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The Two-Dimensional One-Component Plasma

in a Doubly Periodic Background -Exact Results

1 2Frangoise Cornu , Bernard Jancovici and Lesser Blum2

Abstract

Using a new method, we find that the two-dimensional one-component

plasma in an inhomogeneous background is a solvablI model, in equilibrium

classical statistical mechanics, for the special value r - 2 of the coupling

constant, for a larger class of background shapes : the n-body densities can

be explicitly computed. In particular, we can deal with a doubly periodic

background; this is a classical model for a crystal made of fixed ions and

mobile electrons. At r - 2, this system is conductor: the correlations have

a fast decay, and the Stillinger-Lovett screening sum rule is obeyed.
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background; conducting phase.
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1. INTRODUCTION

In statistical mechanics, it is obviously of interest to have exactly

solvable models for Coulomb systems (plasmas, electrolytes, metals etc...).

The simplest model of a Coulomb system is the one-component plasma

(jellium) : identical charged particles move in a rigid charged background

which ensures overall neutrality. In two dimensions, the Coulomb potential

between two particles of charge e at a distance r from one another is -e 2

n(r/,), where X is an arbitrary length scale, and the dimensionless

coupling constant is r - §e 2 , where @ is the inverse temperature; for the

special value r - 2, It has been previously found that the equilibrium

classical statistical mechanics of the two-dimensional one-component

plasma can be worked out exactly for several kinds of background charge

distributions : one is able to obtain the n-particle densities. Besides the

simplest case of a uniform beckground 1,2), essentially one could deal with

a background charge density depending on one space coordinate(3); this

covers a variety of charged Interfaces (electrical double layers) of Interest

to electrochemists.

This previous work left unsolved the Important case of a doubly

periodic background. In the present paper, we solve this case, using a more

general new method; a preliminary account has been given by two of us(4)

Thus we have an explicit solution for a model which can be understood as

made of mobile (classical) 'electrons' interacting between themselves and

with a lattice of extended fixed "ions'; this one-component plasma in a

periodic background can also be regarded as a two-component plasma In

which the particles of one species have been fixed on a lattice. Like the

symmetric two-component plasma, the present model is expected to

undergo a Kosterlitz-Thouless phase transition between a low-temperature

dielectric phase and a high-temperature conducting phase, and this

transition is actually seen in computer simulations (5 '6 ) . Here, we show

bI
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that, in our system, criteria which characterize a conductor are satisfied

the correlations have a fast decay at large separations, and the

Stillinger-Lovett sum rule (7 is obeyed. According to these criteria, at r -

2, the system is in its conducting phase.

The paper is organized as follows. In Section 2, the general method is

reviewed. In Section 3, it is shown that this method provides a simpler

approach to the known case where the background density is inhomogeneous

in one direction only. The doubly periodic backgrournd is discussed in Section

4- we compute the n-particle densities and discuss sum rules.

2. MfETHOD

W Z :2.1. n-oarticle densities

We start with N particles of charge -e in some background. The

position of the ith particle is r, - (x1, v); we shall also use the complex

number zt ., xi iy1. The Hamiltonian Is

N
H - 92 n V(r i ) -92 ln(lz - zjl/h) (2.1)

I 141<j4
-5,

where e2V is the background-particle Interaction, and therefore, for an

inverse temperature 0 such that r - §e 2  2, the Boltzmann factor is

exp(-@H) - C Idet (exp [-V(rjz)]z t JI, ... , N2  (2.2)

.o

'a.

"a." where C Is a constant.

i In the simple case of a background potential of circular symmetry, V(r)

. V(r), the functions exp(-V(r)] z- ' are mutually orthogonal, and (2.2) has

the same form as the squared wavefunction of a system of indepencnt

fermions; to deal with the Slater determinant which appears in (2.2) is a
, :" ,. . -V-' -.

SW



Iz
4

standard problem, and it is easy to compute the n-particle densities. All the

previously solved cases could be obtained by starting with a circular

geometry and taking a suitable limit.

