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MARCHING ITERATIVE M ETH ODS

FOR THE PARABOLIZED AND THIN LAYER NAVIER-STOKES EQUATIONS

Moshe Israeli

Technion - Israel Institute of Technology, Haifa (Israel)

Abstract

Downstream marching iterative schemes for the solution of the

Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are

described. Modifications of the primitive equation global relaxation

sweep procedure result in efficient second-order marching schemes.

These schemes take full account of the reduced order of the approximate

equations as they behave like the SLOR for a single elliptic equation.

The improved smoothing properties permit the introduction of Multi-Grid

acceleration. The proposed algorithm is essentially Reynolds number

independent and therefore can be applied to the solution of the subsonic

Euler equations. The convergence rates are similar to those obtained by

the Multi-Grid solution of a single elliptic equation; the storage is

also comparable as only the pressure has to be stored on all levels.

Extensions to three-dimensional and compressible subsonic flows are

discussed. Numerical results are presented. L ** J
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support was provided by the National Aeronautics and Space Administration
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1. INTRODUCTION

Considerable evidence accumulated recently about the applicability

of the Parabolized Navier-Stokes equations for high Reynolds number flows

with a pxincipal flow direction; see Rubin Il]. The PNS equations are

obtained by neglecting the streamwise viscous terms in the Navier-Stokes

(NS) equations. When the viscous terms in the circumferential direction

are also neglected, one gets the Thin Layer approximation.

The steady PNS equations still have an elliptic nature, and there-

fore the initial value problem in the marching di-ection is not well

posed [2]. A well posed initial-boundary value problem can be formulat-

*ed by specifying (for example) upstream and side conditions for the

velocities and one downstream condition for the pressure. This coupled

system of partial differential equations behaves like a single elliptic

equation for the pressure. Therefore the PNS equations must be solved

.', globally and cannot be solved by a single sweep marching. The reduced

order of the PNS equation can be exploited by constructing an iterative

marching method for updating the pressure field only. Such a multiple

sweep iteration method has the advantage that the velocity fields are

generated during the marching process and only the pressure field has to

be stored from sweep to sweep. A considerable saving in storage results.

However, simple minded marching does not result in good convergence

properties and sometimes diverges. For the two-dimensional incompres-

sible case, Israeli and Lin [3] devised a stable marching scheme that

behaves like the Successive Line Over Relaxation (SLOR) method for a

. single elliptic equation. The good smoothing properties of the above

mentioned scheme can be used in a Multi-Grid (MG) framework in order to

accelerate the convergence of the solution of the PNS (or TL) equations.

The marching scheme is implemented using a new stable algorithm which is

second order also in the marching direction. The same method can be

used without modification for the subsonic Euler equations as the effect

of the Reynolds number on the convergence rate is insignificant. In two

dimensions the PNS and TL equations are identical and therefore the same

analysis applies to both.

.1
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It turns out that the extension to three-dimensions is conceptually

simple; but the resulting algorithm. a successive plane over relaxation, %

is complicated by the requirement of the simultaneous solution of the

equations in planes perpendicular to the marching direction. This

problem can be alleviated by splitting of the equation of continuity

from the momentum equations.

The extension of the method to compressible flows is conceptually

non trivial. The original iterative method is based on the concept

that the convergence relies on the implicit relaxation of a single

quantity, the pressure, which approximately satisfies a single elliptic

equation. In the compressible case a viable approach is to eliminate

the pressure and to derive an equation for p, the logarithm of the

density. It can be shown that P satisfies approximately equation (1.1),

2- S + 0,ss Pnn

where M is the Mach number and s and n are coordinates along and

perpendicular to the flow direction. Although this equation is never

derived or used in the algorithm, it reveals the fact that for M I

the upstream influence is transmitted through the quantity ;, and

therefore only this quantity should be stored or updated. The flow of

information should be downstream for the velocity and temperature and

upstream for the density, and the difference scheme must be built

accordingly. For supersonic flows the flow of information should be

only downstream and the marching method is non-iterative. For super- I:'
sonic flows with imbedded subsonic regions, the iterative method should

be used, combined with an appropriate switching at shock waves and sonic

lines.

