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MARCHING ITERATIVE METHODS
FOR THE PARABOLIZED AND THIN LAYER NAVIER-STOKES EQUATIONS

3
A
Moshe Israeli
: Technion - Israel Institute of Technology, Haifa (Israel)

Abstract

Downstream marching iterative schemes for the solution of the
Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are
described. Modifications of the primitive equation global relaxation

sweep procedure result in efficient second-order marching schemes.
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These schemes take full account of the reduced order of the approximate

equations as they behave like the SLOR for a single elliptic equation, ;
The improved smoothing properties permit the introduction of Multi-Grid i
acceleration, The proposed algorithm is essentially Reynolds number &
independent and therefore can be applied to the solution of the subsonic §
Euler equations. The convergence rates are similar to those obtalned by g
A
the Multi-Grid solution of a single elliptic equation; the storage is i
also comparable as 6n1y the pressure has to be stored on all levels.
Extensions to three-dimensional and compressible subsonic flows are
discussed. Numerical results are presented. ¢ N 'W..,j. ) ~
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1. INTRODUCTION

Considerable evidence accumulated recently about the applicability
of the Parabolized Navier-Stokes equations for high Reynolds number flows
with a principal flow direction; see Rubin [l]). The PNS equations are
obtained by neglecting the streamwise viscous terms in the Navier-Stokes
(NS) equations. When the viscous terms in the circumferential direction

are also rneglected, one gets the Thin Layer cpproximation.

The steady PNS equations still have an elliptic nature, and there-
fore the initial value problem in the marching divection is not well
posed [2]. A well posed initial-boundary value problem can be formulat-
ed by specifying (for example) upstream and side conditions for the
velocities and one downstream condition for the pressure. This coupled
system of partial differential equations behaves like a single elliptic
equation for the pressure. Therefore the PNS equations must be solved
globally and cannot be solved by a single sweep marching. The reduced
order of the PNS equation can be exploited by constructing an iterative
marching method for updating the pressure field only. Such a multiple
sweep iteration method has the advantage that the velocity fields are
generated durihg the marching process and only the pressure field has to
be stored from sweep to sweep. A considerable saving in storage results.
However, simple minded marching does not result in good convergence
properties and sometimes diverges. For the two-dimensional incompres-
sible case, Israeli and Lin [3]) devised a stable marching scheme that
behaves like the Successive Line Over Relaxation (SLOR) method for a
single elliptic equation. The good smoothing properties of the above
mentioned scheme can be used in a Multi~Grid (MG) framework in order to
accelerate the convergence of the solution of the PNS (or TL) equations.
The marching scheme is implemented using a new stable algorithm which is
second order also in the marching direction. The same method can be
used without modification for the subsonic Euler equations as the effect
of the Reynolds number on the convergence rate is insignificant. 1In two
dimensions the PNS and TL equations are identical and therefore the same

anaiysis applies to both.
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It turns out that the extension to three-dimensions is conceptually
simple; but the resulting algorithm, a successive plane over relaxation,
is complicated by the requirement of the simultaneous solution of the
equations in planes perpendicular to the marching direction. This

problem can be alleviated by splitting of the equation of continuity

from the momentum equations.

The extension of the method to compressible flows is conceptually
) non trivial. The original iterative method is based on the concept
. that the convergence relies on the implicit relaxation of a single
quantity, the pressure, which approximately satisfies a single elliptic
equation. In the compressible case a viable approach is to eliminate
the pressure and to derive an equation for 5, the logarithm of the

density. It can be shown that p satisfies approximately equation (1.1),

2.~ ~ X
(1 M )pss + Pon o, (1.1)

AR
o5 Y

where M 1is the Mach number and s and n are coordinates along and

BN

o

perpendicular to the flow direction. Although this equation is never
derived or used in the algorithm, it reveals the fact that for M < 1l

the upstream influence is transmitted through the quantity ;, and

o 4

AT

.

