age .. *
I CARS I : PERSONS i 1 16 1 I
- ------ ...... +... .. 17 2

2 19
-------

- -- I TRIPS I - - --

The two tabulations, though superficial-
Each household contains a variable ly similar, require different complex
number of cars and a variable number of data manipulation capabilities. Each
persons; each person contains a variable table consists of a count of occurrences
number of trips. Ve include sero in the of one record type based on variable
definition of "variable number". In values in other record types. The first
addition, each trip, if taken in a car table requires "downward" access, from
owned by the household, will contain the household to cars and persons; the
identification of that car. There are no second table "upward access", from trips
counts of persons or cars in the house- to persons and cars.
hold record, nor is there a count of
trips in the person record. The car
record contains a model-year variable, B. The PEOPLE Data Collection
the person record an age variable, and PEOPLE is a large data collection of
the trip record a duration variable in various data elements on people. The
addition to the own-car variable already data collection is relatively closed
mentioned. All records contain appropri- with respect to ancestry: for most
ate identification or key variables, as people, data on their parents, grand
described in the record layout section. parents, etc., as well as on their

children are contained in the data
The first of the two cross-tabulations collection. The variables available for
to be produced from the TRIPS data each person include the year of birth,
collection is a simple count of house- the level of education, ms, and the
holds by the number of care owned and by identification of the mother and father,
the number of persons over the age of 16 If known. The records of (an apparently
in the household. The table should be rectangular file) are in identification
something similar to the following, number order, but not necessarily In any
(The table definition should have made relationship order. %

more explicit the possibility of 0 cars
and/or U adults by including a 0 car row The first of the two cross-tabulations

and a 0 adult column. As given, some to be produced from the PEOPLE data
vendors excluded those households with 0 collection is a simple count of off-

cars and/or 0 adults.) spring by the educational level of each

parent, as follows.

-------- #------------------------ ------------ +------------------------

I household I persons over 16 1 loffspring I father's education I
I count I 1 2 3 4 1 2 count I.. olem he Coll .1
+ ----- --------------- +----------- +----- --------------- 0

I I :mother's 1 6
I cars I I I Ieducati, n 2 *

8 2 .. 2- 2

2~*o I le
I he I

---- I-------------------------------- 2 - --- - - ---- ---- -------- ----

The second cross-tabulation to be The second cross-tabulation to be pro-
produced from the TRIPS data Is a simple duced from the PEOPLE data collection is

count of trips of at least three days' a count of the "last births" by the ase

duration taken in a ear owned by the of the mother at the birth of her lest
household by the age of the person child by the sen of that last child. The
taking the trip by the model year %f the count of "last births" could be inter-
car, as shown at the top of the next preted as either the count of mothers at
co0us. last birth or as a count of the youngest

child of each mother.
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- - - Trip record:

last child son 1 1-120: as above, escept for
I birth I female male : : record type = '4'.
------------------------------- 6-7 person within household id.

!mother's 8 8-9 trip within person Id.
lage .. I The first one-digit variable is

15 1 the id of the car used for the
16 1 trip (with a value of 0 meaning
17 other conveyance).
1 I The last two-digit variable Is the
.. .I duration of the trip.

--------------------------- +
All variables of all record types should

be retained in the system file or
These tabulations also require different database. A 1

data manipulation capabilities, and dif-
fetent access paths to the necessary 3. The PEOPLE Data Collection is dis-
data. The first requires simple "upward" tributed as a single file named
access to the education variables of the PEOPLE.DAT of approsimately 95k bytes in
parents. The second tabulation, if MS-DOS 2.00+ format, and consists of

viewed as a count of mothers, requires only a single record type. The format of

scanning the children to determine the the record Is as follows.
youngest; if viewed as a count of the
youngest child, it requires scanning the People record:

siblings to determine the youngest. 1-5 person id number
6-56 $1 one-digit variables, the

first of which is the se8
I11, THE DISTRIBUTIOH FLOPPY variable ('1l-female.

'2 -male).

Programs have boon written to generate 57-66 15 two-digit variables, the
the data for the TRIPS and the PEOPLE first of which is the
data collections. The programs permit education variable (01
the specification of the basic structure 19 years of schoolig)
parameters, how many households, or how 07-110: 6 four-digit variables, the
many trips per person, and the ranges of first of which is the year
the values of each of the variables. The of birth (1600.
values of the variables necessary for 111-115: the id of this persoe'e mother %

the tabulations have reasonable values; 116-126 the ld of this person's father Ne

the values of other filler variables are
Immaterial. Again, all variables should be retained

in the system file or database

A. The TRIPS Data Collection is dis-
tributed as four separate files, named
HHOLDS.DAT, CARS.DAT, PERSONS.DAT, and IV RlFERENCES
TRIPS.DAT, containing approsimately 12k.
25k, 38k, and 115k bytes, respectively, Eddy, V F (1961), ed. temster Sciee".
in MS-DOS 2.00. format. The record and Statistics the 12th Ansual
formats for these files are as follows. Sumassum en the Interface.

Springer-Verlas New York
Household record:

1-4 : household identification. Vong, H T K (1902), ed e rat L3L
S : record type - 'I'. V zLorkoh on Statistical tLL ruas

6-9 : ignore. 1j jnaagqAj. Lawrence Berkeley
10-60 : Si one-digit variables. Laboratory, Berkeley, CA
61-100: 20 two-digit variables,

101-120: 5 four-digit variables. Toitel, R.F (1961a), "A Statistical
User Interface to the Relational

Car record: model of Data", in Proceedlmo0, Part
1-120: as above, except for I1, of the Conference em Easle and

5 record type - '*2 Here Productive use ef Cem-tar
6-7 car within household id. Jjtej, ACM SCIGOC EULLETIN,
The last four-digit variable is Vi,02-3.
th e m ode l y ea r o f th e c ar . -1" sD

------------------------(1902b)0 "Statistical Database %%

Person record: Management: A Benchmark Comparison

1-120: as above, eacept for among Statistical and Database

5 : record type M'S. Systems", in Proceedings of the 0
6-7 : person within household Id. Statistical Commutlng Sction, AlA, OC

The first two-digit variable is Washington, DC.

the age of the person. 1 'i



Making the Push and Shove of Data Management Easier:
Examples of Four File Problems

MaryAnn Hill and Laszlo Engelman

When data are collected they frequently fail to 2). The people records also contain a household
form the nice tidy rectangle required for analyses id plus the person's age and id. The household
based on classical statistics. Often research records contain no car or people identifiers.
projects suffer considerable time delays and extra The goal is to tabulate the number of adults
costs by not having easy-to-use tools to ready the over 16 years in each household by the number of
data for analysis. A ne system developed by cars owned by the household. The results obtained
B DP, the Data Manager, makes such tasks easier from the table program BMDP 4F are displayed in
We use thebM system here to solve four file prob- Figure 1.
lems. DM is a file manipulating tool designed to
handle most fi le problems encountered in research # core Mdits
projects, but it is simple enough that users com-
fortable with packaged statistical software can aese." Ie isatt I or 2 a or mrs TOTAL
specify complex operations without help from a a
programer. DM includes 20 instruction paragraphs a 1 11 I 21
(READ, SORT, AGGREGATE, etc ) that can be asse- ., 1 6 4 1: 17 I 42
bled in a variety of wsys, allow ing the separation a.e io.. 5 1 1s 1 42
of a complex task into small manageable pieces .__
that are assembled step by step in a logical man- OTAL is I1
nor The resulting collection of paragraphs reads

easily and is self documenting Figure 1 The number of cars and adults per
The four problems assigned to software devel- household

opera at the 1986 Interface meetngs • Ilustrate
several of the functions of DU The first two These data are weird. There are twelve households
problems use four separate fles containing rec- e-th no people (6.6 in the first column); but the
ords, respectively, for cars, People, households. reworl indicate the household has one, two, or

if. and trips In Problem 1, information aggregated more cars Possibly of greater concern ore the
from the car and people fles ,a added to the seven (4*3) households that only report kids under
household file In Problem 2, the trips file is 16 years, but report multiple cars.
epanded by adding information from the car and In Figure 2, we display the DM instructions to
people fles Values are repi,cated *hen cars create the input data file for this table. These
and/or people take multiple trips instructions aggregate the car and people informs-

The last too problems concern a file conanng tioa by household and join it to the records in
.nformston about several generations of people the household file That is, we want the number

' In Probiem 3. records for each person's parents of cars eth each unique household id and the
are found (.f present) and nformatio" on eact number of people over 16 years with each unique
parent's educat,on a added to each of ther chi. household ad

5 dren's records In Problem 4, the !st ch,1d born More specifically, the instruction paragraph
to each mother ,s ident-f,ed ard is birth year labeled *1, in Figure 2, READS the CAR file with
used to compute the mother's age at the birth of 210 records Each record contains 79 variables
that chid stored in fixed locations The model year of the

t f,rst present our strategy and instructons car ,s variable 79 We use BMDP's convenient
for the sclut.on o

f 
these four ale problems and FORTRAh type format reader where the specification

then hghl ,ght add, t,onl supports the user may to read a four character field is written F4 in-
need to accombpI sh these tasks for a real study stead of F4 0
it hould be ponted out that the astisl instruc- Note that the first dozen lines of Figure 2

t,o,.s are not a cInmal set .,. included add- document the instructions. The notation *i is
tonal rinstructions that a user with simlar tasks used to reference instruction paragraphs below.
should consder For esample in the first prob- On each line of instructions, the DlM reader ig-
loo about cars, people and households we could nores text following a number (|) sign. For essi-

have ig red the household records and simply used er reading, we incented the instructions within
the household c to Iink the aggregated results each paragraph. This is not necessary, for DM
for cars and people But we eanted to identify instructions are written in free format.

* households wth nether 7ars nor people, because In #2, the N function in the AGGREGATE para-in a real study, they aay indicate errors In the graph is used to count the number 3f cars per
kd/mom/pop task we 4nclue d instructions to sort household (home id). The N function is one of
the file, even though, by eye, se could see that mole than two dCozen functions available in the

40 the generated dats w9re sirted proper ly for the AGGREGATE paragraph for extracting summary infor-
46 merge operations mation from values on different records. Other

functions include minimum, maximum, mean, total,
Strateg, and Solutions for the Four Problems slope, etc. The output work file (c per h) con-

tains one record per household with-hom; id and
Problem 1. We begin with three separate files the number of cars,
eath information about cars, people, and house- A similar counting task is carried out in para-
holds. Among the 79 variables stored on the car graphs #3 and #4. This time we READ the PERSONS
record there is a household id, a car id, and the file containing records for 315 people. AGE is
model year of the car (it will be used in Problem the 55th variable for each subject. Note that the
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# 1. Read the car file. N function (in #4) incorporates a condition about
# 2. Count the number of cars per household. AGE -- age > 16. That is, within each household
# 3. Read the persons file. id, only the people over 16 years of age will be
# 4. Count the number of people over 16 years in counted.
# each household. The READ paragraph labeled #5 reads 105 house-
# 5. Read the household file. hold records. In the JOIN paragraph (96), home id
# 6. Join the 3 files side-by-side linking records is used as a key tO link the household records

# by home i d. i sda e oln h oshl eod
#7. When cs and/or people info is missing, se with the appropriate counts of cars and adults.
# re7u. t to l. We could have omitted the household records from

# 8. Store the file in a system file. this JOIN FILES list, but we wanted to check for
# 9. Delete files that are no longer needed. households with no cars and people. A household
#...............------------------------------------ with car(s) and no people would also be strange,

READ so we insert a request to print the key (home id)
SFILE IS 'CARS.DAT'. for each of these unusual occurrences. We specify
VNAMES ARE home id, (3)car id, (79)modelyr.
FORMAT IS 'f4, T1, f2, 2x,-Slfl, 20f2, 574'. / #1 PRINT = 'HC.', 'H..'.

AGGREGATE where a period (.) in each three character literal
WITHIN IS home id. string indicates a missing record, a letter (H or
'# cars' = N ( Nome id ) C) indicates that the record from the Household or
NEWFILE IS cperh. / #2 Car file is present. So at this point'during our

READ Tnteractive run we identify the 12 households with
SFILE IS 'PERSONS.DAT'. one or more cars and no people and three house-
VARIABLES ARE 79. holds with no cars or-people. We didn't have to
VNAMES ARE home id, (3)personid, (S5)age. wait to the table making step (Figure 1).
FORMAT IS 'f4, Ti, f2, 2x, Sifl, 20f2, Sf4'. / 93 When there is no car record or people record

available to JOIN with the household record, DM
AGGREGATE pads the positions of the values with the missing

WITHIN IS home id. value flag XUIS. In the TRANSFORM paragraph (#7)
'# adults' = N-( home id, age > 16). we change the XMIS flag for '# cars' to zero.
NEWFILE IS pperh. # 94 That is, if there is no cper h (cars per house-

READ hold) record then the household had zero cars. If
SFILE IS 'HHOLDS.DAT'. the count of adults is missing then there are no
VARIABLES ARE 78. people for that household. However note that if a
VNAME IS home id. household does have people, but no one is over age
FORMAT IS 'f4, T1, 4x, Sifl, 20f2, Sf4'. / #5 16, the N function produces a zero. We decided to

distinguish between no people and no adults, so we
JOIN changed the XMIS flag (created when there is noFILES ARE HHOLDS, cperh, p-per h. piper h, people per household, record) to -1.

KEY IS home id. In _the SAVE paragraph (#8), we save the countsKEEP = hong id, '# cars', 1# adults'.PRINT = 'h.ir, 'H..'. of cars and people by household in a OMDP File.
NEWFILE IS problml. /6 When the table program BMDP 4F reads this file,

the names 'I cars' and '# adults' will be stored

TRANSFORM with the data. If a household only has people ag
IF ('# cars' EQ XMIS) THEN '# cars' = O. 16 or less, '# adults' is zero; if there is no one
IF ('# adults' EQ XMIS) THEN '# adults' = -1. / #7 with that household id, the value is -1.

SAVE Problem 2. The structure of the file manipulation
CODE IS problemi. NEW. task in this problem is opposite to that in Prob-
SFILE IS 'problemi.sav'. / 98 lem 1. Instead of aggregating or accumulating

DELETE across multiple car and people records per house-
FILES = HHOLDS, problemi, cperh, pper-h. / #9 hold we generate replicates of car and people

records to link with trip records -- that is if a
car or person makes more than one trip. The goal

Ficure 2. DUd instructions for PROBLEM 1. for this task is to tabulate information for each
Aggregating car and people information trip -- model year of the car used by age of the
by household. person taking the trip. The results from the

table program BMP 4F are displayed in Figure 3.

ACV MOEL YR

1971 1972 1973 1974 1975 1976 1977 1978 1979 19W0 191 1982 TOTAL

12 to 16 S 1 13 7 S 11 7 2 1s 4 14 121 91
16 to 20 7 6 7 12 9 1@ 11 S 12 13 6 6 112
21 to 28 11 a 4 1 7 1 14 6 14 11 6 3I 91

26 3o 0 19 26 8 6 9 a 7 12 7 5 11 a 118
I to $ 4 11 

4  
4 9 6 a 0 a 17 9 91

TOTAL 46 43 6 39 3 84 45 62 51 39 62 38 493

Figure 3. Model year of car and age of person taking the trip.
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In Figure 4, we show the DM instructions to In instruction paragraph #12, we READ the 945
create the input file for this table. The numbers record TRIPS file. Each input record contains 80
for the steps of the data manipulation tasks con- variables and we KEEP the length of the trip (dur-
tinue from Problem 1, because they were executed ation) and ids for the respective home, person,
during the same interactive computer session. The car, and trip. We SORT this file by person.id
SORT paragraphs (#10 and # 11) ensure that the within each household (home id).
PERSONS and CAR records are sorted within each In the JOIN paragraph (F13) we take each per-
Household key (home id) by person id and car id, son's ACE and link it to their trip record using
respectively. AOC is retained -(KEEP) on Zach person id and home id as merge keys. The period
person's record. in the11OTKEY instuction requests that the person

record be replicated when s/he goes on more than
10. Sort the PERSONS file using home id and one trip. We use the instruction*person id.

11. Sort the CARS file using homle id and car id. PRINT .
12. Read the trips file.
13. Sort the TRIPS file and join it with the

PERSONS file, using home id and personid. The to list id's for people who do not go on a trip.
period in the HOTKEY instruction requests that The DROP instruction deletes these records from
the person record be replicated when s/he goes the output work file that now contains trip infor-
on more than one trip. mation plus age. This file is then sorted by

14. Sort the 'trips+age' file and join it with the home id and car id.
# CARS file, using the home id and car id. The SI the JOIN paragraph (#14) the MODEL YEAR of

HOTKEY instruction requests that the-car info the car used (from the CAR file) is joiWed with
be replicated if it goes on more than one trip. the 'trips A age' records. The period in the

15. Delete records with less than 3 'duration' or HOTKEY instruction requests that the car inform-
if the car id code is O.

16. Store the Tile in a system file. tion be replicated if the car goes on more than
I.- .-------------------------------------------------- one trip.

SORT The instructions for this problem requested
FILE = PERSONS. that trips lasting less than three days be deleted
KEY = home id, personid. from the report and also that values of car id
KEEP = home-id, personid, age. / #10 equal to zero not be used. Code 0 for car-id

indicates that an airplane or vehicle other than a
SORT car was used for the trip. The instruction USE a

FILE a CARS. -1 in the TRANSFORM paragraph (#15) deletes rec-
KEY = home id, car id. 1111 ords with short trip duration and/or invalid

READ car ids. The SAVE paragraph (#16) saves the re-
SFILE IS 'TRIPS.DAT'. sulfing file for use as input to program BMDP 4F.
VARIABLES ARE 80.
VNAMES ARE home id,(3)personid,trip id,car id, Problem 3. In this problem our input data file

(75)duration. - ntain information about people. Each record
FORMAT IS 'f4, fl, 2f2, Sifl, 20f2, Sf4'. contains an id, the sex of the person, their level
KEEP a home id, personid, trip-id, car id, duration. of education (in years), and their year of birth

SR/ #12 (birth yr). In addition, the record contains the
SORT id of the person's mother (momid) and their fath-
JOIN d, personid. / 913 er (pop id). Thus, this one rectangular file

FILES = TRIPS, PERSONS. contains records for kids, moms, pops, grandpar-
KEY = home id, personid. ents, and possibly great-grandparents. For Prob-
HOTKEY = 'T.'- lea 3, our goal is to find each persons mother's
PRINT = .p. record and father's record in the file, thus on-
DROP z '.p'. / #13 abling us to link the parents' educational level

to each record. We want to tabulate mother's
SORT education versus father's education as shown in

KEY a home id, car.id. / #14 Figure 5. Obviously the data are generated, note

JOIN the 123 women who are college graduates who mar-
FILES n TRIPS, CARS. roed dolts -- men with only an elementary school
KEY = home id, car id. education. This table was obtained in program
HOTKEY = ,t., - BMP4F.
DROP = '.c'.
KEEP a home id, car id, age, duration, model yr. M Od PP ad
NEWFILE a probTem2. / 14

TRANSFORM eleetery high.ech col"leg greduate TOTAL -

IF (duration It 3 OR car id eq O) THEN USE a -1./ #15 eleazar, I" Ill • a 1 "9

SAVE hglh inch • 42 111 I isa
CODE = problem2. NEW. College • a 42 117 I 169 %
SFILE a 'problem2.sav / 16 graduate 128 a 0 6 I 128

Figure 4. DMd instructions for PROBLEMI 2. TOTAL 32)1 in8 n1; Ill 1 44

Replicating car and people records

when each makes multiple trips and Figure 5. Education of mother versus education of
joining with trip information, father.
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Our strategy is to make two copies of the ori- # 1. Read the PEOPLE file.
ginal fi Is. We will take mother records out of #2. Consider this to be the 'kids' file and sort it
one copy, father records out of the other copy and # by mom id. Sex and birth_yr are needed in

children records from the original file. When we f ProblZ 4.
make the mom's file we rename id, education, and #3. Copy (extract) the PEOPLE file and call it the

m9'moms' file (all people in the moms file are not
birthyr to mom id, mom educ, and momb yr, re- # moss, however). Rename variables, changing id
spectively. Fo;'the filI copy that we win use as to mom id, educatn to am educ, etc. Join the
father's data, the id and education are renamed # kids asd moms file side-by-side using the mom id
pop id and pop educ. Of course each copy of the # to link records. The HOTKEY instruction re--
fi Ii has the same records as the original file, # quests that the mother record be replicated when
but we will use the id's to select only the 'mom' # she has more than one child. The DROP instruc-
records from the mom file and only the 'pop' rec- # tion deletes records when a match for the aom id
ords from the pop file. In Figure 6, for child 45 # in the moms file is not found in the kids file.
we link her mom's education (15 years) and birth #4. Sort the new 'kids + moms' file by pop id.

year (1830) and her father's education (18 years) # S. Copy the PEOPLE file making it be 'pops'.
t Rename id to pop id, educate to pop educ.

to the values on her record. Join the pops fiTe to the 'kids + moms* . The
Child Mom Pop # HOTKEY and DROP instructions work as in #3 above

# but with respect to replicating father's records5a.. . and eliminating pops without kids.
Gq/q #6. Store the file in a system file.

READ
SFILE a 'PEOPLE.DAT'.
VNAMES a id,sex, (53)educatn,(68)birthyr,

(74)mom id,pop id.
5 1 15 1830 * a 5 15 1830 -. 5 15 FORMAT - 'f5, 5ifi, 15T2, 6f4, 2f5'. # 1
6 2 18 1833 . ,' 6 18 1833 6 SOR• SORT

FILE a PEOPLE.
KEY a momid.

1 2 1860 S 6 45 2 1860 4i 2 iddKEEP = id,"sex, birthjyr, mom_id, popid.
451 21606 5 180 52NEWNAE a kid id.

NEWFILE = kids. / #2

EXTRACT
FILE = PEOPLE.
KEEP = id, educate, birth yr.

Output NEWNAME = mom id, mom educ, mom byr.
NEWFILE . mos. /#3

45 1 2 1860 5 6 15 1830 18 JOIN
FILES = kids, moss.
KEY = mom id.
HOTKEY : I k.r.

Figure 6. Linking mom 5 and pop 6 with child 45. DROP = '.m'. / #3

In Figure 7, we display the DM instructions to SORT
copy the file and link the respective mom and pop KEY = pop-id. / #4
data with that of each of their children. In
paragraph #1, we READ the PEOPLE file containing EXTRACT784 records and 75 voriables. We will find laser FILE = PEOPLE.KEEP = id, educatn.
that 744 of these 784 people have parents in the NEWNAME = pop id, popeduc.
file. We will use the 'kids' records in this file NEWFILE a pops. 115
and SORT it by mom id (paragraph #2).

We use the EXTRACT paragraph (#3) to make the JOIN
first copy of the file. We will use the 'moms' FILES = kids, pops.
records in this file so we call it 'moms' and KEY = pop d.HOTKEY =' k.7r
rename the variables from id to mom id, educatn to DOP =I k../
mon educ, birthyr to momebyr. - DROP = #S

We next use mom id as a key to JOIN (#3) the SAVE
mom's record side-Sy-side by that of each of her SFILE = 'problem3.sav'. NEW.
children. The literal string in the HOTKEY in- CODE = problem3. / #6
struction includes one position for each file
being joined. The period (.) in 'k.' requests o. DM instructions for PROBLEM 3. Linking
that the mother's records be replicated when she mother and father records to those of
has more than one child. When a particular mom id each of their children.
is present in the moms file but not in the kTds a mom id in the child's file (actually 6 is an id
fie, no output will be made because of the in- for a"father). A report in the output tel Is us
struct ion that 571 records were dropped because an id in the

DROPs '.m'. mom's file was not matched in the child's file. 
Therefore we figure that there were 213 mothers

For example, in Figure 6, the code 6 is listed in with children (784-571.213). The output work file
the moms file ass mom id, but 6 is not listed as contains records for children plus their mom's

201



education and her birth year. We SORT this file etc. The instructions in the AGGREGATE paragraph
by pop id (#4). (#8) are executed for each set of records (all

We use the EXTRACT paragraph (#5) to make a records with the same mom id). The RUSE (or
second copy of the original file. We will use the RECORD USE) instruction sefects the record from
pops records from this file so we change the name each setrthat has the MAXIMUM value of birth year.
id to pop id and educatn to pop educ. That is, the latest date or the 'last child borne

In JOIN (#5) we use pop id t link the father's to that mother. The FVAL factor (FIRST VALUE)
education with his child's record. The HOTKEY and picks the sex code from the record-of thi7ast
DROP instruction are used in the same way as ex- born child. The age of the mother at birth of her
plained previously for the moms file. The output last child is computed in the argument of the FVAL
work file from JOIN contains the desired mom and function as the difference between the child's
pop values appended to their respective children's birth year and the mother's birth year. This
records. These records are saved in a BMDP File moms age and sex code for the last child are out-
(96) as preparation for input to program BMDP 4F. put with the mom's id and stored in a BMDP File

for input to program BMDP 4F (9g).
Problem 4. For this task we are to identify the Additional Supports for the
Tast hid born for each mother and compute the Data Manipulation Tasks
mother's age at the birth of this child. 

The goal

is to tabulate mother's age by sex of this last In estimating the time to solve these four
child. We display these results (obtained from problem, total time to do the task is an important
program BMDP 4F) in Figure 8. factor. Instead of recording time to execute

a0m-s1e lastI sex already debugged instructions, it would be more
meaningful, if possible, to record the computer

Fmelo Male TOTAL time to assemble and debug the correct set of
instructions. Ideally, the shortest time should

under1 4 2 I e occur in an interactive setting where the user can

19to 26 14 19 I as access reports and features that identify both
26 to 3e 26 17 I 42 mistakes in the program instructions and errors in
over-30 47 as I 102 the data (e.g., incorrect keys), correct the mis-

-__takes, and immediately rerun the step in error.
TOTAL 98 123 I 213 We now describe DM features that we utilized

during the interactive development of the correct

Figures 8. Sex of last child by mother's age at instructions. As we tackled the four problems we
birth of last child. asked many questions. For example,

The DM instructions to create the input data Did the File Merge Work? After complex file met-
file for this table are displayed in Figure 9. As ging operations it is helpful to scan a data lis-
input for this task we use the data file created ting of the results. In the Problem 3 kid/mom/pop
for PROBLEM 3 that contains records with the task, we inserted a PRINT paragraph after JOIN (#5
child's data plus mother's education, mother's in Figure 7) and immediately identified two women
birth year, and father's education. We SORT this married to dolts (see Figure 10). The mothers of
file by mom id (#7). subjects 181 and 186 each have over 18 years of

education, but their husbands report only two or
1 7. Sort the "kids + moms + pops file by mom id. three years. We initially thought we had made a
# 8. For each mom, find the sex of her last child mistake but checked the input data and found these
# and her age when the child was born.
# g. Store the file in a system file. results to be correct. Before this point other
#. -checks are necessary.

SORT
KEY amomid. 7 k s b m p m m p

AGGREGATE i a i o 0 0 0 0
WITHIN a mom i d. d x r m p m m p
RUSE a birih r EQ MAX(birthjyr). t
last.sex2 FVAL(sex). i h i i e b e

moms age= FVAL(birthjr - mom b_yr). d d d d d
KEEP a mom-id, last-sex, moms-age. /#8 y u y U

SAVE r c r c
SFILE = 'problem4.sav'. NEW.
CODE = problm4. / 19 181 1 1870 95 96 19 1852 3

182 2 1879 97 98 6 1858 9
FINISH/ 183 1 1882 97 98 6 1858 9

184 2 1885 97 98 6 1858 9
Figure 9. DM instructions for PROBLEM 4. 185 2 1887 99 100 12 1868 15

Identifying the last child born to 186 1 1876 101 102 18 1854 2
each mother and computing mother's age
at last birth.

Because we just sorted the file by mom id, the It,

records for the children of each mother form a
set. That is, the records for the children of the Figure 10. After a merge command, a data listing
first mother form the first set, followed by the is used to check the kid/mom/pop
records for the children of the second mother, output records in PROBLEM 3.
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Did We Specify the Record Format Correctly? After 28, etc. report cars and no people; for pattern
reading the CARS file in PROBLEM 1, Dil returns a H.., keys 35, 70, etc.
report on the record format to the screen. We In PROBLEM 2 (#13) we requested a report I"s-
checked this to see if we read the car records ting both the household key and the person id for

correctly. See Figure 11. people who did not take trips. From the resulting
report we learned that person 1 in household 4
(the 22nd case in the file) did not take a trip,

VARIABLE RECORD COLUMN INPUT person 4 in household 5 (the 43rd case in the

NO. NAME NO. BEG END FORMAT file) did not take a trip, etc.

1 home id 1 1 4 F4.o Other Conveniences During Interactive Execution.
2 V2 - 1 5 5 F1.0 What happens if you misspell an instruction? The
3 car id 1 6 7 F2.0 Data Manager does not abort the job and drop you
4 V4 1 10 10 F1.0 into the system. Instead the instructions just
5 VS 1 11 11 F1.0 executed return to the screen with line numbers;

without leaving the program, you can make correc-
tions using the BMDP Line Editor and immediately
execute them.

78 V78 1 113 116 F4.0 During an interactive session, you can also
79 modelyr 1 117 120 F4.0 access ststem commands without exiting the pro-

gr-am. If you forget, say, a file name you type

Figure 11. The codebook for car records indicates ! DIR
that the model year is stored as the
79th variable in character positions and your system directory will scroll across the
117 to 120. screen. Any system command may follow the excla-

mation (!) -- when execution of the system command
In addition, as these records were being read is completed, control returns to DM.
during our interactive session, the DM system If you forget the name of a DM command, you can
reported a record tally every 50 records and the request online help by typing, for example
total records in the file after reading was com-
pleted. The record tally is also reported for HELP READ. /
SORT, MERGE, JOIN, and AGGREGATE operations.

The program then returns a brief definition of
What Cases Have Problems? When linking informa- READ paragraph commands to the screen.
tion in PROBLEM 1 from the Household, Cars, and If you request a printout of your interactive
People Files, we wondered if any households had session your DM instructions are easr to find and
cars but no people. The PRINT paragraph (96, they are readable. A row of equal signs (=) pre-
Figure 2) requests a report of household keys for cede and 111ieach paragraph of instructions,
output records with the status 1HC.' where HC clearly setting the user's instructions apart from
means that the Household and Cars records are DM reports and responses. Scanning such a print-
present and the period (.) ingicates that the out is useful for retracing your steps at a later
People record is missing. We also requested a time or for someone else to join in on the
report on keys with the pattern 'H..' (both car project.
and people records are missing for that house- Thus, the Data Manager is a convenient and
hold). In the resulting report we found 12 house- comprehensive tool for preparing data for analy-
holds reporting a car or cars and no people and sis; and, in addition, the Did instructions are the
three households with no people or cars. For same for many systems ranging from the IBM PC to
example, for pattern HC. the keys are 7, 14, 21, mainframe computers.
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PRODAS : PROFESSIONAL DATABASE ANALYSIS SYSTEM

Henry Feldman, Conceptual Software, Inc.

PRODAS is an acronym for the This is especially important as
Professional Database Analysis System. computers become a faster and cheaper
PRODAS combines powerful database resource. As new generations of
management with a large array of computers are developed, users will be
statistical routines and graphics into able to start up one program and then
an integrated system. It is command work on another program. It is better
driven with syntax similar to SAS to spend 10 minutes programming and let
(SAS Institute Inc.). PRODAS has the the computer run for 60 minutes than to
most sophisticated database management program for 60 minutes and let the
and data entry capabilities found in a computer run for 10 minutes. We feel
software system with statistical that as long as the answer is arrived at
routines, in a timely fashion, it is better to

In 1985, Dr. Robert Teitel asked minimize programming time.
developers of the major IBM/PC data Programming environments must make
analysis packages to participate in a life easier for the programmer. We feel
benchmarking problem set. Dr. Teitel that PRODAS can make life easier; but
wanted to evaluate how the different since Dr. Teitel tested running time, we
packages performed in solving data took advantage of the structure of the
management problems. All vendors were databases. I would like to describe how
informed that the packages would be run PRODAS can be used for intuitive
on one computer and timed. We were also programming, which is fast and logical
told that the timings would be presented to program but runs slower.
at the symposium. Dr. Teitel's second problem was to

Why test software packages for data produce a table of driver's age versus
management capabilities at a statistical year of car for trips of at least three
conference? Most statisticians who days' duration. In addition to Dr.
process data know that an important part Teitel's problems 2 and 3 discussed
of their work is collecting accurate here, see the Appendix for the solutions
data and getting the data ready for to Dr. Teitel's problems 1 and 4. Most
analysis. The ability to quickly and of the packages solved Dr. Teitel's
easily restructure data, manipulate problem used the fact that the trip
databases and produce reports is very database and the person database were
important to a statistician. sorted by house and person. The two

How should we define quickly and databases are merged together to produce
easily? Does quickly refer to the a temporary database. The temporary
amount of time the computer takes to run database is resorted to match the sorted
a problem, or should it refer to the order of the car database. The
amount of time the user must spend to temporary database is merged with the
solve the problem. Dr. Teitel told the car database to find the year of the
vendors that he would compare the car. The driver's age and the year of
computer time for each package. the car are then tabled.
Therefore, the vendors job was to write The following is the PRODAS program
a program that had the shortest running submitted to Dr. Teitel to solve the
time. Since programming time was not second problem:
measured, we could spend hours, days, or
weeks modifying the program for the program;
minimum run time. /*

At the conference Dr. Teitel raised Merge the trips database with the
the question, "Is running time that persons database to match the car
important?" For example, to load the id and age of driver for trips ofinitial databases took PRODAS 5 minutes, 3 or more days. e

and it took SAS 15 minutes. This means */
that PRODAS runs 3 times faster than create temp;
SAS. Now, if it takes 60 minutes to merge trips persons;
write the program to read the files, by house person;
then the total time to process the file if duration >- 3 and car <> '0' then
is 65 minutes for PRODAS and 75 for SAS. output;
As strange as it may seem, the authors keep house pers_age car;
of PRODAS, which had the best running run;
times for every problem Dr. Teitel prosort;
presented, feel that the important /*
timing is the total amount of time (both Module sorts a database. The
human and computer) needed to solve the default database is the last
problem. created database.
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by house car: bread persons 1;
run; bread cars 1;

program; keep pars age car_year;
label pers age - Age of Person;

Merge the car id and driver age label car_year - Model Year of Car;
with the car database run;
to get the year of the car. descrip;

table persage caryear;
create temp; title Number of Trips;
merge temp (in-intemp) cars; run;
by house car;
if intemp then The above program is simpler, faster

output; to write, and is not dependent on any
keep persage car year; particular database ordering. It takes
label pars age - Age of Person; longer to run because random accessing
label caryear - Model Year of Car; is slower than merging two order
run; databases. But the above program took

descrip; very little time to write and is a more
table parsage car year; logical solution. Because in the future
title Number of Trips; we will want to minimize programing
run; time in preference to running time since

computers are fast and cheap, the second
solution is, in general, a better

How would we have written the program solution.
if it was important to minimize PRODAS is the only Professional Data
programming time? Analysis System with capabilities that

PRODAS has database features that are can solve Dr. Teitel's problem for
not found in any other software package either minimal computer time or minimal
with significant data analysis programmer time.
capabilities. PRODAS can randomly As a second example of how multikeyed
retrieve, edit, update and delete databases can simplify a programming
records from a database. PRODAS task, we will compare the minimum
supports an unlimited number of keys per running time and the minimum programming
database and an unlimited number of time solution for Dr. Teitel's third
variables per key. By using keyed problem.
databases, programming is greatly The third problem required generating
simplified because you do not have to a table of each child's mother's
become involved in the database education versus father's education.
structure. We submitted to Dr. Teitel two

Using keyed databases the PRODAS versions of the PRODAS solution -
program to solve Dr. Teitel's second general and specific. The general
problem is greatly simplified. The solution assumes the data is too large
intuitive solution is to read the trips to store in memory. The specific
database, if the trip is 3 days or solution loads the data into memory.
longer, get the person who drove the The following is the general
car, and get the car for that trip. We solution:
will not have to sort any databases and
it will not matter what the database program;
order is. /*

The program module has several This version of the education
commands to randomly process databases, level table generation program is
The open statement names the databases very general and can work on
that will be processed randomly. The databases of any size.
bread statement reads the database
randomly. Bread stands for B-tree read The person's education is written
(binary read). The 1 following the out as either a mother's or
database name is the key number. Since father's education for merging
PRODAS can manage any number of keys, it with descendant.
is necessary to specify the key number.

The people's database is then
The new program is: sorted in mother order to merge

with the mother database to get
program; the mother's education level.

create temp;
open persons cars; The people's database is then
set trips; sorted in father order to merge
if duration >- 3 and car <> ''; with the father database to get

/* The above if statement filters the father's education level.
records based on the expression */
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create mother (keep person edyears) set people;
(rename person-mother if mother > 0 and father > 0;

ed_years-mom ed); fatherl - father;
create father (keep person ed_years) person - mother;

(rename person-father bread people 1;
edyears-dad ed); mom ed - ed-years;

Set people; -- person - fatherl;

if sex - 'I' then /* The fatherl variable is used
output mother; because the current father

else variable has the mother's
output father; father. */

run; bread people 1;
prosort; dad ed - edyears;

in-people out-temp; label mom ed - Mother's Education;
by mother; label dad-ed - Father's Education;
run; run;

program; descrip;
create temp; format educate, mom ed dad ed;
merge temp (in-inpeop) table mom ed dad ed-/ missing;

mother (in-inmom); title Parent's Education Level;
by mother; run;
if inpeop then

output; As you can see, the multikeyed
label momed - Mother's Education; solution is much simpler to program and
run; is much more intuitive than the "sort

prosort; and merge" approach of the other
by father; solution. Since PRODAS supports both
run; sequential merging and multikeyed random

program; database accessing, you can decide if it
create temp; is important to minimize running time or
merge temp (in=inpeop) programming time.

father (in-indad);
by father; Appendix
if inpeop then

output; Solution for Dr. Teitel's second
label dad ed - Father's Education; problem.
run;

descrip; /*
format educate. mom ed dad ed; This program produces a table of
table mom ed daded/ missing; trips of at least three days'
title Parent's Education Level; duration. The row and column axes
run; are Age of driver and Year of car.

If this same program was written program;
using PRODAS's multikeyed databases, it /*
would be very simple. The intuitive Merge the trips database with the
solution to this problem is to read each persons database to match
person, find the mother's education the car id and age of driver for
level, and then find the father's trips of 3 or more days.
education level. Assuming the people */
database was keyed by the person's id, create temp;
we can look up the mother and father merge trips persons; .
randomly. by house person;

if duration >= 3 and car -> '0' thenprogram; output;
/* keep house pere age car;

This version of the education run;
level table generation program prosort;
uses the multikeyed databases. by house car;

run;
If the person's parents are program;
on the database, the program /*
randomly reads the mother's record Merge the car id and driver age
and saves the mother's education with the car database to get the
level. The program then randomly year of the car.
read the father's record and saves */
the father's education level, create temp;

./ merge temp (in-intemp) cars;
create temp (keep - mom ed daded); by house car;
open people; if intemp then

output;
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keep pers age caryear; this program assumes that the
label pori age - Age of Person; number of people is sufficiently
label carjear - Model Year of car; small so the education levels can

descrip; be stored in memory.
table pers age carjear;
title Number of Trips; conarray educate [1000);run; create tamp;

set people;

Solution to Dr. Teitel's fourth problem: educateperson) - edyears;
mom ed - educate[mother];
dad-ed - educate[father);program, label mom ad - Mother's Education;

This version of the last births label dad-ed = Father's Education;Thisverson f th lat bithsrun;

table generation program rn;
solves the general case for a descrip;
database of any size. format educate. momed dad ad;

table mom ad dad ad / missing;
For each person, a record is title Parent's Education Level;
written with the mother and run;
child's birth date. The new
database is sorted by the mother's Specific solution for problem 4:
id and child's birth year. The program;
youngest child is then the last /,
record for the mother. This version of the last birthstable generation program.

create temp (keep person c birth This program assumes that the

set people; childsexi); number of people is sufficiently
if mohe >0tsmall so the education levels can

parson - mother; be stored in memory.

c birth - birth; conarray m birth 11000];
childsex - sex; conarray m-oldest[1000];
output; conarray m sex $1 [1000];

end; create temp (keep mom age childsex);
label childsex - Sex of Last Child; set people (end=endpeop);
run; if sex - 'I' then

prosort; m birth[person] - birth;
by person c-birth; if m-oldest[mother] < birth then do;
run; m oldest[mother] - birth;

program; m sex[mother] - sex;
create temp; end;-
merge people temp (in-intemp); if endpeop then
by person; for i = 1 to 1000 do
if intemp and last.person; if mbirthti] and moldestti]
mom age - c birth - birth; then do;
label mom-age - mom-age = m-oldest[i] -

Mother's Age At Lastest Birth; m birth(i];run;
descrip; childsex = m sex(i];

format $sex. childsex; end;output;
format momaga. mom age;table mom age childsex; label mom age -Mother's Age At Lastest Birth;
title Age-of Mothers At Last Birth; label childsex - Sex of Last Child;
run; run;
Since Dr. Teitel was timing programs dfscripa

for minimum running time, we submitted format mae. mom ae:
two specific solutions for problems table mom age ;
three and four that assumed numeric "Id" table mom age childsex;
values. title Age-of Mothers At Last Birth;

Specific solution for problem 3: run;

program;

This version of the education
level table generation programassumes that each parson's mother .
and father has preceded
them in the input file. Also,
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SOLVING COMPLEX DATA MANAGEMENT PROBLEMS IN P-STAT ®

Shirrell Buhler, P-STAT, Inc.

ABSTRACT
If empty households are ignored, the

At the 13th Interface, six different first problem only requires variables
packages submitted their solutions to from the Cars file and the Persons file.
four problems designed by Robert F. Tei- One approach, if this were the only prob-
tel -- two each for two different data lem, would be: 1) aggregate the Cars file
sets. At the 18th Interface, the same creating a file of summary records for
four problems were presented, this time each household; 2) aggregate the Persons
to be run on a micro computer. Because file (selecting people over 16) creating
P-STAT is functionally identical in all a second file of summary records for each
environments, the mainframe solutions household; 3) join the two household sum-
presented at the 13th Interface could mary files; and 4) tabulate the results
have been run in P-STAT on the PC with of the join. These files are all P-STAT
only those changes required by differ- system files.
ences in the structure of the raw data However. there are two problems to
files. However. P-STAT has had many solve. A single sort can be used to
enhancements in five years and the cur- arrange the Cars, Persons, and the Trips
rent solutions are even easier to program data (needed for the second problem).
and to comprehend than the 1981 solu- into a working file appropriate for both
tions. The solutions presented here are problems. Both tabulations can then be
identical for all the machines on which done in a single step although they are
P-STAT is supported. These solutions shown here as separate steps for the sake
provide ample evidence that complex data of clarity.
managment problems can be solved on a
micro computer such as a PC. 2. BUILDING THE FIRST DATABASE

1. PROBLEMS FOR THE FIRST DATABASE The commands to create four P-STAT
system files from the four raw data files

The first two problems involve four are very similar. The command to create
files which taken together describe a the Cars file is:
system with a hierarchical structure.

BUILD Cars, FIXED. FILE Cars.Dat,
H A household record with LENGTH 120;
C 0 to 9 car records, and VARS
P 0 or more person records: Household.Id 1-4 Record.Type 5

a person record may own many Car.Number 6-7 C1 TO C51 10-60
T trip records. CC1 TO CC20 61-100 C41 TO C44 101-116

Model.Year 117-120 (ALLOW 1900 TO 1986)$
The household Id number is contained

in all records. A car number provides a The next step combines the records
link between a car record and a trip from the Cars, Persons and Trips files
record. A person number provides a link into a single file in the desired order.
between a person record and a trip The Household file was omitted from this
record. For the purposes of this exer- step so that houses with neither cars nor
cise the only variables of interest aside people would not be included in the com-
from the linking variables and the record putations.
type are: P-STAT permits multiple files to be

dynamically concatenated as they are A
Cars file model year of the car input to any command. New variables can
Persons file age of person be created, existing variables can be
Trips file duration of the trip recoded, and adjacent cases can be com-

bined as the records from each file are
The record types are: 2=cars, processed. Here, the SORT command is

3:persons and 4:trips. The household used with three input files.
file is needed only if a count of the When files are dynamically concat-
empty households (no people or cars) is enated using the plus (+) operator, all
desired. cases must ultimately have the same vari-

The first problem is to produce a ables in the same order. As each case is
table with counts of the number of people processed, variables that are not found
over the age of 16 by the number of cars in the current file are created and set
in a household. The second problem is to to missing. Finally a variable rear-
produce a table of age of person by model rangement (KEEP) is done so that all the
year of car for trips of at least three cases in all the files have the same
days duration. variables in the same order.

The resulting output file has all the
records for a household together. The
car records are first because Person.Id
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was set to 0 in the SORT step. Each Per- on-the-fly aggregation in P-STAT's pro-
son record is followed by zero or more gramming language.
trip records. This file can now be used
for either of the crosatabulations. TABLES Trips2

SORT Cars ( IF FIRST ( Household.Id ),
( GENERATE Duration = .M1., GENERATE #Cars = 0,
GENERATE Person.Id = 0, GENERATE #Persons.Over.16 = 0
GENERATE Age = .M1. )

( KEEP Household.Id Record.Type ( IF Record.Type = 2, INCREASE #Cars
Car.Number Model.Year ( IF Record.Type = 3 AND Age > 16,
Duration Person.Id Age ) INCREASE #Persons.Over.16

+ Persons
GENERATE Car.Number = .Ml., ( IF LAST ( Household.Id ) CONTINUE )
GENERATE Model.Year = .Ml., ( KEEP #Cars #Persons.Over.16
GENERATE Duration = .M.
KEEP Household.Id Record.Type TABLE 'Household Count'

Car.Number Model.Year
Duration Person.Id Age ) Cars BY Persons.Over.16 $

+ Trips
GENERATE Age = .M., In this example, the number of cars
GENERATE Model.Year = .M1. ) and number of persons over 16 are com-

( KEEP Household.Id Record.Type puted as the file is given to the TABLES
Car.Number Model.Year command. FIRST and LAST permit a test
Duration Person.Id Age), for the start and end of a given house-

hold. Scratch variables (#Cars and
BY Household.Id Person.Id Record.Type, #Persons.Over.16) are set to zero as the
OUT Trips2 $ first record for each household is pro-

cessed. #Cars is increased each time a
Because comparative timings were to be car record, Record.Type = 2, is read.

done, the single SORT using dynamic con- #Persons.Over 16 is increased when
catenation was used rather than the fol- Record.Type equals 3 and Age is greater
lowing two step procedure. than 16.

Only a single record for each house-
CONCAT Cars hold is actually sent to the TABLES com-

KEEP Household.Id Record.Type mand. That record contains just the two
Car.Number Model.Year ) variables, Cars and Persons.Over.16, that

GENERATE Person.Id 0 ) are needed for the tabulation.

Persons Household Count
CKEEP Household.Id Record.Type

Person.Id Age ) Persons.Over.16
Trips
( KEEP Household.Id Record.Type Row

Person.Id Duration ), Cars 0 1-2 3+ Totals

OUT Trips2 $ 0 2 5 111 37

SORT Trips2,
BY Household.Id Person.Id 1-2 1 10 15 17 1 2

Record.Type,
OUT Trips2, REPLACE $

3+ 1 9 1 15 1 18 1 42
The use of CONCAT followed by SORT I I

requires two passes through the data .-
file. The two step procedure is easier
to program and the possibilty of an Total N 21 35 46 102
alignment error in the common variables
is eliminated because CONCAT does the NOTE: There were two households with
alignment automatically. When timings person records that had neither cars nor
and disk space considerations are not adults. This table was interactively
important, the two step procedure is post-processed and relabelled within the
clearly preferable. TABLES command so that it would fit

within the constraints of this two column
2.1 Problem 1 layout.

Obtaining the frequencies for the num-
ber of cars in a household by the number
of persons over 16 is done in a single
step using the TABLES command and
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2.2 Problem 2 that is given to TABLES contains two
variables, Persons.Age, derived from the

This second problem requires more from scratch variable #Persons.Age, and
a package than simple aggregation. Both Year.of.Car.
Cars and Persons are at the same level of
the hierarchy. Trips are associated with Trips in Household Cars
Persons and only indirectly with Cars. By Family Members Over 16

After the SORT, all the car records Lasting 3 or More Days
for a household precede any person
records and a person record precedes each Year.of.Car
set of trip records. It is necessary to
store both the model years for up to nine Persons 1971- 1975- 1979- Row
household cars and the age from the per- Age 1974 1978 1982 Totals
son record until a trip record for that
person is read. Again, this can be done 17-23 1 39 46 47 132
in the P-STAT programming language as the
file is given to the TABLES command. 24-30 1 68 46 42 156

As each car record is read the model
year is stored in the permanent (P) vec- 31 + 23 28 40 91
tor. The model year for car number 1 is
stored in P(1), the model year for car
number 2 is stored in P(2), etc. Total N 130 120 129 382

As each person record is read, varia-
ble Age is stored in the scratch variable NOTE:? this table was also interac-
#Persons.Age. The P vector and scratch tively post-processed and relabelled
variables are used for aggregation and within the P-STAT TABLES command to for-
for moving values from one record to a mat the table so that it would fit within
subsequent record. the 2-column layout.

TABLES Trips2 3. PROBLEMS FOR THE SECOND DATABASE

IF Record.Type = 2, The second data set contains records
SET P(Car.Number) = Model.Year ) of a geneological nature. Variables in a

person's record provide Id numbers for
IF Record.Type = 3, that person's father and mother. Other

GENERATE #Persons.Age = Age ) variables contain information such as
sex. education and year of birth. Both

( IF Record.Type = 4 AND of the problems for this data set require
Duration >= 3 AND information from a given person record to
#Persons.Age AMONG ( 17 to 99 ) AND be linked with information from the
Car.Number > 0, CONTINUE ) records of his parents. A zero in the

Mother. Id or Father. Id fields indicates a

( GENERATE Year.of.Car = P(Car.Number)) mother or father record that is not pre-
KEEP #Persons.Age, Year.of.Car ); sent in the file.

TABLE ' Trips in Household Cars ' ID SEX EDUCA YEAR OF MOTHERS FATHERS
By Family Members Over 16 ' TION BIRTH ID ID
Lasting 3 or More Days '

*1 1 16 1929 6 7

Persons.Age BY Year.of.Car, 2 2 12 1935 6 7
EDGES TL $ 3 1 12 1932 8 0

4 2 8 1905 15 17
Each trip record is examined to see 5 2 10 1910 15 17

if: 1) duration is at least three days, 6 2 12 1900 33 44
and; 2) the current person age is over 7 1 12 1898 0 0
16, and; 3) the trip was in fact made by 8 2 8 1910 0 56
car. This is done in the programming etc.
language by using an IF with a series of
AND's. The records for which this IF Here 6 is the mother of both 1 and 2 and
test is true are the only records that 7 is their father, 8 is the mother of 3 b
the TABLES command receives. Any records who has no father record in the file.
that have missing values on any of the The third problem is to produce a r
variables tested in the IF statement are table of mother's education by father's
automatically excluded, education. This requires that informa-

Model year is moved into the selected tion from three records in the file be
trip record from the P vector. If the simultaneously available. The fourth
trip is in car number 3, P(Car.Number) problem, which is to produce a table of
references P(3) which is the location mother's age by sex of child at last
where the model year for the third car in birth, requires that the mother informa-
the household is stored. The trip record tion be combined with information from
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each of her children's records and that 4.1 Problem 3
information for all of her children be
scanned to locate the youngest child. With the parent information available

on all the records, it is only necessary
4. BUILDING THE SECOND DATABASE to recode education into education groups

and tabulate those groups. The recode is
Even though the second data set is a done in the P-STAT programming language

single file, it is tricky because infor- as the file is passed to the TABLES com-
mation from several non-adjacent records mand.
needs to be simultaneously available.
Three steps are required before the tabu- TABLES People.Parents
lations can be done.

SET M.Education = RECODE
BUILD People, FILE People.dat, ( M.Education. 0 TO 12=1, 13 TO 16=2,

FIXED, LENGTH 120 ; 17 TO 24=3, X=4 ),
VARS
Person.Id 1-5 Sex 6 SET F.Education = RECODE
Education 57-58 Birth.Year 87-90 ( F.Education, 0 TO 12=1, 13 TO 16=2,
Mother.Id 111-115 Father.Id 116-120 $ 17 TO 24=3, X=4 ));
$

LABELS M.Education (1) No College
SEPARATE People ( KEEP Person.Id (2) College (4) Graduate Work /

Birth.Year Education Sex ), F.Education /,
OUTI Mothers, OUT2 Fathers, EXTRA $

TABLE
LOOKUP People 'Mothers Education by Fathers Education'

KEEP Person.Id Mother.Id 'Offspring Count'
Father.Id Birth.Year Sex )
( IF Mother.Id < 1 AND M.Education BY F.Education $

Father.Id < 1, EXCLUDE )
TABLE Mothers Because both variables require the

same modification, a FOR loop can be used
RENAME Person.Id TO Mother.Id, instead of two separate modifications.
RENAME Birth.Year TO M.Birth.Year, Since the modification is sequential, the
RENAME Education TO M.Education ) NCOT function which supplies cutting

points, can replace the RECODE.Fathers ( DROP Birth. Year ) |

RENAME Person.Id TO Father.Id, ( FOR ( J: M.Education F.Education),
RENAME Education TO F.Education ), SET V(J) = NCOT (V(J), 12, 16 ));

OUT People.Parents $ This is very easy to program but is not
as self-explanatory as the individual

The first step creates a P-STAT system RECODEs.
file from the raw data. The second step
creates a file of possible mother records Mothers Education by Fathers Education
and a file of possible father records. Offspring Count
This is done in the SEPARATE command
which, when provided with the EXTRA iden- F.Education
tifier, uses the rightmost variable (Sex)
to determine the correct output file for No Grad
each case. That extra variable is not M. Coll Coll uate Row
included in the output file. The third Education ege ege Work Totals
step, uses the LOOKUP command to join
mother and father information to each No College 1 351 1 111 1 1 462
record in the People file.

In 1981 the LOOKUP command did not -
exist and the solution to these problems College 42 1 117 159
required several steps. Parent files I I
were created; the child file was sorted I
by Father.Id and joined to the file of Graduate 123 1 i 1 123
father data; that file was then sorted by Work I I
Mother.Id and joined to the file of
mother data. In 1986, four steps have
been replaced by one. The result is Total N 474 153 117 744
fewer passes through the data file, and
the solution is far easier to program and
to program correctly the first time.
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4.2 Problem 4 Mother's Age at Last Childbirth
By Sex of Child

For the final problem it is necessary
to look at all the children for a given Sex.Last.Born
mother and find the case with the most
recent birth date. Age Last Row

Birth male female Totals
TABLES People.Parents---------

18 and underl 4 1 2 6
( COLLECT 20, BY Mother.Id, I

SORT Birth.Year (D), -
CARRY M.Birth.Year ) 19-25 14 19 33

( GENERATE Age.Last.Birth = NCOT --
( Birth.Year.1 - M.Birth.Year, 26-30 25 17 42

18, 25, 30, 35 )) i
( GENERATE Sex.Last.Born = Sex.1 );

31-35 47 1 85 1 132

LABELS
Sex.Last.Born (1) male (2) female /
Age.Last.Birth(1) 18 and under (2) 19-25

(3) 26-30 (4) 31-35 Total N 90 123 213
(5) 40 and over /,

5. SIZE ISSUES
T" Mother's Age at Last Childbirth "

" By Sex of Child " The raw data files for both data sets
contain many extra data values. They

Age.Last.Birth BY Sex.Last.Born $ were included to see if the packages
could handle large numbers of variables

The ability to COLLECT a number of and to ascertain how much disk space the
adjacent cases and combine them into a resulting files would need. P-STAT, like
single case provides the easiest solution the other packages in the test, had no
to this problem. There may be up to 20 trouble handling the complete data set.
children per mother. The BY and CARRY However, because P-STAT uses a very
variables are stored only once in the aggressive algorithm for packing data
collected case because they are the same values, the resulting P-STAT system files
for all children of a given mother. required less disk storage than the files
Other variables are stored 20 times, once produced by the other packages.
for each possible child, with a suffix
added to the variable name so that each 6. CONCLUSIONS
will be uniquely addressable. Thus Sex.1
contains the sex of the first child in The session was titled "Benchmarking
the collected case. Vendor Packages". Given that all the

SORT requests that a case be stored vendor packages could solve the problems,
within the collected case in its sort there is some question about what was
order on one or more variables. By spe- actually benchmarked and what the bench-
cifying a sort on Birth.Date and using marks mean. Three areas that can be com-
(D) to indicate a downwards sort, the pared are: 1) ease of use; 2) speed; and
variables for the youngest child are 3) use of resources.
placed first in the collected case. Ease of use is difficult to evaluate.
Sex.1 is, therefore, the sex of the last The best measure, short of a carefully
born. Mother's age is the difference designed experiment with novice users, is
between Birth.Date.1, the birth date of subjective: how easy is it to follow the
the last born, and the mother's birth command stream without reading the
date. explanatory material. This will, to a

The COLLECT function did not exist in large extent, depend on the reader's
P-STAT in 1981. However, this problem background and familiarity with packages.
can also be solved by using FIRST, LAST, P-STAT in 1986 has a language that is
and comparing the birth date of each easier to use than P-STAT in 1981. This
child in turn to the value of a scratch is particularly evident in the COLLECT
variable which is reset each time a new function and the LOOKUP command. This is
youngest child is found, a trend that will certainly continue.

With COLLECT the entire procedure In some of the problems illustrated
takes three simple programming language here, the most readable sequence of com-
statements. COLLECT and SPLIT makes it mands is not the fastest. Ease of use
possible to solve problems which are oth- and speed are two areas which should
erwlse very difficult, even with FIRST, probably not be benchmarked simultane-
LAST, and scratch variables. ously. P-STAT's timings were acceptable,

as were those of most of the other pack-
ages.
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The resources needed to run a program files require less disk storage than
can be measured. P-STAT on a PC requires other packages because of the aggressive
640K. a math co-processor, and a hard packing algorithms that are used.
disk. This puts P-STAT near the high end The PC is a viable tool for complex
in terms of PC requirements. However, data management problems. Data sets both
P-STAT is modularized so that not all of larger and more complex than these prob-
the program needs to be installed on the lem data sets can be handled easily by
hard disk. In addition, P-STAT's system packages such as P-STAT.
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VOLUME TESTING WITH THE PC/SAS@ SYSTEM

by Katherine Ng, SAS Institute Inc.

Abstract

This paper discusses the use of the PC/SAS system to solve the 4 /* --------------------------------------
problems posed by Dr. Robert Teitel. The problems sre designed - - -------- Create SAS data sets ---------
to test the complez data manipulation capabilities of the statisi. /* .-- HOUSES. CAS PERSONS. TRIPS --- /

cal/database systems currently available to the PC users. WitA the /* -.. . ..---------------------------------
PC/SAS system, the tables requested in the 4 problems can eas- DATA a.houses;
ily be generated by a SAS tabulation procedure such as FREQ or infilo 'houses.dat' lrecl=120;
TABULATE , after the appropriate data bases have been created. input house $1-4 type $5

610 (onoi-onefil) ($charl.)
(tvot-tvo20) (0char2.)

(fourl-four5) ($char4.);
run;

DATA s cars;
Problem Descriptions infils 'cars.dat' lrecl=120;

The first 2 problems use the TRIPS data collection. It has 4 com- input house $1-4 type $6 car 6-7
polents, which are henceforth referred to as the household, car, 610 (onei-onoSl)(Ocharl.)
person, and trip records. Each household has a variable number of (twol-two2O) ($chr2.)
cars and a variable number of persons. Each person of a household (fourl-four4) ($char4.)
took a variable number (0 to 9) of trips. Neither the number of year 117-120;

persons nor the number of cars in a household, nor the number of run;
trips taken by a person is explicitly coded. The person record con-
tains the age of the person and his household identification. The DATA a.persons;
car record has the model year of the car and identifies the house- tnfile 'person..datu lrecl-120;
hold to which it belongs. The trip record identifies the person of input house 61-4 type $5 person 06-7
a household who took the trip, the duration of the trip, and the 610 (onel-onelit)($charl.)

car identification code if a family car was used. All records are in age 61-62

household identification order. (two2-tyo2O) (Schar2.)

Two tabulations are requested. The first is a frequency distribu- run; (fouri-fmurS)(Ichar4.);

tion of households for the number of cars owned by the number
of persons over the age of 16 in the household. The second is a DATA atrips;
frequency distribution of trips of at least 3 days' duration taken in infile Otrips.dat' lrucll120;
a car owned by the household by the age of the person taking the input house $1-4 type #5
trip and by the model year of the car. person 06-7 trip $8-9 car 10

The last 2 problems use the PEOPLE data. Each record in the (onse2-onel) ($chart.)
PEOPLE data collection contains a person's identification code, (tvol-twolg)($char2.)
sex, birth year, level of education, and the parents' identification days 99-100
codes if known. Records are in identification order. (forl-for5)($char4.);

Again, 2 tabulations are requested. The first is a frequency distri- run;

bution of offspring by the education level of each parent, and the / ---------------------------------------.
second, a frequency distribution of the "last births" by the age of /* Create temporary data sets */
the mother at the birth of her last offspring and by the sex of that /* CAllS, PERSONS, and TRIPS -I
last offspring. /* Extract relevant variables and cases ,/

The TRIPS Data I* ---------------------------------------- 0/ %
DATA cars;

With the variability of the number of persons in a household, the set A .carskeep'houss car year);
number of cars belonging to a household, and the number of trips run;

taken by a person of a household, it is best to keep the data in sepa-
rate components. SAS system files for the different components are DATA persons;
creat"(d for efficient retrieval in later analysis. To assess PC/SAS met a.persoas(keep-hose person age);
ability to handle data for a large number of variables, all given data run;
are retained in the system files. Working SAS data sets with onlyrun;,%
the relevant variables and cases are created to gather information DATA trips(dropmdays);
from the component files. These working data sets are then passed set a.trips(kephouse person car days);
to a tabulation procedure to generate the desired tables. if car and days 3' S then output;

Figure 1 has the SAS statements that build the 4 component files run;
for the TRIPS data base and extract subsets of data into working 1
data sets.
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A Solution To Problem 1 VOLUME TESTING - TlIPS DATA

Figure 2 shows how the different components of the TRIPS data Frequency Distribution of Housebolds

base are merged to create a temporary SAS data file that contains TABLE OF XCAmS BY OVER16
only the information needed for table 1. The frequency distribution
of the number of households by the number of cars owned and by iCuRS OVRe
the number of persons over the age of 16 in the household is easily
generated by PROC FREQ. Figure 3 has the codes that generated FrequencyI 01 1 - 21 3,1 Total

the table shown in figure 4. Note that the data have been classified --------- -. - + --------.#
into a few groups to produce a more pleasing and compact table. 0 6 6 1 it I 21
In the SAS system, the grouping of data is easily done by defining --------- - -------- -.
a format variable with PROC FORIMAT and using this format in 1 - 2 I 10 I ii I 17 I 42
the appropriate procedure for the appropriate variables. - -------- - --------

3, I 9 I 15 I 18 I 42

-* . . . . . . ..----------------------------------------- - - -------- ----- - - - --

/* Create temporary data met EIOLDS of */ Total 24 35 40 105

/* household records, with variables */

/I nears (8 of care in the household) */
/* overlG( of persons over age 10) f.
/ .-------------------------------------- fig.4.

DATA HHOLDS(keep - nears ovenrl);

merge a.houses(in=h keep-house)
persons A Solution To Problem 2
cars;
by house; Problem 2 also requires that information be gathered from across

length 1person 12; the different components of the data base. For each trip, we need
retain Icar iperson; the model year of the car used in the trip from the CARS file, and
nears *(lcar -- ear); the age of the driver from the PERSONS file. With a series of
oveei((lperson "= person)*(agele )); sorting and merging steps, we can collate all that information into
lcar=car; iperson = person; one data file, which we pass on to PROC FREQ to generate the
if last.house; desired table.
if h then output; The PEOPLE Data Base
nears 0 0; overn1S 0;
lear l .; 1person = The last 2 problems need a data manipulation scheme quite differ-
run; ent from the first 2 problems. The solutions to problems 1 and 2

require accessing information across the components of each record
of the data base, whereas solutions to problems 3 and 4 require col-

fig. 2. lating information from the different records of the same data file.

Again, a SAS system file is created for the PEOPLE data with all
the variables kept. Retaining the data for all the 75 variables is not

necessary for problems 3 and 4, but it has been done for complete-
ness. A working SAS data set with only the relevant variables and
cases is created to facilitate multipassing of the data. See figure 5.

/ .. . . . . . ..------------------------------/
*I Set up format for the count variables *I

I.----------------------------------4 /,------------------------------------C
PROC FORMAT; /* Create a permanent SAS data set PEOPLE. *I

value countfmt 0 = 0.

1-2 =i J- 2m DATA a.people; infile *people.dat" lreclit20;
3-high = 03*0; input id $1-6 sex 06

run; (onel-one60)(0chari.) oduc 67-68

(twot-twot4)(Schar2.) birthyr 87-90 5

(fouri-f ourS) (0char4.)

/* Generate the table for problem * on $111-116 dad $110-120;

i,-----------------------------------------,i 
run;

I TL. /, -----.----------------------------------
"Frequency Distribution of Households"; /* Extract subset of relevant variables '/

PROC FIEQ; /, --------------------------------------

tables ncars*overlG/ DATA people
nocol norow nopercent; set a.people

format nears over:1 countfmt.; (keep=id sex educ birthyr mno dad);

run; run;

fig. 3.

fig. 5.
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A Solution to Problem 3 of that last offspring. The data set FAMILY created in the previous

Problem 3 asks for a frequency distribution of the number of off- steps have most of the information needed for problem 4. It remains
spring by the education level of the parents. We note from the data to find the record of the youngest child of each mother, and use
description, the only information about the parents contained in the child's birth year and the mother's birth year to compute the

each offspring's record is the parents' identification codes. Thus, mother's age (figure 7). PROC FREQ can be used to generate the

the solution necessitates locating the parents records (if available) desired table.

for each offspring, and collating their education information onto
the offspring's record. Figure 6 shows the steps involved. With the " .----------------------------------------- */
information about the parents' education collated on the offspring's /, Create data set which coatainse records ./
record, the table for problem 3 is easily produced by PROC FREQ. /* the records for the youngest children. ./

/* Compute me's age. /
/s-------------------------------------------- a

DATA youngest(keep-sex onage);
set family; by nos;

,- ......------------------------------------- , if last m the

Is Extract subsets consisting of male */ If nom a 00 then do; 0

/* records for the FATHER's file and */ moage = birthyr - sombrn;
/0 female records for MOTHER'@ file s/ output;
- -...------------------------------------- / *ad;

DATA father(renarne(id dad educ-dad-ed) run;
keepaid educ)

nother(rnae= (id=on educ-mom-ed
birthyromomborm) fig. 7.

keep-id educ birthyr);
set people;
if sex - 010 then output mother;
if sex - 021 then output father;

/, .....-------------------------------------- Timing Estimates
/. Create the file FAMILY by collating the *1 For purposes of comparison and performance evaluation, some tim-
/* father's record and the mother's record */ ing estimates for the execution of the different SAS program steps
/* into the offspring's record */ have been included (figures 8 and 0). All the steps have been done
I ------------------------------------ I on an IBM PC/AT model 99 with 640k bytes of memory. The

machine used has a numeric coprocessor. Note that there are a
I* sort PEOPLE by dad's Id to match up * lot of variables retained in each data set, hence the DATA step
I* dad's id with his own record from the *1 took a proportionately large amount of time. However, after the
I FATHER's file dI SAS system files have been created, data retrieval is fairly fast. In
PROC SORT data-people; by dad; run; fact, the step which gathered all the necessary information for the

first tabulation took only 27 seconds, the actual tabulation took 15
/* father's record merged with child's 1 seconds. We also note that sortir~g is very fast.
DATA family(dropfdad);

merge people(in=child
keep=sex dad morn birthyr) TRIPS Data Dase

father; by dad; Crea .te _

if child then output; AROUSES 758var..lOt-o.s 47 ee.
ru; ACARS It var.. 210 obe 77 tes

/U Sort FAMILY by mom's id to match up */ A.PERSONS 75 var., 31a s - 107 sees

/* mom's id with her own record from the .. ATRIPS .. vars.,60 ohs 2 ? set*

I* MOTHER's file. Us* child's birthyr asa / Extract ....

/* second sort variable s/ CARS 3 vars. 210 obs Is sees

PROC SORT data-family; by mom birthyr; rue; PERSONS 3 vas. 150 ohs 20 sees

TRIPS 3 war.. 43 ohs 25 sees

I. mother's record merged with child's CIsoltiis to Problem I

DATA family; Coll& te Data .

merge family(ichild) mother; by mo&; HOUSES+PERSONS+CARS 2 vats, 105 se .. e.es

If child then output; Tabolatt -data- 3- 3 table - Is setw.
rim;-h, d hnututo Problem 2rnu [Collate Data I -

SortPERSONS - eys,.. 315 ohs 1s sees

fig. 6. | Sort TRIPS 2 keys, 403 ohs 14 sees

TRIrs+PERSONS - 2 vs,. 493 oh. 2e,,,

Sort TRIPAGE 2 keys. 453 obs IS tee
Sort CARS 2 keys. 210 ohs 12 sees

A Solution to Problem 4 F' TRIPAG +CARS 2 var.. 493 obe 27 set

L Tabutlate data 3 a 3 table 22 sets

The last table is the frequency distribution of the "last births" by
the age of the mother at the birth of her last offspring and by the sex fig. 8.
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PEOPLE DataBase -- -Conclusion

Creae _________ _______The PC/SAS system is intended to be a complete implementation
APEOLE __ T~ars,784 abs 216 sesof the SAS system as available to the mainframe and mini computer

Extrc users. It has the same set of data management tools, ad can
PEOPLE 6 vats, 784_obs 28 sees perform complex data analysis with as much ease. Inspite of theL FATHER - ~- 2 vars, -392 obs 33 secs limitations of the personal computers ad the complexity of the
MOTHER _ ___ 2 vats, 392 -obs ____ language, execution is reasonably fast. Por sinsll and medium size

Solution__ toPobe problems, we see it as an alternative to the mainframe and mini

-Colimit e -Data systems.
---- Sort PEOPLE 1_ky,78 obs 17 sees Reference

SEort FALY _ 2_keys, 784 obs - 2 sees_ SAS Language Guide for Personal Computers, Version 6 Editioa,
Sot FAMILYMTE 6 var_ _2 es, 784 ob- 24ses SAS Institute, Cary, North Carolina.

- Tabulate d ata -__--_ 5-X 5 -table- 25 sees __________________________
Solution to Problem 4- i __L Extract Data -SAS is a registered trademark of SAS Institute Ine, Cary, N.C.

- - YONGEST2 Vars 213 obs - 24 sees

V al" ate Data 4 x-2 table- -___ 20 sees-

fi. 9.
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SPSS/PC AND SOLUTIONS FOR THE TEITEL COMPLEX FILE PROBLEMS

Jon K. Peck, SPSS Inc.

1: Introduction

This paper shows the results for the Complex system files containing all of the variables in

File Problems I and 2 that were posed to various the original data using DATA LIST and SAVE.

microcomputer statistical packages. The approach Since these system files contain many more var-

shown here for SPSS/PC+ is the same as it would ables than are required to compute the required

be for the mainframe SPSS-X package. An SPSS-X tables, superfluous variables are dropped during

solution for the same problem was presented in an subsequent joins and aggregations. Second,

earlier paper from the benchmark session at an HOUSES, PERSONS, and CARS are joined on the

earlier Interface. A discussion of the solutions household id, HOUSE. An outer join where one file

for the two problems is followed by a listing of has no matching records produces missing values

the scripts used.' The output is not shown in for all variables taken from that file. Therefore,
order to conserve space. The scripts were run as the car id variable, CAR, is recoded to zero if

batch jobs, but users could also run these missing and one otherwise. Thus when the joined
solutions interactively, file is aggregated by household, the sum of the

recoded car variable will give the number of cars

2: Parameters of the Solution owned by the household. An indicator variable is
The required tables are computed in SPSS/PC+ defined for persons with age over 16. This con-

The equred abls ar copute inSPSSPC+dition was interpreted as "age > 16" which means

using multiple system fileR. A system file is a here age of 17 or more.

binary file that contains jth the data and the e he o e fl is ar t b O

variable and value definitions and label informa- producing a file in which the unit of analysis is

tion. By default, these files embody a com- the household and which has variables giving the

pression algorithm that often substantially number of cars, NUMCARS, (zero or more) and the

reduces the file size over the uncompressed number of persons over 16 (DRIVERS) using the SUM

version at the cost of slightly longer processing function of AGGREGATE. This function treats

time. It is common for the compressed file to be missing values as zero unless instructed other-

one-third the size of the uncompressed file. The wise, but when there are no records in the group

user can, however, instruct the system to use with a nonmissing value, the resulting SUM has

uncompressed files instead. The user can also the value missing. RECOE is used to designate

direct these files to a RAM disk in order to these missing cases as zero. Finally, the cross-

speed execution. SPSS/PC+ will allocate the tabulation of NUMCARS by DRIVERS produces the 

maxinstructed possiblewOrkspacebut thareamount of memorynless first required table. In these data there are

avinstruced h oeset onthe amontoem or discuhouseholds having drivers but no cars and cars
available has no effect on the problems discussed but no drivers. The nwmber of households with,,

here as long as the system minimum requirements each possible number of cars is the same.

are met. Finally, the presence of the optional For the second table, the age of each person

math coprocessor can significantly reduce the run taking a trip is added to the trip record by

time for problems in SPSS/PC+. The output can be joining the TRIPS system file with the PERSONS

formatted for various page widths and character j t system file id t eatNg
sets according to the printing device to be used. system file on household and person ids treatingV'

PERSONS as a lookup table. After selecting

according to the required conditions of trips of
3: The Primary Commnands Used in the Solution at least three days duration and in the house-

The original ASCII data are read with the DATA hold's own car, the joined file is sorted into

LIST command. The other main commands that are house and car order. Next, the model year,

used here are GET, SORT, JOIN (MATCH), AGGREGATE, variable CARYEAR from CARS, is added to the file
and CROSSTABS. GET selects a system file as the as a table lookup based on household id and car

active dataset and dictionary; SORT sorts cases number. From this, the table of AGE by CARYEAR

on up to ten variables; JOIN (with aliases MATCH is produced by CROSSTABS.

and ADD) performs an (outer) join on up to five
files including a table-lookup facility or adds 5: Complex File Problem 2: People

new cases to the file; AGGREGATE combines groups For this problem two tables are to be produced:

of cases with a choice of aggregation functions first, the number of offspring classified by
and missing value treatments, and CROSSTABS pro- father's and mother's education, and second, the
duces n-way tables. All of these facilities are number of mothers classified by mother's age at

part of the SPSS/PC+ base system. Lines start- birth of last offspring and sex of that offspring.

ing with * are comments, and lines starting with This problem has only a single input file, which

DOS are DOS operating system commands. The DOS contains data on a set of people including both
commands used here simply delete superfluous offspring and parents. This is the structure of
files at the end of the run, but SPSS/PC+ permits the classic employee-manager database.

any reasonable DOS command or program to be First, the dataset is defined and converted to
executed during a run. the PEOPLE system file using DATA LIST and SAVE,

Problem 1: Cars although constructing the required tables does not

4: Complex File Pactually require this system file. Second, the

First, the four data sets, Households, Cars, father's education and the mother's education and

Persons, and Trips, are defined and made into birth year and the parents' id numbers are added
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to the active file. This is accomplished by two very modest decrease in execution speed. The XT
table-lookup joins of the dataset against itself to AT speed comparison is likely to be quite
via SORT and MATCH. The Join table is a system different for machines without a math coprocessor.
file named PERTAB that contains only the vari-
ables actually needed. Third, the table of off- 7: Command Script: Problem 1
spring by parents' education is produced by
CROSSTAB. The table is constructed with a separ- SET more off echo on compress on width wide
ate row and column tallying the cases where the length 60 listing 'cars.lis'.
parent data are missing.

For the second table, the procedure is as TITLE 'Household File'.
follows. The cases in the active file from the DATA LIST file='persons.dat'/house 1-4 hal to
previous table exercise are sorted by mother id ha5l 10-60 hbl to hb2O 61-100 hdl
and BIRTHYR. Next, for those cases where the to hd5 101-120.
mother is known (MOTHER > 0). the file is aggre-
gated over MOTHER retaining the last occurrence SAVE out='houses.sys'.
of birth year. sex, and mother's birth year
(MABIRYR). From this aggregated file, the moth- TITLE 'Persons File'
er's age at birth of last child, BIRTHAGE, is DATA LIST file='persons.dat'/house 1-4 person
simply BIRTHYR - MABIRYR. Finally, CROSSTABS 6-7 pal to pa51 10-60 age pb2 to pb20
computes the required table. 61-100 pcl to pc5 101-120.

The results of the second exercise reveal a
remarkably effective way to determine the sex of SAVE out-'persons.sys'.
ones final offspring.

TITLE 'Cars File'
6: Timing and File Size Data DATA LIST filef'cars.dat'/house 1-4 car 6-7

The time required to complete each task and cal to ca51 10-60 cbl to cb20 61-100
the various file sizes depend on the computer cdl to cd4 caryear 101-120.
configuration and the SPSS/PC+ options selected. SAVE out='cars.sys'.
The system file sizes in K-bytes were as follows.

Cars TITLE 'Trips File'.
Compressed Uncompressed

HOUSES 16 69 DATA LIST file='trips.dat'/house 1-4 person
PERSONS 43 202 6-7 trip 8-9 owncar ta2 to ta51
CARS 30 136 10-60 tbl to tbl9 days 61-100
TRIPS 126 609 tdl to td5 101-120.

People SAVE outf'trips.sys'.
Compressed Uncompressed

PEOPLE 119 487 TITLE 'Crosstabulate number of cars by number of
PERTAB 28 44 persons over 16'.

Running times are reported for an IBM PC/AT SUBTITLE 'Unit of analysis is households'.
with an 80287 math coprocessor and for an * count households by the number of cars owned
IBM PC/XT with an 8087 math coprocessor. For the and number of persons over 16.
AT, times are reported with the files other than
the initial ASCII files stored on a RAM disk and MATCH file='houses.sys'/keep house/
stored on a hard disk. On the XT times are filef'persons.sys'/keep house age/
reported for compressed and uncompressed files file='cars.sys'/keep house car/by house.
stored on a hard disk. Times are reported in
minutes. An * means that that case was not run. RECODE car (sysmis-0) (else-i).

Machine PC/AT PC/XT COMPUTE agel6=age > 16.

Data *AGE16 equals I if person over 16.
Location RAM Disk Hard Disk Hard Disk

ComprssionAGGREGATE outfile=*/break-house/Compression

Option On On On Off numcars 'Number of Cars Owned' =
sum(car)

Cars 9.25 10.5 21.5 20.1 drivers 'Number of Persons over

People 5.5 * 15.9 13.1 16 years old' = sum(agel6).

It should be emphasized that these times depend FORMATS numcars drivers (F2.0).
on many particulars of the machine and program RECODE numcars drivers (sysmis-0).
settings, which will vary. They do suggest,
however, that an AT runs these problems about SET EJECT ON.
twice as fast as an XT and that using a RAM disk
on an AT for file storage has only a modest CROSSTABS numcars by drivers.
effect. For files such as these, compression SET EJECT OFF.
dramatically reduces the system file sizes at a
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TITLE 'Crosstabulate long trips by age of person TITLE "Count persons by father's and mother's

and car'. education".

SUBTITLE ' Unit of analysis is Trips'. SORT CASES by father.

MATCH file-'trips.sys'/rename (owncar-car) keep MATCH table-'d:pertab.sys'/rename (person-father)
car house person days/ (educ-paeduc)/ keep-father paeduc/
table-'persons.sys'/keep age house person/ filei*/keep person father mother educ
by house person. birthyr sex/ by father.

*LOOKUP PERSON'S AGE SORT CASES by mother

SELECT IF (days ge 3 and car ne 0). MATCHtable='d:pertab.sys'/rename (person-mother)
*SELECT TRIPS OF 3 DAYS PLUS. (educ-maeduc) (birthyr-mabiryr)/

SORT CASES by house car. keep mother maeduc mabiryr/

MATCH file*/keep-age house car/ file*/by mother.

table-'cars.sys'/keep-caryear house car/ RECODE paeduc maeduc (sysmis-99).
by house car. MISSING VALUES paeduc maeduc (99).

SET EJECT ON. SET eject cq
CROSSTABS age by caryear. CROSSTAB paeduc by maeduc/options 1.
SET EJECT OFF SET eject off.
DOS erase house.sys.
DOS erase person.sys. TITLE 'Mothers, children, and all that'.
DOS erase cars.sys. SORT CASES mother birthyr.
DOS erase trips.sys.
FINISH. PROCESS IF (mother > 0).
8: Command Script: Problem 2 AGGREGATE out-*/presorted/break mother/

birthyr - last(birthyr)/sex-last(sex)/
SET listing 'people2.lis' mabiryr = last(mabiryr).

more off echo on compress on width wide COMPUTE birthage - birthyr - mabiryr.
length 60 workdev d:.

TITLE 'People File'. VARIABLE LABELS birthage "Mother's age at last
birth"/

DATA LIST file-'c:\teitel\people.dat'/person 1-5 sex 'Sex of last offspring'.
sex a2 to a5l 6-56 educ b2 to b15 VALUE LABELS sex I 'Male' 2 'Female'.
57-86 birthyr d2 to d6 87-110 mother Vs'
father 111-120. SET eject on.

SAVE out-'d:people.sys'. CROSSTABS birthage by sex.
SET eject off.

GET file-'d:people.sys'/drop a2 to a5l b2 to b15 *DOS erase d:people.sys.
d2 to d6. *DOS erase d"pertab.sys.

SAVE file-'d:pertab.sys'/drop sex father mother. FINISH

1 The solutions were prepared by ViAnn Beadle
and Jon Peck based on the earlier work of
Jon Fry for SPSS-X.
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THE CASE OF THE MISSING DATA

Leland Wilkinson
University of Illinois at Chicago and SYSTAT, Inc.

Grant Blank
University of Chicago

The real data in this exercise are missing. On C. Teitel requests a table of mother's versus father's
examining closely the TRIPS and PERSONS data provided education. We reduced this table to a single count per
by Robert F. Teitel, we are forced to conclude that his cell and performed an influence scatterplot. As can be
data are not real. The following evidence is offered seen plainly in the upper left hand corner, three of
to support our conclusion, the cells reduce the correlation by at least .10.

These consist of highly educated women married to
Evidence dolts. This violates a law of nature.

A. Teitel requests a tabulation of cars owned by number
of persons over 16. We fit a log-linear model to this SYSYAT INFLUE PLOT N. 19 11 .200
table and found a highly insignificant chi-square for NOTNE,

an interaction hypothesis. As anyone knows, households 20 1
with teenagers have significantly more cars (including I
those in the body shop). The following plot of I 0
standardized residuals to the additive model shows no 5 o
conspicuous deviation from normality. 0

t0 0 0
0

NPL OIILIIY PLOT. N - is 0
EXINC010 0
VALLE 9 0

3mu 0 0

0

2 0 .-

0 S 10 1 20

-3

0 32
22

.3 • D. Finally, Teitel requests a table of mother's age by
sex of last offspring. Here is the table.

"$ TABLE OF BIRTHAGES (ROWS) BY SX5 (COLUMNS)
-1.0 -O.S 0.0 0.5 1.0

smA190101 FREQUENCIES

Femste Kate TOTAL 0

B. Teitel requests a table of age of trip-taking - 2 6
persons by the model year of their cars. It is common
knowledge that model years comprise a simplex data 19-25 1 19 33
structure because people buy cars as soon as they see a
new one in their neighbors' driveway. To test this, we 26-30 2 17 42
computed gamma coefficients on the columns of the table
(model year) and did a multidimensional scaling on the 31-35 47 as 132
matrix of resulting coefficients. The following plot TOTAL 90 123 213
shows the model years in alphabetical order. This plot
resembles a random walk more than a one dimensional
simplex. We did a grouped box plot to check the distributions of

mothers' age at the birth of their last child. As
anyone knows, last born females should be associated ,,
with higher maternal ages because families continue to

OMIESIo 2 reproduce until they have a woman who can grow up and
2 become a statistician.

K %~

0 k III

O L NU
J P

0 90 PLOT OF VUIABL. 910NAGE 213
0 1.0GUPiED B VARIALE: SEX.

0 16.00 35.00

I N iNE , 21 A.1

.2

.2 *I0 2 note........l......
0,lEN.m. I•

(c) 19"5 Leland Wilkinson and Grant Blank
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Conclusion

Several mainframe and microcomputer database Second, to uncover the database fraud, we needed
packages offer the tools to solve the volume testing to produce more than tables. Because of the way people -u
problem in this symposium. In fact, the database process multivariate information, tables are one of the
packages which include crosstabulation can probably worst methods for displaying complex multivariate
solve them faster and with fewer commands than any of relationships. We chose, instead, a few of SYSTAT's
the statistics packages surveyed here. graphical displays which reveal at a glance the

artificiality of the data. Some of these graphics
A good statistics package should do more, however, resemble ones in the other programs, but the appearance

It should be able to integrate database information is deceiving. Only SYSTAT offers multidimensional
with jJ of its statistical procedures without using scaling, generalized gamma coefficients, influence
complex commands. Tables are the beninnine of plots and grouped box plots. Furthermore, since SYSTAT
statistical analysis, not the end. can save tables into files and treat them as ordinary

data, accessing these other procedures requires only
Because of this simple distinction, we approached one command.

this database problem differently from the other
vendors in this symposium. First, although SYSTAT can The following Figures I through 4 provide the
process character data, we treated the data as double SYSTAT code for producing the required tables. We
precision numbers instead of one or two byte could have speeded up processing by using programming
characters. As a consequence, our files are larger and tricks, but the code in these figures is more typical
required more time to convert from the raw data. of the average SYSTAT programmer's approach to the
Notice, however, that our statistical procedures read problems. We believe the human processing time is as
and computed tables on these numerical files as fast as important as the computer processing time.
the others computed tables from character files.

Figure I
Read Input Datasets

DATA
NOTE 'Read HHOLDS records.'
SAVE HHOLDS / 'Household dataset' 'ID variable: HHOLD'
GET HHOLDS
LRECL = 120
INPUT (HHOLD RECTYPEI ONEI(I-51) TWOI(I-20) FOURI(I-5)),

(#4 #1 ^10 51*#1 20*#2 5*#4 )
RUN

NOTE 'Read CARS records.'
SAVE CARS / 'Cars Dataset' 'ID variable: HHOLD CARS'
GET CARS
LRECL = 120
INPUT (HHOLD RECTYPE2 CAR ONE2(1-51) TWO2(1-20) FOUR2(1-4) MYEAR),

(#4 #1 #2 ^10 51"*#1 20*#2 40#4 #4
RUN

NOTE 'Read PERSONS records.'
SAVE PERSONS / 'Persons Dataset' 'ID variable: HHOLD PERSON'
GET PERSONS
LRECL - 120
INPUT (HHOLD RECTYPE3 PERSON ONE3(l-51) AGE TWO3(i-19) FOUR3(1-5)),

(#4 #1 #2 ^10 51#1 #2 19"#2 5*#4 )RUN

NOTE 'Read TRIPS records.'
SAVE TRIPS / 'Trips Dataset' 'ID variable: HHOLD PERSON TRIP'
GET TRIPS .

INPUT (HHOLD RECTYPE4 PERSON TRIP CAR ONE4(I-50) TWO4(I-19) NDAYS FOUR4(I-5)),
(#4 #1 #2 #2 #1 50*#1 19"#2 #2 5*#4RUN- "

NOTE 'Read PEOPLE records.'
SAVE PEOPLE / 'Sorted by PERSON'
GET PEOPLE
LRECL - 120
INPUT (PERSON SEX ONE(]-50) EDUC TWO(I-14) BIRTHYR FOUR(]-5) MOTHER FATHER),

(#5 #1 50"01 #2 140#2 #4 5*#4 #5 #5 )
RUN
QUIT

%,
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Figure 2
The TRIPS Data Collection

Producing Table I

DATA
SAVE TEMP

USE HHOLDS (HHOLD) CARS (RECTYPE2 HHOLD) / HHOLD
BY HHOLD
HOLD

NOTE 'Count number of cars.'
NOTE 'Only increment cars count if household exists in CARS dataset.'

IF BOG THEN LET NCARS = 0
IF RECTYPE2 <> . THEN LET NCARS = NCARS + I
IF EOG = 0 THEN DELETE

RUN

NEW
SAVE PROBIPI

USE TEMP PERSONS (RECTYPE3 AGE HHOLD) / HHOLD
BY HHOLD
HOLD

NOTE 'Count number of persons over age 16.'
IF BOG THEN LET NPERSONS = 0
IF RECTYPE3 <> . AND AGE > 16 THEN LET NPERSONS = NPERSONS + I
IF EOG = 0 THEN DELETE

RUN
QUIT

TABLES
USE PROBIPI
TABULATE NCARS * NPERSONS
QUIT

Figure 3
The TRIPS Data Collection

Producing Table 2

DATA
SAVE TEMP

USE PERSONS (HHOLD PERSON AGE RECTYPE3) TRIPS (HHOLD PERSON CAR NDAYS),
/ HHOLD PERSON

IF NDAYS < 3 OR RECTYPE3 =. OR CAR - 0 THEN DELETE
SORT HHOLD CAR

RUN

SAVE PROBIP2
USE TEMP CARS (HHOLD CAR RECTYPE2 MYEAR) / HHOLD CAR
IF RECTYPE2 = . OR RECTYPE3 - . THEN DELETE

RUN
QUIT

TABLES
USE PROB I P2
TABULATE AGE * MYEAR
QUIT
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Figure 4
The PERSONS Data Collection

Producing Table 3

DATA
NOTE 'Dataset of mothers sorted by MOTHER.'
NOTE 'It is crucial that FATHER be included in this dataset.'
SAVE MOTHER / 'Sorted by MOTHER'

USE PEOPLE (MOTHER FATHER)
NOTE 'Delete cases with no mother.'

IF MOTHER = 0 THEN DELETE
LET INCLUDES = 'YES'
SORT MOTHER

RUN

NOTE 'Dataset with mothers'
SAVE PEOPLE2

USE PEOPLE (PERSON EDUC)
NOTE 'Rename PERSON to MOTHER and EDUC to MOTHED'

LET MOTHER - PERSON
LET MOTHED - EDUC

DROP PERSON EDUC
RUN

NOTE 'Dataset of mothers education joined to offspring record.'
NOTE 'Sorted by FATHER.'
SAVE MOTHER2 .4

USE MOTHER PEOPLE2 / MOTHER
IF INCLUDES <> 'YES' THEN DELETE
SORT FATHER

RUN

NOTE 'Dataset with fathers.'
SAVE PEOPLE3

USE PEOPLE (PERSON EDUC)
NOTE 'Rename PERSON to FATHER and EDUC to FATHED'

LET FATHER - PERSON
LET FATHED - EDUC

DROP PERSON EDUC
RUN

NOTE 'Add fathers education to dataset.'
NOTE 'Dataset contains both fathers and mothers education, sorted'
NOTE' by FATHER.'
SAVE PROB2PI

USE MOTHER2 PEOPLE3 / FATHER
IF INCLUDES <> 'YES' THEN DELETE
DROP INCLUDES

RUN
QUIT

TABLES
USE PROB2PI -
TABULATE MOTHED FATHED
QUIT
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Figure 5
The PERSONS Data Collection

Producing Table 4
DATA
SAVE MOTHER

USE PEOPLE (BIRTHYR PERSON)
LET MOTHER - PERSON
LET MBIRTHYR - BIRTHYR
DROP BIRTHYR PERSON

RUN

SAVE MOTHER2
USE PEOPLE (MOTHER BIRTHYR SEX)
SORT MOTHER

RUN

SAVE MOTHER3
USE MOTHER2 MOTHER / MOTHER
IF MBIRTHYR =.OR BIRTHYR -. THEN DELETE
LET BIRTHAGE = BIRTHYR - MBIRTHYR
SORT MOTHER BIRTHAGE

R RUN

SAVE PROB2P2
USE MOTHER3
BY MOTHER
IF EOG = 0 THEN DELETE
LABEL SEX / I ='Female' 2 ='Mate'
IF BIRTHAGEc 19 THEN LET BIRTHAGES='- 18'
IF BIRTHAGE>lg AND BIRTHAGE<26 THEN LET BIRTHAGE$='19-25'
IF BIRTHAGE>25 AND BIRTHAGEc31 THEN LET BIRTHAGES='26-30'
IF BIRTHAGE>30 AND BIRTHAGE<36 THEN LET BIRTHAGES='31-3S'

RUN

TABLES
USE PROB2P 2
TABULATE BIRTHAGES SEX$
QUIT
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STATISTICAL DATABASE MANAGEMENT ON MICROCOMPUTERS: THE BENCHMARK RESULTS

Robert F. Teitel

TEITEL DATA SYSTEMS

Bethesda. HD 20614

This paper presents the results of esecuting the solutions to a set of
data manipulation problems supplied by vendors of microcomputer-based
statistical systems on a common microcomputer. The description of the
data tiles and the data manipulation problems are found in a companion

paper, . .. The Benchmark Problems", elsewhere in thee* proceedings.

The description of each vendor's solutions to the benchmark problems are
alsoe found elsewhere in those proceedings.