In the present paper, we want to consider more general forms of the

background potential, and the functions exp(-V(r)] zi- 1 are not necessarily "

mutually orthogonal. However, we can choose an orthogonal basis *v(r) for

the space of these functions, and rewrite (2.2) as

exp(-§H) - C Idett*j(r)i J 1.. NP (2.3)

since the new determinant is proportional to the former one. It is then easy

to show that the n-particle truncated densities can be expressed in terms

of the projector

< rIPI r 2 > - vj rl)jlrl (2.4)
d rIPjr~

as

p(r) - < rPI r >

- 12 kr,, r 2 )- -I< r, IPI r 2 >?2 (2.5)
P (nl(r,, r2 , --,r n) - - < rI IPI ri .2 Nr

01 ... 2 ... < rn IPIr

where the summation runs over all cycles (1, i2...In) built with (1, 2, ...,n). In

* the thermodynamic limit, the functions exp(-V(r)'z j - 1 span the subspace of 'r'-

HlWert space defined by the entire functions of z - x * iy times exp(-V(r),

and P becomes the projector on that subspace (of course, this is an Intrinsic

definition of P, Independent of the choice of the orthogonal basis Wj ). Thus,
S



5

the problem of obtaining the n-particle densities is reduced to computing
the projector P.

In the simplest case of a uniform background density p, the

background potential V(r) can be chosen as 1/2 9@,r "2 (plus some irrelevant

constant), 4j - exp(-V)zl - 1 and

< r,IPIr2 > p g0 exit- - (Iz1e Iz1  - 2zz4)]
2

P(r) - g (2.6)(22 ep_~r 2
pkr,. r2) =- exp(-np0Ir1 - r2 2

in the general case, the background density p0 (r) can be considered as

being the sum of a uniform contribution po plus a non uniform modulation

i(r). Correspondingly, the background potential V(r) can be chosen of the

form Vo(r) + 0(r), where V(r) - (1/2) Y~0 r2 and 60(r) - 2Ep(r). As a first

step towards the computation of the projector P on the space of the

functions exp[-0(r) - Vo(r)dz, j e IN, it will turn out to be convenient to

replace the zi by another basis for the entire functions fk(z) -

(112)l(o[Z-(k/X ) } , k e I. The #k are indeed such a basis, since
exp-

z- n-' 22-n I dt Hn(t) exP(-(z - t)2 ] (2.7)
-00

where the H n(t) are Hermite polynomials, and (2.7) becomes a superposition

of #k functions through a rescaling of z and t. The basis exi(-Vo(r)]zJ is then

replaced by

exp[-VO(r)].k(z) - exp(-Iyplxy) exp(-k 2 /4np 0 ) exp[-Apo[x-(k/2rpo)]f( . Iky)

(2.0)
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Actually, since (2.8) will be used for defining the projector P and thereafter

computing the densities (2.5), we can omit in (2.8) the normalization factor

exp(-k 2 14i@,) (this leaves the projector unchanged) and the phase factor

exp(-iYlpoxy) (this leaves the densities unchanged because of their cyclic

structure).

Therefore, an alternative definition of P is to take it as the projector

on the space of the functions

b k(r) exp(_O(r)] exl -jt(x k }2 iky] (2.9)

For the potentials O(r) which will be considered here, strictly

speaking the functions (2.9) do not belong to Hilbert's space, because

lexp(ikyN does not decrease at infinity. However, these functions do form a

basis In the sense of distributions, just like the plane waves in quantum

mechanics.

2.2. Arbitrariness In the choice of V(r)

Let us remark that the background potential V(r) is not uniquely

determined by the background density %B(r). In the thermodjnamic limit,

V(r) keeps a memory of the boundary conditions even after these boundaries

have receded to infinity. The n-particle densities however should depend

only on @,(r) for a system with screening properties which prevent the bulk

from being affected by Infinitely remote charged boundaries. It Is

satisfactory to check explicitly this independence upon the choice of V(r),

to which it should be always possible to add an arbitrary harmonic function.

Actually, since the confinement of the particles must be preserved, the

total background potential must Increase fast enough at Infinity, and we

snail only consider the addition to V(r) of a harmonic function of the form
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f(r) = a2(x -y2  + bzxy + alx + bsy + c, with coefficients a2 and bt2 of

sufficiently small absolute value, furthermore, the term bzxy can be

removed by a rotation of the axes. The potential f(r) can be interpreted as

determined by suitable external electrodes.

It is then easy to see that fk(z) can be chosen again of the form

expl-m[z - (2m)-'(k + I + i6)f), where (x, 1, 6 are real constants, and by a

%" suitable choice of these constants, f(r) can be cancelled, except for

irrelevant normalization and phase factors. Therefore, the projector P can

be left unchanged.

Incidentally, the basis (2.9) can be directly obtained by choosing the

potential contribution from the uniform background as Vo - Ax 2 and taking

exp(kz) as the basis for the entire functions. Such a V. will be obtained If

we reach the Infinite system limit starting from a strip geometry rather

than from a circular one.

2.3. Magnetic analogy

The arbitrariness In the choice of our background potential V(r) has a

quantum-mechanical analog : a gauge transformation In a magnetic problem.