therefore only this quantity should be stored or updated. The flow of
information should be downstream for the velocity and temperature and
upstream for the density, and the difference scheme must be built

accordingly. For supersonic flows the flow of information should be t
only downstream and the marching method is non-iterative. For super- '?
sonic flows with imbedded subsonic regions, the iterative method should
d be used, combined with an appropriate switching at shock waves and sonic o

lines. N

It should be pointed out here that the present approach is very
different conceptually from that of Reddy and Rubin [4]. Although they
used our idea (Israeli [6]) of back shifting the pressure, one full mesh
distance, with respect to the velocity for incompressible flows, their

generalization to compressible flows is a Mach number dependent shift
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which vanishes for M > 1. This smooth transition from subsonic to

supersonic flows is questionable since the change of type of equation
(1.1) 1s sudden, at M = 1, 1Indeed, only our full shift is used in their

papers and properly results in a conservative scheme across a shock.,

Another question raised by the above mentioned paper is that of the
distinction between the pressure which uses downstream data and the
density which uses upstream data. This obscures the issue of the direc-
tion of flow of information and proper location of boundary conditions.
This approach should result in inconsistency of boundary data and may

eventually lead to ill posedness and divergence.

In the next sections we will summarize our previous theoretical
results, present some new numerical results and the extensions to 3-D

and compressible flows.

2. FORMULATION FOR THE INCOMPRESSIBLE CASE

For simplicity we will consider initially the case of the steady,
incompressible, and two-dimensional PNS (or TL) equations in cartesian

coordinates [x;y):

Ux + Vy =0 (2.1)
2
(v )x + (uv)y = -Px + Uyy/Re (2.2)
2
uv) + (v =-P +V /R .
( )x ( )y v yy/ e (2.3)

where x 1is the mainstream direction, Re is the Reynolds number. U
and V are the nondimensional velocity components in the x and y

direction, respectively. P is the nondimensional pressure.

The two-dimensional NS equations are elliptic of order four ~ Brandt
and Dinar [5]. The PNS are elliptic only of order two like the Poisson
equation (the mathematical nature of several two-dimensional and three-
dimensional approximations to the Navier-Stokes equations was analyzed
in (7}]). This ellipticity is due to the pressure gradient terms via
the continuity equation. A well posed problem can be formulated by
defining the boundary conditions as described in Fig. 2. The following

Dirichlet conditions may be specified:
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* upstream boundary (AB): . U= V., ¢ V= vin (2.4) E
-
» i . = . = )
at a solid wall (AD): U Uwall' V=V (2.5) bﬁ
* at the outer boundary (BC): U = Uout i V= vout (2.6) NS
* at the downstream boundary (CD): P = pdown' (2.7)

Other boundary conditions can be used, but the same number of conditions

V2SN

on each boundary must be kept.

In order to separate linear and non linear effects, some of the
convergence tests were performed with the following linear version of

equations (2.1)-(2.3):

U +v = 0 (2.8)
x 4
(ayl) + (bU) = -P + U _ /Re (2.9)
x % X YY .
(aV) + (bv) = -P + V_/Re (2.10)
x y Y Yy

where a and b are known functions of x and Y.

3. DISCRETIZATION AND MARCHING

Numerical solutions of Eqs. (2.1)-~(2.3) are obtained by spreading
a grid over the computational domain. Let us assume that the grid points

are distributed evenly along the x and y coordinates with the spac-

ing Ax and Ay respectively. When differencing these equations it

s

PRl
o a8 4 o

b should be remembered that their nature should be reflected {1l,B] in

L)

RIS

v %
ros

{ the finite difference approximation. 1In order to be consistent with the

’

Ak
. .. .
Ak, Amcmon

boundary layer (parabolic) nature of the flow, the axial gradients of
the velocities should be computed using only upstream values, while the
elliptic nature is preserved by forward differencing the axial pressure

gradient [1,8,9). Conseqguently, it was assumed that a stable marching

scheme must be of the first order in the marching direction. 1t turns
out that this effect can be achieved by a judicious choice of the place-

ment of the variables to be solved at each station. The choice can be

explained most easily by taking V = 0 and " 0 in Eq. (2.2) for U, ]

~,‘

yielding . "
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Ux = px
A first order difference scheme then becomes

2 2
Um,j - Um—l,j = pm,j - Pm+1,j;

the unknowns are Um 3 and 3" The scheme first suggested by Israeli
’ [

[9,10] is:
2 _ UZ - _
m+l,3 m,J pm:j m+l,)

with the unknowns U and p 5 The scheme is centered about m+—%

m+l, 3
and is second order. This approach was subsequently used by Rubin and

Reddy [8) and Reddy and Rubin [4].