PARTICIPATING VENDORS

8MDP BMDP Software; 1964 Westwood Drive; Los Angeles. CA 90025
DASY Statistical Software Resources; 20355 Seaboard Avenue; Malibu. CA 90265
PRODAS Conceptual Software; P.O.Bor 56627; Houston. TI 77265
PSTAT PSTAT Inc.; 471 Wall Street; Research Park; Princeton, NJ 06540
SASIPC SAS Institute; P.O.3os 8000; Cary, NC 27511
SPSS/PC SPSS Inc.; 444 North Michigan Avenue; Chicago, IL 60611
SYSTAT SYSTAT Inc.; 2902 Central Street; Evanston, IL 60202

1. INTRODUCTION 1I. SCRIPT DISSIMILARITIES

The performance figures to be presented There are a number of known disaimila-
below -- for database creation time and rities among the scripts from each
database sue, and ezecution of the vendor which would impact performance.
benchmark data manipulation problems -- These include the following. The SYSTAT
are based on the batch-oriented Job database slees could have been reduced
streams, or "scripts", submitted by the to half that shown, with apparently
vendors. Each script was exscuted Just little affect on performance. The PSTAT
once, and performance was monitored scripts for the creation of the two
with a stopwatch. The indicated total databases assumed the input data files
time should be correct to within 5 or would come from a floppy disk; all

10 seconds. However, it has been our other vendors assumed that the data
experience in other microcomputer files were on the large disk. The DMDP
timings that were these benchmarks to be scripts do not save the created data-
rerun -- as we intend to do -- the bases; thus no database slats are
numbers could vary by as much as 15 or presented.

20%. Much of the variation will be duo
to the varying distribution of the data The PSTAT timings include printing of
and program files involved in each test the final tabulations because those
on the (usually) single largo ("hard", scripts were the only ones to print

"Vised") disk drive on most micro- just the final tabulations, all the
computer systems. other scripts required either that

everything or nothing be printed. Since
The equipment used for the performance the amount of printing might have
tests consisted of an IBM PCIXT with an materially affected the emecution
6067 Numeric Data CoProcessor (NOP) and timings, the non-PSTAT scripts were
a 30 MU disk of unknown brand with executed without printing anything. •

about JOHN of free space for our use.

The PRODAS scripts for the second
After studying the various scripts, (PEOPLE) set of problems asssumed space

published elsewhere in these procee- esisted for an in-core list of
dings, and the timing figures below, I referenced record keys (as there was -
submit the following conclusion can be for the data distributed). The UMDP
drawn- the variation among the vendors scripts for these problems explicitly

if negligible @sapared to the time it serted the referenced record keys,
would take a typical user to prepare whereas "parents" (for the first
the job streams. tabulation) and "mothers" (for the
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secnd abuatin)always occurred torn some common procedures for the
befre heappli1cable child record in tabulations (evon If only creating a

the distributed data, a fact which subset database containing only the
could be used to eliminate the sorts, variables necessary for the two tabu-

lations). Other scripts assume that the
The DAST scripts were not presented at tabulations are totally independent,
the benchmarking session. Moreover, and proceed to produce them separately.
DAST doesn't have a concept of a Clearly, performance results are not
"systems file" or a "database": it comparable across such scripts, and are
selects from input files only those therefore presented separately below.
data fields necessary for a particular (Note that the vendors were not neces-
task. PRODAS submitted a similar set of sarily consistent, using one script

s cripts, in addition to those which organization for the TRIPS data tabu-
used a database constructed from the lations, the other for the PEOPLE data
full set of distributed data. Those two tabulations.)
"speedy" results are presented together
below, and represent likely similar Other dissimilarities will, no doubt,
results for the other systems executing be discovered. In addition, expert
In this fashion. users of these systems might find

clever tricks to improve the perfor-
rinally, the vendors selected one of sance. The scripts were executed as
two basic script organizations. Since provided by the vendors, and represent
there are two tabulations requested (we hope) scripts which a typical users
from each database, some scripts per- might have constructed.

Ill. RESULTS: MANIPULATING TIN! TRIPS DATA COLLECTION

The following table displays the number of records, raw ASCII size, database site by
component, and time to load the database by vendor for the TRIPS data collection.

m as ... ~f55 = a= ,=M,e= ... = =.Mf ....... U-SMSOMM* .a...... a .... Wass =....... a .... aa a

11 NHfOLDS CARS PERSONS TRIPS database load time It
11------------------------------------- ------- ------ mins:secs 11

11 records: 105 210 315 945 --------- 1
it raw sit*: l3k 26k 39k 115k

12 9MVP - --- 12:45 1!
1: PRODAS l~k 31k 47k 124k 5:30 .1.
22 PSTAT 16k 26k 35k 105k 13:00 (floppy) :1
Is SASJPC 21k 36k 49k 138k 15:30
11 SPSSIPC 16k 30k 44k 129k 15:00 2
I, SYSTAT 68k 136k 204k 616k 39:30 2

a..sessaa.a.aaa,....eaae~a ase ean............ 5 ........ e ....
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The following table displays the processing tine required for each TRIPS data
collection script by script organization by vender.

0555555 *~555S0555aSaS s...55S 5~ 5....555 Nams=.= .... 555= .== 0

----------------------- ----------------4.4------------. i
II I bholdsicars/personsltrips I I hholdslcaretpersonsitrips I :I

----------------------- ----------------4.4------------ is

III I I I
-- - -- - - - - - - - - - - - - -

ISSprocess I process I I process I H
--------- + ---------- + -----4 ---- 4 +

52I % .11

H ----- ++--------- ---------- ------4 ---- +

If I stab I I Istab 2 1 1 stab I I I stab 2 1 H
H ------ ---------.----- ----

Is Esecution tine Ezecution tine :1
IIMins:9ecs total nins:socs mins:secs .11
II------------------------------------------------------------------------------It

11 UMOP 20:00+ 6:15 13:45 If
It PRODAS 6:00. 1:30 4:30 11:
It PSTAT 13:30

It SASIPC 8:45. If
I. SpasIPC 16:30. 5:45 12:45 H1
1I STITAT 10:30, 2:45 7:45 1.

II (Only PSTAT provided table only printing; The others were ran with If
1I display on screen only (that is, without any printing).) :2

If PRODAS 5:-00. 1:30 3:30 1:
it DAlY 4:30+. 1:15 3:15

SI (The above two results are for loading only the variables needed in Ht
it order to perform the requested tabulations.) I

IV. RSSULTS: MANIPVLATING T111 PEOPLE DATA COLLECTION

The following table displays the number of records, raw ASCII sixe, database aso.
and time to load the database by vendor for the PEOPLE data collection.

it PEOPLE DATA COLLECTION h

Ht Input records: 734 database load time 11S
it Approximate size: 96k uins:secs it
H1 -- - - - -- - - -

11 UKDP -- 7:00
I I PRODAS 114k 2:20
it PITAT 97k 5:00 (floppy) it
II SASIPC 113k 6:45 11
It spasiPC 122k 7:00 Ht
IS. SYSTAT 479k 27:30H

'. 
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The following table displays the processing time required lor each PEOPLE data
collection script by script organisation by vendor.

11 .------------------------------- ,----------------------------------- 11

Hpeople database 1.* people database 1 11
I: .----------------------------- .----------------------------- i

------------------- + ,----------- I

at I process I 1 process I I process I I

,* ,--------,.---------- . ------------ ----------- I

II Istab 3 I stab 4 1 1tb3 stab 4 1 1 1

Eeuintime Execution time I

II ins:secs total sins:secs mins:seco 11
a:---------------------- ------------------------------------- I

1t 111DV 15:30,+I

it PRODAS 3:45, It
H PITAT 10:30 it

21 SAS/PC 8:15. 11
11 SPSSIPC 16:30, 6:30 10:00 11
1I STSTAT 16:00, 6:00 10:00 it

11 it
I: (Only PSTAT provided table only printings The others were run with II p

11 display on screen only (that is, without any printing).) I

It PRODAS 3:15, it
it CAST 3:45* 3:151 2:30 11

11 (The &bove two results are, for loading only the variables needed In 11
Is order to perform the requesteod tabulations.) 11

It one Is given the data collection descriptions and the tabulation problem
definitions, published elsewhere in thee* proceedings. and one studies the various
scripts developed by the vendors of microcomputer statistical software to perform the
necessary data manipulation for the tabulations, also published elsewhere In these
proceedings, and the timing figures presented above. I submit the following

C onclusion can be drawn: the variation among the execution times of the scripts from
the various vendors Is negligible compared to the time it would take a typical uasr
to prepare the Job streams.

49
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A STATISTICAL LANGUAGE FOR MICROCOMPUTERS

David H. Allen, University of Kentucky

1. INTRODUCTION Declaration of variables makes programs more reli-

A programming language is a systematic nota- able and efficient. The FORTRAN statements

tion by which one instructs the computer to do a
task. A statistical language is a programming
language which makes it easier to instruct a com-
puter to do a statistical analysis. It would HORSE - A+B

have predefined data types, default values for
certain variables, and understood objects in cer-

tain expressions. It would have built-in
procedures for application of the most frequently HOUSE - C+HORSE

used statistical software.
There is presently a large amount of statisti-

cal software available. This goes by a variety are perfectly legal. However, if HOUSE was
of names including programs, packages, systems, intended to be HORSE, a programmer may have trou-
and languages. Very few would satisfy a formalineddtbeHREaprgaermyhvtou

ble finding why the program is not working as it
definition of a language, and all are well short should. The Pascal programmer is required to put
of ideal. There are many considerations in the
design of a statistical language, and many trade- a statement like

offs which must be examined. The language envi- VAR HORSE:INTEGER;

sioned here can handle all aspects of data near the beginning of his program. Any occurance
analysis that involve the use of the computer: of HOUSE is immediately detected by the compiler.
any that The SAS statistical system tries to find out as

data entry and management, editing, application much as it can about data and data structures to
of statistical techniques, and report generation. relieve the programier of the burden of providing

Once the language design is specified it is delaratons. mOe oentionei f a racter

necessary to write a translator or compiler that declarations. One convention is for a character

will change statements written in the language variable to take its length attribute from its

into object code (machine instructions). The first use. Consider the SAS job

efficiency of the data analysis depends on the DATA DUMMY;

language design, the quality of the translator, INPUT X;

and the quality of object code produced by the IF X>3 THEN Y-'EIG';

translator. Design criteria for a good statisti- ELSE Y-'SMALL';

cal language are very similar to the design CARDS;

criteria for a good general purpose computer 5

language. Horowitz (1984) gives the following 4

list of criteria for the design of general pur- 23

pose computer languages: reliability, fast trans- 1

lation, extensibility, well defined syntatic and I

semantic description, efficient object code, PROC PRINT;
orthogonality, machine independence, provability, The output will have "SMA" where "SM!ALL" was

generality, consistency with commonly used nota- intended. Of course we can rearrange things to

tions, subsets, and uniformity. Many of the get what we want. However, it seems easier to

items in this list are interrelated. The next always declare variables than to be always mindful

three sections concentrate on the first three of quirks in a language.

items in this list, but several others will be The following example illustrates how the com-

discussed in passing. A subsequent section will bination of an additional data type and declaration

discuss relevant considerations in developing a of variables could improve reliability, ease of

language for a microcomputer as opposed to a use, and execution speed. Consider the SAS job

large mainframe computer. The paper concludes DATA STUDENT;

with a summary of desired features in a statisti- CARDS;
cal language. Implementation of the features FRS
would represent a considerable advancement from FRESH 2.4

existing statistical software. FRESH 4.0

2. RELIABILITY

In both general purpose computer languages SOPH 3.2
and statistical languages, a sequence of state- SOPH 2.3
ments designed to instruct a computer to carry
out a task is called a program. Programs written
in a language should be reliable. A number of
factors contribute to reliability. A statistical
language should be similar to one's native lan- GRAD 2.5

guage. Freedom to place comments within the CRAD 3.2

code also enhances readability and reliability of PROC GLM;
CLASSES CLASS;

programs. MDLYCAS
Some programming languages require that vari- MODEL YCLASS;able bedeclredbefre ue ad ohersdo ot.ESTIMATE CLASS 1 -i 0 0 0;

ables be declared before use and others do not. Suppose the number of data lines is large enough
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that the cost of running the job is not trivial Some compilers make multiple passes over the
and CRAD was intended to be GRAD. SAS would not program. This allows the programmer a certain
detect the error and the results would not be amount of freedom from attention to detail, but
usable. The ESTIMATE statement would compare a requires more time to compile. Pascal programmers
single graduate student to the average of the must place certain things in a specified order,
freshmen. SAS does not have a qualitative data but their programs can be compiled in a single
type, but determines the information it needs for pass with a one character look ahead.
each application with the CLASSES statement. The Another factor affecting translation speed is
CLASSES statement requires two passes through the the language in which the translator is written.
data: one to determine what levels are present, Traditionally, compilers and translators were
and another to assign the integer codes, written in assembly language to make the best use

Suppose we introduce a data type like Pascal's of the higher speed portions of the computer and
enumerated data type except that the string repre- to reduce redundant instructions. Recently, the
sentation can be input and output directly. Near C programming language has become popular for
the beginning of the program would be the state- systems work and compiler writing. The use of C
ments gives a high degree of machine independence. Com-

TYPE CLASSTYPE=(FRESH,SOPH,JUNIOR,SENIOR,GRAD); puter scientists are currently debating the
VAR CLASS:CLASSTYPE; relative efficiency of the object code generated

The character variable indicator and the CLASSES by assembly language and C (Kernighan and Ritchie,
statement would be removed. On input, any value 1978). The editor of DTACK GROUNDED (1985) cites
that did not match a value in CLASSTYPE would be examples of drastic performance reductions of
detected as an error. The integer representa- recent versions of commercial software written in
tions of the levels would be determined on input C. These observations regard the currently popu-
and made a permanent part of the data set. The lar class of microcomputers. Some study and
data set would require less disk storage. The experimentation needs to be done to resolve this
large time requirement of the CLASSES statement issue.
is eliminated. The coefficients in the ESTIMATE 4. EXTENSIBILITY
statement would now apply to the natural order as
specified in the TYPE statement, rather than the Extensibility is the ability to define addi-
obscure order associated with the character set's tional operators and objects in the language. The
collating sequence. language developer can not include all known sta-

The language should be such that typing errors tistical techniques as operators in the language.
are likely to be detected by the translator. The user should have the ability to add to the
Consider the FORTRAN statements language the additional techniques he needs. When

DO 10 1 = 1.5 making extensibility part of the language, the
A(I) - X + B(I) developer must make some assumptions about the
10 CONTINUE programming capabilities of the user. Generally

The 1.5 was intended to be 1,5. However, FORTRAN speaking, a user wishing to make worthwhile exten-
does not recognize blanks, and the statement in- sions should be able to program in a higher level
tended to be a DO statement is actually the language like FORTRAN or Pascal. He should not,
assignment statement DOI - 1.5. Also, since however, be expected to know a lower level lan-

FORTRAN does not require that variables be de- guage like assembly or C. This would severely
clared, the compiler did not detect an error, limit the number of people able to write extensions.
This example is from Horowitz (1984). The statistical systems SAS (SAS Institute,
3. FAST TRANSLATION 1985) and S (Becker and Chambers, 1974) provide

forms of extensibility. Both have a well defined

Translation of a program to object code is grammar for an interface language. However, the
part of every analysis. Generally, the speed of technical knowledge required of the individual
translation is very important. We will discuss implementing the extensions is more than we feel
two of a large number of factors that affect necessary. The Forth programming language is
speed of translation. extended by entering the extensions and typing

One factor is the syntax and semantics of the FREEZE. Turbo Pascal and UCSD Pascal allow for
language. Semantics deals with the meanings of automatic overlays. These software products dem-
sentences. Syntax refers to the rules by which onstrate that extensibility need not be difficult
words are put together to form phrases, clauses, for the user. *.

and sentences. The syntax should be such that
backing up is minimized. Consider the FORTRAN5SC OIE O F IR M R
statement Currently, the most popular class of microcom-

IF (5.EQ.MAX) GOTO 100 puters has an Intel 8088 processor, the MS-DOS
In FORTRAN, 5.E-2 is a legal number, hence the or similar operating system, about 256 kilobytes "
compiler reaches the "Q" before it knows the of random access memory, approximately 720 kilo-
proper interpretation of the string of characters bytes disk storage, and some graphics capability. %
starting with the "5". The statistical language proposed here could

In FORTRAN, the expression DOG(I) could be certainly be implemented on this class of computer.
either a function or an element of an array. In These computers are slow, and thus a good batch % -
Pascal, DOG(I) is a function and DOG[I] is an facility is needed to provide for unattended
element of an array. Pascal's way of doing operation. A procedure to check the syntax of

things involves less table searching and compiles programs and for the presence of requested data S
more quickly. In addition, programs are more sets and devices would remove most of the causes
reliable and easier for the human readers, of unsuccessful runs. An overlaying capability is
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needed to deal with the limited amount of random categorical variables more reliable and more
access memory. In situations where disk space is efficient.
limited, the user should be able to remove proce- Some of the ways in which the proposed language
dures he never uses. would differ from Pascal follow. Input/output

While the language could be designed to oper- facilities for enumeration data types would be
ate on the computers described above, it seems implemented. The file handling capabilities would
more reasonable to design for the popular compu- be extended to allow indexed files. Techniques
ter of three years from now. Today's leading for parameter passing to procedures would be modi-
edge microcomputers like the IBM PC/AT or AT&T fied along the lines of Ada or S to allow for
Unix PC would seem to be logical choices as tar- default values and more ease of use.
get machines. Extending the language would be as easy as

The capabilities of microcomputers and main- writing a Pascal-type program and telling the
frame computers are both increasing rapidly with language to attach the program to itself. Nearly
time. There will be a point when a microcomputer all of the procedures and functions in the lan-
programmer will not have to design around speed guage would be available to the person writing the
and memory limitations. Operating systems will extension.
provide more support to make language implementa- The language interacts with the user on at
tion easier. However, it is likely that a large least two levels. The extension programming level
proportion of microcomputer users will continue would be similar to the Turbo Pascal environment
to be isolated from the technical support where one can go quickly back and forth between
received by many mainframe users. Hence, the lan- the editor and compiler. The statistical analysis
guage must be well documented and easy to use. level would have to be command driven to be con-
6. FEATURES OF THE ENVISIONED STATISTICAL LANGUAGE sistent with the batch capability. However, an

interactive shell would be available to assist

In view of the previous discussion, a number beginning users.
of features are clearly desirable in a statisti- 7. BIBLIOGRAPHY
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MATRIX LANGUAGES FOR STATISTICS

Kenneth N. Berk, Illinois State University

The "VERSATILE" entry in Table 11 is intended

1. Introduction to indicate powerful features in the given

Packaged statistical programs are useful, but category. "CG" refers to the color graphics

there is much that they do not do. Languages card.

such as FORTRAN, PASCAL, and C can be used as an The benchmarks in Table 12 were obtained with

alternative, but much effort is required to use the 8088/8087 (IBM PC and clones), except that

then. It is easier to program in a language for IML they were obtained with the 80286/80287

with facilities for manipulation of matrices and (IBM AT).

building blocks for statistics such as

probability distributions, randan number 3. APL / STATGRARiICS

generation, plotting, ranking, and functions for Created by Kenneth Iverson in the late 50's,

linear model analysis. APL is the oldest of the languages considered

This paper discusses seven matrix languages - here. It has its owa character set and to

APL canbined with STATGRARICS, GAUSS, SAS IML outsiders the programs may be difficult to

and MATRIX, MATEAB, S, and SPEAKEASY - which are understand. This is in contrast to the other

listed along with the vendor addresses in Figure matrix languages, all of Which resemble ordinary

1. Tables I through 12 indicate the presence of matrix algebra. Nevertheless, APL has a strong

various features in these languages. Section 2 following, and the APL conferences are well-

explains these features and Sections 3 through 8 attended. It seems to be the only matrix

discuss the languages individually. Finally the language available on the Macintosh (but MATIAB

last section gives a summary along with a will be available soon) and there are a number

discussion of same desirable features for future of versions available for PC-DOS / MS-DOS

implementation. machines, including four reviewed by Smith

Note that the author has not used APL, IML, (1985). Unfortunately, APL by itself does not

or S. Their importance is such that it was include eigenanalysis, tail probabilities,

thought best to include them, based on quantile plots, etc., so that it is advantageous
documentation and other sources. The author is to obtain such features additionally. one wy

indebted to W. Gerald Platt of San Francisco to do this is with the STATGRAPHICS package.

State for the APL benchmarks and Alan Eaton of The tables in this paper refer to the

SAS Institute for the 2I4L benchmarks. cambination of STATURAPH1CS and APL marketed by
STSC, Inc.

2. The Tables Although STATGRAPHICS is a menu-driven

Perhaps Table 1 is self-explanatory, except statistical package, all of the APL source is

that "PROTECTED" refers to copy protection. In available as building blocks for the APL

Table 2, it is indicated that all of the programmer. On the other hand, it requires some

languages are interpreted. Here, "DJARY FILE" effort to access the APL source code. Platt and

refers to the abil ity to store the results of an Platt (1985) describe the canbination of APL and

interactive session for later editing and, STATORAIHICS as being very powerful in its

possibly, execution as a batch file. "PRINT capabilities. Tables 1-12 verify that there are

TOGGLE" is the ability to turn on and off the a wide range of features, especially in graphics

autanatic output of all assignment statements. and distributions. If one does not care for the

This is a valuable aid in debugging. APL character set, it is possible to use instead

In Table 3 "VECTOR" refers to the ability to a word-oriented syntax.

reference one-dimensional structures by one MS-OOS commands can be issued from within the
subscript. Those without this feature require system, and outside programs can be run hile
two subscripts. preserving the current session.

Each of the languages have same sort of There are two major criticisms of APL.

subroutine or macro structure, as indicated in First, note in Table 5 that there is very little

the last column of Table 5. Here, "LOCAL" provision for structured programning. of

refers to the variables being local to the course, the language was specified more than 25

structure. "(14PILE" means that subroutines can years ago, w4nen less emphasis was given to

be precapiled. structuring code in blocks for easy readability

In Table 7 an "INDEX VECTOR" consists of the and easy debugging. In APL a "do loop" must be

integers fran 1 to N. The "SUBMATRIX" extracted built by setting and incrementing a counter and

consists of the first three rows. using the APL equivalent of the "go t'
In Table 8 the abbreviations stand for ccmmand. There are no "if" statements, so the

Choleski, eigeryalues and eigervectors, singular conditional exit fran the loop must involve a

value decamposition, generalized inverse, QR conputation such as a logical function. It

decanmposition, Gran-Schmidt decanposition, and should be emphasized that there are many APL

the fast Fourier transfoml enthusiasts who do not consider the language

The reason for having the "KRONECHER PRODUCT" deficient in programming structures. *

in table 9 is that it can be used for creating The second criticism of APL is in the area of

interaction terms in the analysis of variance. canputational efficiency. As is indicated in

The entries for STATGRAPHICS and SAS here in Table 12, there are programs which may take as

parentheses show alternatives which are easier much as ten times as long in APL as cmpared to

to use for the same purpose. other languages. For same purposes this may not

be a serious drawback, but for a Monte Carlo
study it could make a significant difference in
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run time. A call to STSC did not produce any specified in GAUSS, IML, MATRIX, and MATLAB
encouragement about speed fixes on the horizon, using the ":" notation. For example, "2:5"

The suggestion from STSC is to find the specifies the integers fran 2 to 5, inclusive.

bottleneck and replace it with assembler or C In GAUSS this is allowed only in subscripts,

code, which can be linked with APL. This whereas the others allow assignment statements
philosophy has been implemented in STATGRAPHICS, of the form "1=2:5".
where the inversion operator has been rewritten GAUSS has available a good set of tail
in C. probabilities, including normal, t, chi-square,

and F. There are no inverse probability
4. GAUSS functions on the main disk, but one of the two

GRUSS is only a few years old. It runs only other disks has a GAUSS program that obtains the

on MS-DOS conputers with the math coprocessor t inverse by the Newton-Raphson method.

chip. At $250 it is the least expensive of the Graphics was not a high priority in the 1984

seven languages compared here. Also, its edition of GAUSS. Only simple non-hires scatter

hardware demands are relatively simple in that plots with no axes are described in the manual.
it requires only 256K of memory and no hard There are, however, some new graphics functions

disk. on the two supplementary disks, and more %

GAUSS has a simple full screen editor with no functions are on the way, using the color

copy or search facilities. Users may as an graphics adapter.

alternative use their own editors. Programs can The advertising ccpy for GAUSS brags about
be run interactively fran the GAUSS editor. In its speed, and benchmarks verify that the

the interactive mode one has access to what has program is fast. B1 the use of the arout
just been run, and the camnands can be edited algorithm for inversion and the use of asseubler
rather than retyped. A screen full of commands to make sure that the math coprocessor
frao an interactive session can be saved, accumulates dot products internally, the authors
edited, and run as a batch job. have achieved excellent times of 9.8 seconds for

There is a looseleaf manual dated 1984 which a 50 x 50 multiply and 14 seconds for a 50 x 50

describes the package as of that time. There inverse, as shown in Table 12.

are, however, a fair number of features which Examples and additional benchmarks are
have been added since then. They are documented available in a paper by Platt and Platt (1985).
on the disks, but the quality of the
explanations leaves roan for improvement. There 5. SA IML and MATRIX
are also two disks of programs written in GAUSS, SAS has been furnishing MATRIX with its base
and they too are documented only on the disks. product since the late 1970's, but SAS is now
It would be nice to have written documentation phasing it out in favor of a separate prod' t

of good quality for the whole system. Online called IML (Interactive Matrix Language).
help would also add to the ease of use. As it Version 5 IML runs on 32-bit minicamputers and
is, the looseleaf documentation is barely I1BM mainframes, and Version 6 IML runs on IBM
adequate, with much left for the user to figure microcanputers. The emphasis here is on the
out, and the disk documentation is of lower microcomputer version, although this version has
quality. The latest news from the authors is not been released yet. Note that the marketing
that new written and online documentation is on of IML for icrocamputers is done on a site
the way. lease basis which is designed to appeal to large

As in SAS MATRIX, all data are in the fom of organizations. There is no provision for

matrices with two subscripts. Character data individual purchase. The hardware requirements
are allowed and GAUSS permits mixing of are substantial - at least 512K of memory and
character and numerical data in arrays, but the more than 5 megabytes of hard disk space. It
user must tell GAUSS which is which for runs in PC-DOS and smw versions of S-OS.
printing. There is a weakness in the the area Those who have used the SPF editor in IBM's
of input files. GUSS has a program to convert TSO may be pleased that a similar editor is
ASCII files to its own format, but it is rather included in the microcauputer implementation of
limited in that the data items must be separated SAS. One can accumulate camunands in the editor
by spaces in the ASCII file. and submit them whenever it is desired to

GAUSS interacts well with DOS. The program process commands. online help is available. %%
shares with others the ability to interrupt a MATRIX has a facility (PROC MATRIX PRINT) which
session, execute DOS commands and run programs causes output fran each conputation to be
of any kind, and then return. A newly added printed. IML improves on this by allowing the
feature includes links to the canmon FORTRAN feature to be toggled on and off. The other
compilers. languages have it, too, except for MATEAB. It

GAUSS does not have "DO" loops, but it does is very helpful in debugging.
have a "DO.. .WHILE" structure which requires Another advantage that IML has over MATRIX is
setting and incrementing a counter. There is an the ability to reference a one-dimensional array
"IF.. .ELSEIF.. .ELSE.. .END" structure. The 1984 by only one subscript. In MATRIX, the elements
GAUSS had subroutines with nonlocal parameters of a vector are "V(,I)" or "V(I,l)", whereas
in the style of BASE. Recently, cmpilable they can be called 'VIII" in IML Version 6.
subroutines with local parameters have been MATRIX has only BASIC-style subroutines with
added, but they are not very well documented. global variables, but IML has also subroutines

GAUSS shares with MATIAB the use of a "." with local variables. LML shares with others
before an operator to indicate an elementwise the ability to interrupt a session and run DOS
operation. For example, "A.*B" yields commands or any programs, including FORTRAN, I -P
elementwise multiplication of A and B. A etc. t
sequence of consecutive integers is easily 0J.t
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One of the outstanding features of MATRIX command file. One does not need to retype an
which is carried over into IML is the subscript erroneous canmand in interactive mode because a
reduction operator, which is similar to the line editor is available to edit the last
reduction operator of APL and others, but command.
operates directly on the subscripts. There are MATIAB has a useful online help facility.
a variety of useful operators, including the Typing "HELP" causes all of the commands to be
mean operator shown in Table 6. Moving the listed on one screen. Choosing a command from
operator from the first to the second subscript this list, one can then get more detailed help.
switches from means of columns to means of rows. There is not much ability to label output.

Note that the only difference between MATRIX Character data are allowed but they cannot be
and IML in Table 7 is that IML uses square used to label the rows of a numerical matrix.
brackets for subscripting. The subscript syntax With others, MATLAB shares the ability to
of Version 5 is a little messier than what is suspend a session and run a DOS command or any
shown for Version 6 (microcomputers) in Table 7. program. The MATLAB documentation suggests that

IML and MATRIX have a wide range of a FORTRAN program can be used with MATEAB by
mathematical and statistical functions. Some of first storing data, running the FORTRAN program
the more esoteric operators such as Gram-Schmidt on the data, and then reading back into MATIAB %
orthogonalization and the fast Fourier transforn the FORTRAN results.
are available in MATRIX and Version 5 of IML but MATEAB allows subroutines with local
not yet in Version 6. variables. These subroutines can be

For doing analysis of variance by regression precompiled.
a facility is needed for obtaining design Given that the program originated with the
matrices (creation of dummy variables), which well-known numerical analyst Cleve Moler, it is
both SAS languages do. Furthermore, the not surprising that MATEAB contains a full
horizontal direct product is available ("HDIR" complement of procedures for numerical analysis,
in IML, "@" in MATRIX) for forming interaction as shown in Table 8. On the other hand, Table
terms. Similarly, STATGRAPHICS has a "CROSS" 18 shows that there are no tail probabilities
operator. Other languages can accomplish this available, and none of the corresponding
with the Kronecler product, but it is inverses, although normal and uniform data can
conparatively awkward, especially in the be generated.
unbalanced case. Note that the SAS languages For graphics, MATEAB supports the Hercules
also have an excellent orthogonal polynomial card, IBM color graphics, and IBM enhanced
facility which works well in the unbalanced graphics, as does STA7%AHICS. It is possible
case. to overlay plots, and there is provision for

SAS MATRIX has quite a complete set of tail showing strata such as male and female on one
probabilities, inverse probabilities, and random plot. Normal plots and exploratory data
number generators. The inverse probabilities analysis commands are not included.
include only the normal and beta, but the t, chi- The benchmarks in Table 12 are quite good.
square, and F can be obtained from the beta. On
the other hand, the only inverse available in 7. S
IML is the normal, and randon numbers are S was written to work within the UNIX system
available only from the uniform and normal at Bell Labs, and until a recent implementation
distributions, on VAX VMS, it ran only in the UNIX

MATRIX has to rely on communication with the environent. Although there are AT&T
rest of SAS to do graphics, but IML Version 5 microcomputers that support UNIX, the smallest
has a substantial graphics component. This machine for which AT&T recommends S is the 3B2.
includes facilities for spline fits and Note that S costs $8880, except that it costs
character labels (of arbitrary length) for the only $488 for universities. This review is
points on a plot. There is as yet no such based mainly on the manual by Becker and
facility in the microcomputer version. Chambers (1984).

Both interactive and batch modes are
6. MATLAB supported by S. Batch files can be edited by a

MATLAB has been available for about five Unix editor.
years as a FORTRAN program on large computers. The manual shows excellent facil ities for
This review is based on a demo disk for PC- character data and the labeling of output.
MATLAB, which is an enhanced version written in Miltidimensional arrays are allowed, as is true
C for MS-DOS microcomputers. This will soon be of APL but not the others, although facilities
available also for the Macintosh and VAX VMS. for character manipulation can be used in GAUSS
The emphasis is more on numerical analysis and and SPEAKEASY to index 2-dimensional arrays.
engineering than on statistics. Not all The program is integrated into UNIX - it
documented functions are present on the demo allows UNIX commands and UNIX programs in C,
disk. Notice in Table 1 that MATEAB is the only FORTRAN, and PASCAL to be executed from within
one of the microcomputer languages reviewed that S. Extensions to S can be accomplished with
is copy protected. macros. A

The program has an interactive mode in which There is a sweep operator in S, but it is for
commands are executed as they are given. There centering data, and not for doing Beaton (1964)
is also a batch mode, but the command file must sweeps.
be fo rmed elsewhere because MATEAB has no batch The available commands include substantial
editor. There is provision for a diary file in facilities for regression analysis, even the
which interactive commands can be accumulated, Frnival-Wilson (1974) leaps and bounds all-
but the file also contains the output, which subsets regression algorithm. on the other
would need to be edited out to get a batch hand, there is not much available for analyzing

238

y0"P



designed experiments. In particular, there are The last two columns of Table 7 may require

noe d foperunn variabsome explanation. If L and R each have N rows
no c mands fof dumny variables, and L has M columns, then they can be joined by

The facilities for probability distributions, setting "L[l,M+I]=R". The procedure for
inverse probability distributions, random number vertical concatenation of arrays T and B with
generators, and quantile plots are among the the same number of columns is to set "T[N+,] =
best available, and they are named consistently B" if T has N rows. In general, U(I,J)=V allows
so as to be easily raebered. S also has one you to insert V anywhere in U, regardless of
of the best plotting facilities available. their dimensions, and SPEAKEASY will adjust the
Points can be labeled effectively, e.g., with dimensions of the result.
two-letter state abbreviations if the points SPEAKEASY has a substantial set of graphics
represent states. The values of a third commands using both text characters and color
variable can be indicated by using the values of graphics. Plots can be displayed interactively,
the third variable to determine the size of with a new graph overlayed on one that is
circles centered at the points. already on the screen. Labels can similarly be

The S program has vmpressed many added. This is the only way, however, to
statisticians Who have had a chance to use it. display separate strata with separate symbols.
For a very favorable review of the manual and Thus, the procedure would be awkward if there
the program, see arntz (1986). are several strata, because each stratum

requires a separate plot command, although the
8. SPEAKEASY camands could be placed in a loop.

SPEAK'EASY has been available on various IBM Being written in FORTRAN, SPEAKEASY is not as
computers, and more recently the DEC VAX, since fast as MATLAB and GAUSS, as shown in Table 12.
the 1960's. Written in FORTRAN, it now also Unfortunately, it does not seem possible with
runs on MS-DOS microcomputers. Although the current FORTRANs to keep up with optimized
microcomputer version does not have all of the asseabler and C code for the math coprocessor.
mainframe features, it does have over 600
functions available. It uses Intel FORTRAN and 9. Conclusions and Recommendations
requires 640K, just as BMDP has done. SPEAKEASY The headings in Tables 1-12 indicate same of
uses the full memory, with nothing else allowed the features which are, in the author's opinion,
in the way of coresident programs. It also important in a statistical matrix language. It
takes about 5 megabytes of hard disk space. is hoped that authors of such languages and

The size of SPEAKEASY makes it harder to reviewers of them will take into account the
find the right command than it would be in a listed features.
smaller system such as MATLAB, where the "HELP" One conclusion that can be drawn from the
command puts the complete command list on one tables is the surprising degree of similarity
screen. The "HELP" command in SEAKEASY puts a among the various matrix languages. Especially
list of command categories on the screen, and in Tables 6 and 7 there are strong parallels
these can be examined with more detailed help among then. Their capabilities and notations
commands. In general, there is roam for are very similar for matrix operations, indioes,
improvement in the documentation. There is very subsetting, and concatenation.
little documentation specific to the There are, of course, significant differences
microcomputer version, and it is not always among the languages. To some extent these gaps
clear how to use the commands. tend to narrow, perhaps because the authors are

Caomands can be executed interactively or in aware of what others are doing, perhaps because
batch mode, and a line editor is available to their users are aware of what others are doing
edit batch comands. The "JOURNAL" comand is and demand similar facilities. one might wonder
available to toggle on and off the automatic if it is coincidental that SPEAKEASY, (AUSS, and
output of comands and/or results. W' using it MATEAB have all added recently subroutines with
to record commands in interactive mode, one can local variables, and IML also has this feature,
foun a file that can be edited and run in batch although its predecessor MATRIX does not.
mode. In the area of plots and probability

SPEAKEASY does a fine job with character data distributions, it would be nice to see other
and the "TABULATE" command gives nicely labeled languages copy from the example set by IML
printouts of arrays. Ling (1985) has given Version 5, S, and STAT(%APHICS. Especially for
examples of this feature, plots, which cannot be readily programmed by the

Another useful feature stressed by Ling is user, it would be good to see some of the other
the ability to interrupt a session and execute languages add some features. Statistical
DOS commands and programs such as FORTRAN. A detective work is enhanced by wll-labeled
FORTRAN link is available, but only to Intel plots, and every language should be able on
FORTRAN. A recently added feature in SPEAKEASY scatter plots to distinguish different strata
is the inclusion of subroutines with local and to label each point with the values of an ID
parameters. variable.

There are two kinds of two-dimensional There are some features that are available in
structures, arrays and matrices. If A and B are few if any of these languages. Many of then are
arrays of the same size, then "A*B' yields the not very hard to implement in a mattic language,
elementwise product, of that size. If A and B but sane are quite difficult. In the not so
are matrices of appropriate size, then "A*B" is hard class are multivariate nosmal variate
the matrix product. Thus commands are necessary generation (available in STAT(CAPHICS) and
to convert from matrix to array ("AFAK') and Wishart matrix generation, as described by
array to matrix ("MFAM"), to assure that the Kennedy and Gentle (1980). More difficult are I
desired operation is perfouned. L estimation and all-subsets regression. The S
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package includes the Furnival-Wilson (1974)
algorithm, which is remarkably efficient and and
remarkably intricate. Many such difficult
algorithms are obtainable free or at low cost in
FORTRAN, so the language with FORTRAN linkages tools for doing the canputationally intensive
will allow the user great latitude in tols f the f utn
algorithms, beyond what is an integral part of statistics of the future.
the language. ReferencesIt could be argued that time series operators Rfrne
should included among the hard-to-rm ogram Beaton, A. (1964), "The Use of Special Matrix
features that should be included in these Operators in Statistical Calculus," Research
latuaes, bt thered ae spcled anges Bulletin, Princeton: Educational Testing
languages, but there are specialized languages Service.
such as RATS that include many time series Becker, R. and Chambers, J. (1984), g: A
functions along with a matrix language. For Interactive Environment for Da; analnyi d
serious time series analysis, such specialized G Belmont, CA: worth.
languages are better suited than any of the Furnival, G. M. and Wilson R. W. (1974),
microcomputer languages considered here, except "Regression by leaps and Bounds." Technmetrics
that STATGRAPHICS has strong time series 16, 499-511.
features and is a contender in this area. 16 , .Someime tetbok agorihmsarewasefu of Kennedy, W. J. and Gentle, J. E. (1980),

Sometimes textbook algorithns are wasteful of Statistical Computing. New York: Marcel Dekker.
coaputer space and time. One example is the Larntz, K. (1986), Review of S: An Interactive
formation of a large square matrix from which Environment for Data Analysis and Graphics, by
only the diagonal is needed. The IML Version 6 R. Becker and J. Chambers, Journal of the
manual, p.116, follows such an algorithm in American Statistical Association, 8r, 21-252.
forming a n x n projection (hat) matrix, which Ling, R. F. (1985), "Super-Interactive
will be very large if the number of cases n is Statistical Software on Microcomputers," paer
large, and then using only the diagonal (for prestidat te n Ming, merica
leverages and confidence intervals). It might presented at the Annual Meting, Aerican
be asking too much to expect that an interpreter Statistical Association.would recognize that only the diagonal is Platt, W. G. and Platt, C. A. (1985), "'Efficient
needed, and produce only the needed part, Statistical Conputing with Microcanputers",
although thns s onlymp e needed ofptartin paper presented at the Annual Meeting, Aericanalthough this is a simpler form of optimization Statistical Association.
than is used in some FORTRAN compilers. At a
minimum, the manual should show how to compute Sith, B. (1985), "AP Daring to Be Different,"
what is needed. That is, it should be explained PC, December 10, 1985, 167-178.
that a more efficient equivalent of

VEaDIAG(X*INV(')' Figure 1. Addresses
(X*(INV(X'*X))#X) ( ,+). STSC APL, STATGRAHIrS

The second method need not be recamnended in all STSC, Inc

instances, but only when n is large. 2115 E. Jefferson St. %

There are two disparate goals for these Rockville, MD 20852 5-%_

matrix languages. On the one hand they should %S.

be interactive and easily debugged, and on the Ap em

other hand they should be efficient. The first Applied Technical Systems
goal is more easily met by an interpreted P.O0. Box 6487
language, and the second goal is more easily met Kent, WA 98064
by a compiled language. An ideal compromise S

would involve a dual-mode language which would SAS InL, MATRIX
allow debugging in interpreted mode and a switch SA Institute Inc.
to compiled mode for efficient operation. (AUSS Cary, NC 27511-8800
and MATLAB already make this available, to some
extent, by allowing some compilation. a

It can be argued that the availability of PC-MATLAB
poerful matrix languages on personal computers The Math~orks, Inc.
should change the way that statistics is done. 158 Woodland St.
The (AUSS documentation suggests that one should Sherborn, MA 01770
now be much more inclined to do maximum
likelihood estimation and other computations
that do not necessarily give closed-for AT&T Technologies Software Sales
answers. As stated in the CAUSS manual, page 9- P.O. Box 25000

2, "Remember, while you're having dinner, your Greensboro, NC 27420
PC and @.USS can do computations that would cost

hundreds of dollars on a mainframel ." The ideal SPEAKEASY Co.r
situation is that the statistician knows exactly Speakeasy Computing Corporation
how to do the appropriate computations, given 2 West Adams St.
the powerful hardware and software on the Chicago, IL 60606
desktop, but there will need to be a lot of
changes to manuals and textbooks before this
knowledge is widespread. Much of the software
is here now, and the authors of these languages
deserve thanks for making available excellent
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Table I. MATRIX LAIAR S Tbile 3. DATA STRUCTURES

NEED CHAR 3-D MISSING
OPERATING HARD DATA A YS DATA VECTOR

ST EM RC PROTECTED? MU MEMORY

APL MS-DOS, 595 NO NO 512K APL YES YES YES YES

STATO etc. +695 STATO
(295+35OACAD)

GAUSS YES SORT OF YES NO

GUSS MS-DOS 250 NO NO 256K
IML YES NO YES YES

SAS. IML PC-DOS, (SITE NO YES 512K
etc. LEASE) MATRIX NAMES NO NO NO

VMS, TSO,
CMS MATLAB YES NO YES YES

SAS,MATRIX OSCMS, S YES YES YES YES

VMS,otc. SPEAKEZ YES SORT OF YES YES

MATLAB MS-DOS 695 YES NO 256K
(395 ACAD)

S UNIX 8000
VMS (400 ACAD)

SPEAKEASY MS-DOS, LEASE NO YES 640K
etc.
VMS, CMS
TSO

Table 2. MODES OF OPERATION (ALL INTERPRETED) Table 4. ENVIRONMENT

DOS ASCII FORTRAN
INTER- DIARY PRINT LIN KAD.WBIE L&

DiAM EDTO AUXJ~ EI. MEa TOGLE
APL YES,AND YES CASSEMBLER
STATO PROGRAMS

APL YES YES YES YES YES YES
STATO GAUSS YES, AND SPACES (NEW)

PROGRAMS NEEDED
AUSS YES YES YES YES NO YES

IML YESAND YES SHARED
IML YES SPF-TYPE YES YES YES YES PROGRAMS DATA

MATRIX YES OPER OPER OPER NO YES MATRIX - -AWKWARD

SYS SYS SYS (NO
TOGGLE)

MATLAB YES, AND SPACES SHARED

MATLAB YES OPER YES YES YES NO PROGRAMS NEEDED DATA
SYS

S UNIX YES YES

S YES (UNIX) YES YES YES YES (UNIX)

SPEAKEZ YES LINE YES YES YES YES SPEAKEZ YES, AND YES INTEL
PROGRAMS
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Table 5. PROORAlIN STRUCTURES Table 7. INDICES. SUBSETTINO. CONCATENATION

IF
ELSEIF INDEX SUB HORIZ VERT

DO ELSE SUB VECTOR ARIX CONCAT CONCAT
LM ,. ROUTINES

APL N AL3; I L,R T, I1B

APL NO NO LOCAL GAUSS 1:N A[ 1:3,.] L~R T18
STATG

IML 1:N A[I:3, LIIR T//B
GAUSS DO YES (NEW)

WHERE LOCAL MATRIX I:N A( 1:3, ) LIIR T//B
COMPILE

MATLAB I:N A( 1:3.) (L R] T;BJ
IML DO IF LOCAL

END THEN MACRO S I:N A[ 1:3.] COIND RBIND
ELSE (LR) (TB)

MATRIX DO IF LINK SPEAKEZ INTEGERS(N) A(INTEG- AssignR AssignB 
END THEN RETURN ERS(3),) to col to row

ELSE MACRO (n.1) (n,1)

MATLAB FOR YES LOCAL
END COMPILE

S FOR() IF MACRO
{ ) ELSE

SPEAKEZ FOR IF() LOCAL
NEXT ( )

Table 6. OPERATIONS Table 8. NUMERICAL ANALYSIS

M EeN = W& 9R OS Efl
ELEMENT MATRIX COL
PRODUCT PRODCT IE R EANS APL NO EIOEN NO NO NO OS FFT

STATO
API x *,x IflA (.,x)+ lopX

AAUS CHOL (NEW) (NEW) (NEW) (NEW)(NEW) (NEW)
GAUSS * NV MEANC(X)

IML * INV X[-,] IML HALF EIOEN SYD OINV NO GSORTH FFT
ROOT (VERS (VERS

MATRIX # INV X(.,) IONS) IONS)

MATLB INV (m,nJ=stzs(X) MATRIX HALF EIOEN SYD GINV NO O5 FFT
sum(X)/m

MATLAB CHOL EIO SVD PINV OR ORTH FFT
S 5* SOLVE Col(X,MEAN)

S CHOL EIOEN SYD YES YES OS NO
SPEAKEZ INVERSE SUMCOLS(X)/

(arraV) (matrix) NOROWS(X) SPEAKEZ CHOL- EIEN- NO NO NO NO NO
DECO VALS

EIOENVECTS
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Table 9. STATISTICAL OPERATORS Table 11. PLOTS

BEATON DESIGN ORTHOG KRONECKER HI-RES
MWEE ATRIX M PRODUCT SCATTER VEBLAY LABELI EETC.

APL SWEEP IND NO YES YES APL VERSATILE VERSATILE VERSATILE VERSATILE
STATO NEST (CROSS) STATO

GAUSS NO NO (NEW) (ADDED) YES GAUSS (NEW CO) (NEW) (NEW) NOT MUCH
PRINTER

IML SWEEP DESIGN ORPOL RANK (HDIR)
IML VERSIONS VERSIONS VERSIONS VERSIONS

MATRIX SWEEP DESIGN ORPOL RANK *
(.1) MATRIX SASORAPH SAS SAS SAS

PLOT
MATLAB NO NO OR SORT KRON

MATLAB VERSATILE YES YES NOT MUCH
S NO NO 0S RANK KRONECKER

S VERSATILE VERSATILE VERSATILE VERSATILESPEAKEZ NO NO NO RANKER KRONECKER

SPEAKEZ Co, VERSATILE YES NOT MUCH
PRINTER

Table 10. DISTRIBUTIONS Table 12. BENCH MARKS

TAIL INVERSE RANDOM QUANTILE
MM MM NUMBERS LO 50x50 50x50

APL YES YES YES YES
STATO APL 155 see 139 see

GAUSS YES () UNIF NO GAUSS 9.8 sec 14 sec
NORMAl. NORMAL pIML 40 sec 69 sec

IML YES NORMAL UNIF VERSIONS
NORMAL MATLAB 10 sec 24 sec

MATRIX YES NORMAL YES SAS ,
BETA

SPEAKEZ 95 sc 120 see
MATLAB NO NO UNIF NO

NORMAL

S YES YES YES YES -

SPEAKEZ YES NORMAL UNIF NO ".
NORMAL '.."
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PUBLISHING STATISTICAL SOFTWARE

John C. Nash, University of Ottawa

Abstract

Statistical computation is at the Most statisticians are familiar with

heart of a large part of all statistical scientific software libraries, from
research and analysis. The growing which subroutines (or complete programs)complexity and divesity of software for may be called to carry out calculations.
statistical computations implies that Well-known general purpose libraries are
statisticians spend a growing proportion those of IMSL and NAG, while BHDP
of their professional lives developing, focuses on biostatistical routines.

of teirprofssinal ive devlopngSeveral libraries suitable for
learning and using such software. micrcoputraue haveabee ar

This paper will review the mechanisms microcomputer use have been advertised

by which statistical software is In the recent past. However, I am aware

published, that is, made available to of only one -- C. Abac's Scientific

statistical practitioners. In Desk -- of which the authors have a

particular, emphasis will be placed on serious interest in and understanding of

the issue of academic or commercial numerical reliability. This does not
credit for the research and development mean there are no other quality

work which good software demands. scientific software libraries, but that
Potential approaches to inclusion of quality is difficult to ascertain.
software In professional performance (Note that IMSL and NAG have released
evaluation are discussed subsets of their mainframe libraries.)

Such libraries can be considered as a
Traditional softere publishing form of software publishing. This role

becomes clearer when the activities of
Traditional approaches to publishing traditional publishing houses are noted:

statistical software mirror the methods Wiley's efforts with the Peerless
used to publish scientific ideas in Engineering Service Scientific
general. That is, programs of a more Subroutine Library and Wadsworth's
academic nature have been disseminated investment in Statpro. Ignoring the
in Journals and related sources, while important question of commercial
didactic or less weighty codes have viability of such ventures, it is
appeared in trade or special interest necessary to decide whether the software
magazines. Books, too, have had their is published or simply "made available",
role, either in discussing algorithms in since source codes may not be released.
a step-and-description fashion which For the present, we will take libraries
readers can then program In a manner as a form of publishing of software.
suited to their needs and interests, or Similarly, packages may be thought of
in presenting listings (generally in as a form of software publishing, though
FORTRAN) of the author's code. the creative core of the

Examples of Journals which have programmer/statistician's art is now
published statistical software are the almost certainly hidden in object code,
ACM Transactions on Mathematical and often behind the curtain of a
Software, with the companion publication (possibly inconvenient) user interface.
of the Collected Algorithms of the ACM Finally, authors of technical reports
(CALGO), which publishes the complete and Journal articles may offer to make
listings, and Applied Statistics, which their programs available privately. The
has included numbered programs since the notice of the availability of the
late 1960's. Magazines such as Byte and programs constitutes their
Interface Age have included codes from "Publication".
time to time for statistical Paper-based dissemination of software
applications. Sadly, many of these have has the distinct advantage that humans
been of inferior quality, which led to can read and appreciate it. However,
my own involvement in writing articles while it is relatively inexpensive to
to attempt to expose the difficulties of obtain listings, implementation and
preparing scientific software (e.g. testing may be costly, if not in money,
Nash, 1981). then certainly in effort and time.

Books containing algorithms -- for There is also the question of
example, Kennedy and Gentle (1980) or publication delay, which implies that
Nash (1979) -- are rarer than those the user gets a program which is likely
presenting listings. In the latter to date from two years prior to
category are Ratkowsky's (1983) publication, even if hot off the press.
presentation of nonlinear least squares Computer magazines, traditionally
FORTRAN programs and Maindonald's (1984) up-to-date with news and information,
book on linear statistical computations now have publication delays approaching
with programs and examples mainly in a year.
BASIC.
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Updates to books and Journal includes most of the academic electronic

articles, except for errata, are likely mail networks, such as BITNET (and
to be similarly delayed. Worse, modest PHTNORTH), MAILNET, CS- T, USNT,
changes which dramatically improve the PHONENET, and others. To obtain a

efficiency of the program even though listing of what is available, a user

they do not change the scientific sends the message

content of ideas therein may not be SEND INDEX
considered "original" by Journal
editors. Updates and improvements are to the pseudo user NETLID
therefore unlikely to be easily at the ANL-MCS node of the ARPAnet.
obtained. atLheANL-MCS A siilar

Private distribution by the author or (NeTLIB@ANL-MCS.ARPA. A similar
his/her organization has been a popular message, for example,
mechanism for scientific software END CSVDC FROM LINPACK
distribution. It works well as long as
expensive. Since people move, change

Jobs, take sabbatical leave, etc., the of that FORTRAN subroutine from the
distribution link usually dies after a LINPACK collection. Currently available
few years. With no external monitoring are

of the design and development of such
software, quality may vary greatly. KISPACK -- matrix eigenvalue problems

Some paper publications also offer LINPACK -- linear algebraic calculations
distribution of machine readable media. CALGO -- Collected Algorithms of the
Originally this meant cards or magnetic ACM
tapes. More recently, diskettes have FUNPACK -- special functions
become popular, with some books even
including a pocket in one cover for the and a number of other collections.
diskette (e.g. Nash and Walker-Smith, C
1986). Another approach involves Comparison of alternative and traditional
printing bar-code style information in software publishing mechanism
strips right on the paper which can beread with a special reader (the Cauzin To the best of my knowledge, a
rysead w ttpeca eader (thecomprehensive cost-benefit comparison ofSystems Softstrip mechanism). the different modes of software

Alternative publishing mechanism publishing has not been carried out.
Statistical software, which in a 0

Other mechanisms exist by which relatively small market segment of the
software may be published, overall software marketplace, cannot be

"Shareware" or "freeware", also compared directly with such products as
called "user supported software", is word-processing packages or
distributed by users giving copies to communications packages.
colleagues and associates. The software Nevertheless, it Is clear that
creator generally claims copyright on shareware, online and elmail software
the product, but grants permission for delivery modes all offer easy updating
the copying. A fee Is demanded for the of programs, providing the user is
manual and for updates and corrections willing to pay the generally small
of the software or for technical charges for contacting the human or
support, which are usually supplied by machine sources. It Is in this
the author. In some cases, for example placement of the responsibility for
the word processing program PC-WRITE, obtaining updates on the user that 6
this concept has proven extremely fairly substantial cost savings to the
successful. EPISTAT is a suite of vendor / supplier arise. Instead of the 0
statistical programs distributed as software vendor mailing updates to many
shareware, users, only those who request them are

Various computer bulletin boards and serviced. This may lead to many users
some commercial information vendors working with obsolete or defective
provide for the down-loading of public versions of the programs, but this is
domain software. Mostly, this consists hardly different from the situation
of games or utility programs, though where a user has not seen or bothered to
some technical software may be found on implement a published correction.
the commercial systems, for example, the Software & documentation are generally
Byte Information Exchange (BIX). User delivered In machine readable form by
charges are generally based on connect the alternative publishing mechanisms.
time plus telecommunications charges. Some users may prefer nicely printed

A further alternative is electronic manuals including tutorials, reference
mail. Dongarra and Grosse (1985, 1986) material, and installation guides. For
offer an impressive array of electronically transmitted files, data
mathematical software, available to compression may be advisable to cut
anyone with access directly or telecommunication costs.
indirectly to the ARPAnet. This Version/edition control may be a
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problem, especially with the temptation to the user to have any but the latest

to add updates as soon as they are authorized version.

available. The obstacles to the development of

The mode of use of software alternative methods for publishing

distributed by online or electronic mail statistical and other scientific

mechanisms will be considerably software are primarily those relating to

different from paper-based distribution, credit for the creation of intellectual

Compared to conventional property. In particular, the general

libraries/packages, the source of academic fixation with paper-based

advice/support will likely become journals implies that authors who

the database supplier in place of the support alternative publication vehicles

computing center of a university / may find that their work "doesn't count"

company / institute. The user may have for academic rewards In tenure or

a much bigger role to play in the promotion. A related issue is that of

evolution of software, for example, in crediting workers who actually support

the types of software supplied, the software in general use -- software upon

correction of faults, the enhancement of which much research in practically all

features, the development of disciplines may depend. Some years ago,

applications and the preparation of I derived formulas to extend the Gini

documentation. Ratio -- a statistic used to assess the
uniformity of income distributions -- to

Doonomic and academllec ssues the situation where incomes may be
negative. Furthermore, I documented the

All of the alternative distribution interpretation of the statistic in these

mechanisms have the advantage of initial cases, wrote a program to analyze the

low-cost of delivery to the user. They data, and ran a considerable portion of

rely on word-of-mouth or traditional the calculations. However, when the

advertisements, however, to attract user report of this work was published, I was

attention, and may therefore not achieve neither listed as author, nor mentioned

a desired level of awareness. Shareware as someone who had provided assistance.

may impose costs of production for The point here is not that the authors

manuals, updates, etc. on the vendor of were ill-intentioned, but that the role

a very similar level to those of "supporting cast" is often accorded a

experienced by traditional software very limited status. In the case

publishers, described, pointing out to the authors

It Is more difficult to estimate the extent to which the results of their

costs for online and electronic mail work relied on my software resulted in
modes of distribution. For sake of satisfactory recognition.
discussion, a figure of the order of 25 A more general difficulty concerns

cents/lO00 characters is probably the possibility that a program may be
reasonable at the present time for the altered over time by contributions from
communications costs. (Elmall is a number of workers. Who should then

probably cheaper than online get the credit? This is a continuing

distribution, but many of the costs are issue. It is compounded by the reality
buried within the overall network that a researcher gets more academic

management costs, frequently borne by value from a completely different
universities as a service to their program, even if it does not work '

members.) Both of the electronic methods particularly well, than from a minor

of distribution gain by the lack of change to an existing program which

human intervention in the distribution doubles its performance.
process. Furthermore, the user may
choose to download only a small segment Vhat can be done to ensure good
of software or documentation rl. software is published?
particular interest.

To date, none of the software being This paper will not attempt to define

distributed electronically is returning "good software". However, whatever

any revenue to its creators. Even metric is used to judge software as
commercial systems are charging mainly good, I would suggest that the N

for telecommunications and database publication of such software should be
provision services, along with profit such that:
for the vendor. If software authors are
to be expected to create programs for 1) it is widely available and easily
distribution, they must be rewarded, and obtained and installed;
pricing mechanisms which balance between
author greed and user theft (i.e. 2) the price should be reasonable,
unauthorized copying) are needed. The that is, comparable to the price of
major unanswered question is whether a a statistics monograph.
price exists which is high enough to
cover the hardware and communications It is possible that if such
costs and a royalty to the author, but conditions apply, the only software
low enough so that it is not worthwhile available would be good by virtue of
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market competition. In order to be References
worthwhile for programmers and
statisticians to create this software, Dongarra J. & Grosse 3. (1985)
the profession must recognize, as a "Distribution of Mathematical
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1) the Natural Sciences and Kennedy W.J. & Gentle J. (1980)

Engineering Research Council of St kk tr- cew York.
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Computer Science category to list mash J.C. (1979) Compact numerical
software packages produced. methods for computers:linear

algebra and function minimisation,

2) statistics Journals and Adam Hilger, Bristol (Halsted Press,

newsletters, in particular American New York in U.S.A.)

Statistician, have been including an Nash J.C. & Walker-Smith M. (1986)

increasing amount of software "Using compact and portable function

announcements and reviews. minimization codes in forecasting
applications", INFOR, in press.

3) the Dongarra / Grosse NETLIB Maindonald J. (1984) Statistical
project has established the technical computation, Wiley, New York.
possibility of electronic mail for Ratkowski D.A. (1983) Nonlinear
software distribution. regression modelling, Marcel Dekker,

While the development of electronic New York.

distribution depends on the growth of
the required network infrastructure,
there are a number of Individual
initiatives possible. Statisticians can
strive to ensure that software support
and assistance is properly credited.
Personal software activity can be listed
in annual reports. At the risk of
giving offense to users, one can demand
acknowledgement or even co-authorship.
More subtly, the mindset of the
profession can be influenced by asking
questions about software generation and
support in employment interviews or
questionnaires. Use of existing
electronic mail facilities for
transmission of software, manuscript or
bibliographic material is a useful step
to learning how, and how well, systems
work.

At present, it is unclear which of
the different options for statistical
software publishing will assume major
roles in the coming decade. It seems
likely that statistical software will be
published mostly by electronic means at
some point in the not very distant
future. However, the precise mix of
delivery methods remains to be revealed
by the passage of time.
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FSTIMATION OF RESPONSE TIME CHARACTERISTICS IN
PRIORITY QUEUEING NETWORKS VIA AN INTERPOLATION

METHODOLOGY BASED ON SIMULATION AND HEAVY TRAFFIC LIMITS

B. Simon and J. S. Willie
AT&T Information Systems Laboratories, Denver, Colorado

Abstract (nodey(l), node,(2), ... , node,(Ly)), gives the
sequence of nodes that y visits. The second vector,
(prio,(1), prioy(2), ... , prio,(L,)), gives the priority

Consider a network of priority queues, and suppose levels at each step, and the third vector,
one is interested in describing some characteristic, (gy(l), gy(2), ... , gy(L/ )), are the service time
say f(,\), of a particular response lime distribution distributions for each step.
as a function of the arrival rate K. Here, f(X) Note that random routes are allowed as long as
might be a moment or quantile of the response time there is a bound on the potential length of the route
distribution, or any of a number of other interesting (i.e. a finite number of possibilities). This finite
functions of the arrival rate. In this paper, a restriction can be relaxed, but the notation becomes
technique for estimating f(,\) as a function of K over burdonsome. Complicated routing schemes, such
some region of interest is presented. The technique as "nested Markov routing", are described in Simon
involves estimation of the f(K) at a few values of K [19851.
by discrete event simulation, normalization of the
estimated f(k), regression of a low order polynomial The queueing discipline at each node in the
on the normalized estimated f(k), and the heavy network is preemptive resume. Type y customners
traffic value, and, finally, a renormalization of the enter the system as a Poisson proes with rate X.,
fitted polynomial. and the arrival streams of the K customer types are

mutually independent. Note that the number of
nodes in the network and the number of priority

1. Introduction levels at each node are arbitrary, and are given

In the study of complex networks of priority queues implicitly by the vectors node, and pro,,

encountered in computer and communication y 1,2, , K.

system modeling, one is often interested in 3. Discrete Event Simulation
describing characteristics of some "steady state"
response time distribution as a function of the rate In the study of complex networks of priority queues
at which customers arrive at the network. This encountered in practice, discrete event simulation is
paper presents a simulation - heavy traffic a useful tool for providing reliable descriptions of
interpolation methodology that is useful for response time characteristic of interest if care is
providing such descriptions. In Section 2, we taken in the design and implementation of the -
describe a general class of queueing network models simulation experiment and analysis of the
for which the interpolation methodology is simulation output (see Fishman (1978] and Iglehart
applicable. Sections 3, 4, and 5 describe the three and Shedler [19801, for example).
main ingredients of the interpolation method; For some system, arrival rate Xj , (0 < '/< c)
namely, simulation, heavy traffic and the and response time characteristic f('j) of interest,
normalization. In Section 6 we will describe the suppose we obtain a point estimate f(X) of fA)
interpolation technique and in Section 7 we via a simulation experiment. Since f(Xj) depends
illustrate the technique with an example. on the particular observation of the system from the

simulation run, it is often important that some %o
2. A Class of Priority Queueing Network Models assessment of the accuracy of the point estimate %-?
The systems we will consider here are open f(Xj) be obtained. There are several methods
networks of priority queues with K < - customer available to the experimenter for assessing the
types. A customer type, y, is specified by three statistical precision of the estimates of response
vectors of length L, (L is the number of steps in y's time characteristics based on simulation output data
itinerary). The first vector, (see Welch [1983] and Heidelberge and
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Lavenberg [1984]). For example, the regenerative In many systems (even fairly complicated systems
simulation method (when applicable) provides a such as the example in Section 7), -y can be
technique for approximating the distribution of computed by hand. Systems with nested Markov
f(k,). In the regenerative method, a cycle is said to outing can be solved exactly via systems of
begin when a state of the system is reached such simultaeous equations (see Simon [1985]), and as a
that future behavior is independent of past behavior last resort, in the most general cases (i.e. nested
and identical (in distribution) to every other time a semi-Markov routing), y can be obtained from a
cycle begins. For a fixed number n of cycles, the light traffic simulation. Obtaining y from a
regenerative method provides an estimate f(.Xj) and simulation experiment will be addressed in a
a statistic s[f(X)] such that if n is large, forthcoming paper (see Simon and Willie [19861).

A(l) - f() -:- N(0,1). (3.1) Equation (4.1) is actually a consequence of a more
-ei ,) ] general result. If W(t,) is the probability that the

The - in (3.1) means that the random variable (or response time of a customer (who requires so-viceThe in 3.1)mean tha therandm vaiabl (oronce) is greater than t when the arrival rate is ),I"

statistic) on the left is approximately distributed as then

the random variable on the right, and N(0,1)

denotes a normal or Gaussian random variable with iim Wf-. ) e-" . (4.2)
zero mean and unit variance. The denominator on . ' "
the left in (3.1) is generally referred to as the
estimated standard error of f(hj). Approximate Equation (4.2) allows us to compute quantles: If
confidence statements about the value f(,) can be f(k) denotes the p* quantile of the response time
based on (3.1). distribution when the arrival rate is X, (4.2) implies

that
In Section 6 below, an approximation like (3.1)
will be an important aspect in the development of ir(c-X)f(X) = - 1 (4.3)
the interpolation methodology. .-C I- I-P.

Note that a major drawback of pure simulation Both (4.1) and (4.2) can be generalized to
methodology is, of course, the computional costs customer types that require service more than once,
associated with a detailed study of the system under or require service a random number of times (e.g.
investigation. This can be particularly true when a queues. with feedback). The analog to (4.2) is a
description of some response time characteristic for weighted sum of exponentials, and (4.1) becomes
relatively high arrival rates is desired (see the nt moment of that distribution. Although the
Blomqvist [19671). analog of (4.3) cannot be written down in dosed

form in the general case, the heavy traffic limits of
4. Heavy Traffic Theory the quantile functions can be easily computed

Many of the interesting performance measures of numerically.
our queueing systems, such as moments and It should be pointed out that there remain some
quantiles of response time and queue length unresolved issues associated with a rigorous
distributions become unbounded as the arrival rate derivation of (4.2). Equation (4.2) assumes that
to the system approaches capacity, c . Roughly the stationary distribution of the limiting queueing
speaking, the heavy traffic theory of queues process (reflected brownian motion) is the limiting
quantifies the rate at which these functions stationary distribution of the queueing process. This
approach infinity, so that if the functions are interchange of limits has never been demomstrated
properly normalized, one can obtain exact (finite) rigorously, although empirical (as well as intuitive)
limits of the functions as the arrival rate approaches evidence seems to imply it is true.
capacity. For example, if W,(X) is the nt moment
of the response time distribution of a customer who 5. The Normalization
requires service once, then ! sFrom equation (4.1) we see that if we normalize

lim (c - X)"W.(X) = (4.1) the function W.(X) by (c - X)n, it will be finite for
yR X/ in the interval [0 , c]. The same normalization

where y is a quantity that can be calculated in will keep Q,(,), the n moment of the queue
terms of the system parameters for a large class of length distribution, finite.

systems. A good normalizer will do more than just keep the
function finite, though. Suppose we want to
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approximate a function, f(.\), which has the form 6. The Interpolation Methodology

= A(X) In this section, we will discuss the estimation
8(k) B (k) B2() B,(k) methodology associated with characterizing some

where A(K) and 81(k) i = 1,2,...,k are "steady state" response time characteristic, say f(X)

polynomials (i.e. f(\) is rational). Suppose we as a function of overall arrival rate.

normalize f(k) by B(X) so that we are left to Suppose we have estimates (X/) of f(kX),
approximate g(k) = B()f(k) = A(X). Since we j = 1, • • • , J from a few (independent)approximate g(X) by a polynomial, (and since simulation experiments. Suppose also, that we
g(X) is a polynomial), if we have enough have statistics sAe[f(A)] , Ae•• , s[f(X )j such that
information about g(X) (i.e. a sufficient number of
simulation points, along with the heavy traffic Ax!) -f ), (6.1)
limit), the only error in the approximation will be sf(X)]
due to uncertainty in the simulation data. For ,(we Section 3). Let ,X. denote the
example, if A(.) is quadratic, and we have two minimum of the arrival rates, x1 , - • • , and let
simulation points and the heavy traffic limit (or one n(k) denote a normalizer of the type considered in
simulation point and the light and heavy traffic Section 4. Assume that the heavy traffic limit
limits), then A(X) is uniquely determined. Thus,
the ideal normalizer would be the "denominator" of g(c) = im (c -X)f(X) n(k)

f(.\).X- f~k). is known (exactly).-.

Many simple functions of queueing systems are

known to be rational, and one may conjecture that Let us suppose that forx,,, : X : c,

W.(W), Q.(\) and other functions of interest are g(k) = f(Xj)(c - X) n()
rational for very general systems. Unfortunately,
even if we know that f(.\) is rational, we may still I b, , = g(d)(k), (6.2)
have no idea what B(X) is. Our approach is to try k-0

to identify as many of the B1()'s as possible, and for some d and coefficients, bo, - - • , bd. In other
use their product as a normalizer. Much of this words, we assume that the normalized f(X) can be ,
work is heuristic, and it remains to be proven that approximated by a some polynomial of order d
the terms we identify actually appear in B(.). over the interval [X.&, c]. The problem of

First of all, heavy traffic theory shows conclusively characterizing the normalized f(,) is now one of

that B(X) contains a term (c - X)" if f(.) is W.(K) determining the order d and coefficients

or Q.(X) (if f(X) is a quantile function then B(X) bo, • • • , bd of the approximating polynomial. For

contains (c - K)). We conjecture that there are j = 1, , J, form
two other classes of terms present in B(X). The first
corresponds to "high priority traffic", the second is &,) = (X) (c - X) n(X ,

analogous to (c - x), but is due to non-bottleneck and
nodes (see Reiman and Simon [19851 for details).
The optimal choice of a normalizer is an important se[&j)1 = s4P(X1)] (c - K) n(k).

and interesting research area. Pretenting that d is known, for the moment, a
natural approach to determining the coefficients of

The normalizer for response time quantiles ill the polynomial is to fit the right hand side of (6.2)
always have the form (c -X)n(.), where n() is to the statistics & 1), . , , subjec to the
finite for 0 c. Thus, we can rewrite (4.2) constraint that g(')(c) = g(c). The approximation
and (4.3) as in (6.1) strongly suggests (see, for example, Lewis

and Odell (1971]) that we fit the polynomial uing
Ii X ehl(O) a constrained, weighted least squares procedure:

Let j denote the vector of length J with elements;

and 1(), .• , (X,), and denote by b, the vector of
length (d+ 1) with elements b0 , , bd. Also, let

lim (c- X) n(\)nf(k) - nIl U In V denote the JxJ diagonal matrix with diagonal
X-C */ l-p elements vjj given by

respveectively. 253=
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j=1,••' ,J, and If the approximation given in (6.1) is reasonable,
we expect the approximation

1 -. - 1

XI X2  ... - i d)(x) - f(-)() N(0,1) , (6.4)

A = should also be reasonable, with

xd ..
S Wd)(x) VA cov(b)

• [(c - X) n(')]

Note that V is an estimate of the covariance matrix (see, for example, Section 3b of Rao [19731).
of j. The constrained least squares estimate of the Above, we have been assuming that a value of d
coefficients vector, b. is the vector (call it /) which which provides a "good" approximation in (6.2) is
minimizes known. Note that, except for a few very simple

- A'b)'V-( - A'b) (6.3) systems, this is generally not the case. However,
the approximations given in (6.1) and (6.4) provide

subject to c'b = g(c), where c = ( 1 c c" ) a means of partially checking the adequacy of the
and where ' denotes matrix transposition. constrained fit of a polynomial of degree d to the
Assuming A is of full-rank, J 2 d+ 1, and the vii normalized quantile estimates and the heavy traffic
are positive, the constrained minimum of (6.3) is at limit point. The problem of determining the order
(see, for example, Section 6.3 of Lewis and of the polynomial can therefore be approached
Odell [1971]) empirically. For example, a sensible procedure is

= b + S-Ic[c'S-1c]-1[g(c) - c'b] to choose the order of the approximation to be the
smallest d, such that the fitted polynomial is

where "reasonablely" close (relative to sampling

- = SAVj fluctuations) to the normalized quantile estimates.

and As noted in Section 4, it is not always possible to
compute g(c) exactly. However, an estimate J(c)

S = AV-A'. of g(c) can generally be obtained from a light
Note that $b is the unconstrained, weighted least traffic simulation experiment. The extension of the
Noaes tatiste no ns.theraiane -coighe above interpolation methodology to the case wheresquares estimate of b. The vanance-covariance g(c) is estimated via simulation will be discussed in.'

mro s) g=e by' - S'CCa forthcoming paper (see Simon and Willie [19861).

coy(/;) = - - S-'c[c'Sc]-1c'S- '

Note that the first term on the right directly above 7. An Example

is the variance-covariance matrix of b, so that the The queueing network considered in this section
added information contained in the constraint, has two servers, a CPU and a disk. Four different
namely c'b = g(c), leads to a reduction in the types of customers arrive at the system as
variance of the estimate of b over the independent Poisson processes with arrival rates in
unconstrained estimate. set ratios, and there are four levels of priorities at

Now, for an arbitrary XX X5c, we the CPU. Here, the overall arrival rate, X, is the

estimate g(d)(X) by sum of the four arrival rates of the processes
corresponding to the four customer types.d

I()() X, X= Customers of type 1 have the highest priority at the
k-0 CPU and require 4.0 milliseconds of CPU time

before departing from the system. Type 2
where k = ( X2 . • . X' ),. Renormalizing, customers require a random amount of service time
we estimate at the CPU from a particular 10-point distribution: 0

-i(d)(X,) The service time is assigned the value 10.0, 20.0,
f( J =[(c - X) n(X)] 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, and 100.0

milliseconds with probability 0.23, 0.23, 0.23,
by 0.23, 0.03, 0.01, 0.01, 0.01, 0.01, and 0.01,

I (()(x,) respectively. Type 2 customers have second highest
[(c - X) n(h)] priority at the CPU and after receiving service at

the CPU, they depart from the system. Customers

254



of type 3 are similar to those of type I except that lim(C-X)f(X) =in(O.01) 19.3.
type 3 customers require only 1.0 milliseconds of X-C 0.239
CPU service and have only a relative priority level
of three. A customer of type 4 first visits the CPU higher than customers of type 4 and since a 
upon arrival to the system. After receiving 50.0 customer of type 4 ndine a
milliseconds of service at the CPU, the customer curstm oft to te sk,
goes to the disk and requires a random amount of our system with two extra terms,
service time that is uniformly distributed over the n(k) = (CH -X) (c2 -X),
interval (30.0,70.0]. The customer then returns to where cv " : 0.118 (the capacity at the CPU as seen
the CPU. This sequence of steps is replicated a by customers with higher priority than Cansaction
total of 12 times and then the customer departs 4), and C2 = 0.268 (the capacity at the disk). Tius,
from the system. Type 4 customers have the lowest
priority at the CPU. we set

The capacity of the system, c, is easily calculated as g() = (c- ) f(k) n(k).

to be 0.0820 total arrivals per millisecond. The The heavy traffic limit of the fully normalized
arrival rates of customers of type 1, 2, 3, and 4 are system is
0.47330 X, 0.20930. X, 0.31120 • X, and limg(\) 0.129.
0.00620 X X, respectively. iXg) 0

In this example, we are interested in describing the In Figure 7.1, we present the approximation of the
0.99"' quantile of the "steady state" response time normalized 0.99' quantile of the response time
distribution associated with the first two steps of a distribution of interest as a function of the overall
type 4 customer (i.e., the first CPU to disk). In rate of arrival of customers to the queueing
particular, we desire a characterization of this network.
quantile as a function of overall arrival rate. Here,
f(X) denotes this function. FIGURE 7.1

For the above network, discrete event simulation Approximation of the Nofmalized 0.99* Cuantile Ftmctoa
experiments were performed for overall arrival rates 0.35
of X, = 0.0410, X2 = 0.0492, X3 = 0.0573, and
X4 = 0.0655 total arrivals per millisecond. These
arrival rates correspond to traffic intensities of 0.30
0.50, 0.60, 0.70 and 0.80, respectively. Based on
the regenerative technique, estimates 1(Aj) and 1.25
s[(kj)], j = 1,'-', 4, were constructed from Pl)(o
the appropriate sequences of simulation output . /
data. The methodology employed was a two-stage 0.20 %

extension of the methodology described in Iglehart
[1976]; see Willie [1986]. Results of another study
(again see Willie [1986]) suggest that for the f(Kj)
and s [V(Xj)] in this example, the approximation
(3.1) is quite reasonable. Alternative estimation o.o
methodologies are developed in Heidelberger and
Lewis [1984].

Computing the heavy traffic limit for our system is (ai minliuacwd)

a straightforward application of the material in The points
Reiman [1985], or Simon (1985]. If W is the
response time of the first CPU to disk for a type 4 ,j(Xj) , j = 1, •. •4, and (c, L(Xj)J
customer, then are displayed with solid dots in Figure 7.1. The

iW> _verticle bars eminating from the dots extend toX -C =C- •(kj) t se[j(Xj)j The character of the points

suggests approximating the normalized quantile
Thus, we have function over [Xn, c] by a straight line: The line

in the figure is the (linear) approximation 1 )(X),
constructed in the manner described in Section 6.
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The verticle bars about the line extend to Heidelberger, P. and Lewis, P. A. W. [1984].
0)(ky,) t s [f 0)(X ,)] for a selection of Xj- in Quantile estimation in dependent sequences.

the interval [X,,m, c]. For a particular arrival rate Operations Research 32, 185-209.
kX, say, the latter verticle bar is a measure of the Iglehart, D. L. [1976]. Simulating stable stochastic
typical error in i1)(,j,) resulting from the sampling

systems: IV. Quantile estimation. Journal of the

errors in the simulation points used in the Association for Computing Machinery, 23:2, 347-
interpolation. Note, this should not be confused 360.
with the error in j(l)(Xj.) resulting from
approximating the unknown g(Xj,) by a linear lglehart, D. L. and Shedler, G. S. [1980].
function. The point in Figure 7.1 displayed with a Regenerative Simulation of Response Times in
circle is a normalized quantile estimate from an Networks of Queues. Lecture Notes in Control and
additional simulation experiment. This point was Information Sciences, Springer-Verlag, New York.
not used in the construction of the interpolation Lewis, T. 0. and Odell, P. L. [1971]. Estimtion
line. in Linear Models. Prentice Hall, Inc., FEnglewood

The approximation (' )(k) appears to be a very Cliffs, New Jersey.
reasonable description of g(,) over the entire Reiman, M.I., [1985]. A multi-class feedback 0
interval [Xmi, c]. queue in heavy traffic. Unpublished document.

Our approximation of the 0.991 quantile function, Reiman M. I. and B. Simon [1985]. Open
Jp)(X) is displayed in Figure 7.2. The points and queueing systems in light traffic. Unpublished
bars in Figure 7.2 were obtained by rencrmalizing document.
the corresponding points and bars in Figure 7.1. Reiman M. I. and B. Simon [19851. An !

FIGURE 7.2 interpolaion approximation for queueing systems
with Poisson input. To appear in

A~Pproximalon of the 0.99a Oumntilc Functoi Operations Research.

Rao, C. Radhakrishna [1973]. Linear Statistical j
350 Inference and Its Applications. John Wiley & Sons,

New York.
3MD

Simon B. and J. S. Willie [1986]. Estimating heavy
) z ) potraffic limits from a light traffic simulation. In

200D)(~ preparation.
Simon, B., [1985], Computing heavy traffic limits

. 50 for networks of priority queues with nested markov

100 routing. Unpublished document.

Welch, Peter D. [1983]. The statistical analysis of

0 simulation results. In Computer Performance
Modeling Handbook, ed. Stephen S. Lavenberg.

0.04 0.06 0.08 Academic Press, New York. 41

(arivals per mlisecond) Willie, J. S. [1986]. OSIM: A performance analysis
and prediction tool for queueing network models. ,
To be submitted to AT&T Technical Journal.
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SEQUENTIAL SIMULATION RUN CONTROL

US'ING 3TANDARDIZED TIME SERIES

Lee Schruben, Cornell University

In this paer the b.sic onepts of standardized time series analysis are
presented. A detai led sequential confidence interval estimation procedure is

presented based on standardized time series.

(STEP 2) SCALE THE STATISTIC MAGNITUDE: express

the statistic in a common unit of measurement

1. MOTIVATION AND BACKGROIND: called a standard deviation. The magnitude of

the statistic is scaled by dividing by O/Jn. Our St

The moti.ational mater '! pv-ented in this statistic is now

section is expanded on ir [izchruben, 19395. Z =( - -') /(a/4n) V

.ntandardizunu a time set5 es is similar to the n n

ramiliar procedure -4F standardizing or which is our standardized statistic.

normalizing ,scalar staitistic. Standardizing a Sadrie apemaswl l aetesmsealai' stat ist j,, such as a s~ample mean, invol -,es Standardized sample means Mill all have the same
,entering the statisti" to ha' a zero mean and first two moments. The unknown scaling
scaling its magnitude to generic units of parameter, 2, can either be estimated or it can
measurement called standard derations. Limit be cancelled out of a ratio statistic. The paper
tha,,remn cealed thatav dtios. Limit in the refrerences by Glynn and Iglehart discuss
theorems oan bie applied that gt-e us the these two alternatives from a theoretical.is~mpt.otic ( large sample' probabilistic behavior hs w lentvsfo hoeia
of rorreti saardized- saistic ubea r viewpoint. The cancelling out of this parameter
Of V -t'ectl- .Standardized statistic, under- in a ratio statistic is the more common approach
,ertain hypothes s This limiting model for a
sealar staiti;tic is typiratl: the Standard Normal and this is followed here.prctihabilt; dlistribution. This model can Ice used
fr stotastil in nc ucn h as testing (STEP 3) CANCEL THE SCALE PARAMETER: the data is
hypotheses.o '',n*tf tn, trc . c,',nfidence intt'as, aggregated or batched into b exclusive adjacent
hi-cO t rl v .tis cont, thndencgroups of size m (assume b = n,ml). The

-,tandardi .al trn or a.n entie time sri ~s average of each batch is denoted as, Y m' =

The s alu of standardizing time series comes, 1,2,..., b. The usual unbiased estimator of the

from the fact that. the same mathematioal analysis .arianc, of the batched means is

-- an be applit d to series from a variety of b

source',. Thus the t-chnique or standardization 2 2 (

.r~es a
, 

a mathematical surrogate for experience i1 i,a n

with the dat, under study. No matter what the

original time series looks like, the standardized %
time seriesP gill be familiar if certain Inferences about the parameter, L, are based on %1P

hypothepes ar correct. Unusual appearance of a the random ratio, t0

standardized time series can be used to conclude 2 2

that thesel hYpotlheses are not valid. The Tb-1 ((Yn- "(b-i)

',tatistLc;l significance of these conclusions can

1), computed in the same manner as with n /

standardized sealar statistics.

The parameter, 0, cancels out of this ratio.

1.1 'tandardizing a icalar Statistic:
(STEP 4) APPLY LIMIT THEOREMS: The limiting

As a guide to standardizing a time series, we distribution of Tb 1  is known. As n - a (making

re.iew the procedure ot' sLandardizing a scalar m do slnqe is fixed) the distributin function

statIst ir. H, will use the familiar t-statistic of (b-1) : /o converges to that of a )- random

a'; an mi . The.ita Sill 'cnsist ,fr , .ariable with b-1 degrees of freedom. Also as n P

obsrvation, 1 ,... that are ." 1n will converge to the constant u and the a%.- - I n' n
indpenlant and h.;ie ident i -al diI ri huti ons. He distribution function of Z will converge to that P t

wish to make inrfetence% abrut the unknown n

populatinn mean a. The sample average of the of a standard Normal random variable. Thus the
,Iata, Yn. will b, the statistic used for these distribution function of Tbi (being a continuous r

i nferences. The, population variance, . is an mapping', will converge to that of a t random

unkniin nut,,n,'e piramr t r variable with b-1 degrees of freedom.

tandard i zat. ion in,,l.o s the f,,llowing st eps. (STEP 5) uSE THE LIMITING PROBABILITY MODEL FOR

(STEP I CENTER THE STATISTIC: the population INFERENCE: The limiting distribution of Tb_ 1 can

mean in suhtractcd rr,m the sample mean giving be used for statistical inference and b-
the random Yia.le. T i which has an exper'ted estimation.

value i f zero.
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1.2. Standardizing a Time Series: A -T(k *)
kz1

The concept or standardization can be applied to
an entire time series. The original series of (.,TEP i4) APPLY LIMIT THEOREMS: It is shown in
observations is transf'ormed into s standardized tSctiruben, 10131 that the standardized series,
series or observations. He will hypothesize -and T it'. will oon.,erge in probability distribution
test) that the series is stationary. H~e also t hi fAB~winlvdeSohs.CPOe5
assume that there is some minimal Amount ofThsteBona rcs pysh,.ol
randomness in the process; however, we -lo' notintm vrsdildzainththpoml
assume that the data is independent. Ttteadmaial lydintesaa
mathematical assumptions needed arc(- given in tnadzif-.Ath tpoat ttueofh;I Schruben, 1q33] where it is argued that standariza ion.es An t ipotat. fitur orth
simulations on a computer, will met the impost md
restrictions frt appli--abilit ' . LA- construct-d I., b-_asymptoticall. independent of
(Ti, i = 1,_.., n) denote the time s.eries. R- th- samp-l- mean. YA'MO

Kill standardize the seqai~ce or cumulat i. means. There ire s,1vtial fu~nctions of' T llI that
up to and including t he k obser.at ions, gi-.en 2 m
by,.

-it-a illh.; . .,limit in 5 n--i-mel 'Ii ,tiut i-r
k with zir- mcgtn .ind . ln. V - 1 -- , i'A

Y k- -k Thei-- tfo1-, A' V will ha- e a limit i nS

ti slt but ion witht on, -tegie, ''freoiom.
Now onsidert where each of h i ndEpend,-nt

Similar steps to those in sI andai-dizi ng A setr eptlicat ion-. C--c btatoehes of dat a) Are
statisitic are followed in %tandartlizing .'. tim- standardiz7-d in the ,mannet- ab H.le ca9 then
sen es These steps, art- as, foil okw, add the cc-slting - andom vai'iabl es. - o I oeach replication or, bat-,h to obtain A random
(STEP 1) CENTER THE S-ErIES: The- ,-tuen... gi -'n b. 'atable with b degree-. of freedom. (I so each of

Sk t ho r i -- t i--at i-'t or ra--t-h m5--ans can be ti-eatedl as
m .11 m .ik -,st -;ca tar Ka ntom ariabi e- And st a dac-t II Z -d

gis.ing Another . rand-a ar'iabl, (ib S
will ha.e a mean ofC zero. 'gi-en abo ie, Due t,. the ind.-pen.tence of T INit'

(STP ) CAE TE ,ETF7.MACITDET ., - It g an't the A ,these two random vaiables can

consantfordepndpt -Iunc~ tht w isbe added gi-ing ad- random Variable with 2b-i

defined as degree, oNf frVet a "m. I his can be consid -ere.d as a
"Pooled" estimator of 7 which we will denote as

I lIm m VAirtYQ_
mi.m

which is just the popalati -n vAti ance in th, N,,ER.C ETHc LII N / like '-I thMscat L rcae. Ph

special case of independenit itenticalty- NPFNE x..tlie h,,'carLst,
distriuted ota. Mani~qd scatindt-rtoneed -- tcr s.ampt. mean of All of the.

distrin bated data agn LAsaing is, one b, dat a car, be di . d-I d ' ; the -luairt io,,t or -c
di ;di g S A)1>, ' ,) A. Agan th Sct i i ~ 2b 1 to' fortm a ratiit( indep nttnt %Wf the scale

constant is unknown bat wilt ''an,,,l ''at .of out pa rame tePr 37)P. For large ;alues of m t he
statistics as, before . d-i t ri bation of this i-at to ",an heao iate.5

Now thr osine step required tawsn-t mdldshaing a t distribution ath t b-i 1

necessai-y in the scat ar standlardizat ion case o ft'r-- -C f -m The sa;me p- of i nf--r--neosv
Different time s-i-- an h- or diff-t,nt ] engi h -an 1e' ma-Ic. t'r, I h-- iep-n--nt t ime si mat .,tion

Thu. - ht it -1 11 1 -nt' t., i n t p F., n t n t  - t l a  c
......  T h e  i *- s  t i n &  !t Lr ' a '

ti'--: Pr-a re'tt- ~ t *.ris. Si.,n b,.-

index is thus gii-en b. ki ttwttI H.- as1- add ith.'i.

starting point -' = 0s-i thaIt i t -'I Th. Theor t i-'il t-r-eittes of i-nitn-- inters-al'.-N

* t~esult is that at I standardized t ime cte have f---mt-tint 'taini,i-li,s-tI tm, eisAircN
indices on the antit i nterval pi-sented in t 601dsman ant Lich-al-n 101) Th i .0u~

pjpr *-m-r-sthe tina'li.- time .i-
He now have what we wilt callI a s.tandardizedi time eippi-ach to --- '-nt i--na met hodts
series givzen by ;P~.TrWO Ar~-Z~ IE:EI.,

TI t) = t fttC I tmtt I(4m(g .7)
m m

(STEP 3) CANCEL THE SCALE PAPANETEP. There, at-c tnt imu-,,ti,,n-a i-. Ist-.- it.mnt- in
several functions that might be conside red for e -d-atnt- ni.,i- l-.

t e denominator (f of a r to that e -'~l t ( ec F-III.iISI o , 1, I1 ') And t G F (.; ru .
Schruben. 191 He will consider her-o ont. .,ne 1e t4 ti TI% Mozart. iflfl -0 ntat P t -hr 'n
such function, the sum i or limiting area un'Iet 1AItTee akgst,- f.-'r-'n totn
the funrtion Tmt A IITin dI-,rh .1 1 Adri
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durat ion As Ke-Il as pr-oduce confideince STEP 3: If' H, <

ntf.e';als Other, applicat ions, of st-andAi'lzed th,-n, reptii't A cent' iden'' intei'.al t

time here' ha e bet-n to, sl ction and tanking wihK -C Anti STOP:
pt".blems, I oidsman, 115331 and simulation model othtr H .Sti .S u EUN

vatlidation [C(hen and S3arto'nt_. 10341. .%tni~ ~'im
ANli ALCOORITIM FOR, ;EQUERlTIAL :INIILATION RIJ Lrtjncat tinr octnt sPetlion S TEP 1I

CONTROL -A"',tmcLnei

The ojti:eof the simttlation run is' to -j~q oni ' i the, inst halfC of the- output. and b--5

eimt-the me:an, i.4 of' ther output bSe.n ci bithe,, Let I1 again be t he jth obs.ervation

The at go-i thmin sase.l on standat'tdtzpd time and let fI t- the Sample man in hatch i. The
%s, vit '. %te - h ni q it';, a nd i i m p I '--tn

t ft as - bac siz ismAhtitmu

pi'oc-dui- 'rtrri, n that ,,,an ho. s-Iwith art, 'th5zeI .Ta , -mui

'. i - rsmuir-I fht ot-'tIs a '.:' os'f b 2.-

('' ifi -- 'ei-it -n. Ti sc,0-'li -I utI10 A (1 A i tM - MI + ni y - )

t.-i -Itiut ,,) I! u i ,mw~ioin tin ti t * st. if '

cthent of tw, i-unt to-mi nat ion riioii 0 tmit. with
The run is stoppe l -when a mximum run length is, m k
i'-a~h- l or an t-stimator i-latte.1 precis.ion A -u

- tenon i;satisfied. The procedujre interr-upt'; kt-1 j=1

the run At ,avriou, "heck poi nt-,, trujncate'; the
output if A .;ignifiant intaiaFo ba;i n - the a Orfe d all the retained data
dci cci ci, '-omput-. a u'n l;-i nteiial I esiimate.

and ter-minates the ru-n if~ apitropri ate-.
The test C-n significant initiatlizatiii hid'; Note that th t expert-ul ialue o A (b - 1 '

is, the: weixght-id sum test for initializatiorn bias It is importantL to, impit-ment the, -'omputatitin of' A
Schrub- n, S ingh, Tiet'ne:. 19 931 . Conf i dene,, ,o t hat thet'c is no numerical overflojw.

int~-val tl.Ate. A- 1'mput d u.ingthpTh-1 truin,,iton po~int a'; selJected usinga

'-cmhi ned classictal -area cnfidene interiat recur"jsiojn that Is equi ,'alent to- computing the

estimator, tflehru-b~n wu The ,utpit setjnoe weighted-sujm initializat-ion bias test statistic.

isriiaiI broktn int, S baihes which giz,?s This I A isIs cMPUt d s;tarting i th 0

r degr'--s if- e-onfor, computing the confidlence nut oIf t he out it11 ,tq-'~ nd mo-i ng tocwai-d the
InteraL This is, felt to be, a sufficiecnt. number, berginning of the run. Th- out-put is not

or v-eom.r,-chet~v, 00'1. hebatI.. I;t-e Lt-t Y. 'lu-note the oumtput indexed in

algorithm uses th-s -iunnti~tI structure in renrvse rIP fro,-m Ithat in which it was
Heieler-can-I RItt-h ftlo , - gt-rit-at-l The i'-cutrsion starts, with T- 1) 0

Pu-n Toni rot Procedure: and is as; Colt 'uw';:

Th,- expevrieti selects the follo-wing inpuit
faa t i c ft'r rn -'intvl T~j*1( Ttjp+(t21 +1'.tU 6 -'UK j - n -

confidten-' o-f n foir the
conft-t'in~c i ntt'iv.atsI with v

- ac-.-i~u~l-.;t'imAt-i uctat.I

tri'ion -rr t-jh- i in . nl 111= sum of' theo. last jobsevations

The usert inpuhts - andl na Aind initl aty Tb,- trimn-,,l -ui o n it n, is givk.en b.) n -) hv

sets. the ratn le ngth to n - ri -. ltb, run J s m-ii n- I , i-F-u ltI

obse:.,t..fl atc n-rat -I P. thy- simulation t4,1. 'T-; > t-: P .-

pr'-gt-am The pi:r-lii tthen. tei'minal es th' tutu

-ith an A-eptabjl. pi=- s onfitle-nre int-trvat Tkiti. in~t t -I- u n.a-i-
-stimate for Ll or, updt'-s the rutn length. n att ' -ni''-limit an-I stat

if th, or~ 'C nt t-"tii-n-I-c-u-' nmX - te run t.r

is %i bo tt-mi nAt l.d it h itmssg- that th-

rtiiepti'-" itt .n enit'ii,n wai' noit met i n t he o- ~ ~ 2z.Pcj>j~i: rFL
-it hitati-i maximum i-tin-lats.t i it-Iti-d t t .'in--

STE 1 Cum-ut- , Iti-in--din point. n, k.