Let us consider a particle of mass m and charge q moving In the xy plane and
submitted to a uniform magnetic field parallel to the z axis ( 8 .The ground

state is infinitely degenerate. In the gauge where the vector potential is AS
- (1/2)0 X r , a basis for the ground-state wavefunctions is

,exl-(qa/4)r2)z, j e IN; in the gauge where the vector potential is A - I BxI,, (J is the unit vector along the y-axis), a basis for the ground-state wave

functions is exp{-(qO/2) [x - (k/qB)f + iky), k e IR. Obviously, our change

from the basis exp-(I /2)YE(,r2] J to the basis exp{-Y(o[x - (k2E )f + iky}

is exactly of the same form. If a Siater determinant is built with the

* ground-state wave functions, the corresponding n-body densities must be

gauge-independent, just as our n-body densities are independent of our

choice of basis.

SP



3. BACKGROUND INHOMO6ENEOUS IN ONE DIRECTION.

We now revisit the case of a background density depending on one

coordinate only (3) : (x). The potential 0 can be chosen as 0(x), and we

have at hand the orthogonal basis : (2.9) is orthogonal because of the

plane-wave factor exp(iky). Adapting (2.4) to the case of a continuous index

k, with the usual prescription that the summation becomes (LI2T0 I dk as

the length L of the system in the y direction becomes infinite, we find

< r1 IPI r 2 > - exl(-0(x 1) - 0(x 2)]

,(-00. exp~ik(y-g, 2)] exp-jlpo[(x, -_..k.) (x2  k2]

-oo 2( 100 dx exl(-20(x) - 2p0olx -
-00 2 % (3.1)

Using (3.1) in (2.5), we retrieve at once the dea* of Ref.3.

Some special care must be exercised for dealing with the case where

the particles are confined to the half space x > 0 by an Impenetrable wall at

, x - 0. Then. In (3.1). the range of x must be restricted to x > 0, and the

range of k must be restricted to k > 0. This Is shown as follows. Since we

have already taken the limit of an infinite system, we shall start 3 ' with a

system in which an impenetrable barrier occupying the region - I < x < 0

, separates the plasma into two regions x < - I and x > 0. The impenetrable

wall system will be obtained by taking the limit I -* 00 in such a way that

the remote regions x > 0 and x < - I no longer see each other. The reason for

which the values k < 0 are suppressed In (3. 1) ",li b. -9 t a-" that the

norm in the denominator has a contribution from the remote region x < - I

which becomes Infinite for k <0, in the limit I -o oo; n the contrary, this

contribution vanishes for k > 0, In the limit I -co. The independence of

the regions x > 0 and x < -1 oen-W achieved by requiring that each of them

4L



be globally neutral, anf*=* will be the case if we-tNs background
×2

potential isymmetrci with respect to the bamer, V(x) = 1 0 x+ O(x) for

x > 0, V(x) = + o for -1 < x < 0, V(x) = V(-x -1) for x < -1; Then,

remembenng that O(x) is defined in every region as V(x) - n@, x2, and

changing -x -1 into x, we can rearrange the denominator of (3.1) as

f(k) = exp(-2k-) J dx exp(-2(x) - 22(x + k

0 2j

+ J dx exI(-20(x) - 2n%(x - k ) (3.2)

In the limit I -o o, the first term of f(k) (which is the contribution from

the region x < -1) diverges if k < 0, vanishes if k > 0. As a consequence,

(3. 1) becomes

< r, IPI r 2 > - exp[-0(x,) - 0(x2 )]

expik(y,-y 2 )] exp-1tp[(x, - k + (X2  k) 2 ]D00 2o 2 2y(

o N• ex,-20(x) - 2v@0(x - 1- ] ,x 2>0
0,... 2 (3.3)

0 (3.3) is in agreement with the results(2 ) about a hard wall carrying a

surface charge density eW', In which case (x) - 2Ja'x, x > 0; O(x) 0 , x < 0

4. DOUBLY PERIODIC BACK6ROUND

In this Section, which Is the core of the present paper, we study the

case where the background density is doubly periodic. Thus, we consider a

*.. doubly periodic background potential modulation 0(r)•

0(r + n a + m b) - 0(r), n,m E 1 (4.1)

0 ! .. . - -. - - .-, .., - , - .,' - - " ' . .,- " .. ' - " -.- " . - . " - . - ' . " - - . .. . "- -""-. . . . "'. ..,'.
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The unit cell is a parallelogram built with the vectors a and b, of area ab

sin f, where f is the angle between a and b. The system is neutral, with a

particle density %, equal to the average of the total background density 0 +

(2iy)-A0(r). In order to mimic a simple crystal of extended fixed ions ind

mobile electrons, of opposite charges, we take p0 = (ab sin )T , which

means there is one particle per unit cell.