In addition, one may stagger the velocity V with respect to the
other variables as shown in Fig. 3, where the centering points of the
different difference equations are also plotted. The differential equa-
tions are approximated by central second-order approximations whenever

needed averaging was used as is usually done for staggered grids.

Numerical experiments with a first order computer code show that
the solution after one marching sweep is not close to the final solution
of the PNS equations when the initial pressure field is constructed
using the boundary layer assumption py = 0. Since the P, term is
forward differenced, some global iterations over the whole solution
domain should be performed in order to converge the explicit contribu-
tion to this pressure term. The simplest global iterative technique to
solve the eguations is by multiple marching sweeps with the primitive
equations where only the pressure fiecld is kept from iteration to itera-
tion [1). Numerical experirments also show that for certain nets this
procedure diverges. The divergence occurs also for the linearized ver-
sion of Eqs. (2.1) - (2.3). Figure 1 presents the residual of the pressure
field as a function of the global iteration's sweep number for a 21x 11
field. A jump is encountered every 10 iterations (probably related to

the arrival of the boundary pressure pulse traveling at the numerical
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scheme speed) leading to ultimate divergence. Howevexr convergence was
reported with different mesh and boundary conditions and also when
combining the above procedure with a multigrid technique [4]. 1t was
thought that the replacement of one of the momentum equations by the
Poisson equation for the pressure will improve the convergence rate, but
the solution did not satisfy the replaced momentum equation. A success-
ful implementation of the marching technique is derived in the next

section. A short and reduced version of the analysis was presented first

in [3).

4. A MULTI-GRID ALGORITHM

The Multi-Grid technique is a numerical strategy for substantially
improving the convergence rate of an iterative procedure. In order to
facilitate comparison with theory, the accomodative C-cycle MG algorithm

*
was chosen.

Each MG process consists of three basic parts: relaxation, restric-

tion, and interpolation [5].

The Relaxation Scheme

The overall convergence rate of any MG process is greatly influenc-
ed by the smoothing properties of the relaxation scheme. It can be shown
analytically and experimentally that the usual multiple sweep marching
[1)] does not have good convergence and smocthing properties because short
wave errors are not efficiently smoothed. 1Israeli and Lin {3] showed
that certain modifications in the streamwise momentum equation, which
vanish upon convergence, give rise to an iterative scheme which is equi-
valent, in the linear case, to the SLOR method for one Poisson equation.
In the general nonlinear case the modified iterative process is essential-
ly equivalent to the relaxation of a single nonlinear Poisson-like equa-
tion for the pressure. The velocities can be viewed as auxiliary vari-
ables needed during the marching since they have no "memory"” by them-
selves,

Furthermore, we have automatically gained the good smoothing
properties of the line relaxation scheme of a single Poisson equation.

The problems associated with the loss of ellipticity of the difference

* Some of the elements of the present approach were used independently by
Rubin and Reddy [8). Detailed comparisens cannot be made because converg-
ence rates and storage estimates were not presented there.
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approximation for the Navier-Stokes eguations at high Reynolds nurmber
{5] are thus avoided and no upstrear-wecachting or artificial viscosity
are required. There results a considerable saving in storage, as well
as a simpler relaxation scheme (compare to the distributive relaxation
[5)) where the convergence rate is esscntially independent of the
Reynolds number. We note that the same marching algorithm can thus be
used for the (subsonic) Euler equation with the same favorable converg-

ence rate. (For supersonic flows the marching method is non iterative.)

A part of the analysis of [3] is repeated here to motivate the
later extensions to three-dimensional and compressible flows. We start

with the PNS egquations (2.1)-(2.3) and linearize them about a constant

state. We also introduce

2
T(f) = = (@ 2w - L
L) = 52 (UH) + 5= (VE) - oo & f (4.1)

ay

where U and V are constant reference velocities. The next step is

:& to discretize the equations only in the x direction to obtain:

o

T

?: Um 1_Um

e - ——+ (V =0 .

> Ax ( y)m (4.2)

o Pm+l-Pm .

s D(Um) iy v (4.3)

o~

~

o D(V ) = -(P ) (4.4)
m y'm

. where U _, V and P are functions of y. Here D(f ) is the semi

;u: m m m m

;:, discretized form of L(f) at the rmarching station m. The semi -

"2

fu: discretized system should be discretized also in the y direction before

_'.""?:: LA

7

solution is attempted, but since the specific form of this discretization

is not Important for the following argument, we postpone this step for

hﬁ' the sake of trancsparency.