S-TFP - t' r. n

th'-n. .t-i n 1l
t

n and PRVtT'l4; t ,',

otti'---i .- , -- iput- a tra1 ct,,
".r~ni-te. inlt-at.i -mt-u' pu)nt.. (7. -tt' dK
.n-I h.lti' ,lth. II. Aith lb.' tiinvttte
-it ra.t -;'1. rn p -'- n,,',.' - l.t 1, Th . Iivn:i.,! -isa'itt--n i--in -'
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ON SOME STATISTICAL ISSUES IN SIMULATION STUDIES

C. L. Mallows and V. N. Nair, AT&T Bell Laboratories

I. Introduction Lemma: If X(N) -X(O), iHIST _ i
PHAT

.

We point out some statistical techniques that have not If X(N) does not equal X(0), the two estimates differ
been fully exploited in simulation studies, and show how they very slightly. Now we introduce some new estimates. If we
work in two very simple examples. The techniques we shall know that Pk does not exceed , we can replace 1k by
discuss are data-analysis, experimental design, and smoothing. T
Many workers in statistics have begun to move away from the A h

use of rigid models for data towards more flexible, data- and hence get a "truncated" estimate
determined models. This goes along with a more algorithmic iTRUNC_ ,TRUN¢ -TRUN¢ •
view of the process of data analysis. Often, in a simulation rk "k R0 ( ,PR ..

study, the purpose is to obtain qualitative understanding, and Also we can smooth the raw P's, obtaining
not (at least originally), precise estimates of model 'SMOOTH (fPSMOOTH -SMOOTH)parameters. Thus these modern attitudes become relevant. k 0, PSOTH MOT

Finally, for calibration we can consider the maximum

2. A Birth-Death Process likelihood estimate

For our first example, consider a simple birth-death jML_(I )b
process, with state-dependent probabilities. Thus the state

space is the non-negative integers, and for k-l,2... where
P(X(t+i) -k+l JXWt)-k) "Pk b'014 "N+/N-"

We ran 100 simulations, each of length N-1000, for

-l-qk - I-PIX(t+l) -k-1 IX(t) -k) several values of p. For each run, we computed five estimates

while for k-0 the same is true except that q0 is the of the mean position

probability that X(t+l)-0, given that X()0-. The problem s-p/(l-2p) - k ,
is to estimate the stationary distribution {Wk), or its moments mHIST TRUNC AL
or quantiles. We view this toy problem as a model of part of namely, and two versions of sOOTH the
a larger system, so that we would not know the p's, though of first obtained by fitting a logistic regression to the raw fi's and
course to simulate the system we have to choose values for the second by fitting local logistic regressions with window
these parameters; in fact we shall always choose to make width N. Thus for this last estimate, for each k we
them all equal to some value, p. determined a window of values of k that included at least

N/4 epochs on each side, unless fewer than that were
If we start a simulation run at X(O)-x o and run for N available.

steps, we can compute the "histogram" estimate Table I gives the corresponding means and mean-square
I4Isr Nk/N errors for two values of p, namely 0.35 and 0.45.

where Nk is the number of times the simulation visited the We see that for p-.35 the maximum likelihood estimate is
state k. However several other estimates are available. From by far the best, while all of the adjusted estimators do better
the conservation equation than the crude HIST estimate. For p-. 4 5 the maximum

likelihood estimate has a large mean square error, due to a
1
kPk'

7
k+lqk+I few cases where P is close to , while each of the other

which simply says that in the long run, for every time the estimators has a much smaller mean square error, while being
sample path goes up from k to k+l, there must be a considerably biased towards small values of A. We are
compensating step from k +I to k, we have that the stationary searching for ways (hopefully of general utility) of reducing
distribution is given by the bias of these adjusted estimators.

1
k ,-1A ,pOpI,-.. )-c Pi ''PA-I In general, we suggest that a similar strategy based on

qlq 2 ... qk smoothing quantities a little beneath the surface of the raw

simulation output may prove rewarding.
where the normalizing factor c is determined so that 2;1rk-1.
Notice that this result will hold even if the transition Once we think of smoothing fi rather than the raw 'k, we N
probabilities are not constants, provided we interpret Pk as the can bias the simulation to make it more efficient for
average probability of the corresponding transition. estimating the Pt's. At an extreme, we can choose to make

N separate one-step runs, starting at k exactly nk times,
We define the "PHAT" estimate as where 2,nk-N. The nk's are at our choice, and we can

PHA Ir (00,P ,.... choose them for efficient estimation of # or any other

interesting quantity. Notice that this is not simply
where importance sampling; here we can choose to put zero weight

Pt - N, /Nk at some k's, and estimate the corresponding pt's by
smoothing. With the usual formulation of importance

and Nk+ is the number of times (out of NA) that the sample sampling, such a design would lead to an infinite variance. A
path left k by passing to k+I (and not to k-I). We have the simple calculation gives the following
simple
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Theorem: The optimal design for estimating u(r)-2kr k,  We simulated 100 values of W k for values of k ranging
using the estimator u-2kwAT when truly Pk'P for all k, from 0 to 20 and for p from .I to .9. We simulated the
is process with p-. 9 and thinned it to get the W's for the other

(2k+l)rk p values. This was done to induce a high correlation among

6k - k-0,1,2,... the simulation results for different p's. A plot of the means of
W k versus k and a least-squares analysis showed that the

The efficiency gain, relative to 6k - 7k, is conditional expectation of W given k can be well
approximated by a linear function in k. By plotting the least

var(l16k -ik) I squares coefficients as a function of p and by using the results

var( ,6k -opt) (+2p) 2  for the limiting cases, we arrived at

In a real, complicated system, similar efficiency gains E(Wk)-(k+2)/(2-p),

might be realized by sequential design. A simpler, more which, in fact, is the correct answer (Coffman et al., 1970). A
general strategy is the following. Every time the simulation plot of the standard deviations of Wk versus k showed that
gets into an "interesting" state (i.e. one that is influential with the a linear approximation is reasonable except, perhaps, for
respect to the quantity of interest), we spawn several short k near 0. But this suggested that it may be better to consider
daughter runs and hence improve the accuracy of estimation the distribution of log(W ) for which the variance will be
of the local parameters (the Pk's in our toy problem.) Notice independent of k. Analysis of the means and variances of
that this is not simply the classical "splitting" strategy. We do log(W ) showed that the mean is linear in log(k+2) and the
not assign fractional weight to the daughter runs, but use each
realized step with equal weight in estimating the local variance is constant in k, except for k near 0.

parameters. Recall that for p near one and for k large, W is
approximately distributed as kX where X is an exponential

3. A Processor Sharing Queue random variable. Similarly, for p-0 and k-0, W o has an

For the second example, consider a MIMIJ - PS queue exponential distribution. For p-O and k large, the mixture

with Poisson arrivals at rate p and exponential service with distribution can be approximated by (k+I)U where U is a

mean one. Under this processor sharing queue discipline, if uniform(O,l) random variable. These suggested the following

there are k jobs in the system, each job receives service at approximation
rate I/k. The problem is to obtain the equilibrium distribution log( W k) -log(a) + log(b) - X h b

of the sojourn time W. Notice from Little's law that the
expected value of W under the processor sharing discipline where a and b depend on p and k and Xbst is the largest

equals that under the FIFO discipline, and is given by order statistic from b independent exponential random

1/(l-p). Coffman et al. (1970) derived the Laplace variables. Table 2 gives the values of a and b for the limiting

transform of the distribution conditioned on its required cases. By considering these limiting values and equating a

service time. From this, it is possible to obtain the variance of and b with the expectation of W using the above ..

W. More recently, Morrison (1985) has obtained the approximation, we obtained
following expression for the distribution of W. a-k+I+p

P(W>t)- and

of exp(-0[2p (I +p)cosO]/(I-p)sin) b-(k+p)(2-p)

0 (l p)(l+exp{_r[2p, (l+p)cosO]/(l p)sinO}) Figure I shows the quantile-quantile (Q-Q) plots of 100 %

simulated W's against the quantiles from the approximating ,

xexp(-(I-p 2)/(l+p-2p cosO)}sinOdO. distributions. The plots for k-0,2 and 8 and p-.I,.5 and .9
are given in Figure I. We see that all the plots are

We now describe an approach that combines data analysis approximately linear with slope I and intercept 0. There is a
with prior information about limiting cases to obtain a slight nonlinearity in the lower tail, especially for k-0.
reasonable approximation to this distribution. However, the approximation seems reasonable overall, and

more extensive plots for other values of p and k confirmed
Let k be the queue length when a tagged job joins the this finding. We can now use this approximation to the

queue. We shall examine the conditional distribution of W distribution of Wk to easily determine quantities of interest
given k. We can obtain the unconditional distribution easily such as quantiles which would be much harder to obtain using
from this since the queue length distribution is geometric with the expression given by Morrison (1985).
parameter p (the same as under the FIFO queue discipline).
Notice that as p-0, the conditional distribution of W tends 4. Concluding Remarks
to the mixture distribution with densityto th ixueditiutowteniyWe have demonstrated the use of some common statistical
fw(w)exp(-w)+wexp(-w)+ +wxp ( - ) / techniques through two simple examples. We believe that

This follows since for small p there are essentially no arrivals, similar approaches hold promise in more complex systems.
and with probability /(k+l) the tagged job will be the jth For example, in the processor sharing case, we are trying to

one to receive service and so the sojourn time will be the sum find a tractable approximation to the joint distribution of.

of j exponential random variables, j-...k+l. For p-1, it (WkI) where I is the number of jobs that are served before

can be shown, and a heuristic argument can be used to the tagged job. This would enable us to incorporate PS nodes

con. .nce the reader, that Wk/k tends in distribution to an in complex networks. Similarly, we view the simple birth-

exponential random variable.
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death model in Section 2 as a node embedded in a larger References
system. The use of smoothing techniques and designed
simulations can improve the efficiency of the estimators in Coffman, E. G., Muntz, R. R., and Trotter. H. (1970)
such cases. Waiting time distributions for processor-sharing systems, J.

ACM, 17. pp. 123-130.

Morrison, J.A. (1985) Response-time distribution for a
processor-sharing system, SIAM J. Appl. Math., 45, pp.152-
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Table I

-HIST ATRt.VC .SMOOTH ASMOOTH.K AML

p-. 3 5  mean 1.170 1.142 1.131 1.150 1.162

;-1.167 1 m.s.e.x 102 5.15 3.24 3.5 , 4.19 1.72

p -. 45 mean 4.07 3.36 3.83 4.07 4.86

p- 1.45  m.s.e. 2.27 1.86 1.95 2.43 5.04

Table 2

p-0 p-I

k-0 a-l, b--o

klarge a k +lb- a =k, b -O

263



FIGURE 1: Q-Q PLOTS OF SOJOURN TIMES
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BOOTSTRAP CONFIDENCE INTERVALS

Robert Tibshirani, University of Toronto -U

We let W be a random vector with W _0, W

1 and w be a realization of W. Let F(w) be the distri-

Abstract bution putting mas m on z,, i = 1,2,...n. Many of

the techniques will utilize "bootstrap sampling- that

We describe the various techniques that have been is, sampling from z1,z2, ...z, with replacement. This is

proposed for constructing non-parametric confidence in- equivalent to sampling W from the rescaled multinomial

tervals using the bootstrap. These include bootstrap piv- Mu/t(n, tv°)/n, where w° 
- (1/n 1, n, ... i/n). We'll use

otal intervals, percentile and bias-corrected percentile in- , to indicate bootstrap sampling and a bootstrap value

tervals, and non-parametric profile likelihood intervals, obtained in this way will be denoted by " = i(F(w)).

These methods are small sample improvements over the We'll refer to a bootstrap sample either by its weight vec-

usual i ± c& intervals. We discuss them in detail, out- tor w, or by X* = (X*, X*, ...Xn). Finally, f will denote

lining the underlying assumptions in each case. Finally, the empirical distribution function of k under Z. ("the

the various intervals are compared in a small simulation bootstrap distribution").

study.

3. Overview.

1. Introduction. Frequentist confidence intervals are usually based

on a test function, say t(X,09), appropriate for testing
Rcently, a number of techniques have been pro- H :9i = D. The interval is constructed as follows. For

posed for constructing confidence intervals using the boot- each trial value 1 , we include 91 in our confidence inter-

strap (see Efron 1981, 1985, Schenker 1985, DiCiccio and val if we would accept H in a 1 - 2a size test based on

Tibshirani 1985, 1986). These techniques are non-parametric

in nature, and are designed to work well over a wide va-

riety of situations. Because they are based on the boot- t(X,i). This procedure requires knowledge of the din-

strap, they can be used in situations in which the "param- tribution of t(X,9i1) for each 01. Usually, a simplifying

eter" is an extremely complex functional of the distribu- assumption is made- that t(X, 0i) is pivotal, that is, has

tion and an exact analysis would be impossible. In this a distribution not depending on 0i. With this assump-

paper, we describe and compare these bootstrap meth- tion, it is not necessary to consider each trial value 01

ods. separately. We assume some parametric distribution for

t(X,Gi1), then invert the pivotal to yield the confidence

2. The Problem and Some Notation. interval. A simple example is X1 ,X,...X,- W/(0,1).
Then a confidence interval for 0 is found by inverting the

We observe xj,...zn assumed to be realizations of pivotal X - 9, whose distribution is X (0, 1/n).
random variables Xi, ...X, - i.i.d F. The distribution F The Bootstrap Pivotal, Percentile, Bias-Corrected Per%

is unknown and the problem is to construct a confidence centile, B a nd BPv intervals (Sections 4 and 5 ) are

interval for the parameter 9 = O(F). By a confidence in- u er ce
non-parametric analogues of parametric pivotal intervals.

terval, we mean lower and upper points L = L(zI, ... z ) The pivotal distribution is not assumed known; instead it
and U = U(zi, ...z,) such that P(L 9t < U) =1 - 2o,isetmedn-prercaluigthbosrp.n

where P(.) denotes probability under the true distribu- is estimated non-parametrically using the bootstrap. In .

wher P() dnote prbablityundr te tre dstrbu-Sections 4 and 5 we provide the "recipes" for construct-

tion F. Since the intervals are to be non-parametric, we Sectihs 4 and oie the uderyinsuct-

would ideally require that this hold for all F. We will ing these intervals and outline the underlying assump-

tions. In Section 6, we discuss the appropriateness of the
confine our discussion to central intervals, i.e. intervals various intervals in a few simple problems. :

(L,U) such that P(9 <_ L) = P(# >_ U) = o. Non-central

intervals can be obtained through obvious modification. In Section 7 we describe a different approach to non-

Given X 1 , X2, ...X,,, (Xi can be a scalar or vector parametric confidence interval construction, through like-

random variable), we estimate 9 by 9 = (FX) where iihood methods.

Fxis the empirical distribution function of Xi, ...X,. The In Section 8 we compare all the intervals in a nu-

observed value of 9 is ia, = 9(F,) where F, is the em- merical example.

pirical distribution function of Z, ...z,.
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4. Bootstrap Pivotal Intervals. decomposition, we can say more clearly the meaning of

the statement "t(X, 9) - H, H not involving 0". What

4.1. The Simple Pivotal we're really assuming is that F is a member of some fam-
ily of distributions 7 existing in the space of possible dis-

We assume that 0 - 9 is a pivotal quantity, that is tributions. The members of 7 correspond to different 0

0 H (A1) values and are characterized by the property t(X,9) ~ H.

Because of this pivotal assumption, we don't have to know

where H is a distribution not involving 9, and also that the structure of (or estimate) the entire family 7. Only

approximately a single member of 7 need be estimated. The empiri-

"- Ub. * H (A2) cal distribution function F. estimates that member (i.e.

Assumption (A2) is based on the premise that if F. is (F. = (i b, L.)), and from this we obtain the distribu-

close to F, the bootstrap distribution of k - 9ij will tion H. By construction, the interval will have correct

be close to that of i - , as long as 8(.) is a reasonably coverage for F E .

smooth functional. Of course, if H is a continuous dis- A family like 7 also underlies the percentile and

tribution, then (A2) is at best an approximation, since bias-corrected percentile intervals (discussed next).

the bootstrap distribution is necessarily discrete. The in-

tervals described in this section and the next section all 4.4. Some theory

use this kind of bootstrap approximation. To simplify The work of Singh (1981), Abramovitch and Singh

the notation, we will ignore the fact that it is only an (1985), Beran (1984) and Hartigan (1986) suggest that a

approzimation, bootstrap pivotal interval based on the pivot (-O)/SD(i)
Under (AI) and (A2), we have 1-2a = P(H - 1 (a) < will be accurate to O,(l/n) (under regularity conditions)

-9 < H-1( - )) = P(i - H-1 (ai) < 9 < 9 - H-1 (1 - for any 9. For 9 = E(X), the obvious estimate for SD(k)

i))" is I ( - t*) 2/n 2 and Singh shows that this leads to an

Substituting ,Oh. for 0 and noting that H-'(.) interval correct to Op(l/n). Unfortunately, for non-linear

- ib., we obtain the Bootstrap Pivotal interval: statistics calculation of SD(i") requires a bootstrap com-

* E (2i,. - fh- 1 (i - at),2i',. - b- )) (1)putation, and thus the entire procedure becomes a "dou-
ble bootstrap". At the present time this procedure is too

expensive computationally except for small problems.

4.2. Other Pivotals
5. Percentile Intervals.

The bootstrap pivotal interval can be based on an
arbitrary pivotal t(X,O), as long as it is monotone in 0.

We assume t(X, 0) ~ H, t(X*,o,1 1 ) Z H, where t(X, 0) is 5.1. Uncorrected Intervals

monotone decreasing in 9. Inverting the pivot as above, Here we assume Al and A2, and further that

we obtain %
H is symmetric around 0 (A3)

9 (t '(H- 1 (1 - c)),t;(H-'(c))) (2)
In this case, the pivotal interval (1) becomes:

where t- 1 (.)=inverse of t(.,.) with respect to the second

argument. 0G (h-(oi) h-'(I - c)) (3)

The bootstrap pivotal interval is used by Efron (1981" "

in the form of a "bootstrap t" and by Schenker(1985), Efron calls this the Percentile Interval since it uses the

who calls it the "substitution method". We have in- percentiles of k as "percentiles' of 9.

troduced the obvious name "bootstrap pivotal interval"

here. 5.2. Generalization of the Percentile Interval

4.3. The Role of Nuisance Parameters
If a symmetric pivotal exists on some other scale,

We can think of an arbitrary distribution G as con- i.e.

sisting of two parts, say G = (0, A), where 9 = O(G) is the g(0) - g(e) - H (A4) k

parameter of interest and A = A(G) is a vector of nuisance and

parameters, possibly infinite dimensional. The true dis- ) H (A5)

tribution can be written as F = ( AtA,,,.). With this
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with H symmetric around 0 and g(.) is an unknown, P(gC()-g(O) < g(t)-g(i,.))= 4(g(t)-g(i.o,)+b) (9)
monotone increasing function, then as in (3) we get as
an interval for 9(0): and from (8) we obtain

g(9) E (d-1(o),6-.(l - i)) (4) b(t) = P(" < t) = P(g(') : 5(t)) = 0(g(tY-g(i0&.)-b)

where G is the distribution function of g(k). Transform- (10)
ing back to the 0 scale gives Solving for g(t) - 9(Ob) in (10) and substituting into

(9) we have0 E d ,-(-( ) (5)
P(g(#)-g(i) < g(t)- g(kb.)) = t(4 -(f(t))+2b) (11)or

0 (A -'(0), f-'(1 - a)) (6) Finally, to get a I - 2ci percent confidence interval, we
which is again the percentile interval. Thus the percentile set the right side of (11) equal to a and I - ot, and solve

interval has the correct coverage if a symmetric pivotal for t to obtain

exists on any scale. Conveniently, we don't have to know
g(-) because the resultant interval doesn't depend on g(.). 9 G (E ( (z0 - 2b)), h-(0(z_._ - 2b))) (12)

There is a simple connection between the bootstrap
pivotal interval based on 0- 0 and the percentile interval, where zp denotes the pth quantile of 4'. Interval (12) is
Writing (2i.. - B- 1(l - a),20,b. - b-'(.)) as (o,. - called the Bias-Corrected Percentile IntervaL The para-

1 (1-) - - - we see that the metric assumption .'(u, 1) turns out to be not as restric-
percentile interval is the bootstrap pivotal interval reflected tive as it appears. If we instead let H = )4(u,V 2 ), with
about the point obs,. 02 unknown, and repeat the above derivation, we get

b = -= and we obtain the same interval
5.3. Bias-Corrected Percentile Intervals (12).

Note then when b = 0, the bias-corrected percentile
interval reduces to the percentile interval. Hence we can
think of the bias-corrected interval as a 'fine-tuning" of

5.3.1 Normal Correction. the percentile interval.

If the distribution H in A4 and A5 is symmetric
around u 0, the percentile interval will be biassed and 5.3.2 Other Symmetric Location Scale Families.
will not have the correct coverage. This would occur as In the bias-corrected interval above, we can just as
a result of bias in the estimator i. It turns out that if well assume that H is some other symmetric, location
we are willing to assume a parametric form for H, thenu scale family, say H(z u,so) o H0 (e ). This gives the

can be estimated and a corrected interval can be derived, bias-corrected interval %As was the case for the percentile interval, the corrected eL
interval will not depend on the transformation g(.). 9 E (f3-1(H 0 (h. - 2b)), B-(Ho(h,.a - 2b))) (13)

Since P(g(0") < g(i.b.)) = P(P" < o.), we can use where 6 -Hoi(A(, 4 *)) and h, denotes the pth quan- '
the latter to estimate the bias. Using this correction, we tile of H0 .
then match the distributions of g(0) - g(0) and g(0) - til.ofH'

A natural question to ask is: how much difference(ib)on the g(-) scale, then transform back to the 9
scale. does the choice of H0 make? Natural candidates to com-

pare with the normal are symmetric, long tailed distribu-As an example, suppose we choose H -- .&(u, 1). tions. Benjamini (1983) provides an appealing definition
Then 

of long-tailedness. Suppose F and G are both symmetric9(0) - g(0) - .(0, 1) - u (7) about the origin. Then G is said to stretched (or long

and tailed) compared to F if G-(p)/F-(p) is an increasing %
function of p, for 1/2 < p < 1. This definition reflects
the intuitive meaning of long-tailedness, that the quan-

We can solve for u by noting that P(0(0') _ (.o6,)) = tiles t " G are 'farther out" than those of F. Under this
*(-u) = = A(I,.) so that b = u = -9-(h(Dob,)' definition, distributions like the t, logistic and cauchy are
(*(.) denotes the cumulative distribution function of X(0, 1)) stretched with respect to the normal, as we would expect.
Now from (7)
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Now suppose H0 is stretched with respect to 0. As-
sume h(0ob,) = q > .5, so that 0a, is biassed upward, 5.3.3 Another Justification for the Bias-Corrected
and b - - 1- (h(O)) < 0. Then the bias correction un- Interval

der Ho till be in the same direction as the bias-correction In place of A4 and A5, we could assume

under 9, but will be smaller. The proof of this fact is eas- h(0 - 0) - H (A6)
ily derived from Benjamini's definition above. Denoting,

as before, the pth quantiles of 9I and H0 by zp and hp and
respectively, we note that Ho(ha + 2hq) > a. Hence h(O - Oob.) -* H (A7)

'(Ho(h. + 2 hq)) 0 () ; (14)with H symmetric, and h increasing and anti-symmetric

Hj-(Ho(ha + 2hq)) > H6'(-) ha (h(-z) = -h(z)). Letting H be a location-scale fam-
ily, we again obtain the bias-corrected percentile interval

This implies 0-(Hoha + 2h)) < za + 2z.(h/h) ) < (13) . When H is symmetric around 0, 9 - 9 is symmet-
z. + 2z.. Thus O(zk + 2z.) > Ho(ha + 2h9) > ct. ric around 0 and the interval reduces to the percentile

A similar argument shows that if q < .5, then 9(z 0 + interval.

2z.) < Ho(ha + 2 hq) < a, and the corresponding results Finally, we could replace h(0- 0) and h(0* - b.) by
hold for the upper quantile. The above proof requires h(O/9) and h(O/Oob.) respectively, with h(l/z) = -h(x),
that h. + 2hq < 0. This will be the case unless the bias and again the bias-corrected interval emerges.
in i.,b. is so large that q is near 1 - a.

The numbers in Table 1 show the amount of bias 5.4. The BC. and BC ° intervals
correction (that is (Ho(h + 2hq), Ho(hI. + 2h)) for
the normal, logistic and the cauchy distributions, when Efron (1985) proposed a further modification of the

= .05. Percentile interval called the BC, interval (a" for accel-
eration). It assumes

Table 1 g(i) - g(f) - N(b(l + g(f)), (1 + ag(&))
2

) (15)

q Normal Logistic Cauchy This generalizes the BC interval by introducing the ac-
celeration constant 'a" that allows the variance on the

.40 (.015, .869) (.023, .884) (.045, .944) transformed scale to be non-constant. 'a" is estimated

by from a formula involving the jackknife values of 9.
Efron proves that the one-parameter version of the BC,

.45 (.027, .916) (.034, .927) (.050, .950) interval is correct up to O(l/n) under regularity condi-

tions.

.55 (.084, .973) (.073, .966) (.050, .950) DiCiccio and Tibahirani (1985) studied the BC. pro- ,
cedure and provided a method for constructing the trans- '5,

.60 (.131, .985) (.106, .977) (.056, .955) formation g(.) in (15). The constructed g(.) is a variance .4.,,
stabilizing transformation followed by a skewness reduc-

ing transformation. Using this g(.), one can construct

a confidence interval, called the BC ° interval, without 4

computing the bootstrap distribution of "; through the N

The choice of a symmetric pivotal distribution ap- use of an approximation for b due to Efron and T. Hes-
pears to make little difference. The effect of an assymetric terberg, no bootstrap sampling is required, and just n + 2
pivotal distribution, however, can be large, as Example I evaluations of the statistic 9 are needed.
will show.
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yling distribution. Now suppose we are able to specify
6. Comparison Between the Bootstrap a pivotal t(X,9). Then if t(X,9) - H and t(Xib.)

Pivotal and Percentile Intervals. H, the resulting interval will have the correct cover-

The bootstrap pivotal and percentile intervals dif- age. In some problems, however, the bootstrap distri-

fer in their assumptions. In constructing the bootstrap bution of t(X*, o) can be a poor approximation to H.

pivotal interval, we had to specify the exact form of the One such example is the following. Consider the situa-

pivotal but we assumed nothing about its distribution. tion X 1,X 2,...X 15 - •-l - for z > -1. The bootstrap

On the other hand, in building the percentile interval, pivotal interval for 9 = E(X) based on X - 0 has poor

knowledge of the exact form of the pivotal was not neces- coverage because the distribution of X° -- Xo, is not a

sary but we did require that its distribution be symmetric good approximation to the distribution of X - 0. This

around 0. For the bias-corrected percentile interval, we is because the high positive correlation between X and

weakened that assumption to one of symmetry around the sample standard deviation S causes underestimation .%' -

any point, but we paid a price: it was necessary to spec- of the scale when i is smaller than 9 and overestimation

ify a distribution for the pivotal, of the scale when i is greater than 0. Basing the interval

Which of these intervals is better depends on the on (fC - 9)/S alleviates this problem and the resultant

problem. It is helpful to look a few simple examples. In interval has good coverage.

each case, the data are assumed to be Gaussian.
7. Non-parametric profile likelihood in-

" The Mean: 9 = E(X), variance known. The boot- tervals.

strap pivotal interval based on i - 9 and the per- t a

centile interval will give very similar results, and A different approach to constructing non-parametric

both will have approximately the right coverage, confidence intervals can be developed through the use of

an approximate profile likelihood. We will first review
" The Correlation Coefficient: X = (Y, Z) and 0 the profile likelihood then show how it can be used in

E(Y-E(Y))(Z-E(Z))/{E(Y-E(Y))'E(Z-EiZ))'}'/' "  this setting. Suppose the true distribution is a member

The random variable tanh- - tanh-9 is approx- of a parametric family of density functions f, where q-

imately A((O/(2(n - 3), 1/(n - 3)). Hence the boot- is an unknown k-vector of parameters lying in a subset

strap pivotal interval based on t(i, 0) = tanh-'i - r E RA. Our interest focusses on a real valued iarametpr

tanh-'9 and the bias-corrected percentile interval
(uigtenomlfml) ohsol0wr el = t(q). Let l(.j,y) be the log-likelihood of the data. .' .'"
(using the normal family) both should work well. . ,

The uncorrected percentile interval will be biassed. The profile likelihood for 0 is constructed as follows. *." -
For each 0, let 6(90) maximize l(q,y) subject to t(q) =

* The Variance: 0 = E(X - E(X))2 . The random 0o, and let 4 be the global maximum likelihood estimator.

variable i/9 is X.-i, hence the bootstrap pivotal Then the profile (log) likelihood is defined by

based on t(i,9) = log9 - log9 will have approxi-

mately the right coverage. The distribution log X2 is pi( 9 ) = 1(0), Y) - ij, Y) (16)

not symmetric, however, so the percentile intervals We will assume that for each 0, there is a unique re-

may not work well (see Example 1). It is clear that a stricted maximum j(Oo) and hence j(0) forms a one-

transformation to a symmetric pivotal doesn't exist dimensional curve in r. We will call 4/(g) the profile like-

here since such a transformation must also remove lihood family. Now let R(O) be the signed square root of _

the dependence of the variance on 9. A simple delta twice the profile log likelihood statistic:

method calculation shows that only g(i) = logi R(9) = ±[2(pl(0) - pl(9))]"/ (17)

achieves this.
the sign of R(O) taken to be the sign of i - 9. Let 0 N "

The above examples represent some of the problems b(i) = E, R(9). Then a second order correct confidence

that are well understood. In most situations, however, interval can be constructed by treating the pivotal quan-

matters are much more difficult. To construct a boot- tity R(G) - b(41) as N(0, 1).

strap pivotal interval, we first need to specify a quantity %,m,

t(X,O) that is approximately pivotal. This alone is a

difficult task unless we know something about the under-
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Consider now applying this to the non-parametric The standard interval overcovers on the left and un-

problem. In the spirit of the bootstrap, we consider dercovers on the right so that the overall coverage is about

the family of distributions to be multinomial with qi = right. This illustrates why coverage alone is not a good

log(Pro6(X = z)), the natural parameters. It turns out way to asess confidence intervals. The bootstrap pivotal

that p/(#) is very difficult to compute, except for simple interval does fairly well, while the others display too low

(linear) statistics. Hence we consider an approximation to coverage. The percentile interval is especially poor. The

pl(f). A convenient approach is to construct a linear ap- BC., BC-' and non-parametric profile likelihood inter-

proxirnation #(8) to 9(f) at 4, then form the approximate vals capture the asymmetry of the normal interval better

profile likelihood 1 (#) = 1(i(9), ). The approximate
family p1(f) is actually Stein's 9east favourable familyi than the percentile interval but still underestimate the

(Stein 1956). Given this approximate profile likelihood right hand endpoint.

(which turns out to be easy to compute), we proceed as

above, forming the pivot R(O) - b(4) and inverting to find 9. Closing Remarks.
the confidence interval. One can show that this approx- We have discussed a number of bootstrap techniques

imate interval still produces a second order correct in- for constructing confidence intervals. All are potentially

terval. Note that computation of b(4) in the multinomial useful as data-analytic tools because they are non-parametric

requires bootstrap sampling, analogous to the calculation and can be applied in complex situations. Further work
isned to bealue d imprex sthesthods. Outhrr

of b earlier. This method produces not only a confidence

interval for 9 but also an approximate non-parametric current research focusses the non-parametric profile like-

profile likelihood. For more details on this approach we lihood interval. thr-

refer the reader to DiCiccio and Tibahirani (1986).

8. An Example.
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A

Maximum Likelihood and Quasi-
Likelihood for Nonlinear Exponential fX(') -0 Pi ( 1

3i(),Y)" (1.1)

Family Models i=
Often mli is a linear form: T( 3) = xTf3, but our

David M. Gay approach allows mni to be an arbitrary twice dif-
ferentiable function. Similarly, pi can be an

AT&T Bell Laboratories arbitrary twice differentiable function; pi or "i
Murray Hill, New Jersey 07974 can absorb any relevant response data yi. (The

choice of pi and mqi in (1.1) is far from unique,
Roy E. Welsch* but we do not have space here to consider the VNs

Sloan School of Management freedom (I. 1) allows.)
Massachusetts Institute of Technology

Cambridge, MA 02139 2. Examples
Our framework includes both linear and

nonlinear versions of the generalized linear
ABSTRACT models of Nelder and Wedderburn [NeIW72],

Wedderburn's [Wed74I quasi-likelihood models,
Linear and nonlinear exponential and the extended quasi-likelihood models of

family and quasi-likelihood regression Nelder and Pregibon [NeIP86J. Some examples
models form a class of models exhibiting follow.
a common structure that invites using Least Squares: q = 0, pi(,qi(1), ) =

one algorithmic framework to compute pi(q,(13)) = (y, - qi(p))2, where -9i is often a
parameter estimates and regression diag- nonlinear function of 3. (We could include the
nostics for all members in the class, variance ar by taking q = 1, -1 = ar, and
This framework extends our work on p(,u(3),Y) = (Y, - qi(p)) 2 /Cr2 + log(o.E), but
nonlinear least squares; it includes itera- it is slightly more efficient to estimate P3 and cr
tively reweighted least squares, but also separately.) .
encompasses secant updates for a piece Huber: q=l,
of the Hessian matrix of the likelihood '
or quasi-likelihood function along with (Y1 - 11)2 Iyi - I
adaptive decisions about when to use .- 2- + T2Y if ""-
this information. The framework also pi() = .rjy , ,I)o

provides much of the machinery needed 2t( IY, - "i - -i--) + "r2-y otherwise
to compute "leave one out"-style regres-
sion diagnostics. We describe the in which TI and T2 are tolerances that must be
framework, discuss some implementa- properly chosen; -y is the scale parameter a in
tion details, and present some numerical §7.8 of [Hub8l]. Many other robust regression
experience, problems (e.g. those described in [HoIW77]) are

also covered by our framework.
Poisson (with 71 = log(mean)): q = 0,

1. Introduction pi(il) = ciexp(TI) - yi'q, where a total of yj
Parametric regression models involve a vec- counts are observed in ci replications of the ith 0

tor of structural parameters, P E RP, and a set of experimental conditions. .,.
(possibly empty) vector of "nuisance" parame- Binomial: q = 0,
ters, -y E Rq. Computing a parameter estimate pi(1) = -yilog(T) - (ci -yi)log(l - TI), where
often reduces to minimizing an objective func- _ _

tion of the form *Research supported in part by National Science
Foundation Grant DCR-8116778 and Army
Research Office Grant DAAG29-84-K-0207.
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there are yi successes in ci tries under the ith set respect to the nuisance parameters -y. The gra-
of conditions. dient components are

Quasi-likelihood with variance V = ap= I

A = men(I3)= --- (Tj(fP),,y). (3.3)
men) llog(wi: + 22.1)=1

(, log(2"trdyi) + (2.!) The Hessian components are

- 2-0 ;-0 n a2pi ai
+ (y11-0 _ Yl-)yi + 11 Yi V6. f(=3,P) = (0)(1 - 0) 40(2 -0) i=1 aaI

(L'H16pital's rule gives special forms for pi when
0 = 1 or 2.) = (3.4a)

3. Derivatives where p".Y is the n X q matrix whose ith row is

The derivatives of (1.1) with respect to the a2pi 1
2pi a2 pi-

structural parameters P have a form that often aqaiy 0 '0 ) (a'Oayl a'la Yq
is worth exploiting. It seems essential to corn- and

pute the gradient Vf =of f reasonably

well. Its structural piece Vof has the form i= 3

Vlf(p,_/) = jTp;(T,.y), (3. 1a) The relevant partial derivatives (yap' a 2Pi

where J E R n x p is the Jacobian matrix a2 pi a-Y

a Wqi and a-i2 ) are often easy to compute, and we

=o 3j assume they are available, so we may computeV j-yf and V2 y'f directly.
and p; is the vector

S= = pi, 4. Approximating the Mess

( = (p (xi(I3)))i = "-( i(P),qy)(3.1c) It seems relevant to ask how well the tech-

The structural part V. of the Hessian matrix niques that we found helpful in [DenGW81] for
f V d  solving nonlinear least-squares problems carry

2  _ V 2 has the form over to the more general parameter estimation
L 'Yff VyrYf problems of concern here. One of the key ideas

V20f(,y) = JT(PII(T 'Y))J + (3.2a) in [DenGW81] is use of a secant ,update to
P napproximate the messy part of (3.2a), i.e. the

+ X (P )i 2 "li(P) '  sum of little Hessians, (p)iV2 -im(p). [n
i=I i=I

where (p"I is the diagonal matrix talks, Schnabel sometimes calls this "the mess
matrix"._ Of course, on some problems

"( ) (p"('),y)) (3.2b) q() = xT i is linear, in which case the messy
92p,1  a2 P, sum vanishes. But we wish to allow -q(f3) to be

= diag( a 2  ar 2  nonlinear. Thus we are led to considering Hes-

Just as in the nonlinear least-squares case sian approximations H = H J V 2f
[DenGW81], the information needed to compute in which Hpp has the form
the gradient furnishes an important component Vik
of the Hessian, i.e. the J in jT(pj. HIp = HGN + S. (4.1) 0

Consider now the derivatives of f with Here HGN (the "Gauss-Newton" part of the
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Hessian) is the part of V40f that we can easily S. Adaptive Modeling
compute, and S : V f - HGN is a matrix that Occasionally it is useful to initialize S by
we update after taking a step. A straightfor- finite differences, but usually we just start with
ward generalization of [DenGW811 considered S = 0 (the p Xp matrix of zeros); we always
in [Gay8OI is to use start with S = 0 in the computing reported

HGN = jT (4.2) below.

but below we also consider an alternative based In the early iterations, S may contribute lit-
on the expected value of jT(p,)j, tIe to computing good steps A * Moreover,

In the lrocess of stepping from the current as noted above, choosing S = 0 is appropriate

iterate [,J to the next iterate on some problems. Thus it is useful to adap-
P+ NO]tively decide whether to include S in the optimi-

+we learn (approxi- zation algorithm's model of its objective func-
Y = + , etion. We do this as in [DenGW81]. (We also

mately) how S should look in the step direction "size" S as in [DenGW81].)[AP. Thus we determine a vector * such that"AY] 6. IRLS choice of HGN
S +, the new S matrix, should satisfy 6. aproi e f V p hUnder appropriate assumptions, V has

S+AP = q. (4.3) expected value JT(wIRLS)j, where wR is the

Many choices of *I" are possible - we con- weighting vector in the iteratively reweighted

sidered half a dozen choices, including those in least-squares algorithm suggested in [NeIW72]

[DenW78], in the work leading to NL2SOL and [Wed74l (see also §§1.4 and 2.5 of

[DenGW81] - but analogy with that work sug- [McCN83]). Thus we are led to an alternate

gests the following choice of * when choice of HGN, namely

HGN = jTp,,)j. In this case we wish to have HGN = JT wIRLS . (6.1)
S+A ( p)A. But Both choices of HGN have the form

V2  I HGN = jT(wJ, where w might be p" or w R S .
Correspondingly, (4.4) generalizes to

i=1 = (j+ -j)T ((+),+), J+P" - +A.

so we are led to the choice 7. Trust-Region Steps

q,= (j+- j)T ((+ ) (4.4) Some kind of step-size control is often

of * in (4.3). needed to expand the region of convergence of a

It seems reasonable to use some kind of locally convergent iteration. In optimization
least-change secant update [DenS79J to update S; algorithms, one often exercises step-size controlthe general idea is that in some sense we should by doing an approximate line search: looking atmake S + 

-id as small as possible, subject to candidate next iterates on a (straight or curvi-(4.3). The specific update suggested by Fletcher linear) search path until an acceptable one isa.d AT-haaei [ef ic ate ugeste b leher found. We like using "trust-region" techniques
and AI-Baali IFleA85I is the best one we have for this purpose. The general idea is that we
seen for nonlinear least-squares problems, and have an objective function f (a) whose behavior
its extension to the present context is the one nea th ec ti e rte a w os e b ausedin te coputng rportd beownear the current iterate c we approximate by a
used in the computing reported below, model function fQ(6), so that

f(a + 8) - fQ(B). (In the present context P
is a quadratic form,
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fQ(B) = f ) Tvfta) + ±-H2 with scaling, and the fixed choice D = I usually

H z V2f(ot), but people sometimes use other worked better for them. See Table 3 below
local models, e.g. conic models [Dav80], (§10) for full details.
(Sor801, [Gra84].) The approximation
fQ(b) f(at + 8) is generally good only for 8. Regression Diagnostic Hooks
small 11811, so we maintain a bound 4 on the set Our current implementation of the algo-
of 8 values {8: 118 11 - } for which we deem this rithm sketched above provides hooks for
approximation reliable. We choose a trial step "leave-one-out" regression diagnostics. The
8 trial that approximately minimizes fQ(6) subject idea is to provide a quick indication of which
to the constraint 11811 ! t. If we use the norm observations wield the most influence on the
11811 := ID 112, where D is a positive-definite parameter estimate. To do this, once we have
diagonal matrix and 11-1 i the standard found optimal parameter estimates (*,-y*), we
Euclidean norm (lixJJ = Vxx), if JQ is the approximate the Hessian matrix V2f( P*,-y*) by
quadratic model shown above, and if 8t l  finite differences. Then for each i, we let (i)
exactly minimizes fQ( 8 ) subject to II :-< denote f with the ith observation deleted; we
then 8triaI satisfies approximate vipfi by

(H + XD 2 )8trial = -Vf (71) VTf(3*,,*) - p(13*,y*)V ViJ, estimate the

for some Lagrange multiplier K - 0 that renders parameters (P*(0),y*()) by

H + XD2 positive semidefinite. We end up (IP*(i),0Y*(i))

with an iteration much akin to the Levenberg- ( 2
Marquardt iteration, except that controls h
rather than vice-versa. If the step thus com- and point a finger at the i values for which

puted fails to give good agreement between f (&*i),y*(i)) and (0*,-y*) differ sufficiently.
and f, then we reduce and try again, thus This can give diagnostics analogous to those in

effectively performing a curvilinear line search. [BelKW80], tPre79], [Pre8l], and [Wel82].

Otherwise we may accept a + 8ral as the next
iterate (or may increase and try again); 9. Test Results

[DenGW81] explains the specific rules used in We have run tests with 16 problems that are
the computing described below. (For more summarized in Table I and described more fully
details on matters related to (7.1), also see in §10. For those problems where either -9 or
[Mor78], [Gay8l], [Gay83], [MorS83] and the log(,q) is linear, we used the weighted least-
books [DenS83J, [GiIMW81].) squares calculation shown in [Fro8l] to compute

Sometimes an automatic choice of the scal- the initial guesses (P*,y*); otherwise we used

ing matrix D in (7.1) is useful, e.g. relating Dii the initial guesses shown in Table 2 (which, if

to some norm of the ith column of J. In the possible, included the ones from the problem

computing reported below, we considered both sources).
the fixed choice D = I and an adaptive choice in We used the stopping tests and tolerances
which Dii, I < i < p, is based on IHii1 , where described in [Gay83] (i.e., the stopping tests of
Hii = I(HGN)ii I + max{Sii, 0} for the structural [DenGW8II with tolerances appropriate to the
parameters, i.e., I !5 i !5 p, and Hii = (V2 )ii double-precision VAXTarithmetic we used).
for the nuisance parameters, i.e. p < i t- p +q. For seven of the problems T1 is linear
The update rules for D are analogous to those in (m(13) = 13 Tx,) so (4.2) with S = 0 makes
[DenGW811: H = V2f, and we are doing Newton's method

{max{O.6Dii, Ifi l if fl -= 10- 6  (with step-size control). These problems
+ := I max{0.6"Di, 1} otherwise required between three and thirteen iterations

None of the problems considered below has wild VAX is a trademark of Digital Equipment Corporation.
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(between four and fourteen function and gra- Ti(13 ) = {exp(32 + 0 3xi. 2 ) + (10.5)
dient evaluations).

As mentioned in §7 above, choosing D = I + exp(134 )}exp(13Ixi, I);

(in (7.1)) usually worked better than updating mi(13) = 13X, l - exp(132xi. 2 )] ; (10.6)
D. In 30 pairs of runs, D I was better 19 3 32
times, worse five times. The differences were 3i = 3 + ,10

often minor, but were dramatic for problem j Xij + P
3 2j+I

mn202, as Table 3 shows. 133Xi, 2

To see how useful using our secant approxi- i(13) = 13 + 32 1og(xi. ) + 04 + Xi,2" (10.8)

mation to the messy part of the Hessian is, we
reran the test program with adaptive modeling and
turned off, i.e., only using H : HGN as the T1) = PI + 021og(xi, I - P5) +  (10.9)
Hessian approximation. Since S = 0 when -9 is
linear and HGN is given by (4.2), this could + 133xi, 2

affect only 44 of the 60 pairs of runs summar- 34 + Xi, 2

ized in Table 3. As Table 3 shows, adaptively Choices of pry) include:
using S helped on 13 of these runs and hurt on
three of them; the degradations caused by using Poisson (Ti = tL):
S were minor, but the improvements were some- pi(T,) = cm1q - ydlog(r); (10.10)
times substantial, e.g. on problems e2.8 and tex-
tile. Poisson (-q = log(p,)):

On four of our test problems, the p" and pi(q,yj) = ciexp(Ti) - yi'q; (10.11)
IRLS choices of HGN, (4.2) and (6.1), respec-
tively, are the same. On the remaining prob- binomial (i =

lems, (6.1) was better than (4.2) on eight, worse p,(rj,,y) = -yilog(,q)-(ni-Yi)log(l-n); (10.12)
on seven of the runs using S summarized in
Table 3. binomial (logistic):

pi(q,-y) = nilog(l + e'l) - yi-q; (10.13)
10. Test Problem Details

Table I gives details of the test problems we

used. In the following formulae, ci, ni, xi,j and p1i'CY) = -yilog[4)(q)] - (10.14)
yi denote data (carried by Tji or pi), and -(n i -yi)logjl- 0(q)],
x, := (xI, . . . , xp)'T; ci and ni sometimes
denote replication counts or batch sizes, as in where (D is the cumulative normal distribution
IFro841. The choices of 9(13) include: function; and

linear: gamma ('q = R- I):

(13) = xT13; (10.1) P Y(y) = - cilog('q). (10.15)

log linear: Problems mn202 and mn202. 1 differ only in
their starting guesses; the same goes for mn205

mi(13) = exp(xT13); (10.2) and mn205.1. For problems with qi given by

logistic of linear: (10.1) or (10.2), we computed initial guesses 130

yij(1) = texp(-xT13) + I]-'; (10.3) as for Poisson regression problems in IFro8l]:

special forms: P0,= (JOT(c)JIJoTY0

where J° = J(130) and y*i is Yi for (10.1) and
71)= P If 02xi, I + (10.4) Yi I

( 133 clog(max{-, - }) for (10.2). IWe do not
+ -I - 13( - exp(-xi. 213 3 ))1W, I};

Xi, 2
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NG stand for the number of function and gra- gram for Poisson Regression Analysis",
dient evaluations, respectively. Biomedical Computing Technology Informa-

tion Center Report R-1302, 1981.
11. Acknowledgement [Fro84] Frome, E.L., "Regression Methods for

We thank Daryl Pregibon for helpful discus- Binomial and Poisson Distributed Data",
sions and for giving us several machine-readable manuscript presented at AAPM First
data sets. Midyear Topical Symposium Multiple Regres-

sion Analysis: Applications in the Health Sci-
12. References ences, Mobile, AL, 1984.

[Gay80] Gay, D.M., "On Solving Robust and

[BeIKW80] Belsley, D.A., Kuh, E., and Generalized Linear Regression Problems",
Welsch, R.E., Regression Diagnostics, John pp. 55-83 of Ottimizzazione non lineare e
Wiley & Sons, New York (etc.), 1980. applicazioni, edited by S. Incerti and G.

Treccani, Quaderni dell'Unione Matematica
[BoxC64i Box, G.E.P., and Cox, D.R., *An Italiana 17, Pitagora Editrice, Bologna, Italy,

Analysis of Transformations", 1. R. Statist. 1980; also (with fewer typos) Technical Sum-
Soc. B 26(1964), 211-243. mary Report No. 2000, Math. Research

[Dav80] Davidon, W.C., "Conic Approxima- Center, Univ. of Wisconsin-Madison, 1979.
tions and Collinear Scalings for Optimizers", [Gay8l] Gay, D.M., "Computing optimal locally
SIAM J. Numer. Anal. 17 (1980), 268-281. constrained steps", SIAM J. Sci. Statist. Com-

[DenGW81] Dennis, J.E., Gay, D.M., and put. 2 (1981), 186-197.
Welsch, R.E., "An adaptive nonlinear least- [Gay83] Gay, D.M., "ALGORITHM 611, Sub-
squares algorithm", ACM Trans. Math. routines for Unconstrained Minimization
Software. 7 (1981), 348-368. Using a Model/Trust-Region Approach",

[DenS79] Dennis, J.E., and Schnabel, R.B., ACM Trans. Math. Software 9 (1983),
"Least Change Secant Updates", SIAM Rev. 503-524.
21(1979), 443-459. [GiIMW81] Gill, P.E., Murray, W., and ie

IDenS83J Dennis, J.E., and Schnabel, R.B., Wright, M., Practical Optimization,
Numerical Methods for Unconstrained Optimi- Academic Press, London (etc.), 1981.
zation and Nonlinear Equations, Prentice- [Gra84] Grandinetti, L., "Some Investigations in
Hall, Englewood Cliffs, NJ, 1983. a New Algorithm for Nonlinear Optimization

IDenW781 Dennis, J.E., and Welsch, R.E., Based on Conic Models of the Objective
"Techniques for Nonlinear Least Squares Function", J. Optim. Theory Applic. 43
and Robust Regression", Comm. Statist. B7 (1984), 1-21.
(1978), 345-359. IHoIW771 Holland, P.W., and Welsch, R.E.,

IDraH69] Draper, N.R., and Hunter, W.G., "Robust Regression Using Iteratively
"Transformations: Some Examples Reweighted Least-Squares", Ann. Math. Sta-
Revisited", Technometrics 11 (1969), 23-40. tist. 35 (1977), 73- 101.

282



[Hub8l] Huber, P.J., Robust Statistics, John [We182I Welsch, R.E., "Influence Functions and
Wiley & Sons, New York (etc.), 1981. Regression Diagnostics", pp. 149- 169 of

McCullagh, P., and Nelder, J.A., Modern Data Analysis, edited by R.L.
McCN83Launer and A.F. Siegel, Academic Press,

Generalized Linear Models, Chapman and NewnYr (t. .
Hall, London and New York, 1983.

[Mor78] More, J.J., "The Levenberg-Marquardt
Algorithm: Implementation and Theory", in
Numerical Analysis, Dundee 1977, Lecture
Notes in Mathematics 630, edited by G.A.
Watson, Springer-Verlag, Berlin, 1978.

[MorS83] Mord, J.J., and Sorensen, D.C.,
"Computing a Trust Region Step", SIAM J.
Sci. Statist. Comput. 4 (1983), 553-572.

[NeIP86] Nelder, J.A., and Pregibon, D., "An
Extended Quasi-Likelihood Function", to
appear in Biometrika.

[NeIW72] Nelder, J.A., and Wedderburn,
R.W.M., "Generalized Linear Models", J.
R. Statist. Soc. A, 135 (1972), 370-383.

[Pre79] Pregibon, D., "Data Analytic Methods
for Generalized Linear Models", PhD Thesis,
University of Toronto.

[Pre8l) Pregibon, D., "Logistic Regression
Diagnostics", Ann. Statist. 9 (1981),
705-724.

[RobC65] Roberts, E.A., and Coote, G.G.,
"The Estimation of Concentration of Viruses
and Bacteria from Dilution Counts",
Biometrics 21 (1965), 600-615.

[Sor801 Sorensen, D.C., "The Q-Superlinear
Convergence of a Collinear Scaling Algo-
rithm for Unconstrained Optimization",
SIAM J. Numer. Anal. 17 (1980), 84-114.

(TiIM61 Till, J.E., and McCulloch, E.A., "A
Direct Measurement of the Radiation Sensi-
tivity of Normal Mouse Bone Marrow
Cells", Radiation Res. 14(1961), 213-222.

[Wed74J Wedderburn, R. W.M., "Quasi-
Likelihood Functions, Generalized Linear
Models, and the Gauss-Newton Method",
Biometrika 61 (1974), 439-447.

283

1111 ,111N 11 11111



W) W) V)0 'ne un oc7- W)0 'o nv '0 0' !2 00 0 0 en ',

~L0 a, V)V 00' e0 t r- 0'' - r-o W 0 W)~ r 0' 0 en -

~~-I 00.~'. NN '' ~ ~ EE 00'o W) wl C4 0 0 r--- -

Ol~~~u 000 0 )V
Z) z o.. .. ro.. .. .. 0 .. .

CA - -

C. 1- -4 Tt -E -E -E -E~u 2

000

r4 r

o00oc

en0'00 vi ~

OEN NE en en ENN _ e

00---~~~ EN EN E~ 00E E

o .EN&0.0.84

0 . a. 0 . 0 .C.~r-u N.nneee -6. 000 000 00N

% enzzzz



AN EFFICIENT ALGORITHM FOR k)

ORTHOGONAL DISTANCE DATA FITTING
Paul T. Boggs, National Bureau of Standards

Richard H. Byrd, University of Colorado
Robert B. Schnabel, University of Colorado

Abstract. One of the most widely used methodologies in and convergence analysis of a highly efficient algorithm for
scientific and engineering research is the fitting of equa- solving ODR problems is summarized in Sections 2 and 3.
tions to data by least squares. In cases where signif- In Section 4, the results of some computations are shown
icant observation errors exist in all data (independent) which illustrate the performance of the algorithm and al-
variables, however, the ordinary least squares approach, low some comparisons with ordinary least squares. This
where all errors are attributed to the observation (de- material is presented in greater detail in Boggs, Byrd, and
pendent) variable, is often inappropriate. An alternate Schnabel [BogBS851. ?
approach, suggested by several researchers, involves min- Observations in applied science are often thought of as
imizing the sum of squared orthogonal distances between satisfying a mathematical model of the form
each data point and the curve described by the model
equation. We refer to this as orthogonal distance regres- (1.1) y f(x, 0)
sion (ODR). This paper describes a method for solving
the orthogonal distance regression problem that is a di- where y is taken to be the "observed" value, or indepen-

rect analog of the trust region Levenberg-Marquardt algo- dent variable; and 0 E R P is the set of parameters to be
rithm. The number of unknowns involved is the number estimated. The function f is not assumed to be linear,

of model parameters plus the numberof data points, often but is assumed to be smooth. The data are simply the
a very large number. By exploiting sparsity, however, our pairs (zi, yi), i = 1,..., n. Typically the number of data
algorithm has a computational effort per step which is of points, n, is far greater than the number of parameters,
the same order as required for the Levenberg-Marquardt P.
method for ordinary least squares. We summarize the In the classical case, only the observations yj are as-
theoretical properties of our algorithm, and provide the sumed to be contaminated with errors. If these errors are

results of computational tests that illustrate some differ- additive and the mathematical model is exact then

ences between the two approaches. (1.2) Ys = f(z,, I) + 4i i = 1.... n
1. Introduction

.Inrdconfor some correct value of the parameters 13. If in addition

The problem of fitting a model to data with errors fosoecrctvlefthpamtrs IindiinThe roblm o fiting moel t dat wih erors the errors are normally distributed with mean 0 and vari- .

in the observations has a rich history and a considerable ance or, then maximum likelihood estimate of an is the %
literature. The problem where there are also errors in solution to the least squares problem

the independent variables at which these observations are s
made, however, has only relatively recently been given at- n
tention. In this paper, we consider a general form of this (1.3) min : Yi - f(X,, )1

2 .
extended problem and provide an efficient and stable al- ,= I
gorithm for its solution. Several names for this extended If f is a linear function of j then this is a classical linear
problem have been suggested; we prefer orthogonal dis- least squares problem, otherwise it is a classical nonlinear
tance regression (ODR). least squares problem. Even when the above assumptions

Errors in independent variables virtually always oc- on the model or the errors are not satisfied, problem (1.3) B
cur, but are often ignored in order that classical or ordi- is the most frequently used method for parameter estima-
nary (linear or nonlinear) least squares (OLS) techniques tion.
can be applied (see, e.g., ILawH74l, [Ste731, [Mor77], In the more general situation, the measurements of the
iDenGW811). Also, if these errors are small with respect independent variables x, are also assumed to contain er-
to those in the observed variables, then ignoring them rors. If we assume that y. has unknown additive error
does not usually seriously degrade the accuracy of the es- 4 and that xi has unknown additive error 6,, then (1.2) . -

timates. In some fields, however, measurement techniques becomes
are sufficiently accurate that errors in the independent P

variables are not insignificant compared to those in the ().,)+
observations. Examples at the National Bureau of Stan- An intuitively reasonable way to select the parameters
dards (NBS) include the calibration of electronic devices, in this case is to choose the 1 that causes the sum of the
flow-meters and calorimeters. Another class of examples squares of the orthogonal distances from the data points
comes from curve and surface fitting problems. (xzy,) to the curve f(z,,3) to be minimized. If r, is the

We first develop a formal statement of the ODR es- orthogonal distance from (r,, y,) to the curve, then
timation problem and briefly discuss its application to
statistical estimation and to curve fitting. The derivation r,= c? +
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where f, and 6, solve [Bar74,p.671 and JFul86].) As in the classical nonlinear N
min(t 2 + 62) least squares case, little theory on the statistical proper-

(1.5) e.,6, t ties of the solution appears to exist. It is known that if
subject to f(x, + 6,; 0) + c, = yi. both c and 6 are normally distributed with mean zero and

variances o2I and o2 I respectively, then the solution of
The constraint in (1.5) ensures that the distance r (ORD) with wi = 1 and Di = (o/o6)I, i = 1,...,n is

connects the point (xz,y,) to the curve. The minimiza- a maximum likelihood estimate of the parameters. Un-
tion ensures that r, is the radius of the smallest circle fortunately, as in the nonlinear classical case, no gener-
centered at (x,, y,) which is tangent to the curve f(xi;#). ally valid, computationally efficient, inferential statistical
Therefore, the parameters 3 that cause the sum of the tests are known.
squares of the orthogonal distances from the data points Independent of statistical considerations, ODR has po-
to the curve to be minimized are found by solving tentially significant applications in curve and surface fit- A.

n n ting. Consider, for example, the problem of finding the

min r ? = min (2 + 6) parabola which best fits the given set of points (We have
(1.6) ,= ,=] seen this problem arise from a dental application.) Here

subject to yi = f(x, + 6,; ) + i,, it is clear that ordinary least squares will unduly weight
the top data points, while fitting in the horizontal direc-

S1,.. ntion would undully weight the bottom data points. An

Since the constraints in (1.6) are simple linear constraints orthogonal measure of distance alleviates these problems
in c,, we solve for ii and eliminate both these variables and provides a reasonable fit. A related case is the prob-
and all of the constraints thereby obtaining lem of fitting near an asymptote. Orthogonal distances

n here prevent the undue influence of points close to the

ran [(t(x + 6,;o) - Y)2 + 62] asymptote. This problem is discussed further in Section 4.
The literature contains several algorithms for solving -

which is now an unconstrained minimization problem. (ODR) and related problems. For example, Golub and
Van Loan [GolV831 give a singular value decomposition

Two slight extensions to this form constitute the ulti- procedure for the problem when f is linear. They refer

mate problem to be considered. The first allows the pos- to this problem as total least squares. Britt and Luecke

sibility that xi G R' rather than R'. Therefore, bi E R m  [BriL73! consider the nonlinear case as well as the non-

and instead of 6? in (1.7) we have 6 6, = Z= 6,. (The linear implicit case and present an algorithm. Recently,
superscript T denotes transpose.) The second extension Schwetlick and Tiller JSchT85 proposed an algorithm
merely admits a general weightingscheme on the problem. similar to the one here for the nonlinear problem. Our
The form we have chosen results in the general nonlinear algorithm, however, does not make use of the singular
ODR problem value decomposition and it does incorporate a full trust

n region strategy.
(ODR) mnin>:jw2 [mfX. + 6,;i3 yi) 2+ 6.TD 2,61  .TeAgrtm~,2. The Algorithm

In order to solve the minimization problem (ODR),
where w, > 0, i 1.n and

D..- diag;1d, >0, j = 1..... In, (2.1) in + 6;#) - + -b

i.e., D, is a diagonal matrix of order m. It follows that
the vectors y, w C R" and z, 6 E R"' and that TD,6,2  we first express it in a more convenient form and simplify

M-, 2 2  the notation. Next, we give an overview of the iteration

While we have not assumed that f is linear, it is im- which is based on the trust region -Levenberg-Marquardt

portant to note that (ODR) is a nonlinear optimization strategy popularized by MorJ .Mor7]. (See also [Heb73], .I,-,
problem even if f is the simple linear function iDenS83I.) We then show how to modify this technique

to obtain an algorithm which requires the same order of
Y - /n + '32 work per iteration as these algorithms applied to the same

problem without allowing changes to xi. That is, if the
since we then have that 6bs are held fixed at zero, ODR reduces to OLS and trust

region methods require O(np2) operations per iteration.
Y. - Oi (X, -6 ,) 32 Our algorithm, by exploiting the structure of (ODR), still

requires only O(np2 ) + O(nm) operations per iteration to
Clearly the product of 0] and 6, is an unavoidable non- solve the problem.
linearity. While we have designed and implemented the algo-

ODR problems have been considered by statisticians, rithm to handle the full generality of (2.1), the notation
usually under the rubric errors in variables. Most of is considerably simplified by assuming x, E R'. We tem-
this effort, however, has been devoted to linear models,i~e. whn fis inea in3. Seee~g,!Mo~l] I~nSO3], porarily make this assumption and rewrite (2.1) into the

i.e., when f is linear in 0. (See e.g.,!Mor7l, JKenSO83], form of an OLS problem by the following device. Let LX.
286
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(2.2) J E R' P : J., -9 (0,6) =. wf (-, + ,;#)
W , ( ( ,+ 6sA )- m), i= l,....n a s
ws-ndi-nb,-n, i=n+l,..., 2n. i=1.... ,n, j =1,...

Also let G: RP+" - R 2 " have component functions g1(n?) V E R nxn: - 0,6) _ af(X. + 6,; )

wherev = (n). Now (ODR) becomes
i= 1 .... j=,...,n;n

2n

(2.3) min 11G(17) il2 -minZ (gip, b)) 2  D ERnx: D =diag{wjd,,i 1,... n}.

Here, we have omitted the arguments of J and V for the

which is an OLS problem with (p + n) parameters and sake of clarity. Observe that since gi only depends on

2n equations. (In all cases in this paper, 11IH denotes the , = 1.

12 vector or matrix norm.) Direct application of trust 19g,(0,6)
region methods to (2.3) would require O(2n(n + p) 2 ) op- V = diag
erations per iteration which rapidly becomes prohibitive a-.

if n is large. (Recall that n is usually far greater than pin pratice.)Commensurate with this partitioning of G'(rc), ,/c is :
The basic idea of a trust region strategy is to choose naturally partitioned into components (#c, 6 c)T and the
The bste a ofhat vectrut gion m sa linear approx- step z into a step in #3 , say s , and a step in 6 , say t.

as the step that vector which minimizes Futeroe weea aloafrspobrsaedboxnninua
imation to G over a region in which the linearization Furthermore, we allow for s to be scaled by a nonsingular

is a "reasonable" approximation to G . Specifically, if diagonal scaling matrix S and t by a nonsingular diagonal U
G(,c) E R2nx(n~p) is the Jacobian matrix of G evalu- matrix T. Thus (2.6) becomes

ated at the current iterate, ,?c, then the step z is chosen
by solving [J [ G,

(2.4) m ai/2T 1  0
subject to!ZzI < r where G, is the first n components of G and G2 is the

last n components.

where Z is a nonsingular (usually diagonal) scaling matrix Now, if x, c Rn , then (2.7) will have the same form
and 7 is the trust region radius. It is easy to show that except that V E Rn xnm; T, D E Rnm "m are still diago-
the solution to (2.4) is given by the z(a) satisfying nal; and V , instead of being diagonal, has the"staircase"

structure which is illustrated for n = 4 and m = 3 as

(2.5) (G'(,lc)TG'(,c) + azTz) z(cs) : -G'(,le)TG(,ic) follows: [.1
where a > 0 is the Lagrange multiplier for the inequal- = xxx
ity constraint. Note that if JIz(0)It _ r, a = 0 and the xxx
constraint is inactive. Otherwise a > 0 and the con- xxx]

straint is active. Equation (2.5) is the famous Levenberg- The rest of the development now allows x, e RM.
Marquardt formula, but this derivation has given rise Boggs, Byrd, and Schnabel IBogBS85! derive in detail
to more stable and robust implementations. (See, e.g., an ein p cdur e fr olving ( ere .e ti
[Mor77 and DenS83]). Clearly (2.5) can be regarded an efficient procedure for solving (2.7). Here we just give

as the "normal equations" for the extended least squares this procedurn e normalie its derivation. iti
problem, By forming the normal equations for (2.7), it is _

straightforward to show that the s that solves (2.7) is

(2.6 FC~~C~lthe solution to

(2.8)
2"( av2S>5=2(~

where"= 2 " means "equal in the least squares sense." 0

Our implementation is based on the careful exploita- where
tion of the structure of the extended Jacobian matrix in where

(2.6). From (2.2) we have that (2.9) j -: (I - VP-VT)i/ 2 J

o (2.10)
& (I VP IvT)-I/

2
[-G, -- Vp-I(VTG + DG 2 )]

where
with P defined by P - VTV + D 2

- aT2 . The same
derivation shows that given s, the i that solves (2.7) is
given by
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(2.11) t = -Pl-(VTG + DG2 + VTJs). Since many users will want to compare the results of
OLS with ODR, our code includes an option to do OLS.

Boggs, Byrd, and Schnabel then show that (2.9), (2.10). Enabling this option merely initializes the 6 vector to zero
and (2.11) are equivalent to and sets V to zero whenever it is computed. It is easily

verified that, in this case, each step reduces to the OLS{[ 1/2 Levenberg-Marquardt step and yields t =0 leaving b = 0.(2.12) ,=diag 1 + ,W i = 1,...,n J Using this procedure to do OLS, therefore, is equivalent
to a standard OLS algorighm with a moderate extra al-

(2.13) gebraic overhead.
y = -diag I[,+ W / 2

, i 1....nl (Gi - VE - DG2). 3. Local and Global Convergence Analysis
d +.-Trust-region-Levenberg-Marquardtmethods applied to

the general nonlinear least squares problem have well
known convergence properties (see e.g., [Pow751, [Mor77],

and [MorS811, [ShuSB85]). As long as the sequence of Jaco-
bian matrices, fG'(t1k)}, is uniformly bounded, then

2.14) E -  
Tdiag n lim G'(7k)TG(1lk) = 0,

(GI + Js - VE-' DG) + DG2 ]. so that any cluster point satisfies the first order necessary

where E is defined by E = D' + aT 2 and conditions for a local minimizer. These results apply to
our algorithm and nothing more needs to be said regard-

I ,V,. ing global convergence.
The local convergence behavior of general trust-region-

Levenberg-Marquardt methods for nonlinear least squares

Equations (2.12)-(2.13) show that the system of equa- is discussed by Byrd and Schnabel [ByrS86 who show
tions (2.8) can be formed in O(np + nm) operations. The that, if there is a cluster point Y7. where G'(1.) is non-

solution of (2.8) then involves a QR decomposition of J singular, then the iterates converge at least linearly to rq.

(accomplished by Householder transformations with col- independent of the size of G(t.). This theory also applies

umn pivoting) and then a sequence of plane rotations to to our algorithms. If, in addition, the residual G(q.) is

eliminate otI S. The cost is for this phase is dominated sufficiently small, Byrd and Schnabel show that asymp- '

by the O(np2 ) operations for the QR decomposition of totically the trust region constraint becomes inactive, and

J. It is then easily verified that the cost of calculating t that the Levenberg-Marquardt algorithm reduces to the

from (2.14) is dominated in cost by the O(np) operations Gauss-Newton iteration .
needed to form Js and several O(nm) terms. 7i

Thus the leading cost of calculating a step for ODR is += ?k - [G'('k)'G'('7k)] -
I G'(ik)G(,k)

the same O(np2 ) operations needed to do the factorization and is linearly convergent to 17.. The linear convergence
of an n x p matrix as in OLS. The only additional costs are analysis of the Gauss-Newton method is well known (see
a small number of calculations costing O(nm) or O(np) e.g., IOrtR70I, [DenS83J). The constant of linear conver-
operations. gence depends upon the smallest singular value of G'(i,.),It may occur to the reade-? that an efficient QR factor- the residual G(in.), and the nonlinearity of G(1) near n7..
ization of the matrix in (2.7) might yield a procedure with The small residual analysis is particularly relevent to
the same order of work. By re-ordering the upper 2 x 2 ODR because most applications of ODR will have small .41
blocks, one can, indeed, do the factorization of this part residuals. This is especially true when ODR is used to
in O(np2 ) operations. The subsequent elimination of the consider errors in independent variables in parameter es-
aS and aT blocks, however, would require O((nm + p) 2 ) timation, because errors in the independent "ariables are
operations for each a. It is for this reason, as well as oth- most likely to be considered when the model and the de-
ers, that Schwetlick and Tiller [SchT85] do only a"partial" pendent variable measurements are accurate, which im-
trust region strategy, i.e. their trust region only applies plies that the residuals will be small.
to the step in the 03 variables. In some badly scaled prob- It turns out that the application of the local Gauss-
lems, however, (e.g., Exar.nple 3 in Section 4) the ability Newton analysis to ODR is nontrivial, although the ex-
to scale and constrain the step in 6 is essential to solve pected results can be proven. To simplify the algebra
the problem. here, we consider a version of the ODR problem (2.1)

The above formulas for s and t are used for each a with the simplified weighting scheme w, = 1 and d, or
value in (2.5). Thus in order to complete the specification for all i, i.e.,
of the algorithm, we need to provide the procedure for
computing the trust region parameter a to satisfy (2.4)
and for adjusting the trust region radius r. These details (3.1) min [(fx, + 6,; )- Y')2 + 026Tb]

are discussed in IBogBS85J.
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where o > 0. This weighting still allows the metric of dis- is well defined, converges to Y1. and obeys
tance from the curve f(z;/3) to the data points (xi,yi) to
vary from vertical (as a - oo) to orthogonal (a = 1) to l'rk+l - 5i.II - c(ci + c 2 I[li - ri.Ig) link - 1711-
horizontal (as a --+ 0). (We explain this statement more
carefully later in this section.) This is all the generality In practical ODR applications, the user may wish to
in the weighting that is usually used in practice, and pre- solve (3.1) for various values of a. Now we consider the
cisely what we use in most of our computational results behavior of the ODR problem (3.2) as the parameter a
in Section 4. is varied. For this purpose, let us denote the global min-

To further simplify notation, we rewrite (3.1) as imizer to (3.2) by ri.(a). Then by standard analyses of
barrier function methods, (see e.g., [FiaM68] or [Lue731)

(3.2a) rain R(ri)T R(ri) + a26T6 we know that the limit of n. (a) as o -, oo is the solution -

to
or equivalently, minIIR()112  subject to 6=0,

(3.2b) min G(r) T G(q) i.e., the standard OLS problem
S(3.3) mH($01 2

where 6 = (6 T,T ... , 6 T)T, - ('TT)T, R((3). =minlR(#,0)11
2 .

f(X-+-6f3;)-Y, i = 1,...,n, and G(7) = (R(ri)T, a6T)T. Similarly, the limit of i. (a) as v - 0 is the solution to
Our analysis will not depend upon the special form of the implicit least squares (ILS) problem
R(ri) in any way. Recall that

(3.4) minji 12 subject to R(i) = 0.
/J(17) V( 17)' 'G'(0 0 a

2 1 ) In the data fitting context where R(qi), = f(xi +6i; P) -yi,

(3.3) is the standard problem where the independent vari-where J(ri) and V 0() are, as in Section 2, the derivatives ables xi are assumed exact so that the metric of distance
of R(i) with respect to in and 6 respectively, is in the y (vertical) direction only. In constast (3.4) is

The difficulty in applying standard Gauss-Newton the case where the dependent variables yi are assumed
analysis to (3.2) is that G(ri) and G'(ri) are functions of o. exact and the independent variables xi inexact, so that
In Theorem 3.1 we show that the convergence can be ana- the metric is entirely in the z (horizontal) direction.
lyzed in terms of the properties of J(ri), V (r), R(ri.), and The standard analysis of barrier function methods also
6. only, i.e., independent of a except for its role in deter- shows that 11R(q. (a))11 is a monotonically increasing func-
mining ri.. For the proof of Theorem 3.1, see IBogBS85]. tion of a, and that 116. (a)11 is a monotonically decreasing

In the statement of Theorem 3.1, we often omit the function of a. This means that for all a E (0, oo), the val-
argument ; i.e., we denote G(ri.) and G( 70) by G. and ues of 11R(r.i(a))1 and 116.(a)1 are bounded above by the
Go, respectively, and likewise for other symbols in place optimal objective function values for problems (3.3) and
of G. Also for J having full column rank, J+ denotes (3.4), respectively. In data fitting terms, for any a, the
(jTj)-1jT, and for V having full row rank, V + denotes norm of the optimal vertical residuals in ODR is bounded
VT(VVT)-I. Note that IJ+II 2 =I(jTj)- II. above by the norm of the optimal residuals in OLS, and
Theorem 3.1. Let R(ri) :Rt R" be continuously the norm of the optimal horizontal residuals in ODR is

differentiable in an open convex set D C R'. Let riT = bounded above by the norm of the optimal residual for
('3T' 6 T), E RP, 6 E Rq , let a be a positive scalar, and the ILS problem. The computational results of Section 4

/e Gn R(17) Asueteeeiss\*EDsc demonstrate these relationships.let G(r) o- r ) . Assume there exists i E D such Combining the above facts with Theorem 3.1 shows

that G*(ri)TG(ri) = 0, and that there exists -y 0 for that, if the optimal objective function values for prob-
which lems (3.3) and (3.4) are sufficiently small, and if J(7.(a))

and V (n. (a)) are sufficiently well-conditioned for all a EIR'(ri) - R'(ri") I - 7 - r"(0, oo), then the Gauss-Newton algorithm applied to (3.2)
for all i E D. Define is linearly convergent for any a E (0, oc).

Corollary 3.2. Let Y/, 6, R(ri), G(ri), J(ri), and V(ri)
c1 = J[I(JTJ.)-'I 1IR.II be defined as in Theorem 3.1. For any a E (0, oo), let

+ (1 + II(Tj.Y- 11IV.112 ) iv+1 116.11] 7a (f3.(V)T, b.(U)T)T denote the global solution to

C2 = (-y/2) [11V.+]1 + IlJ+[1 (i + IV.I11 IV.+1I)] . mm IIR( , 6)112 + 2116112.
Also let 3OLS denote the global solution to the ordinaryIf cz < 1, then for any c E (1,1/c 1 ), there exists > 0 least squares problem

such that for all o70 for which l10 - 17.11 <- c, the sequence

generated by the Gauss-Newton method min IIR(/3, 0)112

1k+I = 17k - (G ( 7 A)TGI(1 7k))- GI(1ik)TG(k)
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and let ( 13 Ls, dJLs) denote the global solutions to the Xi xi + rx

implicit least squares problem y, :=Y,. + ry

min 1611
2 subject to R(8, 6) = 0. where the rx are uniformly distributed on (-.05,.05)

0,6 and the ry are uniformly distributed on (-.25,.25). The 1

Let Rols = R(1Ols). Assume that there exist i > model for the data was taken to be

0, y 0 such that for each a E (0, oc), #1
y =

fIR'(,7) - R'(.1.(a))JJ !5 i iq, - 7.(v)JJ X - 02

for all Yj for which lIq - Y7.(a)l 1<1 L Assume also that for and the ODR program was run with several values of

all a E (0, oo), J(1 .(a)) and V(7.(a)) have full column a. The results are reported in two tables. Table I was

and row rank, respectively, and let J, J1, V, and Vr be generated by setting a 1 and taking 80 = (1, 1 )T. Sub-

uniform bounds on the norms J(q. (a))JI, HJJ(,?. (a))' 11, sequent solutions for higher values of o used the previous

JV(,.(a))i , and IV('.(v))1, respectively, over all a e- solution for the initial approximation. In addition to the

(0, oc). Define values of 8(a), Table 1 contains the number of evaluations
of the extended residual function G (of (2.3)) and its Ja-

2 R S + I++/ ( 2) 1-, 1S] cobian, and the optimal values of fiR(r/(oi))I and ll6(a))11
6ROLS 1 + [) VOILS for each value of a. Since the value of 6 was expected to

Z2 (j/2) [f,+ + (I + f'fl' be approximately the size of the variance of the errors,
V • we set the weight T = 10. Table 2 is organized just as

Table 1, but the results were generated by starting with

If ei < 1, then for any c E (1, i/ s), there exists i > 0 the OLS solution using 80 = (1,I)T and then decreasing

such that for anya E (0, co), the sequence {Irl} generated a.
by the Gauss-Newton method applied to (3.2) starting Obviously, Tables 1 and 2 exhibit a nonuniqueness of

from any ,io for which IIq0 - q. (a)ll - 1 is well-defined, the solutions. It appears that there are two local solutions
converges to j,. (o), and obeys for the OLS problem corresponding to the asymptote to

+oo being on the left or right half of the curve, and that

IInA+1 - I.(a)ll < C [6 + 6II - ii.(V)II] 1I'A - •.(a)II . the trajectories emanating from these solutions come to-
gether around a = 600 or that the trajectory represented

4. Computational Testing. in Table 2 fails to be continuous near o = 600. A possible
In this sction we report the results of preliminary corn- means of investigating this phenomenon is to write the

In tis ecton e rpor th resltsof relminry om- differential equation describing the trajectory 13(a) and

putational testing. These tests, consisting of two con-

trived problems and one real problem, were selected in to study possible bifurcation points. This is not pursued

order to illustrate the effectiveness of the implementation here.

and to demonstrate the performance of the basic algo- Observe that #a determines the location of the asymp-

rithm. They also allow us to contrast ODR and OLS, tote and thus the data locate this parameter very well.

which can have rather dramatic differences, and to point The graph of the OLS fit, however, shows that the data

out some of the inherent difficulties in ODR problems. point near the asymptote, corresponding to (1.01, 100)T,

The contrast between OLS and ODR is best brought completely dominates the fitting process for OLS in Ta-

out in terms of the parameter a and the function 8l(a) ble 2 and results in a value of -.3180 for 01. The ODR

from Section 3. (Recall that 8(oo) corresponds to the fit is not nearly so influenced by this data point and, for

OLS solution.) Since, in practice, the correct value of a a broad range of a, does a very good job of fitting the

may not be known exactly, it is of interest to compute data. This last point is important, namely that the pa-

1(a) for various values of a. rameter values do not vary much as a function of a, which

The algorithm was coded in Fortran 77 and run in dou- means that a may not need to be known with much ac-

ble precision on the Perkin-Elmer 3230 at the National curacy. The stability of 0(a) has been noticed on all of

Bureau of Standards (NBS). Graphs of the fitting func- our examples and on problems not reported here. This is

tions for all three examples are given in BogBS851. not, of course, a proof that this phenomenon holds more

Example 1. Consider 
generally.

A further difference between the OLS and the ODR

-I fits is that the errors for both the the OLS fits do not
Y - 1 appear to be random. The graph of the OLS fit shows

that almost all of the errors to the left of the asymptote

and define x, = .01 + (i - 1) * .05, i = 1,... ,40. Next let are negative while all to the right are positive. The ODR
errors for reasonable values of a appear to be much more

U, = , - i = 1,...,40. random.
1 An examination of the computational recxilts reveals

Now we perturb the data points as follows: that the only hard optimization problem in each set is
the first. Subsequent solutions are found very quickly ex-

290

z~or %C



&

cept, of course, for the problem corresponding to a = 500 on intermediate iterations. The iteration stalled with an
in Table 2 which appears to have jumped across a discon- indication of convergence due to x-convergence and a very
tinuity in 8(o). A detailed examination of the iteration small value of the trust region radius. A restart (which
process shows that the algorithm sometimes slows down resets the trust region radius to a larger value) then allows
(a very small value of r is generated) but then recovers the iterates to step over this flat area and converge very
and final convergence is with full Gauss-Newton steps. quickly to the correct answer.
For the case a = 500, fairly large steps in 6 were gener- The non-uniqueness observed in Example 1 was again
ated which led to apparent convergence with very poor 0 observed here. The details are not reported, but we found
values (near (0,1)) and very large values of 6 (0(1)). In a second OLS solution which led to a trajectory of solu-
this case, a very small value of r was produced. When tions that finally joined the above trajectory at a = 2.
the procedure was restarted with a large value of r, the Example 3. The data here are actual measurements
algorithm immediately stepped over this bad region and from a calibration run on an electronic device which was
converged quickly to the correct solution. Thus, it ap- intended to give a flat response over a wide range of fre-
pears to be important to scale the step in 6 correctly and quencies. In the (ry)-data, the r-values are in units of
to be on the lookout for unrealistic solutions. frequency squared and the y-data are the gain. The z-

Example 2. This example is a two dimensional version values are scaled to the interval (0, 1) with several mea-
of Example 1. Here we take x E R 2 and surements made in each decade from 10- to 1. More

measurements were taken at the higher frequencies since
- 1 most of the important information is obtained there.
x + x2 - 1 The model for this data was obtained from theoretical

This function has a line of singularities along X1 + X2 = 1. considerations and has the form

We take the data to be on the rectangular grid of width 4

.1 in the x, direction and width .2 in the £2 direction. = E I + , i 1,...,44
The first point is (.01,.01)T and there are 10 points in = + '7j

the x, direction and 5 points in the X2 direction. y is the
evaluated at these points and the data are then perturbed where the parameters to be determined are
according to the following:

(xi: (X)i + TX = (al,... ,a 4 ,'Y1 ..... Y4)
T .

(x2)i : (X2)i + rx Estimates of the pole locations-the negative -- values-

yi Yi + ry are likewise obtained from other analyses. The 'y-values
are approximately

where rx are normally distributed with mean 0 and stan-
dard deviation .01 and the ry are distributed normally 1.38 x 10 - 3

with mean 0 and standard deviation .04.
The form of the model is '72 5.96x10 2

0 3 = 6.71 x 101

/32X1 + 03X2 -14 1.07 x 10.

The results are given in Table 3 which is organized as Since all of the poles are negative and all of the data
Table 1. Again the values of #(o) do not vary quickly, have positive x-values, there is no problem with being
the location of the asymptote is well-determined by the close to the asymptotes. The range of the x-values, how-
data, and only /3 changes much as a increases. Graphs of ever, implies the need to scale the trust region. We used,
the fitting functions show that the fits depend more and for the diagonal scaling matrices S and T, the following:
more on the points near the asymptote as a increases.
Here the insistence on near vertical measures of the error s 1
forces 01 to assume smaller values which has the effect ROOM
of flattening the function as much as possible near the t -1
asymptote. This, of course, tends to minimize the vertical £i"
component of the error. As in Example 1, the errors for
the OLS fit do not appear random while those for the It turns out that the measurements are proportionately
ODR fits do. more accurate at the lower frequencies and we therefore

Note that the first solution, corresponding to a = 1, took the d-weights to be the same as the t-weights.
was computed with some difficulty. (This is the same While the data were measured quite accurately, there
situation as occured for a = 500 from Table 2.) In these were simply no data at a sufficiently high frequency to

cases, the terrain in parameter space (/ and 6) appears warrant keeping the two terms corresponding to j = 3
rather flat and fairly large values of 6 were again obtained and j = 4 in the model. This situation was evidenced

by the fact that the Jacobian J had five almost identical
columns.
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With these terms removed, the resulting problem was Table 3
easily solved as follows. Using a feature of the program
which allows certain parameters to be held fixed at spec- Evals of Final Values
ified values, we fixed the pole values (the -y-values) and or 02(-) 02(-) 0s(u) G G' IIR(wd(o,}IP(u)I
used an OLS estimate of the remaining linear parameters. 1" 0.8988 0.9482 1.015 147 60 0.184 0.670
We then freed all of the parameters and did an OLS fit 2 0.9223 0.9478 1.019 7 6 0.428 0.618

and and ODR fits with several values of o. In doing the 4 0.9345 0.9506 1.027 8 7 0.989 0.540
ODR fits, we first specified a o-value of .01 since the gain 10 0.9049 0.9510 1.047 9 8 2.379 0.42940 0.7148 0.9568 1.044 10 9 6.411 0.315
measurements in this data set were 100 times more accu- 100 0.3645 0.9343 0.9894 22 16 19.934 0.174
rate than the frequency measurements. Other values of or 500 0.0914 0.8830 0.9675 25 17 30.424 0.039
were subsequently used for comparison. The results are in 00 0.1192 0.8883 0.9338 27 12 77.440 0.

Table 4. Virtually no difference appears between the two
fits at the lower frequencies, but some differences occur at Table 4
the higher frequencies. In the enlargements of the fitting

functions, one can easily see that the contribution of the
error in the z-values causes ODR to get a significantly Era at FR((o)) Val(u
better fit than OLS. W hile the -values are not reported 0 1 9 1.8702 0.00 19 9 1.8702 0.
here, there were, again, very slow changes in #(a). .01 18 7 0.0005 0.03993

In this section we have shown that our algorithm is ef- .1 12 7 0.0016 0.00482
fective on highly nonlinear problems, but that these prob- 1. 5 4 0.0018 0.00006
lems themselves often have multiple solutions and other REFERENCES
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THE APPLICATION OF CONVEX HULLS IN MULTIPLE DIMENSIONS

Max Benson, University of Minnesota, Duluth
Kinley Larntz, University of Minnesota, Twin Cities

Michael Lavine, University of Minnesota, Twin Cities
Ronald Regal, University of Minnesota, Duluth

Convex hulls and minimum covering ellipsoids are convex hulls for ordering multivariate data. According
two possible methods for defining the region of to Huber (1972) the idea was originally suggested by
space enclosed by given points. Algorithms for Tukey. The idea is to take all points on the convex
computing these regions in multidimensional space were hull as the analog of the extreme order statistics. By
implemented and investigated. The minimum covering peeling off successive outer layers of points, one can
ellipsoid implementation takes much less time and define robust estimators of location (Seheult, Diggle
storage than the convex hull. The expected probability and Evans, 1976) or robust estimators of the correlation
content for the convex hulls in higher dimensions is coefficient (Bebbington, 1978). Convex hulls have also
small, been used in constructing non-parametric estimators of

densities and modes (Eddy and Hartigan, 1977).KEY WORDS: Convex Hull; Minimum Covering

Ellipsoid

1. INTRODUCTION

The computation of a convex region containing
a set of points has been extensively studied and
applied in two dimensions. Both convex hulls
and minimum covering ellipsoids have been used in 0

statistical applications. The convex hull of a set of
points is the smallest convex region containing all of the
points. The minimum covering ellipsoid is the ellipsoid 7-
of smallest content that contains the points. Figure
1 shows the convex hull and the minimum covering
ellipsoid for 20 points in two dimensions. Although
convex hulls and minimum content ellipsoids have
applications in more than two dimensions, programs
for computing these regions in multidimensional cases
are not readily available. In this study we report .3 -2 -1 0 1 2
the implementation of programs to compute convex
hulls and minimum covering ellipsoids in multiple Figure 1. Convex Hull and Minimum Covering
dimensions. The time and space requirements of Ellipse for n=20 Points in d=2 Dimensions. The convex
the implementations are investigated empiricilly for hull is the shaded region.
random points from normal and uniform distributions.

2. CONVEX HULLS 2.2 Computation

2.1 Uses The computation of convex hulls in two dimensions
is well studied, and algorithms are readily available.

Convex hulls have been used in a number of For example, the S software (Becker and Chambers,
statistical contexts. Kendall (1966) suggested that in 194) includes a function to find a two dimensional hull.
a discrimination context a new observation could be Preparata and Shamos (1985) describe several methods
assigned to be in the same class as a set of points if for finding planar convex hulls. Examples include the
the new point was in the convex hull of the given class quicksort analog first published by Eddy (1977). In two
of points. Kendall also suggested finding the extent to dimensions such algorithms provide easily implemented,
which groups of points formed distinct classes by finding reasonably efficient algorithms. However the complexity
how many of the points in other groups were in the of the problem escalates tremendously when one steps
convex hull of a given group. Convex hulls have also up to the general multidimensional case. Preparata
been used in various versions of peeling or trimming and Shameos (198) describe two alternatives for the
multivariate data. Barnett (1976) discusses using general case, the gift-wrapping method of Chand and
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Kapur (1970) and the beneath-beyond method of Kallay 3.2 Computation
(1981).

The algorithm implemented here is the gift- An iterative algorithm is described by Titterington
wrapping algorithm. The gift-wrapping analogy comes (1978), and modifications are given in Silvey,
from thinking of the way one rotates a package Titterington and Silvey (1978). A noniterative
from face to face by pivoting on edges of the algorithm for two dimensional ellipsoids is given by
package. The reason for our choice of this algorithm Silverman and Titterington (1980). The ellipsoid is
is historical. The interest in this project started when described by two parameters, the center p and the
the Environmental Protection Agency Research Lab quadratic form Q. Points on the boundary of the
in Duluth, Minnesota, wanted a convex hull program ellipsoid satisfy the equation

to use in discrimination much in the way suggested
by Kendall (1966). The EPA lab had tracked down (X 0)TQ(x - F) = P
a FORTRAN program written by Chand and Kapur The parameters are found by an iterative reweighting
at Lockheed-Georgia. Unfortunately the program was Theme.ret are foun be n its in
written in FORTRAN 66, and the code was not easy schm Letially.gives be n o in pi anh
to follow or generalize. Rather than wallowing in algorithm initially gives weight I/n to each point and
FORTRAN 66 code, Benson implemented the algorithm then computes
from scratch in the programming language C. Benson's P = - wxi (3.1)
implementation is pointer based and has no upper limits -1

(in theory) to the number of dimensions. The programs Q --[- w(xX - )7 (xj - I) (3.2)
contain over 1800 lines of code and have been run
on SUN and VAX computers using UNIX operating Next the ellipsoid is checked for each point by defining
systems.