4. 1. n-oarticle densities

Although the functions (2.9) now are not orthogonal, they are a good

4starting point for computing the projector P. Choosing the y axis along the

period vector b, and defining ( E (0, I] and n integer by k - 2n(( + n)/b, we

can rewrite V k as

W(,nlr ) - exp(-(r)] exp(- xp(x- 9 2i i1( + n) -] (4.2)

gob b

As a consequence of the perioducity of 0 along the y axis,

00 dy 'V1 . (r) W(, n(r) K 8(1 - ) (4.3)

Furthermore, if the unit cell is a rectangle (x - /2), (pob) - - a, and the

periodicity of 0 along the x axis ensures that W,n depends on x only

through x - na; this suggests to introduce the Bloch functions

W( , 40)- I exp(-2j1lqn) *V,n(r), C, q e (0, 1] (4.4)
n

which do have the desired orthogonality property

'v A' I'



-iI .

-00 dx 4,Tl'.(r) 4f,, 7 r) oc 8(l1 - 1') (4.5)

The argument can be easily extended to the more general case where the

unit cell is a parallelogram, by introducing (dimensionless) oblique

coordinates (X, Y) defined by r = Xa + Yb. Multiplying W ,n by an irrelevant

phase factor expl-iA(a/b) cos 4X 2 + (, + n)2D, we obtain

W(,n(r) - exl[-0(r)] exit- I (X - - + 2Yi(( + n)Y] (4.6)

where T - (b/a) expfi[p -(N/2)1; with these W',n functions, which have the

same form as (4.2), we can proceed as above, in oblique coordinates in the

general case.

Thus, the W,q are orthogonal:

I dr ';.-,'Or) '(, .(r) - 8(( - ' 8(q - q') f(( , q) (4.7)

where

cc

f((, TI) -- exp(2XI qN)J dX exp- J (X-, - -L. (X - N?]
Po N -t . °

x I dY exl[-20(X,Y)] exp(-2iNY) (4.8)
4 0

These orthogonal '4' can be used for building the projector (2.4), with the

result

< r IPI r2 > - exr-0(r 1) - 0(r2) d dil ex(21 1(m - n)]
f(0 ,, ) nm
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x exp{- (X - n) -(X 2  M)2 - 2[( + n)Y +-( m)y 2I (4.9)

A more compact form can be obtained by using the Poisson identity

Z ex(-.- N2 + 2(izN] - 10 Z exp(-it:*(z - N?] (4.10)
. N T, N

in (4.8), and also in (4.9) where we set m - n + N. The result is

f((, q)- / ' dX dY exp(-20(X, Y)]
RD -00 -00

x exp(- A %*, Y - T--?-2xi(X - (XY - 1))] (4.11)

and

< r IPI r2 > - exp[-(r I ) - 0(r2)]

00 - f,,

+ 2tC(IY1 - Y2)] (4.12)

Thus, we have obtained an integral representation of the projector P; when

used In (2.5) It gives the n-body densities. Some symmetries of (4.12) ore

hidden; for instance < r 1PI r2 > - < r2 IN rl>*. Other ones are apparent; for

instance, the function f((, 11) is doubly periodical with period 1, end this

ensures that the densities hove the same periodicity properties as the

background.

As an illustration, we consider the case of a square unit cell (a - b, 0

0 f12, x - 1) with the simplest choice

rr

Ir
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exp-20(r)] 1 + X(cos 2rlX +cos 2nY) , XI 1/2 (4. 13)

-,The totail baickground dniyis

P,(r) =o +0 (2jY' t60 (4.14)

aind from (4.11i) and (4.12), we find for the particle density

p(r) - < riPir >

CO 00 exp-( -0 n ~ (Y-iq9] cos(2(X-)(Y- 1 )]po,2 xp-20(r) j Jd
1N . e t2 cos 2A +. cos 2YnTI

~ .1 (4.15)

The potential modulation 0(X, Y), the background density p,(X, Y) and the

particle density p(X, Y) ore displayed inl Fig. 1, for h - .49. With this choice
of a large amplitude X, the background densityl Is a rather tormented
lanscape; the particle densityl tries to fo)low, but It does not quite succeed
and it exhibits much smoother oscillations.