N

:"‘:.' ) X k

;J The marching iterative procedure assumes that Ul(y), Vl(y) are H

;“: known as well as Pk—l for m=2,3,4,... M, where Xk 1is the current

;:: iteration index. Therefore, the marchina o-heme for m 32 2 is: 1

Ny

&: X l-u; ;

% -2 T4 vy =0 (4.5) ]

D Lx y'm !

}'{il

A pK-1_ok 3

I)" k ‘

N oy = - -m»rl——m (4.¢)

o ™ X

n:- )
4
L

o
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m y'm

wWe now apply D to Eg. (4.5) and differentiate Eg. (4.7) with
respect to vy. Elimination of the V terms between Egs. (4.5) and

{(4.7) gives:
k k k .

D(U - U) ==(P ) Ax . (4.8)
m=1 m yy m

Now by substitution of Eg. (4.6) into Eq. (4.8) we get:

k- -
S L N L (4.9)
m+1 m m m-1 yy m

It follows that the marching scheme for the primitive system (4.2)-(4.4)

can be viewed as a line iterative scheme for the semi-discretized Laplace

equation; indeed upon convergence Eg. (4.9) will become:

P -2P +P
mtl m m-l - (4.10)

+ (P ) =0
Ax% yy' m

In order to find out the rate of convergence of Eg. (4.9) to the final
state (4.10), we Fourier transform Eg. (4.9) in y assuming appropriate

boundary conditions in that direction:

pX =z el W, pXl_ogl W (4.11)
n m m m .
where 12 = -1 and n 1is the Fourier wave number. After substituting

these definitions into Eg. {4.9) we get:

- - 2 2=
- Z - + - A = . 2
Z W Zn*t 2 x'n“2_ = 0. (4.12)

Transforming in the x direction we define again

_—_——

zZ = AeI ex (4.13)

where 0 is the wave number in the x direction. By substitution of

this definition into Eg. (4.12) we get:

-18 (4.14)

3 - =
14Ax n -e

2.2, .
This means that all the long waves (with small £&x n) in the cress flow
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direction are only weakly damped irrespective of their structure in the
marching direction. 1In particular the n=0 modes which exist for
derivative boundary conditions in the cross flow direction are not

affected at all by the relaxation, i.e.,

A
I;{l = 1.

On the other hand, the well known SLR scheme for the Poisson equation

gives (after the same Fourier transformations):

2 2 = =
- + =
2, - 2+8x"nNz +2 =0 (4.15)
and
A 1 2 2
|x1 = —Sgls =2+ 8x'n" 22 (4.16)
g-e
and also
22 - 5———. (4.17)
q +1-2gcosb

This quantity is less than 1 for all acceptable q's and cosf < 1.

Most waves are strongly damped, and only the longest waves in both direc-
tions are weakly damped by the iteration. This behavior was used to
accelerate the convergence as is done by the SLOR technique, Chebychev

acceleration, or Multi-Grid method.”

The question is how to generate an equivalent relaxation scheme
for the primitive system in the marching form. This means that we may
add terms which can be evaluated during the marching process but should

vanish upon convergence.

A rational approach to the construction of the relaxation scheme
is to retrace backwards the steps of the derivation of the discrete
Laplace equation from the discrete primitive equations. We start from

the SLOR equation (4.15):

- - 2 2-
Zm+1 - ZZm + zm-l = AxX'n Z

which we inverse Fourier transform with respect to y to get:

k-1 k k 2, k
mel 2Pm + Pm-l Ax (Pyy)m .

*It was pointed out by J. South that (4.,3) can be viewed as an over-
relaxed version ot (4.10) with an over-relaxation factor: Q =2 which
is not a good =hoice for A,
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- Now, we substitute Eq. (4.8) for the right hand side of the last egua-
ﬂ tion to get:

f“l

If"\'n

::' PRl opR L pR o koo - v

' o] m - mel !