It should be pointed out here that the present approach is very

different conceptually from that of Reddy and Rubin [4]. Although they

used our idea (Israeli [61) of back shifting the pressure, one full mesh

distance, with respect to the velocity for incompressible flows, their

generalization to compressible flows is a Mach number dependent shift



which vanishes for M > 1. This smooth transition from subsonic to

supersonic flows is questionable since the change of type of equation

(1.1) is sudden, at M - 1. Indeed, only our full shift is used in their

papers and properly results in a conservative scheme across a shock.

Another question raised by the above mentioned paper is that of the

distinction between the pressure which uses downstream data and the

density which uses upstream data. This obscures the issue of the direc-

tion of flow of information and proper location of boundary conditions.

This approach should result in inconsistency of boundary data and may

eventually lead to ill posedness and divergence.

In the next sections we will summarize our previous theoretical

results, present some new numerical results and the extensions to 3-D

and compressible flows.

2. FORMULATION FOR THE INCOMPRESSIBLE CASE

For simplicity we will consider initially the case of the steady,

incompressible, and two-dimensional PNS (or T) equations in cartesian

coordinates [x;y]:

U + V = 0 (2.1)x y

(U 2 )x + (UV) y - -P x + U yy/Re(2)2

(LV) + (V2) = -P + V /Re (2.3)
x y y yy

where x is the mainstream direction, Re is the Reynolds number. U

and V are the nondimensional velocity components in the x and y

direction, respectively. P is the nondimensional pressure.

The two-dimensional NS equations are elliptic of order four - Brandt

and Dinar 15]. The PNS are elliptic only of order two like the Poisson
equation (the mathematical nature of several two-dimensional and three-

dimensional approximations to the Navier-Stokes equations was analyzed

in [7]). This ellipticity is due to the pressure gradient terms via

the continuity equation. A well posed problem can be formulated by

ev defining the boundary conditions as described in Fig. 2. The following

Dirichlet conditions may be specified:

1%
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* upstream boundary (AB): U - U. ; V - V (2.4)
ininIe

" at a solid wall (AD): U = U ; V - V (2.5)

wall wall(25
" at the outer boundary (BC): U = U ; V = V (2.6)

* at the downstream boundary (CD): P = P (2.7)
down*

Other boundary conditions can be used, but the same number of conditions I
on each boundary must be kept.

In order to separate linear and non linear effects, some of the

convergence tests were performed with the following linear version of

equations (2.1)- (2.3):

U + V =0 (2.8)
x y

(aU)x + (bU)y = -Px + U yy/Re (2.9)

(aV) + (bV) - -P + V /Re (2.10)
x y y yy

where a and b are known functions of x and y.

3. DISCRETIZATION AND MARCHING

Numerical solutions of Eqs. (2.1)-(2.3) are obtained by spreading

a grid over the computational domain. Let us assume that the grid points

are distributed evenly along the x and y coordinates with the spac-

ing Ax and Ay respectively. When differencing these equations it

should be remembered that their nature should be reflected [1,6] in

the finite difference approximation. In order to be consistent with the

boundary layer (parabolic) nature of the flow, the axial gradients of

the velocities should be computed using only upstream values, while the

elliptic nature is preserved by forward differencing the axial pressure

gradient [1,8,93. Consequently, it was assumed that a stable marching

scheme must be of the first order in the marching direction. It turns

out that this effect can be achieved by a judicious choice of the place-

ment of the variables to be solved at each station. The choice can be

explained most easily by taking V = 0 and --- = 0 in Eq. (2.2) for U,
Re

yielding

- ,_ . . . .. - , n: , - , - ,S *- " * 55 - .*',\ ,_ ,' , - . . .. , ... -" ,.,, . p ,, *., ,. " - ?
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A first order difference scheme then becomes

2 2Um,j -Umll,j p M e) - Pm+l,j;

the unknowns are Umj and p." The scheme first suggested by Israeli :i
[9,101 is:

U2 _ U2
U .- U .=p .-m+1,) n, m~j p # in+1,j

with the unknowns Um+, -j and p ,- The scheme is centered about m+ -1
2 ,)* 2

and is second order. This approach was subsequently used by Rubin and

Reddy [8] and Reddy and Rubin 14).

In addition, one may stagger the velocity V with respect to the

other variables as shown in Fig. 3, where the centering points of the

different difference equations are also plotted. The differential equa-

tions are approximated by central second-order approximations whenever

needed averaging was used as is usually done for staggered grids.