Another representation of @(r) might be of Interest. The normalization
factor (4.8) can be written as

I I

f(Kj To) - -L dX j I'PC.(X, Y)?2  (4.16)

and therefore

P(X. Y) - go dX 1  Y (4.17)

If we restrict ourselves to the case of a rectangular unit cell, t Is real, and
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;M r (X,f = exp(-20(X,Y)] Z exp[- (X-,-n)2 -!(X-,-m) 2 + 2Mt(n-m)ly-l)]
m ,n T

, , (4.18)

The sum on n and m can be replaced by a sum on = n- n and v = m + n,

with p and v of the same panty. The contributions from (p, v) even and (Pi, v)

odd, respectively, can be expressed in terms of Jacobi theta functions. The

result Is

IV,.,n(X, 2 - exp,-2,(X, Y)] ( )'[,(2, - 2V, 2)%(j - (, j)+112(2Y, - 2V, 2)

844-(, 1)] (4.19)

where the 8 functions are defined by

Y(x, t) - I exp(-wtn2 + 2Yinx] - t71 2 Z exp(-(Y/t)(x - n?]
n n

82 (x, t) - 7 exp[-xt(n + +? 2xi( n + qx] - t- 1/ 2  1 )nex(-(n/t)(x - n)2 ]
n n

94(x, t0 - Z exp(-xtn2 * +2Wn Nx +) -1/ F exp[-(Yx/t)(x - n - ]
n n

The particle density Is obtained by 69" (4.19) i- 4.17).

4.2. Decay of the correlations

The decay of the truncated densities (2.5) at large separations Is

faster than any Inverse power law. This can be seen as follows. The decay of

the densities Is governed by the decay of P, th4pMn1OffT4rYn Wf.1ir

< r, IPI r2 > - exp[-(r,) - 0(r 2 )] expi2XIX,(Y,-Y2)]
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X 1itc Id, d( CI 1 exp(- A T- ,T1~ 2mnij + 2n((Y -Y)
-00 -00 f(.+Xsl.+Y2) 2

- 2niq(XI-X 2 )] (4.21)

Let us study the behavior of (4.21), for a fixed value of r, as r2 recedes to
infinity. Since f is penodico- inl n+ Y, we can define Y by Y = 2+ n, Yz 2

[0, 1], n integer, and replace Y2 by Y2 in f. If we "Oef" -urselves to kt a

fixed value for Y2, i.e. if r2 recedes to infinity by integi,"steps o4Y2 , the

integral in (4.21) is the Fourier transform of a well-behaved function of

and q, and it decays faster than any inverse power law.
V

The resulting fast decay of the correlations is one of the criteria

which is believed to characterize the conducting phase.

-4.3. Sum rules

The one- and two-particle densities can be shown to obey several sum

rules which characterize a conductor.

Neutral4u

The averages, on a unit cell, of the particle density and of the background

density are equal:

~dX J' dY p(X, Y) - %(4.22)

This sum rule is satisfied by (4.17).

Screening of a particle of the system

This screening rule means that a particle of the system induces a

polarization cloud of exactly opposite charge:

% %
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Jdr 2 0(2 ) (rP, r 2 ) -p(r )  (4.23)

- T

The structure of (2.5) ensures that this rule is obeyed, because of the

closure property

Jdr 2 < r 1lPI r2 > < rlPI r, > - < rIPI r1 > (4.24)

The rule can also be checked explicitly on the representation (4.9), after

some algebra.

* Screening of an infinitesimal test chaee (Stillinger-Lovett rule)

This screening rule means that an external Infinitesimal test charge

induces in the sustem a polarization cloud of exactly opposite charge.

Through linear response theory, this statement becomes a sum rule for the

truncated two-body density, the Carnie and Chan generellzaton (10) of the

Stilllnger-Lovett rule (7) to an Inhomogeneous system, written here for two

dimensions :

-pjdr, fdr, in r2 S(r,, r2) - 1 (4.25)

where S Is the total charge structure factor

S(r,, r2) - V (r,, r2) + r p(r) 8 (r2- r,)] (4.26)
TP

In the present case of a periodic system, (4.25) can be written in other

forms. Because of its periodicity properties, S(r,, r) is complery

described byj its double Fourier transf orm Si, _) (.