L

ﬁ} which can be written as:

A

,\;

\

» k-1 k k-1 k k=1 k

- P+ - P )= - P =4 - ;

33 (gn+l m) \Pm m) (Pm m_1) XD(Uh—l Um),

}E adding the eqguations from m=2 and using the linear form of D we get:
-;:

k-1 k., _ ¢ k-1 .k k-1_ Kk

e - -P) - Tt-p)+ (P, - = -

- CANNES N ERDINCARES SR AR N BxD(U_ -U)),

i=2

- .

- but from Eq. (4.3):
ki

[d
G k-1 k _ k, .
;Fa P2 Pl = AxD(Ul), (4.18)
t:: therefore, we get for m > 2

e _
[ - PP 2 k-1 _k

~ = . ——— . = - . :

e, DU ) > i L (P P) (4.19)

i=2

3;

.E Eq. (4.19) contains all the modifications required in order to
i?f convert the iteration scheme of (4.5)-(4.7) into a scheme egquivalent to
..
. the SLOR scheme for one Laplace equation with "over-relaxation' factor
e =1, We see that in this approach only the x momentum equation is

[ 4

:: modified. The new added term can be generated easily during the

:: marching process and is inexpensive in storage (one extra line vector)
’~a

° and computation (one substruction per grid point). In what follows we
f? will derive Eq. (4.19) in a more general way and introduce the over-
?ﬂ: relaxation parameter @ > 1.

S;j In practice we will use difference approximations and boundary
7 conditions also in the y direction, and the resulting scheme may not be
) . ;
e amenable to the discrete analogue of the Fourier transform. It 1is
..
i;- therefore worthwhile to generalize the previous approach by using the
o matrix finite difference formulation.

5 Let the vectors U _, V , P contain the N values of the cor-
5\ m° m’ m

;: responding variables on the m-th 1linc (x = constant) of the marching
:; sweep (including the specified boundary values). The ['-momentum

'
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equation (1.5) can be written in the form:

pm+l - Pm = -AXD(Um) = Rm . (4.20)

On the other hand elimination of Vm between the continuity and the

V-momentum equations will result in:

=R - R

FPm m m-1 (4.21)
2. 3°

where F = Ax 1 —5 . Substructing successively u-momentum equations

y
(4.20) and usinga Eq. (4.21) gives:

- 2 = =
P, - (QI+F)P 4P, =0, m=3,4,... (4.22)

which is Laplace's equation. The first equation of (4.20) can be used

as a derivative condition at the left (inlet) boundary, namely:
P, - P, =R_ - (4.23)

We now apply the SLOR scheme to the last two equations (ignoring

temporarily the downstream boundary condition) to get the downstream

marching form:

* (k-1) _
—P2 + P3 = R2 (4.24)
(k) * (k-1) _ _
Pm-l ~ (21 + F)Pm + Pm+1 = 0, m=3,4,... (4.25)
* -
where P(k) = QPm + (1-Q)P;k l); 0 is the overrelaxation factor, and

the superscript denotes the iteration sweep number. In order to recover
the primitive variable formulation, we relate the velocity field in Eq.

(4.21) to the starred pressure field, i.e.,

*
FP_ = R - R . (4.206)
m m m-1
Substitution in Eqg. (4.25) gives:
* -
P(k) - 2P + P(k 1) =R - R ’ m= 3,4,... (4.27)
m-1 m m+l m m=-1
Successive summations of Eqs. (4.24) and (4.25) give!
- *
pk-1) _ p* L r 4+ s, m=2,3,4,... (4.28)

m+l m m m
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1z

which 1e the primitive variable marching forr of the u-momertur eguatio:..

The source term Sn in Eq. (4.28) satisf:es:

e * (k-1) > (k) - -
S TR A A B NS S PRSI DY PR (4.

to
\

]

with 82

computational form of (4.28) for m = 3,4,... is:

0. It can be seen that Sm vanishes upon convercgence The

*

-2P_ = R_+§ (4.30)
m m m

s _: (k-1) * (R) = _ ¢

S, = Suq " Ppyy 2P P i Ey=-P, - P, (4.31)

Thus, the theory of overrelaxation can be applied exactly to the
constant coefficient case of system (2.8)-(2.10). For the non-linear
case this theory can serve as a guide to the choice of Q. Alternately,

one can choose § = 1 and apply the Multi-Grid procedure.