Numerical experiments with a first order computer code show that

the solution after one marching sweep is not close to the final solution

of the PNS equations when the initial pressure field is constructed

using the boundary layer assumption py 0. Since the px term is
yx

forward differenced, some global iterations over the whole solution

domain should be performed in order to converge the explicit contribu-

tion to this pressure terin. The simplest global iterative technique to

solve the equations is by multiple marching sweeps with the primitive

equations where only the pressure field is kept from iteration to itera-

tion Il]. Numerical experinents also show that for certain nets this

procedure diverges. The divergence occurs also for the linearized ver-

sion of Eqs. (2.1) -(2.3). Figure 1 presents the residual of the pressure

field as a function of the global iteration's sweep number for a 21x 11

field. A jump is encountered every 10 iterations (probably related to

the arrival of the boundary pressure pulse traveling at the numerical
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scheme speed) leading to ultimate divergence. However convergence was

reported with different mesh and boundary conditions and also when

combining the above procedure with a multigrid technique [4]. It was

thought that the replacement of one of the momentum equations by the

Poisson equation for the pressure will improve the convergence rate, but

the solution did not satisfy the replaced momentum equation. A success-

ful implementation of the marching technique is derived in the next

section. A short and reduced version of the analysis was presented first

in 13].

4. A MULTI-GRID ALGORITHM

The Multi-Grid technique is a numerical strategy for substantially

improving the convergence rate of an iterative procedure. In order to

facilitate comparison with theory, the accomodative C-cycle MG algorithm

was chosen.

Each MG process consists of three basic parts: relaxation, restric-

tion, and interpolation [5].

The Relaxation Scheme

The overall convergence rate of any MG process is greatly influenc-

ed by the smoothing properties of the relaxation scheme. It can be shown

analytically and experimentally that the usual multiple sweep marching

[l] does not have good convergence and smoothing properties because short

wave errors are not efficiently smoothed. Israeli and Lin [3] showed

that certain modifications in the streamwise momentum equation, which

vanish upon convergence, give rise to an iterative scheme which is equi-

valent, in the linear case, to the SLOR method for one Poisson equation.

In the general nonlinear case the modified iterative process is essential-

ly equivalent to the relaxation of a single nonlinear Poisson-like equa-

tion for the pressure. The velocities can be viewed as auxiliary vari-

ables needed during the marching since they have no "memory" by them-

selves.

Furthermore, we have automatically gained the good smoothing

properties of the line relaxation scheme of a single Poisson equation.

The problems associated with the loss of ellipticity of the difference

* Some of the elements of the present approach were used indcpendently by

Rubin and Fe ldy [8]. Detailed comparisons cannot be made because converq-

ence rate!; and storage estimates were not presented there. g.



* *~.. ~- - .~. * s.--------..... ....

approximation for the Navier-Stokec c itlons at high Reynolds nu-.ber

%' [5] are thus avoided and no upstrea--weihti.ng or artificial viscosity

- are required. There results a considerable saving in storage, as well
p as a simpler relaxation scheme (compare to the distributive relaxation

[5]) where the convergence rate is essentially independent of the

Reynolds number. We note that the same marching algorithm can thus be

used for the (subsonic) Euler equation with the same favorable converg-

ence rate. (For supersonic flows the marching method is non iterative.)

A part of the analysis of [3] is repeated here to motivate the

later extensions to three-dimensional and compressible flows. We start

with the PNS equations (2.1)-(2.3) and linearize them about a constant

state. We also introduce

Em (Uf) + - (4.1)ax ay - Re a-2

where U and V are constant reference velocities. The next step is

to discretize the equations only in the x direction to obtain:

U -U
+ (V) =0 (4.2)

Ax y m

Pm+ 1-m
D(U ) = - (4.3)

m Ax

D(V = -(P (4.4)
m y m

where U , V and P are functions of y. Here D(f ) is the semi
m m m m

discretized form of L(f) at the marching station m. The semi -

discretized system should be discretized also in the y direction before

solution is attempted, but since the specific form of this discretization

is not important for the following argument, we postpone this step for

the sake of transparency.

k k y ar
The marching iterative proceiure assumes that U(Y), V() are

k-l
known as well as P for m = 2,3,4.... M, where k is the current

m
iteration index. Therefore, the r hnnc : .Yc-me for m , 2 is:

Uk Uk
+-i 4(V) =(0 4.5)