9s( m l I I dr, Jdr2 exp(l 6.r, + ik.(r2-r1 )) S(r,, r2) (4.27)
A U
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where U means that the integration domain of r, I- 'he unit cell, of area A =

ab sin, 6 is a vector of the reciprocal lattice. From (423), one Oef-t ves

'  G(6) = 0 Then, (4.25) can be reexpressed in terms of S6 (k) and of the

Fourier transform 2I/k2 of -In r as

2AP lim SO = (426)
k--o k

In other words

dr, dr 2 exp(ik.(r 2-r,)] S(r,, r2) k (4.29)A k--O 2Ep

Expanding the exponential in (4.29), we fInd the generalization to a periodic

system of the Stillinger-Lovett second moment rule

I L dr 1 jdr2 (r2-r,) " (r2- ,) I r2'(r2_r,) .. (430)

m_.
where cc, y - 1, 2 are cartesian componentsqs(4.29) and (4.30) are of the

same form as in a homogeneous system, except for the average of r

the unit cell.

C r O,-_ In terms of the dimensionless oblique coordinates X, Y,

(4.30) becomes L A ". -_.

IX '1 (2 2rrQ 431a!- 1dX1  J'dX2 J' dY2 (X2-X) (4.31 )0 0 -00 - W T 2AasIn#

1y X, dY, f 0 dY (Y-Y Q9 2 (43;b)
J'd Jd JX 2  2 2-, 'kr,, r2) - a

-0 -0 (43b) -

-0 o 2~sn



% 9..

*1 18

00d, (2)( r (COS jy dX f dY, dX, dY2(X2-X)(Y2 -Y,) r,, r) (423)c)0 0 -0 -0 cT 2Etsnol

In Appendix A, we show that these sum rules (4.31) are indeed obeyed. For

this purpose, it is convenient to express 2in terms of the proector P in

its form (4.9).

The above mentioned proof applies to any periodicAt background,

including the special case of a lattice of fixed charges of negligible size.

,.' For this limiting case, however, we can also give an alternative proof,

-. which is described in Appendix B.

4.4. Irratina& vues of the manber of particles oaer cell

. .... Vf we hove assumed the value I for %A, the average number

of mobile particles per unit cell. If %A - p/q (p, q integers), choosing a unit

cell q times larger reduces the problem to %A - p, and it is easy to see that "i ,

thlttec is solved by diagonalizing a q x q matrix.

Whet about irrational values of % A ? In terms of a model of a crystal,

it would be a rather academic situation, since -o A is the ratio between the

charge of an ion and the charge of an electron. Nevertheless, this is a

%. 4 mathematically interesting situation. Furthermore, our problem is closely
related to a magnetic analog' e l ) or Importance for the theory of the

_w -- .0-. quantum Hall effect" and also to problems which arise in the theories of

incommensurate structures"1 1

We have not been able to compute the densities for irrational values of

@0A. We only want to point out that, in the simplest case, the problem

reduces to studying the solutions of an almost- Mathieu equation.

We start again with the functions (4.2), for a square unit cell of side a,

and a potential modulation of the form (4.13):

-% , %



n~(r c [ o + s 2 ntX c o s 2r 1/2 exp{-RY(X - + S2)2 2ni( +n)Y]

where vi p @,~a' Computing the projector P on the space of these

functions amounts to diagonalize the matrix formed by the scalor products

fdr W ,n(r) W -.m(r) = -L)Anrm (4-33)

A simple calculation gives

Anm = (2y)'/ I[ ,keiy( 2 p Cos 2f(*n) hemny( n m- + 6n m+ 01

(4.34)

The problem of diagonalizing Anmn leads to

g.un 1* 2iY+(co R2~n))J- u (4.35)

if 1-, the solution is exp(-2Ytirjn), and we retrieve (44). If is irrational,

(4.35) is the almost-Mathieu equation in its full glory, and we leave the

computation of the projector P as an open problem.

a 5. CONCLUSION.

At r - 2, we have obtained an exact solution for the equilibrium

statistical mpchanics of the model of fixed ions and mobile electrons

Introduced by Hansen et al~5 ~ We have shown that, at r - 2, the model

exhibits the features of a conducting phase :the correlations at large

separations decay faster than any Inverse power law, and the system has

good screening properties (the Stillinger-Lovett rule is obeyed).

P. On the basis of computer simulation results, It has been claimed by

% % ' ~ ~
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Hansen and his collaborators that the coupling r, at which the

conductor-dielectric phase transition occurs, goes t£'byuwe' vauesas-

the radius of the ions goes to zero. Our exact results at r - 2 are not in

contradiction with this claim.

0A

-p-

-p"

-p-p
-I

.

I°
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APPENDIX A STILLINGER-LOVETT SUM RULE

We check the sum rules (4.31), where

~(21-
p (r,, r ) =-< r, IP r2 > < r2 IN r, > (A 1)

using for < r, IP r2 > the representation (4.9).