Restriction and Storage Reguirements

", $.;‘\ ~ N ‘\-"\-' '-:"1-(,"1"-."-:’\' 's"r\‘ -

Let the finite difference approximation of equations (2.1}-(2.3)

on the finest grid M be represented as in [5]:

M = o (4.32)
3 J
~ ~ M Mt . . .
where x = (x,y), WM = {(U°,V ,PM]T is the exact solution of the dif-
ference equations, and j 1is the number of the differential eguation,

j=1,2,3.

The problem is transferred from the current level k to a coarser

level k-1, see Fig. 4, by correcting the right hand side of (4.32)

i
x
=

71 %)
j

i3 - LG (4.33)

' J

X)) o+ I,—i

R
L

. . . ~k ~ . . .
in the Full Approximation Storage (FAS) mode. w (x) is an approximation

~k - . - k- s
to wy(x) in the finer level. Ik 1 and I, . are proper restriction

. j.k J.k
operators for equation 3.
The term in square bracket in equation (4,33) is the residual of the
j~th equation. For the present marching scheme there is no residual in
the continuity and in the y-momentum equations since they are solved

exactly in each step. The recidual of the »-momentum eguation results
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!

only from the streamwise pressiure qradient term and 1ts computation neecs

. k- :
only cone substraction. Ij X was chosen to pe linear interpolatio:r.,
’

e . . . k=1 ~k~1-%K - L-l

witich ylelds for the continuity eguation: Ll (I1 }v (x)) = 0. .o
2 jl

j = 1,2 1s computed by ‘averaging in both the x and y directions.

k-1 . A .
1 1s a simple 1i1njection.

In summary, equation (4.33) takes the following terms:

F?"l(i) =0

k-1 B I S k- K-k -
F2 (x) = L2 (IZ,P (x)) + 12'\(F -Lzh (x))
k 1 k-1 k 1-k

3 (x) = L3 (1 3’kw (x)) -

Two consequences should be emphasized:

~1 - k-
(a) Only two corrections (F; 1(x), F3 1

(x)) have to be computed and
stored.

(b) All the dependent variables must be transferred in order to compute
the corrections (L§ l(I}J"l k(x)), j = 2,3). Since only the pressure

is stored, these corrections must be computed during the marching

process.

It follows that in addition to the pressure on all grids, one has
to save one correction term for each momentum eguation on the coarser
grids. Assuming N computational points on the finest grid, a simple-
minded estimate gives 358/7 storage locations for the three-dimensioneal
NS Multi-Grid solution, and 11IN/7 for the PNS marching MG solution.
For the two-dimensional case the corresponding figures are 14N/3 and

6N/3.

Interpolation

Since the present marching scheme generates the velocity field from
the pressure, only the correction to the pressure must be interpolated

back to the fine grid.
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5. GENERALIZATIONS
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In order to generalize the preceding approach we note that the

essence of the relaxation procedure is the replacement of the terr
+

3 4x3P/3x Dby the marching difference form:
I ) ‘
bx === =(2P_+ S ) (5.1)

where Sm ie already known. If (5.1) is differenced it will (using

AR

{ the gefinition of §m) give rise to

2(p - P ) + S - 3 = —(Pk-l - 7;* + Pk )
m m-1 m m-1 m+1 ““m m~1"

.<
LY AN
L

Thus, the correct successive line over relaxation form is implicitly 2
»

obtained for the second derivative of the pressure in the marching q:
N

direction. (It should be emphasized again that the second order elliptic \i
S
g

equation for the pressure is neither derived nor used in the algorithm

-y

; Al

itself.)

.
l.l!

)
PR R )

The implication of the present technique is: if it is known that

. .
¢
v e

the equations can be manipulated so that some variable will satisfy

approximately a second order elliptic equation, we should use the replace- i_
ment (5.1) for the derivative of that variable in the main flow direction. ;;
An efficient marching scheme will thus be generated. i;

The present version of the algorithm will be applied to the sub- Tl
sonic compressible multi-dimensional Navier-~Stoke's eguations. Several !ﬁ
particular cases will be examined. ;f

The first step is the derivation of an elliptic eguation starting

.
LN |
- .