The primary drawback to the computations is that d. (xi - p)TQ(xi - p)
convex hulls in higher dimensions become very complex.
Even if all faces are simplicial, the worst case time and d..,. = maz(di,da,...d,). If dw, < p + r, the
complexity of the gift-wrapping technique for n points search stops. Otherwise new weights are computed
in p dimensions is O(nLp12 J+l) + O(nLp/2J log n) and according to wi = (d,/p)w and these are used to update
the worst-case number of faces is O(nLP/2J) (Preparata p and Q according to (3.1) and (3.2). In our simulation
and Shamos, 1985, page 130). Hence both the time study described below, a value of 0.01 was used for e.
required to compute the hull and the space required
to store the results grow quickly as the dimensionality 4. SIMULATION STUDY
increases. Swart (1985) has suggested some possible
refinements of the Chand and Kapur algorithm. Swart's 4.1 Design
suggestions involve storing some intermediate results
rather than recalculating them. Benson is working on Both the convex hull and the minimum covering
other modifications, but none of these modifications ellipsoid were computed under conditions defined by
were used here. three factors:

3. MINIMUM COVERING ELLIPSES (1) Distribution - Normal (0, 1)

Uniform (on the unit cube)
3.1 Uses (2) Points (n) - 20, 40, 60, 80, 100

The minimum covering ellipsoid (MCE) is the (3) Dimension (p) - 2, 3, 4, 5, 6.

smallest content ellipsoid covering a set of points. The uniform variates were generated in a cube
Titterington (1975) introduced the MCE and described of dimension p. The normal samples are transformed
its relationship to optimal design. The idea of peeling or versions of the uniform variates. All computations were
trimming multivariate data can be carried out with the done on a VAX11/750.
MCE in place of the convex hull. Titterington (1978) For each combination of these factors we observed
discusses robust estimation of the correlation coefficient the time to compute the convex hull, the number of faces
using elliptical trimming. Green (1981) discusses both and vertices of the convex hull, the time to compute the
convex hull and elliptical peeling. Cook and Weisberg MCE and the number of points on the surface of the
(1978) describe using the MCE to define the region of MCE.
applicability (interpolation region) of the independent
variables in multiple regression. The MCE can be
substituted for the convex hull in Kendall's (1966)
suggestion for discrimination.,
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Figure 2. Computation Times for Convex Hulls of Figure 3. Computation Times for Convex Hulls
Random Uniform Points on the Unit Cube. The text of Random Normal Points. The text plotted for each
plotted for each result is the dimension, p. result is the dimension, p.
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4.2 Results

Figure 2 shows the times required to compute
convex hulls for random uniform variates in the unit Figure 4. Computation Times for Ainimum
cube. In some cases only one replication is shown Covering Ellipsoids for Random Normal Points. The
because three of the runs ran out of space. The runs text plotted for each result is the dimension, p.
for 100 points in 6 dimensions took over 3 hours of cpu
time. Figure 3 shows the corresponding times for the
normal data. The time to compute hulls of random
normal data is less, but the runs for 100 points in 6
dimensions still take nearly 3 hours. In contrast, Figure
4 shows the times for the MCE for normal data. None
of the times is more than 2 minutes. The convex hull 0 a
is time consuming to compute with the gift-wrapping o
algorithm because the hulls become very complex with ,
many faces to find. In order to determine if a new point .

is in the convex hull, one needs to retain information for W .U

each face. Figure 5 shows the numbers of faces for the 6
hulls of normal data. Even for 40 points in 6 dimensions, 0 4-
the convex hulls have over 1000 faces. For 100 points
in 6 dimensions, the hulls have over 3000 faces. In 2
dimensions 2 and 3 the expected number of faces can - . , , ...
be found using results from Efron (1965). The expected
values are given by stars on Figure 5. The simulated 20 30 40 50 60 70 90
results are in good agreement with the expected values. POITS(n

Figure 6 shows the results for the number of POINTS (n)
vertices on the hull, except that the number of vertices
is converted to percent of n, the number of points. For
40 points in 6 dimensions, for example, over 90% of the
points were vertex points of the convex hull. Even for
100 points in 6 d-mensions, about 70% of the points
are vertex points. In contrast Figure 7 shows that the
percentage of points on the surface of the MCE is much
smaller. For example only about 10% of the 100 points
In p=4 dimensions are on the surface of the MCE.
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5. DISCUSSION

Figure 5. Number of Faces for Convex Hulls of Convex hulls in higher dimensions are complex with
Random Normal Points. The text plotted for each result many faces. The time to find the hull and space required
is the dimension, p. A indicates the expected value to save the results could be enormous. The minimum
for 2 and 3 dimensions. covering ellipsoids were found in much less time, and

the results require saving only the center and quadratic
form of the ellipsoid. In higher dimensions the convex

6 g 6 hull can be mostly vertex points. This has important

6 implications for the potential use of convex hulls in

5e peeling or discrimination. Clearly, peeling is not useful
C25 if most of the points are in the outside layer. In a

6 discrimination context, if most of the points are vertex
W 4 points, the expected probability content of the hull

would be estimated to be small. Such a hull would have
4 4a small chance of containing a new point drawn from

3- the same distribution. More explicitly, the expected
3 probability content of a convex hull of n-1 points is

3 E(V)/n where E(V) is the expected number of vertices

2. 2, 0 2. . of a hull of n point. This is related to the observation
2 2 2 that a point is in the convex hull of the other n-1 points

if and only if it is not a vertex point for the hull of the
20 30 40 50 60 70 90 original n points. From the results here one sees that a

very large number of points is going to be needed in high
POINTS (n) dimensions in order for the convex hull to contain much

of the probability space. By contrast the minimum
covering ellipsoid has many fewer points on the surface
and therefore has a much higher estimated probability
content.

Figure 6. Percent of Points on Surface of Convex Figure 7. Percent of Points on the Surface
Hulls of Random Normal Points. of Minimum Covering Ellipsoids of Random Normal

Points.
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A JOHNSON CURVE APPROACH TO
WARMING UP TIME SERIES SIMULATIONS

David A. Burn, IMSL, Inc.

The simulation of a time series from a specified autoregressive Op(B)%(B) - 9q(B)
moving average (ARMA) model requires knowledge of the ini-
tial values of the time series and/or innovations process. Given (see Box and Jenkins, 1976, pp. 95-96). The random shock
independent, identically distributed zero mean innovations, the model is particularly useful since the moments of the time series
start values of the time series are often derived from a moving Ws can be derived for a specified distribution of the innovations
average approximation of the series. This approximation intro- Ag. Note that the general ARMA(p, q) model and its random
duces bias of a transient nature into the system, and requires shock form may be equivalently expressed as
the simulation to be run for a period of time in order to dimin-
ish the influence of the initial values of the series. To avoid the Op(B)*w = #,(B)A, (6)-'
necessity of warming up the simulation, we consider a Johnson and
curve approximation of the distribution of the initial values of = (B)A. (7)
the time series. respectively, where W1 = W - p corresponds to a time series
KEY WORDS: Autoregressive, Moving average, Skewness, with zero mean.
Kurtoeis, Transient.

1.3 The Simulation Problem
1. INTRODUCTION Suppose we wish to simulate a time series Wt of length n

1.1 General ARMA Model according to a specified ARMA(p, q) model. The induction
period is the length of time required to minimize the transient

Define the general form of the ARMA(p, q) model by bias induced by starting the run (Anderson, 1975). Let the

#,(B)W = So + O5(B)AI (1) total number of generated observations of the time series be
where m + n where the simulation is warmed up with mn discardable

observations of the time series. Clearly, we desire as short an

0,(B) = 1- 1B - B- .... - pBP,  p 0 (2) induction period m as possible.

Oq(B) = 191BG#2 B' *9Bq , q 0 (3) The method of generating the initial values of the time se-
ries and innovations process required to start the simulation

and B is the backward shift operator defined by run directly affects the induction period. Since the innovations

BhW, = W1_., for all k. are assumed to be independent, the moving average part of the
model may be easily initialized with q + 1 pseudo-random num-

This definition includes the following assumptions: bers from the specified distribution of At. However, the Wt are

1. The innovations At are independent and identically dis- not independent, so that production of the p series start values

tributed random variables with mean zero and variance is a major problem of the simulation experiment. We identify

-A' two general approaches to this problem:

2. The autoregressive operator 4(B) is stationary. Equiv- Approach A Generate the initial series values from an
alently, the roots of the equation Op(B) = 0 lie outside epprozimation of the model of the time series. :%
the unit circle.

3. The moving average operator O(B) is invertible. Equiv- Approach B Generate. the initial series values from an

alently, the roots of the equation fl(B) = 0 lie oitside approzimetion of the joint distribution of the time series.

the unit circle. Other methods have been proposed; for example, see Piccolo

The model is general in that the constant term 90 is included and Wilson (1984).

to allow for a nonzero series mean u. Refer to Box and Jenkins A prototypical algorithm to simulate a time series consists

(1976, pp. 91-93) for further discussion. of the following steps:

AI(IORITHW4 ARMA
1.2 Equivalent Representations A RL_

The random shock form of the general ARMA(p, q) is given by 1. Generate W1 -p, W _, ... , WI.NV

We = , + ,(B)At (4) 2. Generate AI-,, A3-,, ... , A0.

where 3. Set t=l.

'hp(B) = ;'(B)#,(B) = 1 + 0,1B + 0hB 2 +'".. (5) 4. Generate A.

The 0 weights of the infinite order moving average may be 5. Compute W, using ARMA(p, q) model.

determined by equating coefficients of B in

302

IN %



X77-. KFXTV.TKhJ Z 77 VJT1 ,7177 V,.- X7 M 1A VFTR71." -LI pv ~A?

6. Sett=t+1. where A represents the innovations Al, ... , A.+.. Then

7. Repeat Step 4 through Step 6 until t = m + n. 1Vt = Ht(m, n, O)Wo + hi(m, n, 0', A) (13)

The desired time series is given by We for t = m + 1,... m+ n. where

Some particular applications of Approach A and Approach B Ht(m, n, 4) = fR+l - (1 - ] (14)

are next examined. 
0 n(1-

and the function hti(m, n, 0, A) is a not affected by the behavior

2. W Rof the series start value W0 . Hence, the dependence of the

simulated series upon the initial series value is minimized by
2.1 A Finite Approximation selecting m such that

One version of Approach A utilizes a finite order moving aver-

age approximation of the general ARMA(p, q) model, Hg(m,n,#)I < c, c > 0. (15)

, =Since Ht(m, n, 0) is maximized at t = 1, the induction period
E 4Ali (8) m is determined by the inequality
i=0

where m is chosen sufficiently large. (We assume 0 = 0 in this In '1. - _) 1
section.) The algorithm consists of the following steps: mn ,j 1 - > 0. (16)

ALGORITHM A For a given f > 0, m = m(#, n) is a function of the parameter
1 t n and the length of the simulated series n.

Anderson (1979) states that this method extends to the

2. Generate m + p pseudo-random numbers Al(m+p), general ARMA(p, q) model. Similar to (13), we have

A2_(m+p), ..... Ao from the innovations distribution. =

3. Construct p series start values Wtl-, W 2-_, ... , W0 using 1=1

the MA(m) model (8) and the innovations from Step 2. q

Discard the innovations. - Z h.&(m,n, . ,,Gi.... ,qA) (17)

Often m is chosen arbitrarily and the simulation may be warmed

where A represents the initial moving average innovations A,- 5 ,
up longer than necessary. A-q, ... , Ao in addition to the innovations A, ... , A.+.. The

induction period m is dependent upon the length of the simu-
2.2 Determination of Induction Period lated series n through the functions n , 4), and

A "precise" method of determining the optimal length of the is minimized when their sum is negligible. However, the form

induction period was proposed by Anderson (1979). Consider of this dependence is quite complicated for models with p > 1.

the AR(I) model The need to warm up the simulation, and hence the need
to select an optimal value of the induction period, are artifacts

We = OWt-1 + At, 1I0 < 1 (9) of the moving average approximation of the series start values.
To bypass both of these problems, we derive a method of con-

Sand its associated MA(m) approximation stucting the initial values of the series directly from the joint

m distribution of the time series.: .W, = FOA,_i. (lO)
=0

Anderson (1975) states that m should be chosen such that the 3. THE JOHNSON SYSTEM

variance of the transient bias 3.1 Methods of Translation

S(1 To provide a mathematical representation of a wide variety of
CA ) statistical distributions, Johnson(1949) proposed a family of

isufinlfrequency curves generated by methods of translation. Let z
is sufficiently small. However, this approach may be deceptive denote a random variable whose distribution we wish to w.odel,

and lead to an excessively long induction period (Anderson, and let z represent a standard normal random variable. Con-

1979). sider the infinite class of transformations

Instead, Aiderson considers *IV = W - W where W is the -= )

AR(I) series gtnerated by ALGOIITHM ARMA and + 6=11 A+

1 Mwhere f is a monotone function of z and is dependent only

n E W+1upon fixed parameters. Define the standard form of this trans-
tam+lI _ n formation to be

0-'" nl-- Wo +9(m,n,0,A) (12) Z = + bf(y)
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where as

= (- 01. ipi(W) = p,(A)E
J-0

Then the density function of y is given by ,A
12(W) = o

AWy = 00(~e= = ., 03W) (=) 3(A) E

= 62,W AW 2xp j=sW)
00

and has the same shape as the density function of z. The p4 (W) = 4(A) + 3[ps(A)] 'Eajs

parameters f and A are location and scale factors, respectively, j=0 jiob

and the parameters 6 and -1 affect the skewness and kurtosis, =(as) [2()2 Oo0

respectively. = 0/P(A) - $4IA)] + 3[p3(A)1 02
i=o 0..o

3.2 Systems of Interest where w(W) and pi(A) denote the ith central moment of We

The special systems described by Johnson we and As respectively, for i = 1,2,3,4. The mean, standard
deviation, coefficient of skewness, and coefficient of kurtosis of

1. Lognormal, SL the distribution of Wt are defined by

z= P (W)

2. Bounded, Sip = #,3(W)/[P,(W)l' / 2
Z:= P4(W)/P,(W)].

z = -7+ n ), {< z< C+ A. Hence, for independent and identically distributed (0, WA) in-

novations,

3. Unbounded, Su

z = -A (20)

These three systems encompass most of the distributions = OPA r-z;:. ei (21)

common to statistical analysis. For informston concerning al- ,8 = V 312 (22)
ternative systems of distributions, see Johnson (1949), Elderton (U--0,2)

and Johnson (1965), Kendall and Stuart (1969), and Ord (1972). E110 01

P = IA(A)- ] -o1 " + 3. (23)
3.3 Fitting by Moments E 012)

To fit a Johnson curve, we derive the mean, standard devia- The stationarity and invertibility assumptions imply that the

tion, coefficient of skewness, and coefficient of kurtosis of the infinite sums of the O are absolutely convergent. Davies,
specified distribution. Next, the appropriate system and pa- Spedding, and Watson (1980) state that for low order ARMA

rameters of the Johnson curve representation of the specified models, at most 30 of the 0j are required to compute the above

distribution are determined using algorithm AS 99 (Hill, Hill, moments.
and Holder, 1985). Pseudo-random observations from the fitted
Johnson curve are obtained by transforming a pseudo-random 4. GENERATION OF START
standard normal variate to a Johnson variate using algorithm VALUES
AS 100 (Hill, 1985).

For the simulation experiment, we require only the first four 4.1 A Simple Example
moments of the theoretical distribution to determine a corre-
sponding representation within the Johnson system. Since the We introduce the Johnson Curve approach to generating the

moments of the distribution to be modelled are calculated the- initial values of a time series in the context of the AR(1) model
oretically, no sampling error is introduced. Also, we are mainly
interested in first and second order properties of the simulated W1 = tWg-. + A, I~i < 1 (24)
time series. Hence, we view the method of moments approach and its equivalent random shock form 0
to fitting a Johnson curve to be acceptable. A number of al-
ternative methods of estimating the parameters of a Johnson W ,

curve are discussed by Johnson (1949), Elderton and Johnson W, =. I€1 < 1. (25)
(1965), and Ord (1972). 1 =oSetting , = , in (21) through (23) gives

3.4 Series Moments

The relationship between the central moments of the time series 0 = A 4- )"

and the central moments of the innovations process is given by
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5. Determine the type of Johnson curve and the parameter.

OI= AfiIA C , A, 5, and y using algorithmn AS 99given the results of
Step 4.

#2 = [2(A)(- 31-' +. 6. Generate a poeudo-random number from the standard
normal distribution.

The start value of the AR(1) model may then be obtained by 7. Apply the inverse transformation of algorithm AS 100
fitting a Johnson curve and generating a Johnson variate as to compute a pseudo-random Johnson variate using the
previously described. Johnson curve determined in Step 5 and the result of Step

6.
4.2 A Joint Distribution a. Compute wv-h by adding pk from Step 3 to the pseudo-
Let P( Wie W+,... W+,) represent the joint probability of random Johnson variate from Step 7.
p consecutive elements of the time series Wt. lest wt denote
a particular realization of the element Wt. The definition of 9. Set k = k - 1.

conditional probability implies 10. Repeat Step 3 through Step 9 until k = 0.
P(W +1 , W.+2 .. ...W,+,) =

+1 P(+zI w-+)P(W,+s --+ W) = The values w-,, wz-, ... , to constitute an observation from
the joint distribution of p consecutive elements of the time

*.*.. P(Wi+p I tW,+t, I +2 P..... Wi+P-1), series W,.

Each term on the right hand side corresponds to a univariate
distribution which may be approximated by a member of the 5. DISCUSSION
Johnson system. The observed values wi+j for j = 1,..,p
may therefore be obtained from the joint distribution of Wt by We have considered two approaches to warming up time
constructing Johnson curve approximations to successive distri- series simulations. Approach A, as implemented through
butions, each conditional on the previously generated observed ALGORITHM A, approximates the general ARMA(p, q) model
values wt. by a finite order moving average in order to determine the p

start values of the series. The transient bias introduced by
4.3 The General Algorithm beginning the simulation run with approximate start values

We now develop a procedure to generate the series start values requires an induction period of m observations. Tb avoid un-

for the general ARMA(p, q) model. Defus necessary warming up of the time series, an optimal value of m
may be determined using the method of Anderson (1979). This

1value is dependent upon the length of the time series to be simu-
got = t0+_ k=1 (26) lated ans well as the autoregressive parameters of the model. Al-

0o, k =though this method extends to the general ARMA(p, q) model,

and the complexity of the expresion for the minimal induction
o 0 (27) period may prohibit its use in ptactice.
E , =J 1 "Since the source of the difficulty with Approach A lies in

Let 1 <k < p and consider the general ARMA(k, q) model the approximation used to obtain the start values of the series,
we proposed a method to directly generate these observations

#e(B)Wt = to& + Dq(B)Al (28) from the joint distribution of the time series, called Approach
B. This approach may be implemented using the strategy of

and its equivalent random shock form ALGORITHM B. For a specified innovations distribution, the
Wt, = ph + *(B)A# (29) mean, standard deviation, skewness, and kurtosis of the time

series are computed for general ARMA(k, q) models of decreas-

ing order in k. At each value of k, the distribution of the time

where #(B), #,(B), and P&(B) are defined as in (2), (3), and series is approximated by a Johnson curve and a start value

(5) respectively. The algorithm to generate the initial values of is generated. Using the definition of conditional probability,
the start values are generated in successon, and together con-

the time series for the general ARMA(p, q) model via Approach thsarvluswgertdinucssoadtgtero-
B consists of the following step : stitute an observation from the joint distribution of the time

series. In practice, ALGORITHM B may be applied with a

ALGORITHM B moderate amount of warming up to compensate for fitting the
distribution based on the first four moments.

1 . Determine V1 M1A and #2(A) for a specified innovations The heuristic descriptions of Approach A and Approach
distribution with mean 0 and variance "A. B involve approximations of the time series model and of the

2. Set k = p. joint distribution of the time series, respectively. Comparison
of these approaches may be performed with respect to their

3. Compute pe using (27). implementation in ALGORITHM A and ALGORITHM B. In
particular, ALGORITHM B

4. Compute u, VTs, and 62 using (21) through (23) and the * requires no explicit warming up period;
result of Step 1.

r does not depend on the length of the simulated series;
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Censored Discrete Data and Generalized Linear Models

Douglas B. Clarkson, IMSL Inc.

Abstract In all models, left censoring is the same as interval
censoring with a left endpoint of zero. In the binomial

Generalized linear models in discrete data encompas- models, right censoring is the also the same as interval
ses, among other models, logistic regression models, pro- censoring with a right endpoint of ni. Note that the co-
bit models, and Poisson regression models. This paper variates zi may be (and usually are) vector valued.
discusses an algorithm for computing parameter estimates 3.0 Example
in such models when interval (and other) censoring is
present in the data. Also discussed are some solutions The following table helps to illustrate the logistic model
to problems encountered in the algorithm, along with the for interval censored data. An interval for the number
statistical implications of some forms of model degener- of deaths at a given dose level and sample size is given,
acy. Finally, censored data analogues of some common along with the maximum likelihood estimates of the bi-
non-censored data graphical techniques and statistics are nomial probabilities, ii, and the estimated probability of
given, the observation (censoring interval) ji. Throughout this
1.0 Introduction paper it is assumed that censoring mechanism operates

independently of the binomial probability and of the out-
This paper discusses some experiences gained when come. Other censoring mechanisms may be possible. See,

implementing subroutine CTGLM (CaTegorical General- e.g., Kalbfieisch and Prentice (1980).
ized Linear Models) for inclusion in the IMSL libraries.
Although concern will be with linear models in the sense Table I
of Nelder and Wedderburn (1972) or McCullagh and Nelder An Example
(1983), their terminology will not be used. The main
advantage that CTGLM seems to offer over similar sub-
routines is the ability to handle censored (right, left, or INumber Sample ICensoring 1
interval) data directly. This ability causes some prob- Dme Deaths Size _ TypeI 9'J 1,1
lems in the usual algorithms and in the usual analysis. 1 0 Lef .0124 0.964
Discussion will center around how these problems can be 2 I00 Iert .01 0.949resolved. 2 7-15 100 Interval .1021 0.849r 40-60 100 Interval .508 0.963
2.0 The Models 4 80-100 100 Right .9028 0.999

CTGLM handles four discrete distributions and a to- When a binomial model is fit to the data with a simple
tal of six models. User specified models (without censor- linear logistic model on zj = dose, one obtains the maxi-
ing) are handled by another routine. Let xi denote a row mum likelihood estimate for the intercept as A. = -6.576
vector of covariates, # denote a column vector of param- with slope estimate A, = 2.201. The usual asymptotic
eters, ni, denote the binomial sample size, r, denote the statistics may also be computed. The estimates 3 of the
number of successes in the negative binomial, A, denote estimated 'cell' probabilities are obtained from the maxi-
the Poisson parameter, 8j denote the probability of suc- mum likelihood estimates.
cess in a single Bernouli trial, Mt denote the realization The data for this example may arise, for example, in
of the random variable, and let 4 denote the cumulative an experiment on an insecticide. Insects may be censored
standard normal probability distribution function. Then because they die for reasons unrelated to the insecticide,
the possible models are given as: and before the effect of the insecticide can be assessed.

1. Binomial, f(Yi/ni, ,,z), with three models for 81:

(a) logistic: 9, = . 4.0 The Algorithm
Let i7 = zip and note that the derivatives of fj in

(b) Probit: 8j *(exp(zi#)). the following are with respect to iq,, and that f, and its
(c) Log-log: 0, = exp(- exp(zi#)). derivatives are evaluated at 4,. When an observation is

censored, the function fj is the sum over the censoring
2. Poisson: f (y /Aj, zj), )i = exp(zi). interval of the probability distribution. Otherwise, f, is
3. Negative Binomial: f(S/0j, r, Z), 0, = n.ip) the probability of the single observed outcome. The log-

Negtiv Blikelihood and derivatives are computed as follows:
4. Logarithmic: f(yg/0j,zj), where Il = " .'o
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the remaining rows in X, then the f corresponding toN

og(L) = -iog(g) these rows will be o (-oo).Ifi gL=To see how easily such extremes can occur in prac-
N , N tice, consider the example in section 3.0 with a one one-

l -- u'- way ANOVA model replacing the simple linear regression
4ff J15fi model for the parameter i.- In this model, the four ob-

1r2 A(,.W\2xi servations are linearly independent of each other, so the
AI, A iW1 - estimated parameter at dose I will be i1 = 0 which cor-

responds to 01 = -o, while dose 4 will have parameter
where N is the number of observations (rows in X). estimate k = 1 which corresponds to 4 = 0o. Estimates

wheeNi s the numberafoobservationsl(rowsei via for the regression parameters P will depend upon the par-
Newton-Raphson iteration can be implemented via ticular parameterisation used in the ANOVA model, but

weighted least squares with regardless of the parameterization used, most, if not all,

1. weights wu1 , of the parameters estimates A will be infinite and the
iterative algorithm will fail to converge. Note, however,

2. independent variable z., and that maximum likelihood estimates for the observation
3. dependent variable ft. probabilities, 0j, are well defined.

W0" To account for the possibility of infinite 0, CTGLM

The Newton-Raphson step is obtained as the vector of uses restricted maximum likelihood estimation as follows:
estimated regression parameters. Alternatively, scoring Each observation (censored or otherwise) is
can be implemented via weighted least squares with restricted such that its estimated probability

1. weights w22, ( j) is less than 0.9999. Whenever Jj becomes
0.9999 or greater then the observation is omit-

2. independent variable z,, and ted from the likelihood (until its probability

3. dependent variable 1L becomes less than 0.9999).
Note that restricting the fi also restricts the param-

CTGLM always begins with scoring. When the rel- eters A through ,. In effect the norm of the fl's is not
ative change in the likelihood from one iteration to the allowed to become too large. While one could restrict the
next is small enough, the algorithm switches to Newton- #i's directly, it is more natural to restrict fi. Moreover,
Raphson iteration. Step halving is used for the line search the statistical properties of the resulting estimaters are
whenever the likelihood does not increase with the initial clearer.
step. The weighted least squares estimates are computed It is important to note that it is the probability of the
via Givens rotations. McCullagh and Nelder (1983), and observation, and not the binomial parameter 0,, which is
Stirling (1984), among others, discuss the same or similar being restricted. Indeed, in a binomial model a right cen-
algorithms. See also Green (1984). sored observation may have a current estimate for 0 of

0.7 or less, but because of the censoring, the probability
5.0 A Convergence Problem of the observation (i.e., the sum of the binomial probabil-

A problem with the algorithm which is more common ities) can be very close to one.
in censore datawi thatonorhmwh more ohe imad In the following the log-likelihood in which observa-in censored data is that one or more of the estimated tions with probabilities near one have been eliminated isparameters , --= may be infinite. As an example, called the 'reduced likelihood'. The 'restricted likelihood'

consider the logistic model for a single observation. If the is the log-likelihood one obtains when the restrictions on

observation is such that yg = ng (i.e., if the number of suc- the i are applied. CTGLM optimizes the reduced like-

cesses equals the number of trials), or if the observation iho no he estrcted like

is censored and the censoring interval contains n, then to show that a local optimum of the reduced likelihood

the maximum likelihood estimate of the binomial prob- is also a local optimum for the restricted problem. To

ability is & = 1. In the logistic model this corresponds see this, let l,(l) -- /og(f,), ad denote the constraints as

to x A oo, obviously an extreme situation. Al- l(p) !5 log(1 - e) = -6, for e,6 > 0. Define 'Lagrange
ternatively, if the observation (or the censoring interval) multipliers' pi = 1 if the i-th observation is restricted,
contains 0, then &g = -0o is obtained. These types of ex- with #j = 0 otherwise. The restricted log-likelihood, 11,
tremes are more common in censored data, but they can involves the pi and is given as
occur in uncensored data.

With more than one observation, this same type of N N

extreme will occur if the i-th observation is fl (or 0) and, l= l() - p4(1,) + 6).
additionally, the i-th row of the design matrix X (z,) is
linearly independent of the remaining rows in X. More In the restricted log-likelihood, both P and p must be
generally, if all rows in X corresponding to a group of right estimated. With the choice for the pi above, the re-
(or left) censored observations are linearly independent of stricted log-likelihood, In, yields the same estimates as
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the reduced likelihood since the restricted observations The definition of the deviance need not change in cen-
are eliminated from VL (see below) in both. All that re- sored data. The d, will become, however, more difficult to
mains is to show that the pi chosen above yield a local compute because a closed form solution for the optimizing
optimum for the restricted likelihood. Using the Kuhn- 1,(z /) is usually not available in censored data.
Tucker second order sufficiency conditions (Luenberger, The degrees of freedom for the deviance when there
1984, pages 316-317), this amounts to showing that the are restricted observations must also be adjusted. Clearly
chosen pi, i = 1,... ,N, are such that one degree of freedom should be subtracted from the to-

tal degrees of freedom, N, for each restriction applied.
Ai(I, + 6) = 0, However, because the restrictions on 1, also restrict the

parameters P, the degrees of freedom, p, for the number

that of estimated parameters may also decrease. Let r denote
N N the number of linearly independent rows in the matrix

VL = -V1(,() - -jV4,(f) = 0, formed from the restricted zi. Then r is the number of
4=, ,=1 restrictions placed on the parameters p, and the total de-

and that the Hessian matrix grees of freedom in the deviance is N-p-q+r, where q is

N N the number of restrictions placed upon the observations.
H = V2L, ( ) - p V'L4(5) (Note that in the binomial distribution each Bernouli trial

41 , =1 is an observation and contributes to N.)

is of full rank on the space orthogonal to Effi, pi V2 1(). The degrees of freedom in the deviance is data depen-
Because of the form of the Hessian matrix, this latter dent and thus a random variable. More restrictions will
assumption is equivalent to restricting 0 to a space or- be applied in some samples than in others. These chang-
thogonal to the rows zi in X for which -- 1. ing degrees of freedom will affect the chi-squared goodness

Because of the choice for the pi's, and because a local of fit test. Whether the restricted degrees of freedom are
optimum for the reduced likelihood is assumed, the last a better predictor of the adequacy of the adequacy of the
two conditions above are clearly satisfied. It remains only asymptotic approximations used throughout the analysis
to show that A (1, + 6) = 0 for all i. This is trivial to is another question needing study.
show if 4 = 0. If = 1 then i,(A) is restricted and again
1i + 6 = 0. Thus, for probabilities near one, the restricted 7.0 Residual Plots
and the reduced likelihoods are identical. (Note, however, Pregibon (1981) gives two methods for defining resid-
that in both the A are not uniquely defined because the uals which are of interest here. The first, involving the
Hessiandeviances, is given as:

As an example of estimates obtained from the algo- di e sv a
rithm, parameterize the ANOVA model for the example = sign( 4 -

above as follows: Let i1i = fo + -yi for j = doses 1, 2, i (
and 3, while 17 = P0. Then the estimated parameters are where d, is the component of the deviance as discussed

= 2.8, and (j1 ,'%,js) (-10.1, -4.9,-2.8). These es- above, while #i is the optimizing i/i for the single obser-
timates give estimated observation binomial parameters vation in question. Clearly, rtu = 0 for restricted observa-
of (0.0007, 0.1072, 0.5000, 0.9422). tions. In CTGLM, it would be desirable if one could avoid

6.0 Some Considerations about the Deviance computing the d. since their computation may be expen-
sive, especially in censored data where the computation

The deviance d, (Nelder and Wedderburn, 1972, page of '1 may require iteration for each observation.
375) for each observation is given as The second method of defining residuals is given by

Pregibon (1981, pages 708-709) as:

i.e., it is twice the maximizing log-likelihood of the obser- r = ')
vation with respect to the parameter iri (= zp3) minus 71 F( )
the likelihood of the observation as obtained from A. In
the absence of restrictions, the deviance has N - p de Clearly r2 is easy to compute with censored as well

grees of freedom, wheie p is the number of parameters in as 'exact' data. Indeed, ru, is obtainable from quantities

P. The total deviance is given as the sum of the d,, i.e., already computed in the iterative algorithm. Moreover, it
as: is possible to show that ru is a 'one-step' approximation

N N to r,. Thus, one would expect ri, and rs, to be very close ',

D = 4 = , 2(suppli(zip) - i(zA)), for 'small' residuals, and not so close for 'large' residuals.
The 4=1 This is born out in the figure below, in which both types of

The deviance of each observation may be used as a residuals are plotted versus the index number for the data.
'residual' (see below). The total deviance may be used The data is taken from Pregibon (1981), who attributes it
in an asymptotic chi-squared goodness of fit test of the to Finney (1947), and gives similar plots. In this figure, at
model (see McCullagh and Nelder (1983)), with N - p least, the two types of residuals seem almost equivalent.
degrees of freedom.
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Because r, is cheap to compute, while r is not, rj is the in each replication, the simple linear logistic model was fit
residual used in CTGLM. Similar figures were obtained involving parameters #a and #I according to the methods
for other data sets. discussed above. The results are discussed below.

The expected (based upon the 30 replications) regrs-
R igure 1 sion slope, 01 decreased (p f 0.0001) as the censoring

The Residuals (x-ri, o-r2) increased. As one would expect, the slope also changed if

the model was not correctly specified (p=.0963), although
the effect was not as dramatic. The intercept (P0) was sig-
nificantly different (p 5 0.0001) when the model was not
correctly specified. It was not affected (very much) by
the censoring level. As the censoring level increased, the
size of the average residual decreased, but the decrease

Swas not always significant. To get a feel for the variation
* in the residuals, consider the figure below. In this figure

the average residuals for the ANOVA cells which fit the
model are plotted at points (1, 2, 3, and 4) on the x-auis,
with all three censoring levels present, while the average
residuals for the ANOVA cells which did not fit the model
are plotted at x-axis points (5, 6, 7, and 8). The censor-
ing levels are (0.0%, X-10%, +-30%). Note in the figure

7 that the ordering of the residuals tends to be +-smallest,
X-second smallest, and 0-largest. The residuals at x axis

* point 7 do not fit the model (the actual binomial proba-

00. .40 bility was changed from 0.622 to 0.20). This fact is clear
Index Number from the size of the residuals at this point. Also note that

the residuals tend to be smallest when the data fits the
8.0 A Monte Carlo Study model (i.e., at x-axis points 1, 2, 3, and 4).

Figure 2
The effect of censoring on the estimated parameters The Expected Residuals (-0%, x-10%, +-30%)

and the resulting residuals is also of interest, as is whether T.

one can compare 'censored' residuals with 'uncensored'
residuals. In an attempt to answer these questions, a
small Monte Carlo study was performed using a simple "
linear logistic regression model. Two factors were stud-
ied. The first factor was the censoring level. Three levels
of censoring (0%, 10%, and 30%) were used. The eec-
ond factor was concerned with the appropriateness of the
simple linear model. Data generated for level one of this
factor fit the model for €ovariate values of (-2, -0.5, 0.5, Aand 2.0) corresponding to binomial probabilities of (0.119,

0.378, 0.622, and 0.881). In the second level the same co-
variate values were used, but the probability 0.662 for the
third covariate was changed to 0.20. Thus, in the second
level, the simple linear logistic regression model did not 8
fit. A balanced factorial design was used. 7

All binomial observations involved 10 Bernouli trials.
Censoring was incorporated as follows: For each Bernouli
trial a uniform (0,I) random deviate was generated using _.

function GGUBFS of the IMSL (1984) library If the gen- 70. 1. 2. 3. 4. 5. 6. 7. 8.
erated deviate was greater than the censoring probability Index Number
then a second deviate was generated. If the second devi- The residual plots seem to indicate that one can com-
ate was less than the logistic probability at the given dose, pare 'censored' residuals with residuals from observations
then the observations count was incremented by one. If which are not censored. One should expect, however,
the first deviate was less than the censoring probability, that residuals from censored observations will tend to be
then the length of the censoring interval was increased by smaller in magnitude.
one. All computations were performed on a Data General
MV 10000 computer and coded in FORTRAN.

Thirty replications at each combination of the two fac-
tors were performed. For each sample of four observations
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HOTELLING'S T2 . ROBUST I-RINCIPAL COMPONENTS. AND GRAPHICS FOR SPC

David Coleman, RCA Laboratories

Abstract

Correlated variables in the same physical unit are commonly measured for purposes of
statistical process control (SPC) - for example. dimensions of a manufactured part. The
multivariate control chart using Hotelling's T2 statistic is an effective process control tech-
nique for this multivariate situation. A common problem, however, has been how to make
practical use of such control charts. It is often hard to interpret "out-of-control" declara-
tions so as to produce control actions which correct the problem. Robust principal com-
ponents analysis captures the covariance structure of subgroups of multivariate observa-
tions. Corresponding graphical techniques help us interpret bias and variability problems
much more effectively than can a multivariate control chart, alone. These methods can be
used to develop a diagnostic SPC system.

1. Main Results and Conclusions. In Brief

A common SPC and engineering diagnostic problem is to interpret and use multiple
measurements of a product taken in the same physical unit. but at different locations on
the product (Figure 1). These measurements are often highly correlated. A procedure for
SPC is motivated and described in this paper. using as an example the relative misalign-
ment of photolithographic grids on (integrated circuit) semiconductor wafers. The pro-
cedure can be summarized as follows:

(1) Use robust principal components to: (a) Select a "process base sample." of a large
number of typical multivariate observations. (b) Estimate a "process covariance matrix,"
S%, (c) Compute process principal axes from S'.

(2) Periodically sample subgroups of product for routine SPC.

(3) For each subgroup: (a) [Optional] Compute Hotelling's T 2 statistics for subgroup bias
and variability in the principal axis space of the "process" database (Equation (3)). (b)
Interpret a potential variance problem using a robust "Principal Axis Plot" (Figures 7a and
7b) for the subgroup. (c) Interpret a potential bias problem by using both a "Spider Plot"
(Figure 6) - which shows an exaggerated representation of measurements taken on sub-
groups of product, and by using plots of the subgroup principal components (Figure 10).

2. Introduction

2.1 Statement of the Problem

A common problem in manufacturing is that of maintaining a process under statistical
control when it has several correlated process or performance control variables, in the
same physical units. The prototypical case for this paper will be the physical dimensions
of a manufactured part. For example, suppose two oxide grids are supposed to be applied
to a semiconductor wafer (perhaps a "monitor wafer") such that one falls exactly uponthe other, but manufacturing variability causes misalignment. Figure 1 shows a simple
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but extreme case of misalignment. Measurements for the purposes of SPC and diagnosis of
manufacturing engineering problems might be taken on sample wafers at a small subset of
the grid nodes, such as the 5-by-5 array shown in Figure 1. These measurements might be
of misalignment or of som other variable, such as thickness or sheet resistivity. Commer-
cial systems are currently available to take and display various measurements at many
locations on a wafer - in the form of a contour plot. As far as the author can determine.
however, none of them has the statistical capabilities described in this paper.

In one of the simplest statistical models of misalignment - the physical displacement of
grid B relative to grid A - a simple analytic expression would allow us to express the
transformations associated with Euclidean geometry: rotation about some point (perhaps
not the grid center, but constrained to be within a limited domain), then horizontal and
vertical translation:

X bs or+ )Xrnexid A = x1' +ri~ k cos (I +j kijk)xrn~

(0)Oh, ,o )+ybas+

Yi.J A y yi. +ri.j A. sin (0 i + a )i +Y:' 0 .'+JA

i = ..... n refers to the wafer number within a sample
j = 1.....5 (the horizontal position on the measurement array)
k = 1.....5 (the vertical position on the measurement array)

r (X A jx)" -Y 1 = the Euclidean distance of each of the 25 locations
of the measurement array from the point of rotation. (xf1t .yr0 ).

0 the angle of rotation about the point of rotation.

AX = e.g. ,sin-'( X A- ) - the angle position of the 25 locations of the measure-

ment array with respect to the point of rotation (r j.A ;A 0).
x1 r, is the amount of translation in x and y.

,. and e1v, . are measurement errors in the x and y directions.

[Note that the contraint on the location of the point of rotation forces us to also allow a
translation: any (Euclidean) isometry can be described by a rotation about a point, if the
location of such a point is unconstrained].

We might assume a model such as this and use a procedure such as nonlinear least squares
to estimate the unknown parameters of the transformations.

Unfortunately. model (1) is too simple for many applications, because rotation and
physical translation may .be inadequate to describe the possible patterns of measurements.
such as grid misalignment. We may want to allow additional transformations: shearing.
projections, inversions in circles, reflections in lines, and other one-to-one, differentiable
mappings. See Figure 2 (as suggested in [1]). In our specific wafer example. if the grids are
applied by projection photo-lithography, there may be additional grid distortions due to
process or wafer irregularities, such as vertical or horizontal stretch (or compression -
negative stretch"), diagonal stretch, radial stretch, saddle-shaped wafer, or local distor-

tion (e.g.. a local blemish). Transformations as diverse as this can occur in measurements
of all kinds on processes of all kinds: they are not peculiar to wafer fabrication.

The direct mathematical modeling approach is always appealing. We could, in
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principle, extend model (1) to include various additional types of transformations. How-
ever. we may not be able to state. a priori, in what geometry we should be working - more
specifically, what all of the plausible patterns of distortion might be. Also, the patterns
may be too complex or diverse for us to be confident that we can wisely spend degrees of
freedom for estimation of linear and non-linear distortion parameters. In addition, we are
likely to be interested in patterns of systematic VARIATION in the measurements, as well
as patterns of BIAS (measurements made on individual samples of product). These varia-
tional patterns may be even more difficult to specify. a priori. Hence, the potential com-
plexity of the direct mathematical modeling approach leads us to consider an indirect
approach. This paper describes such an indirect approach: a diagnostic SPC system for
wafer misalignment or some other similar performance variable.

2.2 Hotelling's T 2 Statistic(s)

A standard textbook strategy for SPC when there are correlated process variables (see,
for example. [2]) is to use Hotelling's T 2 statistic.

T 2 = (xj -i)'S- 1 (xj _-) = yj 'yj. (2)

where x1 is the j"h p-dimensional observation which we want to assess for control, x is
the p-dimensional vector of sample means of the p (correlated) process variables taken on
n parts (wafers. in our example). S is a sample covariance matrix, and y, =V 'D-'(xj -. Z).
the j'h observation in principal axis space (V is from the eigen-decomposition, S -
VD 2 V ,). It is known that F = n -p T 2 has the F distribution with degrees of free-

dom p and (n-p ). This implicitly defines the Hotelling's T2 "a-confidence ellipse."
Fpn--p a/2 <  (n-p) (-)S]x rv1o2

p(n -1)

which is quadratic in the vector x (see Figure 3).

2.2.1 Use of Hotelling's T 2

lHotelling's T2 statistic correctly handles the correlation structure of the p process
variables in that it gives true a-level (Type I) confidence in declaring "out-of-control" for
simultaneous values of the p variables. It would seem to be the method of choice for the
multivariate SPC situation. As J.S. Hunter has repeatedly commented (e.g.. [3]).

"If bivariate charts are so valuable, why. one might ask, haven't such charts found wider %

use? Arithmetic is the answer. Hotelling's T2 statistic must be calculated to establish the
bivariate [and more generally. multivariate] control boundaries. This expression and its
associated arithmetic may appear formidable, but they are not. Today's hand-held calcu-
lator or desk-top computer is easily programmed to complete the necessary arithmetic and
graphics within a few seconds.... In practice. the factory worker would place the several
measured responses into the hand-held or desk-top calculator. The calculator would calcu-
late T 2 , and could be programmed to 'beep' whenever an unusual value of T2 was
obtained... Monitoring today's processes with one-variable-at-a-time methods is to throw
away information."

It is hard to disagree with lunter. The many companies now supplying SPC software
have perhaps not yet attained this level of sophistication, but it is only a matter of time.
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The real impediment to multivariate SPC. other than computational complexity. has been
the difficulty of interpretation. However. for the SPC situations described in this paper,
the Hotelling's T 2 approach can be usefully augmented with robust methods and with sta-
tistical graphics so as to ease interpretation, especially for manufacturing engineers. Some
motivation is given in the next section.

2.2.2 Limitations. Especially When p is Large

While technically correct. and usable in practice. Hotelling's T 2 suffers from problems
of interpretation, particularly when p is large.

Consider our wafer example. when the causes of misalignment might be complex.
Succbut it might be hard to interpret the out-of-control declarations, and to decide what
to do to get the process back in control. Indeed. it has been the author's experience that
the same reaction is obtained again and again, after describing how the low Type I error
(false reject) rate of control chart mein the declaration that SOMETHING is wrong with
the process: "All right. WHAT is wrong with the process: what do I fix?"

This is not an easy question to answer. Indeed, it may seem to be better answered by
an engineer who is more familiar with the process. However. more information CAN be
gleaned from a control chart than just a control declaration. For the simplest case. the V
univariate control chart, a collection of rules of thumb can be usefully developed. These
can be based upon the standard (or any specialized) conditions for declaring "out-of-
control." For example, such rules for the X chart can take the form: (a) one point more
than 3a" from the mean indicates a sudden, extreme departure from control, or (b) eight
points in a row on the same side of the mean indicates a trend or a slight but persistent
shift. Once users become familiar and comfortable with these rules (and the construction
and philosophy of the control charts). more can be learned. The multiple rules serve to
narrow the field of possible problems in that it is more likely that (a) is a bolt that
snapped and (b) is tool wear, than vice versa. Of course. engineering interpretation is
always needed to identify the specific problem at hand.

Similar rules of thumb can be developed for Hotelling's T 2 control charts - but the
difficulties of interpretation are compounded. In the bivariate case. the simplest condition
is one extreme point beyond the 99+% level. It can be due to extreme values of both vari-
ables, or just one of the two variables, or a pair of values of the two variables that is
unusual - though neither value may be extreme in itself. In Figure 3. point A is likely to
be easy to interpret, but points B and C, and especially D are likely to be difficult to inter-
pret. The difficulties of interpretation are far greater when we consider more than two.
say 50 variables, as in the wafer grid misali nment measurements. With a problem of this
size and potential complexity. Hotelling's T is not informative enough. We need effective
interpretation, not just correct s-level declaration of "out-of-control."

3. Principal Components Analysis on Successive Rational Subgroups

Jackson advocates the use of principal components and a form of ilotelling's T 2 statis-
tic for rational subgroups ([4]. [51). Instead of the simple T- statistic for a single part.
given above, we compute (foilowing Jackson) for n observations and k -<min (n .p) princi-
pal components (ideally. n >> p).

To2, =Tj2 2,+ TD, (3)

where T-= = Y (.)'yj(,) is the overall variability of subgroup i about the
j=l =1
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grand mean. Z (note that we replace the mean in (2) with the grand mean). It has an
asymptotic X& distribution under the null hypothesis that the observations in this sub-
group are not significantly different from the grand mean (usually we do hypothesis test-
ing with T2 i andTD i. instead of with T2 i).

TM i = ny (j)'.T(j) (where Y(i) = 0 - V 'D-'((, )-) ) is the squared bias of the
I

subgroup mean from the grand mean. It has an asymptotic Xt distribution under the null
hypothesis that the bias is not significantly different from zero.

T 2Dj, computed by TI = T02 -Tm j. is the variability of the subgroup observations about
their own mean. xf. It has an asymptotic Xh(n - 1) distribution under the null hypothesis
that the subgroup variability is not significantly different from the variability from which
the principal components were derived.

Paired control charts of T,3, and TDI comprise a mudtivariate analog of k and R (or
s ) charts, as briefly mentioned by Jackson. A perusal of textbooks and current literature
indicates that these paired charts are rarely used. When computed robustly, and supple-
mented with good graphical displays. paired T2 charts can be very effective.

3.1 Computations

A classic issue in principal components analysis is whether to do an eigen-
decomposition of the covariance matrix, S. or the correlation matrix. R. For the case of
interest in this article - correlated variables in the same physical unit - the use of S is
appropriate, since we have no a priori reason to scale measurements at one location
differently than at another location.

Using S rather than R also allows us to make simple quantitative statements of
interest about the principal component analysis. For example. suppose that we take that
the variance in the original n by p matrix of observations, X. is trace (S). Since the
matrix of eigenvectors. V '. is orthonormal, the total variance of X remains the same after
pre-multiplication (V 'X corresponds to a rigid rotation of the basis vectors). Hence. we
can make statements of the form. "m % of the total variance in X is accounted for by the
first k principal axes, which are: ..." (as stated in [61).

3.2 Graphical Displays

As stated, the wafer example is prototypical for this paper. However, the graphical 41
tools described below are applicable to any situation where dimensions or some other
process-related or performance-related variable of a part are measured in the same physi-
cal unit, at different locations. Two graphical tools are presented for interpreting bias
problems in misalignment. One of the tools is the Exaggerated-Measurement Plot - which
is similar to a contour plot. For subgroups of wafers rather than individual wafers, we can
use the related Spider Plot. Another graphical too] presented below is the Principal Axis
Plot. It aids in interpreting variability.

3.2.1 Exaggerated-Measurement Plots and Spider Plots

The Exaggerated-Measurement Plot is a representation of the part on which measure- 'v
ments have been made - but with exaggerated representations of the measurements
displayed (see Figures 4a and 4b).

Specifically. an Exaggerated-Measurement Plot is constructed by drawing a line seg-
ment for each location of measurement. One end of the line segment is at the nominal
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location of measurement. From that point, the line segment is drawn in the same direction
as the misalignment at that location, but the length of the segment is scaled (up) so as to
make it easier to identify patterns of misalignment, perhaps such as shown in Figure 1.
Thus. the axes on the plot implicitly carry two scales: the scale of the part being measured
- in which we can find the locations of measurement, and the misalignment error scale -
which might be several orders of magnitude less.

The Exaggerated-Measurement Plot is analogous to a caricature, in that enough of the
nominal features of the part are shown so that the part can be recognized for what it is.
but the measured features unique to that particular part are coded into the graphical
representation so as to highlight those features. This makes it easier to discriminate among
parts. We may especially want to tell good parts from bad parts. Figures 4a and 4b show
Exaggerated-Measurement Plots for misalignment of grids on two wafers. The wafer scale
might be I0- 4 meters. while the misalignment scale might be I0- meters.

By overlaying Exaggerated-Measurement Plots from sample members of a subgroup
(see Figure 5) we can see the bias and variability of subgroups on a per-location basis.
However. this method of graphical presentation can be improved.

R. Barton ([71) and (implicitly) J. E. Jackson ([4]) have used a superior means of
graphical presentation for subgroups of data of this form - the Spider Plot. The Spider
Plot helps to separate bias from variability. Jackson illustrated it as a means for geometri-
cally representing the relationships between the T2 statistics of (3). For applications such
as our wafer example, it can be used directly at each measurement location, as seen in Fig-
ure 6. It is constructed as follows: (a) Exaggerate all misalignment errors by the same
amount, e.g.. by a factor of 100. Do the following for each measurement location: (b)
Compute the subgroup mean exaggerated error. (c) Draw a line segment from the nominal
measurement location to the subgroup mean. (d) Draw one line segment per wafer from
the subgroup mean- to the exaggerated error position - as would be obtained in an
Exaggerated-Measurement Plot representation for that wafer at that location.

Another way to conceptualize how a Spider Plot is constructed is to suppose. for a
moment, that the subgroup mean is zero at all measurement locations. Then. the Spider
Plot would be identical to overlaid Exaggerated-Measurement Plots. Each spider could
then be displaced from the nominal position to the actual subgroup mean. per location.
This per-location subgroup bias is also represented by a line segment - with a solid dot at
each end.

The Spider Plot helps us to make qualitative assessments of the form. "Is the within-
subgroup variability sufficient to disregard the bias from the nominal?" and "Is there a
pattern in the bias which is independent of the magnitude or shape of the variability?" and
"Are all the spiders of the 'same species?' "

Either of the above plots is the natural companion to either the T 2 (for individual
parts) or the T2 i (for subgroups of parts) statistic. They each show departure from nom-
inal which is in the form of bias. Exaggerated-Measurement Plots or Spider Plots could be
examined routinely, or a control procedure could be designed so that when T 2 or TA2

(whichever was being used) was declared out of control. an exaggerated-measurement or
Spider Plot could be produced (by computer. of course) to help diagnose the problem. See
Section 5.1 for such a procedure.

3.2.2 Principal Axis Plots ("Major Motion Pictures")

Principal Axis Plots address the systematic-variability side of the control question. A
limitation of the exaggerated-measurement and the Spider Plots is that though they
highlight part-to-part or subgroup-to-subgroup differences, it is hard to see PATTERNS of
differences between parts or subgroups. This limitation holds also for the classical statis-
tics we might compute on the X matrix: X and S: X is computed per measurement
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location, and S shows only pairwise relationships. Though we can compare bias and vari-
ability, location-to-location, in Figures 5 and 6. we cannot readily perceive whether or not
the variation is systematic. In our assumed multivariate SPC situation, we know there is
high correlation - so much of the variation IS systematic. A principal components analysis
gives how much variation is systematic. and a Principal Axis Plot shows the pattern of
systematic variation.

The Principal Axis Plot. such as shown in Figures 7a and 7b. is constructed as follows:
(a) Do principal components analysis of the subgroup. resulting in (usually) a few major
principal axes (that is. axes associated with relatively large principal values). (b) Scale
each principal axis to be displayed (perhaps by a fixed value, or proportional to the associ-
ated principal value), (c) For each principal axis to be represented, place a limeasurement
location with one end positioned at the nominal measurement location, (d) Draw the line
segment as in an Exaggerated-Measurement Plot - treating the scaled principal axis as a
vector of misalignment errors, with a horizontal and a vertical component for each meas-
urement location. (e) Put "arrowheads" on the ends of the line segments. to help distin-
guish the Principal Axis Plot from an Exaggerated-Measurement Plot in appearance.

Figure 7a is a Principal Axis Plot for the first principal axis for a subgroup of wafers.
It is apparent that much (nearly 88%) of the variation in misalignment is along a 30 - 45'
(diagonal) direction. The second principal axis is shown in Figure 7b, and it appears to be
compression along one Cartesian axis. and expansion along the other, with an origin near
the array point: ( row 2. column 4). The orthogonality of principal axes lessens the likeli-
hood that patterns of systematic variability will be confounded in either of the two ways:
two sources of variability captured in one major principal axis. or one source of variability
split into two major principal axes. As with Exaggerated-Measurement Plots and Spider
Plots, we search for patterns such as illustrated in Figure 2 when we examine Principal
Axis Plots.

The Principal Axis Plot is the natural companion to the TD i statistic, which is just the
sum of the Tj statistics of (2) if there is only one subgroup (in which case the grand mean
is identical to the mean). Principal Axis Plots could be examined routinely, or a control
procedure could be designed so that when T2, was declared out of control, a Principal
Axis Plot could be produced of the offending subgroup. as given in Section 5.1.

3.3 Interpretation

In Section 2.2.2. the motivation for providing a means of interpretation of T2 statistics
was given. For SPC in the multivariate situation discussed in this paper. principal com-
ponents analysis plus the three graphical techniques described in Section 3.2 help with
engineering interpretation. This section is brief, because general discussion of interpreta-
tion is necessarily limited in scope. Section 5.2 has a more detailed example.

3.3.1 Classification

A good way to interpret correlated process variables in the same physical unit is to
look for patterns among the values of the variables - particularly when those values have
been declared out of control by a multivariate control procedure. such as Hotelling's T 2 .
This is especially effective for correlated process-related or performance-related variables
measured at different locations of a manufactured part. For what types of patterns should
we look? Probably the same types whether we are examining bias (using a Spider Plot or
Exaggerated-Measurement Plot) or systematic variability (using a Principal Axis Plot) -
though the interpretations would naturally differ. Typically. we should look for: (1)
"global" patterns associated with the types of one-to-one, differentiable transformations
listed in Section 2. such as: translation, rotation (not necessarily about the center), stretch
in one dimension (not necessarily the original measurement dimensions), radial stretch
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(not necessarily centered), corner effects (such as "sag"). edge effects (such as a 'rim"). and
(2) *local" phenomena. such as isolated outliers or small clusters of outliers. When a pro-
cess is declared out of control in subgroup variability, the type of thing that we do NOT
want to see in an a Principal Axis Plot is seen in Figure 8. Such a pattern of systematic
variability would be difficult to interpret - especially if it were associated with a large
principal value (that is. it "accounted for" a lot of variability in the raw measurement
data). If we were to get an Exaggerated-Measurement Plot with line segments such as
shown in Figure 8, it would imply local problems rather than global problems.

3.3.2 Manufacturing Diagnostic Tables

The pragmatic advantage to classifying patterns is the potential for developing rules of
thumb for engineering action. These might be analogous to (but more complex than) those
developed for X and R charts. Two basic methods might be used for tracing back perfor-
mance patterns of bias or variability to their root causes: (1) physical phenomena affected
by the geometry, and (2) pattern preservation.

Physical phenomena affected by the geometry include such processes as:

" film deposition - which might depend on distance from the source of deposition
material.

" thermal, chemical, or electrical processing - which might be more extensive along the
edges and/or corners because they are more exposed.

• imaging of light or electrons - which might have distortion approximately propor-
tional to the angle of refraction or deflection.

Pattern preservation is a conservation law, which states that if a certain type of devia-
tion from nominal (e.g., a lateral shift) is introduced during manufacturing, it will be
preserved in the performance variables of the final product. unless specifically taken out.
When process steps are more or less independent of one another, common sense tells us
that patterns of deviations will be preserved. But even though this is often the case, pat-
tern preservation is not often exploited in multivariate SPC. Examples are: lateral shift of
a part relative to a fixture, rotation of part relative to fixture, optical process errors in
setup leading to stretch or shrinkage, or other one-to-one, differentiable transformations of
many kinds.

Departures from the assumption that the process steps are independent can take two
basic forms. Further process steps can reduce patterns, or can magnify patterns. Reduc-
tion can occur when processes do relative tolerancing or relative alignment, rather than
absolute. Or. a later process step may remove the deviation from nominal altogether (e.g.
incorrect seating in a clamp might be deliberately corrected, or inadvertently corrected by
handling). Magnification can occur when a small deviation from nominal can propagate. or
have effects which propagate (e.g. a small burr in a milling process can cause extensive
milling irregularities, or an off-trajectory laser beam may get further and further off-
trajectory). After-the-fact SPC techniques are most likely to help identify the cause when
independence or magnification holds.

4. Robust Principal Components Analysis

To guard against distortions due to atypical data values, Devlin, Gnanadesikan. and
Kettenring ([81) suggest several methods for computing robust principal components.
Additionally, these methods can be used to identify such atypical values. They may be
the most informative data.

4.1 Alternatives
Devlin et al. recommend the use of three robust techniques for principal component
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analysis. One is iterative multivariate trimming (MVT) based on trimming a fixed propor-
tion. a. of observations with extreme (Mahalanobis) distances.
d;=-- xj -mg)S (x, -m*) . where m* is the current measure of location, and S' is the
current robust estimate of S (m and S are used as the starting-points for M" and S ).
Other recommended approaches are based on "maximum likelihood I" (MLT). for only the
Cauchy case (0 degree of freedom). and a Huber-weights-based method (HUB) designed to
make S asymptotically unbiased for the multivariate normal. MLT and HUB were judged
superior to MVT with regard to estimation of correlations, eigenvalues. and eigenvectors.
but MVT converges faster, and is recommended by the authors for large values of p -
which is typical of the SPC situation considered in this paper.

For this reason, and because MVT is invariant under all nonsingular linear transforma-
tions of the observations, the author has used and recommends the use of MVT. Analysis
of rejected observations is also recommended, and is part of the procedure given in Section
5.1.

5. A Working Procedure for SPC. and A Wafer Example

5.1 A Working Procedure
Below is summarized a procedure for SPC with strong engineering support (a more

detailed and thorough form of this procedure has been developed, but is not given in this
paper). It is assumed that the engineers have good analytic and interpretive skills, and
that the product design is stable enough so that a body of process knowledge can be accu-
mulated and refined.

[Note that a subtlety of the multivariate situation is that either or both bias and variabil-
ity can be declared- out of control when neither bias nor variability has statistically
significantly increased - but the covariance structure has sufficiently changed.]

ROBUST, MULTIVARIATE SPC PROCEDURE

1) [GET. S*] Compute a robust sample covariance matrix, S*. using MVT on a N by p
matrix, Xa,., . of selected parts - resulting in trimmed matrix. X;,, (N is assumed large).
and associated major principal axis space. g,,.

2) [SAMPLE FOR ROUTINE SPC] Sample subgroup i of n parts, resulting in n by p
matrix, X,.

3) [GET T2 's] Compute Hotelling's TD . and T42 i, in V= ' . Plot the Hotelling's T2

values on separate. parallel. Hotelling's T control charts, and apply the appropriate con-
trol chart rule(s).

4) [INTERPRET VARIABILITY PROBLEMS] If TD i is out of control, examine Xi in V=j'.
look for outliers which might inflate the subgroup variance, and seek to correct. If not
present, compute robust principal components of Xi. Examine the major Principal Axis
Plots for systematic patterns of variability, and compare them to those produced for Xt:.
Diagnose. record, and go back to 2.

5) [INTERPRET BIAS PROBLEMS] If T i is out of control, produce the Spider Plot for
X,. Compare to the Spider Plot of X;,,. Look for outliers and systematic bias. and seek
to correct. Optionally. examine Xj in V,, . look for outliers, and seek to correct. Diag-
nose. record, and go back to 2.
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5.2 A Wafer Example

Suppose that a projection photo-lithographic process applies two rectangular grids for
oxide deposition on semiconductor wafers: (1) apply grid A. (2) change projection source
and wafer fixture (reflecting process differences in applying the two different grids). (3)
apply grid B. As described above, the nominal design calls for grid B to fall exactly upon
grid A. but there is always some misalignment.

To carry out SPC on wafers, both vertical and horizontal misalignment of grids is
measured at 25 positions on a 5 by 5 array. as shown in Figure 1. The measurements are
highly correlated, because any one grid of vertical and horizontal lines is applied in a sin-
gle process step. Differences from the nominal location within a process step are not
trivial, however (correlations are not +/- 1). because they can be due to a variety of devia-
tions from the ideal process setup - which do not necessarily affect misalignment uni-
formly over the ridded wafer.

Hotelling's T4 i and T 2 i can be used on production wafer subgroups. Classical and
robust sample covariance matrices can be estimated based on many wafers sampled uni-
formly over a considerable period of production time. After resolving any concerns about
outliers in the sample used to compute S. subgroups of wafers can be then sampled for
routine SPC. Figure 6 shows the Spider Plot for a sample from a subgroup which was out
of control." according to its Hotelling's T 2 i statistic, indicating a variability problem. Fig-
ures 7a and 7b show the first two major Principal Axis Plots. We can see that our chief
concern should be variable diagonal translation - perhaps due to problems with wafer or
projection lens fixtures. Secondarily, we may choose to try to reduce an
expansion/compression problem - perhaps due to projection lens distortions or wafer dis-
tortions.

Another subgroup would have been declared "out-of-control" due to high values of
both of its Hotellings T 2 statistics, had not robust principal components been used. It was
contaminated by an outlying observation. Robust principal components rejected observa-
tion V7, as shown in Figures 9 and 10. When observation #7 was replaced by one taken
from another wafer, the subgroup was no longer out of control. according to T statistics.

The example could be continued to illustrate the complexity and subtlety of possible
multivariate phenomena and to provide illustration of the various ways that the proposed
control ,machinery could be used. Instead. the reader can study the different paths of the
procedure provided in Section 5.1

6. Summary

Hotelling's T2, robust principal components, and appropriate graphical displays can be
combined to form a sophisticated system for statistical process control when many corre-
lated performance variables are measured in the same physical unit. We need not be so
concerned about the computational complexity or burden of such a SPC system. Rather.
the harder task is to develop systems which are not only statistically sound. but can lead
to meaningful. interpretable results which guide corrective action. In brief: (1) Hotelling's
TM2 i and TD2 i statistics are the multivariate analog of X and R charts, and should be used
rather than a multitude of simultaneous X and R charts or the standard T 2; (2) Use of
robust principal components analysis helps us to avoid misinformation due to atypical
data - such as outliers and departures from the standard process correlation structure. It
also makes possible more subtle interpretation of multivariate data: (3) High-resolution
computer graphics are widely available, and graphical tools for SPC. such as Spider Plots
and Principal Axis Plots. can be built into an interactive SPC system. Lastly. the only
way such a complex SPC system can work is to have well-trained process engineers who
are dedicated to improving the process. and who have good analytic and interpretive skills.

The application of this control methodology to wafer grid misalignment is only one
example of its potential use. With slight modification it can be applied to the case of any
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measurement taken at different locations on a wafer - sheet resistivity, thickness, induc-
tance. etc. More important. it also applies to other manufactured products which have
many measurements taken in the same physical units. For example. it could be applied to
registration patterns on PC boards. emulsion thickness or purity on photographic film,
thickness or density of "uniform" sheets of steel or some other material, diameters of
spheres or cylinders, such as ball bearings or rods, or physical dimensions of arbitrarily-
shaped parts. The Exaggerated-Measurement Plot. Spider Plot. and Principal Axis Plot can
be generalized for these other areas of application. The Exaggerated-Measurement Plot and
Principal Axis Plot can be replaced by contour or 3D plots. The Spider Plot is harder to
generalize, but a glyph plot can be used.

Areas for further research include distributional theory for small sample sizes. analogs
to the L 2-norm-based covariance matrix and principal components - perhaps based on
other norms. and ways to catalog process-related patterns.
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COLLINABRITY AND POINTS OF EXPANSION IN POLYNOMIAL RERSSION

(Interim Report)

Michael F. Driscoll, Arizona State University

ABSTRACT X(V21) =
(2.3) p1 pi p

Frequent use is made of single- and multi- (Ui-ci) (U-c) -.. (Ub-cb)
variable polynomial regression models in
situations for which prior knowledge fails to whose definition depends on the vectors 2 =
suggest a specific response function. In such (pl,...,pa)' and c = (ci,...,cb)'. The effect of
models, the numerical and statistical stability the polynomial approach is that the mnknown true
of the least-squares estimators are highly £voese function,
dependent on the point of expansion, or origin,
used for the underlying predictor variables. (2.4) 3(Y) M g(Ui,....,Ub)
Results of some mathematical analyses of this
phenomenon are given. Related issues in variable (say), is replaced by an unknown approximate
selection and diagnostic checking are also response function
considered.

(2.5) E(Y) a 1 p(E( ) X(pl)

which is a partial power series expansion of
1. INTRODUCTION (2.4) about the point c in the space of the basic

variables. The need is then to obtain a fitted
The purpose of this paper is to give a response function

overview of issues which arise when doing
ordinary least-squares fitting of functional (2.6) Yr = E P^(pl) X(RI),
relationships described only as polynomials in
one or more variables. This method, herein that is, to obtain the least-squares estimates
called the nolynomial ap pr ch, is commonly used 0^(21c) of the parmeters P(2lc). The highest
in pilot studies and is necessary whenever prior value of
knowledge is not detailed enough to postulate a
more specific relational form for examination. P2 + "' + pI

In Section 2, the polynomial approach to a
regression problem is described very generally as among the predictors used is called the order of
a problem of estimating the coefficients in a the model, and is herein denoted by P.
power series approximation to a smooth function.
Assumptions and difficulties inherent in this use
of power series are discussed in Section 3. The 3. CONSEQUENCES OF SERIES APPROXIMATION
question of selecting an optimal point about
which to express the series expansion is The polynomial approach to a regression
considered in Sections 4 and 5. Some final problem entails several conceptual and practical
remarks are made in Section 6. concerns which can be illuminated by emphasizing

This paper is designated an interim report the effect of the series approximation of (2.4)
since the research sumarized in it is still by (2.5). One is the tacit assumption that the
incomplete (especially in Section 5). I have true response function has only very mild
proofs for some results; sketches of the more discontinuities, if any, in the pertinent part of
detailed of these are given in the Appendix. the domain of the basic variables. This
Statements which I believe to be true but have assumption is in fact unavoidable: if the
not yet proven are offered as conjectures. analyst'a knowledge is inspfficient to suggest an

approach more specific than one based on power
series approximation, then he is unlikely to have

2. TER POLYNOMIAL APPROACH much information on continuity properties. S
Choice of the order of the series

The aim of multiple least-squares linear approximation (2.5) is a more imediate concern. %
regression analysis is to determine a suitable If (2.4) is assumed to be continuous in its
model several arguments, then there is no question but

that a large enough value of P for (2.5) will A
(2.1) Y = 0a + 0I X1 + + Pt Xt + E produce an approximate response function which is

practically indistinguishable from the true
for describing the relationship between a response function. In single-variable problem s
respons variable Y and several predictor (those with just one basic variable U) one has
variables considerable flexibility in selecting P. But in

multi-variable problems, one's choice of P is
(2.2) Xi = fi (Ul,...- -,tU) limited by computational requirements and, more

importantly, by the difficulty of interpreting
defined from certain underlying or basic interaction ters. The larger the number of
variables Ui,... ,Ub available to the analyst. It basic variables, the less workable are the higher
is often not clear at the outset what form the order approximations. This aspect of the
predictors (2.2) should have, so a common method polynomial approach is well understood, so models
is to use predictors of the form of low order are often used.
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The most important indeterminate in (2.5) is the point of expansion so as to satisfy other
the point of expansion or centering, (cl,...,cb). needs. One auxiliary goal is to mitigate the
It plays a pivotal role in the expression of the numerical and statistical instabilities arising
series approximation, and therefore can have an from the collinearity pandemic in polynomial
overwhelming impact on the fitted response regression models. Another is to enhance the
function. However, it is absent in the true interpretability of the resulting fitted model
response function (2.4). (2.6). Snee and Marquardt (1984), in their

There is some controversy over the idea of coment on Belsley's paper, give an analysis of
changing scale or location in regression some tree-volume data which nicely illustrates
predictors, due to the possible affect on this benefit of point of expansion indeterminacy.
diagnostics for predictor ill-conditioning. The Discussion now turns to criteria for selection
paper by Belsley (1984) and the attendant of the point of expansion. The obvious starting
comments by others discuss some fundamental point is with one basic variable, thet is, with
advantages and disadvantages of mean-centering single-variable polynomial regression.
the predictors. The centering being considered
in this paper is the selection of a point of i *I

expansion in the space of the basic variables, 4. ONE BASIC VARIABLE 4
around which the predictors are to be
constructed; centering of the predictors In the single-variable polynomial regression
thmselves is not being treated, model, the predictors (2.3) are

The true response function does not depend on
the point of expansion, so the description of the (4.1) X(plc) = (U - c)' , p = O,I,...,P I
response function implied by its approximate form
(2.5) and obtained from the regression fit (2.6) where P is the order of the approximate and
must be invariant to the point of expansion used. fitted response functions. The investigation
In other words, the fitted response functions into the choice of the point of expansion will be
obtained from various points of expansion must be done in sample term to avoid the need for
equivalent descriptions of the true response distributional assumptions. A sample tu , u2 ,
function. This requirement is met only if (2.6) ... , u of observed values of the basic variable
is complete in the sense that it contains all provides samples
predictors through a given order, P - that is,
includes all term for which the elements of p (4.2) xi(plc) = (ut - c)P , i = 1,2,...,n
satisfy the condition

on each of the predictors. To avoid annoying
0 s pI + ... + p1 s p qualifications in what follows, it is assumed

throughout that the uj 's contain at least three
-- or in the weaker sense that it contains all distinct values. [The case of Just two distinct
term which can be produced by striking one or values is trivial. Also, the purposes of this
more factors from any predictor present. paper do not require reference to observed

Completeness in polynomial models is discussed response values.)
in detail in Driscoll end Anderson (1980). The
need for it is not widely enough appreciated by 4.1. Scalar Moments
practitioners. Predictor selection done under
the polynomial approach is often flawed, The usual sample moments of the predictors
resulting in misapplications which are analogous have strong properties. The means
to (if less transparent than) using a zero
intercept model without intending to do so. (4.3) m(plc) = Ei (us-c)p / n
Griepentrog, Ryan, and Smith (1982) allude to
this issue in discussing the affect which changes have first and second derivatives -pm(p-llc) and
of location and scale in the basic variables can p(p-l)m(p-21c) with respect to c. [The symbol
have on the t-tests for lower-order coefficients m(.Ic), and others like it which appear below, is a
in the polynomial model. The example they give to be interpreted as zero if the argument is £
is meant to illustrate that such t-tests may be negative.] ,. '.
meaningless. It is more properly viewed as an It follows immediately that: (1) if p is odd,
argument in favor of a logically prior the mean is monotone decreasing in c with a
requirement: that of respecting any hierarchy unique zero; (2) if p is even, the mean is -
present among the predictors used. This is more convex, so it uniquely attains an minimrm; (3) %
easily accomplished today than in the past, these zeros and minim occur between mini us and "
although it still requires some user effort, maxi us. If the ui 's are symmetric about their
especially if an "all" subsets analysis is mean 0 = m(lO), then the zeros and minima all
desired. At least program BMDP2R (Dixon, 1983, occur at 0, suggesting that this is a good point
Appendix F.4) now has facilities for entering and of expansion.
removing predictors in a specified sequence or by The predictor covariances
defined groups; and, of course, there is program
8NUP5R for single-variable models. Procedure (4.4) s(p,qlc) = a(p+qlc) - m(ptc) m(qlc) "o
STPWISE (SAS Institute, Inc., 1985, p. 764) has
no such facilities, but the manual does refer the have first derivatives
user to a survey article by Rocking (1976).

On the other hand, the fact that the point of (4.5) -p m(p-l,qlc) - q s(p,q-llc)
expansion is indeterminate has its advantages.
In particular, it allows the analyst to choose and second derivatives

328

' % ~ > YV1~ ~* sn fJS



p(p-l) a(p-2,qlc) to promise results of this kind. The anatomy has
(4.6) + 2pq s(p-l,q-llc) a matrix formulation.

+ q(q-l) s(p,q-21c) The design matrix of the order P single-
variable polynomial regression model is, from

with respect to c. Since (4.4) is zero if pq = 0 (4.1) and (4.2), the nx(l+P) matrix
and positive when pq > 0 and p+q is even (see the
Appendix for a proof), these covariances have (4.9) X(c) = [(ui-c)P]
monotonicity and convexity properties analogous
to those of the predictor means. In particular, where i=l,...,n and p=0,l,...,P. This matrix has
if the ui's are symetrically placed then, at c = first derivative (see, for example, Rogers, 1980)
0, s(p,qlc) is zero for p+q odd and minimized for
p+q even. (d/dc) ][(c) = [-p(ui-c)P-']

The behavior of the predictor correlations is
more intriguing. In the interests of with respect to c. Let J be the (I+P)k(I+P)
tractability, only the symmetric case is matrix with -p as element (p-l,p) for p=l,...,P
considered here, and in terms of the coefficients and other elements zero, that is, the super-
of determination diagonal matrix J = supdiag(-l,... ,-P). Then

(4.7) r2 (pqlc) = sZ(p,qlc) / s(p,plc) s(qqlc) . (4.10) (d/dc) X(c) = X(c)J .

For pq = 0 or p+q odd, (4.7) clearly has an Using results from elementary matrix differential
absolute minimum at c = Q. In the case that p+q equations (see, for example, Finkbeiner, 1966,
is even (ignoring the case that p = q), r 2 (p,qlc) Chapter 10) on (4.10), or by direct matrix
appears to have a relative maximum at c = G. I calculation, one can show that X(c) satisfies
can prove this if p and q are odd (see the
Appendix), and I conjecture it to be true when p (4.11) X(c) = X(O)exp(Jc)
and q are even.

Specific illustrations of the behavior of where exp(Jc) denotes the matrix exponential
these coefficients of determination are available function
in Bradley and Srivastava (1979) and Hackney and
Mohmad (1978). These similar papers include exp(Jc) = EP JPcP/p!
formulas expressing (4.7) as a rational function (4.12)
with coefficients written in terms of the means = I + Jc +J2c2/2! + ... + J'cP/P!,
a(-i1), and give a graphs of r2 (l,21c) for two
symmetric situations. The graphs were produced the series being finite here because J is
by assigning to the m(.Ic)'s the values of the nilpotent of order 1+P.
corresponding population moments first from the The analogy between (4.12) and the scalar
standard normal and second from the rectangular exponential function is obvious, an is that of
distribution. Hackney and Mohaad also plot (4.10) and (4.11). In further analogy, the
r2 (1,31c) for these situations and note that c = inverse of (4.12) exists and is given by
U is a point of relative maximum. Further, they
note in these situations the patterns (4.13) {exp(Jc)}'- = exp(-JIc)

(4.8) r2 (p-2,qIU) S r2 (p,qlI) < r2 (p+l,q+lIU) Using (4.12) and (4.13) it is readily shown via
mathematical induction that the elements of these

(for p+q even) among the correlations of the matrices are, for p,q-0,l,...,P,
first 12 powers of the centered basic variable,
and suggest that it may therefore suffice in (4.14) {exp(Jc)}(p,q) qCp (-c)q-P
non-symetric situations to choose c so as to
achieve a minimal value for the highest-order and
(p+q even) determination among the predictors
being used. Since I think the nature of (4.7) (4.15) {exp(-_Jc)J(p,q) = qCp cQ-p P
needs to be further investigated before this
suggestion can be evaluated, I have not yet tried where qCp denotes the binomial coefficient q-
to prove (4.8). choose-p. In particular, these matrices are

upper-triangular.
4.2. Matrix Moments One can also express the relation between the

parameter estimates in (2.6) by the algebraic
Although the mathematical analysis of the equality

scalar moments of the predictors (2.3) is
incomplete, the results obtained thus far do (4.16) p^(c) = exp(-JIc)p^(O) .

indicate that a more encompassing approach would
be valuable. What is required is to study the (Reference here is to the least-squares
predictors as a total ensemble rather than one or estimators; computational instabilities in
two at a time, that is, to consider matrix producing numerical estimates are for the moment
moments. Such analysis should provide guidance being ignored.] It is apparent from (4.15) and
for selecting the point of expansion in a way (4.16) that 0^(PIc) = 0^(PIO). This is a
which better controls the covariance structure of reflection of the well known fact that changing
the least-squares estimators, the location of the basic variables in a

The purpose of this subsection is to present a polynomial model does not alter the estimates of
particular anatomy of the predictors which seems the highest-order parameters.
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Equations (4.11) and (4.16) succinctly state 6. FINAL REIARKS
the effect of taking c rather than zero as the
point of expansion for the polynomial approach. Bradley and Srivastava (1979) recommend that
Using (4.11) first with c itself and then with non-essential collinearity in a regression model
c=U gives be reduced by appropriate choice of a point of

expansion and that, when possible, collinearity
1(c) = X(G)exp(J(c-U)), inherent in the basic variables be removed by

good experimental design. That goal - joined
which after pre-ultiplication by a vector of with a belief that mathematical analysis can give
(1/n)'s yields a matrix form of the equations insight into the effect of the point of expansion
Bradley and Srivastava (1979) gave for computing in the polynomial approach - is the motivation
the means (4.3). If one changes scale by a for the present work.
factor d after changing location by -c, then the The disagreements about the benefits and
right-hand side of (4.11) should be post- methods of data centering, in particular
multiplied by the diagonal matrix Belsley's (1984) paper and the comments on it,
D=diag(l,d,d2,...,dP}. If scale is changed first may have some relevance to selecting a point of
then a pre-multiplication is required, as in expansion. It is not clear what conclusions will

ultimately derive from such debates, not for
_X(d,c) = _X(l,0)Dexp(Jc) , centering of predictors and certainly not for

centering of basic variables. What is clear is
which is the general form of the triangular that losing sight of the distinction between the
linear transformation which Griepentrog, Ryan, model and any given description of it is
and Smith (1982) considered for the case P=2. disastrous to understanding. Herr (1980) has

The normal-equations coefficient matrix and made this latter point by comparing the geometric
its inverse are of prime interest at this point. (or coordinate-free) and algebraic approaches to
The anatomy smmarized by (4.11) gives them the linear models. Jacobowitz and Driscoll (1980)
forms give a more mathematically abstract presentation

which distinguishes between the properties
(X'X)(c) = (X(c)}'{X(c)) inherent in the model, those in the model under a

= exp(J'c)(X'_)(O)exp(Jc) particular parametrization, and those in the
and parametrized model with an explicit coordinate

(X'X)-1(c) = exp(-_Jc)(!'_X)(O)exp(-J!'c) . representation. Such distinctions are especially
needed when discussing and using the polynomial

The fact that these matrix functions have such approach to linear regression analysis.
similar forms is promising for further
mathematical analysis. Investigations are
incomplete an yet, but a few initial indications
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This appendix sketches the more detailed of to show that (A.2) is nonpositive, comleting the
the proofs for results stated in the body of the proof.
paper. I would appreciate receiving information The moment inequalities in (A.3) can be
about alternate or expanded proofs. established by judicious use of a result of

Sclove, Simons, and van Ryzin (1967) which is
A.l. Covariances Positive listed in Patel, Kapadia, and Owen (1976, p.47).

The facts that p and q are positive and that p is
When p and q are positive and p+q is even, less than q are important.

s(p,qlc) is bounded below by the covariance In the subcase that p and q are even, one can
between powers p and q of lui-c|. Applying the of course use (4.4) to express (A.2) explicitly
lema in Gurland (1967) with f(.) and g(.) as the in terms of predictor means. But I have not been
corresponding power functions and X as a random able to prove in this subcase that (A.2) is
variable taking values lui-cl with probability nonpositive. While I believe it is, I also
proportional to the multiplicity of ui among believe that the proof will be delicate.
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A WORKSTATION-BASED ENVIRONMENT FOR STATISTICAL ANALYSIS OF SET-VALUED DATA

Lionel Galway, Carnegie-Mellon University

Abstract For example, in a set of data on sand grain

shapes, an average grain profile consists of about
Although set-valued data exists in many fields, 350 points. Automated scanning equipment is

statistical techniques for analyzing such data are not clearly needed to digitize any useful number of
well-developed. One problem with set-valued data grains. In addition, a calculation of the storage
is that almost any non-trivial analysis makes heavy requirements for a small sample of 100 grains
computational demands and requires computer (assuming 32 bit floating point numbers for each
graphics; such usage of central mainframe computers coordinate) gives 100 (grains) x 350 (points/grain) x 2
can be quite expensive. We report on the current (x,y) x 4 (bytes/coordinate) a 273.5 Kbytes,
state of development of an integrated software approximately the capacity of a floppy disk. The
package to analyze two-dimensional set-valued data: cost of disk storage on mainframe computers for
it includes routines for manipulating and doing set-valued data sets of any significant size would
calculations on sets, facilities for generating pseudo- be prohibitive.
random sets, and provisions for graphical output and Analysis of a data set also requires substantial
user interaction. Although much of the package has cpu time. Algorithms that manipulate geometric
been designed to be system-independent, it takes objects such as the digitized sand grains must
full advantage of the unique facilities of the access each point of each set at least once (and
ANDREW window manager and the VICE distributed sometimes more often). Finally, analysis of set-
file system, plus the availability at CMU of powerful valued data requires graphics input and output, and
workstations with graphical input devices and high- high resolution graphics devices have typically not
resolution bit-mapped graphics displays (ANDREW been available even on large mainframe computers
and VICE were developed by the Information except at high costs. Even then, the use of
Technology Center at CMU to support a campus- timesharing environments has severely limited the
wide network of personal workstations). performance of generally-available graphics systems.

The lack of such equipment has meant that most
work on random sets has been restricted to

1. Introduction theoretical studies (e.g. (Matheron, 1975, Artstein and
Statistics is concerned with random quantities; Vitale, 1975, Cressie, 1979, Eddy, 1980, Trader, 1981,

traditionally these have been random numbers, Eddy, 1982)) and in turn that little intuition or
vectors or functions. A natural extension is to experience with real set-valued data has driven the
study random sets in n-dimensional Euclidean space. attempts at statistical modeling. However, the
This is important from a theoretical point of view recent advent of powerful personal workstations at
and from a practical one as well: data from a a fairly low cost (e.g. (Crecine. 1986)) has brought
variety of fields is naturally expressed in terms of together adequate computing power, disk storage,
sets. Examples can be found in geology (using sand and high resolution graphics I/O together in a
grains' shape and size distribution to determine its compact package which can be dedicated to one
provenance (Ehrlich,et.al., 1980)), stereology person. These developments suggest that for the
(determining a three-dimensional structure from two first time an empirical or heuristic approach to the
dimensional slices (Jensen, et.al, 1985)), and from statistical analysis of set-valued data is feasible.
fields such as computed tomography, granulometry,
etc. (Trader, 1981). A theory of .random sets would
make possible statistical modeling and analysis of S3:this data in a natural way. 3. S:Set Statistical System

By utilizing a computer to do tedious geometrical

Significant computing facilities are required to operations on sets, a user can quickly and easily
collect, store, and analyze set-valued data; lack of carry out set operations such as union, intersection
such facilities has been a significant obstacle to or Minkowski addition, much as data analysts in the
empirical work with such data. This paper describes early part of this century used paper, pencil, and
the design of a package of computer programs to desk calculators to construct statistics for real-
analyze and display both random and deterministic valued data. We have designed a software system
sets in the real plane. Attention is restricted here that will act as a framework for experimenting with
to the two-dimensional case for two reasons: the the analysis of set-valued data. The central goal is
geometrical and graphics software is simplified, and to provide the user with a set of algorithms which
a larger amount of theory is available for two- operate on planar sets, together with graphics
dimensional random sets. In the future the support and a flexible user interface that will allow
algorithms and data structures will be generalized to exploration of set-valued data and construction and
higher dimensions and more complex set structures. evaluation of appropriate statistics suggested by the

exploration. These three components are discussed
2. Computational Requirements for Analysis of Set- in more detail in the next three sections; this is

valued Data followed by a section discussing ANDREW, a set of
The statistical analysis of real- and vector-valued software enhancements to UNIXTM which makes

data has a long history of collection, plotting and development of this system feasible on a
tabulation which predated and prepared the way for workstation.
probability modeling of such data. In contrast, set-
valued data requires fairly sophisticated computing
resources to collect and store, and to do almost 3.1. Set Manipulation Subroutines
any non-trivial analysis; there is virtually no history The statistical analysis of any set of data
of data analysis on set-valued data and so the typically requires the computation of statistics by
theory has not been data-driven, combining elements of the data with appropriate
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arithmetic operations. For sets, this could involve much of the utility of the system will come from
taking unions, intersections, or Minkowski sums, for the features of the Andrew software. In particular,
example, or transforming the sets in various ways. the hardware-independent nature of Andrew will
The lowest level of the system is a library of allow use of these programs on different machines.
programs that implement operations on geometric Finally, network support in ANDREW provides access
objects in the plane (and a set of data structures to large amounts of disk storage from an individual
for representing those geometric objects). These workstation, freeing it from the necessity of storing
routines will form the basis for computing statistics all of the needed files on a local disk.
on set-valued data. Careful design and
implementation of these basic routines is essential,
since their efficiency will determine the size of the 4. Current Status and Future Plans

sample which can be processed in a reasonable The geometrical routines are well-advanced.
time. consisting of about 100 routines that range from

simple coordinate transformations (e.g. cartesian to
polar) to generating pseudo-random star-shaped sets.

3.2. Graphics Routines Data-structures and conventions are fairly stable and
The second part of S3 is a library of routines to well-defined. Programmming effort continues in

support graphical display of planar sets using a extending the functions available and programming
high-resolution bit-mapped display and graphical user more efficient algorithms based on research results
input. Computer graphics allows visualization of in computational geometry (e.g. (Preparata and
random sets in the plane and the display of Shamos, 1985)).
associated function representations such as the The graphics routines have a core which is used
support function and the boundary function to test the geometrical routines, but are under active
(Valentine, 1964). development as we experiment with various ways of

The graphics programs fall into two categories: using the graphical interface facilities provided by
ANDREW. In particular, we are planning to

1. Routines which build and manipulate an implement multiple windows in our programs to

"abstract" display environment. These allow a user to view the same data set

programs maintain lists of geometric simultaneously in several different ways.

objects to be displayed and information The development of the user interface is still in

on the current real coordinate system and the planning stage, since we are just beginning to

its relation to the graphics device in use. get experience with exploring set-valued data in a

These routines are device-independent, workstation-type environment. One option under
investigation is to attempt to integrate the routines

2. Programs which are specific for the more closely with an existing extensible package
Andrew programming environment and its such as S (Becker and Chambers. 1984) to take
graphics facilitiesn advantage of its user interface (which already

accomodates graphical IO to some extent).
Finally, we have at hand some samples of set-

valued data (such as the sand grain data mentioned
3.3. User Interface above) which we intend to explore from this new

The final goal is a package, much like current perspective using these new tools.
statistical packages for real- and vector-valued data, The accompanying figure is a screen dump of
which will allow easy entry of data and convenient the Andrew workstation "pitneyfork" running a
user interaction. It should also be extensible (like S prototype of S 3 . The screen displays a plot of 50
or ISP) to allow users to conveniently compute elements from a set-valued random process of star-
tentative statistics and test their performance on shaped sets. plus a plot of the distribution of the
real and simulated data. number of vertices per set using S. In addition, the

text editor EMACS is being used to modify the main
routine of S3 and the window labeled console is

3.4. Andrew monitoring the performance of the workstation.
Andrew is a system of hardware-independent

extensions to the UNIXTM operating system, written
by the Information Technology Center (Crecine, 1986, 5. REFERENCES

Morris,et.al., 1986) at Carnegie-Mellon University, Artstein, Z., and Vitale, R.A. (1975). "A Strong Law
which runs on several high performance workstations of Large Numbers for Random Compact Sets,"

which are now available. It allows a user Annals of Probability. 3. 879-882.
application program to manage several windows on
a high-resolution bit-mapped display. For example, Becker, R.A., and Chambers, J.M. (1984), S: An
in one window a user could be viewing a realization Interactive Environment for Data Analysis and
of a set-valued random process in the plane, another Graphics, Belmont, California: Wadsworth
window could be displaying set-valued statistics for Advanced Book Program.
the process as they are computed, still another
window could be displaying the process in some Crecine, J.P. (1986). "The Next Generation of

appropriate function space, while a fourth window Personal Computers," Science, 231, 935-943.

could be used to issue commands to affect the Cressie, N. (1979), "A Central Limit Theorem for
process or statistical computations. ANDREW also Random Sets," Z. Wahrscheinlichkeitstheorie
provides support for menus and for the easy verw. Gebiete, 49, 37-47.
implementation of graphical input with a three-key
mouse. Although all of the set-manipulation routines Eddy, William F. (1980), "The Distribution of the
and most of the graphics routines are written to be Convex Hull of a Gaussian Sample," Journal of
independent of a particular graphics environment, Applied Probability, 16, 686-695.

333



Eddy. W.F. (1982). "Laws of Large Numbers for
Intersection and Union of Random Closed
Sets." Report 227, Carnegie-Mellon University,
Department of Statistics.

Ehrlich,R., et. al. (1980), "The Origin of Shape
Frequency Distributions and the Relationship
between Size and Shape," journal Of
Sedimentary Petrology, 50. June 1980. 475-484.

Jensen, E.B.. Baddeley, AIJI et-al. (1985), "Recent
Trends in Stereology," International Statistical
Review. 53 (1). April, 99-108.

Matheron. G. (1975), Random Sets and Integral
Geometry, New York: John Wiley & Sons.

Morris, J.H.. et. al. (1986). "Andrew: A Distributed
Personal Computing Environment."
Communications of the ACM, 29. 184-201.

Preparata. F.P. and Shamos. M.l. (1985). Computational
Geometry, New York: Springer-Verlag.

Trader. D.A. (1981), Infinitely Divisible Random Sets.
unpublished Ph.D. thesis. Carnegie-MellIon
University, Department of Statistics.

Valentine, F.A. (l1964), Convex Sets, New York:
McGraw-Hill.

-is Ife 
'* cSM mA ll ,ea *q

"a millncC C P ma&.etfi SA verts siso fth'~et
ar lr "IRl~efileCIVP verlsdal 4. \0

r .h BAIn

man fC L
me, im,'IAn.0 - 4.. '... I rr n'f f41'r*z

C tp.'u,'i

i IMAMI

r I, ?rrAM I

p"Inl~l PnP, sdevardy -oo ~e4e
r'CIfdeiIle IC b' pelerernces slulo
P. a0,II m"lde sand snap
MIIlit lame-, Idles irc

Pee,',,, rIo then pe", ,eqwrr
. - -M@.!4IrioUu~wvAI,.g 4
Rend In de-,

n 5n 10 n 5

r 
Ver t S

334



rf"~tMMMAW1r JFm Ju X1 %1m V W% IW~

Translating Fortran Programs to C
Should You Do It?

David Gray
Statistics Department
Univeristy of Kentucky

ABSTRACT

This paper grew out of my experiences in converting some nonlinear minimization
subroutines written in Fortran to C. I wanted to port these routines to a microcom-
puter on which a C compiler was available but no Fortran compiler. In the course of
this I tried to develop some automatic translation tools. I am going to discuss some of
the issues involved in this process. Hopefully this will help others make their decision
as to whether they wish to do this.

1. Why Convert a Fortran Program to C? linked together. However, this can be

The programming language C is very tricky business and if all the code is writ-

popular and its popularity seems to be increas- ten in one language things will go

ing at a rapid rate. This probably stems as smoother.

much as anything from the thousands of corn- 4) Many new programmers know C from
puter science students trained in the UNIX* university experience with UNIX. Rather
environment. Many of the large software houses than training them in a new language,
are using C and others are converting to it. there may be an advantage in using them
Here is a short list of reasons why people are in their 'natural' environment. I have been
converting their old Fortran programs to C. told stories of freshly minted programmers

1) It's possible that you may only have a C balking at programming in anything but

compiler available on your microcomputer. C. Of course this a management problem,
and not a pure programming issue, but it

2) C compilers are typically the first language is important.

available on a new machine (along with

Basic). This is usually because the the 5) C libraies usually offer interfaces to

software firm that wrote the operating sys- operating system and hardware services

tem software did it in C. For example, such as graphics, memory management etc.

the Atari 520ST had a C compiler avail- 6) And of course there's the bandwagon
able from at its introduction but after effect: everybody else is doing it.
almost a year on the market, no Fortran The advantages of C include:
compiler is available. A firm that wantsto get a jump on its competition or needs 1) Speed. In some cases, it has been claimed ]
to port software to a new machine will that C is only 2 to 3 times slower thanhave an advantage if its software is writ- programming in assembly language. How-ten in n i. ever, this is clearly dependent on the qual-
) ten lg s r ity of code generated by a particular C

3) Most large software projects are being compiler. In the microcomputer world
written in C. There are compiler families compilers tend to produce flat footed,
that allow Fortran and C code to be unimaginative code. Also, as the programs

UNIX is a trademark of AT&T. grow larger, it is not clear that the
claimed C to assembly language speed
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ratio is maintained, such programs, at least not intentionally.

2) Portability. Portable programs are possi- 2) Fortran is column major and C is row
ble, but access to operating system major with respect to arrays. Numerical
resources usually results in non-portable algorithms tend to take advantage of
programs. The use of conditional compila- Fortran's column ordering. If such an
tion can help but writing portable code is algorithm were literally translated into C
an art that few of us are good at. It is on a machine virtual memory, substantial
also debatable whether portability is performance degradation due to page
always desirable. faults can occur.

3) Flexibility. It seems to be true that if it 3) Not all functions available in Fortran are
can be done, you can do it in C. The rich- available in C. This is a fairly straight
ness of data structures may be the most forward problem to solve but it does entail
important reason. extra work and testing.

The advantages of Fortran include: 4) Fortran makes no distinctions between

1) Speed. Fortran compilers have a general parameters and variables. That is, the

reputation for being fast with respect to variable declartions in a subroutine don't
execution, especially for numerical work. give any information whether a value or
Again, as with C, in the micro world For- an address is being passed. For functions
tran compilers may not deserve that repu- and arrays it is clear that they are
tation. addresses. This is a difficult problem.