We first consider

=- dX, dY, e.p-20(r,)] d( aI d ' a[ n)f(J,*, I r'
n' m'

... x exp{-2y i[11(n-m)-rl'ln'-m')}- 1. (X--? - X-'-') ninn)

T.-4.-

I' ~-'400
x f dX2 exp[- . (X2- -m? - (,'-m')1 ]

00

x I dY (Y-Y,) 2 exp-20(r2 )-2~i(-')(Y-Y,)-2ti(m-m)Y2  (A2)
-00

Using the periodicity of 0, we find for the integral over Y2 in (A2)

a2 I 6(, ),6m',m+M dY2 exp(-20(r 2) + 2,iiMY2](2i0 j c 7MT

In (A2), we can replace m' by m + M and n' by n + N. Using the periodicity of

: ,0, we can replace X2 - m by X2 and perform the sum over m which gives a
1 00

-. " 6(11 - if); we can also replace X - n by X1 and j dX1... by I dX... We obtain
n 0 -00

: y ,,dr dql
4d0 0
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x- -- - ( dY exp[-20(r,)- 2nmNY]" Q0 N -00l:

x -L exp(-2rriOM) fr'dx2 ex( - (X--C-M) 2] dY exl-20(r) 2nMY@0 M -00T

S a 2 -X--2- exp(- I (X1 - C,) _ -- (X2 _ )2]) (A3)
f( aRi)

In (A.3), as a function of X the derivative (EaI2/,)... is a combination of

terms of the form ex -(I/)(X1 -,?] or (X,-)exp[-(n(/T)(X,-_,)2] or (X,-()2

exlX-(Yt/)(X,-C,) 1 These terms enter the integral over X, and generate

1, exp(2EiqN) fJ°dX1 exp{- (X1-C2- - (X-,-N?] fodY exp(-20(r,)PO N -oO 0"

- 2YiNY1]

multiplied on the right by I or X, - , or (X, - (,?, i.e. either f((,, Fl) as given

by (4.8), or combinations of 8f/K?, Of/8 l, and a2f/C,8au. The same

identifications can be made with exp-(/t/)(X-,9] and its derivatives

The result of these Identifications is
a-..
Ia.

d(- dK J 1 (Al-+ &( I. AL 21(L4)T- It] (A4)
ly (2r X7 o 0  811* a f 8rq (T*?) f KC

Since f is periodic in C, and il with periods 1, the contribution from the

derivative (8/81)... vanishes, and we obtain (4.3 1b).

The computation of iXy follows the same lines. Instead of (A3) we,! obtain

Ixy- I'd( I 1

2 0 0 f(,,)



4 1 W" - -2

3

-- e:D(2n 1 N) ]X exp(- _(X - -N)']  ¥ exp-20(r) - 2mi NYI
: ° N -CID IC, 0

-K exo(-2 n iM) jdX 2 exl{ - ( (X_M)2 ]J dY2 exp-20(r 2 )+ 2niMY 2

x± ). e -' t( 2 e 2(2 21M 2

00 M -0

xX -X l - aL a (ex ( -1! (X)()2 (X _ ()2]} (A5)

Again, we manage to recognize derivatives of f((,, "), with the result

(4.3 1c).

Exchanging the X and Y axes in (4.3 Ib) proves (4.3 1a).

I
J.
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APPENDIX B : LATTICE OF POINT PARTICLES

We take as the periodic background a lattice of fixed charged particles and

consider the limiting case of point particles. We give a direct proof that the

Stillinger-Lovett rule is obeyed.

Let zI = xI + iyi be the complex number which defines the position of

the ith mobile particle; similarly let Z define the position of the j th fixed

. particle. At r - 2, the Boltzmann factor of a system of N mobile and N fixed

point particles Is

T (zI- zk) 1T(Z- Z1)
exp(-@H) L2' I- j " R - L2NIdet I }J }j-I,...,NF

T( - Zj) z1-Z1  (1

where the second form is obtained by using an algebraic identity of Cauchy.