Ax ym

pk-lp k

M l m (4 .(C)

%

l-b %)=



D(Vk) = _(pk) (4.
m y

We now apply D to Eq. (4.5) and differentiate Eq. (4.7) with 44

respect to y. Elimination of the V terms between Eqs. (4.5) and

(4.7) gives:

k k k
D(Um - U )=-(P ) Ax (4.8)

r in yy m

Now by substitution of Eq. (4.6) into Eq. (4.8) we get:

pk-i _ k _ k-i + pk + Ax2 k 0 • (4.9)

m+l m M -i (Pyy m

:."i

It follows that the marching scheme for the primitive system (4.2)-(4.4)

can be viewed as a line iterative scheme for the semi-discretized Laplace

equation; indeed upon convergence Eq. (4.9) will become:

Pm+i- 2Pm+Pm-1
l + (P ) =0 (4.10)

Ax2  yy m

In order to find out the rate of convergence of Eq. (4.9) to the final

state (4.10),we Fourier transform Eq. (4.9) in y assuming appropriate

boundary conditions in that direction:
I nyI

pk = e ny , pk- = Z e y (4.11)
mi m m

2
where I = -I and n is the Fourier wave number. After substituting

these definitions into Eq. (4.9) we get:

.22-
Zl - m - + Zm - Axn2Z 0. (4.12)

Transforming in the x direction we define again

Z = Ae ex (4.13)

where 0 is the wave number in the x direction. By substitution of

this definition into Eq. (4.12) we get:

,A, 1-e 
(4.14)

T 14Ax2 n2 e 10o "

This means that all the long waves (with small tAx n2 in the cross flow
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direction are only weakly damped irrespective of their structure in the

marching direction. In particular the n= 0 modes which exist for
derivative boundary conditions in the cross flow direction are not

affected at all by the relaxation, i.e.,

AV

On the other hand, the well known SLR scheme for the Poisson equation

gives (after the same Fourier transformations):

z -(2+ x n2)Z +Z O (4.15)
m+l m m-1

and

I i1 1 ; q =2 + xn 2 > 2 (4.16)

q-e

and also

A 12 2 (4.17)
q +l-2qcose

This quantity is less than 1 for all acceptable q's and cose < i.

Most waves are strongly damped, and only the longest waves in both direc-

tions are weakly damped by the iteration. This behavior was used to

accelerate the convergence as is done by the SLOR technique, Chebychev

acceleration, or Multi-Grid method.

The question is how to generate an equivalent relaxation scheme

for the primitive system in the marching form. This means that we may

add terms which can be evaluated during the marching process but should

vanish upon convergence.

A rational approach to the construction of the relaxation scheme

is to retrace backwards the steps of the derivation of the discrete

Laplace equation from the discrete primitive equations. We start from

the SLOR equation (4.15):

-2 -2- %4.
Z 2Z + Z Ax nZ 9,m+l m m-1 m

which we inverse Fourier transform with respect to y to get:

k-l k k 2(k
]p - 2P + p - ~-Ax(P )m*l - m m-i yy m

*It was pointed out by J. South that (4.3) can be viewed as an over-

relaxed version ot (4.10) with an over-relaxation factor: Q = 2 which

is not a gooA ohoice for Q.

% % % % *"



Now, we substitute Eq. (4.8) for the riuht hand side' of the Iast equa-

tion to get:

k-i k k = 1XD(Uk U k
m+ - 2 + -i -i it

which can be written as:

k-i k k-i ('-1 rk --xO
(P k- - P ) +(P -P V -P k =xD(U -U);
m+l m M m m m-1 r-i m

adding the equations from m =2 and using the linear form of D we get:

- k-i k m k-
-mp l-P )- i=(p. -P)(p -P P) =AxD(Um -U)'
rn+l ) in *' 2 1 in 1

but from Eq. (4.3):

, Pk- _ = -AxD(U) ; (4.18)
2 1 1

therefore, we get for m > 2

k-i1 k
P -~lP m I m k-

D(Um+l m k (pki pk (4.19)(Un)= Ax Ax i=2

Eq. (4.19) contains all the modifications required in order to

convert the iteration scheme of (4.5)-(4.7) into a scheme equivalent to

the SLOR scheme for one Laplace equation with "over-relaxation" factor

= . We see that in this approach only the x momentum equation is

modified. The new added term can be generated easily during the

marching process and is inexpensive in storage (one extra line vector)

and computation (one substruction per grid point). In what follows we

will derive Eq. (4.19) in a more general way and introduce the over-

relaxation parameter n > 1.