2) Portability. Fortran is extremely portable 5) Not all C and Fortran data types match

if you stay away from compiler specific up. For example, there are no logical or
extensions, complex types in C. They can usually be

3) Flexibility. This is Fortran's real weak- simulated however.

ness. Fortran is poor at handling charac- 6) C promotes single precision floating point
ter data, it has limited access to OS variables to double precision when per-
resources and very limited data structures, forming arithmetic operations. This is an

important problem for the numerical
So it appears the real difference is the analyst because in many problems most of

flexibility of C over Fortran. I believe most pro- the computation is done in single precision
fessional programmers will agree that this is one and only such things as residuals are kept
of the chief reasons if not the main reason for in double precision. The speed advantage
using C. of single precision is lost. Some C com-

pilers optionally do not promote and the. What makes the translation from For- ANSI C draft may make this standard.

Iftwereril to c o t F7) C does not guarantee the order of evaluta-If were trivial to convert Fortran programs tion of terms in an arithmetic expression.

to C, it would have all been done by now. For example, i

Unfortunately, it isn't all sweetness and light.F e

There are many problems in going from Fortran (a + b) + (c + d)
to C, some easy and others subtle and difficult.
What follows is a by no means complete list of could be translated by the compiler to
some of the problems involved.

1) Fortran is context sensitive. If you come (a + d) + (b + c)
across a '(' in a Fortran program you don't
know whether you're dealing with a func- If the order of evaluation is important, e.g.
tion or an array without extra informa- to avoid overflow or in a calculation where
tion. It's more work to keep track of the small elements must be added before large
needed information to make these deci- elements to avoid cancellation, accuracy %
sions. Another problem is that blanks are may be lost. Order would have to be
not significant in Fortran. It's possible to forced by using temporary variables to
write totally unreadable Fortran pro- hold intermediate quantities.
grams. Fortunately, people don't write
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8) Arrays in C start with index 0 while in 5) Add semicolons, fix up comments, etc.
Fortran they start with 1. This seems sim- None of the above touch on the more
pie to fix, but with the wild subscripting difficult problems mentioned in the previous sec-
schemes used in some programs, it can be tion. And with good reason, as I didn't want to
confusing. spend a year writing my own translator. Also,

9) In Fortran subroutines, arrays may be it is important to note that I've relied on the
given dimensions passed to the subroutine, good coding practices of the people who wrote
In C, arrays must have fixed dimension, the Fortran programs. For the type of code I
except for the last dimension. One way deal with the programs are well written and
around this is to write your own matrix with care. This makes it easier to write transla-
allocation subroutine and call it with the tion tools and certainly makes my simplistic
passed dimensions. But then the reference tools work.
of elements of the allocated array can A neater and more powerful way to
become messy. accomplish the above and even more is to use

Some of the problems in this list are easily the UNIX utilities yace and lex. Yacc is a
amenable to automatic translation, at least of parser generator that has been used in the con-
the kind I mean where you are not going to struction of compilers and other software. Lex
spend a year writing your translator. Some of is a lexical analyzer. These tools along with
them appear to require an in depth understand- struct and awk could be used to build a power-
ing of the original Fortran code and will have to ful translator. However, I wouldn't go so far as
be resolved manually. to try and write a Fortran to C compiler. For-

tran must be one of the hardest languages to
3. Writing your own tranwslation tools, write a compiler for and you'll easily be spend-

In attempting to write some tools, I ing your year (or more) doing this.
wanted to take advantage of existing tools to There are commercial programs and ser-
make my life easier. Fortunately, I had access vices available for Fortran to C source transla-
to a Vax 11/750 running 4.2BSD UNIX. UNIX tion. They tend to be expensive and a recent
contains many tools for character and string rewiew of one of these programs reported that
manipulation, which much of translation process the resulting C code was a literal translation of
is. It also has a little known utility, struct, the Fortran source code and that the translator
which is of great value. Struct takes a Fortran program broke on large programs. It appears
program and translates it into a Ratfor pro- that the people who do this for a living have
gram. Ratfor is a dialect of Fortran with many problems too.
C like constructs. After using struct, further
processing was done with awk, a pattern match- 4. An example of simple tranmlation.
ing and string substitution language that can be In this example, a Fortran fragment will
programmed similarly to C ( I have been told be translated into C code. The orginal fragment
that sed, the stream editor, can do some of the was:
things that I was using awk and much more
quickly). I also wrote some C programs in those DO 20 I=1,L
cases where awk wasn't powerful and/or fast ll=L -I + I
enough. 20 S(I)=R(II,L)

The awk and C programs did such things
as: After applying struct we get,

1) Fix goto labels

2) Change Ratfor switch statements to C do i =1,1 {
, switch statments iili+s(i) ffr(ii,l) ,

3) Change do statements to for statements ,

4) Change parentheses to brackets. This
required knowing in advance the function After running an awk program to convert
and array names. I used grep for this pur- do statements to for statements, we get
pose.
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for(i=i-l;i<l;i++) { You might decide it is better to start from
iiffil-i+l scratch in C.
s ri6. Conclusions

After first being very enthusiastic on the
Note that the '1-1' in the for statement is idea of automatic translation of Fortran to C, I

obnoxious, but I am taking advantage of the am now more cautious. You can translate some
compiler to fold the term into '0'. Next using Fortran programs or subroutines into good qual-
tools to change brackets into parentheses and ity C programs or functions. What I've learned
add semicolons, the final version of the fragment is that you can't be too greedy. My conclusions
is, come down to the following:

1) It is possible to automate much of the
for(i=1-;i<l;i++) 1) tediousness out of the Fortran to C trans-

ii--l-i+1; lation process without too much effort.

s[i]-r[ii] [I]; With a lot of effort you can just about
I automate the whole process.

2) You should have a good reason to convert
Rather than run these programs individu- a Fortran program to C. Fortran will

ally, they can be put into a shell script and exe- often out perform C in execution time and
cuted as a single command. Fortran is very portable. And there are

compiler families that allow Fortran, C
5. What Do You Have When You're Done? and other languages to be mixed.

Typically, what you have when you're 3) You cannot treat this as a black box, espe-
done is a Fortran program written in C. This is cially with numerically sensitive routines.
especially true when the process is highly The resulting C program may perform
automated. None of the unique C constructs unacceptably and you will have to fix it
will be used. In some cases this is all you can manually. I would never take a large For-
ask for as some programs can really only be tran program, automatically translate it
written one way, Fortran or C. But you may be and assume it will perform correctly
disappointed as the resulting code is not very without testing.
exciting. You get what you pay for. 4) The typical size of routine that I translate

At worst, you may have an inefficient pro- semi-automatically is 100 to 300 lines.
gram that doesn't produce the same results as This is a size that allows me to understand
the original. This too may be a result of highly what is going on inside the program and
automated translation or mistakes made in also feel confident that I can do the neces-
manual translation. sary manual labor involved. Fortunately,

The moral of the story is to TEST the this is a 'standard' size routine that is
resulting C program. A comment was made at found in numerical work.
the conference that one reason NOT to
translate Fortran programs to C is that the For-
tran routines have withstood the test of time. A
new C version would also have to undergo the --
same tests.

To improve performance, accuracy or take
advantage of C feature, fine tuning by hand will
be necessary. This means

1) You know Fortran.

2) You know C.

3) You understand the program or underlying
algorithm.
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UPPER AND LOWER PROBABILITY:
A GENERAL FRAMEWORK FOR MODELING UNCERTAINTY

Yves L. Grize, AT&T BeU Laboratories, Holmdel, NJ 07733

Abstract 11.1 The Basic Theory:
This paper reviews the theory of upper and lower Throughout the paper fI denotes a finite set.
probability, also called interval-valued probability. Two numbers, P(A) and P(A), called respectively
Interest in this theory has recently been stimulated the lower and upper probability of A, are assigned to
by the attempts to apply the theory of belief each subset A of fi. These two set functions must
functions to artificial intelligence, especially expert satisfy the following axioms (e.g., see Good [19621):
systems designs. Upper and lower probabilities
provide an attractive general framework for e Axiom 1 (Normalization): P(fl) = 1
modeling uncertainty because of their large scope of * Axiom 2 (Nonnegativity): (VA) E(A) a 0
interpretations. They include not only conventional
probabilities, belief functions and envelopes of a Axiom 3 (Conjugacy): (VA) E(A) + P(A) = 1

measures but also new uncertainty functions that (A denotes the complement in i1 of A)
cannot be related to conventional probabilities. The e Axiom 4 (Sub- and Superadditivity):
problem of the numerical complexity of the theory is (VA,B AnB=0)
discussed. A family of lower probabilities that are P(A) + P(B) - P(ALB) (sub)
easy to use and should be large enough for most P(A) + P(B) ! P(AUB) (super)
practical applications is described. Some limitations
of the theory will also be discussed. Elementary consequences of these axioms include

the following:

1. (VA) P(0) = P(O) = 0 - P(A) < P(A) 5 1
. INTRODUCTION - p(f ) (f) )

The need of mathematical models for reasoning 2. (VA,B) ACB => P(A) s P(B) and P(A) :s
under uncertainty has been emphasized in the recent P(B)
literature in artificial intelligence and related fields
(e.g., see UCAI [19851). Useful abstract models for Observe that if F = P = P then P is a (finitely
reasoning under uncertainty, namely probabilistic additive) probability measure.
reasoning models, should be based on a concept of Because of Axiom 3 one set function on 2n
probability that is supported by a mathematical completely determines the other. Therefore, without
structure. loss of generality, the entire theory can be expressed

In this paper we review the mathematical in terms of only one of them. From now on our

structure of upper and lower (U/L) probability also discussion will be phrased in terms of the lower
called interval-valued probability and describe probability only, as it is customary in the literature..
different uncertainty models that can be constructed A lower probability can be defined independently 48
from this structure. Because of their large scope of of its associated upper probability as follows:
interpretations U/L probabilities provide a general A lower probability on 2f is a normalized, non-
framework for modeling uncertainty. They include negative set function such that P(0)=0 and
not only conventional probabilities, belief functions P(A) + P(B) s P(AnB) + P(AUB) for all pairs
and envelopes of measures but also new uncertainty (A,B) of sets such that AflB=0 or AUB=fl.
functions that cannot be related to conventional
probabilities. 11.2 Motivation for the Axioms:

Interest in UL probabilities has recently been A natural motivation for the axioms 1-4 comes
stimulated by the attempts to apply the theory of from the behavior of the relative frequency f, ofbelief functions to the design of expert systems. curneo neetEi euneo

occurrence of an event E in a sequence of n

1111. THE THEORY OF UPPER AND independent repetitions of an experiment (Walley &
LOE R PERYOFBUBELFine (1982]). Since {fj} is a bounded sequence of
LOWER PROBABILITY real numbers it always has an inferior and a superior
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limit. One then defines P(E) = liminf f, and P(E) of P.

= limsup f. The assumption about the convergence c. If Mp is empty, P is called undominated,
of the relative frequency to the probability, needed otherwise it is dominated.
to justify the axioms of conventional probability, is
no longer necessary. d. P is a lower envelope if

(VA) E(A) = inf {IL(A) : a Mp}.

11.3 A Simple Example: e. A lower probability P is monotone of order k if:

To illustrate how a lower probability could be (VAI, i • • Ak)
used to model uncertainty let us consider the P(WAj) a ) (-1)1+11 (nA).
following simplified situation of a medical diagnosis: 0JIE{1,2,..k)

Let fi = {a,b,c} where a, b and c are three In particular E is monotone of order 2 (or 2-
symptoms: a: to have a runny nose, b: to have monotone) if:
irritated eyes, c: to sneeze once in a while. Further, (VA,B) P(A) + P(B) 2 P(AUB) + P(AnB).
suppose that an expert tells us that:
- one symptom alone does not indicate an allergy, f. P is a belief function if it is monotone of order k
- the three symptoms together surely indicate an for all k. Every set function P on 2n can be
allergy, written as (VA) P(A)= 7 m(B) for some
-two symptoms indicate a middle state of indecision BCA
about the presence of an allergy (i.e. in common function m. It turns out that P is a belieflanguage there is a 50% "chance" of an allergy) function if and only if m is non-negative with

How can we model the uncertainty in an allergy m(O)=0 and Y r(B) = 1. m is called theBcfl
diagnosis based on an observation A in fl? basic probability assignment of the belief

function P.
A natural answer is the set function P defined by: Denote by P, B, M2 , LE, D, U and LP the classes

P(l) =1, of probabilities, belief functions, 2-monotone lower
1 probabilities, lower envelopes, dominated lower

P({a,b) P({b,c}) = P({a,c})= ~' probabilities, undominated lower probabilities and

P({a}) = P({b}) = P({c}) = P(0) = 0. lower probabilities on 211. It has been shown (e.g.,
see Walley & Fine [1982]) that:

Observe that P is not a probability (in fact it is not
even a belief function, as defined in [11.1.). P C B C C LE C D C D U U = LP
However, it is easy to see that P is a lower
probability. and that if If~l a 7 all these inclusions are strict.

Ill. UNCERTAINTY MODELS BASED UPON We now discuss the uncertainty models resulting

LOWER PROBABILITIES: from this hierarchy of lower probabilities.

The mathematical structure of U/L probabilities 111.2 Probability-Based Models (P-Models):
can be used as a basis for various uncertainty models
each one corresponding to a different type of lower We have already pointed out that probabilities
probability. We first define these different types of are a special case of lower probabilities. P-models arelower probabilities and then discuss the well-known and will not be further discussed.

corresponding models and mention some of their 111.3 Belief Function-Based Models (B-Models):
applications.

B-models are the lower probability based models
111.1 Classification of Lower Probabilities: that have received the most attention. They arose

Definition: Let P be a lower probability on 2ft. from the work of Dempster [1967] on multivalued
mapping and were later extended by Shafer (19761

a. A probability measure It dominates P if (VA) (see also Shafer [1982a]).
(A) Lm !(A). It follows that IL(A) s P(A). Belief functions are interpreted through their

b. The class Mp of all probabilities that dominate basic probability assignment function m: in light of a
P is called the class of dominating probabilities piece of evidence, m(A) is that portion of a person's
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total belief (of value 1) exactly committed to A and 111.6 Undominated Lower Probability-Based
to none of the proper subsets of A ("intrinsic" Models (U-models):
belief). A reason for the popularity of B-models is
that they can be combined together through their om inaelor proilie prie yrn-fnctons s dffernt iece ofevidnceare completely new framework for modeling uncertaintym -fu nctions as different pieces of evidence aresi c th y an o be r l ed o u u l p o a ii y
collected using the so-called "Dempster's rule of sine they an be related to sual po at
combination" (see Shafer [1976]). B-models have mesr.GieanFie[967hvehonhtcombnaton" seeShaer [976). -modls ave U-models can be constructed to describe stationary
been used in a variety of fields such as psychology U-oels can bon ed to dere s inr(e.g., Krantz and Miyamoto [19831), statistics (e.g., processes with bounded and divergent (i.e.

fluctuating) time averages, while the modeling of
Shafer [1982b]), computer vision, risk assessment such processes is impossible in standard probability
and medical expert systems (e.g., Gordon & theory (contradiction with the ergodic theorems).

The fact that processes with the above-mentioned
properties seem to exist, as data on the frequency

111.4 Lower Envelope-Based Models (LE-Models): fluctuations of quartz crystal oscillators show (see
Grize [1984] for details), strongly motivates theLE-models arise whenever the uncertainty is study of U-models.

conveniently described by a class of probability

measures M. Indeed any such M induces a lower The use of U-models remains so far conceptual.
envelope by E(A) = inf {jp(A) : "te M }. In general The interpretation of undominated lower
the set Mp of dominating measures will be larger probabilities in terms of observable data is still an
than the class M that induces the lower envelope, open problem.
Some applications of LE-models are mentioned:

1. In the theory of robust statistics LE-models IV. THE COMPLEXITY OF THE THEORY -
have been used to describe neighborhoods of PRACTICAL CONSIDERATIONS:
probability distributions (Huber [1981]). Let I I = n. To define a probability p. on fi it

2. When expert opinions are represented by suffices to specify the values of p on the n atoms of
probabilities, lower envelopes provide a simple fl, but for a lower probability P the values of P must
way to aggregate these opinions into one set be given for each of the 2n subsets of fi.
function (Walley [1982]). Thorp et al. [1982]
give an example of a LE-modcl used to The classes P and LP are closed and bounded

n2forecast production cost in an electric utility, convex polyhedrons in the 2n dimensional space R2n.
P has n extreme points. An idea of the complexity or

3. Finally a personalistic account of uncertainty, richness of the structure of lower probabilities is

developed using lower envelopes, in a similar gained by examining the extreme points of LP. The
wayeaseitoisedoe using ro elies (e ailey number of extreme lower probabilities grows very
way as it is done using probabilities (see Walley rapidly with n and already exceeds 10 million when
[1981] and the references therein). This n= 10 (see Grize 119841 for details). If n=3, there
approach allows to model the inherent are 8 extreme lower probabilities: 7 belief functions
imprecision in a person's beliefs, and the lower probability of paragraph 11.3.

11 To have a useful theory, a way must be found to 0

1!1.5 Dominated Lower Probability-Based Models avoid having to define P for every set. A large class
(D-nmodels): of lower probabilities that include all the types

All the models discussed so far are based on discussed above and that is easy to use has been
dominated lower probabilities but the class of D- proposed in Grize [1984]. Such lower probabilities
models itself has not yet been studied specifically. It are defined by way of a family G of sets with the
is difficult to interpret dominated lower probabilities property that any collection of 2m-2 elements of G
that are not lower envelopes, except as a vague has a non-empty intersection, where m is a given
description of an underlying probability measure p integer greater than 1. For a set A, P(A) is
such that P! ! IL !aP. determined by the smallest number of sets in G

whose intersection lies in A. More precisely:
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conditional lower probabilities is disturbing. There is
(VA Cl) P(A) = little doubt that this question needs to be solved for

the theory to be successful in areas such as expert
1 if A = fl systems or artificial intelligence. In our opinion the

1 - - if A A fl and (JBeG,) BCA issue of conditioning is the major limitation of the
m theory of lower probability today.

1 - -L if (VB G) BOA and (3BeG 2) BCA
In V. CONCLUSION:

The mathematical structure of upper and lower
1 if (VBEG,. 2) BOA and (3BeG,-t) BCA probabilities unifies various uncertainty models

m and is an elegant generalization of the classical
0 otherwise theory of probability,

where: G1 = G and Upper and lower probabilities provide a general

Gk = 1"3 (G)i framework for modeling uncertainty where the -N-
= {BC5: (:BI,B 2 ,..,BkeG) B= BIn B2n ...lBk}. uncertainty described by conventional probability

It is easy to check that P is a lower probability, is only a degenerate case (f = P),

This class of lower probabilities should be large e Upper and lower probabilities have solid

enough for most practical applications. The lower mathematical foundations hence are adequate for
probability of section 11.3 is an example of a lower rigorous developments,
probability defined in this fashion with G { {a,b),

{b,c}, {a,c} } and m = 2. e Although upper and lower probabilities are, in
general, difficult to specify numerically, a class

V. CONDITIONAL LOWER PROBABILITIES: that is easy to use and large enough for most

A satisfactory answer to the question of defining practical purposes has been identified.

conditional lower probabilities is yet to be found. It However:

is beyond the scope of this paper to present a full

discussion of this issue and we shall limit ourselves to p An intuitive interpretation of upper and lower
briefly mention some of the various forms of probabilities that are not envelopes ofor

conditioning that have been proposed so far (see probabilities is still missing (especially for

Walley ([1981] for more details): undominated lower probabilities),

" For probabilities define: e The methods for conditioning upper and lower

P(AIB) = P(AnB) probabilities are still unsatisfactory (What is the

P(B) right way to do it?)

• For belief functions the conditioning is expressed
in terms of the upper probability (Shafer [1976]): REFERENCES
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THE NUMERICAL SOLUTION OF A SYSTEM OF ORDINARY STOCHASTIC DIFFERENTIAL 0

EQUATIONS ON THE CYBER 205 SUPEROMPUTER

Tim Haas. Colorado State University

Sumary This may seem unnecessarily cumbersome, but is

A numerical method using an crucial for efficient use of the 205 as

Ornstein-Uhlenbeck approximation to the Wiener described below.

Process coupled to a Runge-Kutta algorithm has The second type of input consists of the

been programmed on the Cyber 206 supercomputer input file which contains a) the number of

to solve systems of ordinary stochastic realizations of the solution desired, b) number

differential equations (OSDE'S). Each equation of independent variable steps before the first

may be any programmable function of the four moments of yare computed. c) the number of

independent and dependent variables optionally covariances (number of values of the independent

Smultiplied by a stochastic process and/or with variable equally spaced at which covariances are

an additive stochastic process. Equations with to be computed), d) the sizes of the covariance

analytical solutions are solved and errors matrices for the stochastic processes.
presented. Cyber 206 timings are presented SDESS is written as a subroutine so that the

along with remarks concerning the vectorization SDESS is it as a subroun a theofth odinput file is passed to SDE$S through a "AL
of the code. statement.

I. Introduction IV. Output From SDESS
Although the theory of stochastic SDESS will output the following at the

differential equations (SDE'S) has received much requested time points. tl
1

t2 ,  a) the
attention [1. 2], the numerical solution of .... final:

these equations having no known analytical mean value of Yi. b) the covariance matrix of Yi

solution has not been subject to similar effort. (cov(yi(t)-y(t))). c) the mean value for each

One reason may be the expensive computation that i ik

solutions of these equations require. of the stochastic processes Ei and *i" d) the

Many models in the physical, life and social covariance matrix for each stochastic process

sciences may be beneficially recast in an SDE and e) the mean square error of the estimated

form. This form may. however, be analytically mean and covariance of each stochastic process.
intractable, thus a numerical approach is the
only recourse. The program SDESS (Stochastic V. Verification and Test Runs.
Differential Equation System Solver) was Two different equations have been run using

developed as an attempt to answer this need. SDESS. The first is the equation (equation A)

Specifically a program written by M. Elrod at used by Elrod in his dissertation to verify the

the University of Georgia on a CDC 7600 [3] to
solve a single, particular SDE was modified to pram. in a two equation tem was

solve a general system and adapted to the Cyber second equation (equation B) was selected
205. because of its oscillating and analytical

solution. Here also, the same equation was

e pe equation s m scoded twice to create a two equation system.
The type of equation system solvable by SDESS The equation used by Elrod is:

is of the form O (t)y + +(t)
dYi = f.(t)Fi(yt) + 'Pi(t )  dt

dt- where

where, (r(t)> = .5

Yi is the i th dependent variable <*(t)> = .5+sin(2wt)
Iy(o) is N(II/3) .

t is the independent variable The covariance matrices of f(t) and (t) are

fi,'Pi are stochastic processes which may be given by,

nons tat ionary. cov(t.t) = 6
F1 is any FORTRAN programmable function of Elrod ran the above using 106 realizations.

the vector of dependent variables and the During initial development of the code on a I
independent variable. VAX-11/750 with a floating point accelerator.

Since a fourth order Runge Kutta method with running in core this solution was essentially

no variable step size capability is used, the duplicated with a double precision version of

SDE's should not be "stiff" although this may be the code. The run time was about 160 hours at

difficult to predetermine without knowing the about 95% cpu usage. In order to save

effect of the stochastic processes on the computation expense the two equation system of %

solution. the above was run on the 205 using only 10 5

•. Iptf SESrealizations. The results were within expected
III. Input for SDESS accuracy, see figs. 1 and 2 and Table I for:lInput for SDESS consists of two types; source souinaderrvlsfomEo',thVA

code modification and Input file creation, solution and error values from Elrod's, the VAX
The first type consists of programming the and 205 runs.statmentfuncionsforthe ovarancematrcesThe second equation was chosen to verify that

statement functions for the covariance matrices SDESS would not always allow a solution to "blow
for the two stochastic processes, and the u" eairssetddet h oetal
statement functions for the equation functions, up, a behavior suspected due to the potentially
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imperfect simulation of a white noise process were replaced by in-line code. Also. the random
inherent to the program. Also, an analytical number generation using the function "URAND" [5]
solution had to exist. Thus, for simplicity, in early code development was replaced by calls
dy = -sin(t) + a dwft) , y(o) = 1, a = 1.4 to the 205 random number generator, "RANF" [4].
dt dt These two modifications resulted in the modified

was chosen. The solution is given in Gihman and SDESS running about 3 times faster over the
Skorohod [1] as, unmodified code on the 205. However. SDESS on

t 2  the 205 is only about 30 times faster than the
y = cost + to dW(S). where W is a Wiener VAX-750 implementation - low efficiency for a

Process vector machine.
<y> = cost If a parametric study of a particular system
Var (y) = a2 t.i of SDE's were desired (as in nonlinear

regression), it should be mentioned that saving
Here, the initial value of y was chosen to be the values of the stochastic processes each

nonrandom to simplify the variance calculation. realization and using these on subsequent
As can be seen in fig. 3, the numerical iterations would result in a speed increase.

solution of the mean value is quite close to the However, judging from experience with "turning
analytical - this using a step size of .01 and off" one stochastic process the speed increase
50.000 realizations, will probably be modest.

In order to test the validity of the white
noise simulation, the equation was run first VII. Conclusions
with a = I and then with a = 4. A solution of a general system of OSDE's

The Ornstein-Uhlenbeck process used in SDESS appears to be feasible using somewhere in the
converges to a white noise process (dW(t)) as
a,b -# - . (a/b) -+ 1/2 where the covarmance neighborhood of 10 realizations. However, even
function of the Ornstein-Uhlenbeck process is using a supercomputer, the computation is still
given by: quite expensive. In general, run-times would be

blt-t'l decreased if new results could produce
(1) cov(t.t') = ae ([6], pg. 55). algorithms which converge with fewer

Specifically. SDESS uses (1) to calculate realizations and particular to vector processing
adjustment vectors which modify the Gaussian computers if a nonrecursive numerical method
random variables generated each realization. To could be used to solve the SDE.
avoid underflow on the computer, b was fixed at Incorporating this solver into a nonlinear
1000 and a was calibrated using the a = I regression routine using absolute differences is
equation. Since a linear relationship was found planned.
to exist between a and the Var (Y) at tfinal'

interpolation was arbitrarily stopped when the VIII. Acknowledgements
calculated Var(Y) was close to the analytical. This work has been supported by the Institute
To check the validity of the simulation, a was for Computational Studies at Colorado State
then set to 4 and run, the Var (Y) calculation University.

was again quite close (see Table 2). Ideally,
analytically determined values of a and b could IX. References

be given which would yield accurate results [1] Gihman, T.T. and Skorohod, A.V., Stochastic
5 Differential Equations. New York.

(such as a = 10 , b = 2 x 10 ) However, it is Springer-Verlag, 1972. 9
suspected the time step would have to be quite
small to make use of this finer approximation - [2] Ikeda. N. and Watanabe. S., Stochastic
the run times then would probably be Differential Equations and Diffusion
impractical. The calibration method although Processes. Amsterdam, North-Holland, 1981.
not a general result, does appear to allow
accurate simulation of stochastic processes. [3] Elrod, M., Numerical Methods for the

The 205 cpu timings for each equation system Solution of Stochastic Differential
are given in Table 3. Equations, Ph.D dissertation. University of

Georgia (Athens). Ann Arbor. Michigan.
VI. Remarks on Vectorization of the Code. University Microfilms, 1973.

The Cyber 205, although a fast sequential
machine, achieves most of its speed via [4] Fortran 200 Version 1, Reference Manual,
vectorization of code segments (usually "DO" Control Data Corporation, 1985.
loops) [4]. Thus to take advantage of this
capability the DO loops in the source code must [5] Forsythe. G. E., Malcolm, M.A. and Moler.
have certain characteristics which will allow C.B.. Computer Methods for Mathematical
the computer to vectorize. Unfortunately, the Computations. Englewood Cliffs, New Jersey,
Runge-Kutta algorithm wherein SDESS spends about Prentice-Hall, 1977.
902 of its run time, is by nature a recursive
process which is not vectorizable. [6] Arnold, L.. Stochastic Differential
Surprisingly, the seemingly time consuming Equations: Theory and Applications.
collection of "IF" statements required to New York, Wiley, 1974.
compute a value of each stochastic process each
time step does not require a relatively large

amount of time. Thus. in order to increase the
speed as much as possible, all subroutine and
function calls within the Runge-Kutta "DO" loops
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() VAR Y % error (Y) % error VAR Y
Elrod 3.035 123.33 21. -. 5
VAX 3.014 118.5 20. -4.4
205 3.044 156.2 21. 26.
Exact 2.507 124.0 0 0

Table 1. Percent error from exact solution at tfina I (equation A).

a Numerical Analvtical % error
1 2.483 2.5 .68
4 39.72 40. .70

Table 2 . Percent error from analytical for Var Y at tfinal for equation B (-siut).

Equation Time (seconds) Cost
1 (Elrod's) 1884.77 $1889.

105 realizations
2 (-sint) 711.30 $715.

50,000 realizations

*Based on running equation B with 105 realizations 3 separate times, a rough standard deviation
for the Y> at tfinl was found to .0107. A standard deviation for the Var Y at t was

likewise found to be .0136. These will decrease in proportion to the square root of the number
of realizations. Similar values would be found for Equation A.

Table 3. 205 central processing unit time and cost for each solution.
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SOLVING NONLINEAR ECONOMETRIC MODELS USING VECTOR PROCESSORS

Patrick J. Hdnaff, Massachusetts Institute of Technology
Alfred L. Norman, University of Texas

2. THE SOLUTION ALGORITHM AND HOW
1. INTRODUCTION IT CAN BE VECTORIZED

This paper reports on the design and 2.1 The solution method
implementation of a reduced Newton algorithm for
solving large non-linear econometric models on a We consider the set of simultaneous equations
vector processor such as the CYBER 205 or a CRAY
X/MP machine. To take full advantage of the vector
processing capabilities, one needs to organize the f(Z) = 0

computations such that operations are carried on where f is a n-component function and z a vector
vectors. For the price of a small start-up time, of n endogenous variables. Predetermined
which varies with machines, a vector processor variables are omitted for clarity. At a given point
performs a floating point operation on a component zk, the residual of the system is f(zk) = dk. The
of a vector in a fraction of the time needed to system's Jacobian is Jk = [df/az].
perform the same operation on an isolated scalar. A reduced system equivalent to [1] is derived by
up to now, numerical methods have been optimized using some equations to eliminate endogenous
for scalar processors; this involved: variables, thus reducing the dimension of the

system. First, a set of loop variables is identified in
minimizing the storage requirement. For the system. A setof loop variables is such that if the
Newton's algorithm, this was achieved by variables in this set were predetermined, then the
developing software for operating on matrices other variables in the system could be computed
stored in sparse format, recursively. After an appropriate permutation of

variables and equations, the system of equations is
minimizing the number of floating point partitioned into 2 blocks, called the core and the
operations by, for example, computing a row and loop block:
column permutation that reduces the amount of
fill-in during matrix factorization. r(,y) = 0 [2)

*x,y) = 0
Vector processors, however, suggest a different set
of criteria for optimizing the implementation of where g and h are vector-valued functions with
numerical methods: respectively (n-s) and s components, y a vector of s

loop variables and x a vector of n-s core variables.
Because of dramatic reduction in cost and Finally, at a point (xk, Yk), let the equation
progress in miniaturization of RAM components, residuals be similarly partitioned (bk, ck). For each
the memory available on recent computers, equation in the core we define the function f' I,
especially on the vector processor, is very large. which is the original function fi, solved for variable
As a result, core requirement minimization is xi:
not as strong an imperative as it used to be.

computation should be organized as vector xi = f(X t .... xi_ ,y) n - s [31
operations as much as possible, even if this leads
to some redundant computation. The error function is defined as:

Let us now turn to econometric models. To solve
such models by Newton's method on a vector (y I= h(x(y),y)
processor, one ap proach has been to rewrite sparse
matrix code to tae advantage of vector processing. w x e b e q i 3
However, that approach may be limited by the fact with x(y) defined by the core equations [3]. The
that sparse matrix techniques were designed original system is equivalent to:
according to criteria not entirely relevent to vector

, processing. In contrast, our approach is to
restructure the problem at hand so that 0(y)= [4]
computations can be naturally expressed as vector
operations. and sparse matrix storage schemes which iscalledthe reduced problem. ItsJacobian is
avoided altogether. The rest of the paper is T* = [ 4 ay]. Newton s algorithm applied to
organized as follows: Section 2 presents the solution roblem [1] will be referred to as the Global
algorithm and how it leads to vector processing. Newton's algorithm (GN), while the same method
Several technical features of the method are applied to problem [4] will be the Reduced Newton's
discussed in Section 3, and the coding is considered algorithm (RN). One iteration of RN involved 4
in Section 4. Timing of vector versus scalar steps:
processing solutions for a medium scale econometric
model follows. 1. Evaluate the error function at the current point,

Yk:
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"yk) = dk  [51 variable. The Jacobian of the reduced system is
immediately obtained by dividing each column by

2. Compute T*k at Yk. the corresponding hi.

3. Solve Newton's equation for pk: 3. TECHNICAL ISSUES

The method raises several technical issues
T* = - d6 which are now addressed. Let us first consider the

relationship of the solution algorithm to Newton's
method applied to the original problem.

4. Convergence test: Stop or go to step I with The original and reduced system are equivalent
in the sense that a solution to the reduced system is
also a solution to the original system. Moreover, the

Yk+1 = Yk + Pk following fact can be established:

Corresponding to the partitioning of variables, the Fact: Let the notation be as in section 2. If the
Jacobian of the original system can be similarly functions g and h are linear with respect to x, then
partitioned as: RN and GN, started from a common value yo will

generate the same sequence {Yk} for the loop
variables.

G R 'Proof: Dropping the k subscript for clarity, let the
G I [7] current point be (x, y) and the corresponding

J S T residuals be (b, c). The Global Newton's step for the
loop variables is

The Jacobian ofthe reduced system is then: t = T- [-c + SG-b I [101

T* = T - S G- I R [81 Let us consider RN applied to the same point. First,
x is evaluated so that [3] holds. Since g is linear

A finite difference approximation to T* is easily with respect to x, the solution is:
computed because of the recursive structure of the
core equations. The jth column ofT* is obtained by: x = x - G-b

0 h 0 The new residuals ofthe loop equations are then:

hx.y)=c-SG 1b

where ei is the jth unit vector and hi a small scalar. Since S and G are constant, T* evaluated at (x +, y)
The determination of hj is discussed in the next is the same as T* evaluated at (x, y). The Reduced
section. The Jacobian of the reduced problem is Newton step for the loop variables is then:usually dense and of small size, so that the solution .
of Newton's equation for the reduced problem can be
easily obtained. This solution method has been t+ O-T- h(x+,y)--T -1 (e-SG-b) [11]
described in (1). T

2.2 How it can be vectorized which is the same as the GN step in [ 10].
In the general nonlinear case, however, the

Vectorization is achieved at two steps of the paths to a same solution will be different. In the
algorithm. First, in evaluating the Jacobian of the case where multiple solutions to the original
reduced model by (91 and second in the solution of problem exist, it is even conceivable that RN and
Newton's equation [61 for th, reduced model. The GN, started from the same point, would yield
vectorization of the second step is by now a standard different solutions.
procedure, since the Jacobian of the reduced system Two convergence tests are applied at each
is dense and stored in full format. Library iteration. Iterations terminate if the maximum
subroutines are available for carrying suc relative error on the loop equations is less than c 1:
computation (see, for example, (2)). The
vectorization of the first step is made possible by
computing in sequence the perturbed values of each max I E121

core and loop variables corresponding to the
perturbations of each loop variable. Each core and
loop equation is now a vector expression where each Iterations also terminate if the maximum relative
endogenous variable is a vector of length s. At the change in the variables from one iteration to the
beginning of the computation, the vectors of loop next is less than C2:
variables are initialized to the base values of these
loop variables. Then, for each loop variable j, the jth
element of the corresponding vector is perturbed by f - (k- (131
hj. The core equations are then evaluated max 1 2
recursively, then the loop equations. The result is a
sXs matrix of error terms, where entry (j) Note that the core equations are by construction
represents the error on loop equation i exactly verified at each iteration, so that criterium
corresponding to the perturbation of the jth loop [12] implies that the maximum relative error over
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all equations is less than el. Well conditioned fori = I tonloop
problems should terminate with criterium [12]. Z(i,10)= FI0(Z(i,),Z(i,9),Z(i,lI..Zi.15))
Criterium [13] is tested after (12] to terminate fori = Ito nloop
iterations when iterates stabilize at a point away PHI(iI) = 1I(Z(i,1) ... , Z(i,15))
from a local solution.

The selection of the perturbation scalar hj is now for i ='I to nloop
considered. The problem is to choose f6r each PHI(i,5) = F15(Z(i,1) ... Zi,15))
variable yj a perturbatin h such that it minimizes
truncation and cancellation errors on the 5. NUMERICAL RESULTS
evaluation of q and h.

At this point, a trial-and-error approach has The authors selected for experimentation the
been used, with the selected hj's corresponding to Texas Econometric Model (version M5) developed
the perturbations yielding the best convergence by the Bureau of Business Research of The
properties. A more systematic approach is the University of Texas in Austin. With 293 equations,
object of current research, this model is characteristic of intermediate size

econometric models. It can be partitioned into a 59
4. CODING equation recursive prologue, a 201 equation

simultaneous block, and a 33 equation recursive
The coding is best explained through an epilogue. The three algorithms considered were the

example, for which pseudo-code will be shown, reduced Newton (RN), the modified reduced Newton
Consider the system arranged in quasi-triangular (mRN), and the Gauss Seidel (GS). The mRN
order: algorithm was obtained by using the LU

decomposition of T* computed at the first iteration
zI = fi(zii .. Z15) in all subsequent iterations. The GS algorithm
Z2 = f2(z,.z, , .. -Z5) employed the ordering and normalization of the RN
z3 = f3(zl, z2.Zl i. z. 5) algorithm with each loop equation normalized on a

o pvariables.
zo ' floz. 2. z.z.. z5) The algorithms were coded in FORTRAN 77 and
Zl fll(Z .. z15) compiled with the FTN200 compiler on the CYBER

205 at Purdue University. For the scalar runs a
z15 'f.5(z.. z15) scalar version of LEQFIT subroutine from the IMSL

subroutine library was employed to solve the linearthe core variables are z1 through zio, and the loop system. For the vectorized runs the GEL subroutine
variables ziI to z15 . Let zk be the current point. It from the MAGEV library (2) was employed. The
is stored in row 6 of array Z. The error at the results for solving the model for one period (1970).
current point is stored in row 6 of array PHI. The with a convergence criterion U2 = .le-3 are
reduced Jacobian at Zk is evaluated as follows, displayed in the following table:

1. Initialize the array of loop variables to current
point value Table 1

for i 1 Ito 5
forj = 11 to 15 Number of iterations and time (see) to solve

Z(i,j) = Z(6,j) model M5 for 1970

2. Set perturbed values of loop variables Algorithm No Vectorization Vectorization

for i - Ito 5 GS 19(.0365) 19(.0318)
Z(i,i + 10) = Z(i,i + 10) + H(i) RN 4(.1454) 4(.0546)

mRN 4 (.0586) 4 (.0200)
3. Execute subroutine REDUC. A 5 x 5 array PHI

is returned. Each row is the perturbed value of For the GS code the recursive nature of the
the error vector for the corresponding perturbed algorithm prohibits any significant vectorization. S
loop variable. The only operation which can be vectorized is the

storing of the current point at a given iteration for
4. Compute the transposed reduced jacobian by comparison with the result of the next iteration. In

dividing each row i of PHI by the corresponding the RN algorithm, most of the steps can be
perturbation H(i) vectorized. In the mRN code, the GEL subroutine

solves the linear system (6] in less the 10% of the
for i = 1 to 5 time required to obtain a single scalar solution toforj= Ito5 the core and loop equations. This means that in the

PHI(i,j) = (PHI(i,j)-PHI(6,j))/H(i) mRN algorithm the second and subsequent
iterations are obtained at a cost only slightly

The relevant portion of subroutine REDUC is as eater than the cost of a Gauss Seidel iteration.follows: With vectorization, mRN achieves a saving of about
1/3 over GS. On the CYBER 205 setting up the

nloop = 5 vector pipeline has a substantial overhead whichfor i = 1 to nloop can be seen in Table 2. The table displays the time
Z(i,1) = F(l(Zi,) ... Z(i,15) needed to execute the subroutine REDUC for

for i = Ito nloop various values of parameter nloop (see Section 4).Z(i'l) = F2(Zi,1),Z(i,ll), ... ,.Z6i,15))
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A
Table 2 numerical results are encouraging: An m-step

Newton's method was found to be 33% faster thanTime to solve the core and loop the Gauss-Seidel algorithm in solving an
econometric model of intermediate size.

nloop 1 6 11 16 21 Further research is planned along two axis. The
first one is to perform more experiments, this time

scalarcode .0018 .0078 .0142 .0204 .0268 using a much larger multicountry model with a loop
vector code .0053 .0062 .0079 .0097 .0103 of over 100 variables. It is also intended to carry the

same computations on a CRAY X/MP-24, soon to be
Given the overhead in setting up the pipeline, installed at the University of Texas in Austin. The

the time to solve the model using the scalar other axis is to develop a systematic approach to
processor is less than the time for the vector some aspects of the algorithm, in particular to the
processor for nloop less than 8. Thus, when using choice of the perturbation values used in the
the CYBER 205, trying to minimize the number of computation of the reduced Jacobian by finite
loop variables is not too relevant, at least when differencing.
intermediate size models are considered. On a
CRAY machine, however, some increase in speed 7. BIBLIOGRAPHY r
occurs even with a vector of length two. Hence
where the number of loop variables is small one (1) Nepomiastchy et al. "Adapted Methods for Solv-
would expect the RN and mRN algorithms to be ing Optimizing Quasi-Triangular Econometric
much more effective on CRAY machines. Models," Annals of Economic and Social

Measurement, Vol. 12, 1978.
6. CONCLUSION (2) "The Math-Geophysical Vector Library", docu-

A Newton-type algorithm adapted to vector ment 22-MAGEV, Purdue University Corn-
processing has been described. Preliminary puting Center.
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B-SPLINE ESTIMATION OF THE HAZARD FUNCTION IN PERIOD ANALYSIS

John J. Hsieh, University of Toronto

This article develops a precise method for estimating the hazard
function, survival function and density function for period analysis
using B-splines. Explicit expressions for the representation of the
hazard function as linear combination of quadratic B-splines are ob-

tained. Accuracy is achieved by using three overlapping consecutive
age-specifc death rates covering three years each, as coefficients of
the B-spline basis defined on a single-year uniformly-spaced knot sequ-
ence. The exact expressions of various functions describing the prob-
ability distribution of the lifetime are derived from the hazard func-
tion. The methods are illustrated using 1981 Canadian male population

and death data.

1. INTRODUCTION survival function and the death density function
are evaluated directly from the hazard function

The intent of this article is to employ the by exact integration.

B-spline basis to estimate the hazard function
(force of mortality) as well as its associated The spline functions employed in this paper both

survival and density functions using death and for interpolation and for estimation enjoy minimum

population data from period analysis. norm, best approximation and fast convergence
properties. The set of the B-spline basis is a

Data from government publications available generalization of the "hat" functions and is a

for the study of the distribution of the human well-conditioned basis for spanning spline

life length come from two sources: Those functions. As a Peano Kernel, it provides a local

classified by age-of-death come from vital partition of unity on the entire agespan with

registration and yield counts of occurences small supports.

of deaths grouped by single-year age intervals
while those pertaining to age-still-alive come Since the behavior of the hazard function (in
from census and give rise to counts of population particular, its speed of decline) during the first

size grouped in five-year age intervals. year of life differs from that for the remainder
of the lifespan and since the infant population

A well-known method of estimation as well as tends to be underenumerated, the method and data

approximation used in mortality analysis is to for estimating the hazard function for ages under

compute the age-specific death rate as the one should differ from the methods of estimation

ratio of the number of deaths to the number of for the remaining life. An infant mortality law

person-years of exposure in a given age interval and a method for estimating the hazard and other

and to estimate the hazard function at every related functions for the first year of life have

age within the age interval by the death rate for recently been provided by the author (see Hsieh,

that interval. The difficulty with this procedure 1985). We shall make use of the results from that

is that the hazard function so estimated is work and in this paper concentrate on the agespan

constant for every age within an age interval [tl,tn], where tIl = 1 year and tn may be taken as
and jumps at every division point between two 85 or 90 years or whatever advanced age depending

age intervals, so that the hazard function is on the availability and reliability of data at

estimated by a step funrtion with step width these ages.
normally five years long. -

In Section 2, explicit expressions are derived

In this article we shall improve this time - for the quadratic B-splines as well as their
honoured procedure by smoothing out the step derivatives and integrals. Several useful simple

function estimate using spline functions. This properties of B-splines are also discussed.

is accomplished by combining the death rate in Section 3 describes the method of estimation of

the age interval within which the hazard function the hazard function using B-splines. Explicit

is sought with the death rates from the left formulas are given for estimates of the hazard

and the right adjacent intervals and by redis- function, survival function and the death density

tributing them in a quadratic fashion among function based on single-year uniformly-spaced

these consecutive overlapping age intervals. knot sequences. Section 4 provides an example
The technique with which this is effected is of estimation using 1981 Canadian male population

the representation of the hazard function and death data. A comparison is made with other
as a linear cambination of the quaorntic B-splines two existing methods of estimation for period

on single-year uniformly-spaced knot sequences analysis.

with the overlapping three-year age-specific
death rates as the coefficients. To compute the 2. B-SPLINES AND THEIR PROPERTIES
death rates, the populations in five-year age
groupings are cumulated and then interpolated There are several ways of defining a B-spline
into single years using a complete cubic spline. (B stands for basis). We shall use a definition
Once the hazard function is obtained, the consistent with current usage and appropriate
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for our application (For a survey and list of f[t,t,s;x] = f'(t:x)-[f(t;x)-f(s;xJ!t=-
s) (3)

references about B-splines see de Boor,,1976). t-s

For a chosen sequence of knots t r+2< .. <t<t"... f[t,t,t;x] - fll(t;x)/2! etc.,)

<t < ...<t (r-1,2,...), the i-th B-spline of of order are- tn+r-l rl2'"explicit formulas for B-splines ofodr "3ae

order r, denoted by Bir or simply by Bi with the derived and given in Column 2 of Table 1. From

the expressions in Column 2, the formulas for the
order r understood, is a pece-wse polynomial t first order derivatives and integrals are derived
of degree r-1 defined as the product of (ti+r- i and shown in Columns 3 and 4, respectively (where

and the i-th divided difference of the truncated we have used the notation X =ti +l-t and Wi kx)=

power function (t-x) 
- I  r- I + ik

por ft max(X,(t-x) ) with B (y)dy for xc[tl+k,tlk+l),k=0,l,2). Notice

respect to t at the knots ti~ti+l,...,ti+r ti+k

(i=-r+2,. n-). In symbols, that, for i=l,2,...,n-3,B i(x) is a three piece

B ir (x(t it )f[titi ti quadratic with support (tit+ 3 ) and is continu-

ously differentiable at each of its four knots

where f[til,...ti+r ;x is the r-th divided titil~ti+2 and t+ 3 . For i-0, B.(x) is a two- 0

difference of + at the points piece quadratic with support (t 1 ,t1 +3 ) anI is con-
tilt i+l,..,t i+r. In other words, f[ti, ...,i1 +

Sih go e o the ptinuously differentiable only at the two knots ti+2

i+rX] is the leading coefficient of the poly- and tJ+3 but not at the boundary point x=l because

nomial of degree r which agrees with the function two knots t and ti+ are placed there. For i=-l,
f~tx)=t~xr-1f(t+x)(t-x)- at the points tlt i+l,t i+r .  B I(x) consists of only one quadratic function

Since published data on populations and deaths with support Iti+2 ,ti+ 3) and is neither continuous

are given in single-year or five-year age group-
ings, to construct a B-spline basis for the nor continuously differentiable at x=l because

purpose of estimating the hazard function, we three knots are placed there. Similarly, the

shall partition the agespan[t ,t I by choosing same may be said of the case with i=n-2 and n-i

in on the opposite end of the agespan in a sym-

the exact integral ages as the division points metrical fashion. The expression for the value

of the age axis and place one knot ti on each of the B i(x) and its derivative at each knot is

of the interior division points, i=2,3,...,n-i, also shown in Table 1.

and r knots on each of the two boundary points
so that t1=to...=t_r+2 are the initial knots B-splines have many desirable properties, some

and t =t = _t are the final knots, of which we will be making use of are listed
n n+1 "tn+r-l below:

Both theoretical and empirical considerations (i) For each i, Bi(X) is a spline function of

indicate that choice of r=3 or 4 will 
produce e For- o ea l i i f no lti e n o t

optimal results. For estimating the hazard degree r-1 on the real line if no multiple knots

function, quadratic B-splines (r=3) are prefer- are involved and hence that x) = fXBir (y)dy

able to cubic B-splines (r=4). The use of the is a monotone increasing spline function of order

former will avoid possible undue undulations 
r+ with oex)=0, for x sti

caused by the use of cubic or higher-degree w

splines, at the same time retain the smoothness S

of a spline function, with the added benefit of (ii) The area under the B curve is given by

simpler expressions for the hazard function as x

well as the survival functicn and the death _B (x)dx =(tr-t Hr. (4)

density function derived therefrom. 
i i+r 1

Using the definition of B Cx) given above and Thus, ',r single-year uniformly-space knot

ir sequences, t,=i, all i, this integral becomes

the recursive relations of the divided difference unity so that Pi(x) represents a probability
given below: ,

density on the real line.

fti't i+r;x (iii) The support of the B Cx) functions is
... ti;xJ-ffti...,t ;xl restricted to (t ,t5 ), i.e.

ftii+r- (2) S.,

t - t
i+r- > 0 for xC(ti,ti+r),

(when multiple knots occur, then the derivatives B x) (5)

naturally enter (2), so that = 0 for x(til,ti+).

f[tt;x] - f'(t;x)
(iv) The sum of the Bi's at a given x is unity,
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TABLE 1. EXPRESSIONS FOR QUADRATIC B-SPLINES, THEIR DERIVATIVES AND !NTEGRALS.

XEB.(x) =B!(x) =~k(x)=
1 1k

(~O~~10 0

B (B:(=.)B 0 -

[tit 111 X- i)2 2x-ti3(X- +) 3)

B (t 81. 1B(t = 2 __________________

j j+1 )i~+Xi i+l) X 1 ~i+X i

-t'1' ti+2~ _ti+ 1+1) (+1 i2 )i 1
It. t I j+1 I-1 - (3~ Xi,- +X + +

L~'i2i i+1+ 1+2 i+ i~l+ i+2 Li+1+ 1+2 i i+l

(t i+-X) 
2 1 +-

+ 2 + X ]X +(x-t i+l)

B It )= 1+2 B'(t. 2
j i+2 X*~ i +l 1 + i+2 X i+)+X +

It. 2  t I ( i+3-X2 2(x-t i+3) X3i+2 -Ct i+-x 3
i~A +2 i i+l+ i+2 i+2 j+1+ i+2 i+2

1 i+3 =OB' C t i3)=O

It +3" 0 0

i.e., for xE(t.,t.41 ,J=l,...,n-l,
j~l j

j f(x)= Y a.B(x)(8
B Wix = Z B (x) = .(6) ij-r+l ()

A~i=J-r+l

and hence for single-year knot sequence, Furthermore, the linear span is strictly convex.

a'i J x~x Properties (i) through (iv) are direct con-
i z-rl J x x=1 (7) sequences of the definition of B-splines and/or

i~j-r~lJPeano's theorem. Properties (v) and (vi) were
j shown by Curry and Schoenberg (1966). Allthese

so that Z B C x) represents a probability properties can be verified from the explicit
i=j-r+l formulas for the quadratic B-splines and their f

density on [J,J+l]. integrals given in Table 1. There are other
mathematical properties most of which areb
derivable using the total positivity property of

(v). At a given division point on the age axis, B-splines due to Karlin (1968). As more proper-
the number of continuity conditions plus the ties are uncovered ahout the B basis splines,
number of knots equals the order of the B-splines.

their importance in both theoretical and applied
(vi). Every spline function f(x) of degree r-l works will become evident.

based on the above sequence is uniquely represen-
ted by a linear combination of the B-splines
basis. Thus, for xEjtj~tj+lI9 for some
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3. ESTIMATION OF HAZARD FUNCTION, SURVIVAL where p(x) is the population pro'>le
FUNCTION AND DEATH DENSITY FUNCTION function. The numerator in (10) represents

the number of deaths per unit time and the
denominator the number of persons, both forWe shall represent the hazard function h(x) the age interval Et.-d.i,t.+di. tfoow

over the agespan [tlt I by a spline function and, t 1 1. It follows
n from (10) that if the hazard function is

in accordance with equation (8), express it as constant over [t -di +di] ,

a linear combination of the B-splines with the i d i
coefficients a to be estimated from the ob- h(x)= M This result impli-s 'he

i 2d t i-d
served population and death data. Accordingly, validity (but not accuracy) of the con-
the estimate of h(x) on [tl,tn] may be written ventional method of estimation mentioned
as in Section 1.

n-l
h(x) = F a. B.(x). (9) To derive an estimate for ail we assume

i=-r+2 1 1
h(x) and p(x) to have derivatives up to
the second order and expand them around

With quadratic splines, the explicit expressions t as follows:
for Bi(x) are given in Table 1. i

Determination of the coefficients of the h(x) = h(t i)+h'(t i)(x-ti )O((x-t ) ), (11)
Bi-splines in (9) requires information about

h(x). If we are given a set of h(xi) values p(x) = p(t )+P'(ti)(x-ti)+O((x-t ) ). (12)
at some n-l age points xi eti,ti+1 ),i1l,. ..,n-l,

i +Then, substitute (11) and (12) into (10) and
plus r-1 values of h(x) and its derivatives at integrate out to obtain
the two boundaries, say, then we may solve (9)
as a linear interpolation problem to obtain
estimates of the (n+r-

2
) coefficients h(t.i)Wti)+o(d i2

a However, it is difficult to obtain 2d - p(i)+o(d

accurate values of h(x) at so many age points,
much more so with its derivatives. This 2h( i)+o(d
approach is, therefore, not feasible. Even = h (13)

though we do not know h(x), the population
and death data do provide us with certain On the other hand, following the arguments
average values of h(x) over relatively used in the quasi-interpolant approximation
small age intervals. These are weighted of de Boor and Fix (1973), one easily obtains
averages of h(x) with age distribution as the following approxfimation for the B-spline
weights and are known as age-specific coefficients:
death rates (see (10) below). Computation-
ally, the death rate over the age interval
[x,x+y], denoted by yMx, is the ratio of a, = h(t i )+O(di 2) (14)

the number of deaths to the person-years of
exposure in the age interval [x,x+y], the Substituting (13) in (14), we have
numeratorcoming from death (age-of-death)
data while the denominator from population ai = 2diM- 2d+((d)2)
(age-still-alive) data. We shall now 2 t -d i 1(15)
derive our estimates of the a.'s in terms

1

of the y' s with specific choices of x Notice that the order of approximation obtained
and y and show that they are indeed good in (15) is independent of the order r of the
estimates. spline used as long as r>3. Equation (15) "

For every sequence of r+l knots, t. suggests that 2 - is a good estimator
ti,...Itir for i=-r+2,...,n-l,

i

i I =(ti +...+ti~r~l) /  for ai for small spacings between the knots
define the truncated mean t/i+l i+r- such as single-year uniformly-spaced knot
(r-l) and the symmetrical range 2dI where sequences. Substituting this estimate

dimin (ti tiVti+r-t) is the minimum length

of age intervals from the truncated mean ti to a= 2di M di (16)

the two extreme knots. Then, the death rate
over the age interval [iR-di,ti+di] associated into (9) yields

with these r+l knots is given as the weighted
average E +di h(x) 2d M4 d Bi( 17

h(x)p(x)dx i=j-r+l i i i
ti-di 1 (

2d~ ~, (10) V2d i i-d i  - for x (t ,tJ+ 1 ] , j=1,2,...,n-l, since, by

i ididi p(x)dx Property (iii) of Section 2, each B has a
t i .-di %
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support covering only r consecutive age intervals. hi(x) = 3M87 (90-x) /2+lM 89 [l-(x-89) _(90-x) 2/2]Formula (17) is the estimator of the hazard
function we propose. From Property (i) of

Section 2, h is of continuous class Cr-2 +h(90)(x-89) 2 , for 89<x<89. (18)
and its integral of continuous class
Cr- I over (tl,tn). Because of (13), the The survival function is estimated by

estimator (17) is sharper than Schoenberg's
shape-preserving or variation diminishing in F(x) = Ih(y)dy,
approximation (Schoenberg 1967). It can InF(1)-
also be seen as a modification as well as
generalization of Breslow's (1974) estimator j-1
for cohort analysis which employs constant where 12 h(y)dy= Z H
splines over random death times. If h(x) 1 i=1
is constant, then, in view of equation (6),
equation (17) reduces to h(x)=and xj,jl], and H(x) = .h (y)dy

hp2d -i

so that the estimation is exact following is given by -the arguments immediately below equation 3 2
(10). HI (x) = h(i)[(x-2) +l]/3+Ml(3_x)(x_1) /2

For quadratic splines with single year +3M1 (X-l)3 /6,
knot spacing and n=90, we have r=3,ti=i,

i=-I,0,l,...,90,91 and 92. The area 3 2)3 x]/6+36under the B.(x) courve for each single H2 (x) = 1M1 [(x-3) +1]/6+3M1(2-x) (2x 
2 llx. l l)/6

year age interval is: 1,2 (2)=t89,0(90) +3M2(x2)3/6,

=i/3, 0,1 (2)=88,1(90)=1/2, and
Oi,0(i+I)= i,2(i+3)=i/6, 1+I(t+2), W M

=2/3,i=1 ... ,87. The estimators 3 3M'.-2,2(x)+3Mj-l'j-I,1 (x)
of the a i's are obtained from the defini- +(x r.
tion of tIand di and equation (16) to be: 3M

Al), 0= I M  ai 3 Mi l i = l  97, H 8 8 (x) 3M8 6 [1-(89-x) ]/6
a8 8= M8 9, a 89=h(90). To obtain explicit 3
formulas for h(x), we substitute into (17) +3M87
the above estimates for a.'s and the1 +iM89(x 88) 3/6 ,
expressions for B i(x) for single year knot 1M89 x%

spacing derived from Table 1. Integration
of h(x) then leads to estimatesof the H89(x) = M87[1-(90-x) 1/6
survival function and density function.

Hence, the hazard function is estimated by M 89[ x-89-(x-89) 3/3- (x-90) 3+11/61
2 2 13 (20h(x) = h(l)(2-x) -IM1 (3x -10x+7)/2 

(20)
h~x) = h(1) h(90)(x-89) 3 13. (0

+3M (2-x) 2/2, for l<x<2; To compu'te with the above formulas, three
values h(l), h(90) and F() are still

h(x)= 1M1(3-x)
2/2-3 M1 (2x

2 -10x+11)/2 needed. The values of h(l) and f(l) are1 11obtained from the method described in

2, Hsieh (1985) and h(90) is obtained by+3M2 (x-2) /2, for 2<x<3; fitting Gompertz curve through the last
three age-specific death rates. Estimate

2 of the death density function f(x) ish(x) = 3M. 2 (j+
l -x) /2 obtained by substituting (18) and (19) %

into the following formula

S-3M. [2x - 2 (2j+l)x+2(j-1)(j+2)3/2 f(x) = h(x)F(x). (21)

+3M.(x-j) 2/2, j<x<j+l, j=3,...,87, Because of age heapings and reporting and
3 other errors, population data are normally

published in five-year age groupings. ToA(89-x) /2+3M87 [l-( x-88)2+(89-x) 2) /2] compute the death rates IMI,3Mi,i=2,...,87,
h +1 M6 89 x) /2 +M,7[for -88<M

89 , we interpolate the five-year cumulated+ I M89 (x-88) 2 /2, for 88<x<_89;3 IM-i
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A LEISURELY LOOK AT THE MODELS OF UNCERTAINTY IN EXPERT SYSTEMS

Syni-An Hwang, SUNY Albany

§1. Introduction Another type of incoherency, the
What is an Expert System? Broadly difference between the uncertainty of

speaking, we say that an Expert System user and expert could exist. When
is a computer program that uses implementing an Expert System, the user
explicitly represented knowledge and makes relevant observations and provides
computational inference procedures to Pu(EIO) - the user's probability that E
solve problems normally thought to
require human expertise. More precisely, is true given . Previous approaches
its purpose is to obtain the knowledge make t pliO) anuptin, it 0,
of experts in a particular domain, Pu(131) = P(EIO). In practice, it is
represent it in an expandable knowledge less likely that the user and the expert
base, and transfer it to users for will be coherent with each other.
solving other problems in the same There are other problems in applying
problem domain. a Bayesian probabilistic model to the

Currently, there is a great deal of Expert System, for example, the indepen-
interest in introducing uncertainty into dence assumptions needed for reducing the
an Expert System. Given a simple rule: computing complexity. Suppose we have n
If E, then H, the expert actually rules which say - If Ei , then H with
expressed the rule as: If E, then H
with p. The user actually provides the probability Pi' i1l'''n'; we can
information as: E is true with PE" P construct a combined rule which says - If

is a measure of strength, with higher E, then H with probability P, where

strength indicating greater power the E = EI nE2fn ...lEn and P = P(HJE).
evidence to confirm the hypothesis. Theoretically, we can compute P by Bayes'

In this paper, we will study some of rule. However, in practice the likeli-
the best-known approaches to model the hood ratio LR(E1 nE2 n... nEnIH) needed in
uncertainty in an Expert System. There Bayes' rule is not provided in the Expert
have been papers devoted to similar Syem. r e, we need the
topics, Bonissone (1982), and Black and System. Therefore, we need the
Eddy (1985). One of the aims of this k
paper is to discuss the points raised by likelihood ratios for E., k =
previous papers. i=l 
§2. Bayesian Probabilistic Models given H. This makes the model extensive-

In the Bayesian probability model, it ly complicated and hence inapplicable.
is assumed that probability measures the To simplify the computation, two
degree of belief. Let P(H) denote the conditional independence assumptions have
prior belief in H. When new evidence E been made,
is obtained, the posterior, P(HIE), P(EinE II) = P(EiiH ) x P(EjIH )
denotes revised belief in H upon learn- 2i.3) j
ing that E is true. Bayes' rule can be
expressed in odds-likelihood form as: P(EifEjIH) = P(Eil9) - P(EjIT) (2.4)

O(HIE) = LR(EIH) x O(H) (2.1) Under these assumptions, we can compute

where O(H),O(HIE), and LR(EIH) are the posterior odds as

prior odds, posterior odds, and likeli- n
hood ratio. To implement such a rule, O(HIF1 IE 2n...n) = ( T1 LR(EiIH)) xO(H) (2.5)
the expert provides the likelihood ratio i=l %
and the prior odds. Then by eq. (2.1),
the system updates it to the posterior The assumptions in eq. (2.3) and (2.4)
odds. had been given in the Expert System

There exist potential problems of PROSPECTOR and were extensively
incoherency in this approach. For criticized. One of the most notable
example, in theory, LR(EIH) and LR(EIH) papers is given by Pednault, Zucker and
satisfy Muresan (1981). Using a result from

Hussian (1972), they claim that under
LR(EI (1) = (I-U(E)IH)xP)(EI (2.2) the above assumptions, no updating can

take place. This result has been
,n practice, the elicited probabilities, blunted by Glymour (1985), who points
provided by the expert often violate out an algebraic error in Hussian's
e. (2.2). Biases do exist even among derivation and hence invalidates the

well-trained experts (Kahneman, Slovic result of Pednault, et al.
and Tversky (1982), and Shafer and Overall, the researchers of Expert
Tversky (1984)). System seem to understand that we need

359

% .

0p



some independency assumptions to reduce the first combining function (incremental-
the computing load. They also agree ly acquired evidence) implicitly assumes
that the independence assumptions are the independence of the evidence, a
unrealistic. To reconcile these questionable assumption as we stated in
conflicts, their attitude is to try to section 2. The second and third combining
make the assumption of independence as functions are the controversial minimum
realistic as possible (through the and maximum rules borrowed from the fuzzy
design of the Expert System). Hence, set theory. To apply the fourth combining
we can at least approximate the ideal function (strength of evidence) we have
Bayesian probabilistic model, to assume the coherency between the user

There has been a different approach and the expert, a property that is
to problem-solving systems generated doubtful in a real world.
mainly by statisticians. The most in conclusion, we can view the
notable program is Kadane, et al. certainty factors model as a Bayesian
(1980). The main difference between model with some ad hoc combining of rules.
this approach and the rule-based Expert From a theoretical viewpoint, it does not
System is in the assumption of the under- appear useful, but it does have value from
lying statistical model and the a practical point of view. Perhaps this
existence of a prior to represent the could be best expressed by quoting
knowledge of the expert. Shortliffe and Buchanan: "The justifica-

Philosophically, there are different tion of our approach therefore rests not
attitudes toward the statistically- with a claim of improving on Bayes'
based and rule-based Expert System. theorem but rather with the development
That is, does one want an increasingly of a mechanism whereby judgmental
large (due to addition of the new rule) knowledge can be efficiently represented
and essentially deterministic rule- and utilized for the modeling of medical
based Expert System, or a concise and decision making,..."
probabilistic statistically-based §4. Belief Function
Expert System? A formal comparison Shafer's belief function originates
between the statistically-based and rule- from Dempster's upper and lower
based Expert System should be attempted, probabilities (e.g. Dempster (1967)).

In summary, the Bayesian probabilis- Assuming there is a set e (frame of
tic model has a concrete theoretical discrement) of n mutually exclusive and
foundation. However, such practical exhaustive propositions, AIA 2,.. ,An .
problems as computational burdens and Shafer assigns probability mass on the
incoherent probability assessment make Shaer s pr ilit mas t
it less applicable in Expert System. power set of e according to a basic
§3. Certainty Factors probability function m(.), m: 2

The certainty factors approach 10,1]. A subset A of a frame 6 is called
originates from Carnap's confirma- a focal element if m(A) >0. The belief
tion theory (Carnap (1950)). function Bel: 2 ,
Instead of saying, E implies H or E f n B, 2 -> [0.1] is defined,
refutes H, the probability expresses on A, a subset of 8, as the sum of m(B)th ereo mlcto fHover all subsets B of A. Note there is-the degree of implication of H a 1 1 r l t o e w e e ( ) a d m -
afforded by E. According to Carnap's given by
concept, "probability is much like
personal probability, except that here \A-B \
it is argued or postulated that there is BcA
one and only one opinion justified by
any body of evidence, so that proba- where \A-B\ is the cardinality of A-B.
bility is an objective logical The plausibility, P*(A), is defined as
relationship between an event A and the 1 - Bel(A). By definition,
evidence B" (Savage (1961)). BeI(A) 5 P*(A). When BeI(A) = P*(A) for

The design of the MYCIN system
(Shortliffe and Buchanan (1975)) is an all subsets in 2 , the belief function
implementation of Carnap's concept, reduces to the conventional probability.
They define a measure of belief (MB), This occurs only if m(.) distributed all
and a measure of disbelief (MD) as the the mass on the singletons A,...lAn-
percentage of increases (decreases) on Dempster's rule of combination has
P(H) to P(HIE) relative to what is been used to compute the combining belief
possible. By definition, we can prove functions. Let mi, m 2 be two basic
that MD(H,E) is equal to MB(H,E). The
overall certainty factor (CF) is probability assignments over the same
defined as frame 0, with focal elements Al,...,A I

CF(H,E) = MB(H,E) - MD(H,E) (3.1) and B.,... Bj , respectively. If the
normalized factor K =

Four combining functions have been 1 - I ml(A i) m2 (B.) >0, then the
used in the MYCIN and cause a lot of AinBj=1

criticism. Adams (1976) has shown that
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Dempster's rule defines their orthogonal set. Let X be the space of points (or
sum as objects) of interest, say, X = [x). A

fuzzy set A in X is characterized by a
m1 2 (A) = r ml(Ail M2(Bj))/K (4.2) membership function f A(.), with f Ax)

Ai Bj=A representing the grade of membership of x
in A. The basic assumptions given by

for all nonempty subsets A of 8, Zadeh can be expressed as follows:
m12 (%) = 0.

To implement belief function in the (i) 0!5ffA(x)! (5.1)
rule-based Expert System, the user
provides his belief on the evidence, and (ii) f A(x) = eMA), fB(x)} (5.2)
the expert provides his belief on each
rule in the system. Dempster's rule of
combination is then used to combine them. (iii) fAIB(x) =min{fA(X), fB(x)l (5.3)

There are several advantages in using
the belief function in the Expert System. (iv) fX(x) = 1 - fA(x) (5.4)
1. Ignorance: When an expert(user) has
complete confidence he can express his
opinion as a probability. But when he is A, B are subsets of X; A is the complement
unable to commit all of his belief, he can of A.
choose to ignore the noncommitable part. The assumption in eq. (5.1) is not
2. Ability to handle conflicting evidence: necessary, but it is convenient. When A
Except for the case of totally contra- is completely specified, fA(x) takes only

diction, Dempster's rule of combination the value of 1 or 0, respectively,
provides a way to combine expert's and according to whether x does or does not
user's belief even when their beliefs are belong to A. Thus f Ax) reduces to the
incoherent. ordinary indicator function of a set A.

However, there are questions raised The second and third assumptions are
about the implementation of belief the minimum and maximum rules for
function.cojntoandijnto.Tels
1. Computational problem: The evalua- conjunction and disjunction. The last
tion of the degree of belief is time- assumption is the complement rule. The
exponential in the cardinality of the example below, given by Black and Eddy
propositions set, a problem for which (1985), shows the shortcomings of the
real-time calculations in real-time above rules. Applying A and A to rules
situations are not possible on today's (5.2), (5.3) and (5.4) we have
computers. f -(x) = max{fAx) 1 - f(x)} (5.5)
2. Normalization process: The normali- MOA A'' A'
zation process used in Dempster's rule can
lead to incorrect results. An and
instructive example has been given by
Zadeh (1984) to show that the f (5.6)
normalization process can produce AAA(x) mir.fA(x), 1 fA(x))
counter-intuitive results when dealing
with conflicting evidence. The left hand sides of eq. (5.5) and (5.6)

In summary, in theory, the belief are definitely equal to 1 and 0,
function models has a solid foundation respectively, but the right hand side of
but lacks empirical support. In the equations are not.
practice, overloaded computing time makes There are other critiques of the fuzzy
the belief function model almost set theory. French (1984) argued against
inapplicable at present. the fuzzy set theory from the philosophical
§5. Possibility Theory point of view. Two key points raised by

Possibility theory originates from French are: (i) Why should we believe
Zadeh's fuzzy set theory. The formal (or assume) that the fuzziness in our
definition and basic operator of fuzzy perception is well (or precisely) modeled
set theory were given in Zadeh's 1965 by the abstract concept of a fuzzy model?
paper. Zadeh argued that the probability (ii) Since emphasizing imprecision does
theory may be appropriate for problems not seem to help us to understand the model
involving the measure of information. It better, why bother to bring in another
is inappropriate, however, for problems level of reasoning about fuzziness?
with the meaning of information. To The other question often raised is,
overcome such problems caused by fuzziness "How can the grade of membership be
(vagueness) of definition, Zadeh proposed determined?". In all, the fuzzy set theory
the fuzzy set theory, which provides a does not seem to contain a rational or an
formalism for treating such vagueness. A empirical method for determining the value
new terminology has been introduced by of the membership function.
Zadeh named "membership function", which So far, we have introduced the founda-

can be interpreted as a measure of tions of fuzzy set theory and mentioned
fuzziness for inclusion of an object in a various critiques of it, but it must be
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said that we might expect too much from a REFERENCES
field with only twenty years of history. Adams, J.B. (1976), "A Probability Model
There has been much exciting research of Medical Reasoning and the MYCIN
surrounding the field of fuzzy set theory. Model," Mathematical Biosciences, 32,
We will briefly mention some of it below. 177-186.

A tremendous amount of effort has been Black, P.K., and Eddy, W.F. (1985), "Models
put forth to combine the probability (or of Inexact Reasoning", Technical Report
belief function) and fuzzy set theory. #351, Dept. of Stat., Carnegie-Mellon U.
Zadeh points out that the concepts of Bonissone, P.P. (1979), "A Pattern
possibility and necessity are the same as Recognition Approach to the Problem of
the concepts of support and plausibility Linguistic Approximation in System
in Shafer's belief function. Actually, Analysis", Proceedings of the IEEE Inter-
if we discard the normalized factor in national Conference on Cybernetics and
the Dempster rule of combination, (as Society, pp. 793-798.
suggested by Zadeh), the theory of belief Bonissone, P.P. (1983), "Coping With
function is exactly the same as the theory Uncertainty in Expert Systems: A Compara-
of possibility (Zadeh (1984)). tive Study", Proceedings of the American

Another area of interest is the use of Control Conference.
fuzzy set theory in linguistic approxima- Carnap, R. (1950), Logical Foundations of
tion to the true qualification. Zadeh Probability, Chicago, IL: University of
suggests a fuzzy-set theoretic interpreta- Chicago Press.
tion of linguistic variables. That is to Dempster, A.P. (1967), "Upper and Lower
say, if the assertion of a fact is not Probabilities Induced By a Multivalued
known with precision, then it may be Mapping", Annals of Mathematical Statistics,
characterized linguistically as, say, true, 38, 325-339.
not true, very true, etc., with each of French, S. (1984), "Fuzzy Decision Analysis:
the linguistic expressions representing a Some Criticisms", in Fuzzy Sets and
fuzzy subset of the unit interval. Zadeh Decision Analysis, TIMS Studies in the
treated such fuzzy reasoning of linguistics Management Sciences, eds. H.J. Zimmerman,
as an approximate reasoning. L.A. Zadeh and B.R. Gaines, 29-44.

It has been argued that it is more Glymour, C. (1985), "Independence Assump-
appropriate to present the conclusions in tions and Bayesian Updating", Artificial
natural language form than in numerical Intelligence 25, 95-99.
form (e.g. Bonissone (1979)). Also, it Hussian, A. (1972), "On the Correctness of
has been argued that the people prefer to Some Sequential Classification Schemes in
express their beliefs linguistically, Pattern Recognition", IEEE Trans. Comput.
rather than numerically. If the above 21, 318-320.
arguments are true, then it is very Hwang, S.A. (1986), "Models of Uncertainty
natural to implement linguistic approxima- in Expert Systems: A Review", Technical
tion for fuzzy reasoning in the Expert Report, Dept. of Math. & Stat., SUNY Albany.
System. However, there appears to be Kadane, J.B., Dickey, J.M., Winkler, R.L.,
very little psychological or theoretical Smith, W.S., and Peters, S.C. (1980),
evidence to support the arguments made "Interactive Elicitation of Opinion for a
above. Normal Linear Model", JASA, 75, 845-854.

In summary, fuzzy set theory has a Kahneman, D., Slovic, P., and Tversky, A.
sound theoretical foundation, but it lacks (eds.) (1982), Judgment Under Uncertainty:
normative justification as a belief function. Heuristics and Biases, New York: Cambridge
It appears, at the moment, the inclusion University Press.
of fuzzy logic in models of inexact Pednault, E.P.D., Zucker, S.W., and
reasoning adds an unnecessary extra Muresan, L.V. (1981), "On the Independence
complication. Assumption Underlying Subjective Bayesian
§6. Conclusion Updating", Artificial Intelligence, 16,

As we can see none of the above models 213-222.
seems to be better than the other in all Shafer, G. (1976), A Mathemati -I Theory of
applications. Moreover, the previous Evidence, Princeton, NJ: Princeton Univer-
sections suggest that there is more than sity Press.
one type of uncertainty. This result Shafer, G., and Tversky, A. (1984), "Weighing
suggests that we should use the different Evidence: The Design and Comparison of Proba-
types of uncertainty in different bility Though Experiments", unpublished
situations and hence different models in manuscript.
different types of problems. Further Shortliffe, E.H., and Buchanan, B.G. (1975),
study of the feasibility of the multi- "A Model of Inexact Reasoning in Medicine",
model approach to uncertainty in the Mathematical Biosciences, 23, 351-379.
expert system is needed. Other interest- Zadeh, L.A. (1965), "Fuzzy Sets", Informa-
ing research topics can be found in tion and Control, 8, 338-353.
Hwang (1986). Zadeh, L.A. (1984), "Review of Shafer's A

Mathematical Theory of Evidence",
Artificial Intelligence Magazine, 5, 81-83.
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BOOTSTRAPPING KOLMOGOROV-SMIRNOV STATISTICS, II

Alan Julian Izenman, Temple University

Summary. This is the second part of an erratically.
empirical investigation into bootstrapping the In the first part of this empirical
two-sample Kolmogorov-Smirnov statistic D(m,n). investigation (see Izenman 1985), the bootstrap
The first part (ASA Proc. of the Statistical procedure due to Efron (1979, 1982) was applied to
Computing Section, 97-101, 1985) dealt with evaluate the standard error of D(m,n) under the
estimating the standard error of D(m,n) by boot- null hypothesis. Two possible bootstrap sampling
strap methods and showed that the bootstrap procedures were compared for the two-sample
performs very well, especially when compared with problem:
standard asymptotic approximations. In this
paper, we carry out an empirical study of (a) "separate" bootstrapping, in which a
percentile estimation for the Kolmogorov-Smirnov bootstrap sample was drawn (sampling with replace-
statistic using the bootstrap procedure. As ment) from the first sample, and then an independ-
noted for other situations in which percentiles ent bootstrap sample was drawn from the second
are estimated by the bootstrap, the number of sample;
bootstrap replications has to be large to obtain
reasonable estimates, and even then those (b) "combined" bootstrapping, in which the
estimates are slightly on the low side. We also two original samples were pooled to form a
consider a logarithmic transformation of D(m,n), combined sample of size m+n, and then two boot-
which has been suggested in the literature as strap samples were drawn (with replacement) from
having an approximately normal distribution for the combined sample.
large m and n.

In both cases, two bootstrap samples, one of size
1. Introduction. The usual nonparametric m and the other of size n, were generated and the

two-sample problem can be stated in the following statistic D*(m,n) was computed, where
manner. Given two independent random samples, D*(mn) = SUPxR*(X) - (x)I,

X1,X 2 ... Xm  F, Y1,Y2 ,. .Yn G,

F and G being the respective sample distributionm n
where F and G are both continuous, but unknown, functions of the two bootstrap samples. This
distribution functions, and m < n, we are procedure was repeated a large number B times,
interested in comparing F with G to see whether yielding B bootstrap replications
they are in fact the same. The statistic that we
consider here is the classical two-sample D*I(mn),D*2 (m,n),....D*B(m,n).
Kolmogorov-Smirnov distance,

These B values could then be used to estimateD(m,n) su SUxRF()- GnX ,.mRn1 su () - n(x) functionals of F and G. It was shown that the

standard deviation of these B values, namely,
where Fm and Gn are the respective sample distri- -IB
bution functions obtained by placing mass 1/m on {(B-1)-fi(D*b - D* )
each X (i=l,2,...,m) and mass I/n on each Y.
(j=1,2!....n). Large values of D(m,n) suggeit where
evidence against -I B

D*= B Ebf I D b

H Fb=1 W~bHO F = C,

is an excellent estimator of the standard error of
while small values of D(m,n) favor H0 over the D(m,n) under the null hypothesis when sampling is
alternative, that F 0 G. Because of the global carried out using the "combined" bootstrap
nature of the alternative, the Kolmogorov-Smirnov procedure. The "separate" bootstrap procedure is
statistic has been criticised as not having high uniformly poorer for estimating those same
sensitivity to detect specific types of departure standard errors. Simulations were carried out in
between the two distribution functions. However, each case by sampling with replacement from the
the statistic is used sufficiently to warrant an uniform distribution on (0,11 according to the
investigation as presented here. values of m and n, carrying out the appropriate

The distribution theory associated with the bootstrap recipe described above, and repeating
two-sample Kolmogorov-Smirnov statistic D(m,n) the procedure T (- # trials) times. The resulting
has been well documented. See Izenman (1985) for standard deviations were then averaged over all T
a summary, where it was pointed out that most of trials and compared with the exact standard error
the results are complicated algebraically and are and an asymptotic approximation. The simulation
unsuitable for computation. All too often authors parameters chosen were:
resort to using asymptotic approximations (for
large m and n) to moments, critical values, or n = 25,50, m - 5(5)n, B = 100, T - 100.
percentage points when, in fact, the sample sizes
are small. Even then, the asymptotic distribution As a footnote to part one of this investigation,
of D(m,n) is not normal, but involves an infinite we have recomputed the simulations for n = 25 and
summation whose value is approached most m 5(5)25 using B 1000 and T = 20. The results
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are given in Table 1 for the "combined" bootstrap the bootstrap percentile method is still quite low

procedure only. It appears that accuracy in in estimating true percentiles of the distribution

estimating standard errors of D(m,n) is improved of D(m,n). Even allowing for variability over the

by increasing B, the number of bootstrap T trials, percentiles were not estimated anywhere
replications, and not the number of trials T. In as well as were standard errors. The "bias-

fact, variability of the bootstrap standard corrected percentile method" (Efron 1982) did not

deviation has sharply decreased by going from appear to improve the estimates significantly and

B = 100, T 1 100 to B = 1000, T - 20. It is, the results are not given here.

therefore, clear that the "combined" bootstrap
can be used with a high degree of confidence to 3. Transformation of D(m,n). The normal distri-
estimate the standard error of D(m,n) under the bution is not the standard large-sample
null hypothesis. approximation to D(m,n). However, Kim (1969) has

In Section 2, we consider the problem of suggested on the basis of empirical simulation

estimating percentiles of the distribution of studies that, for large m and n,

D(m,n) under the null hypothesis using the
"combined" bootstrap procedure. Then, in Section U(m,n) = loge fD(m,n)/E(,F FD(m~n)}

3, we consider a suggested logarithmic transform-
ation of D(m,n). Some further directions of has approximately a normal distribution with mean
research in this area are discussed in Section 4 -0.0450 and variance 0.0898. The drawback to
with particular reference to situations involving using this transformation was that "one has to
censored data. have the exact mean of D(m,n), an awesome task

... for n > 50," according to Kim. If we boot-
2. Percentile estimation. Estimating strap D(m,n) and replace the exact mean by D(m,n)

percentiles of a distribution is a much harder itself, then we have B bootstrapped versions of
problem than estimating standard errors. This is U(m,n), namely,
especially true when using the bootstrap. The
bootstrap method assumes implicitly that the true U*I(m,n),U*2 (mn),...,U* B(m,n).
distribution is supported on the observed data
points. Hence, the number of bootstrap The assertion regarding the approximate normality
replications, B, has to be larger to obtain of U(m,n) can be checked via a normal probability
reasonable accuracy in the tails of the distri- plot of the U* (m,n) values.
bution. b

As an example, we used the stamp thicknessThe "percentile method" (Efron 1979, 1982) data from Izenman and Sommer (1985); see also

is a straightforward procedure for estimating Example 2 in Izenman (1985). The data consist

percentiles (and confidence intervals) from the of two samples of measurements, one on m i 24

results of bootstrap sampling by finding the stamps watermarked "Papel Sellado" and the other
appropriate percentiles of the bootstrap onn=29uwtemre tmsbtIespr

ditiuin obeseiilton n - 289 unwatermarked stamps, both sets part
distribution. To be specific, let of the 1872 Hidalgo Issue of Mexico. The

"combined" bootstrap procedure was applied to the
rb{ n two samples, and the B - 1000 values of U*(m,n)

be the cumulative distribution function of the were obtained. The mean and variance of bthose
beottercuulat distribution fnctin Fof te <1000 values were -0.054 and 0.110 respectively,
bootstrap distribution of D*(m,n). For 0 < a , and the normal probability plot exhibited a clear
the (l-a)xl00-th percentile of the distributionliercnguao.
of D(m,n) is estimated by linear configuration.

Simulation results, not shown here, showed

PP(-0(I-a)) = SFI(1-a). this transformation to be reasonable.

As in the previous Section, two bootstrap simul- 4. Censored data. So far, discussion in
ations were compared with n - 25 and m fi 5(5)25: this paper, and in Izenman (1985), has been

confined to the complete sample situation.
PM1: B = 100, T f 100 Recently, a number of papers have appeared in the
PM2: B - 1000, T 20. literature in which the Kolmogorov-Smirnov

statistic is used to compare two survival curves

For the purposes of simulation, CDF(t) was (or, distribution functions) for right-censored
approximated by #{D* (m,n) to/B for each tral, data. We refer the reader to Barr and Davidson
and averaged over al T tria/ls. A plus-or-minus (1973), Koziol and Byar (1975), Dufour and Maag
figure was also calculated using the standard (1978), Fleming etal (1980), Breslow et al (1984),

figue ws aso alclate usng he tanardand Sandford (1985).

deviation of a specific percentile estimate over There is some controversy regarding the

the T trials. The results are given in Table 2. s Tili o e controvrsy taiti
"True" values were obtained by linearly inter- suitability of the Kolmegorov-Smirnov statistic

"Tru" vlue wer obaind b linarl iner-for comparing censored survival data. Certain
polating in the tables of Kim and Jennrich (1970). authors (such as Fleming et al 1980) prefer the

The bootstrap estimates of percentage points authosmino staistic ov er the

of D(m,n) were found to be slightly on the low Kolmogorov-Smirnov statistic over the logrank

side, as would be expected. In the simulations, and Gehan-Wilcoxon statistics in such situations.

we only considered 90, 95, and 99 percent points, As Fleming et al remark, "it has been our frequent

and these were estimated between three and 14% experience that substantial differences between

too low. More centrally located percentiles, two survival distributions may be apparent at one

such as the 68th percentile, should be estimated point in time, but fail to exist elsewhere. For

better; however, such lower percentiles do not example, certain treatments for coronary heart

appear in any published set of tables for ready disease yield remarkably improved long-term

comparisons. Table 2 shows that even with B-1000, survival, even though survival immediately
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following onset of treatment may be worse than Fleming, T.R., O'Fallon, J.R., and O'Brien, P.C.
that obtained with less aggressive alternative (1980), "Modified Kolmogorov-Smirnov Test
treatments." For detecting these types of Procedures with Applications to Arbitrarily
'crossed-hazards departures' from the null Right-Censored Data," Biometrics, 36, 607-625.
hypothesis, a modified version of the Kolmogorov-
Smirnov statistic is preferred to the logrank or IMSL, Subroutines GGUD and NKS2.
Gehan-Wilcoxon statistics, which appear to be
insensitive to such departures. An alternative Izenman, A.J. (1985), "Bootstrapping Kolmogorov-
view is given by Breslow et al (1984), who Smirnov Statistics," ASA Proceedings of the
develop a complementary criterion to be used Statistical Computing Section, 97-101.
in conjunction with the logrank procedure.

Comparisons between these different methods Izenman, A.J. and Sommer, C.J. (1985), "Philatelic
of studying differences between two survival Mixtures and Multimodal Densities," To appear
curves have involved the use of asymptotic theory in the Journal of the American Statistical
and, for small and medium sized samples, Monte Association.
Carlo simulations. Certain of the asymptotic
results lead to normal approximations of the Kim, P.J. (1969), "On the Exact and Approximate
distributions of the statistics considered. The Sampling Distribution of the Two-Sample
references listed above also include real data Kolmogorov-Smirnov Criterion D , m < n," The
studies for purposes of illustration of the Journal of the American Statiscal Associatlon,
statistics. 64, 1625-1637.

It seems, therefore, that bootstrapping
Kolmogorov-Smirnov statistics (or, possible Kim, P.J. and Jennrich, R.I. (1970), "Tables of
modifications) can also be applied in the the Upper a Points of the Exact Sampling Dist-
presence of censored data. In fact, Efron (1981) ribution of the Two Sample Kolmogorov-Smirnov
has investigated the use of the bootstrap for Criterion, D , m < n," In Biometrika Tables for
the Kaplan-Meier product-limit estimated survival Statisticians, Vol. II. Cambridge University
curve. The bootstrap was used to assess the Press: London.
standard error of the Kaplan-Meier curve,
functions (such as location estimates) of the Koziol, J.A. and Byar, D.P. (1975), "Percentage
Kaplan-Meier curve, and associated confidence Points of the Asymptotic Distributions of One
intervals. Similar questions can be asked of and Two Sample K-S Statistics for Truncated or
the Kolmogorov-Smirnov and related statistics, Censored Data," Technometrics, 17, 507-510.
based on bootstrap considerations. These
questions will be addressed elsewhere. Sandford, M.D. (1985), "Nonparametric One-Sided

Confidence Intervals for an Unknown Distribution
References. Function Using Censored Data," Technometrics,
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"COMBINED" BOOTSTRAP SEs

B = 100, T = 100 B = 1000, T = 20

n m true SE ASE Exp. StDev. Exp. StDev.

25 5 0.121 0.128 0.122 0.010 0.121 0.003
10 0.095 0.098 0.096 0.007 0.096 0.002
15 0.083 0.085 0.084 0.006 0.084 0.002
20 0.077 0.078 0.078 0.007 0.077 0.002
25 0.073 0.074 0.074 0.006 0.074 0.002

Table 1. Comparison of true standard error, asymptotic standard
error (ASE) using Smirnov approximation, and two bootstrap estimates
of standard error using the "combined" procedure. Computations were
carried out on a CDC Cyber 170/750 mainframe computer using Fortran
programs and IMSL calls to subroutines GGUD and NKS2.

n m Method PP90 PP95 PP99

25 5 "true" PP 0.572 0.631 0.748
PM1 0.532 ± 0.031 0.583 ± 0.038 0.676 ± 0.057
PM2 0.528 ± 0.016 0.596 ± 0.018 0.700 ± 0.024

10 "true" PP 0.439 0.487 0.580

PMI 0.407 ± 0.017 0.453 ± 0.024 0.525 ± 0.041
PM2 0.415 ± 0.009 0.464 ± 0.011 0.562 ± 0.016

15 "true" PP 0.384 0.426 0.510

PM1 0.362 ± 0.020 0.403 ± 0.026 0.467 ± 0.037
PM2. 0.367 ± 0.010 0.407 ± 0.010 0.487 ± 0.012

20 "true" PP 0.353 0.392 0.470

PMI 0.335 ± 0.018 0.369 ± 0.021 0.429 ± 0.037
PM2 0.337 ± 0.007 0.378 ± 0.006 0.455 ± 0.009

25 "true" PP 0.349 0.386 0.461

PM1 0.318 ± 0.020 0.350 ± 0.024 0.406 ± 0.036
PM2 0.320 ± 0.000 0.358 ± 0.009 0.430 ± 0.022

Table 2. Comparison of true 90, 95, and 99 percent points (PP) of the
Kolmogorov-Smirnov statistic with bootstrap estimates using the percentile
method (PM). The "true" values were linearly interpolated from Kim and
Jennrich (1970) tables. The first percentile method (PMI) used B = 100 and
T = 100; the second percentile method (PM2) used B = 1000 and T = 20. Entries
shown are mean ± stdev over the T trials. Computations were carried out as for
Table 1.
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CALCULATING IMPROVED BOUNDS AND APPROXIMATIONS FOR MULTIPLE COMPARISON

James R. Kenyon, University of Connecticut

When applying multiple comparison pro- 6) Sidak bound
cedures to a particular problem, the t t
simultaneous confidence intervals usually P(U Ai) < 1 - i P(Ai)
are conservative. This occurs because i=l i=l
procedures either use bounds in the
coverage probability statement, or pro- 7) Glaz and Johnson bounds and approxi-
ject a multivariate region to a multi- nations:
variate rectangle (i.e., expand a t t
confidence region to a confidence rec- a) P(U Ai) 1 - i P(Ak)
tangle) (Miller 1981). Even conditional i t
confidence intervals may not have the b) P(V Ai) < 1 - P(A I ) 7t P(AkIAk-1

)

coverage claimed (Meeks and D'Agostino i=l k=2
1983). t

Recently, there has been interest in c) P(U Ai) < 1 - P(A 1 nA 2 )
obtaining improvements in bounds for i=l
multivariate probabilities (Games 1977, X P(A IA lnA
Glaz and Johnson 1984, Miller 1981, and k=3 k k- k - 2 )

Worsley 1982). It has been shown that t
the "usual," e.g., Bonferroni type d) P(u Ai) < 1 - P(A I nA 2fA 3 )
bounds, often are not very useful, parti- i2
cularly when there are many events, Bi, t

and the P(Bi) are not "small," or when X 1 P(Ak=4 Ak1.l Ak- 2tnAk- 3

there is a strong dependence structure in e) t < 4
the multivariate distribution (Glaz and P(uAi) = 1 - P(AlA 2 A 3 A 4 )
Johnson 1984, Miller 1981, Schwager 1984, l
and Worsley 1982). X t P(A IA lnA nA nA

Let us consider three problems for k=5 k k- k-2 k-3 k-4 )

simultaneous confidence intervals and
develop methods to calculate the coverage Note Glaz and Johnson have only obtained
probability, or improved bounds for this their third bound, c), for special cases.
probability. To obtain the approximation Calculations for d) and e) have not been
for the coverage probability, we will be obtained previously. Additionally, the
using several bounds previously developed conditional approximations b) - e) of
but not evaluated for these problems, Glaz and Johnson are not always guaran-
including bounds using a conditional teed to be bounds. A sufficient, but not
probability approach developed by Glaz necessary, condition for these approxi-
and Johnson (1984). mations to be bounds is that the multi-

These bounds are (where Ai is any variate distribution be multivariate
event): totally positive of order 2 (MTP2). For

1) 1st Bonferroni bound the multivariate normal, MTP2 is equiva-
t t lent to all the partial correlations

P(k Ai) E P(A i )  being > 0. Note that in the calculation
i=l i=l of the bounds, one does not have a t-

2) 2nd Bonferroni bound dimensional multivariate normal or multi-
t t t variate t, but 2-dimensions in most cases

P(u Ai) > Z P(Ai) - E P(Ai OAk) and 5-dimension for the worst case.
i=1 i.l i<k First, consider a simple control pro-

3) 1st Worsley bound blem for a one-way analysis of variance

t t t-1 with a balanced design. Let Yik be dis-

P(U Ai) < Z P(A i) - E P(AIfiAi+ I ) tributed as independent normal random
i=l -il i=l variables with mean P, and variance a2

4) 2nd Worsley bound for I = 0,1,2,...,t and k = 1,2,...,n.
P(u Ai) < E P(Ai) - P(A A k ) Ok' k 1,2,...,n, is the control group
P(() A <EI E Ak) and the remaining t groups, each of ni=l i-l i<k observations, are the treatment groups.