H

with:

- - 1 - -
v-vv=-§ Up + VIV + 3 9(7-V) (5.2 :
' - . L. . }
where V 1is the velocity vector. 1In additicn we wiil reguire LlLe egua- v
tion of state of a perfect gas ‘
g
p = PRT (5.3) -
] C . . 2
i and the continuity eguation in the forn ©
; '
- - - . -
[ TV = -V-TVinp. (5.4) »
It follows from (5.3) that .
»
L
: L
] A
» ™~
y &
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Vp = RTVin, + EUT oo

1
a4
y

and thercfore
1 . .

V-S-Vp = RTV“Lnp + RV“T + l.o.t%. (L.6
(l.o.t. stands for lower order terms).
Also

Ve(velV) = (VeW)(VeV) + 1.0.t, = - (V-V)%knp+ 1.0, L. {(5.7)
Taking the divergence of (5.2) andé usinag (5.6) and (5.7) we get

AN 2 2 v L2 :

(V+9)"¢np = RTV %np + RT°T + T TT(UV) 4 Loo.t. (5.8)
Several special cases follow:

puy
Ll

1) Incompressible case. Here V+Vv = 0, and we get directly (taking the

divergence of (5.2)):
7’p = l.o.t.; (5.9)

thus the gradient term was differentiated once and the replacement

{5.1) should apply in two or three dimensions. In the later case

we have to compute simultaneously all the variables in the marching
plane, m, and so we get a successive plane overrelaxation scheme.
It 1s possible that an alternating direction scheme can be used to
solve the coupled systerm in the mth plane, but a multi-grid
approach seems to be preferatle. At the present time numerical
results for the three dimensional case are not availarle.

2) Isocthermal case. We get

LS

-~
8" &

(Ve¥)¢Lns — V4fne + l.o.t, o+ vl
Y

where a? = YRT is the adialat:i- speed of sound, vy is the rataic
of specific heats, ané v.t. 1s the viscous term to be discussed
later

3, lscrtropic case. Here, (v-1:"inr = UinT and therefore:

(Ve¥) Rz = a~*%

“) Cere vy D SR 2 SUPYE S 3 —,: _o.T N Y- e ey A1 N e
<) Ccnetant stagration centhalry.,  Hae, & = a - v ant owe ces
—= C < -
- g - ~

(Ve + (=109 (Tev) o0 = a0 oy » llo.t. + yv.t.

I, all the compressiltile cases crrenlered the prorinent bhalance o
O IJIJW’{(JJAI ( P A R TN S NS AR

'\ ‘ »IN.0%,) ™ \ " .A‘f.A\.P .ll\ ".l\'.n - ‘4\4-"\‘ s "-“

S
ROASCUAUIE SRR AT AT,



AR O

L LAAAAARAA N

Y

)

»

3

W ST

NN

R U N )

AN

A OERAN

sy T eV et ST WS T SO T ET] (ol A AR g Gl s e Wy - o Y
*®
i
(VeVYean, ZoatTting .
U 1 onl ostrean aligned conrdinates oo gt on. owe s
- . e
R A T LA
cS:
] ,h
s r* a4t
s e . ’
. 2 . l
K2 an-
therefore P in appedrs 1in the form:

o, BTp L @p
(-x7y B 4 2 oeher terme.
o -
9s“ gn*
After the parabolization of the viscous term, only *he left hand side
har a sccond derivative of p in the ctrcamwise direction.

. ~ .
Specifically WUV  is replaceld by

e, R
v VeV = - VeVin, .
2,.":7 anz

This term cannot become large sinze the pressure does not have large

gradierits in the boundary layer.

We argue that if our 1teratiorn is arpropriate for the ¢
C IFYOR P

it w.ll be a good scheme overall.

To net a successive line {(or plane) over relaxatiorn sThere, all we

o .
—5 with the marchnino
ax

{5.1). All the properties of Section 4 w.ll he the same as lonc as

XY

Lave to do 1s replace all the ocsurrences o

ME o< 1.
In fact, better convergence can be expected as M- aprrcachos

s:nve the guantity g of (4.16) wiil become now 2+ (Lymr= 71-mME)

Cnly » will have memory and must be clebally saved and upiated by the

lteration procedure. § will also transmit the downstream irnfcorrat:on

an? must be specified there.