In practice we will use difference approximations and boundary

conditions also in the y direction, and the resulting scheme may not be

amenable to the discrete analogue of the Fourier transform. It is

therefore worthwhile to generalize the previous approach by using the

matrix finite difference formulation.

Let the vectors U , V , P contain the N values of the cor-
m m m

responding variables on the m-th line (x = constant) of the marching

sweep (including the specified boundary values). The 1!-momentum

*~~~~~. P.. .'%~.~.V'.



equation (1.5) can be written in the form:

P - P = -AxD(U) = R . (4.20)
m+l m m mi

On the other hand elimination of V between the continuity and thein|

V-momentum equations will result in:

FP = R - R (4.21) %

where F = Ax 21 i . Substructing successively u-momentum equations

(4.20) and using Eq. (4.21) gives:

P - (2I+ F)P +P =0, m =3,4,... (4.22)
m+l m r-i

which is Laplace's equation. The first equation of (4.20) can be used

as a derivative condition at the left (inlet) boundary, namely:

P 3- p2= R 2 (4.23)

We now apply the SLOR scheme to the last two equations (ignoring

temporarily the downstream boundary condition) to get the downstream

marching form:

*P - = R2  (4.24)2 +  3 2 -

p(k) (21 + F)P + P 0, m 3,4,... (4.25)
m-i m m+l 0,..

whr (k) p+(lf)p(k-i) ,
where P W QP + (-MP ( is the overrelaxation factor, and

m m i,
the superscript. denotes the iteration sweep number. In order to recover

the primitive variable formulation, we relate the velocity field in Eq.

(4.21) to the starred pressure field, i.e.,

FP =R -R (4.26)
m m rm-i

Substitution in Eq. (4.25) gives:

(k (M-1) "
p(k) - 2P + P R - Rm , m = 3,4,... (4.27)

rn-i m in+i i rn-i'

Successive summations of Eqs. (4.24) and (4.25) give:

P(k-1) - P + S , m 2,3,4 .... (4.28)

m+l m m m-

2.i ? ri..?..i : :... .....;:../:..2.......:.v. ",?. . .



which is the primitive variabic marchinq fcrr of the u-mumernt.- eqa:1o:..

The source term S in Eq. (4.26) ratisfles:rn

* (k-I) ( _I  (k)), m = . .. ( )

S = S - (P - P )+ Fl - P m- 3 ,4,... (4.2 9m rn-I m m "ni n-

with S = 0. It can be seen that S vanishes upon converence The

computational form of (4.28) for m = 3,4,... is:

-2P R + S (4.30)m m m

= (k-l) + (k) - * (4.31)
S m-i m+l rn-i m-l 2 2 3

Thus, the theory of overrelaxation can be applied exactly to the

constant coefficient case of system (2.8)-(2.10). For the non-linear

case this theory can serve as a guide to the choice of Q. Alternately,

one can choose Q = 1 and apply the Multi-Grid procedure.

Restriction and Storage Requirements

Let the finite difference approximation of equations (2.1)-(2.3)

on the finest grid M be represented as in [53:

Lw(x) F.(x) (4.32)J J

where x = (x,y), = [U,VM,PM3 is the exact solution of the dif-

ference equations, and j is the number of the differential equation,

j = 1,2,3.

The problem is transferred from the current level k to a coarser

level k-i, see Fig. 4, by correcting the right hand side of (4.32)

k-i - k-lik-lk k-i tk kkFk-lx) = i( v' . IFk(x) - L (x)] (4.33)j j j,k j,k "  j 3

in the Full Approximation Storage (FAS) mode. wk(x) is an approximation
- ik-I -k-1

to W(x) in the finer level. ,k and I are proper restriction

operators for equation j.