5) Galambos bound Thus, the 7i's are distributed as
P 2 () 2 independent normals with mean p, and

P(u A I)> -1 i: P(Ai _K( k~l) r(AinAh) noral
i=l i ii<h variance 0

2/n for i = 0,1,2,...,t. In

for k > 2 and optimal this problem, one is usually interested b
t t in comparing the t treatments to the

k [2 E P(AifOAh)/ P(Ai)] + 2 control. The resulting contrasts are

i<h h i=1 I0 - YiI/SV2T/n < c for I = 1,2,...,t,
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where S2 is the usual pooled estimate of Where n is the number of points used
2 W

= 0_jri/o
2  in the Gauss-Laguerre approximation, nz

- a = P( < c; i = 1,2,...,t). is the number of points used in the Gauss-
S2/-n Hermite approximation, a = (zk- c 2-wi/v)

Without loss of generality, we can assume x V'2/n, b = (zk + c/2w-/v) x ,2/n and
that 02 = 1 and v. = 0 for i = 0,1,2, D 2(x) is as above... ,t. J,a2

Since the variables used for condition-
1 -a = f P(y 0 - Y < cS'2/n ; ing have infinite limits of integration

0 and the weight function appears in the
i = 1,2,...,tIS = s) fs(s) ds density, the Gaussian methods do have a
Wnatural advantage. Other methods require

= ff P(a < < b; either truncation of the integral besides

=i performing an approximation of this
truncated integral, or usage of a trans-

i =1,... ,tjs = s, Y0 = y) formation of the variable of integration
which yields finite limits of integration.

X fy (y) fs(s) dy ds In addition, Stroud and Secrest give a
0 comparison of Gaussian quadrature with

-
t  other methods. For an equal number of

= f f [P(a < < bis s, Y0 y)] points the Gaussian quadrature error is
0 -W comparable, even for cases where it is

X f'y(y) fs) dy ds not believed the "best." They also com-
pare different approaches to calculating
some specific integrals with infinite

where a = YO - cS/2/n and b = 0 + cS/2/n. limits, including transformations to
Since integrals with finite limits. Moreover,

Sine i = 0,1,2,...,t, are Gaussian quadrature absorbs part of the

independent and identically distributed, densities in its weight function along
and each is independent of S, f- (y) with cancellation of other terms in the

e_ ny 2 = transformation to this form. All these
=vn-/27i en . Let v = d.f. = (t+l) results appear to indicate this approach
x (n-l), then vS 2

/a
2 is distributed favored for these particular densities.

Chi-Squared(v). From this, the density Notice that the above formula is for

for S is f(s)= v v/2 v e VS
2  the exact coverage probability and the

same techniques can be applied to cal-
2 -F( v) culating probabilities for any number of

Now let z = y/n-2, and w = vS2
. events in this problem that we wish.

These transformations yield Consequently, we can easily compute and
vcompare the bounds with the exact proba-

w v  -w ( bility. Also, the multivariate density '
f0 0 1w [ /n~b in the control problem is MTP2 , thus(a)]t e -Z

2
d z dw guaranteeing the conditional bounds, but

0 1 /na dthere is not much dependence structure

where 4 2 (x) is the c.d.f. at x for a for the conditional probability bounds to
11a , stake advantage of. See Table 1 for a

normal distribution with mean p and comparison of the bounds and exact proba-
variance 0, a = (z - c"2-) x V'2/n and bility for some particular cases that have
b = (z + c/2w/v) x /2/-. previously been presented in the litera-

Now, recall the Gauss-Laguerre ture.
formulas: Secondly, let us consider the same

n problem, but for unbalanced data. That
e- x f(x) dx Z Ai f(xi) is, n is not necessarily the same for

0 i=l each group. Thus, we replace n above
and the Gauss-Hermite formulas: with ni. We also allow c to vary for

e-x2 f(x) dx n Birf(xi + f(xi] each group and replace it with ci. The

- i=l coverage probability 1 - q is:
n P(I7o-YiI/S iI/no+1/n < ci;i = 1,2,...,t)z E 2B ifNx) 0 0 1

i~lvl te V-1 
(b)

if f(x) is symmetric about 0. = i r( v) e 1 E[,1/nP b).
w v-i 0 il

Thus, 1 - az (1.//7-) E Ai Wi
T iB-[O l/(/r) l ir( v) - 1C,/ni (a)] e- dz dz .

2Bk[00,1/n(b) 0I/n (a)] Where in the above, b = (z + c /'v)
k=l 0
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x .l/n0+l/nI , a = (z - c /2w/v) advantage of as was done in the earlier
x i/n0+I/n an ( is the same cases to obtain conditional independence.

a ( Additionally, there is no guarantee that

as earlier. Thus (k(X'X)-k')- has nonnegative off
nw w V-l diagonal elements for the MTP 2 property.

1 - a (1//7) E A - Lastly, Gauss-Legendre formulas will be
m=l m F0v) used to calculate the probabilities

necessary for the bounds under study.
nz t For computational accuracy and efficiency,

x E 2B k T [40,1/n (b) matrix decompositions and numerical
k=l i=l ' methods for linear algebra must be

utilized.
- 40,1/n (a)] By taking advantage of any dependence

structure and the form of the density,
where improved and even exact coverage proba-bilities can be calculated for multiple

a = (z - Cim 2w /v) x i/n0+i/n i  comparison problems or more generally for
k m l simultaneous confidence rectangles. With

and these capabilities, the inverse problem
of determining c given a, n, and t can be

b = (zk ci 2/v) x fi/no+l/ni performed as was done for Table 1.
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TABLE la

Games (1977) used the Sidak product bound to produce tables for contrasts.
The following values for c were selected from this table for the degrees
of freedom for error, number of contrasts, and alpha level given. Gamma 1
through 5 are the Glaz and Johnson bounds.

t 2 5 9 9
n 2 5 4 4
d.f. 3 24 30 30

confidence level 0.80 0.99 0.90 0.80
c 2.294 3.465 2.687 2.369

Lower Bounds on the Confidence Level

1st Bonferroni 0.78886 0.98973 0.89521 0.77976
Sidak (Gamma 1) 0.80001 0.98973 0.89996 0.80013

ist Worsley 0.83165 0.99046 0.90729 0.81441
2nd Worsley 0.83165 0.99046 0.90729 0.81441
Gamma 2 0.83165 0.99048 0.91014 0.82302
Gamma 3 --- 0.99088 0.91648 0.83680
Gamma 4 --- 0.99109 0.92063 0.84561
Gamma 5 --- 0.99118 0.92341 0.85138

Upper Bounds on the Confidence Level

2nd Bonferroni 0.83165 0.99155 0.94956 0.92238
Galambos 0.83165 0.99155 0.94826 0.90070

Exact level 0.83165 0.99118 0.92735 0.85937

Correct c 2.1365 3.4027 2.5391 2.1867

TABLE lb

Dunnett (1955, 1964) presented tables for the first problem presented here.
The following values for c were taken from the 1964 article and thus should
be exact.

t 2 5 5 9
n 3 3 5 4
d.f. 6 12 24 30

confidence level 0.95 0.95 0.99 0.95
c 2.86 2.90 3.40 2.86

Lower Bounds on the Confidence Level

1st Bonferroni 0.94240 0.93337 0.98821 0.93124
Sidak (Gamma 1) 0.94323 0.93512 0.98827 0.93331
ist Worsley 0.94982 0.94253 0.98908 0.93828
2nd Worsley 0.94982 0.94253 0.98908 0.93828
Gamma 2 0.94982 0.94326 0.98910 0.93955
Gamma 3 --- 0.94724 0.98957 0.943r1
Gamma 4 --- 0.94915 0.98982 0.94615
Gamma 5 --- 0.94989 0.98992 0.94793

Upper Bounds on the Confidence Level

2nd Bonferroni 0.94982 0.95627 0.99037 0.96290
Galambos 0.94982 0.956?7 0.99037 0.96290

Exact level 0.94982 0.9 989 0.08992 0.95050

.5.

A
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TABLE 2

As given in Table ib, Dunnett (1955, 1964) presented tables for the
first and second problem presented here. The following values for c
were taken from the 1964 article and were corrected for unequal sample
size as instructed in the article. These sample sizes were selected
to provide allocations as given in Dunnett (i.e., n0/ni z /) and thus

should be exact for these cases even though the method described here
is more general.

t 5 5 9 9

no,ni 4, 2 10, 4 6, 2 6, 2

d.f. 8 24 14 14

confidence level 0.95 0.99 0.95 0.91?

c 3.2000425 3.43876 3.1764266 4.0217.J~
Lower Bounds on the Confidence Level

1st Bonferroni 0.93609 0.98307 0.93908 0.98879
Sidak (Gamma 1) 0.93765 0.98935 0.94070 0.98885
1st Worsley 0.94235 0.98958 0.94219 0.9e917
2nd Worsley 0.94235 0.98958 0.94219 0.98917
Gamma 2 0.94311 0.98961 0.94332 0.98921
Gamma 3 0.94616 0.98978 0.94529 0.98949
Gamma 4 0.94776 0.98988 0.94675 0.98969
Gamma 5 0.94841 0.98993 0.94783 0.98985

Upper Bounds on the Confidence Level

2nd Bonferroni 0.95182 0.99000 0.95308 0.99050
Galambos 0.95182 0.99000 0.95308 0.99050

Exact level 0.94841 0.98993 0.94960 0.999011

c (from Games) 3.342 3.465 3.261 4.084

II
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MEASURES OF JOINT INflUENCE Iv REGRESSION: ORTHOGONAL DECOMPOSITION,
DISTRIBUTION, AN APPLICATION TO DATA ANALYSIS

Lillian Kingsbury, Villanova University Richard M. Heiberger, Temple University

ABSTRACT Adastive
Diagnostic measures of the joint influence Score

of subsets of data points in regression are
easy to define but have lacked an intuitive
interpretation. Measures of influence for a
single case are easy to interpret in terms of * Case 1?
the position of the observation in the spaces ::.. 0
spanned by the columns of the X mjtrix and the
(orthogonal) residual column E=Y-Y. Me present
an orthogonal decomposition of the joint
influence measures in terms of the single case V'eeea::
measures of an equivalent set of orthogonal
pseudopoints. The decomposition allows an
intuitive interpretation of the joint influence
measures and leads to the derivation of the - Aei'e I
distribution of the measures under the usual 

4

assumptions. We illustrate the use of the
decomposition in characterizing data + .2 e 2
configurations which contain influential points
and in analysis of data.

1. Introduction with Example. 55.0A
In recent years, methods to diagnose AGE

influential observations in regression analyss 10.20 20.00 MA .00 50.0

have received much attention in the Statistics Figure 1. Seatterplot of the Adaoive Sccres Ca
literature. In data analysis we often
encounter subsets of data points which are
jointly influential, although not individually
so. That is, simultaneous perturbation or
deletion of all the cases in the subset leads abie
to substantial changes in the estimated Case Stat :stics for Obseruations 2 ard 18. Acaptive Scores an.

regression coefficients, although perturbation u! Data Set.
or deletion of single cases from the subset
leads only to small changes in the results. Case Cs':
This can be easily illustrated with the Number h - ,
adaptive scores data, initially reported by
Mickey, Dunn, and Clark (1967), and more
recently analyzed in Cook and Weisberg i1980). 2 C.15 -9." -. 26 XS
These data contain at least three unusual
points: cases 19, 2, and 18. Cases 2 and 1S are 18 0.65 -5.54 -19.$ 2.5

a highly influential pair, as evidenced by the
change in the estimated regresion line due to
deleting these two cases (see Figure is.

Several diagnostic measures of joint j* 11.02
influence have been developed (Cook and
Weisberg 1982; Belsley, Kuh, and Welsch 19201
as generalizations of single-point diagnostics.
The usual presentations of these measures,
however, lack an intuitive interpretation that Table 2
leads to an understanding of what kinds of Case Stat5tics f.v Cbseruatws- 2 and 13. Adapje Scores Data.
arrangements of points are highly influential. Pe~ced Data Sets.

The joint influence of cases 2 and 1e in
this data set is further illustrated by the ' .,

individual and joint statistics for these two _ _- _ _ _

observations, summarized in Tables : and 2
below. From Table I we notice that, although 2 C. - .?' - 2q.19
the value of Cook's distance is highest for 'delete case I,
case 18, it is well below the "flag" value of
1.0. These cases are likely to go unnoticed :n
the basis of the individual case statistics. rase 1.8 0.7S -S. -. 4 30

(delete case x

2Case; 2 and le joint:
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The value of Cook's distance for each of these Subsets of data points which are jointly
cases when the other one is deleted (Table 2) influential will usually be equivalent to a set
is much higher, further evidencing that these of pseudopoints of which at least one is
cases reinforce each other in their effect on individually influential.
the estimated regression line. There is no
simple way to combine the individual case Ada:ti~e
statistics to obtain the joint value of Cook's

distance, D.=5.37. 130.00
We preseit a decomposition of several joint

influence measures as the sum of the case
influence measures of a set of orthogonal
pseudopoints. The pseudopoints are equivalent .15.0
to the points under investigation in the OLS
sense. That is, if the observations under
investigation are replaced with the 100M *
pseudopoints the results of the analysis remain
the same. We continue the discussion of the * *
adaptive scores data by giving the pseudopcints *
equivalent to cases 2 and 18 (labeled Z 0 and 85.00
Z "), and the value of their case influence
measures, in Table 3 below.

Table 3

Individual Case Statistics for Cbseriatiors 2 and 1S 3nd f-
cuivaieM Pseudooits, I AGE

2.. :0.00 20H 30.00 40.0. 50.0Case Wt. X X Y h. e; 2d,1) 1 diqir z . Scate, lo, of Adav~ie Sc0,es :
7he ea. &.er'' 0 ar'd C 0'evdooiws18 1 1 42 57 0.65 -5.54 -15.82 .079 Rep-acin s Cases i and

2 1 1 26 71 0.15 -9.57 -11.26 0.61

Z a 1 1.331 49.08 81.85 0.794 -9.09 -44.12 6.365, 2. Notation.
Z20 1 0.478 5.58 39,89 0.012 -6.34 -6.36 0.002 We define an augmented data matri::. *, f

dimensionality (n+ki(:p. The first k rows are...................................................................- ass.;ned to the points whose joint influence is
being investigated. We refer to these points

01 (1.331)2 1 36.87 61.49 0.794 -6.83 -32.97 6.365 as keypoints, and denote them by Z. The
Q (0.478)z 1 11.67 83.45 0.012 -13.26 -13.54 0.002 remaining data points, not under investigation,are the n rows of the reduced data matrix, V.

:n a data analysis situation we would permute
the rows of the data to the appropriate
position.

The most important feature of Table 3 is that
the values of Cook's distance for the z ri
pseudopoints, denoted 10 and Z 0, add up W f= z= XY* ,
correctly to 6.37. Also note tat the large V Y
value of D. for the pseudopoint Z10 implies
that this point would be identified by common, We let 1* denote the regression estimator
single row diagnostic techniques. Since the X operating on the ful data matrix, V*, and
column entries for the pseudopoints are not i denote the regression estimator operating onthese two points cannot be plotted on the same the data points in V. Therefore, using the
axes as the remaining observations. We have notation introduced above, we have
therefore appended two more rows to Table 3,
labeled 01 and 02, also equivalent to the * (X'Xl (X*'Y*2
pseudopoints and to cases 2 and 18. The _1
equivalence is in the sense that, if 01 and 0 = X'X) (X'Y) '31
replace cases 2 and 18 in the original data sit
and WLS is applied (with weights as indicated The vector of residuals from OLS, tn+k' on
for 0 and 0 and weight 1 for the remaining the augmented data matri:, VA, is
casesi the shne estimates are obtained, This
algebraic identity, as well as the individual 0-n+k' = qk' 1n') - (Y*  X*a*''. 44
case statistics in Table 3, were verified by
computation. The interpretive value of this We define the vector cf predicted residua's,
approach is illustrated in Figure 2. This d,+,, as residuals from the fit based s ,
figure is a plot of the data with cases 2 and A
18 replaced by 0 and 02. We can clearly see L4k' (d d '' - (Y* - X*a 1' (5)
in this picture that 0 , with weight -n
(1.331) 21.9, would coitrol the fit.
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We let s*1 denote the estimated residual 4. Orthogonal Pseudopoints

variance from O:S in the augmented data matrix, The consistent appearance of Tdk in the

V*, and s
a denote the estimated residual ex:pressions in Table 4 suggested a data

variance from OLS on '-'. That is, transformation as indicated below:

01] [I [I [X !
5s, '6 = t-.-o~'kn 6 

*  = i • = vj=

This transformation leaves the reduced data
matriz, V, unchanged and replaces the

sd= - 'd_ (7) keypoints, Z, with a set of pseudopoints,
(n-pt ZO = TZ. The pseudopoints, Z, are equivalent

t: the keypoints, Z, in the OLS sense. That
is, the transformation does not change the

Two frequently used matrices are: results of the OLS analysis.

3 = 7*XX- * abe 4e

and 3eected Jont 10lcence )s gnotc feasaires
= X X't Xz' TOT' (9E Ex releI

The matrix G is an a;mentet hat matrix.
PartitizninO it as D =*v*,*s .

02  ,

[3 z iNote that 5, ' = 
0

z
)

shows that 3 =X(XX; X is the hat matrix for Mi
the data pcints ir V. The elements of CV and d T(i+$) 7'd (14).
3 .for i=' to n+k and =o., are .
insrfetat.e as the rate 2f ohan e 1 n -

fitte! v*:ae5 taset ca '' Y. =N i ;,I_,:,
resve:t tc y4. The .a~cna1 elements of a

provide a melsure :f the distance, in X-spaoe, a(lcww Q(411w)
between the keypcints and the centroid of the BKW*)9(1,P.36
remaining cbseriations relative to a scale and X- BKW=1
orientation determined by the remaining
observations. {

The reader can 
verify that

= (1+3 )ek (l Ratic. of Data Space Volumes:

Ne stress that T, A and 0 are functions of the
keypzints. det(V*A'l

Andrew s and Oreqion

3. A Brief Review of Joint Influence detU 1V stat:stic
Diagnostics. . 1

Three approaches have been used in the
develcpment of multiple row diagnostics: -det(sG j 6)
a. differencing of I with respect to the

presence or absence of the keypoints
itraditional:Y labejed "case-deletion"),

b. differentiation of . with respect to

weights assigned to the keoPcints The pseudopoints, ZO, are orthogona: with
:traditicnally labeled "differentiation"), respect to both the (X'X) I and (X*'X*)

-. ratio of data space volunes caiculated innerproducts. Also,

in the presence and absence of the keypoints
,traditionally labeled "geometric 0;= TG2 , = 0 (47)
interpretation"-.

The differencing and ratio approaches are case e, = re
leleti:: methods, the iffferentiation approach

is a continuous form ofcase deletion. d = T 19
After a healthy dose of algebra we have _ -k

:btained ;enera: forms for measures based on Substitution of (17) to (19) into the equations
each of these approaches in terms of the in Table 4 leads to further re-expression of
predi:ted residuals for t.e keygcints and the the 4:iat influence diagnostics for the

eirenva- e de.o: i=mizn of 3 . These forms, keypoints as weighted sums of the case
as well as eT:ampe of we2l-kn~w: iagncstics of influence diagnostics for the pseudopoints.
eazh ty;e are summarized in Table 4. These re-expressions are given in Table 5.
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Table 5
Join* Influence Measur ons of the 'rthogonal assumptions of regression analysis, the vector

Pseu~DOpfnts 'f residuals, e follows a normal
distribution w-Rkmean zero, ., and variance
covarianze matrix I-H'o. From equation (11)

'' (+$_ ~ it follows that the "-eotor of predioted
residuals, (d , d k0), follows a normal
distribution-8ith mean zero, , and varianceI+

-(20) cvariance matrix N, cive. by

1 -W. 4= 1 2G2 . (24)
)Wd TO2  : + 0

1 The numerators of each of the measures (12)

-)? (21) thr:ugh (151 in Tatle 4 are of the form
d. C'Mdk 0, therefore each of these numeratsrs
an be written as the sum cf k independent

1 1 hi-squares with one degree of freedom. That
( )R k ( . 4 (1+ 4 1 1 d 2 is ,

(-L52:Rd, (22) whr th a.~ (

k2 here the as's are the non-zer: eizenvalues of
M):+Cv and -/ (rl denotes a chi-square
variable with r_;egrees of freedom. For measure

M = (+) and a. 6,,-,or measure (14)

I ) Lo+i M = C+O an..a. . . ) , foi measure
Lj q-p ' + 31) M (0) a nd a. =A.

- Similarly, the denominator of eacn of these
measures, d 'L, is a ohi-square with n-p
degrees cf-reidom.

All sums and products are for 1= to k. The measures (13) through 4!!) are appealing
in that they are "F=like", however, since W,

The expressions given in Table 5 differ given in (24) is not block-diagonal, the
slightly from those given in Table 4 since they numerator and the denominator are not

are rescaled (dividing by k-sz) to make them independent.

unitless and independent of the number -f Work by Gurland (1953i and others on the

keypoints, k. These measures have several distribution of indefinite quadratio forms can

important properties: be used to determine the cumulative
Each numerator is the sum of the single distribution of measures of the form given in

keypoint diagnostics for the k pseudcpcints. 4131 through (1! in Ta.le 4, as follows. Ae
Each numerator is the weighted sum of the have

single-point predicted residuals for the Pr - > t)
pseudopoints. "he weights are simple n 'd
functions of the augmented leverages of the n-

pseudopoints. These measure the distance :f d .
the pseudopoints from the centroid of the = Pr t - > t
initial points. The distinctions between the
diagnostic measures are in the functional =ak 2n+k

form of the weights. = r ' k'{M -t.. k! ) 0) (271
The weights are of the form O+(i+o .-m where -4+k 1 2 inf

where the values of m generate a ladder'of
powers. it thus appears that the :h:.ioe of 0
crossprodu=t matrix, M, and the use of a M = (28
differentiation vs a differencing approach,
result in changing the power of the (1+t.)

terms. This suggests that other values oi m,
not necessarily integers, may provide useful
diagnostics. This needs to be studied and M = n .291
further.

The denominators of the measures !efine a
scale based on only the initial dana points.

It follows from the first two propertij. that a
jointly influential set of points will The matri (/,-t.M I is non-definite. The
ny;i:ally have at least one equivalent probability id 2E can be written, aain
pseudopoint that is individually influen-ial. following Baldessari (1967), as the

5. The Distribution of Joint Influence r

Measures. where the a.'s are the s distinct eigenva:ues
Under the usual normality and independence of W(M.-t.M2%, the chi squares are mutually
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:ndependent, and r. is the multiplicity of a.. Heiberger, R., Velleman, P., and Ypelaar, A.

Work along these lines, aimed at calculating] (9dependenly in o tlatl eatura wi or
the cumulative probability listributions of the iudepvadently cnroabl li ea e for3.o

measresin abl 4,i beng ursed.the American Statistical Association, 78,
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A GENERAL TECHNIQUE FOR GENERATING PSEUDO MULTIVARIATE RANDOM VARIABLES: A MARKOV PROCESS APPROACH

Subhash R. Lele and M. T. Boswell*, The Pennsylvania State University

ley ord and Pbrases: f(r) =. .f f(s)dT(Els) (2.1)

Afultivariate Generators, Simulation st$

where r is fixed and integration is over 9 in

ABSTRACT the state space S. For a continuous
We present a very easy-to-program method of distribution, the distribution function for

generating random samples from arbitrary transitions from a to Z has an atom of
discrete or continuous multivariate probability at I = r. In this case the
distributions. A Markov chain is constructed distribution function for transitions from a to
such that its equilibrium distribution is the r satisfies

desired distribution. The observations come T(rs) = psTc(rls) + (l-ps ) Is(r)

from running the process until equilibrium is where Tc is a continuous distribution function
reached. weeT sacniuu itiuinfnto

1. INTRODUCTION and I() = I if R g Si for all i and

Generating random samples from a given is(r) 0 otherwise.

distribution is an essential part of any Lepa 2.1. A sufficient condition for f(r) to
simulation study. There are many very general be the equilibrium distribution of the Markov
methods of generating random samples from chain des.ribed above is that
univariate distributions. However, generalizing tc(EIB)f(WP t c(sl)f(=r)Pr (2.2)
these techniques to multivariate distributions c - " r

is difficult, and few algorithms have been for all r and a in S, where

developed. Hidden in applied fields and Monte tc(rls) = dT (nI)
Carlo literature is a very easy to program dr cr

method of generating random samples from Proof. Consider

arbitrary multivariate distributions (see f...1J.Jf(s)dT(rJs)
references 1,2,5,6,7 and 8). This method has P s
been used to generate observations from certain $

spatial stochastic processes (Ripley IMi7), f .f f()tc( )pd + (lPr)f()

although it has not been documented in its full
generality with a careful proof in the

statistical literature. f ... fJ f(~)tc(!IE)prdS +

The idea behind this approach is to construct

a discrete or continuous state space Markov =f(r)
chain such that its equilibrium distribution is We will now create a Markov chain satisfying

the desired distribution. Each observation of (2.2) for which the equilibrium distribution is
the desired multivariate distribution is then an the desired distribution. Suppose for each V,
observation from the equilibrium distribution of in S, it is easy to generate an observation
this Markov chain. with probability density g(rls) which has a

support containing S. We then generate an

2. THE BASIC METHOD observation E with density g(r1s) and move
The method described below works for either a from p to E with probability a(r1); -

continuous or discrete distribution. For a otherwise we remain at with probability

continuous distribution the tarkov chain is

unusual in that the state space is continuous, 14f . .. f (law.f 1-p8
but there are atom of probability corresponding T

to no change. This requires a more complicated however, if the generated observation is not

proof; the discrete case is a simpler case. The accepted, thethehe chain remains at its current

statements and proofs given below are for location.

continuous distributions. Let f(r), j in 1 n be Theorem 2.1. For the processes described above,
the probability density from which the

observations are desired, and let T(QE) be the let

transition probability distribution function where

from to jC of a Markov chain. The standard q(CLI) = g(f[I)f(r)/[ (
condition for such a chain to have f(X) as its Then the resulting transition distribution for

equilibrium distribution is that the Markov chain satisfy (2.Z) end the

equilibrium distribution is f(rC).
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Proof. Observe that q(1[1) = l/q(lIp). Thus if product of independent random variables (not

q( ) ~ , then q(jIJZ) S 1. Consider, without depending on 1).

loss of generality, the case where q(£lg) 1 1. We used the algorithm to generate

Then a(£l) = I and a(Ei£) = q(jIX). Also observations from the bivariate binomial, the
bivariate log-series and the bivariate Dirichlet

tc(£II) = g(xle).l/ps distributions. In each case we generated 10

and sets of 1000 observations, and used the
tc(11) = g( l£).q(EIE)/p E chi-square goodness-of-fit test. In every case

Thus the number of steps to reach equilibrium was

Prtc(21E)f(JE) = g(ZJ;)q(1;)f( ) taken to be 10. There were no samples rejected
r Ifat a 5% level.

= g(liz) g(JIM)f( f(r) Additionally 10,000 observations were

g(eI1)f(Q) generated for each of these distributions, and

= g(E[I)f(s) the chi-square goodness-of-fit teat was done.
The results given below show the algorithm works

= p stc(£[I)f() quite well.
The conclusion follows by Lema 2.1.

4.1 The Bivariate Binomial Distribution. Let

3. THE ALGORITHM YI' X2 and X3 be independent identically

The desired observation has density f(s). It distributed Bernoulli random variables with
is easy to generate observations with a density p = 1/3, and let X = X1 + X 2 and let
g(X11) for each value of S. Equlibrium is Y = X + X3 " Then (MY) has a bivariate
assumed to be reached after NEQ number of steps binomial distribution. We used the uniform
of the Markov chain. distribution on the 7 possible values for the

STEPO. Set COUNTER equal to 0. initial distribution as well as for g(£[s). The
STEP1. Generate an observation observed and (expected) frequencies for 10,000

a from some initial distribution, observations are given in the following table:

STEP2. Generate an observation r with density x\y  0 1 2

g(1I1) 0 2973 1513

STEP3. Increment the COUNTER (2962) (1482)
STEP4. Calculate q(1:11) 1 1497 2232 680

= ( (1482) (2222) (741)

STEP5. If q(rls) Z I then set s r and 2 -- 734 371

go to step 8. (741) (370)

STEP6. Generate U from the uniform The chi-square value is 5.98.

distribution on (0,1). 4.2. The Bivariate Log-Series Distribution.

STEP7. If U 1 q(tfj) set a = Z.
STEP8. If COUNTER 1 NEQ then go to step 2. This distribution is a discrete distribution

sTIP. Deliver s with unbounded support. Its density is
The resulting observation s has density f(s) P(xl = X1, X2 = x2 )
(approximately). To generate more observations

the COUNTER is set equal to 0, but the - X1 02xa (xi + x2 - 1)!
algorithm is started again at Step 2. _in(I_0l_02 )  XI! x2!  ,

4. PERFORMANCE OF THE ALGORITHM-d

In practice, the process is run a finite where xi = 0,1,...; 0 < i <1 and 1 4 02 < 1.

number of times to yield an observation which We generated observations from the bivariate
has approximately the equilibrium distribution, log-series distribution with 01 0 02 = 0.2,
However, the rate of convergence of Markov using the product of independent Pascal
chains is known to be geometric and therefore, distributions with parameters k =1 and p
only a few steps in the Markov chain will be 1-l/e for the initial distribution as well as
necessary. We have tried running the process 5 for g(EIs). The observed and (expected) %
to 15 times for the bivariate dirichlet, the frequencies for 10,000 observations are given in
bivariate binomial, the bivariate log-series and the table below.
the bivariate normal distributions, and have

found that ten observations are enough to reach
equilibrium. The location (centering of g(1[2)
is much more important than the shape. We have
used a distribution g(Els) = 1Tg(R i) of the
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X2  2 3 (ZIOO-PC) computer. These timings and the
timings to generate 1000 observations of the

0 3994 368 53 10 three distributions, discussed in the previous
-- (3915.2) (391.5) (52.2) (7.83) sections, are given below.I 3894 791 174 27 1

(3915.2) (783.1) (156.6) (31.3) (6.3) TIMINGS TO GENERATE 1000 OBSERVATIONS (MINOSEC)

2 373 141 47 8 Bivariate: I II III
(391.5) (156.6) (46.9) (12.5) Normal(RU) 1:21.46 1:20.69 1:20.52

3 43 29 13 Normal(MC) 2:31.21 2:31.65 2:35.99
(52.2) (31.3) (12.5) 9

(13.4) Binomial(MC) 0:47.35 0:47.24 0:49.10
4 13 5 Log-Series(MC) 1:58.20 1:59.07 2:08.63

(7.8) (6.3) Dirichlet(MC) 0:52.18 0:52.45 0:54.81

7 I: 1 call of 1000 observations

?5 (9.7) II: 100 calls of 10 observations

The chi-square value is 22.49. i11: 1000 calls of 1 observation

4.3 The Bivariate Dirichlet Distribution. This 7. COMMENTS AND DISCUSSION

distribution is continuous with bounded support. (I). There were two problems that occurred

Its density function is during the use of this algorithm. Both are

basically computational problems.

f(y y1) y -0 -1 -1 3-1 (a) If the initial distribution g(rfs) is

f1yy) = c Y, Y. (I-Y s) too far away from the desired

distribution, then a larger number of
where 0 < yi < 1, y, + ya < 1, and Qi > 0 . steps to reach equilibrium is needed.
We generated observations from the bivariate It is desirable to have g(rIs) and
Dirichiet distribution with 01 = 02 = e 3 = 2.0 the desired distribution as close to
the uniform distribution on the triangle bounded each other as possible. The shape of
by X = 0, Y = 0 and X + Y = I for the initial g(Lgs) is not as important as the location.
distribution as well as for g(rs). Five (b) While calculating q(ris), we need to
equiprobable strips with sides paralles to X + Y take the ratio of two quantities. In

= I were divided into 10 equiprobable regions by practice, if these quantities are too
the line X Y. The observed and expected small or too large, the problem of
frequencies for these 10 regions are given overflow and underflow occurs. We

below. suggest taking the natural logarithm
Region 1 2 3 4 5 of q(r1) in this case. Thus we have
observed 1059 1012 1012 991 1003 In a(RIS) = min(O,ln q(r;1)) and thenfrequency
expected find a(rls).
frequency 1000 1000 1000 1000 1000

1000nc1000__ 1000__ 1000_ 1000 (2) To implement this algorithm we need to know

the density only up to a constant.
Region 6 7 8 9 10

observedi 8. ACKNOWLEDGEMENTS
frequcy 937 976 999 978 1033 The authors wish to thank
expected 1000 1000 1000 1000 1000 Mr. Venkat Bhethanabotla for many
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The chi-square value is 9.98. useful discussions.
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MICROSOFT FORTRAN compiler on a ZENITH Z152
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INEERC IN ROBUST DISCRIMD9W ANALYSIS

Vesna LAi1ar

University Computing Centre, Zagreb

In this paper a procedure for deter- functions, defined by RIW, is suggested. The

mining asymptotic distribution of the test expressions for test statistics are obtained

statistic in a model for robust discriminant for the general class of elliptical populations

analysis has been proposed. The expressions, and for normally distributed variables, as a

derived for the general class of elliptical special case.

populations, ware found to be asbq*:otically

distributed as X . A Mnte Carlo experiment Finally, a Monte Carlo experlment was

has been conducted in order to study sampling auucted in order to study the sampling distri-

distribution of the proposed statistic. butions of the proposed statistics for normal

KEY WOMRS: robust discriminant analysis; and contaminated normal populations and for 3

asymptotic distribution of covariances; different sample sizes.

elliptical distributions; Monte Carlo.

2. MOEL CF ROBUST DISCR2]41IANT ANALYSIS

1. INTRODUCTION

Let

A very simple model for Robust

Discriminant Analysis (MA) has been proposed Z = (z j) i = 1,... n; j = 1,... m

by -talec and .mlurovid (1984). The method is

based on maximisation of variances of among be the data matrix in standard normal form,

group means on mutually orthogonal latent obtained by the description of the set of

dimensions, defined in the space of standardi- subjects E = {ei , i-1.... n} on the set of

zed group means of a set of not necessarily quantitative variables V = {vj, j=l,... m}.

normally distributed variables. Furthermore,

for applying the method, the condition of let

regularity of initial variables need not be
fulfilled. S = (s A ) i = 1,... m; k = 1.... g

Discriminant functions produced by be the selector matrix, obtained by the des-

the proposed algorithm are correlated, but for cription of the set E on the nominal variable

interpretational purposes can be transformed N = ({ k , k=l.... g}, where g denotes the number

into orthogonal variables, using scm factor of groups.

analysis technique.
By the operation

In this paper, a procedure for de- "I' Z

termining the number of significant discriminant Q = S (sS,-l sTz - PZ,
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where P is a projector matrix, a matrix of stan- 3. TESTING HYPOTHESES IN ROBUST

dardized group means of variables from V, cen- DISCRIMINANT ANALYSIS

tered to cmomn zero mean, is defined.
In order to test a series of hypothe-

Matrix of covariances of variables ses

in Q is: T T Hk: + = 0

G = Q Q/n = Z PZ/n, 'k+2= 0
where G is m x m matrix of rank q = min (g-l,m). 0 k 1.q% = 0, k =1,...q-1

In order to obtain robust discrimi- where i = 2,... q are the first q roots of
nant variables, covarianoes between linear the population matrix 6, a modification of a

composites procedure proposed by Steiger & Browne (1984)

L. = Qy. (1) for testing correlations beetween optimal Linear

and i =, ... q composites was applied. The procedure gives, in

Ki  Zyi  fact, the conditions under which optimal corre-
have to be suceesivelly aximized: laticns can be tested in exactly the same

.= LT Ki/n = yT = manner as simple correlations by replacing ori-

iT Ki Y i ginal observations by optimal ccmposite scores.
unde th costrantsof rthoormlit ofUsing the following, well known proposition,

under the constraints of orthonormality of Uigtefliig elkcnpooiin

transformation vectors: the procedure can be applied olso in the case

of covariances and for the nonnonmal popula-
Y, Tyi = -1 tions:

it j 1,.-- q (2)
Yi TYj = 0, i 0 j Proposition 1 (Cook, (1951))

It is easy to see, that this formulation leads If T = n1/2 (S - E), where S is the

to the characteristic equation: sample covariance matrix constructed from

G Y = YQ (3) sample of N = n + 1 i.i.d. m-vectors xl... xN

where with finite fourth muments, then the asymptotic

y = (Y' Y2. .. yq) distribution of T is normal with mean zero
and and covariances expressed in terms of cumulants

0 = diag (0iF 2 . .. Q), 1> 02> . .. > Q of the distribution of xi as

are matrices of eigenvectors and nonzero eigen- cov (1., = jkh ik jh ih jk

values, respectively. ij,kh ij h) = ih+,ii Ki+Ii i

In the case of elliptical populations, the
R~bust discrininant variables are expression for 'ij , can be simplified using

given by: the standardized kurtosis parametar 3K of the

K = Z Y, marginal distributions of Xi:

with the covariance matrix:

U = KT K/n = YT R Y (4)
Tj,kh Y= tikh + tihjk + K (jh + tik tjh +

which is not orthogonal, in general. + ttihk) ( 5)

For normal populations o- 0 and civariances of
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the elements of T are given using only first where

two terms: = Q * U + f * Q (7) (9= diag(ol,f 2 -0.q))

40ijkh = tiktjh + tihtjk 2 =  i + _T (8)

The requirements of proposition given
* denotes Hadamard's product, and 3 ac is the

by Steiger & Browe (1984) are satisfied if and standardized kurtosis of the marginal distri-

only if the population vector yi, i = 1,... q is

differentiable i.e. when the population root
(i = ,... q) is distinct. Is must be noted Finaly, in order to test hypotesis %

that the proposition is not applicable if all
Hq kthe roots of G are zero. Since the distribution

of the elements of the matrix G is known from Mqk = Iq-k

proposition 1, asymtotic distribution of cova-

rianoes between L = ZY and K = PZY can be found is formed, where 0 is q-k x k null matrix and

frcm the sanple covariance matrix Iq-k is (q-k) x (q-k) identity matrix. Using
TKL / n  1T K/n] M M-k hypothesisq-k- can be expressed in the

L L/n L K/n] hy hei canK/jC equivalent form:

f L/n KT U 1  This M q--k=2

Of This, together with the proposition 2 leads to
FL] FY1 the final result:

PIPOSITIN 3

Fram matrix C and proposition 1 with the use of
sane algebra, following result can be obtained: If _ and _ are q x 1 vectors of sample

and population covariances between Li and K.

PROsITIc 2 as given by (6), then the asymptotic distribu-
tion of statistic

if 2 vec (Oi' 2"'Q) is the vector of T M 1  (M ) (

covariances between Tq-k = n (Mqk2) (Mq-k M q-k) qk-

Li = Z Yi 2
where i is consistent estimate of *, is x with p.

and (6) q-k degrees of freedom. In the case of normal

Ki P Z yi 1 1,... q populations, (9) can be expressed as:

Ki' n T Z (M = iwhere Yj are eigenvectors of G, and Z is data 1

matrix from elliptical population, then the where i is consistent estimate of as given

asymptotic distribution of by (7).

nI / 2 (Q - a) , where b is q x 1 vector of

population covariances, is normal with mean zero

and covariances given by q x q matrix o:

* = PI + "2
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4. MONTE CAW EXCPERI14EN1! 0lso, it should be pointed out, that
additional experiments, with different model

In order to study the sampling dis- matrices should be conducted, in order to came

tribiticn of the proposed test statistic, a to general conclusions concerning sampling

Mote Carlo experiment was coducted for tw distribution of T' (T )statistic.

types of elliptical distributions: normal and

contaminated nonal (e =.l, a = 3). Niziber

of variables and nuztber of groups were fixed 5. OCNCLSINSt

to five and four, respectively. All four groups

were of the same size. Three diferent sample The intent in this paper has been to

sizes per group were used: ni. 20, 50, 100. suggest the method for determining the numtber

Ebr each case, 200 replications wgere generated. of significant discriminant variables in iRDA.
Proposed statistic, obtained for general class

Model matrix of group means was: of elliptical populations, is asymptotically
distributed as X2

1 1 1 1 11 A Monte Carlo e-vperimnt brought to some

2 2 2 2 conclusions concerning the sampling distribution

3 3 3 3 of the proposed statistic.

The experimnit was condiucted through

the use of package for generating random ma-

trices developed by' Tula (1981).

Table 1 shows emirical type I error

rates according to TXand T 1 , as compared to

nominal rates a = .050, .025 and .01, for all

6 analysed cases. In general, empirical rates

for a =.05 and =.025 for noral ppulations

are higher than the noinal ones. Cn the other

hand, sampling distribion~ of T 1  statistic

ajusted for nonzero kurtoses,is shorter tailed

than the X(1) distribution. Deviations from

-..

the theoretical distribution could be due to

truncation fron below of the normal distribu-

tion of the stallest nonzero root dar of the

positive soidefinite matrix G. Utnfortunately,

distribution of the quadratic forms in trunca-

ted normal variables is not easy to obtain.

Anyway, in using T" ( t-itcidetermining the number of significant robust

discrrimnant variables, one should bear in mind

that the sampling distribution in question is

shorter tailed than the distribution. e

4S

3'P ~ ~ 3 3 of th proposed statistic.



TABLE 1. Number of times, out of 200, T (T

exceeded the a-th percentile of x (1)
~(empirical type I error rate)

=.050 a =.025 =.010

NMAL TN 17 (.085) 7 (.025) 1 (.005)1
n.=201

CONTAMNAE

NORAL (K = 1.78)T 1  7 (.035) 2 (.010) 0 (.000)

TI4AL 10 (.050) 3 (.015) 01(.000)
n. =50
1

NDR4AL (K= 1.78)T1  7 (.035) 1 (.005) 0 (.000)

'OR TN 12 (.060) 7 (.035) 1 (.005)1
ni=100

CONAMTED

NORMAL (K= 1.78)T 1  5 (.025) 1 (.005) 0 (.000)
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EXACT CONFIDENCE BOUNDS FOR PROPORTIONS

Donald L. Marx, University of Alaska, Anchorage

INTRODUCTION intermediate textbooks and reference books.

Method B requires that the cumulative binomial
The construction of confidence interval estima- distribution function, F(x;n,O ), for the observed

tes for proportions based on a random sample from number of 'successes' x in a sample of size n be
an infinite population is one of the earliest provided for Incremental values of 0 between 0 and
inferential techniques learned by statistics 1. Typically interpolation on 0 is required to
users. The normal approximation is so well known obtain UB and LB. For accurate determination of
that it's accuracy is seldom questioned for the bounds, F(x;n,O) must be available in very
samples larger than Size 30. Charts and tables small increments of 0 . Adequate tables for method
are available for constructing exact confidence B are seldom found in books, but simple computer
bounds for smaller samples. A BASIC computer or programmable calculator routines can be easily
program for constructing exact confidence bounds developed for this purpose.
is presented in this paper. The construction of confidence intervals for

There are several advantages of computerizing proportions based upon the standard ,ur--sl distri-
the exact confidence bounds procedures. For bution is well known and widely used. This
example, any sample sizes and confidence levels approximate procedure is based on the eentral
can be considered; one is not restricted to only limit theorem and estimating the standard
those values appearing on a chart or in a table. deviation of the sample proportion in the imple-
Inaccuracies inherent in reading graphical charts mentation of the normal approximation. Many ele-
are avoided. There is less need to rely upon the mentary textbook authors suggest this
approximate procedures based upon the standard approximation is adequate for sample sizes greater
normal distribution. than thirty. Fleiss (1981) documents two refine-

Following a brief discussion of accepted ments of the normal approximation method. One
methods for constructing confidence bounds for refinement, which he recommends for sample propor-
proportions, this paper describes a computer tions between 0.3 and 0.7, is the familiar con-
algorithm for implementing the exact procedure. tinuity correction factor. The other, which
Inaccuracies of normal approximations are Fleiss suggests for extreme sample proportions,
illustrated by several examples presented in the includes the continuity correction factor and
final section. In many cases the approximate pro- using the standard deviation of the sample propor-
cedures realize only one decimal accuracy. Very tion rather than its estimate in the normal
rarely is the accuracy greater than two decimal approximation. The effect of the latter is that
places for confidence levels of 952 or more and quadratic equations must be solved for the con-
samples of up to 100 observations. fidence bounds.

More central to the development of this paper
DISCUSSION is the distinction between Iman and Conover's

methods B and C (and Fleiss' refinements to method
At a recent ASA Short Course on nonparametric C). Method B is called the exact method because

statistics, Conover and Iman (1981) suggested it is based upon the true, exact sampling distri-
three methods for constructing confidence inter- bution for the sample proportion. Except for the
vals for proportions. Method A requires the use cumbersomeness of implementing it, method B is
of specially designed charts, method B uses exact preferred over any of the approximations. Method
binomial distributions tables, and method C is A, incidentally, is nothing more than an attempt
based upon the normal approximation of the bino- to reduce the cumbersomeness of method B by using
mial distribution. Iman and Conover recommend graphical charts. The difficulties of accurately
that one use method A for 95% and 99% symmetric reading charts notwithstanding, method A is pro-
confidence intervals, use method B for other con- perly described as an exact method for
fidence levels and samples not greater than 20, constructing confidence intervals for
and use method C for large samples. proportions.

The charts required for method A are available
in Pearson and Hartley (1976). These charts were DESCRIPTION OF ALGORITHM
constructed for two confidence levels (951 and
99%) and selected samples sizes from 8 to 1000. The algorithm described here implements Conover
Each confidence bound was constructed by calcu- and Iman's method B. It was coded in MEASIC to
lating sufficient points ( 0, x) implicit in the generate the example results below on the Osborne
cumulative binomial distribution function F(x;no) I computer. Suppose we wish to construct a
- constant to draw smooth curves for the upper (0 -a) 1001 upper bound forObased on an observed
(UB) and lower (LB) bounds when x 'successes' are sample result, say x 'successes' in n independent
observed in a sample of size n. As stated by the Bernoulli trials. Assume 0 < x < n. An initial
authors (p. 84) "The charts cannot and are not estimate for the upper confidence bound (UB) is
intended to provide very precise readings." constructed using Fleiss' quadratic function form
Although graphical interpolation can be used to of the normal approximation. Appropriate terms of
approximate bounds for sample sizes greater than the probability mass function, f(x;n,UB), and
eight that are not explicitly included in the cumulative distribution function, F(x;nUB), are
charts, there is no way to use the charts for computed for the binomial model with parameters n
sample sizes less than eight. and UB. The exact confidence level for the upper

Binomial probability mass function tables bound UB is [I - F(x;n,UB)]100. Based on the
f(x;n,0) are readily available in elementary and difference between the exact and desired con-
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fidence levels, F(x,n,UB) -a , the value for the to x or n-x, whichever is smaller. Additional

upper bound is revised, and the above procedure is efficiency is accomplished by handling the cases x

repeated. The procedure continues to be repeated - 0 and x - n separately from the general case 0 <

until either the difference between the exact and x < n. Symmetric confidence intervals do not

desired confidence levels is acceptably small or exist for these special cases. When x - 0, the

an established maximum number of iterations is exact (1 -a )100% upper bound is co/n and there is

executed. Default values are 0.00001 for the no (1-a )100 lower bound. When x - n, the exact

accuracy specification and 10 iterations. (1 -- )100% lower bound is (1 - )a/n and there is

The (I -a )100% lower bound is constructed in no (1 -1 )00% upper bound.

a similar fashion. Fleiss' quadratic form of the In the MBASIC implementation on the Osborne I,

normal approximation provides the initial estimate the algorithm produces exact confidence bounds,

LB. f(x-l;nLB) and F(x-l;n,LB) are computed. either symmetric (when they exist) or one sided as

The exact confidence level for the lower bound LB specified by the user, for specified confidence

is F(x-1;nLB)100%. Based upon the difference levels from 50% to 99.99% and samples of up to 126

F(x-I;n,LB) - (1-a), the value for the lower bound observations. Accuracy is within the specified

is revised, and the process is repeated as indi- default value (0.0001) for each bound; con-

cated in the previous paragraph. sequently the guaranteed accuracy of symmetric

The binomial probability mass function confidence intervals is 0.00002. Larger sample

f(x;n,o), for given sample data, n and x, is sizes can be accomodated, but the accuracy cannot

constructed using the recursive relationship be guaranteed due to possible rounding problems.

If the iterations limit is reached, the algorithm
f(0;n,0) - (1 - E))

n  
displays the normal approximation bound and the
message: MAXIMUM ITERATIONS COMPLETED. If the

(n-k+l)o sample is too large to accurately implement the

f(k;n,O) -------- f(k-1;n,o), k=1,2,...,x, iterative formulas for f(x;n,o ), the normal

k(1-E) approximation is displayed with the message:
SAMPLE SIZE TOO LARGE OR SAMPLE PROPORTION TOO

The cumulative distribution function NEAR 1/2 TO COMPUTE EXACT BINOMIAL DISTRIBUTION

F(x;n,O) is constructed using For large samples and proportions near 1/2, the
initial term f(O;n,O) in the iterative formulas

F(0;nO) - f(O;n,O) underflows and is set to zero.

F(k;ne)-F(k-l;n,0) + f(k;n,O), k-1,2,...,x. EXAMPLES

Revision of the boundary estimate in the itera- A specific sample result is considered first
tive procedure described above is accomplished in to illustrate the operation of the algorithm.

either of two ways. The first way uses the first Attention is then focused on the inaccuracies of

two terms of the Taylor's series expansion for the approximate procedures. Inaccuracies in con-

F(x;n,o) about the current value of the bound, say fidence bounds estimators for the example intro-

B. That is, the revised value for the bound is duced in the following paragraph and several
additional example are discussed.

1 -B Suppose we want to construct a symmetric 99%

B -------------------- [ - F(x;nB)] confidence interval estimate for the proportion of

(nB - x)f(x;n,B) 'successes' in an infinite population based on a
random sample of size 20. Let random variable Y

The second way, which is implemented only if denote the number of 'successes' in random samples

the first way produces a revised value that is of size 20 from the population. Then Y has the

outside the interval (0,1), is the simple average binomial distribution with unknown parameterO and

of B and the interval boundary that is exceeded by n = 20. For Y observed 'successes', the upper

the first way. That is, B/2 is used if the bound, UB, is the value of 0 such that Prob(Y ( y)

revised value above is less than or equal to zero, = 0.005; the lower bound, LB, is the value of Osuch

and (l+B)/2 is used if the revised value above is that Prob(Y > y) - 0.005. UB is given implicitly

greater than or equal to one. in terms of the cumulative distribution function

The normal approximations used to obtain esti- as F(y;20,UB) = 0.005. LB is implicit in

mates for confidence boundaries require standard F(y-1;20,LB) - .995.

normal quantiles. Quantiles, accurate to four Now suppose that six 'successes' are observed;

decimal places, from the standard normal distribu- i.e. y - 6. The MBASIC algorithm implements an

tion for selected probabilities are contained in iterative procedure to solve for UB. The search is

the computer code. Twenty value for tail probabi- initiated by approximating UB with 0.6064, Fleiss'

lities from 0.0001 to 0.5 were selected. Linear quadratic equation approximation. F(6;20,0) where

interpolation is implemented for intermediate pro- 0=0.6064 1s calculated and compared with 0.005.

bability values. If the difference is within the specified

Efficiency and accuracy in computing exact con- tolerance, the search terminates. Otherwise, the

fidence levels for current values of bounds are value for 0 is revised using the first two terms

enhanced by taking advantage of the complimen- of the Taylor's series expansion for 0. P(6;20,0)

tarity of variables in the binomial model. That using the revised value of 0 is calculated and

is, if random variable X has the binomial distri- again compared with 0.005. The search continues

bution with parameters n and 0, then n-X is bino- until the tolerance specification is satisfied.

mial with parameters n and 1-0. The computations The result is UB - 0.6096. Fleiss' approximation

of f(x;n,0) and F(x;n,O) are implemented so that is correct to two decimal places. The tail proba-

the iterative formulas above are taken from zero bility, F(6;20,0.6064), beyond Fleiss' UB is
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0.0055 rather than the desired value, 0.005. The (Figure IV), at least two decimal place accuracy

search for LB is similar. LB is given implicitly is realized everywhere except for < 0.67 and
by F(5;20,0) - .995. Fleiss' method gives LB = samples of size 30. Three decimal accuracy is
0.1013; the solution given by the MASIC algorithm achieved for > 0.42 and samples of 100 obser-

is LB - 0.0846. Fleiss' LB is accurate to only vations.
one decimal place. The tail probability,
I-F(5;20,0.1013) - 0.0119, is more than double the CONCLUSIONS
desired value. Table I lists 992 symmetric con-
fidence limits for this example using the exact The accuracy of confidence Interval estimators

method as well as the various normal approxima- for proportions based upon the simple normal
tions. Tail probabilities for the various bounds approximation are limited to two decimal places
estimators are also listed, for samples up to size 100 and confidence levels

Exact and both simple and quadratic approxima- of at least 952. TNo decimal place accuracy is

tions for 992 confidence intervals were the greatest achievable, and in many cases only

constructed for sample results from x - I 'suc- one decimal place accuracy is realized. The

cess' to x - 10 'successes'* The simple approxi- quadratic approximation provides some improvement,

mation produced negative lower bounds estimates but the accuracy is still limited to two decimal

for samples with five or fewer 'successes'. That place accuracy except for sample proportions very
is, in terms of the sample proportion f, lower near one half and sample sizes of at least 100

bounds when pr< 0.25 are negative. Only one deci- observations.
mal place accuracy is achieved for 0.30 < f j The alternative to using the approximate proce-
0.45. The greatest accuracy achieved is only two dures is to construct exact confidence intervals
decimal places when i = 0.50. Similar inac- for proportions. This paper describes an imple-

curacies are realized using the quadratic approxi- mentation of the exact procedure in an interactive

mation except that negative lower bounds are computer algorithm. Programed in HBASIC code on

averted. Only one decimal accuracy is achieved the Osborne I computer, five place accuracy is
for < 0.45, and the greatest achieved accuracy realized for samples of up to 126 observations.

is only two decimal places when ^p = 0.50.
Additional examples were considered using REFERENCES

samples of sizes 30, 50, and 100 observations.
Exact and both simple and quadratic approximations Conover, W.J. and R.I. Iman, Nonparametric

for 952 and 99% confidence interval bounds were Statistics, notes for a short course presented at
calculated. Achieved accuracies for the simple the annual meeting of the American Statistical
approximation method are suarized in Figures I Association at Detroit, August 8-9, 1981.

and II. Using the simple approximation for 992
confidence level bounds, only one decimal place Fleiss, J.L., Statistical Methods for Rates and
accuracy is achieved for samples of 100 Proportions, 2nd ed., John Wiley and Sons, 1981.

TABLE I Pearson, E.S. and H.O. Hartley, Biometrika Tables

992 Confidence Interval for 8 Based for Statisticians, Vol. 1, 2nd ed., Charles
on 6 'successes' in 20 Trials Griffin & Co., 1976.
(Tail probability beyond bound) ,IoR

ACIACT OSUMOl APPOzmhIOu 104
94% CflSWDECB !MfI*LS 10ar ?ROPOMZIOUS

Method 
LB UB9

_____________________1.0

Exact 0.0846 0.6096
(0.0050) (0.0050)

Iman & Conover's 0.0361 0.5639 .6

Method C (0.0001) (0.0157)

Method C with 0.0611 0.5889
cont. corr. (0.0010) (0.0086) .6

Method C with 0.1013 0.6064

quadratic eqn. (0.0119) (0.0055) 
"
1 %).... sea@21I

observations and A < 0.27. The greatest ac:!uracy
of two decimal places is realized when 0 > 0.30. plae a
Reducing the confidence level to 952 pcvides
little improvement in the accuracy of the simple
approximation bounds; two decimal accuracy is
realized for f> 0.27.

The quadratic approximation method for 992 con- U <0
fidence interval bounds provides two decimal place
accuracy for samples of size 50 and A > 0.16 and _ _ _ _ _ _,_

for all samples of size 100. (See Figure III.) 00 so 100

When the confidence level is reduced to 952 &WWI@ Sit
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TUNING COMPUTER SYSTEMS FOR MAXIMUM
PERFORMANCE : A STATISTICAL APPROACH.

William A. Nazaret
William J. Klingler

AT&T Bell Laboratories
Holmdel, New Jersey 07733

In this paper we discuss a statistical approach to the problem of setting the
tunable parameters of an operating system to minimize response time for
interactive tasks. This approach is applicable to both tuning and benchmarking
of computer systems. It is based on the use of statistical experimental design
techniques and represents an inexpensive, systematic alternative to traditional
ways of improving the response of systems. We illustrate the method by means
of experiments performed on VAX* minicomputers running under the UNIX*
System V Operating System.

designed to exercise the system in a given manner
and on which the experimenter has total control.

1. INTRODUCTION. Tuning, instead, is done using data generated by the
actual load of users on the system. This type of load

The work described in this paper has been is not under the complete control of the
motivated by two different, but related problems, administrator or the experimenter. Despite the
that arise in the analysis of computer performance. above differences, tuning and benchmarking have
The first is how to set an operating system's tunable something in common : the necessity to experiment
parameters to achieve the best response time for with different settings for the parameters in search
interactive tasks, given the computer's load for a configuration that yields the best results.
conditions. The second is how to map the
relationship among the different tunable parameters In this paper we present a systematic, cost
of the system and their impact on response time. effective approach to conducting these experiments.

This approach makes use of statistical techniques to
Although the second problem appears to be a design experiments which yield, in many cases,

generalization of the first in practice the two appear information nearly equivalent to the one obtained by
in different contexts. The first problem is normally performing a complete exhaustive test. Our
confronted by system administrators in their attempt approach although not new to statisticians is
to get the most performance out of the system on becoming popular among systems managers and
behalf of the users. In contrast, the second question performance analysts as an alternative to more
is tackled mostly by system designers and traditional methods of experimentation.
performance analysts who are charged with modeling
system performance under a variety of loads before Throughout the paper we usc the UNIX*
the systems are actually handed to the customers. operating system as an example of a tunable
This activity is sometimes called '"benchmarking". operating system. However, the methcd is applicable

to any operating system (or system in general) which
The system administrator goal is to optimize the allows the user the freedom to adjust its operating

response for important tasks in his/her organization characteristics. In Section Two we present an
under the particular load conditions Therefore we overview of UNIX tunable parameters and their
could say imposed on the system by the users. that potential impact on system's response. Section Three
this problem is "local" by nature. On the other introduces the experimental problem by describing
hand, the responsibility of the system designer and three experiments carried out on VAX 780, 785 and
performance analyst is to understand how the system 8600 machines respectively. Section Four explains
reacts to changes in the tunable parameters for each our statistical strategy to estimate the effect of the
of many different loads that are likely to be parameters on response time for certain tasks. In
encountered on the field. In this sense the problem Section Five we analyze the results of the
is rather "global". experiments and show the improvement achieved

A very important consequence of this distinction after adjustment of the parameters according to these
is that the measurements used for benchmarking are results. Finally, in Section Six a critique of our
usually made under "simulated" loads that are approach is given together with some extensions.
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2. WHAT DOES TUNING A COMPUTER MEAN ?. D. File System Organization : This is a highly
installation dependent parameter. The idea is

Tuning a computer system is, in principle, not istibutepthet andmuer fie ao

very different from tuning any system in general. It the available disks in a way that the load on

amounts to finding the setting of certain parameters each of them is approximately the same. When

to satisfy performance requirements. Hence, the one of the disks is overloaded 110 waits

performance requirements determine which settings increase and response is degraded.

are "optimal" for an application. For instance, of a

typical passenger car will be tuned to optimize fuel E. CPU Assist Devices : Some types of hardware
consumption and reduce emissions. In contrast, a allow the possibility of adding coprocessors or
racing car will be tuned to maximize speed at the add-on boxes to relieve the CPU of mundane
expense of fuel economy. chores. Some examples are terminal 1/0 assist

The UNIX system allows fine tuning by giving devices and troff coprocessors. The use and

the administrator the freedom to set the values of number of such devices can be subjected to

some kernel parameters at boot time. Additionally, tuning.

one can exercise control over options that are not F. Main Memory : By allowing minor changes in
part of the kernel. Some of them relate to the the amount of physical memory on the system
hardware and some to software. Examples of these it is possible to detect whether increasing
parameters and their significance for the run time memory size will help to enhance the
environment are: performance of the system. This is helpful to

know before committing any resources into
A. System Buffers : These are chunks of physical buying the additional boards.

memory, typically 1024 kilobytes in size, which
are used by the operating system to keep 3. THREE CASE STUDIES.
recently used data in hope that it might be used To illustrate the methodology we will describe
shortly afterwards. Increasing the number of three experiments carried out on VAX* 780, 785
these buffers improves the "hit ratio" on this and 8600 systems respectively, running under the
cache up to a point. An excessive amount of UNIX System V Operating System at the Quality
these buffers will hurt performance for it takes Assurance Center of AT & T Bell Laboratories.
away memory space from the users.

B. Sticky Processes : There is a bit associated with The first of the three was conducted with almost
the permissions on an executable file that will an entirely tuning orientation, and it is somewhat
cause its text segment to be stored in similar to the one reported in [1]. Our goals were to
contiguous blocks on the swapping device, improve response on a system whose performance
Commands which are frequently invoked was becoming unbearable and to overcome some
(specially those with large images) ought to questionable aspects of the experience in (1]. Among
have the sticky bit set so that every time they these aspects we targeted :
are invoked their code can be brought into e Duration of the experiments : The experiment
memory as easily as possible by the system. described in [11 lasted more then three months.
Systems in which this is not done usually suffer We believe that any approach to tuning which
from chronic disk 110 bottleneck and the takes this long to produce results has very limited
resulting degradation in response time. The practical value. Therefore, one of our goals was
number and kind of commands with the sticky to find ways to obtain useful results in reasonable
bit set is a tunable parameter. amount of time.

C. Paging Daemon Parameters : In virtual e Stationarity of the load : A second goal was to
memory implementations of UNIX, memory ensure that the load conditions were reasonably
used by processes is assigned on a per-page stationary. We wanted to avoid a situation in
basis. A page is just a piece of the code usually which it was not possible to detect whether
512 or 1024 Kilobytes long. The paging improvements in performance were due to the
daemon is a system process whose responsibility tuning or rather due to a decreased level of load
is to free up memory by reclaiming space on the system (this is essentially what happened
occupied by pages which are no longer in use. in [1]).
A process can also be stripped of its pages if its The tunable parameters considered in this
total CPU time exceeds a given value. How experiment were : file system organization, memory
often the daemon runs, how many sie system orocesse, mmr
simultaneous active pages a process can have size, system buffers, sticky processes, KMC's
and the maximum CPU time quota before a (terminal s)0 processors) and PDQ's (troff co-
process is swapped out are tunable parameters. processors).
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The second experiment on a VAX 785 system Figure 1
included only 5 of the 6 parameters considered in the
previous one. Sticky processes were dropped out of VAX-780
consideration because we already had considerable
prior knowledge about how to handle them. The
experiment was designed to allow us to estimate, in LEVELS
addition to the main effects of the factors, some of FACTORS 1 2
the interactions among them. Therefore it resulted FA_ TORS_1_2__
in a larger number of trials. Our intentions here
went beyond tuning the system. We also wanted to File System
assess the merits of fancier (more expensive) design Dlstibullon A B C
plans relative to simple plans like the one used in
Experiment One. The precise meaning of this will KMCs NO YES
be given in next section when we discuss the KMC_ _ NO _YE_

experimental strategy. MemorySize 6 Mb 7 Mb 8 Mb

The third experiment differed from the previous
ones in a very important characteristic. The load System Suffers Low Medium High
used was not a "live" load but rather a simulated load
built using a strategy to imitate the essentials aspects
of the type of load we expected this system to be Sticky Processes 10 20 30
subjected to. The factors considered were the same
as in the second experiment except that KMC's were PDO'e None One Two
not included for they are not necessary in this new
VAX 8600 model. By using a simulated load, the
experimental conditions were completely under our an excellent reference for this). A common strategy
control and thus we expected to get more statistically starts from the current settings and introduces some
reliable results. However, there was no previous variations around them. The size of this variation
experience in using our method in this context and ranges from modest to large. Minor variations defeat
little was known about the validity of the conclusions the purpose of the experiment. One exception to this
under actual load conditions. What we learned from strategy occurs when the current setting of one of the
this is discussed in Section Six. parameters is clearly wrong (non-optimal). In Figure

STRATEGY. 1 we have such an example. The choice of setting for
sticky processes was to set the 10, 20 and 30 most

Before basic planning for the experiment can be popular commands. The number of sticky processes
done, we need to choose the levels at which each of before the experiment was about 40 but they were
the factors is going to be tried. Since the set of not chosen according to frequency of invocation. We
factors considered for Experiment One (VAX-780) therefore ignored them.
contain the ones for the other two systems it will Next we had to decide on the measures to assess
suffice to describe the levels chosen in that case. the performance of the system under the different
Figure 1 shows the levels for each one of the six experimental conditions. A common choice is the
factors. time the system need. to execute a script containing

In Figure 1 the amount of s)stem buffers space tasks important to the organization . For instance,
allocated depends on the total size of memory. in a text processing organization such a script would
Hence, Low, Medium and Hf.igh represent a consist of formatting a document. The four measures
different fraction of memory for each of the three we typically use are : trivial time, edit time, troff
memory sizes. We determined the amount of time and c-compile time. Among those only whose
memory assigned to these buffers using a formula of name is not self-explanatory is "trivial" time. This is
the form just the response time for a command that involves

no interaction between the user and the system (e.g.
Sysbuff = CL + .2 KL the "date" command). It gives a measure of

where CL is 1.0, 1.2 and 1.4 Megabytes when L is instantaneous response time.

Low, Medium and High respectively. Similarly, KL is Deciding on a sampling plan for the experiment is
0,1 or 2. a ceucial and difficult task. As we noted above, we

wanted to reduce the total time for the experiment,
The choice of levels for the factors is highly as much as possible, without compromising the

installation dependent and must be done taking into integrity of the methodology. After careful study of
account both the characteristics of the load and prior the load in the VAX-780 and VAX-785 systems we
knowledge about how changes in these parameters decided that it was safe to use a day as the basic
are supposed to affect the system's response ([4J is duration of a run. A day is a natural unit because it
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allows you to set up the system from one run to the FlouRE a
next during off-hours therefore sparing the users any
inconvenience. This choice is also minimal in the VAX 760
sense that to have the runs last less than a day will
force you to interfere with the normal functioning of File Memory Buffers Sticky
the system. More importantly, it will make Run I Sys KMC's Size Space Process PO's
comparisons among runs invalid due to the within 1 A No 7 Mb 1.4 10 None
day variations of the load (peak hours). We must 2 A No 6Mb 1.0 20 One
note that a day may even troublesome in some
installations were the behavior of the load depends, 3 A No 6 Mb 1.8 30 Two
say, on the day of the week. 4 A yes 7 Mb 1.2 30 One

In the third of the experiments a whole run took s A ves a Mb 1.4 0 TWo

only about an hour as opposed to a whole day. This, - A ves 8 Mb 1.6 20 Norte

of course, was due to the use of a simulated load. 7 B No 7 Mb 1.4 20 One
6 B No 6 Mb 1.0 30 Two

Response times were measured at evenly spaced 9 * No S Mb 1.8 10 None
intervals during the run. It is important not to -

oversample since the load caused by the timing 11 B yes Mb 1.2 10 One
programs and the timed scripts could interfere 12 B ye S Mb 1.4 0 O
negatively with the users. 12 U Ye 6Mb 1.4 20 Two

13 C No 7 Mb 1.6 10 Two
The most important aspect of the whole 13 C NO 6 Mb 1.2 20 NO

experimental strategy is the choice of combinations 14 C No 6 Mb 1.4 20 one

to be tried during the experiment. A complete -

exhaustive search will most likely give us the right iS C Yes 7 Mb 1.2 20 Two

answer. However, it is not hard to realize that the 17 C yes 6 Mb 1.6 30 None

time this would take is prohibitive. For instance, 16 C yes 8 Mb 1.6 10 One
from Figure 1 we gather that it will take about 729
days to run an all-combinations experiment !. Even e Under certain conditions they yield information
in the case of the third experiment (with simulated approximately equivalent to what you would
loads) the administrative overhead is overwhelming, obtain by using a much larger experiment.
It requires re-booting the system 81 times !. Our
strategy is to run a fraction of all possible runs There is of course a price to pay for this. These plans
following an array of combinations that allows us to achieve the reduction in size of the experiment by
test all factors simultaneously in a fair way. Arrays deliberatedly confounding the main effect of the
with this property are documented extensively in the factors with the "joint" effect or interaction of some
statistical literature (See (21 and [31). For instance, of the other factors. Therefore, they rely on the size
the design used in Experiment 1 (VAX 780) is given of the main effects to be dominant.
by Figure 2. It was constructed using an orthogonal
array known as the LIS, consisting of only 18 runs. In spite of the above we advocate a strategy based

on choosing a highly fractioned array because, at the
For the second experiment we used another very least, it provides a most inexpensive starting

orthogonal array known as the L27 (see (2j), point from which we can always obtain very useful
consisting of 27 runs. The increased size of the information bbout the parameters. In particular,
experiment, as we mentioned previously, was these experiments lend themselves to be extended, if
deliberatedly planned to allow us to estimate necessary, to allow the estimation of higher order
together with the main effects, the interactions effects (interactions) if the data suggest they might
between memory size and the other four factors, be important. In practice, we have seldomly had to
Finally, the controlled experiment (VAX 8600) with go pass on iteration in this cycle. In most cases the

only four factors was run following a plan based on a information provided by the data is such that the
fraction of a 34 array consisting of just 9 runs. improvement achieved by the predicted optimal

The advantages of using design plans like the setting (as verified by a confirmatory run) makes the

ones above are: extra effort involved in conducting additional
experiments unattractive.

" They provide an average picture over the whole
parameter space. 5. DATA ANALYSIS.

" The estimate of the effect of any of the factors is Due to space constraints we can not present
orthogonal with respect to those of the other summaries and analyses of the data for each of the
factors. three experiments. We can however show a selected

subset of plots summarizing the information provided
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by the data with respect to how changes in the These conclusions are valid only for this

factors affect performance. We will also show plots particular performance measure and for this system.

to illustrate what was achieved by re-setting the There is no reason why they have to hold for
parameters to the levels suggested by the another response measure (like edit time) even

experimental data. under the same load. For instance, one could argue
that not adding PDQ's to the system could hurt text

Figure 3 shows the estimated effects that each of processing performance and this could very well be
the four parameters in Experiment number 3 (VAX the case. In general the answer depends on the
8600) had on c-compile time. The performance relative level of capability of the processor to handle
measure in this case was mean response time. the load. As a matter of fact, to our surprise we have
Another sensible choice would be mean square seen cases in which adding PDQ's hurts "troff"
average. This latter criterion has the advantage of response time. An explanation to this puzzling event
picking the setting that minimizes a sum of the can be found in the fact that the VAX processor is
variability and the square of the average. The time several times more powerful that the microprocessor
scale is seconds. which drives the PDQ's. Therefore every time a text

processing job is sent to the PDQ when the CPU
nmuR3 scould indeed had handled it, a loss in performance is

sure to occur. Indeed ,only in the first experiment
c.,m the results suggested the inclusion of one or more

PDQ's. For this system the load was so heavy, that
there was little change in troff performance by

kffen Mmory adding or excluding the PDQ's, while there was a
positive effect on edit and trivial response times

0 upon adding them.
381 38.

36~ 36.

34L 34.

32~ 32 COMPARIS11ON OF RESPNSE TIMES

30 L 30 1
LW Med M1 6Mb 7Mb 8Mb

Trivial Raqspoze Thae Trof Rspomas Ti

Fila Sy PDO's 1.0

40 40

38 *38

36 0.6 40
~ :1

32 32__ _"3 S 0. 33
30 ,,30 L

A a C 0 1 2 0

0.430

A summary of the conclusions extracted from
these data is 0.2 25

" The machine should be run at its current level of
8 Megabytes, the gradient information in Figure 3
does not suggest additional gains if another 4 0.0 20 1
Megabytes are added (memory can be bought in 9 1 13 13 17 9 11 13 13 17
4 Mb units).

* The number of system buffers can be set to low 1Moft y

which means about 1.4 Megabytes of memory for
the system and the rest for the users. Bm .........

* File system organization C is advantageous over Mter

either A or B.

" No Pdq's should be used.
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A way to check the gains in performance after REFERENCES
tuning is to run back to back confirmatory runs
under the old and new settings. The results for one
of the three systems is given in Figure 4. In the [11 Pao, T.W., Phadke, M.S. and Sherrerd C.S.,
graphs the dotted curve represents the response time "Computer Response Time Optimization Using
before the experiment and the solid curve represents Orthogonal Array Experiments", IEEE International
the response after the tuning. We see that both Communications Conference, Chicago IL, 1985.
trivial and response times were reduced considerably Conference Record, Vol. 2, pp 890-895.
after tuning the system.

6. CONCLUSIONS [21 Taguchi, G and Wu, Y, OFF-LINE QUALITY

We were able to reduce response time for several CONTROL (1979). Central Japan Quality Control
typical tasks in all three systems. For the first one, in Association.
average we reduced response by 38%, an important
gain in a system that was considered hopeless. In the
second system, we additionally discover that blind [31 Box, G.E.P, Hunter, W and Hunter, J.S,
use of PDQ's could lead to loss in performance for STATISTICS FOR EXPERIMENTERS (1978).
text processing jobs. The cvaluation of the results John Wiley and Sons.
for the third system is still under way. Early data
seem to indicate that the configuration
recommended by the simulated load experiment [41 UNIX System V, Tuning and Configuration
enables the machine to handle the real load rather Guide. AT & T, Information Systems.
easily.

We also have a much better assessment of the
real usefulness of these experiments for both tuning
and benchmarking. The results of back to back
confirmatory runs (a week each) showing substantial
reductions in response time for both of the tuning
experiments, indicate that it is possible to use this
approach successfully for periodical system tuning.
We can not however claim that it will succeed in
general. Instead we can say that as long as attention
is confined to only a few factors (therefore keeping
the duration short) and the load is relatively stable,
the method will help to run your system better. The
experience with simulated loads convinced us that
the usefulness of this approach in benchmarking
studies is even greater. In fact, we are currently
using our approach to find the functional relation
between the parameters of the UNIX System V
Virtual Memory Management scheme and response
time.

Finally, in response to questions about the
dangers involved in ignoring the interaction among
some of the factors we would like to point out that,
yes, there is a risk. However, even in cases were we
had (upon analysis of the data) second thoughts
about the absence of such interactions, the
improvements over the previous system configuration
achieved by using information generated during the
experiments made the risk worth taking.

* UNIX is a trademark of AT&T Bell Laboratories

* VAX is a trademark of Digital Equipment Corporation
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FITTING PARAMETRIC AND SEMI-PARAMETRIC PROBIT FORMS

WITH NON-ZERO BACKGROUND

Haiganoush K. Preisler, USDA-Forest Service,Berkeley

I.Introduction: In a commonly used quantal insecticide bioassay studies. The GLIM macros

response bioassay model for toxicological employed to perform the parametric estimation

experiments, the binomial response probabilty p are listed in the appendix. The semi-parametric

is set to p=n+(l-)F(i),where 04w<l is a fitting was done via ACE implemented within S

parameter corresponding to the proportion of (Backer and Chambers 1984).

background responses (natural mortality), F is 2. Parametric probit with background.

the probit (logit or some other mathematical) Consider the fitting of the model

function and 'i is a smooth function of

covariates. Parametric probit regression models E(Yij)=iij=.i+(l--1i)F(zijj)uij

are obtained by substituting a known parametric (2.1)

function of the covariates for 'q . Estimation in where Yiji1...,Ii=l........is the

the parametric probit regression models with proportion of responses out of a total of nij.

zero background (i.e. n=0) can be handled 0 is a p-vector of parameters, xij is a

directly by the GLIM statistical package (Baker p-vector of covariates and uij is an indicator

and Nelder.1978). Models with ,r>O require variable that is set to zero for the background

special treatment because they do not fit within responses and to one otherwise. If we assume the

the framework of generalized linear model of number of responses to be binomial, then

GLIN. Hasselblad et al. (1980) describe a var(Yij)=aj= i(1-Pij)/nij

fitting procedure for this model that employs and yij may be written as pij+aie, with a

the WN-algorithm. Cox (1984) uses the derivative as error variate.

free program BNDPAR and a short FORTRAN program The algorithm used by OLIN for a generalized

to obtain the estimates. Russell et al. (1977) linear model with a link function =g(p) is as

have written a FORTRAN program specifically to follows, for a given current estimate iqo of

handle the above model with nO. It produces the linear predictor, regress

mazimum likelihood estimates of the parameters 11o+(y-P)(dq/dp)0

and performs tests of parallelism and equality on the vector of covariates x with weights

among treatment groups. In section 2 of this defined by w o=(dq/dp)'o!

paper I demonstrate how the OLIN package can be In order to use the GLIN algorithms for the

modified to allow the fitting of the parametric model in (2.1) with unknown w the following

model with non-zero background, procedure may be followed. Linearize pij

An estimation procedure for the around a previous estimate to obtain

non-parametric model, with q an unspecified yij=hij+( i- i) [l-i( ij)uijJ

smooth function of the covariates and f zero, is

discussed in Hasti. and Tibshirani (1985). In +(P4) -(1-i)xijuijf(Xij)+&ij6

sections 4 and 5 of this paper I present an Here f is the derivative of F. Next, rearrange

estimation procedure for the semi-parametric the terms in the equation above and set

case were 11 is an unspecified function and r is f*(z )=uf(4)+(1-u) and m=(l-w)f,(zP) to

an unkown parameter. The procedure utilizes the obtain

specific ACE algorithm of Breiman and Friedman im i J uij +

(1985). It produces estimates of the functions (yij-pij)/l- i)fo~nijp) =

of the covarites that minimize a weighted lu u +ZijU +

residual error criterion. Uses of these a /(1-i)fo(2iP) I a

procedures are illustrated by examples from
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Thus, by defining the linear predictor with a one covariate, the logarithm of the

new explanatory variable a, i.e. ,l=nmn+'zu, and concentration of insecticide used. The moat

setting (di/d)-I(l-n)f 5 , the GLIN algorithms general model included separate background

can be used for estimating the parameters n and rates, intercepts and slopes for each set and

P. Since m is a function of the fitted values, treatment while the simplest model included the

it must be recalculated at each iteration, same (common) background with the same intercept

Scallan (1982) uses a similar technique to find and slope for each sex and treatment (table 1).

maximum likelihood estimates for some other The normal quantiles of the data, corrected for

models with 'parametric' link functions such as background using the common estimate, are

the hyperbolic curve with E(y)=(x+A)/(u+x) plotted in figure I along with the fitted model

where A is the extra parameter to be estimated. B.

3,A toxicological example with non-zero Table 1

backaround. Data from an insecticide bioassay Fits of various models to the insect data

experiment is analyzed in this section. The ----- ---------

experiment consisted of treating samples of Model scaled deviance d.f.

male and female larvae from a particular insect -------- ----- - ---------

population with 2 different chemicals. A fixed A. Common i, slope 118 21

amount of insecticide was applied to the surface and intercept

skin (topical application) of each insect, B. Common it.slope, 23 18

(Robertson and Kimball,1979). A control group separate intercepts

was treated with solvent only. Mortality was C. Common it,separate 21 15

tallied after 7 days. slopes, intercepts

A number of probit models were fitted to the D. Separate ff's,slopes 17 12

data using the GLIN package in conjunction with and intercepts

the macros in the appendix. All models included ---------------

+ i

14 0

+

l'a
0' X

I .5Iteated b..kg..,,.d +J .cOT.4ai.

X .

-063 0., LS i.e LS

LOGARITHM TEN OF DOSE

Figure.L Mortality of larvae treated with Inseotloides and the fitted probit
lines 

for model B.
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4.Non-parametric probit predictor. In the response is included. The mean square error that

non-parametric probit model E(Y)=F(n), where Y is minimized in this case is

is a binary response variable, F is the probit n
function, t- tk(z , and t ..... p are yi-S-(l-fM , i . (5.1)

arbitrary smooth functions of the covariates, i1

xk' We would like to estimate the functions t where y, F, il and w are as defined before.

that minimize the weighted square residual of For a given set of weights, w.i, and probit

the probit regression predictors, i. io minimizing (5.1) with respect

n to 7T yields 3j
g 2= [y,-Feq.,)]2 w. (4.1) n zi., ( [ F(i o,,I- %o,,. )wio]

where w=I/()(-F(Ni)). This can be accomplished i=1

as follows. Given initial estimates T1 (4.1) ff -------------- (5.2)

can be approximated by n

nr 2 2i i5 [yi- ol--(iioF6 1(i,]Y iw

i=1 k=1 The next step is to minimize (5.1) with respect

n P ]2w. to t (x ) ... p(Xp) given it. This is the
(y,-F(TAkk)]io o- Akx, ]io same as minimizing the function

i=l k=l ... (4.2) n

where f is the derivative of F. There -(ij. ... (5.3)

A=1 -iJ is the correction needed to update i=1

the estimate of I, and where w =--wf2 
1

). where now 4/=(y- 4)(-) U
Now the problem is reduced to calculating The function (5.3) is of the same form as

A k'a that minimize (4.2). This may be (4.1), and so the same procedure can be used to

accomplished by using the ACE (Alternating obtain estimates for t1 ..... t once X is
p

Conditional Expectation) algorithm of Breiman calculated using (5.2). One could then proceed A:,'

and Friedman (1985) with the adjusted variable by iterating back and forth between determining

zx(y-F)/f as the dependent variable fitted by a v and determining ij.

linear transformation and with weights given by 6. A toxicological example with two

wf'. covariates. Robertson et al. (1981) presented a

It is to be noted that the values of the group of experiments that tested the effects of

corrections Al .... Ak as evaluated by ACE are weight on the response of the western spruce

scaled to have mean zero and variance one. In budworm (Choristoneura occidentalis Freeman) to

order to obtain the updated estimates of T1 the insecticides. The data analyzed in this section ,

coefficients a,bI1 .... b p in the equation is from one of these experiments wherein each

? insect was weighted and then treated with a

b11 q0+a+ x b kAk(Z) fixed concentration of DDT. The response of each U
k=1 insect to the chemical was recorded after 7 days

need to be calculated. This is done by with the response variable yi-1 if the insect

regressing the adjusted variables z on was dead by the seventh day and yi 0

A1 ... A . otherwise. Plots of the binary response data

S. Semi-parametric probit model, This versus the two covariates, dose per weight and

model extends the one discussed in section 4 in weight, are shown in figure 2.

tha the extra parameter ff for the background
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Figure 2. Mortality of insects, treated with Figure. Non-parametric transformations of

DDT, versus dose per weight and covariates for Pff7 data.

weight. The area of the circles is

proportional to the number of whether both variables are needed in the model

observation. we also ran a probit regression, using GLrV.

with the transformed variables as covariates.

The objectives of this study were two-fold. The resulting scaled deviances for the models

The first was to determine whether insects with the nouparametric functions and the model

respond to toxicants in proportion to their body with a parametric predictor using a logarithmic

weight. The second was to decide on a transformation are given in table 2.

mathematical form for the predictor q as a The large and significant decrease in the

function of dose and weight. The plots in figure deviance between models (A) and (8) is a

3 are the transformed variables, tI (z) and subs antial indication that the weight covariate

t (z ) versus the original variables is needed in the mode] The similarity in the
2 2
z1 dose per weight and x weight. The deviances for models (0) and (C) is an

initial values used were obtained by fitting a indication that the logarithmic transformation

parametric probit model using the GLIX package, is most probably the appropriate transformation

The plots in figure 4 are the transformed to be used for these covariates.

variables versus the logarithms of the dose per In cortclision, it was found that the commonly

weight and weight respectively. The nearly used logaritamic transformation remains

linear shapes of these graphs suggest that a appropriate when consideration is extended to a

logarithmic transformation might be appropriate broad family of transformations.

for these variables. In order to determine
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Appendix $fae tr 2 sex 2
$caic ldc.43I30%log(d) ILOGAITH1( TEN Or DOSE

The following macros are used together with $caic i=%gl(%i,1) :u--ne(d,O)

the OWN facility of GLIN to fit the parametric --- invalid function/operator arguments(s)

probit model of section 2.* In these macros ip $a IGNORE THE INVALID FUNCTION ERROR MESSAGES.

represents the original linear predictor p'xu $yvar r $err b n $link p $wei u

and %lp, represents the modified linear predictor $fit Id I THIS PRODUCES INIT. ESTIMATES USING

with the new explanatory variable m. I DATA WITH DOSE GREATER THAN ZERO.

Sc OLIN MACROS scaled

$sub tile probit cycle deviance df

$mac fv 4i 114~.7 18

$switch %s mext $calc lp-u*%lp :y~r/n

$caic %3=1 :phez%np(lp)gu: $yvar y

dphe:(1-u)+u'(%exp(-.50 1p5*2)/%sqrt(24%pi)) --- current display inhibited

$caic m(i)=(1-phe)/((1-%pe(a))4dphe) $cale %pe(l)=.05 I INIT. VALUE FOR BEG.

$calc %fv(i)z4pe(a).(1-%pe(a))4phe Scale %lpzm=0 I SETS INIT. VALUE FOR %lp AND m.

$endm Scale b=1 $fac b 1 I A DUMMY FACTOR NEEDED TO

Smac dr $calc %dr(i)z1/((1-%pe(a))*dphe) I HAVE CONTROL OVER %pe ORDER

$endm I IT WOULD NOT BE NEEDED WERE

$a vs Scale %va_-f'v*(1-%fv)/n I 'a' NOT A FACTOR.

$calc %va--%if(%le(%va,O),.OOOOOO1,%va) $own fv dr va di

Sendm Swei $scale 1

Smac di $a THE FOLLOWING FIT IS FOR MODEL B OF TABLE 1.

$calc %dic-2*n*(%yvl% log( %fv/%yv)+ $ fit a .m~sex .tr.u~b. ld-%gntd 9$

)V (1-%Yv)*%log( (1-%f'v)/( 1-%yv))) --- invalid function/operator argument(s)

$ enda scaled

$mac mext $extract %pe cycle deviance df

Icalc lp(i)=%lp-%pe(a)Om 5 23.08 18

$endm

$retu rn estimate s.e. parameters

11 0.530Se-01 0.1500e-01 a(1).a

12 1.4138 o.1685 b(1).ld

Sc A OLIM SESSION To FIT PROBIT REGRESSION 3 1.056 0.1393 sex(1).tr(1).u

WITH NON-ZERO BACKGROUND TO INSECTICIDE '4 -0.1006 0.1123 sex(l) .tr(2) .u

DATA IN SECTION 3. 5 1.071 0.1J401 sex(2).tr(2).u

$caic %i=241 ISETS UP SAMPLE SIZE. 6 0.31486 0.11141 sex(2).tr(2).u

$ units %i $data d r n tr sex tREADS IN DATA, scaled parameter taken as 1.0000

$dinput 7$

$ input 8 probit$ IREADS IN OWN MACROS. $stop

Scalc azl $fac a 1 ISETS UP NUMBER OF DIFFERENT

IBKG. PARAMETERS TO ESTIMATE.
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ON THE FITTING AND FORECASTING OF VECTOR TIME SERIES MODELS

B.L. Shea, Numerical Algorithms Group Ltd., U.K.

1. INTRODUCTION matrices a2 Ft = E(V V) are generated by the

Let Wt  = (wlt W2t ,...Wkt)# ,  (t = 1,2,...,n), recursive equations

denote a vector of k time series assumed to be at~t-1 = Aat-1 + RVt-1
jointly stationary and generated by the model Vt = t -htlt-1

't - 0lit-1 - -pt-p = CC e1"t-1 Ptlt_ 1 = APt 1 A'

-qct-q (1) Ft = hIPtt-lh + Q

where Rt = Wt-p denotes the deviation of Wt a= a it_ + P tlt-hFt Vt

from its mean P and t = (£lt'c2t'""kt)'' Pt = P tt- p - tt-lhF thIPt~t-1

(t=1,2,...,n), denotes a vector of k residual Starting values are given by setting a1 10  0 0
series assumed to have a multivariate normal and calculating P using the method
distribution with zero mean and positive 110
definite covariance matrix E = o02Q. We shall described by Jones (1980). Ansley and Kohn
also assume that E (etse') = 0 for t 4 s. (1983) discuss a similar procedure for a

(1) is called a vector autoregressive-moving different state space representation which is
avera e a) presof utorerss(e-minless efficient whenever p4 q. If we have no
average (VARMA) process of order (p,q). missing observations then the following
* = (01,02,..., ) are the p k x k matrices recursive equations should be used (see Shea

of autoregressive parameters and e= (I )e2, (1986))
...,e q) are the q k x k matrices of moving

average parameters. (1) may be written in t t tlt-1
the state space form -1= Tat1 + Ft1

ha t = V t - t attI - - tV-
t t = K t 1 + TLt_ 1 Mr_ 1 (hIL t)'

Ft = F t + h'Lt 1 Mt _1 (hILt1)'

where a t is the state vector of length kr with Mt = Mt1 - Mt-_ (hL tl)'F t-IhLti1Mt-1

r maximum (p,q) and Lt = TL K - I hIL

I .0, e,-11 t1 -1t-1 t-1

e2 I *2- e. 0 where T = A+Rh' is just the matrix A with O's
replaced by 0's. Initial conditions are given

A= , R= h= by a1 [0 = 0, K1 = L1 = TP11 0h + RQ,

0F 1 - P1h+ Q, m1  -F-1 . The matricestr 0r- rh F =1

Mt (k x k) and Lt (kr x k) unlike o'F t and the

(Note that 0i = 0 for i >p and 9. = 0 for j >q). well known Kalman gain matrix oK t = E( Vt+Vt )

Let at It1 denote the linear minimum mean have no physical interpretation as covariance
matrices.

square error (MMSE) estimate of at given data
up to time t-1 and o'P tlt_ the covariance For a stationary (and invertible) process

matrix of this estimation error. Similarly let E ((Vt - Ct )(Vt - Ct )') tends to zero as t
at denote the MMSE estimate of at given data up becomes large. Thus the Vt's are the linear
to time t and o2Pt the covariance matrix of MMSE estimates of the residual series.

this estimation error. Then it can be shown
that the log likelihood function is given by a' (which is typically taken to be the top
the expression left hand element of E so that Q(1,1) = 1)

can be differentiated out of (2) to yield a
log L (0,6,pG, ,Q) = -nk log (2wo) - concentrated likelihood function which can be

2 re-arranged as a sum of squares. Thus

n n maximising (2) can be shown to be equivalent
- 1 log fl IFtI - I E VFI Vt (2) to minimising

2 t- 20 t=I n /nk nt1 -I

For t=1,2,. .. ,n the one step ahead prediction ( 1t1) T VtF t  Vt  (3)

errors Vt and the corresponding covariance
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To avoid problems of underflow or overflow in conditional on W1 ,W2 ,...,W n
calculating b IFt[ the product can be stored in

the form a2b (Martin and Wilkinson (1965)). It an+1 1 n = Ta n+1 1 1 n + R E(cIn+I_[Wi,W 2 ,...,
follows that if the model (1) is stationary
then the Ft's will be positive definite and Wn

thus in calculating Ft
1 the Choleski = Aann 

+ RWn I = I

factorization of Ft (CtC with Ct lower = Ta n+1 n1 1  , 1 > 2

triangular) will be obtained as a by-product of
the inversion process. Thus we have We also have

n 1/nk P AP A' 11
(Ot Ft 1) = D2 (n,k) n+ln nin

I n k TP
where D(n,k) n ni Ct(i,i) = n+Illn T' + RQR, 1 2

t1 i=1 a and Pnln are easily recovered from the

If we let v* D(n,k)C-IVt and denote equations

the jth component of v* (t=1,2,...,n, j=1,2,..., anln = anln1 + P hF V
t nmnnn1 ~-i n n

k) then (3) reduces to F
nk Pnin Pn~n-1 - Pn~n-1 hFln n-I
Z a2  (4) n-i

s=! with Pn~n-1 = PI1 O + EL.M.L!