Tor transonic flows a conscrvatiorn form

mire conveniert to werk with ¢ rather than LTl eTLatIoT
can be deraived for ¢, but care rust be taken IS S R Tty
information via ¢ . Upctrear anformaticon sreali net be sransmotiel b
¢ ani p  shouig not be 7 ;;fjrg at the rnflont ovLnerwier | sy prye -
woll be overrpecificed. Concider, for exam;le, the term ERRTHTUP

discretized as

N h R W W W W

A A

G % N et e Y

P e Sl

PR Y U P




2 - 2
(pmum pm—lum-l)

however, at the station m we should compute the U, velocities coupled
with the -1 densities. The approach of Reddy and Rubin [12] where the
pressure 1s specified both at inflow and at outflow is inconsistent unless
one happens to know the right pressures before the computation. The
inconsistency and consequent error can be easily demonstrated by one-

dimensional examples.

6. RESULTS

In order to check the MG algorithm, we choose the following analytic-
al solution. It satisfies the continuity equation but gives rise to

source terms in the momentum equations:

¥

L}

A+ (x¢y)™: Vo= —(x+y)™; P = - (E14E2) (x+y)" (6.1)
where a and b from equations (3) are defined by:

El + Fix+y)™; b = E2 - Flx+y)" (6.2)

a

and El =1; E2 = .2; F= ,2; A=5; Re = 1000; m = 4; n = 2. The

coarsest grid consists of 4 x4 intervals.

Figure 5 compares the MG convergence history of different relaxation
schemes. In the MG solutions three levels were involved (M=3). The
horizontal coordinate gives the number of Work Units (WU), where each
work unit is eguivalent to one global iteration on the finest grid. The
vertical coordinate gives the logarithm of the dynamic residual €. The
dots show the solution of the equivalent Poisson equation (with the same

solution for the pressure but with Dirichlet condition over all the

boundaries). The linearized PNS equations were solved with and without

the streamwise pressure gradient correction of [3). The corresponding :i

(17 x 17 points) single grid convergence history is plotted for compar- zﬁ

ison (for the case of Q = 1). The corrected discrete equations and :;
Yy

the Poisson equation exhibit very similar convergence whereas the conver-

gence of the unmodified equations is much worse. Upon increasing the

o
S _aadhd

number of grids in the unmodified equations, the convergence deteriorates,

R
Sl

RS
Faraiers

The Reynolds number independence of the scheme is demonstrated in

Figure 6, where the convergence history is presented for Reynolds numbers

1, 103 and infinity.

In order to check the non-linear version of the code, several test

3
3
N
N
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cases were run;  the incompreccivle flow over a flat  pliate, the flow

along an axisymmetric cylinder, entrance flow between two fla* plates,

and the flow behind the trailine ecae of a flat plate. 1In all cases i
good agreement was obtained witl known solutions., The detaile will ke |
Fresented elsewhere. Here we show (Figure 7) the convergence history .

for a flow over a flat plate with uni:orm upstream profile and Neumann
condition for the pressure at the exit. W.ile the nurber cf levels :is
varied, the finest grid remains the same and cousists of 65> €5 points.
In Figure 8 there is a compariscn between the present resulte for the

flow near the trailing edge of a flat plate and the results of refcr-

ence [1l). The skin friction coefficient CF is shown fcr 2z < 1 while ’

the center line velocity UC is shown for =z > 1. The trailing edge is 1

at =z = 1.
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Figure 1: Pressure Residue vs. the Global Iteration Number.
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Figure %4: Relative placement of variables on two successive grids.,
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Figure 5: Convergence history for different relaxation schemes (M = 3),
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\‘
N
N
AY
., ¢
"
>

~

CF - skin friction

>

UC - Centerline velocity

AL S SR SIEANASIS ()




J\ \J\I
bl ...1.'
s LCC
2
X
-
=
P
-

d
] [ ]

1

*

L)

s
.
)
&)
ES

"

J
J
1 N
4
l-

1

2
\.

-

LDANARBEY ANt \'..\‘A SR

P
v..............
AT

.-\ Ilflfuv

\...\..-ni

— e e e e

A .f
or. .¢N¢._
NP L LY,

-n

Hn

n \- \p-- » .\f

At Potel

..5.

v\\\.\u...\ PGP

»\{I.,...

L
L'S

.kow~

..-A..-

h e
P ..-.-\. \--.V
- -h-\-\-“\ \ -

- Ay -?\uw.

\-\

y \}\

.'v_\-.\

SR N