The term in square bracket in equation (4.33) is the residual of the

j-th equation. For the present marching scheme there is no residual in

the continuity and in the y-momentum equations since they are solved

exactly in each step. The residual of the x-momentum equation results

"%
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only from thE streamwise pressure cradient terr, ann its computataon neEZn %

only one !ubstraction. . was chosen to nc linear interpoKat2o:
,k k-I -k -

which yields for the continuity eo Jaton: L (I-w kx)) = 0. - '

j = 1,2 is computed by averaginq in both the x and y directions.
k- i

I is a simple injection.
3,k

In summary, equation (4.33) takes the following terms:

k-i
F (x) = 01

k-i W L k-l (k-lk k-I k_ k-kF=x (I2k w(x)) + I2,(F -Lw(x))
2 2 2,k 2,1k 2 2

k-i x k-i -k-l-k
F W= L (Iw (x))

33 3,k

Two consequences should be emphasized:

(a) Only two corrections (F (x), F (x)) have to be computed and

stored.

(b) All the dependent variables must be transferred in order to compute
k-i -k-l-k -

the corrections (L. (I w (x)), j = 2,3). Since only the pressure
j j'k

is stored, these corrections must be computed during the marching

process.

It follows that in addition to the pressure on all grids, one has

to save one correction term for each momentum equation on the coarser

grids. Assuming N computational points on the finest grid, a simple-

minded estimate gives 35N/7 storage locations for the three-dimensional

NS Multi-Grid solution, and 11N/7 for the PNS marching MG solution.

For the two-dimensional case the corresponding figures are 14N/3 and

6N/3.

Interpolation

Since the present marching scheme generates the velocity field from

the pressure, only the correction to the pressure must be interpolated

back to the fine grid.
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5. GENERAL' r IONS

In orner to generalize the prcceding approach we note that the

essence of the relaxation procedure is thE replacement of *'! te!.--

'.x3P/Sx by the marching difference form:

Ax -(21 + ) (.x n

where S iE already known. If (5.1) is differenced it will (using

the definition of S ) give rise tom
* * - _ k- "* p ,

2(P - P + S - =- (P 2P + P
m M-1 m M-i m+l m m-i

Thus, the correct successive line over relaxation form is implicitly

obtained for the second derivative of the pressure in the marching

direction. (It should be emphasized again that the second order elliptic

equation for the pressure is neither derived nor used in the algorithm

itself.)

The implication of the present technique is: if it is known that

the equations can be manipulated so that some variable will satisfy

approximately a second order elliptic equation, we should use the replace-

ment (5.1) for the derivative of that variable in the main flow direction.

An efficient marching scheme will thus be generated.

The present version of the algorithm will be applied to the sb-

sonic compressible multi-dimensional Navier-Stoke's equations. Several

particular cases will be examined.

The first step is the derivation of an elliptic equation starting

with:

V ,V Vp + ". + V(7-V)

where V is the velocity vector. In addition we w;ii reauire 1he eaa-

tion of state of a perfect gas

p = pRT

and the continuity equation in the form

It follows from (5.3) tLat '-

:%1
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and therefore

"-Vp = RTV'Z[n + FRVT 1 .. t. t .ep

(l.o.t. st,,ds for lower ordei terms)

Also

V. V.VV) = (v) (V-V) + l.o.t. = -(VV) kn;, .e.t. (5..)

Taking the divergence of (5.2) ard u!-ina (.6) and (5 .7) we get

- 2 2 -) \'(V7);np = RTV no + R7-T - - 7-7-V) + l.o.t. (5.F)
3

Several special cases follow:

1) Incompressible case. Here V"V = 0, and we get directly (taking the

divergence of (5.2)):

72p = l.o.t.; (5.9)

thus the gradient tern was differentiated once and the replacement

('..l) should apply in two or thrne dimensions. 1n the later case

we have to compute simultaneously all the variables in the marching

plane, m, and so we aet a successive plane overrelaxation scheme.

It is possible that an alternating direction scheme can be used to

solve the coupled system in the mth plane, but a mflti-grid

approach seems to be preferaile. At the present time numerical

results for the three dimensional case are not available.

2) Isthermal case. We get

a2* .(VV Y Ln: = - .'tn' + l.o.t. -* x'.t.

Y

whert a2 
- ]RT is the a alat: speed of sound, y is the ratic

of specif.;c heats, and v... s the vi scoufr term to be d- scussed

later.

.3. c, rtropl case. Here, (Y-1)7 i nr = ' .T and Ce :e

(V'V)'Zn: = a'-2-n : - l.c .t. _ v.t.

4) -crtant s acration enIth c .'. e , c = a ' wc (.c

+C. ^

.5In. ali tn< ,:ompresr i. ~e ( A.ser (', -r!..e! the rcr u~n'n " [.,a: e :
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V V

n, arears inl th forrm:

.P. 1-M~ ) I +~ =othier term-,..