Computation of CIvt is speedily carried out Probability limits for forecasts are calculated

using back substitution. A non-linear least as follows.
squares algorithm such as that of Marquardt
(1963) may be used to search for the maximum Let V n+1  Wn+l - h'an+lln ' then
likelihood estimates of s, e, Q and p . Using
such an algorithm has an advantage over just Vn+l =N(O'o'Fn)
using a general purpose optimization routine n
in that such routines are numerically more Now 1 1 V1 FtV has a X' distribution (on

stable and generally converge to the minimum t t

more quickly. Another advantage is that a
reliable estimate of the Jacobian matrix for nk degrees of freedom) independent of Vn+l
calculating asymptotic standard errors of
parameter estimates is usually obtained as a Suppose interest centres on the jth time series.
by-product. Let V*+1 denote the vector Vn+l where the jth

and kth components of Vn+l have been inter-

2. FINITE SAMPLE PREDICTION changed. Also let F+ denote the matrix

MMSE forecasts of future series values are F with the jth and kth row and column
easily computed as follows. Let us assume we n+ tr
wish to forecast from time origin n and let interchanged. If C+ 1 C* is the Choleski
a n n+l
n+l1n = E(o nn1 JW1,W2,.Wn ) and o n+1I n =decomposition of F*- with C*+ lower triangular

n+1l n 1
E{(n+l an+iln)(Mn+l - an+lin)'}. if 9n(1) then

denotes the linear MMSE estimate of Wn+l given I C' 11V = N(O,I)

W1,W2,... Wn then n(1) = E(Wn+1IWIW2 ,. ,Wn) o

= h'an It follows that OF Let d+ be the (k,k)th element of C +, then
han+lln' tflosta ' n+l n 1 n~l te

2 o(h'P h + Q), called the mean dn+ (WnO - n() 1 . t
_ n+11n n I n+l n nk

square error of prediction matrix
a

= E{(W n+- Qn(1)) (Wn+ 1 - n())'). Since so that w()( 1 )± t' are 100(-0 %
n d - ,nk

n+j '

Q =To Re 1  and h' -W
n+l nd- + +1-a n+ = + probability limits for

- Cn+l we have on taking expectations w(J) where n - VF V
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PREDICTION INTERVALS FOR THE GAIlS DISTRIBUITION

Wel-Kel Shiue. Southern Illinois University-Edwardsville
Lee J. Bain, University of Missouri-Rolla

ABSTRACT P[LyXI,... ,Xn;a) < "] = 1 -

Approximate prediction intervals for a single An upper I - a level prediction limit is obtained
future observation or for the average of m future by replacing 1 - a with a,
observations are developed for the two-parameter
gamma distribution where both parameters are UY(Xl...Xn-a)- Ly(x I .... xn;l- 0).
considered unknown. The methods are illustrated
with three examples. A prediction limit for the total of m future

observations, such as the total amount of
INTRODUCTION rainfall, may be useful. In reliabilityThe Pearson Type III or gamma distribution is applications a lower prediction limit for the
a classical distribution which provides a useful total operating time which will be realized from
model in many fields of application. Statistical a component with m - 1 spares would be
methods for this distribution when both meaningful, for example. It is clear that for a
parameters are unknown have been slow to be total T - m Y,
developed, primarily because the parameters are
not in the convenient location-scale form. LT(xl ... ,xn;m) = m L-(xI..... xn;a).
Consider the gamma density function given by

APPROXIMTE PREDICTION INTERVALS
I K- x / xFor a random sample of size n from a gammag(x;,) r() x e-X > 0; K, 0 > 0. distribution

2 n X - X2(2nK).
The mean is p= E(X) = Ke. The parameters K and e 0
are referred to as shape and scale parameters,
respectively. Optimum tests for 8 with c as an For m future observations, Y .... Ym,
unknown nuisance parameter are derived by
Engelhardt and Bain (1977), based on the 2 mY 2
conditional distribution of I given X, in which 1 e X (2mK)
and I denote the arithmetic and geometric sample
means respectively. Tests for K with 8 unknown and it follows that
may be based on the maximum likelihood estimator
(m.l.e.) or, equivalently, on S = ln(1/). -F(2nK, 2mK)
Bain and Engelhardt (1975) provide approximate 7
distributional results for S. Grice and Bain
(1980) provide approximate tests or confidence where F(a,b) denotes Snedecor's F-distribution
limits for the mean when both parameters are with a and b degrees-of-freedom. Note that
assumed unknown, and this method is extended to letting m = 1 gives the important special case of
the two-sample case by Shiue and Bain (1983). a single future observation, 7 = y.
Some related discussion concerning tolerance Prediction intervals could be easily computed
limits is given by Sain, Engelhardt and Shiue if K were known since, for example,
(1984). The purpose of this paper is to extend
these results to obtain prediction intervals for
a future observation or for the average of m PC < f t 2n 2MK)1
future observations. P f_ ,

Suppose xl,... ,xn denotes a random sample of
size n from a gamma distribution, then a lower P[y > X/fI. (2nK, 2mK)]

1 - a level prediction limit for a future
observation, y, is a function of the sample, say = 1 - a,Ly= Ly(xI,.... ,Xn;a), such that

and 1/f1.'(2nK, 2mc) would be a lower 1 - a level
P(Ly(XI,... ,Xn;a) _ Y1 - I - . prediction limit for V. Following the procedure

of Grice and Bain (1980) the unknown K is
It can also be shown (in general) that replaced by the m.l.e. , and then the

probability level actually achieved is studied.
P[Ly(xi,... ,xn;a) I Y] = E[1 - Gy(Ly)] The true probability level in this case will be a

= I - a, function of K , and it may differ substantially
from the nominal level for small n, but it is

and therefore a 1 - level prediction interval again found that the achieved level is fairly
is also a (1 - a)-expectatlon tolerance interval. constant over K. Thus, it is possible to adjust

A lower 1 - a level prediction limit for , the initial level to more nearly achieve the
the average of m future observations, would be desired level when is used. That is, we
Ly(xI.... ,xn;a) where propose a lower prediction limit of the form
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where 0 is adjusted to give approximately the and
correct 1 - m level. The good rational
approximation for K given by Greenwood and Durand d1 - - ln[/d]} "n+l, B < d
(1960) is used in the study, where N = ln(X/X)
and .. 2= P2 (0) = -(-d){1 - 1ln[(18)/(1d)]n+l

.5000876 + .1648852 - .0544274112 B > d.
M

0 < M < .5772, We now observe from Table I that the actual

levels are approximately constant over the entire

8.898919 + 9.059950M + .9775373M2 range of possible K values even for moderately
9 2  small sample sizes of 10, or 20. The Monte Carlo

M(17.79728 + 11.968477M + M2) values may not be totally accurate to the three
digits shown in the table, but they show the

.5772 < M < 17, general change in the a values between the
limiting values at K - 0 and K ' -.

Thus for an initial B value, entering Table 1
= 1/i1 with K K i would give a close estimate of the

actual a value associated with the prediction
M > 17. limit. It would ordinarily be more helpful to

know what initial B value is necessary to
approximately provide a specified a level. As

Now, let suggested in the earlier cited references, the
simple procedure of inverting the infinity values

a1 = Pl(K,B) = 1 - P[Y < X/f (2nK, 2MK)] is again recommended. Table 2 gives the value of
- B which yields pt(.,B) = a for the commonly used

and values of a, and this value of B is then used to
compute the prediction limits. For n > 40

c 2 = P2 (ic,8) = 1 - PLX/f .3(2n, 2w) < Y], interpolation on 1/n may be followed. Note that
Pl(-,B) o P2($,B ), and also that the infinity

then values do not depend on m, so that only a small
simple table is required. This simple adjustment

Uy(x 1 .... ,xn;al) = X/f,(2nK, 2ne) should be adequate for practical applications for
any range of K values. The approximate

and probability levels are less accurate at very
small sample sizes, but the inherent sampling

Ly-(xI,... ,xn;a2) = Y/fl.0(2nK, 2m). variation will be relatively larger for small
samples and this cause for lack of precision in

The values of a1 and a2 approach B for large n, the results will generally be of relatively
but as noted they differ from o and depend on r greater importance than the small inaccuracies in
for small n. Since the dependence on the unknown the stated probability levels.

K is small, our approach is to determine Use of Table 2, of course, gives more accurate
guidelines for selecting a value of B which will results with problems concerning larger K values.
approximately yield a desired specified a value. For example, In reliability problems in most

Values of al and 02 were estimated by Monte cases K > 1, since K > 1 corresponds to having an
Carlo simulation for several B values over a increasing failure rate with age. In other
range of K values, and the results are given in applications small K values may sometimes occur,
Table 1. The Monte Carlo values are based on and with very small K and small n a closer
10,000 gamma variates generated using the INSL approximation would be obtained by inverting the
subroutine GGAMR. Asymptotic values were derived pi(O,0) values. These values depend on i and m,
mathematically for the K = 0 and K = - lines in a but this is not a difficulty since they can be
manner similar to that followed in the papers inverted in closed form. For specified m1 or a2
cited earlier. In particular, the K = - values we have
are the same as those obtained by Grice and Bain
(1980). The K = 0 values may be obtained in a s, = (1-d)exp{n[1 - ( 1 < 1 - d
manner similar to that used in Shiue and Bain

(1983) except is now based on only a sample
size n. In this case letting = 1- d expn[1 - /(n+ 1 > -

d n = and1 d= n)m 
dwehave

d(=n+mad)1 - n[+mwehave 
82 = d exp (n1l - (dt-) 1/(-n+1),}, (2 < d,(1d{ 1 n[B/(l-d)]}-n+1,2d

= (Osa < I - d a2 = 1- (1-d)exp(n[l - (2) l/(-n+1)]} a2 > d,
I - d{1 I ln((1B)/dl, where d - n/(n+m).

Improved results are obtained if the above
1 -d values are used for problems concerning small
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values of K, say if < 1, and Table 2 is used if EXAMPLE 2
S1. Note that 81 , a1 when m/i(n+m) =a1, so Lieblein and Zelen (1956) present n = 23
little adjustment of the nominal level is needed values of the endurance, in millions of
in this general range of values for small K revolutions, of deep-groove ball bearings. A
This primarily applies to the case of upper gama distribution is suggested as an appropriate
prediction limits for a single future model by Bain and Engelhardt (1980). For this
observation, data 7 = 72.22, x = 63.46 and k = 4.025. Suppose

It is clear that the outlined procedure will a lower 90% prediction limit is desired for the
usually require interpolation on both endurance of such a bearing. We have a = .10,
degrees-of-freedom and the probability level in n = 23, m = 1 and 0 .088 from Table 2. Thus
the F tables. This is inconvenient, but it can
be carried out in a few minutes on a calculator. Ly(x I . xn;.10) /fl.a(2nK, 2m-)
Also using the nearest integer degrees-of-freedom
should be acceptable in most cases at least for = 72.22/f 912(185.2, 8.05)
preliminary work. It is also possible to obtain

a degree-of-freedom less than 1 if say m = 1 and = 72.22/1.77
k < .5, which would require numerical integration
or some approximation to obtain the critical = 40.8.
value. The reader may refer to Pearson (1968)
for more accurate interpolation procedures. Suppose a lower 90% prediction limit is
These inconveniences would, of course, be removed desired for the total life time of a bearing and
if the procedure is computerized. It may also be 2 spares. We have m = 3,
worth noting that by the inherent nature of the
problem one will necessarily have very wide LyXl,....Xn;.10)
intervals for the m = I and small K case. For
example if the parameters are assumed known with 72.22/f.9 12 (185.2, 24.15)
K = .5 then

S49.47,
P[(/2)x2.0 2 5 (1) < Y < (e/2)x

2 .975(1)] = .95,

and a lower prediction limit for the total
which gives the interval (.0005e, 2.51e). lifetime of 3 bearings is

NERICAL EXAUPLES Ly(xl.... xn;.10) = 3(49.47) = 148.4.

Mielke and Johnson (1974) consider a gamma EXAMPLE 3
model for the following accumulated streamflow Crow (1977) considers a gamma model for hail
data from a U.S. Geological Survey station in data measured by hail/rain separators which were
Colorado. reported in Crow, et. al., (1976)., For 17 seeded

days he obtains the estimates K = .466 and
46.65 29.96 25.49 11.85 W = 13.249. Suppose a lower 95% prediction
41.01 23.64 30.90 19.51 interval is desired for the total amount of hail
9.06 41.06 57.04 30.93 measured on five days. We have
15.94 29.70 37.51 38.78
17.25 50.80 31.93 15.31 L (xl, .. ,xn;Oi2 ) = /fls (2nK, 2m.),
47.11 75.24 25.39 14.69 2
18.54 45.80 39.64 38.14 where a2 = .05, n =17, m = 5, d = 17/22 = .773,
53.93 39.84 14.40 28.24 and B2 = .773

/o.05 y/16In this case i = 4.5 and W = 32.67. A 90% exp{17[l - -= .035.
two-sided prediction interval for a future

accumulated streamflow reading is given by

(Ly(xli..... xxn;2), Uy(xl, ... xn;al)) Lj(xI,... ,xn;.05) = 13.249/f.96 5 (15.84, 4.66)

= (W/fl_6(2n,,2K), /f,(2nK, 2m-)), = 13.249/6.17

where al = a2 = .05, n = 32, m = 1, and from = 2.1.
Table 2, 6 .042. Thus

For the 5 day total, T = 5y, and a 95% lower
(Ly(xI..... xn;.05), Uy(x, ... ,xn;.05)) prediction limit for T is 5(2.1) = 10.5.

= (32.67/f.958(288,9), 32.67/f .042(288,9) REFERENCES

= (32.67/2.93, 32.67/.504) Bain, Lee J., and Engelhardt, Max (1975). "A
Two-moment Chi-Square Approximation for the

= (11.2, 64.8). Statistic Log ((/i)," Journal of the American
Statistical Association, 70, 948-950.

In reliability applications this data could
represent the times-to-failure of a certain type Bain, L.J. and Engelhardt, M. (1980).
component, and one would wish to predict the "Probability of Correct Selection of Weibull
time-to-failure of a new component being placed Versus Gamma Based on Likelihood Ratio,"
in service. Communications in Statistics, A9(4), 375-381.
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TABLE 1

a = Pzc 's1  2 = P2(iK.)

8 a
n m c .01 .025 .05 .10 .01 .025 .05 .10

5 1 0 .028 .046 .070 .113 .066 .099 .139 .203
.2 .028 .046 .071 .117 .063 .092 .128 .184
.5 .034 .054 .080 .128 .066 .094 .129 .183

1.0 .038 .059 .086 .134 .063 .090 .123 .175
4.0 .045 .068 .097 .146 .058 .084 .116 .167
- .053 .077 .108 .158 .053 .077 .108 .158

10 1 0 .015 .030 .054 .099 .032 .057 .092 .151
.2 .015 .031 .056 .105 .030 .054 .086 .140
.5 .018 .036 .062 .111 .033 .057 .089 .143

1.0 .021 .039 .065 .115 .033 .056 .086 .139
4.0 .024 .043 .071 .121 .031 .052 .082 .134
- .027 .048 .077 .128 .027 .048 .077 .128

20 1 0 .011 .026 .050 .097 .019 .040 .070 .125
.2 .012 .027 .052 .102 .019 .038 .067 .120
.5 .013 .029 .055 .105 .020 .039 .068 .121

1.0 .014 .031 .056 .106 .019 .038 .066 .118
4.0 .016 .033 .059 .109 .018 .037 .065 .116
- .018 .036 .063 .113 .018 .036 .063 .113

5 5 0 .049 .076 .110 .164 .022 .042 .070 .120
.2 .042 .065 .095 .146 .020 .038 .065 .115
.5 .046 .070 .100 .151 .023 .042 .070 .121

1.0 .048 .072 .102 .152 .024 .044 .072 .122
4.0 .051 .075 .105 .156 .026 .046 .075 .128
- .053 .077 .108 .158 .027 .048 .077 .128

10 5 0 .022 .042 .070 .120 .028 .052 .084 .140
.2 .020 .038 .065 .115 .024 .044 .073 .124
.5 .023 .042 .070 .121 .026 .047 .076 .128

1.0 .024 .044 .072 .122 .027 .047 .076 .127
4.0 .026 .046 .075 .126 .028 .047 .077 .128 5

- .027 .048 .077 .128 .027 .048 .077 .128

10 20 0 .028 .052 .084 .140 .022 .042 .070 .120
.2 .023 .042 .070 .122 .020 .038 .065 .115
.5 .025 .045 .074 .126 .023 .042 .070 .121

1.0 .026 .047 .075 .126 .024 .044 .072 .123
4.0 .027 .048 .077 .128 .026 .047 .075 .126

.027 .048 .077 .128 .027 .048 .077 .128

20 10 0 .015 .033 .060 .110 .018 .037 .066 .119
.2 .014 .031 .057 .107 .016 .033 .060 .110
.5 .015 .033 .059 .110 .016 .034 .061 .112
1.0 .016 .033 .059 .110 .016 .034 .061 .111
4.0 .017 .034 .061 .112 .017 .035 .062 .113
- .018 .036 .063 .113 .018 .036 .063 .113
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Table 2. Values of a for a p

n .005 .01 .025 .050 .075 .100 .250

5 .0000 .0000 .0010 .0086 .0234 .0432 .2038

10 .0003 .0015 .0086 .0267 .0486 .0724 .2294

20 .0017 .0046 .0159 .0380 .0619 .0866 .2403

40 .0030 .0070 .0203 .0440 .0685 .0934 .2453

- .0050 .0100 .0250 .0500 .0750 .1000 .2500
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COMPUTER-AIDED SURVEY METHODS

Robert D. Tortora and Frederic A. Vogel
U.S. Department of Agriculture

J. Merrill Shanks, University of California at Berkeley

Abstract Data Management System

This paper describes computer-assisted survey The Data Management System affects all areas
methods that are being planned, tested, and imple- of SRS's work. It includes the basic sampling
mented by the Statistical Reporting Service (SRS) frames, raw survey data, sample estimates and
of the U.S. Department of Agriculture for its 44 their measures of error, and administrative data,
data collection offices across the United States. such as budgets, salaries, equipment inventories,
The major activities include developing a Data etc. It also includes all of the functions that
Management System along with Computer-Aided Samp- SRS uses to design, implement, collect, and pub-
ling Frame Maintenance, Computer-Aided Survey lish survey data. Figure I illustrates the re-
Management, and Computer Assisted Telephone Inter- latlonship between the sets of data SRS uses to
viewing Systems. conduct its day-to-day operations and functional

activities.
Introductivn The major feature of the data management

system is that it will efficiently integrate the
The Statistical Reporting Service (SRS) admin- data sets with the functional activities. To

isters the United States Department of Agricul- implement this integration, the data management
ture's program of collecting and publishing cur- system development is divided into three parts.
rent national and state agricultural statistics. These include the data dictionary/data directory;
SRS is totally dependent upon computer technology i.e., the metadata for SRS, the logical design
to carry out this service. The following para- and physical implementation of the data base
graphs outline characteristics of the SRS survey management system, and the applications programs.
and estimating program that affect its use and A data base management system called ADABAS and a S
development of computer methodology. 4th generation language, called NATURAL, for

Estimates for about 120 crops, 45 livestock, application program development are being used.
and 50 farm economic items are published in about Instead of developing the data management system
300 national reports each year. In addition, for all activities at once, the project has been
estimates for many of these items are also pub- subdivided into subject matter areas. These
lished at the state and county level. The reports areas will be modeled to describe the data ele-
vary in frequency by item, but the frequency ments required by the data users and to define
varies from weekly to monthly, to quarterly and the relationships between the data elements.
annually. Table 1 lists the 16 subject matter areas. Work

The dynamic agricultural markets rely upon has begun on the budget model and the equipment
very timely information. Data collection periods and supply model. As application programs are
are generally limited to 10-15 days with the pub- being developed for these two models, modeling
lished estimates following within 2-3 weeks. To will begin for specialty crops.
illustrate, six major surveys that included about The remainder of this paper discusses three
150,000 farm operators were conducted during the functional activities associated with the data
December 1 - January 10 time period. Reports management system; viz., computer-aided survey
were published as early as December 22 and all management, computer-aided sampling frame mainte-
were published by February 10. The actual release nance, and computer-assisted telephone interviewing.
dates for all reports is announced about one year
in advance. Computer-Aided Sampling Frame Maintenance

The need for timeliness has been met by devel-
oping parameter driven application programs for SRS maintains data on three frames: A list
data edit, analysis, and summary. The data col- frame, area frame, and release frame. The first
lection and data capture activities are distrib- two frames are used for survey design, data col-
uted to 44 State Statistical Offices. However, lection and analysis. The release frame contains
the current mode of data processing is batch information on nonfarmers that should receive
oriented. The 44 data collection offices communi- survey results. The list frame contains 1.8 mil-
cate with the Washington, D.C. headquarters over lion records. The area frame contains over 65,000
a leased communications network. The IBM main- records and the release frame contains over 50,000
frame, used for the majority of presurvey, survey, names nationwide. Of course, by data collection
and post-survey processing, is also leased and is site the number of records may vary from less
located in Orlando, Florida. than 10,000 to more than 100,000. All of the

To improve the timeliness and quality of the processes associated with frame maintenance are
agricultural data that SRS collects, this paper currently conducted in a batch environment with
will describe the four systems: Data Management transactions being hand coded to forms and those
System, Computer-Aided Sampling Frame Maintenance forms then being key entered. The computer-aided
System, Computer-Aided Survey Management System, frame maintenance activities will allow SRS to
and Computer-Assisted Telephone Interviewing search and display records, add new records, and
(CAT) that will create an on-line real time maintain and change records in an on-line envi-
processing environment. ronment. Search and display will be used for
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on-line overlap/nonoverlap determinations and the questionnaire displayed on a cathode ray tube
duplicate record detection. Improved overlap/ and respondents' answers are keyed directly into
nonoverlap determination procedures reduce a the machine for editing and retention. SRS has
major source of nonsampling errors in dual frame been working jointly with the University of
sampling (Vogel, 1975). Improved detection of California at Berkeley since 1980 to test,
duplicate records reduces the possibility of dup- develop, and Implement the Berkeley/USDA CATI
licate records existing in the list frame. This system. ]/ SRS currently has 11 field offices
ensures that correct probabilities of selection operational using CATI on super micros operating
are used for the list frame estimators. Duplicate in a UNIX environment. 2/ Late this summer, four
records can occur because many farms and ranches more field offices will receive the hardware
are operated as partnerships or have operation necessary for CATI operations. The major develop-
names that can occur in the frame along with indi- ment effort in this area for SRS will be the
vidual names. The add record function will be testing and implementation of CATI in a MS-DOS
used to add new records to the frames. Examples environment using a Local Area Network (LAN).
of the use of this function include adding the The CATI software has been successfully loaded on
new names associated with the 20 percent rotation a LAN. Operational testing will begin this
of the area frame and the continual addition of summer.
new names to the list frame as new sources of
farm and ranch names are found. The maintenance Summary
and change function includes updating the names
and addresses of farmers and ranchers as well as The distributed processing requirements de-
adding, deleting, or changing the auxiliary infor- scribed above are essential to operate an effi-
mation describing a farm operation such as number cient statistical organization. To improve the
of acres, cattle and hog inventories, etc., used timeliness and quality of agricultural data in
for sampling purposes, the U.S. the Statistical Reporting Service is

All of the data used in this system will be testing, developing, and implementing new systems
accessible on-line. Besides the name, address, to process in an interactive environment. These
and phone number of each farm or ranch, it will include a Data Management, Computer-Aided Frame
include: Up to 100 items of auxiliary informa- Maintenance, Computer-Aided Survey Management,
tion for sampling purposes; identifiers indicat- and Computer-Assisted Telephone Interviewing
ing the surveys in which the unit was selected; Systems.
information about the publications the sample
unit should receive; alternative names for the Table 1. - Subject Matter Areas for Data Modeling
sampling unit; and, finally, a "comments" section.
This system is also being implemented with ADABAS. Field Crops Labor, et al

Specialty Crops Area Frame
Computer-Aided Survey Management Livestock List Frame

Dairy Release Frame
As described in the Introduction, SRS has a Poultry Personnel

critical need to keep track of and be able to Prices Paid Budget
report the status of several surveys being con- Prices Received Equipment/Supplies
ducted either simultaneously, or with consider-
able overlap in data collection activity. The Footnotes
Computer-Aided Survey Management system will meet
this need. This system will provide ad hoc in- .1/ For a more complete description of the SRS
quiries about the survey process or produce aggre- CATI environment, see Tortora (1985). For a more
gate reports describing survey status, complete description of the CATI environment in

Information the system will produce will in- general, see the paper by Nicholls and Groves
clude reports about the location of sample units (1986) in these proceedings.
by geographic area--useful in interviewer assign- 2/ UNIX is a trademark of AT&T Bell Labs.
ments. Other reports will categorize sample
unfts by surveys--useful in grouping question- References
naires that have to be completed by the same re-
spondent for several simultaneous surveys. Nicholls, W. II and R. Groves (1986). The Status
Reports that describe sample units by mode of of Computer-Assisted Telephone Interviewing.
data collection--mail, telephone, and face-to- Proceedings of Computer Science and Statistics:
face--will also be produced. And, finally, 18th Symposium on the Interface. Washington,DC-
reports on survey status from presurvey activities
through data collection and data edit will be Tortora, R.D. (1985). CAT! in an Agricultural
produced to help each field office manage the Statistica Agency. Journal of Official
survey process. Statistics, Vol. 1, No. 3, pp. 301-314.

A prototype system has been implemented on
PC's using a DBASE III. It will eventually be Vogel, F.A. (1975). Surveys with Overlapping
integrated into the main frame environment and Frames - Problems in Application. Proceedings
ADABAS. of the Social Statistics Section, ASA Annual lip

Meeting, Washington, D.C.
Computer-Assisted Telephone Interviewing

CATI replaces the paper and pencil question-
naire historically being used for telephone data
collection. The telephone interviewers now have
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TWO MRPP RANK TESTS AND THEIR SIMULATED POWERS FOR SOME ASYMMETRIC POPULATIONS

Derrick S. Tracy, University of Windsor

ABSTRACT and AIJ = IR(X1 )-R(Xj)I
v 

, R(XI) being the
Two rank tests, based on multiresponse rank of X For v=l and 2, they denote the test

permutation procedure, are compared with respect statistic by 6 and 62 respectively. With

to their empirical powers, when sampling from 1 2
underlying Weibull and gamma populations, for g+l= , g 2, v - 2, n1  n2, the MRPP test

different parameters. Simulated powers of the based on 62 is equivalent to the two-sided
test statistics against various location shifts ni-I
are examined under Pearson Type III and Type VI Wilcoxon test. For g > 2, Ci - N-K, 62

distribution approximations. The relative gains is equivalent to the Kruskal-Wallis test. But
in power depend upon the values of the parameter, when V 0 2, N = K, r - 1 and Ci . ni/K ,

INTRODUCTION Brockwell, Mielke and Robinson (1982) show that
6 has a non-normal non-invariant distribution,

For most tests of hypotheses, the test and its asymptotic distribution depends on the
statistic is derived under several assumptions, underlying distribution of observations.
such as normality and homogeneity of variances. For v - 1 , Tracy and Tajuddin (1986) study
To avoid making such assumptions when analyzing the distribution of 6 for large samples when
multiresponse data, Mielke, Berry and Johnson 1
(1976) proposed an exact permutation procedure g = 2, and n1 = n2 = N/2 for several underlying
and introduced the MRPP (multiresponse permuta- symmetric populations. Here we consider asym-
tion procedure) test statistic. It is optimal metric underlying populations, taking them to be
when responses are made commensurate with each Weibull and gamma with different parameters. We

other. It is applicable to data at ordinal conduct an extensive simulation study based on
level or higher, as encountered often in social 10,000 samples from the underlying populations.
and biological sciences. The exact permutation Using Mielke et al. (1981) results for the
procedure requires very heavy computations; first three moments of 61 1 and those of Tracy
hence certain approximations are considered. and Tajuddin (1985) for the fourth moment, we

HRPP STATISTICS obtain 8I and 82 of 61 . and the Pearson

Loocriterion 252 - 3B1 - 6 for various values of

Let K t be a p i o svion N . This indicates (Tracy and TaJuddin, 1986)

Let K of them be classified that for N > 34, the Pearson Type VI distribu-
according to some a priori classification scheme tion is a better approximation. We obtain powers
into g mutually exclusive subgroups of 6 both under Pearson Type VI and Type III
SI,...,S9 , with n observations in Si approximations, and compare with the powers of

leaving N-K - ng+1  observations in the excess 62 using Pearson Type III approximation, which

subgroup Sg+l. The MRPP test statistic 6 is is known to be its asymptotic distribution.

weighted average of distances between all pairs THE METHOD
of observations within each of the classified

subgroups. Ts C > 0 We consider 10,000 independent samples of 80
Ii observations from Weibull W( ) populations,

1 with a = 0.5, 0.67, 0.8, 1.0, 1.5 and 2.0. The

are weights with Ci = 1. And case of 8 = 1.0 is the case of the exponential

n j-l1 population. Similarly we consider gamma C(S)
= S S populations, with a - 0.3, 0.5, 2.0 and 3.0.

i (2 IJAI i(I'Si(J The case of G(1.0) is again the exponential.

is the average of a distance measure A We shift the last 40 of the 80 observations
id by k, where k proceeds from 0 to some

between XI  and Xj , where Si(X I) is an appropriate value so that power curves can be
indicator function, taking the value 1 if X drawn. The number of rejections was counted for
i the choice of a - 0.01, 0.05 and 0.10.

is in Si  and 0 otherwise. When the classifi- We present our results for empirical power in

cation is random, each of the N/Hg+l n
i  Table I for Weibull and Table II for gamma under-

1 lying populations. We also present power plots

permutations is equally likely to occur. Thus for these cases, obtained by using the cubic

the value of 6 is likely to be higher than spline method of interpolation. The standard
when the classification is done according to error of any estimated power is bounded by
some a priori scheme. Therefore an a level /(0.5(0.510000 - 0.005. Thus any difference
test rejects 'H0: Classification is random' if in power of more than 2(0.005) - 0.01 is

6 < 6 significant at least at the 5% level of signifi-
-- acance.

Mielke, Berry, Brockwell and Williams (1981) The samples were drawn using IMSL subroutines
consider special cases of 6 with Ci . ni/K for the respective populations.
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TABLE I

Empirical Powers of 61 and 62 for Weibull Populations

Statistic 61 62 61 62 61 62 61 62

Type VI III III VI III III VI III III VI III III

Oa+ 8 
= 

0.5

Shift- 0.0 0.10 0.2a 0.3a

0.01 .0088 .0085 .0087 .7345 .7315 .4789 .9833 .9823 .8534 .9987 .9987 .9637
0.05 .0448 .0444 .0480 .9343 .9332 .7141 .9990 .9990 .9501 1.000 1.000 .9912
0.10 .0927 .0924 .0953 .9774 .9770 .8081 .9998 .9998 .9760 1.000 1.000 .9965

8 = 0.67

Shift 0.0 0.10 0.2a 0.3a

0.01 .0088 .0085 .0087 .1546 .1530 .1268 .5967 .5933 .4420 .8878 .8861 .7309
0.05 .0448 .0444 .0480 .3929 .3906 .3157 .8508 .8492 .6844 .9790 .9784 .8856

0.10 .0927 .0924 .0953 .5571 .5560 .4325 .9345 .9339 .7818 .9945 .9944 .9368

= 0.8

Shift 0.10 0.30 0.50 0.7o

0.01 .0572 .0561 .0599 .6119 .6086 .4983 .9546 .9538 .8744 .9969 .9968 .9792
0.05 .1821 .1805 .1783 .8496 .8478 .7339 .9932 .9930 .9624 .9997 .9997 .9964
0.10 .2959 .2951 .2773 .9286 .9281 .8233 .9987 .9987 .9814 1.000 1.000 .9982

= 1.0

Shift O.lo 0.3o 0.50 0.7a

0.01 .0255 .0252 .0301 .3057 .3034 .2877 .7734 .7715 .7079 .9690 .9682 .9332

0.05 .1032 .1022 .1106 .5682 .5648 .5300 .9319 .9308 .8792 .9956 .9956 .9833
0.10 .1776 .1767 .1862 .7013 .7009 .6500 .9684 .9683 .9325 .9990 .9990 .9927

1=.5 j

Shift 0.l 0.20 0.30 0.4a

0.01 .0146 .0152 .0159 .0462 .0458 .0509 .1131 .1123 .1236 .2315 .2298 .2477

0.05 .0695 .0685 .0754 .1482 .1467 .1613 .2813 .2792 .3082 .4654 .4628 .4909
0.10 .1311 .1309 .1372 .2354 .2346 .2547 .4042 .4030 .4281 .5964 .5958 .6139

Shift 0.50 0.60 0.7a 0.90

0.01 .4008 .3976 .4196 .5898 .5868 .6006 .7489 .7472 .7562 .9475 .9463 .9418
0.05 .6510 .6486 .6641 .8054 .8043 .8109 .9117 .9102 .9090 .9887 .9885 .9869

0.10 .7622 .7609 .7726 .8870 .8869 .8880 .9564 .9562 .9530 .9960 .9960 .9945

S=2.0

Shift 0.10 0.20 0.30 0.40

0.01 .0134 .0133 .0144 .0407 .0402 .0431 .0943 .0930 .1028 .1882 .1860 .2026
0.05 .0656 .0648 .0711 .1320 .1305 .1428 .2421 .2398 .2632 .4003 .3981 .4310
0.10 .1248 .1245 .1311 .2128 .2125 .2274 .3539 .3530 .3844 .5258 .5250 .5602

Shift 0.5a 0.6a 0.70 0.90

0.01 .3269 .3246 .3553 .4956 .4935 .5295 .6588 .6567 .6897 .9018 .9007 .9164
0.05 .5723 .5701 .6053 .7224 .7204 .7574 .8536 .8515 .8745 .9730 .9725 .9790

0.10 .6822 .6817 .7168 .8238 .8232 .8463 .9145 .9144 .9307 .9883 .9883 .9909
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TABLE II

Empirical Powers of 61 and 6 2 for Gavma Populations

Statistic 6 1 2 1 6 2 6 2 61 62

Type VI Ill III VI III III VI III III VI III III

OL+ = 0.3

Shift- 0.0 0.10 0.130 0.20

0.01 .0124 .0120 .0118 .5666 .5616 .3238 .7206 .7176 .4344 .9120 .9104 .6638
0.05 .0492 .0488 .0520 .8512 .8488 .5642 .9320 .9306 .6804 .9878 .9876 .8472

0.10 .0994 .0990 .1024 .9402 .9394 .6812 .9752 .9750 .7776 .9968 .9968 .9036

Shift 0.30

0.01 .9812 .9808 .8512
0.05 .9976 .9976 .9514
0.10 .9990 .9990 .9752

= 0.5

Shift 0.0 0.10 0.20 0.3a

0.01 .0094 .0092 .0102 .1234 .1226 .1018 .4632 .4600 .3360 .7732 .7712 .5914

0.05 .0454 .0444 .0432 .3348 .3322 .2650 .7432 .7408 .5702 .9420 .9414 .8042
0.10 .0922 .0916 .0946 .4918 .4908 .3670 .8700 .8696 .6832 .9784 .9776 .8830

Shift 0.40 0.5a

0.01 .9284 .9276 .7880 .9824 .9820 .9116
0.05 .9878 .9876 .9264 .9978 .9978 .9736
0.10 .9976 .9976 .9614 .9998 .9998 .9868

= 2.0

Shift 0.0 0.10 0.2o 0.3a

0.01 .0100 .0096 .0096 .0200 .0196 .0216 .0636 .0630 .0690 .1496 .1488 .1664

0.05 .0472 .0464 .0518 .0838 .0824 .0884 .1768 .1762 .1934 .3456 .3426 .3628
0.10 .0974 .0966 .1002 .1458 .1446 .1560 .2778 .2766 .2956 .4778 .4764 .4900

Shift 0.4a 0.50 0.60 0.7a

0.01 .3084 .3052 .3176 .5138 .5114 .5114 .7020 .7002 .6908 .8456 .8438 .8360

0.05 .5618 .5598 .5686 .7438 .7424 .7396 .8816 .8802 .8776 .9534 .9526 .9454
0.10 .6774 .6774 .6812 .8378 .8374 .8320 .9376 .9370 .9282 .9790 .9790 .9730

=3.0

Shift 0.0 0.la 0.2o 0.3y

0.01 .0112 .0110 .0098 .0192 .0188 .0212 .0506 .0498 .0556 .1190 .1178 .1298

0.05 .0484 .0474 .0488 .0716 .0710 .0762 .1516 .1496 .1640 .2900 .2880 .3044
0.10 .0970 .0968 .1022 .1240 .1236 .1334 .2386 .2378 .2522 .4064 .4058 .4274

Shift 0.40 0.5a 0.6o 0.7o

0.01 .2472 .2456 .2584 .4130 .4118 .4274 .5986 .5960 .6120 .7706 .7684 .7696

0.05 .4696 .4652 .4950 .6588 .6556 .6722 .8200 .8174 .8250 .9210 .9206 .9230

0.10 .5972 .5966 .6080 .7732 .7730 .7808 .8926 .8922 .8968 .9584 .9584 .9560

416

It ffii rL O



POWER OF MRPP TESTS POWER OF MRPP TESTS
UNDERLYING DISTRIBUTION: W(O.5) UNDERLYING DISTRIBUTION: W(O.67)

N, =N, =40 N, =N, =40

i~ei.-

Li

La *--1.3

L:/

to/ 1.05 Lit Ili /lLS LB t il i .I .I I

FIUR I IUR

4.- / 1 1. 1. ./. . 3 ,1 LS LI I

L ..... I __, * ,-- - - - - - , - I- , ... ... 1L..............

IKIIm MKIi IIIai 1111 45 rnmulmi aNil I mlii ii i r mii
IIU p~s.' jo 4 undf Type Vt S, ... Pi-.:.~ ft 4 ., 11"'. I

-a~ lar a. £,sI Typ 0. -- P.s, few I dWW T"I To

FIGURE 1 FIGURE 2 w

POWE OF RPP ESTSPOWE OF RPP4EST



POWER OF MRPP TESTS P~OWER OF MRPP TESTS
UNDERLYING DISTRIBUTION. w( 1.5) UNDERLYING DISTRIBUTION: W(2.0)

N. =N, =40 N, =N. =40

A'7~

I 1

IILI

.. .. .. .. ... .......