In order to avoid short distance divergences, we introduce a cutoff at some

small distance o, and replace (B. I) by

I - expi-Izl-Zjl2 /2o 2

exp(-OH) - L2N4 det ( )l,j. 1,...,N? (0.2)21 - zI

The limit or - 0 will be taken at the end of the calculation. (B.2) is again a

squared determinant, and therefore the n-body truncated densities are again

of the form (2.5), where now P Is the projector on the space spanned by the

functions (z-Z )-'(I-exp[-Iz-Z11/2o 2]1. An orthogonal basis for this space

is obtained by WO" Bloch functions. Assuming for simplicity that the

fixed particles are on the square lattice Z - m + in, m, n E 1, we define the

Bloch functions

SM
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WJ.(x y) exp2m((m+Tqn) 1-expf-[(x-m) 2 + (y-n) 2]Y2 -} 1 3)

mn x + ly -(m + in)

Using the Founer transform

....;'0 00 1o -exI -(x 2+ y2) / 2a"2

g((,TI) = J dx I dy exl(2i((x+.y)] 1
-00 -00 X+iy

exp(-2e0 2 ( 2 + 2)] (BA)

and the Poisson summation formula, we can rewrite W4 as

Yr! Tlx y) I - expl2ni[( + m)x (qtln)yD g(l+m, qpn) (.5)
mn

and we find for the projector

< r II r2 > = d( Idqi~ ~~ V 1 1 xA Jd( Jd
-1/2 -1/2 j VdylW *.(x, y)r -1/2 -1/2-1/2 -1/2

_ n exp{21ti(+m,)x,+lil+n,)y,-(+m2)x2-lTl+n2)yz]glC m,,T+n,)gl(,m2, q+n21

Z gl(C+m, rl+n)g(( m, T+n)

mn

4, The structure of (8.6) allows us at once to check the overage density sum rule

J1/2 1l/2 dpriJ 1/2  j/ 07.dx. dy p(r) dd < r IPN r> - 1 (8.7)

-1/2 -1/2 -1/2 -1/2

I0.. and the neutrality sum rule
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J0dX2 J0 dy2 p (r1 r2) -dx 2 Jdy2<r, IN r2 > <r 2 IN r, >-0, -00 T -00 -00

= - < r IPI r > = -p(r1 ) (B.6)

We turn to the Stillinger-Lovett second moment

X2 6o r1/2 /2 (2 2

-00 -00 d-1/ 1 / 2  k r-oo oo g-1/2' -1/dydx T r'2 ) (x1 - 2 )z

00o 00 r1/ 2  r1/2 2
=-2 J dx2 J dg2J dx J, dg, <r IPI r2> <r2 IPIr, > (x,-x2 )

-00 -00 -1/2 -1/2
(0.9)

Using the representation (0.6) of the projector, we perform the space integrals with

variables r1 and r2 - r,; we find

/2 ad 1 idli 1 /i' td' 6(T1 - if)
2? -1/2 -1/2 -1/2 -1/2 f

(0.10)

where

.,. f~., ', 11) - g((. ,1 , n) 9,'+m, q1'.. n)(. )

Replacing 8((, - by 8(( - .'Xe/82), we obtain

-1/2 -1/2 flr,,i;C,,'1) ' (C,,,1;r,,)

(0.12)

The function f(,, TI; C,, TI) defined by (0.4) and (0. 11) Is

exp(-4e1 R + m? . Cq nJ

f ,)mn (rm) + (n) a (0 13)
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It iS convenent to display the singularity at T -- = 0, coming from the term

m = n = 0, and to represent f, in the integration domain I(j, ITII < 1/2, by its

Laurent expansion

f(., T (, T)) = I A(B. 14)2,,2

In the point particle limit, a' 0, the sum in (B.13) diverges for large (m, n)

and A becomes infinite; however the terms of higher order in (c,, TI)

represented by dots in (8.14) remain finite and can be neglected. If a similar

o analysis is performed for the derivatives of f appearing in (B.12), it is easily

seen that only the term m = n - 0 plays a role as or -. 0, because the sums on

(m, n) which define these derivatives do not diverge for large (m, n);

I. 3

therefore

and

Rf(Ti1 ql af(,al;',l)I ag((,Tl) i 1

a( aK,' , a( (+2)'

Using (B.14), (0.15), and (0.16) in (0.12), we find

-.- 1/2 1-12  A (17)

-1/2 -1/2
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As A goes to infinity, the integration domain in (1.17) can be extended to

infinity and the integral evaluated in polar coordinates. Thus

lim I = - (8.18)
a-*i-

This proves that the Stillinger-Lovett rule holds in the point-particle limit o
r " 0.

We have not been able to compute I for a finite value of o. It should be

remarked that the Boltzmann factor (B.2) corresponds, when o' is non zero, to

a complicated many-body interaction which would become the Coulomb law

0only if all particles were far apart from one another. There is no obvious

reason for believing that such a system obeys or does not obey the

Stillinger-Lovett rule. This is in contrast with the case of a bona fide

system with extended fixed particles, which does obey the rule, as shown in

Appendix A.
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FIGURE CAPTION

Fig. 1. Potenti Imodulation (a), background density (b), and particle density (c).
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