Af ttr the parabolization of the viscous term-, o tyhe lcf! haxd, Fadre

1--F a Eecond derivative of p) in tE !7tr~ amwi sE directi~on.

*Spec if edily vVtV is repAace.i lt

Tn s term cannot become larae ~~ tne pressure does7 not havc larqe

craJiernts in the b)oundary layer.

w ~e arcie that If our iterati o:. is- arcoriatc fo.- the p eC:Jaticn,

it w-11 bp a cood scheme overall.%

Uo qct a successive l.ire (or t i ev'er relaxoticor. s ::crme, al] wt

havc to do is replace all the occ-urrE ro:es of - wit" h -arc<'n 'p

(5.1). Al:l the properties of 2Irotiun 4 w-1- L- li ~m-a cI:a

in fact, better ccrivey~ence can be expecct ed~ as M arc

srethe qu.antity q of (4.1(;) will2 become row 2 .xr'- ) I

(Only owill have- memnory and- must I'e globally savez! andl oa te E- 6 Ir :

teration procedure. D will also transmit tne downsrream 7 rr7o

and mast be sefied there.

ror transoni c flows a cos~vto.form F pre %'r,.e( and 7

M( Ic I? --. '-'T-rier.t to work w-ti. z rathe1r than Ar:..A ~r~
car be derive-' for C.. ut (-,.re ma,,st be, ta e,, to) F~c itt:7vE,'

an ~ hoId not bF r-,ci 1 f the r.!> 4  oCoerwI :W ,: Ir

wUl, ia 1 e over,r,,cif i-d . du. e r f,),- -;Ic the, ter

cs-retizedl as

srU.AY P
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(p U2 - P U2 _)-m M--I m-

however, at the station m we should compute the U, velocities coupled

with the pM-1 densities. The approach of Reddy and Rubin 112] where the

pressure is specified both at inflow and at outflow is inconsistent unless

one happens to know the right pressures before the computation. The

inconsistency and consequent error can be easily demonstrated by one-

dimensional examples. 
P

6. RESULTS

In order to check the MG algorithm, we choose the following analytic-

al solution. It satisfies the continuity equation but gives rise to

source terms in the momentum equations:

U = A + (x+y) m; V = -(x+y) m; P = -(El+E2)(x+y) m  (6.1)

where a and b from equations (3) are defined by:

a = El + F(x+y) ; b = E2 - F(x+y)n  (6.2)

and El = 1; E2 = .2; F .2; A = 5; Re = 1000; m = 4; n = 2. The

coarsest grid consists of 4 x 4 intervals.

Figure 5 compares the MG convergence history of different relaxation

schemes. In the MG solutions three levels were involved (M=3). The

horizontal coordinate gives the number of Work Units (WU), where each

work unit is equivalent to one global iteration on the finest grid. The

vertical coordinate gives the logarithm of the dynamic residual c. The

dots show the solution of the equivalent Poisson equation (with the same

solution for the pressure but with Dirichlet condition over all the

boundaries). The linearized PNS equations were solved with and without

the streamwise pressure gradient correction of [3). The corresponding

(17 x 17 points) single grid convergence history is plotted for compar-

ison (for the case of 9 1). The corrected discrete equations and

the Poisson equation exhibit very similar convergence whereas the conver-

gence of the unmodified equations is much worse. Upon increasing the

number of grids in the unmodified equations, the convergence deteriorates.

The Reynolds number independence of the scheme is demonstrated in

Figure 6, where the convergence history is presented for Reynolds numbers

1, 103 and infinity.

In order to check the non-linear version of the code, several test

r, - '.' ,- , p,/, % f, f %. .. % . %*, %**• * ,***.,% . % ...



cases were run; the info,:recl flow o\,CI a flat _-,tIe flow

alonc an axisymmnetric Cylinder, ertrance flow bct-wecn two f]a, plates,

and the flow behind the trailinc: edoe of a flat plate. In all cases

good agreement was obtained wit, known solutions. The details will be

presented elsewhere. Here we show (Fiqure 7) tie converqence history

for a flow over a flat plate with uniorm upstream profile and Neumann

condition for the pressure at the exit. W;.ile the nurther cf levels is

varied, the finest grid remains the same anc consists of 6S > (-5 points.