POE4O RP ET 130WO R ET

1,16

~~~~~~............ ................................................................. ............... . .... ............................

I'm to$ 1 ts 1 i LIS LIS an 1.10 1,1 &01 0415 L I 7IS &26.5o to &0 01

lamlls WI I i n miL lIDIII l~ 11111015 w MT sa 51111111
IU - ~ 1. 4 wwdw Typ. W. ILL sPrw Ow 4 .membe 1 Vp

- w fm~ I~ , undo Wp . - p "nw 4 ~,~w lype

FIGURE 7 FIGURE 6

I~OWR OFMRPPTEST POWR OFMRPPTEST



POWER OF MRPP TESTS POWER OF MRPP TESTS
UNDERLYING DISTRIBUTION: G(2.0) UNDERLYING DISTRIBUTION: G(3.0)

N. =N =40 N, =N. =40
LII

,

*61 as~
is,"

ILI ,. .. . .. .... . ........ ... ...... ...
P 1 4 l

11 #WAlM *a - , * 1.4pw wo0

SIMM- I~ Ilb ,aNa., Ip.uiiW.Pw mlb I. Iiy ll

FIGURE 9 FIGURE 10

CONCLUSIONS for larger location shifts. By the time F is
3, 62 has consistently higher power thsn 5

We observe from Tables I and II that for all

underlying Weibull and gamma populations consid- Overall, it seems that 61 performs better

ered, the empirical power of 6 1 under Pearson for more skewed Weibull and gamma populations,

Type VI approximation is always greater than that but as the parameter increases and the distribu-

under the Type III approximation. We therefore tion tends towards symmetry, 62 begins to

plot the power curves of 6 under the Type VI perform better than 61

approximation and those of 6 under the Type ACKNOWLEDGMENT
2 ACKNOWLEDGMEN

III approximation. These are shown by a dotted
line and a solid line respectively in Figures The author is indebted to I. H. Tajuddin and
I - 10. From the tables and the plots, we draw S. K. Siddiqui for assistance in computation.
the following conclusions.

For low values of 6 , i.e., for very skewed REFERENCES
populations, the powers of 6 and 62 increase

very sharply. The powers get close to I by the Brockwell, P. J., Mielke, P. W. and Robinson, J.

time the location shift is 0.30 for W(O.5) and (1982). On non-normal invariance principles

G(0.3). The power of 6 is much greater than for multiresponse permutation procedures.
1 Aust. J. Stat. 24, 33-41.

that of 6 2 for small location shifts. As F Mielke, P. W., Berry, K. J., Brockwell, P. J.

approaches 1, the sharpness in the increase of and Williams, J. S. (1981). A class of

powers of 6 and 6 reduces gradually, with nonparametric tests based on multiresponse
1 2 permutation procedures. Biometrika 68,

6 always having greater power than 62 " 720-724.

For B-1 (the exponential population), the Mielke, P. W., Berry, K. J. and Johnson, E. S.

power of 61 is greater than that of 6 for (1976). Multiresponse permutation procedures
2 for a priori classifications. Comm. Statist.

location shifts larger than 0.20 . A - Theor. Meth. 5, 1409-1424.

For Welbull populations, as F increases to Tracy, D. S. and Tajuddin, 1. H. (1985).

1.5, 6 2 has greater power than 61 for loca- Extended moment results for improving

tion shifts < 0.60, but for bigger location inferences based on MRPP. Comm. Statist. A -

shifts 6 has slightly more power. By the time Theor. Meth. 14, 1485-1496.

F is 2, 6 has consistently higher power than Tracy, D. S. and Tajuddin, I. H. (1986).
2 Empirical power computations of two MRPP rank

61 . tests. Comm. Statist. A - Theor. Meth. 15.

For gamma populations, as B increases to 2,
2 has greater power than 61 for location

shifts < 0.40 , whereas 61 has greater power
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SOLUTION OF LEAST SQUARES EQUATIONS BY
INCOMPLETE OR FACTORIZATION

J. W. Trigg, University of Michigan-Flint
A. K. Rigler, University of Missouri-Rolla

Introduction The finite difference stencil

Iterative procedures for solving E =
large sets of sparse linear equations 11 1-41
have been known for a very long time
but only since the highspeed digital
computer became available in the 1950's that produces a discrete approximation
have these techniques been in popular to the Laplace operator is centered
use. The need to solve discrete ana- over each mesh point, thus producing a
logs of partial differential equations set of nine linear equations in nine
of elliptic and parabolic type moti- unknowns; AW~k.
vated much of the research directed
toward analyzing and improving iter- 4 --1 -l WI 0
ative schemes (3,12). The least 1 4 -1 -1 W2
squares solution of rectangular systems -1 4 -.
of linear equations has received con- -1 4 -1 -1
siderable attention also, but rel- -1 -1 4 -1 -1 • -

atively little of the research has been -1 -1 4 -1 0
focused upon iterative methods. Our -1 4 -] 1
purpose here is to suggest that the -1 -1 4 -1 . 2
discretization of the variational L- -1 4 WI 1
problem associated with the differ-
ential equation leads to a natural The matrix A is banded with five
formulation of a rectangular problem diagonals, it is tridiagonal by blocks
solved by an iterative procedure. associated with rows of the grid
Finally, the process may be applied to points, the diagonal blocks are tri-
more general regression problems and diagonal in themselves, and finally the
can provide an "inner" iteration for matrix A and each of its diagonal
the nonlinear case. blocks are positive definite. The

sparseness of the matrix is evident in
Iterative Methods for Solving the 9x9 example; for a grid with many
Difference Equations points, our coefficient matrix A is

mostly zero.
Our discussion starts with the The sparsity of nonzero elements of

solution of Laplace's equation. We a very large matrix leads one to use
propose first to solve V2W=O in a iterative methods of solution. The
closed region with W taking on pre- matrix A is split into two, A=D-C, so
scribed values on the boundary. In that the linear equations become
particular, we choose the "Model DW=CW+k. If D- 1 exists, as when D is
Problem", 72W:O on a square with W the block diagonal partition,
fixed on all four sides. Upon the
square, a uniform grid of mesh length W = D-1 CW + D-1k.
1.0 is imposed.The grid points in the
interior are numbered in a regular The classic Jacobi methods have this
fashion; in our case, we use the left form; point Jacobi has a strictly
to right, top to bottom ordering of diagonal D while one line Jacobi uses
English text. The nine interior points the block diagonal form.
shown below is the smallest number that Several variations of this splitting
includes all of the properties we wish technique have been studied such as
to illustrate; the numerical examples Gauss-Seidel, Successive Overrelax-
to follow will be based upon Figure 1. ation, and Alternating Direction

Implicit Methods. Much of the accel--
W:O eration obtained by these variations

depends upon the block tridiagonal
.1 .2 .3 nature of the difference equations and

is not guaranteed in general. It is
W=O .4 .5 .6 W=O true, however, that for the most part,

the value of the iteration method comes
•.7 .8 .9from reduced storage requirements and

fewer arithmetic operations.
N: 1 2 1 If the original, AW=k, were to be

solved by direct elimination methods,
Figure 1 one would ordinarily decompose A into
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triangular factors; for symmetric A, overdetermined linear system, AW=k.
the Choleski method would be suitable. Because A=FtF, we are guaranteed
For banded matrices, factoring destroys symmetry and semidefiniteness. In
sparsity between the extreme bands but addition, if Choleski factoring is
does not disturb zeroes outside of the applied to A producing A=RtR, it is a #1
band. If AW=k is written as DW=CW+k, fact that orthogonal decomposition of F
the iteration would be carried out by a into QR, where QtQ=I, produces
direct solution process where Choleski exactly the same R[8].
factoring is applied to D. For this The derivation of a symmetric
reason, the iteration has been called positive definite coefficient matrix
Incomplete Choleski{7,9]. from a variational principle is by no

One point of view suggests that the means limited to our Model Problem.
iteration is successful because of the Other boundary conditions applied to
dominance of D. With this in mind, the all or part of the boundary, for
splitting process may replace elements example a symmetry condition, will be
of R by zero when they are identified treated in the discretization of the
with small elements of A. The effect functional and symmetric coefficient
is to maintain a dominant and easily matrices will always be the result. A
solved D (in factored form) at the more complicated functional with
expense of increased density of nonzero concomitant complications in the
elements of C. The meaning of boundary conditions arises in mechanics
"smallness" is a matter of judgment[91. (10,13]. The biharmonic equation

V4W = 0 is the Ruler equation
Symmetric Matrices and Normal Equations associated with

It is desirable that the coefficient J = ff{o.5[;.W/ax2+v;2W/ay2]2
matrix be symmetric and positive def-
inite. This property has important 0.5(l-v 2 )(a2 W/ay

2 )2

consequences affecting the performance
of the iterative procedure and the (l-V)(a 2W/axay)2}dA
amount of computer memory and arith-
metic operations required for its (0 < v < 1)
execution. Two methods of deriving the
difference stencil that ensure symmetry The discretization of J is again a
have been proposed. Varga~ll] applied quadratic form that may be interpreted
Green's theorem to a mesh box with the as normal equations of an over-
grid point in its interior and mimicked determined linear system.
by differences the normal derivatives
that occur in the theorem. When Incomplete Factoring and Incomplete
applied to each grid point, a symmetric Orthomonalization
system of equations is generated.

A macroscopic application of Green's Choleski factoring of normal
theorem was suggested by Engli, et al, equations and orthogonal factoring of
and by Forsythe and Wasow[2,3]. The the overdetermined system have been
original differential equation is the successful as direct methods for linear
Euler equation associated with a vari- least squares problems. Furthermore,
ational principle and they suggest that an incomplete Choleski factoring avoids
the functional be discretized before the "fill-in" of nonzero entries
minimization. Then the set of linear between the bands, locations which are
equations to be solved is simply the occupied by zeroes in the unfactored
set of normal equations associated with matrix. This incompleteness induces a
an overdetermined linear system to be splitting of A to produce an iterative
solved by least squares. Thus, the scheme. It is only natural to wonder
coefficient matrix is sure to be if an incomplete orthogonalization of F
symmetric and at least semidefinite. might produce a successful iterative
The positive definite property is method to find the least squares
obtained separately when using Varga's solution of the overdetermined system.
derivation.

A splitting of the rectangular
For our problem, the basic matrix F=H-G produces a normal equation

functional is matrix of the form

j= 0.5if[(W/ax)2+(aW/ay)2)]ds. A=FtF=( tH+GtG)-(HtG+OtH). 9

When this expression is discretized on A natural splitting of A=D-C is to let 'a
the same grid as before, we have a D=KtB+GtG and C=tG+GtH. If D
quadratic form in the variables Wi, and C have suitable properties, e.g.
:1,2,... ,9, whose minimum is located form a regular splitting, then an

by solving 3J/aW=O, i:I,2,...,9; iteration of the form
that is, the normal equations of an
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(Eq. 1) DWm..=CWa+k may be solved iteratively. Each update
is a least squares problem in its own

will converge (121. If in addition, D right whose normal equations are
is sparse and easily solved, for
example diagonal or tridiagonal, the (HtH + GtG)W = (HtH + GtG)W +
calculation is inexpensive. (Htk - Gtk)

Unfortunately, an iteration of the
same nature applied to the rectangular This process is precisely the Jacobi
system will not solve the problem single line iteration applied to the
unless the splitting is "proper"[l]. An square set of normal equations.
easy way to reproduce (Eq. 1) in rect- When the matrix [Hi is factored by
angular form is to double the row IGj
dimension. Write F=H-G and set the QR method, the upper triangular
HW=GW+k, GW=HW-k to be solved simul- matrix R is the Choleski factor of the
taneously. Thus the rectangular diagonal partition of the normal
problem Cl equations corresponding with one lineINJ Win.1 =[Gj W + of grid points.

can be solved repeatedly. The normal Nonlinear Least Squares
equations for Wo.1 have D for the
coefficient matrix, etc. but can be The solution of a nonlinear least
solved by applying the QR algorithm squares problem is often obtained by
to [H] the Gauss-Newton-Hartley method or

IG Grey's[4J variation of it. Each of the
The R produced in this manner is functions in the overdetermined set is

exactly the Choleski factor of D. For linearized at some nominal guess and a
this reason we can call this an correction is obtained by solving the
incomplete OR method. linear approximation as a conventional

least squares problem. The coefficient
A Specific Splitting for V2 W=O0 matrix is the Jacobian of the original

system and on occasion may be quite
On the 9x9 grid of Figure 1, the sparse. An iterative solution of the

discrete analog of the functional is a linearized system may be the most
set of linear equations FWzb. efficient way to proceed. The

rectangular formulation as mentioned
W = 0 above might well be considered for the

-l 1 . solution of the "inner iteration."
-] ].As an example, we might choose a

-I . standard test problem generally
1 attributed to C. F. Wood (5]. It is

-l 1 often presented as
*-l 1

- Min J = 100(x2 - x12 )2 +
1 (I - xI)

2 
+ 90(x4 - x3

2 )2 +
-1 1 (I - x3)

2 
+ .2(x2 -1)2 +

-l 1 .2(x4-l)2 + 9.9(x2 + x4 - 2)2

-The rewriting as a sum of squares gives

S- us the equivalent system of seven
equations in four variables.

1 - lO(x2 - x1
2
) = 0

S - - x = 0
1 -1 /g" (x4 - x32 ) = 0

1 -1 1 - xa = 0

1 -V /177 (x4 - 1) = 0I I /OT2(x4 - 1) = 0

1 2 /9~(X2 + X4 -2) =0
1 1l

The Jacobian of this system is

This set of equations consists of 24 -20xi 10 0 0
rows and 9 columns. Let us choose the -1 0 0 0
diagonal band from F commencing at row 0 0 -2 xa V
16, column 1 to constitute our matrix 0 0 -1 0
G, H being the remaining portion. Then 0 /?S 0 0
the 48*9 system 0 0 0 VC711W = IGoW +1k]1 0 /979 0 A

in which 18 of the 28 entries are zero.
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POLYHEDRON GRAPHS

Danny W. Turner, John W. Seaman, and Dean M. Young

Baylor University

ABSTRACT In the next section we introduce a simple

generalization of star plots.

This paper introduces a new multivariate

graphical technique known as polyhedron graphics, 1 X
or P-graphs. The independent variables are

displayed as a polar projection in the base plane x2
of a three dimensional coordinate system, forming
a base polygon. A dependent variable is graphed

above the origin of the polar projection. Lines

are projected from the plotted dependent variable X4
to the vertices of the base polygon, forming aX1x

polyhedron. An additional variable can be plotted
below the base plane. Other dependent variables

can be represented by moving the base polygon in x5
the base plane, rotating the base polygon, etc.

Results of a three-dimensional graphics implemen- x7
tation are presented along with an example 

from

experimental design. Figure I. A typical polygon graph (star plot).

I. INTRODUCTION 3. POLYHEDRON GRAPHS

In this paper we present a graphical proce- Building on the idea of star plots (polygon

dure that can be used to display multidimensional graphs) we propose polyhedron graphs. These

data. A variety of such procedures already exist, displays are formed by using the values of the

and include such things as function plots, linear variables in a k-dimensional vector to control the

profiles, polar profiles(k-sided polygons), Cher- positions of the vertices of a polyhedron. Figure

noff-type faces, and so forth. The common math- 2 displays a prototype polyhedron graph or P-graph

emetical basis that these specialized graphical as we shall refer to them.

methods have is that each can bf used to map a
point in k-dimensional s1ace (R ) to a subset of x7
two-dimensional space (R ) while attempting to

preserve in some way the original information.
Thus, a set of vectors X.,...,X with each Xi C
R is mapped to collection ofnsubsets S, ,...,Sn

with each Si c R . These subsets can then be X1

drawn using appropriate computer graphics devices

and studied with the intent of extracting infor- X 5

metion about the original points, x3 x4
It is obvious that there are an unlimited t

number of mappings like those described above.

The purpose of this article is to present a new Figure 2. A prototype polyhedron graph

display technique that is essentially a simple (P-graph). Notice that the variables in the aB

generalization of one of the oldest and most popu- plane produce a portion of a star plot. This

1ar existing methods, namely polygon graphs. partial star is called the base polygon. It is
hidden somewhat be the shaded faces of the

polygon.

2. POLYGON GRAPHS

With roots going back to the 1950's, polygon Applications that will be particularly

graphs represent one of the earliest graphical suitable for P-graphs will involve situations

attempts at displaying multivariate data. These where there is a natural decomposition of the

graphs and numerous variations may be found under multiple variables into two groups. One group of

many names including k-sided polygons, stars, spi- variables will be coded into the base polygon and

derwebs, polar profiles and sunflowers. Figure 1 the other group into vertices not in the base

shows a typical star representing a point in polygon. An example would be multiple regression

12-dimensional space. The values of the twelve of one response variable on the k independent

variables are transformed into the lengths of the variables with the k independent variables

twelve equally-spaced rays emanating from the controlling the base polygon and the response

polar origin. (The use of equally-spaced rays is variable controlling one vertex outside the base

common but obviously not required.) polygon as in Figure 2. An alternative is to use

Applications using star plots are plentiful. the value of the residual at each observation to

For typical examples refer to Chambers, Cleveland, control the length of the ray outside the aF

Kleiner, and Tukey (1983) or Turner and Hall plane. A second dependent variable can be repre-

(1983). These plots have many advantages santed by adding a vertex below the base polygon

Including ease of generation and interpretation. as shown in Figure 3. Pairs of P-graphs with com-

424Lnluin eas 4-vW4 S P



son base polygons can be used to add more depen-

dent variables. AVG IELDAilA
X10 ------- PRESS.

........... C. C

* TEMP. .

xI \ xON GONG. 5
CONC.A

X7

X3 X4 X6

AVG. TENSILE

STRENGTH

Figure 5. Reference P-graph for the EVOP
example involving five independent variables and

Figure 3. A P-graph with two variables repre- two response variables.

sented outside the base polygon.
As each production run in the design is

performed the corresponding P-graph would be

4. EXAMPLE displayed to the process operator (and updated in
the case of replicates). The evolution of the

Evolutionary operation (EVOP) is a statistics process could easily be tracked and directed by

based methodology for process improvement in the observing the time series of P-graphs. A portion
context of an operating full-scale process. A of such a time series is displayed in Figure 6.

detailed exposition is found in Box and Draper It is easy to visualize how yield and tensile

(1969). Within this context consider a strength are changing with respect to the changes

2 factorial design with the three factors tem- in the levels of the independent variables. We

perature, concentration and pressure and the feel this technique would be quite valuable to a

response variable average yield. trained process operator.
Figure 4 shows a comon way to display the TI T2

multivariate data. As the produciton runs are
made under the various treatment conditions the
values of average yield are shown at the
appropriate vertices.

2.8 4.4

R
S3 55.1 T3 T 4

S
U

CO Figure 6. Selected P-graphs for the EVOP example.

ET T2 < T3 < T4 are the corresponding produc-

N. tion run times.

TEMPERATUM

Figure 4. Cube display for a 23 factorial REFERENCES
design in an EVOP application. Box, G.E.., and Draper, N.R. (1969), Evolutionary

operation: A Statistical Method of Process

Suppose that EVOP is to be run using a Improvement, New York: Wiley.

2 factorial design involving five factors and two
* response variables. The usual EVOP displays are Chambers, J.M., Cleveland, W.S., Kleiner, B.,

not adequate for this situation. However, P- and Tukey, P.A. (1983), Graphical Methods for

graphs provide a simple technique for displaying Data Analysis, California: Wadsworth.

the results of the EVOP runs that is easy to
understand by the process operators. A reference Turner, D.W., and Hall, K.A. (1983), "GRAP:PAR:

P-graph is shown in Figure 5. The independent Interactive Graphics for Analysis of

variables are pressure, temperature, concentration Multivariate Data," Proceedings of the

of A, concentration of B, and concentration of C; Fifteenth Symposium on the Interface of

the response variable are average yield and Computer Science and Statistics, editor J.E.

average tensile strength. Gentle, pp. 328-332.
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EFFICIENT ESTIMATION & TESTING FOR HETEROSCEDASTICITY 
WITHOUT AUXILIARY VARIABLES

H.D. Vinod (Fordham University) and Aman Ullah (University of Western Ontario)

1 . INTRODUCTION Eu = 0 and Euu' = Diag( o1i, a22,.

The available methods for estima- OTT) . (2.2)

tion and testing in the presence of The usual OLS estimator of B in

heteroscedastic errors, Vinod and Ullah (2.1) is given by

(1981), need a specific parametric form b - (X'X)
1 X'Y, (2.3)

of heteroscedasticity. Waldman (1983) which is unbiased with the variance-co-

shows "algebraic equivalence" of variance matrix given by

White's(1980) test with certain vers- V(b) - (X'X)- X' XX(X'X)
"I  (2.4)

ions of Godfrey and Breusch-Pagan The GLS estimator of B is

tests which rely on auxiliary vari- - (X' 1-'X)-lx' -1 y (2.5)

ables. In this paper we propose a new with the corresponding variance-covari-

two-step generalized least squares ance matrix

(GLS) estimator which is consistent and V(s) - (X' - X) - (2.6)

asymptotically efficient. In the first It is well known that V(b) - V (0) is

step we develop J.N.K. Rao (1973) type non-negative definite.

modified minimum norm quadratic esti- In practice, I is rarely, if

mator (MINQE) of the unknown hetero- ever, known hence B is not operational.

scedastic variances based on replicated The published literature contains

observations for the variables in the several techniques for relating the

model. The replicated observations in heteroscedastic variances to some

our paper are created in the framework auxiliary variables to estimate I, and

of Vinod's (1982a,b) use of the addi- then use "estimated" GLS estimators.

tional information contained in the White(1980) proposes a consistent esti-

fact that only a certain number of mator of X' XX in the middle of the

digits in the variable data series are V(b) expression to develop a test based

reliable, and beyond which there is on OLS residuals. His procedure

fuzziness. Latin squares style repli- involves inefficient OLS estimator

cations, which are well-known in since no rigorous estimator for I is

statistical design of experiments suggested. White's method fails if a tt

literature, Kendall and Stuart(1979), may be a cosine or sine wave in a trend

are then used. For testing of hetero- variable not included as one of the

scedasticity we propose appropriate regressors. Cragg(1983) can handle

test statistics. such arbitrary forms, provided they are

2. THE MODEL AND ESTIMATORS explicitly stated in terms of auxiliary

Consider the usual regression variables, not otherwise.

model 2.1 MINQE Style Estimation of 3
y - X6 + u (2.1) To obtain efficient estimates of

where y is a Txl vector X is a Txp a in (2.1) using (2.5) we need to esti-

matrix of p regressors, 8 is a pxl mate I denoting by o a Txl vector of

vector of unknown regression coeffi- the diagonal elements of 1. We have

clents, and u is a Txl vector of dis- u = y - Xb = Mu, M - I-H, and H -J.

turbances such that X(X'X)' (2.7)
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where u is a Txl vector of ordinary 
0
MQ is that it usually yields at least

least squares (OLS) residuals, and H is some negative estimates for a, which

the hat matrix. From (2.2) note that should be strictly positive. J.N.K.

E(u) - 0, E(uu') - M I M. Rao's (1973, 1980) modification of

Matching the diagonal elements we MINQE called average of squared residu-

have the algegraic result als (ASR) solves the negative variance

E 0 Qa, (2.8) problem, and has desirable mean squared

where C - u 
• 

u, Q-M * M are Hadamard error (MSE) properties and rather sim-

products, that Is, obtained by replac- pie computation. First, we compute for

ing each element of u and M by their each of the J replicates

own squares. Denoting uj yj - Hy (2.13)

n - 0 - EO, we have a regression the Txl vector of residuals for the jth

equation: replicate. Now we have the ASR esti-

= Q0 . n, (2.9) mator immediately as

where a is the set of T unknown oAS R - (l/J) u J. (2.14)

regression coefficients. Although the Since a ASR is based on a sum of

Mmatrix is singular, 0 may be assumed squares, it will obviously be positive.

to be non-singular. Now we will note Note that (2.14) is an approximation of

that the OLS estimator MINQE in (2.12). This is because M 1

aOLS = (Q'Q) Q'u - Q u (2.10) I in (2.12), by neglecting the terms of

is unbiased but is inconsistent even the lower order In T.

when X is non-stochastic and (X'X)/T is 2.2 Latin Square Style Replications

finite. In the case where replicated and Estimation of I

data are available, there is no incon- Note that the ASR estimator

sistency problem with Rao's (1970) requires replicated observations which

MINQE as noted by Horn, et al (1975) are usually unavailable in econ-

and J.N.K. Rao (1973). This estimator ometrics. Any randomized scheme of

is given below. generating replications is usually un-

Denote y a Txl vector of elements acceptable because each run of the sameth
where YJ is the t observation date then yields a different estimate.

on the dependent variable for the j Though the choice of our Latin Square

replication, J-1, 2,..., J. Define style is somewhat arbitrary, it uses

Q j = (I-J1 H) * (I-J- H) + the fuzziness range of the data to

(J-I)j -2HH (2.11) yield unique results with desirable

where * denotes the Hadamard product as properties.

before. Now the MINQE [see Horn, et al Following Vinod (1982a) and Vinod

(1975, p. 381)] is given by (1982b) we note that the observed

a Q_ Q CJ_ (2.12)°MQ IJJ values of regressors can be written as
where the summation is from J-1 to j-J, h
and u - uj * u ; uj - (I-Hj)y is a -t 0.5(10) h Ixtj S

thi

Txl vector of residuals from the j tIxtil 0.49( O) (2.15)

replication, with elements u tj. For where h i represents the number of

J-l, (2.12) reduces to (2.10). The "significant" or "reliable" digits to

estimator in (2.12) is consistent when the right of the decimal point. For

J increases without bound. example, if the observed data are 29.7

A well-known problem [Horn, et al (h - 1) it may have been anywhere in

(1975)] with MINQE estimator °OLS or the range 29.65 to 29.749 (- 29.7 * .49

x .1) and rounded to 29.7 by the usu3l

427

. "" "-s" ";',-,-'* v',v .. =."%%' ''' "~V "5'V * V % ""%"r% "



' MAORV ;  
w 61

;
WirW61

| :
%M Ap

; 
d

-
VIVI XX W -

71 1J N ww

rounding methods. We choose J non-- such models. The discussion of

stochastic numbers from this range to measurement errors from natural sci-

construct our replications. Let C ences needs to be modified in some

denote a T x p matrix of corrections, social science applications.

with elements cti j lying in the range: In spectral analysis of time

(-di to di) or series assumption that the spectrum

ctij - dI S S c tij + d should be smooth is similar to Vinod's
(1982) assumption that the regression

where di = 0.49 (10)-h , and where J- estimates should be "smooth", or not
1,2,..,J. Starting with the observed too sensitive in the fuzziness range.

matrix of regressors X we construct One does not reject the spectral ana-

replications X = X + C of non-- lysis or kernel estimates of density

stochastic regressor matrices. The functions simply because there is a

range in (2.15) is divided into J equal large variety of plausible "window"

components, or may be based on specifications. It is well- known that

quantiles of an appropriate distribu- in agricultural experiments the Latin

tion. Square design eliminates the "fertility

In natural sciences the measure- gradient" associated with the rows and

ments involving temperature, pressure, columns of agricultural plots. We pro-

weight, etc. all have an identifiable vide unique estimates for given data,

"true" value, and there is a clearcut and eliminate the effect of two coordi-

meaning to the word measurement error. nates associated with the specific

In econometrics, for example, for many observation number (rows), and the

(aggregative) variables such as gross specified variable (column) used.

national product, implicit price Since the fuzziness in the depend-

deflator, unemployment rate, etc. It Is ent variable y is essentially similar

fair to say the "true" value of the to regressor fuzziness, it is con-

variable itself is fuzzy. All the venient to augment the X matrix by

values in a fuzziness range are almost including the additional column for y.
a

equally feasible, and (market) agents We write X - EX:y]. The choice of J,

react to the "reported" values of vari- the number of replications to be creat-

ables with skepticism. By contrast, a ed depends on several practical con-

natural substance reacts to the true siderations. The J should be larger

temperature, weight etc. of another than p+l, enough to provide consistent

substance, and the fact that the estimates, and small enough to impose a

engineer makes an error in measuring reasonable computational burden. If J

the temperature- is of no consequence to is an integer multiple of p+l the con-

the physical interaction of the sub- struction of (p+l) x (p+l) Latin Square

stances. This Is a major distinction specification is most convenient. We

which must be recognized. The true describe the simplest case of P-3, J=4,

values of the variables could be T-8 for convenience.

anywhere In the fuzziness range, and The assumed fuzziness range in

the market agents also treat them as - (2.15) is divided into J equal parts.

such. If a fitted regression equation For our example with J-4, let us choose

Is overly sensitive to changes within four constants k = -di. kb - -d 12,

the fuzziness range, (i.e., not "smoo- kc -+d /2, and k -d Now the original
c)h d C N trigina

th" ) the market agents will reject data of the (augmented) X matrix of
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dimension 8 x 4 are modified by adding write from (2.9)

an 8 x 4 matrix to yield the first

replication. For convenience we report U M a (2.17)

only the subscripts of k in a 8 x 4
Further, for j-I.....J we can write

matrix which represents the first (2.17) in the pooled regression form as
replication, J-1. u= Q*o + n* (2.18)

ra b c d where u- [ , -

wher u []1 and. n*] ,Ob c d a [Q'..... 'j]' and i
• 

= [T1I.

c d a b The pooled OLS estimator of a in (2.18)

d a b c
is then

a b c d -Sb= (Q*,Q*) QCa, (2.19)
b c d a

Now note that Q I, by neglecting the
terms of the lower order in T. Thus,

d a b c substituting M ! I, we get an appro-

ximation of (2.19) which Is given In
Note that we have used two (2.16).

"standard" 4 x L4 Latin Squares to 3. GLS ESTIMATION AND A TEST FOR
generate the 8 x 4 matrix. If T-9 it

HETEROSCEDASTICITY
is obvious that an additional row will 3.1 "Estimated" GLS Estimation

have (a b c d) as subscripts of k. For

We note that the ;ASR in (2.16)
any T each column above will be a str-

g ogenerates an estimate I of the diagonaling of ( a b c d ) with appropriate
matrix of heteroscedastic variances, by

starting points. For the second repli- substituting aASR, t value as the tt h

cation J-2 the subscript of k in the ag lhtterm along the diagonal. Thus we do

top left corner is b and the first row not need a further uncertain search for
is ( b c d a). Each column is now a appropriate combination and/or trans-
string of ( a b c d ) with these start- formation of auxiliary variables to

ing values. For the third and fourth estimate the heteroscedastic variances.

replication the additive constants To obtain the GLS estimator we
start with k and k d .  If J=5, we would

C proceed as follows. The J replications
cycle the subscripts ( a b c d e ). In of the Txp data matrix X are rearranged

general, one can devise such strings such thatth

for any J. Denoting the j replica- y - X 8 + uJ, J-1 .... J (3.1)
tion of X by X and the jth replication th

tfybyy w e j carn where X is the j Txp matrix of J
of y by yj, we can thus generate J sets replicated observations on p regress-

of replicated data. ors, and u is a Txl disturbance vector
Each replication of X will imply a such that .

new well known Idempotent matrix MJ_- Eu - 0 and Eu u'l - (3.2)

[I-HIwt h eiulvco . .2..[- HI] with the residual vector u = The model in (3.1) can be written in a

y y wh ere H X() i more compact form as

is the hat matrix., and this is used in Y' - X*8 + u*  (3.3)

(2.14) to get where y* - (y 1 , y'2 ,... ,Y ), X*

oASRm(/J)Xuujyj-Hjy
j (2.16) Ext'I .... XI'j]', and u =,

[U'l,..:,u' ]' such that
An alternative derivation of the pro- Eu* - 0 and Euu *' =- _ Ij (3.)

posed estimator In (2.16) is given The estimated OLS estimator is

below. TeetmtdGSetmtri
beo then given by

For the j replication let us
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2
b* - (X*' (I A 1 -l)X*)-,X*' (Ij ® is known, estimates Ja ASR,t 

I)Y* it~ uj/o2 will be random observations
where aASR is given in (2.16). from a ^ parent distribution for

It follows from a theorem in large T. If a is not known, then
~again under the null hypothesis the

Fuller and Rao(1978, p. 1152) that the aain un de h nl hs the2
estimator b* is consistent and that / ASRt a

-be considered as observations from a~(JT) (b* - B) has a limiting normal

random variable which is approximately
distribution with mean 0 and covariance 2

matrix for J Z 3 given by a limit as T Chi-square with J df; s is an estimateof the common variance 2 gvn

increases without bound 2

lim JT[(+2J
- 1 8j - 2 ) (X*' Ij -l s - (y-Xb)'(y-Xb)/(T-p). (3.11)

X*) -  + 4J-2 ] (3.6) Then the empirical distribution func-

tion (edf) of these ratios shouldwhere 2wr(X*'X*)Ix 1 I X*(X*'X*)-(3.) resemble that of a')( variable. A

Thus the asymptotic variance-covariance "goodness of fit" test procedure as in

Kendall and Stuart (1979, Ch. 30) is to
matrix of b* is

V(b) - ( 
I - 8J 2 ) (X*' - rearrange the above ratios in an

-1 -2 ascending order of magnitude:
I i X*) + 1Q(3.8) wAS S* w (3.12)
and for large J ASR, 1  ASR,T.

V(b*)&(X * ' l  > I X*) "I  (3.9) Next 2we evaluate the cumulative density

of X variable denoted by ZASRt
One method of checking whether the

evaluated at the "order statistics" in
estimated GLS estimation has improved (3.12).

the matters is to find the eigenvalues
Now the Cramer-von Mises test

of the difference between the asympto- statistic is

tic covariance matrix of the OLS esti- 2 2

mator b in (2.4), and that of b*. If

where summation is from t-1 to t-T.
the efficiency has been improved the

The 5% point for this statistic is bas-
elgenvalues of the estimated difference ed on an approximation, and for large

V(b) - V(b*) should be positive. A more samples is 0.46l. Thus there is no

crude assessment may be based on a com- need to look up any tables. This test

parison of standard errors of regress-, is intended to be a refinement to
Ion coefficients, if computer programs Bartlett's well-known test for homosce-

for eigenvalue computation are unavail- dastieity. The W2 test has higher

able. power than the well-known Kolmogorov
3.2A Test for Heteroscedasticity statistics based on the largest

stAasimplesteateisoproposedrhere

A simple test is proposed here absolute differences instead of the
for the null hypothesis of homoscedas- square terms in (313). Clearly, even
ticity sqaetrsWn(.3. Clalee2 further refinements to W test are
H 0 1 , 22 -

0 TT ' a (3.10) possible, but may not make a practical

From the normality assumption on u it
2 2 difference.: is clear that Z u 2 2•

2 AN ILLUSTRATION
is a Chi-squar r ndom variable Xj with T~The theoretical developments dis-

J degre., *,, fr.,rlom (df). Even under
cussed above are illustrataed with the

the nu'' hypcthesis (3.10) of
help of an example from Pindyck andhomoscedastiity, our estimates of Ott Rubinfeld (1981, p. 169). The results

will be random variables and will not

all be identical to each other. If a2 show considerable reduction in standard
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errors with similar magnitudes or Statistical Association, 70, 380-385.
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The Selection of a Statistical Data Analysis Computing Environment for an
Industrial Research Laboratory

James G. Wendelberger and Michael A. Wincek, General Motors Research Laboratories

1 Introduction 2 A Statistical Computing Environment

The statistics community is beginning to take advan- For the purpose of this paper, a computing environ-
tage of the vast computational ability that is now sur- ment consists of hardware, an operating system, and
facing in the computer industry. Many new algorithms software; the distinction between the last two is not l-
and techniques now exist that were impractical or im- ways clear. A statistical computing environment should
possible to execute on computers of just a few years ago. aid the model development process and the presentation
Moreover, the enormous data acquisition and storage of intermediate and final results. The model develop-
capabilities of the computer have allowed statisticians ment process includes: model specification, estimation,
to confront problems that are increasingly more com- and criticism. The model building process is iterative,
plex, both in the number and type of questions asked the number and size of the iterations being determined
and in the size and structure of the data base used to in part by the complexity of the problem and the data
answer the questions. The pencil-and-paper methods set. It requires the ability to cull large data sets to
that were characteristic of statistics twenty to thirty find the relevant data, to display complex structure in
years ago and that are still taught in many of today's multidimensional data, to interactively direct the course
textbooks are inadequate to deal with such problems of the analysis, and to carry out computationally inten-
because these methods are largely concerned with sim- sive methods. The computing environment should allow
pIe models and small data sets. Computerization and quick and efficient passage through the model building
extension of these methods have allowed more complex process, especially in the early stages when the problem
models and larger data sets to be analyzed, but the line is not well-defined. Capability, in the diminished sense
of development characterized by batch computing and of just being able to perform a task (irrespective of the
the use of statistical packages has been exhausted both amount of time it takes), is not adequate. Fast execu-
in efficiency and capability. tion (less than a second) of commands is essential for

The purpose of this paper is to briefly state the statis- full productivity of the analyst. Quick response time
tical computing environment (hardware, operating sys- is needed so as not to inhibit problem solving activity.
tem, and application software capabilities) that is nec- High speed is also essential for full use of interactive
essary for a statistician or an experienced data analyst graphics, one of the most powerful tools in exploratory
to efficiently deal with today's problems and to select data analysis. McDonald and Pedersen (1985) point out
a currently available environment which we judge best that to draw a three-dimensional scatterplot contain-
meets our criteria. Because of rapid developments in ing 1000 points could require the graphics processor to
hardware and software, any selection may very likely draw at a speed of at least 3 million pixels per second.
be outdated (i.e. able to be improved upon) in three High speed color graphics requires very fast processing
or four years. Hence, it is important to choose extend- and large storage capabilities. McDonald and Pedersen
able software and updateable hardware, both of whose (1985) give guidelines on the computational, graphics
course of growth has been and will continue to be on processing, and graphics display speeds.
the state-of-the-art development trajectory. The development, use, and maintenance of software

Some broad requirements of a statistical computing are central issues to the development and application of
environment are given in Section 2. Operating systems statistics and data analysis techniques. Solutions to sta-
and statistical software are discussed in Section 3. Some tistical problems often require that standard techniques %
techniques that are currently being used by researchers be put together in slightly new ways tailored to the spe-
in statistical computation are given in Section 4. The cific problem of interest. A good statistical computing
new equipment needed to implement these techniques environment will aid this activity.
is given in Section 5. In Section 6 we give our specific A common tool for analysis is a statistical package
choice of available hardware and software for our statis- developed for a batch mode environment (in contrast
tical computing environment. Since we are statisticians to an interactive environment). Typically a statistical
and not computer scientists, our comments are focused package provides a set of commands to carry out certain
on the functionality of the computing environment and procedures. The commands usually produce a prede-
not on the technical aspects of the software and hard- termined output and usually cannot be combined with
ware. References are provided to the technical computer other commands to form new procedures. Flexibility
science details. or fine tuning of the command is achieved through a

predetermined list of options. In anticipation of various
possible outcomes, a typical style of analysis is to re-
quest "everything" from the commands in a statistical
package, in order to submit the command once. This
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"ahotgun" approach to analysis forces the user to look High typographic quality is required since statistical pa-
through the output for the relevant pieces. For the in- pers typically consist of mathematical equations with
experienced analyst or the infrequent user of statistics, Greek letters, special symbols, subscripts, superscripts,
such an approach may be beneficial if it teaches the arrays, tables, charts, and the like. The production of
user about a new technique or makes him aware of the such papers have typically been done by secretaries. As
limitations of the analysis and the data. However, the capable as they may be, the system of first writing the
experienced analyst (for whom the computing environ- paper by hand and then giving it to a secretary to type
ment described here is intended) generally wants more is inefficient. Often, especially in mathematical writing,
direct and immediate control over-the analysis and does new errors are introduced into the paper in transcrip-
not want to be forced into a particular mode. In the tion. Much time may be consumed in explaining what
analysis of very large data sets it is impossible to effec- is meant and how it should be typed. The researcher
tively use the shotgun approach. Where the statistician may be reluctant to revise because of increased burden
may prefer to interactively direct the course of analy- to the secretary who must typically service many peo-
sis and select output displays of interest, such capability ple. A statistical computing environment must include
may be of limited use to the inexperienced analyst. The interactive tools that enable the analyst to document
style of analysis provided by a statistical package may results and produce high quality papers.
be the best way for such a person to analyze data, but Coincident with the documentation of results is the
it is only one mode the statistician may choose, presentation of results. Written material and graphi-

The rather fixed, stand alone nature of the com- cal displays may be presented on paper, transparencies
mands in a statistical package does not allow the easy (foils), slides, movie film, or some other media. Access
creation of new procedures. One is usually restricted to appropriate output devices is necessary.
only to what the package can do. An example of a Since many statistical projects are interdisciplinary,
statistical language which does not have many of the e.g. involving engineers, statisticians, and other scien-
limitations of statistical packages is S, an interactive tists, data and results must be easily communicated.
environment for data analysis and graphics. See Becker This can easily be done by means of a computer net-
and Chambers (1985) for a good review of the philos- work. Data can be transferred via tape, but the time,
ophy and capability of S. S is both a very high-level bother, and inaccessability of tape inhibits its use. Net-
language for doing computations and is an environment works encourage frequent communication of rather small
which supports data management, documentation, and messages and allow for the rapid dissemination of infor-
graphics. S graphics does not currently make use of the mation. Networks are also important in the configu-
latest high resolution, high speed raster graphics display ration of hardware. This will be discussed in Section
devices available on workstations, but future plans are 5.
aimed in that direction. A good statistical computing environment must al-

Analysis of data also frequently requires that new low the statistician to interactively formulate models,
programs be created, so-called software engineering. Pro- to efficiently and quickly analyze data, to document
grams can be created by putting together existing soft- and display results, and to communicate these results at
ware or by writing entirely new software. A statistical all stages of the analysis. Such an environment would
computing environment should recognize this need and provide fast execution time and fast program develop-
provide software development and debugging tools to ment time. As has been noted, a fast machine is not
efficiently produce new software. Since a resulting pro- enough. The hardware and software must be consid-
gram is often specific to a problem and may not be of ered together.
general use, it is very important that the development
be done quickly. If it takes too much time, it will not 3 Operating Systems and Software
be done, possibly lowering the quality of the analysis.
Ideally, the new software should be developed in the A statistical research group often develops software
context of a statistical language, such as S, so that al- to develop and implement new techniques. A statisti-
ready existing input/output and graphics routines can cal consulting group often needs to modify or combine
be easily used and development time can be reduced, standard programs to solve a particular problem. Both

Graphical displays are an absolute necessity for data groups need an operating system with tools that facil-
analysis. As noted by Chambers et al. (1985), "there itate such activities. Since the operating system runs
is no single statistical tool that is as powerful as a well- programs, manages the computer's resources, and pro-
chosen graph." The human mind is far superior to any vides an interface between the computer and the user,
computer system in its ability to detect patterns. The the choice of an operating system is crucial to the effi-
use of color, dynamic displays, and other enhancements ciency and productivity of the statistician. An excellent
to a graph have great potential in aiding the analysis of and, in our opinion, the best available operating sys-
the data. Creating graphics to exploit the great pattern tem for statistical work is the multi-user, multi-tasking
discovery capabilities of the human visual system is an UNIX operating system. UNIX was developed by a
area of current research. group of programmers at Bell Labs for their own use. In

Documentation of results and the ability to produce contrast to operating systems developed by computer
manuscripts of high typographic quality in a timely fash- vendors, UNIX had a rather long gestation period in
ion are essential to the success of a statistical project. academic and research oriented environments before it
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became commercial. The long period of development The intended residence of such interactive graphics soft-
in a protected environment promoted the development ware is a professional workstation. The multivariate
of new ideas and the discarding of bad ones. The re- plotting routine had its origins in a procedure which
suit was a very flexible environment rich in utilities and plots multivariate data as a matrix of pairwise scatter-
tools. For example, the UNIX system comes with text plots. The use of color, smoothing of data, choice of
editors, graphics routines, pattern scanners, languages plotting symbols and their sizes, and other graphical
such as C, FORTRAN, and PASCAL, and document enhancements make the graph very useful for detect-
preparation utilities, to name a few. The modular de- ing patterns. A similar capability exists with the pairs
sign of UNIX and the fact that it is written in the C command in S. Interactive graphics capability allows
language, allow it to be customized to meet the user's the user to immediately modify, highlight, select, etc.,
needs. The statistical language S was developed in a as he thinks of them. In a static situation, one must do
UNIX environment. all thinking prior to reissuing the command to produce

At present, there are two versions of UNIX: UNIX the new graph.
4.2BSD with enhancements and improvements from Uni-
versity of California, Berkeley, and SYSTEM V, the ver- 5 Hardware
sion provided by AT&T's Bell Labs. The Berkeley ver-
sion is suited to researchers, while the Bell Labs' version The statistical computing environment described in
is aimed at the commercial market. Work is presently Section 2 is quite specialized to the needs of the pro-
underway to merge these two versions into one version fessional statistician and the experienced data analyst
that will be called SYSTEM V. Presently, the Berkeley and so may not meet the needs of the general comput-
version is preferred for a statistical research computing ing community. The computing tasks of the general
environment. community are usually done on a mainframe computer

Aside from the operating system other software main- with a time-sharing operating system. A mainframe
stays of a statistical computing environment are: S, must have the capacity and auxiliary devices to meet
APL, IMSL, a graphics package, the linear algebra sub- the needs of its user community, and the time-sharing
routines in Linpack and Eispack, and a document prepa- environment must allocate these resources in an effi-
ration utility such as troff in UNIX or TFX . This soft- cient and equitable way. Compromises are inevitable.
ware can be easily installed on a UNIX system. The environment described in Section 2 will sometimes

require that all the available resources be uncompro-
4 Current Techniques misingly given to one person. Since by design a time-

sharing environment does not let that happen, it is not
Some of the most well-known applications of graphics the appropriate environment for the statistical tasks de-

workstations have been provided by the Prim-9, Prim- scribed here. What one needs is one's own computer.
H, and Orion I projects. These projects and the compu- Fortunately, the cost and architecture of today's super
tationally intensive Interactive Projection Pursuit Re- microcomputing systems, or graphics workstations, pro-
gression project (McDonald, 1982), feature graphics with vide just that. The philosophy is not to build bigger
real time motion. The latter project is a sophisticated and bigger computers to meet the ever expanding spe-
example of interactive model fitting. These techniques cialized needs of different user groups, but to build ape-
make extensive use of the workstation's fast numeri- cialized machines and link them via a network. The
cal and graphics processing capabilities. The success of network may contain mainframe computers, multi-user
the technique is dependent on interaction with the user. computers, personal computers, midicomputers, super
Hence, the feasibility and the success of these techniques computers, printers, tape drives, fileservers, and gate-
are dependent on the computing environment, ways to other networks. McDonald and Pedersen (1985)

The statistical computing environment is important give the hardware requirements of a statistical graphics
not only for the above applications, but also for com- workstation. Joy and Gage (1985) give an overview of
monly used techniques such as regression. Much is known the impact of the new hardware on scientific computing. %about the pitfalls and limitations of regression. For ex- The hardware requirements needed to support the
ample, in the analysis of linear models good statisti- statistical computing environment being described rule ..
cal practice dictates that one examine residuals, search out the personal computer as a possible computing de-
for outliers and influential observations, detect exact vice. The personal computer is characterized by slow
and near multicollinearies, and, in general, subject the processor speed, limited addressable memory, and prim-
model to severe criticism. Since these techniques can- itive (proprietary) operating systems. However, these
not be totally automated, the computing environment characteristics are changing, so that the capabilities of
must assist in carrying out these tasks with a high de- the personal computer are evolving at different rates to-
gree of interaction. Thus, in order to fully apply known wards those of the workstation. The current graphics
statistical techniques to even conventional procedures, of the personal computer have too few colors and too
a powerful, highly interactive system is needed. coarse of a resolution. Much of the software written for

A multivariate plotting routine at General Motors mainframes will not run on personal computers. Work-
Research Laboratories (GMR) provides an example of stations do not have these hardware and software lim-
the increase of power and usefulness that interactive itations. Since the workstation has only one user, the
graphics capability can add to a static graphics display. human interface can be designed to increase the pro-
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ductivity of the user and help him concentrate on his rejected because their UNIX operating sytem was not
problem rather than on computer science. completely independent of their proprietary operating

That one person at a time uses a workstation does system AEGIS. As described in their manual (APOLLO,
not imply that the user is isolated. As noted previously, 1985), one "should be familiar with both UNIX and
workstations can be configured in a network. Since a AEGIS software, as well as DOMAIN networks" in or-
network allows the fusion of different machines, it is im- der to use the system. The top of the line color graphics
portant that the network be designed following industry workstation, the DN860, had a 32-bit bit-slice proces-
standards so that the greatest number and variety of the sor and could support a maximum of 8 Mb of Ran-
available computer hardware are compatible with it. If dom Access Memory (RAM). At the time of our visit,
a vendor proprietary networking system is chosen, then this machine, though still being sold, was in the pro-
one may be locked into that vendor's hardware. An cess of being phased out in favor of a machine built
open architecture philosophy allows one to more read- on the 68020 chip. The DN460, the high performance
ily acquire the latest hardware and, likewise, to more monochrome workstation, could support only 3 Mb of
easily sell it. It also encourages competition among the main memory. Warranty analysis at GMR requires at
silicon valley upstarts, thereby improving quality and least 15 Mb of RAM. A paint attribute surface represen-
reducing prices. tation program at GMR can easily consume 16 Mb of

RAM. The APOLLO equipment does not match SUN's
6 Vendors for Statistical Computing En- speed and memory capacity. A further disadvantage of

the APOLLO equipment is that it is designed to run on
vironment Hardware and Our Final its own proprietary network.
Selection The SUN equipment most fully met our criteria. The

SUN workstations are based on the 68020 chip and can
The criteria for the choice of a microcomputing net- support up to 16 Mb of main memory. The SUN op-

work for statistical computing may be summed up as erating system is an extension of UNIX 4.2BSD (the
follows: extension allowing for such innovations as windowing).

" high resolution, high speed graphics; The design philosophy of the equipment is to closely fol-
low industry standards (or working standards) as much

" UNIX operating system; as possible. Hence, SUN uses the ETHERNET as its

* a rich environment for program development and network, in contrast to APOLLO who developed their
maintenance; own DOMAIN network. In comparison with APOLLO's

products, the SUN workstations are faster, have more
large random access memory and disk storage to main memory, conform more closely to industry stan-
handle very large data sets, (one data set which we dards, and are totally based on UNIX.

Swill analyze consists of a million observations with Future developments in SUN workstations include a
about 15 variables); HYPERchannel connection in May 1986. SUN already

" networking capability; has a connection to the Cray, the so called "Craysta-

" multi-color graphics (at least enough for shading). tion."
The current graphics on the SUN is called SunCore

The vendors that we personally contacted were DEC and SunCGI. SunCGI complies with the ANSI and ISO's
with microVAX II and VAXSTATION 520, APOLLO draft of the Computer Graphics Interface for fast two-
with 560 and 660, and SUN with SUN-3. Other candi- dimensional graphics. SunCore follows the SIGGRAPH
date vendors, such as Chromatics, Iris, Ridge 32, and de facto standard for two- or three-dimensional graph-
Symbolics 3600, were not investigated due to local un- ics. SunGKS is available for more advanced graphical
availability and the limited time of the search team. The capabilities.
final decision was to choose SUN-3. Some pertinent technical facts about the SUN sta-

The DEC offerings were rejected because of the slower tions are given by Sun (1985). The high resolution
processing speed and the diminished graphics capability screens on the SUN are 1152 (h) by 900 (v) pixels. The
relative to SUN. DEC's graphics workstation is really refresh is at 66Hz non-interlased. The color pallet has
a Tektronix color monitor attached to a monochrome eight planes with 256 simultaneously displayed colors.
VAXstation. The graphics workstation does not sup- The SUN requires no special temperature (0-C - 40°C),
port a diskless node and it does not support ULTRIX- humidity (5-95%), or altitude (0-3,000m) environments.
32m, DEC's version of UNIX 4.2BSD. Remote login The Motorola 68020 chip run at 16.67MHz is included
from a microVAX with ULTRIX to a machine with a in each station along with the 68881 coprocessor which
VMS operating system (DEC's proprietary operating is run at 12.5MHz. Spanier (1985) provides some tim-
system) was not possible at the time of our investiga- ing comparisons between DEC machines with either a
tion. Networking would be accomplished with DEC's "UNIX or a UNIX-like operating system" and the SUN-
proprietary networking system DECNET. 3. The SUN-3 without a floating point processor is 1.6

APOLLO was a closer contender to SUN. At the times as fast as a VAX 780 in doing floating point com-
time of our visit to APOLLO, the company did not putations. It is about 1.8 times as fast in integer corn-
have the Motorola 68020 chip (MC68020) in its high putations. These figures are just slightly better when
performance color graphics workstation. APOLLO was compared to a microvax II. The SUN-3 with a floating
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point processor is 4.6 times as fast as a VAX 780 in hardware and the final system configuration is intended
doing floating point computations. This figure is just to be used for statistical computing. Though this sys-
slightly better when compared to a microvax II. Due to tem may be appropriate for other groups, it should not
the unavailability of the new APOLLO MC68020-based be viewed as prototypical. A big advantage of a subnet-
system, a comparison is not available at this time. work of workstations is the ability to create a specific

Figure 1 contains a listing of the system hardware computing environment customized to the users' needs.
that will meet our research needs. The system is config- Hence, one should carefully assess one's needs when de-
ured for six users. Figure 2 is a schematic representation signing and acquiring a computing environment. In par-
of the subnetwork with the system configuration of the ticular, the following (somewhat obvious) steps should
hardware described in Figure 1. The above selection of be taken:

QUANTITY DEVICE HARDWARE

1 3/160C 68020,88881,FPAGBGP,16MEGColorHigh Res.
2 3/160C 68020,68881,4MEG,Color,High Res.
1 3/l0M 68020,68881,4MEG,High Res., File Server
2 3/50 68020,68881,4MEG,Monochrome,High Res.
I Ethernet Cable and Terminators
1 Communication Box Connection to the GMR Ethernet
1 Tape Drive 1600 BPI Tape Drive
2 2 Eagle Disks Mass Storage 760 MBytes
1 Laser Writer Monochrome High Res. Hard Copy
1 Benson Printer High Res. Color Ink Jet

Figure 1: The SUN Hardware.

Color Station Color Station Color Station
I9" Monitor 19" Monitor

4Meg RAM 4Meg RAM 19" Monitor
3/ C /160C 1Meg RAMr F.P.A.Monochrome Moi crome n.Staton %abon Graphics Enh.I Station I ROn

19" Monitor 19" Monitor 3/160C
4Meg RAM 4Meg RAM
1750KU 3/50M

Mathematics Department ETHERNET

Tape Drive
Laser 1600 DPI

Printer 3/160-670
8 PPM File Server

Sun LW/I and Disk Drive
380 Meg

Color System Console 3/160-620Hard %,opyUnit 3/160M Disk Dri'e
Unit 380 Meg

3/160-61

Computer Science Department ETHERNET
Figure 2: The SUN System Configuration.
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AN EXPERT SYSTEM FOR TESTING STATISTICAL HYPOTHESES

K n u t M. W i t t k o w s k i , University of Tuebingen, Fed. Rep. Germany

ABSTRACT prediction of an outcome, but it is
also necessary that this model can be

Until now, most approaches for building interpreted, e.g. that it shows which
expert systems with applications in sta- parameters influence this outcome.
tistics have concentrated on the area of In testing hypotheses, the require-
generating hypotheses (RX, GUHA-80, REX, ments are even more restrictive, because

STUDENT, GLIM-Front-End). These expert the purpose is not only to look for a
systems make decisions on the basis of model that provides an explanation, but
the empirical distribution of the data, to compute .he probability of erroneous-

subjective opinion, and some a-priori ly choosing "significant" parameters for
knowledge. The present paper proves this model.

some concepts underlying these systems This paper discusses implications of

to be inappropriate for testinq statis- these special demands in the field of

tical hypothesesw testing hypotheses on expert systems.
Based on a new rating and a new clas- Section 2 discusses some concepts used

sification of knowledge on statistical in expert system approaches for generat-

concepts, problems and methods and on ing hypotheses. It is demonstrated, why
rules for checking the appropriateness most of these concepts are not applic-

of sub-problems, selection of statisti- able for testing hypotheses. A new con-

cal methods is formalized as a special cept is introduced, that is based nei-
pattern recognition process. It is de- ther on data nor on assumptions or
monstrated, how an expert system can knowledge but on the interest in the

support the user in choosing methods analysis. In Section 3 a classification

and interpreting results. of relevant criteria is introduced and

the area of applicability is defined.
KEY WORDS: artificial intelligence, Section 4 gives a solution for the prob-

experimental design, generalized lem of multiple analyses on subsets of

linear model, nonparametric sta- the same set of data and a representa-

tistics, multiple comparisons, tion of the process of selecting statis-

confirmatory data analysis tical methods as a special pattern rec-

ognition process. An example is given
1. INTRODUCTION in Section 5 and in Section 6 some con-

Statistical methods are frequently used sequences of these new concepts are out-
lined.

- to identify criteria that allow for

discrimination between groups or to 2. CRITERIA FOR MODEL SELECTION

predict the outcome of some event,

- to generate hypotheses that provide 2.1. Generalized linear models

an explanation of some hiological, The process of building a model starts

sociological or economical process. with formalizing the information avail-

- to test some of these hypotheses on able prior to observing the data. This

an observed set of data. a-priori knowledge and the data remain

Each methods is (implicitly) based on a unchanged in the following process of

mathematical model, so that on the one fitting different models to the data.

hand a decision on a model can be made This process will be discussed in the

observing the result of different meth- context of generalized linear models:

be selected according to a predefined + fn(abij)+... + eijk

model.
If a model is build for the purpose where observations Yijk are decomposed

of prediction or discrimination, there into main effects ai, j.... ,.in-

is nc need that its parameters repre- teractions abij, acik' bcjk. ... , and

sent concepts that have an interpreta- an error term eijk representing resid-

tion in reality. The major goal is to uals that cannot be explained by main

provide a "black box" that gives a good effects or interactions.

prediction or few mis-classifications, After all possible terms for the

respectively. in medicine, for in- model equation have been identified, a

stance, a model containing some unre- set of terms (main effects and interac-

alistic parameters might lead to cor- tions), a set of functions ft , and a

rect diagnoses and a treatment might be "link"-tunction L are selected to find

useful, even if the underlying mecha- a model that fits "best" (e.g. in terms

nism is not known ( until recently, no of least squares). For prediction and

one knew, how aspirin stills pain ). discrimination criteria for selection

In generating hypotheses it is not are typically based on the distribution

sufficient to find a model that allows of the dat-.. For hypotheses generation
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some a-priori knowledge or assumptions If an expert system is to be used for
on the area of application may also be testing hypotheses, it must not derive
used to mark all terms that are known its information from the data. ( There
to be necessary or undesired for inter- are only few exceptions, like adaptive
pretation. Examples of expert systems rank tests, where looking at the data
for these purposes are RX (BLUM 1978), does not affect the conservatism of the
REX / STUDENT (GALE and PREGIBON 1984), test procedure. These exceptions will
GUHA 80 (HAJEK and IVANEK 1982), and the not be considered here. ) This argument
front-end for GLIM (NELDER and WESTEN- rules out application of the above men-
HOLM 1986). In the following, these tioned expert systems for the purpose
systems' sources for information (data, of testing statistical hypotheses.
assumptions, knowledge) will be dis-
cussed with respect to applicability in 2.3. Rules based on assumptions
the field of testing hypotheses and a
new concept will be introduced. To sim- Many "rules" in common textbooks are
plify terminology, prediction and dis- based on assumptions on the distribution
crimination will be treated as special of the random variables:
cases of hypothesis generation. R U L E - 2

2.2 Rules based on data IF the distribution of Y
is log-normal,

Consider the case where the influence of THEN logarithms of the response
a treatment is to be tested in a (gener- variable y should be
alized) linear model with several fac- used.
tors and the experimenter is not sure
which terms are to be included into the There is no doubt that RULE-2 is true:

model equation. Suppose the expert sys- If two log-normally distributed groups

tem decides on the basis of rules like are to be compared with respect to the
location of the random variable, taking

IF inclusion of term ft(xljk) logarithms provides for a higher effi-
leads to a higher F-ratio for ciency, i.e. a smaller number of obser-
the c-th factor, vations is necessary to achieve a signi-

THEN include this term into the ficant result for groups differing in
model equation. location.

However, how should one know that theAlthough rules might often look differ- assumption is true ? Assumptions on

ent, they may have a similar effect on distributions are not very realistic for

the decision . The following rule, for many i applic aio n: L -r al ist ri-
instance, is taken from REX (GALE and many applications: Log-normal distri-

instane is84) tbution of residuals, for instance, can
only be guaranteed, if all unknown

R U L E - I sources of variation are both multipli-

IF the distribution of y is cative and independent ! The (asympto-

unduly skew tic) relative efficiency (ARE) of two

AND the sign of y is positive methods, however, depends heavily on the
distribution of the residuals in the

THEN assert that logarithms of model chosen: The t-test, for instance,
the response variable y is more efficient than the U-test only
should be used, for some distributions (e.g. Gaussian);

In generating hypotheses these rules for other distributions (e.g.
might be very useful, because in that logistic) the converse might be true.
context minimizing variability of the In some applications the data is used
residuals is most important and RULE-i to "prove" that an assumption is met.
might be a valuable suggestion. Whether This approach is based on a common mis-
or not the variability was actually re- understanding of the concept of "signi-
duced can be checked on the data. In ficance": A non-significant test for
testing hypotheses, however, the follow- deviation from normality does not mean
irg argument proves rules based on the that the distribution is proven to be
empirical distribution of the data to be normal. Even if alpha is chosen to be
inapplicable: The more rules are avail- as high as .20, .50, or .80, it is the
able and the more functions L(Yi3 k ) unknown error of second kind (beta) that
and ft(xiJk) are considered, the counts. The effect of an error of second
gredter is the probability of finding kind in "proving" the appropriateness of
a model that leads to a statistic with some assumption on the error of first
a p-value less than a given alpha. kind in testing a hypothesis is not pre-

If the p-value is of interest, i.e. dictable.
if the decision was intended to be made Again some information currently used
with a limited probability of an error in hypothesis generation has to be re-
of first kind, the model that was de- evaluated for hypothesis testing: As-
termined to be the "best" tit must under sumptions on the distribution of resid-
no circumstances be used for testing the uals are helpful only in rare occasions,
hypothesis of no treatment effects I where all sources of variation are
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known and their independence is actually 2.5. Rules based on interest
proven. As demonstrated in the examples above,
2.4. Rules based on knowledge for testing hypotheses the rating of

efficiency and consistency as criteria
Where information from the data itself for selection of models (or methods) has
cannot be used and assumptions are not to be re-evaluated. Efficiency was de-
realistic, knowledge that is independent fined as a measure of the number of ob-
on the observed data has to be consid- servations necessary to achieve a sig-
ered as a basis for selection of sta- nificant result under a given alterna-
tistical methods. Because so far most tive. Consistency of a method against
expert systems have been developed for a certain type of alternative means
hypothesis generation, knowledge has that any alternative of this type will
been given little attention. If a-priori lead to a significant result for (al-
information is considered at all, most) any underlying distribution, pro-
knowledge bases typically contain rules vided the sample size is big enough.
as in the following example from the Until now, efficiency was (implic-
STATPATH knowledge base (PORTER and LAI, itly) considered the more important cri-
1983): tenion for selecting statistical meth-

R U L E -3 ods. This view resulted from the wealth
of results concerning efficiency of

IF the scale is ordinal test statistics in the field of mathe-

THEN use a rank test matical statistics, where the set of

It is well known, that a rank test is distributions is typically restricted

more efficient for detecting differences (e.g. to Gaussian distributions) to

in location than a chi-square test. ensure that all methods are consistent

However, if the purpose of the analysis against the same alternatives.
is to detect any difference in distri- Assumptions on distributions, how-
bution ( location, skewness, number of ever, have been demonstrated to be
modes, scale, etc. ) a rank test might neither realistic nor provable on the
be extremely insensitive basis of the observations. On the other

Consider the following example, where hand, the assumption of normality often
the status after a treatment (placebo taken as a reason for transforming data
or verum) was measured in terms of is relatively unimportant even to ana-
"better" ( + ) "unchanged" ( 0 ) and lysis of variance procedures (including

ee" u 0 the well-known t-test) as far as con-

sistency is concerned. As a conse-
+-----+ ----+----+----+ quence, the asymptotic relative effi-

-' . o + + : ciency, though important in the field
placebo : 0 : 20 : 0 : of theoretical statistics, is of little

+--------+----+---- value in the field of applied statis-
' verum . 10 : 0 : 10 ' tics.

---------------- + Comparing these concepts it seems

A rank test (U-test corrected for ties) more reasonable to base a decision on
on the difference between placebo and consistency rather than on efficiency.
verum leads to a test statistic of Rules based on efficiency might result
U = 0 , i.e. the test would not be sen- in the "best" solution for the wrong
sitive for the observed type of differ- problem, i.e. a completely misleading
ence in effects. A rank test is only decision, while decisions based on
appropriate, if the "tendency" in effect consistency will givE results for the
is of interest (i.e. whether the proba- problem of interest, even if this solu-
bility of a preferable result is differ- tion is "not optimal", i.e. given with
ent for the treatments). On the other a p-value that might be not exact.
hand, the chi-square test is appropri- In terms of consistency, there is a
ate, if any difference in the effects second reason, why RULE-i is not appli-
is of interest, cable for testing hypotheses: It is a

The scale level, however, must not be well-known fact that (1) log-normally
ignored, either. Even if the data in distributed data are skewed to the left
the example above had been numerical- and positive and (2) the geometric mean
ly coded ( 0:="-, 1 :='o', 2:=+' ), is the most efficient estimator of the
a t-test would typically give a meaning- median for this type of data. This im-
less result for ordinal or nominal vari- plication, however, cannot be inverted:
ables. It follows that the scale level A distribution that is skewed to the
restricts the set of possible methods left and positive need not be log-
but does not determine the method (ex- normal. Because geometric mean and
cept for nominal variables, where means median estimate different parameters for
and standard deviations are meaningless, most other distributions, they are not
even if common analysis systems like comparable in terms of efficiency.
BMDP, P-STAT, SAS, and SPSS typically Taking logarithms and computing means
provide these measures as defaults for may lead to completely different results
"descriptive" analysis.) than computing medians, because it leads
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not only to a transformation of the re- Until recently, there Was no unique
siduals but also to a to a trdnstorma- classification ot objects and relations,
tion of the problem. although this lack of metd-knowledge

The empirical distribution in all has already been recognized e.g. by
four groups of the following example MOLENAAR (1984): " If the stdtistical
is skewed to the left and all observa- community succeeds in producing a work-
tions are positive. Means and standard able classification of all or most data
deviations are even positively corre- sets, a statistical expert system could
lated, as they should be in log-nor- be very helpful in assessing the ade-
mally distributed data. The example quacy and robustness of some statistical
proves that differences in logarithms techniques for the particular data set
are sensitive to differences both in considered.
location and in scale of the origi- Because statistical analysis is pre-
nal data ( B vs. C ). Differences in determined by the way an experiment is
scale might neutralize or even reverse planned or data are collected in a
differences in location ( A vs. B and (retrospective) study, looking for such
C vs. D, respectively). Moreover, var- a classification is much more promising
iances are not "stabilized" by computing in the field of statistical analysis
logarithms of the data ( y log(x) ). than, for instance, in the field of

Group A B C medical diagnosis. The following con-
cept for structuring knowledge was

3.00 3.60 3.68 5.28 introduced by WITTKOWSKI (19 84a).
2.20 2.32 1.93 2.50 Data are typically arranged as rec-
2.00 1.58 1.89 1.00 tangular tables, where rows correspond

- = - - to observational units (days, patients,
x 2.40 2.50 2.50 2.93 rats etc.) and columns to a set of
x .53 z 1.02 = 1.02 '2.17 variables associated with each type of

1.10 1.28 1.30 1.66 observational unit. If all those tables
.78 .84 .66 .92 are joined according to the observable
.69 .46 .64 .00 relations defined by the observational

- units, the resulting universal relation
Y. .86 = .86 .87 .86 describes all observed relations.! ~Sy .21 .41 .8 .82 .38 .83 The structure defined by the a-priori

An expert system for testing hypotheses knowledge on the variables will be re-
needs rules that depend on the interest ferred to as theoretical relations in-
( type of influence ), i.e. whether a cluding classification of dependent,
reduction by 50% is as relevant as an nuisance, and independent variables,
increase by 100% ( RATIO: compute loga- strategy of sampling, SI-units, format
rithms ) or by 50% ( EXPECT: estimate of data, level and type of scale, etc.
expectation of random variables using All non-observable, but testable decla-
the original data): rations of relevant types of influence

on dependent variables ( differences in
IF relative differences are distribution, expectation, tendency, or

of interest, dispersion ) will be referred to as

THEN logarithms of the response hypothetical relations. Requirements on
variable y should be the representation of the results (e.g.
used. tables, plots, test statistics) will be

referred to as output types. Observed
3. FORMAL RELATIONS relations will also be called actual

relations, while observable, theoretical
The examples above demonstrate that and hypothetical relations will be re-
common "heuristics" are for different ferred to as formal relations
reasons often inapplicable as rules for As proven in Wittkowski (1985), for-
expert systems in the area of testing mal relations are sufficient for choos-
hypotheses: Literature on theoretical ing approptiate statistical methods and
aspects of statistical models is typi- interpreting their results, as faI as
cally based on assumptions that are not consistency is concerned, provided that
realistic. Literature on applied sta- a suitable class of statistical methods
tistics often contains misleading or is selected. Currently, this concept
even wrong recommendations, has been proven to be sufficient for

Evaluation of expert systems in dif- linear models (analysis ot variance and
ferent areas of application shows that covariance), tendency models (several
"heuristics" are not an economical way non-parametric models based on ranks), 9
to represent knowledge ( see WITTKOWSKI "semi"-parametric models (ranking after
1986 for a more detailed discussion ) alignment), log-linear models (analysis
but that it is desirable to structure of contingency tables), and several
knowledge in order that the description graphical and tabular techniques. It
of an object or relation can be inher- can easily be generalized e.g. to prin-
ited from the object- or relation-types clpaI component analysis, analysis of
it belongs to. dispersion etc.
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4. MULTIPLE ANALYSES 5. THE USER INTERFACE

In generating hypotheses, the same set During this pattern recognition process

of data is typically split into over- knowledge acquisition and knowledge ap-

lapping subsets and analysed with vari- plication can be supported at several

ous methods to find a model that fits stages:
best. For the reason outlined in Sec- - Acquisition of knowledge (from ex-
tion 2.2 multiple analyses of the same perts in applied and theoretical sta-
set of data may cause serious diffi- tistics) on conceptual and implicit
culties in testing hypotheses. For in- problem types can be facilitated by
stance, it is neither possible, to try fast dialogue procedures and be
a t-test on logarithms, a t-test on the verified by testing its consistency
original data, a U-test and a chi-square ( not shown in this paper ).
test for the same set of data nor trying - By deduction from the conceptual
out both the paired and unpaired design problem type the amount of input
prior to deciding which result is to be necessary to define a sub-problem is
published. It is obvious, that the reduced, inconsistencies in the non-
probability of an error of the first deducible information are explained
kind will be much higher than the or, alternatively, pop-up menus con-
p-value of the result chosen on the taining only consistent alternatives
basis of this " principle of most sig- are presented, and the user is given
nificance ". In the terminology of hints for interpretation ( see the
Section 3, confirmatory analyses require example below). The set of necessary
that observable and hypothetical rela- parameters may be explained by means
tions must not be modified during analy- of intelligent tutoring.
sis.Therefore, an expert system for test- - The expert system automatically

ing hypotheses should know not only the chooses and calls an appropriate

original (conceptual) theoretical rela- statistical method with a corre-

tions but also the original (conceptual) sponding implicit problem type.

observable and hypothetical relations. Consider, for example, an experiment
This knowledge on formal relations will where each of 10 patients is given
be referred to as conceptual problem three doses of a medication (BETADOSE)
type. Based on this knowledge, the subsequent to two different techniques
system can decide which modifications of of operation (OPERTYPE) applied after
the model are allowed in the process of cardiac infarction. Note that patients
defining a derived external problem type are nested within factor OPERTYPE.

(e.g. defining a projection on the data- Bodyweight (BODYWGHT) was measured at
set for uni- or bi-variate statistics, entry in the study, vigour (ERGOMETR)
defining a restriction for simple main for each dose. Suppose that the goal of
effects and a-posteriori multiple com- the study was to measure the effect on

parisons) and which are not (e.g. test- ERGOMETR in terms of expectation and
ing both the original and transformed that a linear relation between BODYWGHT
data, including terms in the conceptual and ERGOMETR is assumed. Input of
model equation or excluding terms from "ERGOMETR" would result in the following
it). For the special cases given above mask on the display:
(c.f. WITTKOWSKI 1985) the system can
ever) compute the adjustment necessary to NAM:OPERTYPE: (3) BETADOSE:BODYWGHT:ERGOMETR

derive the "global" p-value from the M1N (1) (1) : (2) : (2)
"local" p-value given by the method. MAX: ----.

Based on this new concept of rating IIO-EXPECT EXPECT :LINEAR -TEST
and structuring knowledge on statistical
concepts, problems, and methods, selec- Without a modification the system calls
tion of appropriate methods can be automatically an analysis of covariance.
treated as a special pattern recognition If OPERTYPE or BETADOSE is restricted to
process ( see WITTKOWSKI 1986 for de- one or two categories (1) , the nec-
tails ), which consists of essary modifications of the analysis

system's (BMDP, P-STAT, SAS, SPSS, etc.)
1 ) representing problems and methods control language are generated and the'

based on data-independent relations user is given the information, how to
( conceptual and implicit problem compute a global p-value from the local
types, respectively ), p-value given by the analysis system.

2) choosing sub-designs by projecting If BODYWGHT or ERGOMETR are restricted
and restricting the conceptual prob- (2) , the influence types are modified
lem type, ( e.g. LINEAR also for BETADOSE ), or a

variable PATINGRP with categories 1-5 is
3) normalizing the external problem type introduced (3), the appropriate methods

and selecting a method with a corres- are called as well, but the user is
ponding implicit problem type, and given the information that the result

4) verifying assumptions of the method has to be interpreted as being explora-
on the data. tory.
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AN EVALUATION OF TDIU SERIES ANALYSIS PUOG14MS AVAILABLE IN THREE MAJOR

STATISTICAL COMPUTER PACKAGES

Terry J. Woodfield, Arizona State University

1. INTRODUCTION k
V(B)[Yt - jat - iSt ()Xit] = (B)et, (2.1)

Three popular statistical software packages, i=l
IMP, SAS, and SPSS x , have implemented program
to perform what is commonly referred to an where B is the backshift operator defined by
Box-Jenkins Time Series Modeling. Many other kYt =t-k, Yt is the original series or a
software products exist that perform calculations transformation of the original series, at is a
related to time series modeling, such as RATS and Rean or trend term, the polynomial
SCA, but it appears that BMDP, SAS, and SPSSx are 0(a):l-0iB-0 ..... @rB r may be the product of
packages likely to be encountered in an academic stationary seasonal and non-seasonal
computing environment. In this paper, we autoregressive components and nonstationary
consider the time series features of MDSP, SAS, differencing components, the polynomial
and SPSS x  and compare the packages using @(B)=l-#xB-@ B2. .-.. sB may be the product of
simulated data. The results of a small Monte invertible seasonal and non-seasonal moving
Carlo study comparing three parameter estimation average components, Et is an independent Gaussian
techniques are also presented. white noise process, Xit,..., Xkt are exogenous

The implementations we will examine involve variables, and the transfer functions
batch processing on an IBM 3081 mainframe Pi (B)=i (B)/&i (B) are ratios of polynomials of
computer at Arizona State University. While possibly varying orders in general given by
interactive processing is preferred for many s(B)=e-uifB-UB2-..., 6(B)=I-&IB-&aB2..... See
applications, it typically requires greater Box and Tiso (1975) for a complete description of
overhead and is not usually feasible for large transfer function models with ARIMA errors.
academic computing systems. The new generation Given realizations yi, y2,..., ya of a time
of supermicro's and mini's will clearly alter series Yt, one may estimate the parameters of the
this situation, and in fact has already had an model (2.1) using nonlinear least squares or
impact on statistical software vendors as is exact maximm likelihood. Kohn and Ansley (1985)
evident from the availability of versions of provide one of the most recent algorithm for
DP, SAS, and SPSSx for microcomputers. Large evaluating the likelihood function. Ansley and

data sets and intensive computational overhead Newbold (1980) compare the unconditional least
make time series analysis more appropriate for squares, conditional least squares, and maximm
larger, faster computers. However, rapid changes likelihood techniques for parameter estimation.
are occurring in both hardware and software. Our The algorithm of Kohn and Ansley appears to be
evaluations must be judged in that context. the best available method for parameter

There are many criteria that one could use to estimation based on numerical and statistical
evaluate packages. This paper will consider how criterion. Newton (1981) provides a useful
flexible, up-to-date, and accurate the three discussion of available estimation techniques.
packages are with respect to time series The identification stage of the modeling
analysis. Here flexibility may refer to two process relies on subjective examination of
aspects: how easy output may be manipulated to sample functions. Many sources restrict
produce displays and further analyses, and how attention to the sample autocorrelations and
many methods of analysis are available. All partial autocorrelations. Frequency domain
packages appear to be accurate within the quantities such as periodogrms and sample
limitations of the floating point arithmetic used spectral densities may also be employed.
and the algorithms employed. Accuracy with Transfer function models are identified using
respect to the estimation algorithm employed will cross-correlations and cross-spectral densities.
be emphasized in this work. Recent diagnostic tools include the shifted

S-array of Woodward and Cray (1981), objective
2. TIM SERIES MODELING order determining criteria such as AIC (Akaike

1974) and CAT (Parzen 1977), and canonical
Most packages use Box end Jenkins (1976) as correlation diagnostics suggested by Priestley,

the primary reference for univariate time series Rao, and Tong (1974), Akaike (1976), and Tsay and
modeling. Judge, et. al., (1985) provide a Tiao (1985).
useful summary of the available theory related to
univariate and multivariate time series modeling. 3. DESCRIPTION OF THE PACKAGES
The so-called Box-Jenkins modeling strategy is
incorporated into the design of the progres of We will address some of the basic features of
BDSP, SAS, and SPSSN. This strategy is each package in this section. The next section
smarized as: identification * estimation * will provide comments and comparisons related to
diagnostic checking. After a model passes the univariate analysis of a time series.
diagnostic checking step, one may produce DP has two program for time series
forecasts using the model. analysis: NDPIT and 8DP2T. BDPIT performs

For convenience, we will restrict attention to univariate and bivariate spectral analysis.
autoregressive integrated moving average (ARIMA) BDP2T perform Box-Jenkins time series analysis
models that incorporate a transfer function including transfer function models. DSP
component. The general form of the model is provides a basic user's manual and numerous

technical reports. The documentation provided by
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the basic manual is adequate for an experienced documentation is more comprehensive and my to
time series analyst but probably difficult for follow than the comparable M4DP product
the student or novice. EMP anticipates many of (univariate modeling only), but inferior to the
the needs of time series analysts and ha. corresponding SAS product. SPSS x anticipates
implemented techniques that are current up to many of the needs of time series analysts who use
about 1982. only Box-Jenkins univariate ARINA models and has

SP ba the most primitive data handling implemented techniques that are current up to
capabilities of the three packages. The about 1976.
TRANSFOFM paragraph is used to transform response SF58x has advanced data management features
or predictor variables or to create indicator comparable to earlier versions of SAS. It has a
variables. No date/time functions are provided large nuer of built in date/time functions for
to label the time frame of the data. IMP labeling the time frame of the data. Variable
provides few features for saving or merging data transformations are handled by the COMPUTE
sets. For exle, producing residuals from a comand. Like SAS, SPSS has a wide range of
regression analysis using 2MDPIR and analyzing built-in mathematical. and statistical functions.
them using BDP2T is more difficult than using SPSS x has no multivariate time series
comparable procedures in SAS or SPSS'. capabilities and no frequency domain

ISPIT is the most comprehensive frequency capabilities. Univariate transfer function
domain implementation of the three packages. It modeling is not available from SPSSx. The
calculates periodograms, cross-periodogrms, and BOX-JENKINS procedure implements the basic ARIA
smoothed or filtered versions of these. IMDPIT modeling strategy described in Box and Jenkins S
has options for replacing missing values of a (1976).
aeries. Parametric spectral estimation is
available using autoregressive filters. 4. UNIVARIATE IWDISNTATION OF BOX-JENKINS
BP2T is a complete impleentation of TIES SERIES MODELING

Box-Jenkins ARIMA modeling that includes
capabilities for handling transfer function Consider model (2.1) without the transfer
models. No multivariate capabilities beyond the function component. To identify To identify the
inclusion of multiple transfer functions are nature of the polynomials t(3) and e(B), BNDP2T,
available. SAS PROC AR IA, and SPSSK procedure BOX-JNKINS

SAS provides a library of procedures in the all provide the sample autocorrelation and
SAS/ITS product that perform a wide variety of partial autocorrelation functions. For
time domain computations. SAS provides numerous identifying seasonal components, Bl}P and SAS
manuals, instructional texts, and technical permit calculation of the periodogream and various
reports that document its features. The SAS/TS smoothed versions of the periodogram.
User's Guide is the basic manual for the SAS/TS The display of the sample autocorrelations and
product. The documentation in the SAS/TS guide partial autocorrelations is very similar for all
is adequate for experienced time series analysts three packages. None of the packages permit
but perhaps somewhat confusing to the novice, alternate forms of plotting the sample
The documentation is more comprehensive and easy autocorrelations, and none allow the
to follow than the comparable AMP product. SAS autocorrelations to be saved for later use.
anticipates many of the needs of time series Consequently, more desirable pen plotter versions
analysts and has implemented techniques that are cannot be obtained, even though SAS and SPSS
current up to about 193. have advanced routines for accessing

SAS has the most advanced data management sophisticated plotting hardware. Thus, 2P
features of the three packages. It has a large publication quality plots of the sample
nmber of built in date/time functions for autocorrelations must be obtained using other
labeling the time frame of the data. Variable resources. One approach is to read the
transformations are handled by the DATA step. In appropriate output page using a progrem written
fact, the wide range of built-in mathematical and in a lower level language like C or FORTRAN that
statistical functions make it possible to use the reconstructs the desired sample function, and
DATA step to program simple applications such as then use SAS to read in the reconstructed
multiplicative decomposition seasonal adjustment, function and plot it using SAS/GRAPH.

SM/ITS has r nmber of procedures to perform If the identification stage reveals that the
univariate and multivariate forecasting. These series is nonstationary, various transformations
include ARIMA, AUTO=, FORBCAST, and STATESPACE. or differencing operations may be performed. All
Other linear and nonlinear modeling procedures packages have the ability to perform
are also available. SPBCTRA calculates transformations "outside of" the procedures used
periodograms, cross-periodogrms, and smoothed to carry out the analysis. In addition, SPSS'
versions of these. Kernel estimates and procedure BOX-JNKINS permits logarithmic or
parametric estimates of a spectral density are power transformations as options within the
not provided. No filtering other than moving procedure. The advantage of the SPSS
average filtering is available, implementation is that the user need not worry

SPS$ has one procedure, OX-JENKINS, for about untransforming the forecasts. All progrems
performing univariate time series computations. allow differencing of the input series to be
SF18' provides numerous manuals and instructional performed within the procedure being used.
texts that document its features. The SPSS x  When a model has been identified, the
User's Guide is the basic manual for users of parameters may be estimated using conditional
SPSS . The documentation in the SPSS x guide is least squares (CLS), unconditional least squares
adequate for experienced time series analysts but (ULS, or the backforecnsting approach described
perhaps somewhat confusing to the novice. The in Box and Jenkins, 1976), or maximum likelihood
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(ML). Neither BNDP2T nor SPSSN BOX-JENKINS whose interpretation would be questionable for
provide mmxi likelihood estimates. SAS POC smaller series.
ARlMA uses one of the more efficient algorithm-  All packages also report the residual variance
for obtaining ML estimates. CLI and UlLS and other statistics related to the original
estimates are obtained using a nonlinear least series and the residuals. The terminology used
squares algorithm. BP2T and SAS PROC ARIMA by SAS, e.g., "VARIANCE ESTIMATE" instead of
sam to use a more efficient algorithm "RSIDUAL VARIANCE", may be confusing to some.
(Gausa-4brquardt) for nonlinear least squares All packages require ae investigation to
than does SPSSx procedure BOI-JRNKINS (pattern determine the divisor employed to obtain the
search), although numerical results using the residual variance. The divisor appears to be the
ase estimation technique are usually in close degrees of freedom formed by subtracting degrees
agreement for the three packages. of differencing and nmber of parsmeters

SAS PROC ARIMA has a unique feature that estimated from the total series length.
allows alternate paraeterization for a transfer None of the packages have options within the
function model. AIMA also produces an estimate procedures or progras to carry out a complete
of t=, labeled MU, and for models with AR residual analysis. Reliance on a composite
components, ARIMA provides an estimate labeled chi-square test for white noise is inadequate for
CONSTANT which is the stable mean typically many situations. However, SAS has the greatest
called So by some authors and defined by flexibility in retaining the residuals and
#o=X(l-E@k). BM)P and SPSS provide only the carrying out a residual analysis using other SAS
estimate of go. When no AR components are procedures, such as PROC MANS, PROC uNIVARIAII,
present, %=So. and PROC PLOT. With a little more effort, SPSSx

The three packages have similar options for can achieve similar results, while BISP requires
obtaining forecasts. Options include specifying much greater effort to carry out a complete
at what time point the forecasts should begin and residual analysis.
how many time points beyond the end of the series Finally, note that SAS PROC AUTOREG and SAS
the forecasts should extend. BMDP2T does not PROC FOECAST have sme features that may be
display confidence intervals for the forecasts, useful in Box-Jenkins modeling. Primarily, these
but does provide standard errors that my be used features are designed for purely autoregressive
to compute such intervals. SAS PROC ARIMA processes.
provides 96% confidence intervals. SPSS" Display 1 sumarizes the features of each
BOX-JENKINS provides confidence intervals and package.
allows the user to specify the desired confidence
coefficient. Note that such confidence intervals 5. EXAMLES OF UNIVARIATE TIM SERIES MODELING
are usually valid only when derived using a long
series of data, i.e., the intervals are based on Three models and two series lengths (n=50 and
asymptotic theory and not on exact distribution n=100) were used to simulate data in order to
theory. campare the estimation algoritlm of the three

All three packages display forecasts and packages. The three models employed were:
confidence intervals and/or standard errors in a
column listing. SPSS BOX-JENKINS also displays (1) yt - 0.95yt-i = Et ;
forecasts in a table similar to that found in Box
and Jenkins (1976, Table 5.2, page 136). In (2) yt = Et - 0.95et- I
addition, SAS PROC ARIMA allows the forecasts and
related statistics to be saved in an output data (3) yt - l.Syt-i + 1.2lyt-2 - 0.455yt-3
set. - t + 0.2ft-i + O.gEt-z

All plotting of sample functions, forecasts,
and related statistics is "internal" and beyond Model (3) was suggested by Woodward and Gray
the control of the user in DIP2T and SPSSx (1981).
BOX-JENKINS. Alternately, while SS PROC ARIA Initially, one series was generated for each
plots sasule autocorrelations and partial model and asmple size. Results were different
autocorrelations (and inverse autocorrelations), across all packages, although in many cases
the PLOT and OPLOT procedures are employed in SAS results were very similar. The differences can
to customize desired plots of original data, be attributed to the following differences in
forecasts, and confidence intervals. Thus, SMS implementation:
seem more ideally suited for time series
analyses that are to be published. 1. Default values for convergence of parseter

Few modern diagnostic tools are made available estimates differ. SAS and SPSS use a
by the three packages. SAS PROC ARIMA produces stopping criterion of 0.001, while lISP uses
the inverse autocorrelation function in the 0.0001.
IDENTIFY step. PROC ARINA also provides the 2. The stopping rules vary across packages,
value of Akaike's AIC criterion for a fitted e.g., BMDP has a stopping rule related to the
model. BMDP2T, SAS PROC ARIMA, and SPSSx relative change in the residual as of
procedure BOX-JRNKINS provide a chi-square test squares, while SAS and SPSS appear to use
of the residuals for white noise. All three only the relative difference in consecutive
packages produce t-ratios for estimated parameter estimates.
paraseters and sample autocorrelations for the 3. The three packages use different nmerical
residuals. Again, note that the t-ratios optimization routines.
correspond to asymptotic theory, since no exact 4. Only SAS restricts estimates by default to
distribution theory is known. For this reason, fall within the stationary or invertible
the packages wisely refuse to print p-values region.
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5. SAS appears to use double precision for all insight into the behavior of the techniques.
computations, while SPSSV uses single Display 3 provides sumary tables giving the
precision for some computations. BMDP does relevant averages. Also given are averages using
all computations in single precision. HAD rather than MaE, where MAD is defined by

While one can use certain options to control MAD = £ :parameter-estimate:/(no. parameters).
some of the above factors, it appears that the
packages cannot be made to provide identical Note the cases where HSE and MAD provide
results. SAS PROC ARIMA can eliminate the different orderings of the average values.
stationary and invertible restriction. SPSSx and Our results see- to agree with those obtained
IDP do not have an option to force stationarity by Ansley and Newbold (1980). In particular, the
or invertibility. All packages allow one to fine ML method seemed to work best for small samples
tune convergence criteria, and all packages allow and for more complicated models, while ULS seemed
control of starting values for estimation. to perform well for the two models with roots of

We decided that simulations generated to the characteristic polynomials near the unit
compare the packages might unfairly favor the circle. Ansley and Newbold (1980) observe that
capabilities of one or more packages. For ULS estimates tend to he poor in the sense that
example, the first two models considered have they often give estimates yielding characteristic
roots near the unit circle. The ULS method polynomials with roots near the unit circle even
appears to perform better for models with roots when the underlying model does not exhibit roots
near the unit circle, while otherwise it appears near the unit circle.
to be inferior to the CLS and ML methods (Ansley
and Newbold 1980). Thus, the package with the 6. CONCLUDING REIARKS
"best" implementation of ULS might appear
superior to the others even if it had an inferior If one had to choose a single package for time
implementation of the other techniques. series analysis, SM would probably be the choice

Display 2 gives some results using n=50 for because it appears to provide the most options
all three models. Note that in some cases and flexibility. On the other hand, with access
results are quite different and that choice of to all three packages, there are situations where
package and estimation technique may be very BMDP or SPSS x might be used instead of or along
important. Unfortunately, no guidelines are with SAS. I have seen many clever things done
evident other than those suggested by Ansley and with the SAS DATA step or with SAS PROC MATRIX,
Newbold (1980), namely to use maximum likelihood including seasonal adjustment, state space
if possible over ULS and CLS. Since neither UMDP modeling, and kernel spectral estimation. (In
nor SPSS x provide ML estimates, this advice some cases, the use of a lower level language
favors SAS. would have been preferred, but the motivation was

A comprehensive study is warranted to more to show that "SAS could do it" rather than
determine what set of estimation algorithm and "this is the way it should be done".)
default tuning parameters may be preferred for Historically, MDSP seems to have been the
given types of models. Experience suggests that first of the three packages to provide a fully
no given technique or set of defaults will be a implemented version of Box-Jenkins transfer
clear winner, function modeling. SAS followed with an upgraded

In order to gain some insight into the version of PROC ARIMA a few years later that
validity of the Ansley and Newbold (1980) matched the capabilities of BMSP2T. SPSSN
findings, we ran a small simulation study using currently has no transfer function capabilities.
five replicates for each model/sample size SAS has yet to match DMDP's frequency domain
combination. We used SAS PROC ARMA with its capabilities, and SPSSx has no frequency domain
default settings to compare the three estimation capabilities. On the other hand, the SAs/RTS
techniques. The design was a 3 by 2 factorial product provides a comprehensive collection of
repeated measures experiment with response tools useful to time series analysts, although,
variable MSE defined by as the name implies, economic applications

dominate.
MSE = E [para-eter-estimated] 2 /(no. parameters) Finally, recalling the brief discussion above

on the changing technology, the future looks to
We define N as the sample size classification more sophisticated interactive time series
variable and MODEL as the classification variable analysis programs. One expects to see
identifying the model used to simulate the data. significant changes in the three products
The repeated measure was MRE taken over the three mentioned over the next few years to keep pace
techniques, CLS, ULS, and ML, for each data set with the statistical theory and the computer
(experimental unit). The analysis clearly technology.
revealed the presence of interaction between
MODEL and N. Univariate corrected F-tests The information contained in this paper was
indicated that the MODEL means were significantly obtained from the manuals listed in the
different for all three repeated measures. In references and from the author's experience with
addition, N and MODEL*N means were significantly the packages. None of the software vendors were
different for the CLS and ML methods. contacted to confirm this information. Hence,
Statistical significance was judged at the 10% care should be exercised in using this
level. information to help select a package for

Given the presence of interaction, we proceed performing time series analysis.
to examine the value of ME for each technique
averaged over MODEL, N, and MODEL*N to gain
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Display 3a. Overall Averages Display 3c. Model Averages

lesDonse(sethod) n MEAN ST. DEV. Response(method) n MEAN ST. DKV.
SIE(CLS) 30 0.03418720 0.10957495

MS(IL) 30 0.02956176 0. 10990708 MODEL=l
NS1(ULS) 30 0.02993844 0.11025630
MAD(CLS) 30 0.10693617 0.11400497 MSE(CLS) 10 0.00889031 0.01866648
MAD(ML) 30 0.09227277 0.10990816 MSE(ML) 10 0.00997695 0.01962674
MAD(ULS) 30 0.09164743 0.11121834 RSE(ULS) 10 0.00883305 0.01844740

MAD(CLS) 10 0.06286610 0.07407325
Display 3b. Cell Averages MAD(ML) 10 0.06864460 0.07648430

MAD(ULS) 10 0.06285790 0.07365030
Response(method) n MAN ST. DEV.

MODEL=2 --
HMgEL- 1 N=50

MSE(CLS) 5 0.00317783 0.00547312 MSE(CLS) 10 0.00485718 0.00505210
NSE(ML) 5 0.00395779 0.00799318 MSE(ML) 10 0.00294754 0.00144234
MSE(ULS) 5 0.00321348 0.00571738 MSE(ULS) 10 0.00275520 0.00081274
MAD(CLS) 5 0.04081240 0.04347671 ?4AD(CLS) 10 0.06331050 0.03071304
MAD(ML) 5 0.04078180 0.05355648 MAD(ML) 10 0.05332070 0.01077235
MAD(ULS) 5 0.03903800 0.04595537 MAD(ULS) 10 0.05210290 0.00670723

MDKL=1 N=100 - MODBL=3 - -

MSE(CLS) 5 0.01460279 0.02593161
S'K(ML) 5 0.01599610 0.02668808 MSR(CLS) 10 0.08881410 0.18256961

MSK(ULS) 5 0.01445261 0.02557444 MSE(M,) 10 0.07576079 0.18695201
MAD(CLS) 5 0.08491980 0.09612111 MSI(ULS) 10 0.07822707 0.18687692
MAD( L) 5 0.09650740 0.09139488 MAD(CLS) 10 0.19463192 0.15043879
MAD(ULS) 5 0.08667780 0.09313678 MAD(ML) 10 0.15485301 0. 16217373

MAD(ULS) 10 0.15998148 0.16291455
MODEL=2 N=50 -

MEN (CLS) 5 0.00529622 0.00625272
NSK(ML) 5 0.00248983 0.00000631
MS](ULS) 5 0.00249826 0.00000111 Display 3d. Sample Size Averages
MAD(CLS) 5 0.06567540 0.03505294
MAD(ML) 5 0.04989820 0.00006322 Response(method) n MEAN ST. DIV.
MAD(ULS) 5 0.04998260 0.00001110

N=50 - -----

MODEL=2 N=100 MSE(CLS) 15 0.05037195 0.15388066
MEI(CLS) 5 0.00441814 0.00422492 NSE(ML) 15 0.05000160 0.15452066

SE (ML) 5 0.00340524 0.00203887 MSE(ULS) 15 0.05096727 0.15489169
MSI(ULS) 5 0.00301214 0.00114943 MAD(CLS) 15 0.11407201 0.14307293
MAD(CLS) 5 0.06094560 0.02965998 MAD(ML) 15 0.10799933 0.14645329
MAD(ML) 5 0.05674320 0.01522531 MAD(ULS) 15 0.11060924 0.14698484
MAD(ULS) 5 0.05422320 0.00948585

N=100
_ -DEL=3 N=50 - HS(CLS) 15 0.01800244 0.02510749

SE(CLS) 5 0.14264180 0.25853880 MSH(ML) 15 0.00912192 0.01581345
MIS(ML) 5 0.14355716 0.25902080 MSE(ULS) 15 0.00890961 0.01556248
MS(ULS) 5 0.14719005 0.25802466 MAD(CLS) 15 0.09980034 0.07964706
MAD(CLS) 5 0.23572824 0.20096962 MAD(ML) 15 0.07654621 0.05517159
MAD(ML) 5 0.23331799 0.20664777 MAD(ULS) 15 0.07268561 0.05698740
MAD(ULS) 5 0.24280711 0.20164603

MODKL=3 N=100 --
MS(CLS) 5 0.03498640 0.03017236
MSB(ML) 5 O.00796441 0.00756469
MR(ULS) 5 0.00926409 0.01050028
MAD(CLS) 5 0.15353561 0.07943903
MAD(ML) 5 0.07638804 0.03287154
MAD(ULS) 5 0.07715584 0.04366065
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Algorithms for Nonlinear Generalized Cross-Validation

Brian S. Yandell, University of Wisconsin-Madison

A variety of penalized nonlinear problems can be mates, and absolute convergence of log(n L). The number of

expressed as the iterated solution to a nonlinear minimization, in iterations in (2) may be restricted, leading to rough estimates
which the inner step involves minimizing a penalized weighted which are fed into (3).
least squares expression. We propose algorithms when matrices We do not assume any special structure to the design or the
in the least squares problem may depend on the unknown param- matrices, except that we suppose that W is of full rank, and com-
eters. The problems in increasing complexity are (a) generalized putationally inverble. In many cases, W is actually diagonal,
linear models, (b) iterated reweighted least squares, and (c) gen- but this will not be explicitly used in the linear algebra.
eral nonlinear problems. The algorithms are built around Algorithms for the linear model (1.2) have been given by

.iGCVPACK (Bates, Lindstmm, Wahba and Yandeil, 1985), a Agrtm o h iermdl(.)hv engvnb
package for Len dscros o, using a bane of many authors, most recently in the multivariate form by Bates etpackage for gene ralized cross-validation, using a balance of a .( 9 5 .I l oi u s b l w a e e t ni n f B t s e lCholskyand inglarvalu deompsitins hic is djuted a. (1985). The algorithms below are extensions of Bates et al.
Cholesky and singular value decompositions which is adjusted (1985), building on their Fortran77 package, GCVPACK.
depending on the type of problem.

1. Introduction 2. Semi-Parametric Generalized Linear Models

A variety of penalized nonlinear problems cn be For semi-parametric generalized linear models (SGLM),
one has a parameter vector B which consists of a parametric

expressed as the iteration to a solution of a nonlinear minimiza- piece and a "smooth" nonparametric piece,

tion, in which the inner step involves minimizing a quadratic p a a " 1, piec,

form such as Oi = sTa+f (xi) n

SWT(y_+TKU6 (1.1) One can formulate the problem as minimizing, for fixed .,

n S I(S) = L (0) + XJ(O).

in which S, T and K are the design matrices for the covariates,

polynomial and "smooth" pan of the model, and y and W are in which L is the log likelihood and J is the smoothing penalty

the responses and the weights. The simplest form is the partial (see Good and Gaskins (1971); Leonard (1982); Green, Jennison

spline model, or semi-parametric linear model, and Seheult (1983); O'Sullivan, Yandell and Raynor (1986);
Green and Yandell (1985)). We know from O'Stullivan (1983)

y, = STa +f (x)+i, / =!, -.., n , (1.2) that if L (0) is suitably convex and J (0) is a quadratic form (e.g.,

in which f() is some "smooth" function and e=(el,... ,)T the squared norm of a projection), then S IL(9) has a unique

has covariance matrix (WWTf which is usually diagonal. We minimum for each . These conditions appear to hold for many

present three situations and proposed computational solutions generalized linear models.
when matrices in the above linearized problem may depend on One can choose X to minimize the GCV criterion (Craven
the unknown parameters. The problems in increasing degree of and Wahba, 1979). which is "close" to minimizing the predic-
complexity are: tive mean square error (see Craven and Wahba (1979); Speck-

(1) Semi-parametric generalized linear models, in which S, T, man (1985); Cox (1983)). What we propose to do here is to

K and Ku are constant, while W and y may change with iterate on 0 and , to find the I which is the GCV tainimizer and

each iteration, the 0 which minimizes S(d). It is not known whether such a

(2) Iteratively reweighted least squares, an which only KU procedure will converge, but we conjecture that, if the GCV

remains constant. minimizer is bounded away from 0 and - and L is suitable con-
vex, then it does converge.

(3) General nonlinear problems (remote sensing, for example), The log likelihood can be written in an iterative form using
in which all matrices may change with each iteration. pseudo-values y and pseudo-weights W,

Different compromises are suggested by each problem. Clearly,
one would like to decompose the constant matrices exactly once WWT=E
and would like to keep decompositions of the changing matrices a J
as cheap as possible. The method proposed here combines the [ (2.1)
advantages of SVD in locating the generalized cross validation y = 00 +(wwT)-  L .

choice of X with Cholesky decompositions which are relatively [ r
cheap once X is fixed. While the decompositions suggested are based on 0* from the previous iteration. Note that for the
not new, the combination of approaches appears to be an unex- independent normal model, W -1 is a diagonal matrix of the stan-
plored area. The basic strategy is as follows: dard deviations and y is the vector of observed responses. The

(1) guess at initial X (=m) and (T, aT, 8 T) linearized log likelihood is
(2) CD: iterate (part-way) to solution for fixed X
(3) linearize the problem as in (1.1) L(0)= ' IIWT(y -o)II2
(4) SVD: pick optimal X via GCV n

(5) iterate (2)-(4) to convergence The penalty J can often be written in a nonnegative
Convergence criteria can include absolute or relative conver- definite quadratic form in 8 (see Green and Yandell (1985)). We
gence of the regularization functional and/or the parameter esti- follow the spline literature and formulate it as
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J(0)=J(8) = 8 subjecto TT8 =o The estimate of y is found by solving

Typically the kxk matrix Ku and kxt matrix Tv are either MY=jrTF2WTy , (2.10)
derived from the unique design points or from a set of user- with
supplied basis nodes (see Appendix 2 of Bates et al. (1985)). If M=JTJ2 +nI.
we write the parameter vector as The "hat" matrix can be formally written as

0 = Sa+I'T+Kb 1 0 T

in which S is the nxc covariate matrix, T is the nxt polyno- A(X) = W-TF u J2MIji FTwT (2.11)
mial matrix, and K is the nxk smooth matrix, the linearized
problem becomes (1.1). provided we can invert M. Naturally, one would iterate to new

We can locate the unique design points TU, and the pseudo-values and pseudo-weights using (2.1) and repeat the

corresponding unique covariates SlW, and form a QR decompo- minimization of the objective function (2.7). At convergence,

sition one can obtain the estimates of the original parameters via (2.6).

.. .. One may approach the above solution for y and the "hat"
[Tu: S1 J = FG=F1G . matrx A(X) in different ways, depending on whether one wishes

From this we construct the (unweighted) design to choose a new k say via generalized cross validation, or

X = [T: S: 'KI2]  (2.2) whether one wishes to leave X fixed.
and penalty 2.1. SVD approach

= ~[~00 (2.3) One way to choose a new X is based on generalized cross

10 C2 K aj validation for the linearized problem (2.7). This is basically the

We decompose ' using a pivoted Cholesky followed by a ridge regression problem of Golub, Heath and Wahba (1979).

Householder, Form a singular value decomposition of

ETZE=LTL and LT=QR=QR , (2.4) J 2
= UDV T I

and construct where U and V are orthogonal and D is diagonal, to get

T --V(D 2+nU)JfDU TF2TWTy
Z=[ZJ:Z 2]=XEQ . (2.5) The "hat" matrix is

Finally, the original parameters are transformed to A(l) = W"TF 1 D+ 0 T]FTWT

SE Q r, t (2.6) One can choose X to minimize the GCV criterion (Craven and
2]PA Wahba, 1979)

In the usual case that FTKu Fz is full rank, E Q2 is an n x (c + t) V(.)= n I WT(I-A(.))y .12
matrix which permutes the coefficients a and 0, i.e., [tr(I-_A0.)]2 - (2.12)

= (V: : 0) EQ2. The objective functional can now be or as some intermediate value if this is seen as being too "far"
reparameterized as from the previous value.

I II WT(y --Z20o- ZI D I2 + ). Ty (2.7)
n 2 2.2. Cholesky approach

At this point, we have done all the "one-time" decompositions. If we choose to leave X fixed, one can take the cheaper
The following steps must be redone each time W and y change, approach of a Cholesky decomposition of
or simply once for the linear (normal) model. We form a QR M = J2TJ2+ n I = CTC,
decomposition of

WTZ 2=FG=FIGI leading to the estimate of y by solving
w~zCT=Y=GJ= FIWTY.

and create CTj = jTFTWTy

J = fJ :J2  T = (F T : FT]WTZI, The "hat" matrix becomes

leading to the minimization of A(.) = w 0TF I J2 I" r"TJT] . (2.13)
nII FTWTyGIo-JiyII2 (2.8) This route was followed by O'Sullivan, Yandell and Raynor

(1986), iterating to a solution for fixed . The "optimal" X was

+ - II FTWTy-J 2y7j 2 + XilT chosen by minimizing V(X) over a grid of log().
n

The first term can be made zero by solving for to, with any given 3. Iteratively Reweighted Least Squares Models
Y, Iteratively reweighted least squares (IRLS) models differ

from semi-parametric GLMs in that only the penalty matrix(o = FTrWTy- J • (2.9) remains fixed (Green, 1984). The log-likelihood parameter 0 can

be locally linearized, but the S, T, and K matrices are no longer
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fixed: In many situations we may be only interested in COV(a).
S )L iJL Further, if the penalty 1: is of the proper rank, then the QR

S T K decomposition of (2.4) should simply permute the indices for the
= t T W-- Kcoefficients. In other words, EQ2 often simply permutes the

We still only need form and decompose X as in (2.3) and (2.4) coefficients a (and I0) into to. In this case, let ej denote the per-
exactly once. However, the (unweighted) design (2.2) may mutation for a,, i = 1, .- ,c. For the SVD approach,
change with each iteration. Hence, the remaining computations
need to be done at each iteration. One could proceed in the same VAR (j) = 11 G T 12+ ]i D(D2+n J)-iVTWFIG Tfi I2I
manner as for the generalized linear models, but reconstructing For the Cholesky approach,
X, and hence Z and J, each time. VAR = I[ G -Ti- 112+ 11 CTWFGTe 112

4. General Nonlinear Models -n I 'C- TWFIG T  112
General nonlinear problems could proceed in the same

manner as for IRLS, except that KU changes each time. Thus Joint work is in progress with Peter 1. Green (Green and
most computations need to be redone. It may be possible for Yandell, 1985) on analogues to diagnostic tools for generalized
some nonlinear problems to reparameterize them as SGLM or linear models along the lines of Pregibon (1981, 1982) and
IRLS problems to eliminate this difficulty. Nelder and Pregibon (1986).

5. Diagnostics 6. Numerical Comparisons

The diagonal elements of the "hat" matrix have been used We focus our investigations upon the Poisson and binomial

for diagnostics in generalized linear models (Pregibon, 1981) as special cases of the semi-parametric generalized linear model as

well as in smoothing spline models (Eubank 1984, 1985). It is these are potentially of wide interest and easy to formulate. We

natural to think of extending thse uses to the present array of allowed up to c initial iterations of the Cholesky decomposition
models (Green and Yandell, 1985; Green, 1985). The diagonal (CD) for ).=- (perfectly smooth case), and up to c CDs follow-mdels ing each SVD, where c was 1, 2, or 10. No case required more
elements can be computed as than 7 CD following an SVD, or more than 7 SVD overall.

),.= IFjTei 12 + II M- Fel 12 We examined some real data on leafhopper oviposition and

in which e is the n -vector with a 1 in the i -th position and O's potato pathogen in a field, both Poisson, and data on rat survival,
elsewhere. For the SVD approach this is simply which was binomial. In addition we simulated data which we

[A(;.)i = 1 FjTej 11 2+ 11 D(D+n. A)- UTF2ei 112 thought might be "cumbersome" for the numerical algorithms.
en The simulations were Poisson with a normal shaped carve of 0 -

and for the Cholesky approach (cf. O'Sullivan (1985)), log(mean value), with peak height of between 0= 1.5 and 20.
(A(X)) i Fe, 112 + 11 C-Tj2TF2Tei Binomial simulations used a similar normal shaped curve for 0 -

e logit(mean value), with peak height of between 0=logit(.01) and
Covariance matrices can be computed by noting that logit(.3). Simulations were conducted for n =50 and 100.

COV(y)=W-TW- . We find from (2.11) that The Cholesky steps in the real examples increased the run
[I 0 time by 20-35%, including one-time costs and constuction ofCOV(

= W-T. jM-j2MTj T the diagonals of the "hat" matrix (see Tables 1-3), This

10 2 2occurred because the number of SVDs was not reduced by more
Hence, the variances are intermediate CDs. nor were the sequences of optimal A.'s for the

VAR(e 5)= I0 F 'le, 112+ II J2M-TjTF-Wte 112 linearized problems markedly altered by the CDs. In addition,each CD took about 10% of the time for an SVD. In these exam-
Noting the relation pIes, the signal was fairly apparent, indicating that the linear '

M~'JTJ2M-T = M-'(I- n ,M-')  approximation was adequate using the SVD iterations alone.

the variances can be written as Table 1. Poisson Oviposition Data (n-27)

VAR (0)= IFTWleil 2 + 1IC-2TIF2W-,ei II task c=0 c-I c-2 c-10
I w- one-time 4.40 4.40 4.43 4.50

- n). -iCTJTFW-ei 112 cholesky 0.78 4.22 7.78 11.92

svd 24.93 25.02 24.73 24.78
for the Cholesky approach. For the SVD we have hat 2.20 2.22 2.23 2.22
VAR(Oi)= IIFiW-euII2 + II D2(D+n)-1UTF 1WeiI2  total 31.07 34.57 37.85 42.10'no. svd 5 5 5 5 ;

The covariance among the coefficients can be derived, no. chol I 1 6 II 19
using (2.9), (2. 10) and (2.6), as Table 2. Binomial Rats Data (n-127)

rtask c-0 c-2 c-10
COV EQ2G-G -TQTET+ one-time 34.6- 33.9 35.01 1 2  cholesky 7.5 58.7 74.2

svd 245.0 245.6 243.9

T T hat 34.6 34.8 35.2
EQ . T rT M jTjM -T R QET total 312.8 364.2 379.3

lFiW lF I no. svd 5 5 5
no. chol 1 9 12
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Table 3. 2-D Poisson Fungi (n-400, k- 100) Table 4(c). Poisson Runs (n-50)
task c-O c-2 c-10 no. SVD no. CD iterations
one-time 279 279 283 peak c-0 c-i c-2 c-10
cholesky 140 1004 1475 1.5 5/0 4/4 3/5 3/10
svd 4486 4413 4425 2 6/1 5/6 4/8 4/12
hat 594 598 598 2.5 5/0 5/5 4/7 4/12
total 5354 6150 6637 3 510 5/5 4/7 4/13
no. svd 7 7 7 4 6/0 6/6 5/8 4/15
no. chol 2 16 26 5 6/0 6/7 5/9 4/15

6 5/0 6/6 5/9 3/16
The simulations showed that when the "signal" is small 7 5/0 5/5 4/7 4/19

relative to the "noise", the CDs seem to stabilize the minimiza- 8 510 6/6 5/9 4/14
tion problem, reducing the number of SVDs required and cutting 10 6/0 7/7 6/10 5/16

the run time. Table 4(a-b) present the combined CD and SVD 15 5/1 6/7 6/10 5/18

run times, while Table 4(c-d) present the numbers of SVDs and 20 6/0 7/7 6/10 5/16

CDs. As the height of the Poisson peak rises, the CD iterations 2

have a reduced impact on convergence. However, note that on
several occassions iteration with only one CD increased the Table 4(d). Poisson Runs (n_100)
number of SVDs required. Allowing more than 2 CD steps only no. SVD / no. CD iterations
seemed to increase the overall run time; the number of SVDs peak c-0 c-I c-2 c-10
was reduced in only a few instances. In addition, a few simula- 1.5 5/0 4/4 4/6 4/10
tions, not shown here, converged when up to 2 CDs per SVD 2 5/0 4/4 4/7 4/12
were allowed, but did not converge when 0 or up to 10 were 2.5 6/0 5/5 5/8 4/11

allowed. Similar statements can be made about the binomial 4 5/0 5/5 4/7 4/13

simulations (Table 5(a-b)). 5 5/0 5/6 5/8 4/14
6 5/1 6/6 4/9 4/15

Table 4(a). Poisson Run Times (n-50) 7 510 515 4/7 4/14
peak c-0 c=I c-2 c=o 8 5/0 5/6 5/9 4/17
1.5 134 120 94 103 9 5/0 6/7 5/9 4/16
2 163 150 130 141 10 6/0 6/6 5/9 5/23
2.5 134 148 126 134 15 5/0 6/6 5/9 3/13
3 132 148 125 138 20 5/0 6/6 5/9 4/19
4 159 178 155 142
5 158 180 157 144 Table 5(a). Binomial Run Times (n-100)
6 131 173 155 120 size prob c-0 c-i c-2 c-10
7 133 159 127 1617 133 15 17 161 10 .3 108 87 90 91
8 131 175 !57 141 .2 106 118 125 131 e
9 135 178 158 144 .1 133 118 92 97

10 157 204 188 174 .05 135 148 130 135
15 134 180 187 181
20 158 207 189 175 20 .3 109 91 92 96

.2 137 119 123 127.1 109 120 124 129
Table 4(b). Poisson Run Times (n-100) .05 165 151 159 168
peak c-0 c-i c-2 c-10

1.5 974 848 885 904 Table 5(b). Binomial Run Times (n_ 100)
2 950 834 880 933 size prob c-0 c-I c-2 c-10
2.5 1149 1051 1098 932 10 .3 943 827 671 692
3 759 824 659 718 10 .3 943 827 671 692
4 956 1048 882 967 .2 970 829 858 882 J
5 955 1069 1100 988 .1 968 860 885 937
6 970 1244 915 1006 .05 1171 1064 898 977
7 938 1038 873 970 .01 1166 1046 1097 935 ,
8 939 1053 1105 1043 20 .3 743 604 632 635 A
9 955 1280 1138 1026 .2 760 617 636 645

10 1129 1245 1106 1371 .1 780 838 650 680
15 941 1252 1109 762 .05 795 849 681 742
20 962 1276 1131 1143 .01 1351 1261 1103 1225

.005 1513 1676 1536 1683

I
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Table 5(c). Binomial Runs (n-50) Craven, P. and Wahba, G. (1979) Smoothing noisy data with
no. SVD / no. CD iterations spline functions: estimating the correct degree of smooth-

size prob c-0 c-I c-2 c-10 ing by the method of generalized cross-validation. Nwner.
10 .3 5/0 4/4 3/5 3/8 Math., 31, 377-403.

.2 4/0 4/4 4/6 4/9.1 4/0 3/3 3/S 3/6.05 5/0 5/5 4/8 4/11 Elden, L. (1984) A note on the computation of the generalized20 .3 4/0 4/4 4/6 4/9 cross-validation function for ill-conditioned least squares

.2 511 4/4 4/6 4/8 problems. BIT, 24, 467472.
.1 4/1 3/4 3/5 3/7

.05 6/0 5/5 5/8 5/12 Eubank, R. L. (1984) The hat matrix for smoothing splines. Sta-
tist. and Prob. Letters, 2, 9-14.

Table 5(d). Binomial Runs (n-100) Eubank, R. L. (1985) Diagnostics for smoothing splines. J. Roy.
no. SVD / no. CD iterations

size prob c-0 c-I c=2 c-10 Statist. Soc. Ser. 8, 47. (to appear)

10 .3 5/0 4/4 3/6 3/8
.2 5/0 4/4 4/6 4/8 Golub, G. H., Heath, M. and Wahba, G. (1979) Generalised cross
.1 5/0 4/5 4/7 4/11 validation as a method for choosing a good ridge parame-

.05 6/0 5/5 4/7 4/12 ter. Technometrics, 21,215-224.

.01 6/0 5/5 5/8 4/11
20 .3 4/0 3/3 3/5 3/6 Good, I. J. and Gaskins, R. A. (1971) Non-parametric roughness

.2 4/1 3/3 3/5 3/7 penalties for probability densities. Biometrika, 58, 255-• 1 4/1 4/4 3/5 3/8 277.
.05 4/0 4/4 3/6 3/10.01 7/0 6/6 5/8 5/14.005 8/0 8/8 7/11 7/20 Green, P. J. (1984) Iteratively reweighted least squares for max-imum likelihood estimation and some robust and resistant

Since we know that the estimates converge for fixed k alternatives (with discussion). J. Roy. Statist. Soc. Ser. B,
(O'Sullivan, Yandell and Raynor, Jr., 1986), a few iterations for 46, 149-192.
fixed X may guard against nonlinearity in the penalized likeli- Green, P. J. (1985) Penalized likelihood for general semi-
hood. It is not known at this time what conditions are required parametric regression models. Technical Report#28 19,
on the penalized likelihood, as a function of k, to insure conver-
gence in the SVD-only approach. Math. Research Center, U. of Wisconsin.

If one follows Elden (1984) to stop the singular value Green, P. J., Jennison, C. and Seheult, A. H. (1983) Contribution
decomposition after the bidiagonalization, considerable time can to the discussion of the paper by Wilkinson et al. J. Roy.
be saved since the effort to diagonalize is magnified by the Statist. Soc. Ser. B, 45. 193-195.
number of iterations. Earlier work on GCVPACK (Bates et al.,
1985) indicated that half of the singular value decomposition Green, P. J. and Yandell, B. S. (1985) Semi-parametric general-
time may be spent on bidiagonalization. Of course, once conver- ized linear models. In GIM85: Proceedings qf te Inter-gence is reached, one could complete the diagonalization, doing national Conference on Generalized Linear Models, Sep-

this only once, to easily derive the diagonal of the "hat" matrix. tember 1985 (R. Gilchrst, ed.) Lecture Notes in Statistics,
Such a savings in computation would further reduce the advan- Springer-Veriag. (Technical Report#2847, Math. Res.
tage of iterating via Cholesky with fixed k Cen., U. of Wisconsin)
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COLORADO STATE UNIV-STAT DEPT OREGON STATE UNIV. & NCAR IOWA STATE UNIVERSITY
RM. 100 OLD ECON. BLDG. NCAR P.O. BOX 3000 102 SWEDECOR HALL
FORT COLLINS, CO 80523 BOULDER. CO 80307 AMES, IA 50011

PETER BRYANT G. REX BRYCE JUDITH A. BUCHINO
UNIV. OF COLORADO BYU 10305 TURNSTILE CT.
1475 LAWRENCE ST. 216 TNCB LOUISVILLE, KY 40223
DENVER, CO 80202 PROVO, UT 84602

DAVID BUNCH DAVID BURN CAL BUTLER
UNIVERSITY OF CALIFORNIA IMSL, INC. COLLEGE OF S. ID
308 VOORHIES 2500 CITYWEST BLVD. P.O. BOX 1238
DAVIS, CA 95616 HOUSTON, TX 77042 TWIN FALLS, ID 83301
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RICHARD BYRD H. CALLAERT JAMES CALVIN
DEPT. OF COMPUTER SCIENCE LIMBURGS UNIVERSITAIR CENTRUM UNIV. OF IOWA
UNIV. OF COLO.-BOX 430 UNIVERSITAIRE CAMPUS DEPT. OF STATISTICS
BOULDER. CO 80309 B-3610 DIEPENBEEKBELGIUM, IOWA CITY, IA 52242

PATRICIA CAMP DANIEL CARR V. CHANDRASEKAR
THE RAND CORP. PACIFIC N.W. LAB. CSU
1700 MAIN ST. P.O. BOX 999 DEPT. OF ELEC. ENGR.
SANTA MONICA, CA 90406 RICHLAND, WA 99352 FT. COLLINS, CO 80523

NANCY CLARK WILLIAM CLARKE DOUGLAS CLARKSON
LANGUAGE OF DATA PROJECT UNIVERSITY OF IOWA IMSL, INC.
P.O. BOX 673 DEPT. OF PREV. MEDICINE 2500 CITYWEST BLVD.
SAUSALITO, CA 94966 IOWA CITY. IA 52242 HOUSTON, TX 77042

TIM COBURN DAVID COLEMAN WILLIAM COMMINS
MARATHON OIL CO. RCA NATL. SCIENCE FOUNDATION
P.O. 269 W-217 DSRC RCA LABS 1800 E. ST. NW-RM. 425
LITTLETON, CO 80122 PRINCETON, NJ 08540 WASHINGTON. DC 20817

RICHARD COOK PAULA J. COWLEY DENNIS D. COX
UNIV. OF COLORADO BATTELLE NW LABORATORIES UNIV. OF IL-DEPT. OF STAT.
DATA ANALYSIS CENTER PO BOX 999-MATH/1129/3000 1409 W. GREEN ST.
BOULDER. CO 80309-0486 RICHLAND, WA 99352 URBANA, IL 61801

CSU REE DAWSON
COLORADO STATE UNIVERSITY MIT
204 OLD ECON BLDG. 11-317, MIT
FORT COLLINS, CO 80523 CAMBRIDGE, MA 02139

HARI H. DAYAL BRUCE DE BLOIS LORRAINE DENBY
FOX CHASE CANCER CENTER USAF ACADEMY AT&T BELL LABS.
7701 BURHOLME AVE. COLORADO SPRINGS. CO 80840 600 MT. AVE. RM. 2C273
PHILADELPHIA, PA 19111 MURRAY HILL, NJ 07922

DAVID DOEHLERT JANET DONALDSON DAVID DONOHO
EDGEWORK, INC. NATL. BUREAU OF STANDARDS UNIV. OF CALIFORNIA
16514 N.E. 44TH WAY 325 BROADWAY DEPT. OF STATISTICS
REDMOND, WA 98052 BOULDER, CO 80303 BERKELEY, CA 94720

MARY DOWNTON MICHAEL F. DRISCOLL BONNIE DUMAS
NATL. CENTER FOR ATMSPH. RSCH. AZ STATE UNIV. WESTVACO CORP.
P.O. BOX 3000 DEPT. OF MATH P.O. BOX 1950
BOULDER, CO 80307 TEMPE, AZ 85287 SUMMERVILLE, SC 29484

WILLIAM H. DUMOUCHEL MARK DURST WILLIAM EDDY
HARVARD UNIV. LAWRENCE LIVERMORE LAB CARNEGIE-MELLON UNIV.
77 SNAKE HILL RD. P.O. BOX 808 DEPT. OF STATISTICS, CMU
BELMONT, MA 02178 LIVERMORE, CA 94550 PITTSBURGH, PA 15213

BEN EISEMAN LASZLO ENGELMAN MARK FELTHAOSER
UNIV. OF CO HEALTH-SURGERY DEP BMDP STATISTICAL SOFTWARE, INC COLORADO STATE UNIV.
4200 E 9TH 1964 WESTWOOD BLVD.,6202 DEPT. OF STATISTICS
DENVER, CO 80220 LOS ANGELES, CA 90025 FORT COLLINS, CO 80523

RONALD FICHTNER LYNDA FINN PHILIP FLEMING
CENTERS FOR DISEASE CONTROL JOINER ASSOCS. AT&T
1600 CLIFTON RD. N.E. P.O. BOX 5445 1100 E. WARRENVILLE RD.
ATLANTA, GA 30307 MADISON, WI 53705 NAPERVILLE, IL 60566
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ED FORGY VIKKI FRENCH DENNIS FRIDAY
1024 GRETNA GREEN WAY ASA NATL. BUREAU OF STANDARDS
LOS ANGELES. CA 90049 COMM DEPT-HERSHEY CORP. 325 BROADWAY

HERSHEY, PA 17033 BOULDER, CO 80303

WAYNE A. FULLER DAVID FURMAN RUBEN GABRIEL
IA STATE UNIV. MINITAB, INC. UNIVERSITY OF ROCHESTER
STAT LAB 221 SNEDECOR HAL 3081 ENTERPRISE DRIVE ROCHESTER, NY 14627
AMES. IA 50011 STATE COLLEGE, PA 16801

LIONEL GALWAY FAH FATT GAN MIRIAM GASKO
DEPT. OF STATISTICS UNIV. OF CENTRAL FLORIDA UNIV. OF CHICAGO
CARNEGIE-MELLON UNIV. DEPT. OF STATISTICS GSB DEPT.
PITTSBURGH, PA 15213 ORLANDO, FL 32816-6990 CHICAGO, IL 60637

DAVID M. GAY DONALD GEMAN JAMES E. GENTLE
AT&T BELL LABS UNIV. OF MASSACHUSETTS IMSL, INC.
600 MT. AVE. DEPT. OF MATHEMATICS 2500 CITY W. BLVD.
MURRAY HILL, NJ 07974 AMHERST, MA 01003 HOUSTON, TX 77042

LEON GILFORD BILL GILLETT SHERI GILLEY
AMERICAN STATISTICAL ASSOC. UNIV. OF MO - ROLLA SPSS INC.
11510 GEORGIA AVE. DEPT. OF CSC-UMR 444 N. MICHIGAN AVE.
WHEATON, MD 20902 ROLLA, MO 65401 CHICAGO, IL 60611

JIM GOIN KENNETH M. GOLDBERG HENSON GRAVES
GEOMETRIC DATA WYETH LABS. SAN JOSE STATE UNIVERSITY
999 W. VALLEY RD. P.O. BOX 8299 885 N. SAN ANTONIO RD.
WAYNE, PA 19087 PHILADELPHIA, PA 19101 LOS ALTOS, CA 94022

DAVID GRAY DANIEL A. GREER JOHN GREGO
UNIV. OF KENTUCKY ROCKWELL INTERNATIONAL MINITAB, INC.
DEPT. OF STATISTICS P.O. BOX 464 3081 ENTERPRISE DR.
LEXINGTON, KY GOLDEN, CO 80402 STATE COLLEGE, PA 16801

MARTHA J. GREINER JEFF GRIMM YVES GRIZE
STATISTICIAN FRT RSCH LAB-PA STATE UNIV AT&T BELL LABORATORIES
2800 PLYMOUTH RD. PO BOX 309-UNIV DR CRAWFORDS CORNER RD.
ANN ARBOR, MI 48105 BIGLERVILLE, PA 17307 HOLMDEL, NJ 07733

ARTHUR GURNEY TIM HAAS EDWARD J. HALTEMAN
EASTMAN KODAK COLORADO STATE UNIV-STAT DEPT ROCKWELL INTERNATIONAL
1669 LAKE AVE. 101 OLD ECON BLDG. P.O. BOX 464
ROCHESTER, NY 14650 FORT COLLINS, CO 80523 GOLDEN, CO 80402

RANDY HAMLIN BOB HAMMOND JANIS HARDWICK
BEATRICE GROCERY GROUP ADOLPH COORS CO BMDP STATISTICAL SOFTWARE, INC
1645 W. VALENCIA DR. NH5200 1964 WESTWOOD BLVD., *202
FULLERTON, CA 92633 GOLDEN, CO 80401 LOS ANGELES, CA 90025

PAMELA HARTIGAN JOHN HARTIGAN H.B. HARVEY
ASA ASA US ARMY DUGWAY PROVING GROUND
CSPCC VA MEDICAL CENTER STAT. DEPT. YALE UNIV. P.O. BOX 53
WEST HAVEN, CT 06516 NEW HAVEN, CT 06520 STOCKTON, UT 84071

MAUREEN HASCHKE RICHARD HEIBERGER KARL HEINER
UNIV OF COLO HEALTH SCIENCES TEMPLE UNIVERSITY STATE UNIV. OF NEW YORK
4200 E 9 AVE, BOX C245 DEPT. OF STATISTICS HUMAN INFO. SYSTEMS
DENVER, CO 80262 PHILADELPHIA, PA 19122 SCHENECTADY, NY 12308
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DANIEL HEITJAN PATRICK HENAFF MARY ANN HILL
UCLA CCREMS MIT BMDP STATISTICAL SOFTWARE, INC
DEPT. OF BIOMATH CHSAV617 E40-134 MIT 1964 WESTWOOD BLVD.,*202
LOS ANGELES. CA 90024 CAMBRIDGE, MA 02139 LOS ANGELES, CA 90025

ERIC HORVITZ JAMES HOSKING DOUGLAS HOWELL
STANFORD UNIVERSITY UNIV. OF NORTH CAROLINA HEWLETT-PACKARD
TC-135 SUMC DEPT. OF BIOSTATISTICS 3404 E. HARMONY RD.
STANFORD, CA 94305 CHAPEL HILL, NC 27510 FORT COLLINS, CO 80525

JOHN HSIEH DAVID C. HUANG EARL HUGHES
UNIVERSITY OF TORONTO THE UPJOHN CO. COLO. DIV. OF LOCAL GOVERNMENT
DEPT. OF PREVENTIVE MED. BJOST\7293-32,2 1313 SHERMAN ST.
TORONTO, ONTARIO KALAMAZOO, MI 49001 DENVER, CO 80203
CANADA, M5S lAB

FRED HULTING CATHERINE HURLEY TAUKAR HUSSAIN
IOWA STATE UNIVERSITY UNIV. OF WASHINGTON-SEATTLE NY UNIV. STAT. & OPS. RESEARCH
117 SNEDECOR HALL GN22 PADLFORD 100 TRINIDY PL.
AMES. IA 50011 SEATTLE, WA 98195 NY, NY 10006

SYNI-AN HWANG PETER B. IMREY HARI IYER
STATE UNIV. OF NEW YORK UNIV. OF ILLINOIS DEPT. OF STATISTICS
DEPT. OF MATH & STATISTIC 506 S. MATHEWS AVE. COLORADO STATE UNIV.
ALBANY, NY 12222 URBANA, IL 61801 FORT COLLINS, CO 80523

ALAN J. IZENMAN JACK JAMES TERRY JEEVES
TEMPLE UNIV. G.D. SEARLE & CO. WESTINGHOUSE R&D CENTER
DEPT. OF STATISTICS 4901 SEARLE PKWY. 1310 BEULAH RD.
PHILADELPHIA, PA 19122 SKOKIE, IL 60077 PITTSBURG, PA 15235

HOLLY JIMISON ROGER W. JOHNSON MARK JOHNSON
STANFORD MEDICAL CENTER ASA, MATH DEPT. THE UPJOHN CO.
STANFORD MEDL. CNTR.TC135 UNIV OF STHN COLORADO HENRIETTA ST.
STANFORD, CA 94305 PUEBLO, CO 81001 KALAMZOO. MI 49001

JEFF JOHNSON RICHARD JONES LAWRENCE JONES
EASTMAN KODAK UNIV. OF COLORADO ITHACA COLLEGE
BLDG. C-42 SCHOOL OF MED. BOX B-119 ACAD. COMPUTING DEPT.
WINDSOR. CO 80551 DENVER. CO 80262 ITHACA, NY 14850

HONGSUK JORN STEVE D. JOST ROBERT JUDISH
UNIVERSITY OF WISCONSIN DEPAUL UNIVERSITY NATL. BUREAU OF STANDARDS
1210 W. DAYTON ST. #3202 243 S. WABASH AVE. 325 BROADWAY
MADISON, WI 53706 CHICAGO, IL 60604-2302 BOULDER. CO 80303

KAREN KAFADAR WILLIAM KAHN ALEX KASK
HEWLETT-PACKARD YALE UNIVERSITY ERNST & WHINNEY
1501 PAGE MILL RD., 4U P.O. BOX 2179 153 E. 53RD. ST.
PALO ALTO, CA 94304 NEW HAVEN, CT 06511 NEW YORK. NY 10022

MOHAMMAD K. KAZEMPOUR THOMAS KEEFE ELIZABETH KELLY
COLORADO STATE UNIV. COLORADO STATE UNIV. LOS ALAMOS NATL. LAB
DEPT. OF STATISTICS SPRUCE HALL P.O. BOX 1663
FORT COLLINS, CO 80521 FT. COLLINS, CO 80523 LOS ALAMOS, NN 87545

WILLIAM KENNEDY DAVE KENNON JIM KENYON
IOWA STATE UNIVERSITY THE FAIR, ISAAC COMPANIES UNIV. OF CONNECTICUT
117 SNEDECOR STAT. DEPT. 120 N. REDWOOD DR. DEPT. OF STAT. U-120
AMES, IA 50011 SAN RAFAEL, CA 94903-1996 STORRS, CT 06268
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ELAINE M. KERAMIDAS RUDY M. KING LILLIAN KINGSBURY
BELL COMMUNICATIONS RESEARCH U.S. FOREST SERVICE VILLANOVA UNIV.
RM. 2N-335, 435 S. ST. 240 W. PROSPECT ST. MATH SCIENCES DEPT.
MORRISTOWN. NJ 07960-1961 FT. COLLINS, CO 80526 VILLANOVA, PA 19085

JON KOGUT JOHN E. KOONTZ BASIL KORIN
DEPT. OF LABOR-MSHA (SHTC) NBS AMERICAN UNIV.
P.O. BOX 25367 MAIL CD 714; 325 BROADWAY MATH DEPT. CLARK HALL
DENVER. CO 80225-0367 BOULDER, CO 80303 WASHINGTON, DC 20016

JOHN KORK ROBERT KOYAK JOHN LABRECQUE
U.S. GEOLOCIGAL SURVEY DEPT. OF MATH SCIENCES NATL. JEWISH CTR.
BX. 25046 MAIL STOP 937 JOHNS HOPKINS UNIV. 1400 JACKSON ST.
DENVER, CO 80225 BALTIMORE, MD 21218 DENVER, CO 80206

RICHARD B. LANE KINLEY LARNTZ BARBARA LAWTON
DEPT. MATHEMATICAL SCIENCES UNIV. OF MN ROCKWELL INTERNATIONAL
UNIV. OF MONTANA DEPT. OF APPLIED STAT. P.O. BOX 464
MISSOULA, MT 59812 ST. PAUL, MN 55108 GOLDEN. CO 80401

RUSSELL LENTH PETER LEWIS HSIN-GEE LI
UNIV. OF WYOMING NAVAL POSTGRADUATE SCHOOL DEPT. OF STATISTICS
P.O. BOX 3332 DEPT. OR, NAVAL PG SCHOOL COLORADO STATE UNIV.
LARAMIE, WY 82071 MONTEREY, CA 93943 FORT COLLINS, CO 80523

Y. RICHARD LIN CHARLES LIN ROBERT LING
COLORADO DIV. OF LOCAL GOVT. SAS INSTITUTE, INC. CLEMSON UNIVERSITY
1313 SHERMAN ST., RM 520 P.O. BOX 8000 DEPT. OF MATH. SCIENCES
DENVER, CO 80203 CARY, NC 27511 CLEMSON, SC 29634

ZEKE LITTLE JANI LITTLE LORA LEE LOFFT
UNIV. OF COLORADO UNIV. OF COLORADO SOCIOLOGY DEPT.
P.O. BOX 486 P.O. BOX 486 UNIV. OF DENVER
BOULDER, CO 80309 BOULDER. CO 80309 DENVER, CO 80208-0209

ROBERT M. LUCAS DENNIS LUCKEY FRANKLIN LUK
RESEARCH TRIANGLE INST. UNIV. OF COLORADO HEALTH SCI CORNELL UNIVERSITY
P.O. BOX 12194 10482 OWENS CIR. PHILLIPS HALL
RESEARCH TRIANGLE PARK, NC 27709 WESTMINSTER, CO 80020 ITHACA, NY 14853-5401

VESNA LUZAR JOSEPH MACHAK LYNDA MacKICHAN
RESEARCHER UNIV. OF MICHIGAN TCI SOFTWARE RESEARCH, INC.
UNIV COMP CTR, ENGELSOVA STATISTICS & MAN. SCI. 1190-B FOSTER RD.
ZAGREB, YUGOSLAVIA, 41000 ANN ARBOR, MI 48109 LAS CRUCES, NM 88001

WILLIAM AKUCH COLIN MALLOWS LISE MANCHESTER
GENERAL ELEC. R&D AT&T BELL LAB. UNIV OF BC-DEPT OF STATISTICS
P.O. BOX 8 KWC207A 600 MT. AVE. 2021 W. MALL
SCHENECTADY, NY 12301 MURRAY HILL, NJ 07974-2070 VANCOUVER, B.C.

CANADA V6S 1W5

JOE MANDARINO DENNIS MAR GEORGE MARSAGLIA
COLORADO STATE UNIVERSITY NAVAL POSTGRADUATE SCHOOL FLORIDA STATE UNIV.
DEPT. OF STATISTICS W.R. CHURCH CORP CTR-0141 DEPT. OF STATISTICS
FORT COLLINS, CO 80523 MONTEREY. CA 93943 TALLAHASSEE. FL 32306

DONALD MARX KIRK MATHEWS DONALD E. MCCLURE
UNIV. OF AK FIELD COMMAND, DNA BROWN UNIV.
SCHOOL OF BUSINESS FCDNA/FCTT APPLIED MATHMATICS, BOX F
ANCHORAGE, AK 99508 KIRTLAND AFB, NN 87115-5000 PROVIDENCE, RI 02912
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JOHN ALAN MCDONALD JOHN D. MCKENZIE DAVID MELLITS
UNIV. OF WASHINGTON BABSON COLLEGE JOHNS HOPKINS UNIV.
STAT., GN-22. VOFW BABSON PARK 600 N. WOLFE ST.
SEATTLE, WA 98195 WELLESLEY, MA 02157 BALTIMORE, MD 21205

MARK MERTENS MICHAEL MEYER DOUGLAS MILLS
COBRO 1210 W. DAYTON ST.-STAT. PRINCETON UNIV. COMPUTING CNTR
12125 WOODCREST EXEC. DR. MADISON, WI 53706 87 PROSPECT AVE.
ST. LOUIS, MO 63141 PRINCETON, NJ 08544

KAZEM MIRKHANI TOBY MITCHELL WILLIAM MONSON
ELECTRONIC DATA SYSTEMS CORP. OAK RIDGE NATL. LABORATORY COLORADO SCHOOL OF MINES
P.O. BOX 7019 P.O. BOX Y BLDG. 9207A GOLDEN. CO 81501
TROY, MI 48084 OAK RIDGE. TN 37830

ROGER MOORE CARL MORRIS TERESA MUCINO PORRAS
BONNEVILLE POWER ADMN. UNIVERSITY OF TEXAS SEGUROS MONTERREY S.A.
P.O. BOX 3621 DEPT. OF MATHEATICS PRESIDENTE MASARIK 8-50 PISO
PORTLAND, OR 97208 AUSTIN, TX 78712 COL. BOSQUES DE CHAPULTEPEC

11588 MEXICO, D.F.; MEXICO

JERI M. MULROW VIJAY NAIR STEPHEN NASH
NATL. BUREAU OF STANDARDS AT&T BELL LABS MATH. SCIENCES DEPT-JN HOP UNI
325 BROADWAY MC 714 2C262, AT&T BELL LABS 34TH & CHARLES STS.
BOULDER, CO 80303 MURRAY HILL, NJ 07974 BALTIMORE, MD 21218

JOHN NASH SOMANATHAN NATARAJ WILLIAM NAZARET
UNIVERSITY OF OTTAWA FORT HAYS STATE UNIV. AT&T BELL LABS.
275 NICHOLAS BUS. ADM.: FHSU CRAWFORD CORNER RD-2K-512
OTTAWA, ONTARIO CANADA, KIN6N3 HAYS, KS 67601 HOLMDEL, NJ 07733

J.A. NELDER LORENE NELSON WESLEY NEWTON
IMPERIAL COLLEGE ROCKY MTN. MS CENTER 254 N. FIRST ST.
HUXLEY BLDG., OUEENS GATE P.O. BOX B181 UCHSC TOOELE, UT 84074
LONDONSW7 2BZ, ENGLAND DENVER, CO 80206

KATHERINE NG WILLIAM NICHOLLS W.L. NICHOLSON
SAS INSTITUTE U.S. CENSUS BUREAU BATTELLE-NORTHWEST
P.O. BOX 8000 DEPT. OP COMMERCE P.O. BOX 999
CARY, NC 27511 WASHINGTON. DC 20233 RICHLAND, WA 99352

SVEIN NORDBOTTEN ALVIN B. NOWVERL WILLIAM NUGENT
UNIV. OF BERGEN USDA-HNIS-NMD-SSB HARVARD UNIVERSITY
N-5000 BERGEN 6505 BELCREST RD. 1 OXFORD ST., RM. 609

NORWAY, HYATTSVILLE, MD 20782 CAMBRIDGE. MA 02138

R.L. OBENCHAIN R. WAYNE OLDFORD GEORGE OSTROUCHOV
BELL COMMUNICATIONS RESEARCH MIT OAK RIDGE NATL. LABORATORY
NVC3J213 E40-139, MIT, 1 AMHERST PO.O. BOX Y BLDG.9207A
RED BANK, NJ 07701 CAMBRIDGE. MA 02139 OAK RIDGE, TN 37831 ,

FINBARR O'SULLIVAN NELSON PACHECO LARRY PALMITER
UNIV. OF CALIFORNIA-BERKELEY USAF ACADEMY ECOTOPE. INC.
STATISTICS DEPT. COLORADO SPRINGS, CO 80840 2812 E. MADISON

BERKELEY, CA 94720 SEATTLE, WA 98112

DAVID PATTERSON JON K. PECK ROGER PFAFFENBERGER
UNIV. OF MONTANA SPSS. INC. TEXAS CHRISTIAN UNIV.
DEPT. OF MATH. SCIENCES 444 N. MICHIGAN AVE. P.O. BOX 32868
MISSOULA, MT 59812 CHICAGO, IL 60611 FORT WORTH. TX 76129
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HAIGANOUSH PREISLER RONALD REGAL GARY RICHARDSON
USDA FOREST SERVICE UNIV. OF MN, DULUTH COLORADO STATE UNIV.-ARS
1960 ADDISON ST. DEPT. OF MATH SCIENCES STATISTICS DEPT.
BERKELEY, CA 94701 DULUTY, MN 55812 FORT COLLINS, CO 80523

BRAD RITTER DAVID ROBINSON WILLIAM ROGERS
HEWLETT PACKARD ST. CLOUD ST. UNIV. 2677 CENTINELA AVE. *103
3404 E. HARMONY RD. DEPT. OF MATH & STAT. SANTA MONICA, CA 90405
FORT COLLINS. CO 80525 ST. CLOUD, MN 56301

LARRY ROSENBERGER LAURA RYAN THOMAS A. RYAN
THE FAIR, ISAAC COMPANIES BLUE CROSS OF CALIFORNIA MINITAB, INC.
120 N. REDWOOD DR. 21555 OXNARD ST. 3081 ENTERPRISE DR.
SAN RAFAEL, CA 94903-1996 WOODLAND HILLS, CA 91367 STATE COLLEGE, PA 16801

BARBARA F. RYAN KAY RYSCHON RICHARD S. SACHER
MINITAB, INC. CREIGHTON UNIV. CARDIOLOGY UNIV. OF DELAWARE
3081 ENTERPRISE DRIVE 28TH & BURT ACADEMIC COMPUTING SVCS.
STATE COLLEGE, PA 16801 OMAHA, NE 68178 NEWARK, DE 19716

WILLIAM M. SALLAS ALEXANDER SAMAROV STEPHEN SANUELS
IMSL, INC. UNIV. OF LOWELL DEPT. OF STATISTICS
2500 CITY W. BLVD. 1 AMHERST ST. MIT,E40-145 PURDUE UNIV.
HOUSTON, TX 77042 CAMBRIDGE. MA 02139 W. LAFAYETTE, IN 47907

JOHN SAWYER JR. RICHARD SCHERER MARK J. SCHERVISH
DEPT. OF PREV. MEDICINE HEWLETT-PACKARD CARNEGIE-MELLON UNIV.
5113 THOMPSON HALL 3404 E. HARMONY DEPT. OF STATISTICS
LUBBOCK, TX 79430 FORT COLLINS, CO 80525 PITTSBURGH, PA 15213

JAMES SCHMIDHAMMER STEPHEN SCHMIDT ROBERT SCHNABEL
UNIV. OF TENNESSEE USAF ACADEMY DEPT. OF COMPUTER SCIENCE

DEPT. OF STATISTICS COLORADO SPRINGS, CO 80840 UNIV. OF COLO.-BOX 430

KNOXVILLE, TN 37996 BOULDER, CO 80309

DAN SCHNELL LEE SCHRUBEN DEL SCOTT
IA STATE UNIV. CORNELL UNIVERSITY BYU
204 SNEDECOR HALL 342 UPSON HALL 244 TMCB
AMES, IA 50011 ITHACA, NY 14853 PROVO, UT 84651

DAVID W. SCOTT WOODROW SETZER BRIAN SHEA
STANFORD UNIV. DEPT. OF BIOSTATISTICS, UNC NVMERICAL ALGORITHMS GRP, LTD

DEPT. STATISTICS, SEQUOIA SCH OF PUBLIC HEALTH-UNC NAG CEN OF,256 BANBURY RD
STANFORD, CA 94305 CHAPEL HILL, NC 27514 OXFORD, ENGLAND, OX2 70E

KEVIN SHEEHAN DAN SHERWOOD WEI-KEI SHIUE
ADOLPH COORS CO HEWLETT PACKARD SO. IL. UNIV. AT EDWARDSVILLE
NH520 3404 E. HARMONY RD. DEPT. OF MATH/STAT SIUE
GOLDEN, CO 80401 FORT COLLINS, CO 80525 EDWARDSVILLE, IL 62026

WILLIAM SHULBY RICHARD SIMON BURT SIMON
WILAND SERVICES, INC. NATL. CANCER INST., CTEP, BRB AT&T INFORMATION SYSTEMS LAB.
1426 PEARL ST. #400 LANDOW BLDG., RM 4B06 11900 N. PECOS ST.
BOULDER, CO 80302 BETHESDA, MD 20892 DENVER, CO 80234

KENNETH SIMONS JIM SKULSTAD STEPHEN SMEACH
IBM CONNEERING G.D. SEARLE & CO.
1900 DIAGONAL HWY. 350 OAKDALE, SUITE 308 4901 SEARLE PKWY.
BOULDER, CO 80302 CHICAGO, IL 60657 SKOKIE, IL 60077
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JOHN SMITH TOM SMITH P.L. SMITH

UNIV. OF COLORADO LONGMONT FOODS SHELL DEVELOPMENT CO.

P.O. BOX 108 P.O. BOX 1479 P.O. BOX 1380

BOULDER, Co 80309 LONGMONT, Co 80502 HOUSTON, TX 77251-1380

ROBERT SNELL BRAD SNOW STEVEN SOERENS

EASTMAN KODAK CO., M.S.P. ADOLPH COORS CO COLORADO SCHOOL OF MINES

1669 LAKE AVE. NOB520 M4ATH DEPT.

ROCHESTER. NY 14650 GOLDEN, CO 80401 GOLDEN, CO 80401

W. ALLEN SPIVEY RANDALL SPOERI JAYA SRIVASTAVA

UNIV. OF MI AMERICAN STATISTICAL ASSN. COLORADO STATE UNIVERSITY

GRAD. SCHOOL OF BUSINESS 806 15TH ST., N.W., #640 STAT. DEPT.

ANN ARBOR, MI 48109 WASHINGTON, DC 20005 FORT COLLINS, CO 80523

WILLIAM STANISH FREDERIC STERBENZ PETE STEWART

SAS INSTITUTE UNIV. OF WYOMING UNIV. OF MARYLAND

P.O. BOX 8000 P.O. BOX 3985 DEPT. OF COMPUTER SCIENCE

CARY, NC 27511 LARAMIE, WY 82071 COLLEGE PARK, MD 20742

WALTER STUDDIFORD GARY SULLIVAN TIM SWARTZ

PRINCETON UNIVERSITY IOWA STATE UNIVERSITY UNIV. OF TORONTO

REGISTRAR BIOA W. COLLEGE 204 SNEDECOR HALL DEPT OF STATISTICS

PRINCETON, NJ 08544 AMES, IA 50011 TORONTO, ONT. CANADA, M5S lAl

GARY L. TABBERT CHARLES H. TAYLOR ROBERT TEITEL

3M/3M CTR. COLORADO STATE UNIV TEITEL DATA SYSTEMS

3M - STAT. CONSULTING DEPT. OF STATISTICS 7315 WI AVE STE 727 E

ST. PAUL, MN 55144 FORT COLLINS, CO 80523 BETHESDA, MD 20814

NICK K.W. TEOH RONALD A. THISTED STEVE THOMAS

THE UPJOHN CO. THE UNIV. OF CHICAGO CONNEERING

UNIT 9161-243-67 5734 UNIV. AVE. 350 OAKDALE, STE 308

KALAMAZOO, MI 49001 CHICAGO, IL 60637 CHICAGO, IL 60657

ROB TIBSHIRANI LUKE TIERNEY NAITEE TING

DEPT OF PREV MED & BIOSTATISTS UNIV. OF MN COLORADO STATE UNIV.

UNIV. OF TORONTO SCHOOL OF STATISTICS DEPT. OF STATISTICS
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