In FiJiure 8 there is a comparison between the present results for the

flow near the trailing edge of a flat plate and the results of refer-

ence [11]. The skin friction coefficient CF is shown for z < 1 while

the center line velocity UC is showr, for z > 1. The trailing edge is

at z=l.

AZKNCOWLEDGE.IENT

This research was supported by the AFOSR under grant No. F49620-SS-

C-0064, by the Shiftung Volkswaqenwerke, and by NASA under contract No.

NASl-17070 while the author was in residence at ICASE, NASA Lancley

Research Center.

-p.'

N A

% %V

~p%* % 1 .. .



RE FE RFt: CES

El) Rubin, S.G., (1982), "Incompressible NS and PNS Solution Proced-
ures and Computational Techniques," Von Karman Inst. Lecture Notes.

[2] Israeli, M., Reitman, V., Salomon, S. and Wolfshtein, Y.. (1981),
"On the Marching Solution of the Elliptic Equations in Viscous Fluid
Mechanics," Proc. of 2nd Int. Conf. on Numerical Methods in
Laminar and Turbulent Flows, C. Taylor et al. editors, Venice.

[3) Israeli, M. and Lin, A. (1982), "Numerical Solution and boundary
Conditions for Boundary Layer Like Flows," 8th IDN.IFD, Aachen,
West Germany, Springer-Verlag, pp. 266-272.

[4] Reddy, D.R. and Rubin,S.G. (19P4), S'-bsonic/Tran.sonic. Viscous/
Inviscid Relaxation Procedures for Strong Pressure Interactions.
AIAA 17th Fluid Dynamics Conference, Snowinass, Colorado.

[5] Brandt, A. and Dinar, 1,.,(1979), Multigrid Solution to Elliptic
Flow Problems, Numerical Methods for PDE's, Academic Press,

pp. 53-147.

[6) Israeli, M. (1982), NASA Lewis Seminar, Iuly 1982.

[7] Rosenfeld, M. (1983), An Investigation of the Hierarchy of
Approximations to the Multi-Dimensional Incompressible Navler-
Stokes Equations, thesis proposal, Technion, Haifa.

[8 Rabin, S.G. and Reddy, D.P. 11%83), "Analysis of Global P.eare
Relaxation for Flows with Stronq Interaction and Scpara:ic,."

Int. J. of Computers and Fluids, 11, 4, pp. 281-306.

[9] abin, S.G. and Lin, A. (1980), "Marchina with the TaratjI;zed
Navier-Stokes Equations," !sr. J. of Tech., 2E,.

110] Israeli, I. and Rosenfeld, M. (1983) , "Marching Multzarid C1utI

to the Parabolized Navier-Stokes (and Thin Layer) Ecaations,

5th GA1,-N Conf. on Num. Fluid Dynamics, Rome.

[11] Veldman, A.E.P., (1981), New, Quasi-Simultaneous Me.hod to

Calculate interactin,' Bcundary Layers, AIAA J., 19, pp. 79-E5.

..

00



20 -

:%

.- .
MAX "

'

. .... i . ..

any two of (u,v,p) (a

B Qfl to-.'uvP

UPSTREAM DOWNSTREAM

any two of (u,v,p) only (p) -.

A D
any two of (uv,p)

F rI

Figure 2: Example of Permissible Boundary Conditons.,

I
':'" la %,. .,. - .- ".".b' ., " " - ".'.'.,, ,-",, .- "# -% . '. " ."." , .. ". • " - - ,," . "' ,-,-""-- , .L: 

I



215

M-1 M+.

V VY r

PU 0 Cotniy 0XMmnu

P Pu Pu© V _ _

r PI

Figure Rela ie aceme of agribes ontwr ucesiedrds.



'C

M=3

log 6 o Single Grid With Correction
3 - + PNS Without Correction

2+ ++ + x PNS W ith Correction2-%0

Ok o o + •Equivalent Poisson
+° 000000 0000 0"t" "t + 4 -4 o

+ + 4-

00

"- -2 + + +
J+- 3, X'"

- 4 ++ + +

-5 t +

- 6I I I I I I I
0 10 20 30 40 50 60 70 80

wu

Figure 5: Convergence history for different relaxation schemes (M = 3).
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Figure 6: Convergence history for several Reynolds numbers (M =3).
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