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Summary

B

Tkis report summarizes 20 months of research into Travelling Wave
Concepts for the Modelling and Control of Space Structuresé performed at the
Massachusetts Institute of Technology under the supervisi&r'\wa Professors
von Flotow, Hall and Crawley. Major contributors to the work were grafduate
research assistants Miller, Signorelli, O'Donnel, and Kissel. Many
undergraduate assistants also contributed.

The research has led to seven research papers which were published in
the open literature or presented at conferences, and to two graduate theses
and two undergraduate theses in MIT's Department of Aeronautics: and
Astronautics. These publications are presented in full in the Appendix.

In addition to these published papers, the past few months have
witnessed other forms of dissemination of research results. Professor von
Flotow nas given invited lectures derived in part from this AFOSR sponsored
research at the Office of Naval Research in September 1986, Yale University in
May 1987, the Naval Underwater Systems Center in June 1987, Lockheed Palo
Alto in August 1987, the University of Buffalo in Cctober 1987, and at the
meeting of the American Acoustical Society in Miami in November 1987. In
addition, we have influenced research into the dynamics and control of space
robotics at Martin Marietta Aerospace in Denver, by sending them requested
computer software, and work in active control of structural acoustics at the

Naval Underwater Systems Center in Newport, R.I

This report consists of a brief executive sumary highlighting the main -

results of the research publications collected in the Apfaendix.
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Modelling of Disturbance Propagation in Elastic Structures

“«____ A good portion of the research has focused upon the development of

techniques for the modelling of structural response in terms of disturbance

propagation. Such models are of interest for several reasons: .

S Understanding the mechanisms that govern the propagation of
disturbances through an elastic structure is useful for building
intuition, for structural design and for design of active control}. -

A

y

- 2 Disturbance propagation models have the potential for
providing high-tidelity analysis capabilities in response regimes
where other techniques are inapplicabie. Of considerable interest
to the researchers at MIT is the response of elastic spacecrait to
disturbances with significant spectral content at frequencies
including many (even hundreds) of the spacecraft natural modes
of structural vibration, ..

3. Elastic disturbance propagation is a classic area of research in

applied mechanics, having appliciiion in acoustics, seismology,
microwave electronics, transducer design, biological fluid
mechanics, design of mechanisms and machines, and many
other areasy _,

The MIT research effort has made good progress in development of
models for elastic disturbance propagation. This progress is summarized here
with reference to specific papers written during the period of the contract and

with its financial support.

Wave Propagation and Power Flow in Truss Structures

The MS thesis research of Joel Signorelli took a computational
approach to investigating the wave propagation behaviour of simple beam-
like truss structures. Although Joel began the work with the intention of
investigating the behaviour of a very complex spacecraft truss beam, he found

enough interesting effects in a simple situa‘ion, originally intended to serve

only as a preliminary warm-up.
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Joel introduced a modelling technique which takes explicit advantage
of the spatial periodicity of the structure. This is similar to an approach
developed by M.S. And--son at NASA Langley Research Center in recent
years, but unlike Anderson's approach, has no difficulty with the application
of boundary conditions. Joel's approach begins with the spatial‘ state
transition matrix (also known as the transfer matrix) of a single bay. This
transition matrix is formulated in the frequency domain, by any of a host of
techniques, including exact solutions of the partial differential equations
governing motion of the truss members internal to the bay. For purpose of
comparison with a prior finite element solution of a segment of the truss,
Joel chose to derive the transition matrix with the identical finite element
discretization.

One approach to modelling the dynamics of a finite portion of a one-
dimensional spatially periodic structure involves multiplication of a series of
segment transition matrices. This is numerically not stable, since the
transition matrix can, in general, have an extremely large range in the
magnitudes of its eigenvalues. An alternative, transformir.g to the transition
matrix eigenspace, is numerically superior, and has interpretation in terms of
wave modes.

Much of Joel's work focused upon the frequency-dependence of wave
propagation in a beam-like truss. From a numerical viewpoint, this is just a
study of the eigenvalues and eigenvectors of the bay transition matrix, and of

their dependence on frequency. Joel discovered a host of interesting effects:

’

1. The model exhibits as many wave modes in each direction as
one chooses coupling coordinates between neighboring bays.
The wave modes come in identical pairs, of each pair one wave
travels in each direction.
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Each wave mode travels independently of the others.

Each wave mode can be described by its dispersion behaviour
(the frequency dependence of the propagation velocity), and by
the corresponding deflection shape. Joel's thesis is full of plots
of the deflection shape of a truss beam supporting a single
travelling wave.

The dispersion characteristics of a truss beam are astoundingly
complex. Each wave mode may be either:

a) propagating without attenuation (a traveling wave),

b) propagating with attenuation (a complex wave), or

c) not propagating (an evanescent wave). Joel found that
each of the wave modes he studied exhibited all three
types of behaviour, different behaviour in different
frequency ranges. Such complex behaviour is
unprecedented in the study of wave propagation in
periodic structures.

Joel is among the first few analysts (perhaps the first) to clearly
describe the complex traveling wave, a wave which both
propagates and is attenuated. He demonstrates that simple,
mono-coupled structures cannot support such behaviour, but
that at least two coupling coordinates are required. Furthrmore,
he demonstrates that such wave motion does not propagate
energy in isolation, but may in conjunction with other wave
modes.

Joel investigates povier flow in the truss beam due to these wave
modes in isolation. He neglected to consider power flow due to
wave-mode interaction, since at that time we did not yet know
that such a thing could happen. Dave Miller's work discovered
this a few months later.

Joel applied two types of boundary conditions to the truss beam
and transformed these boundary conditions into a wave-mode
description involving the boundary scattering matrix. This is a
unique approach, which permits investigation of the causal
behaviour at the boundary, the mechanism of reflection of
incident disturbances.

Having transformed the analysis to wave mode coordinates, Joel
was able tc derive exact (to numerical precision) structural
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transfer functions of the structure. The nunerical difficulty of
multiplication of a sequence of transfer matriccs is thus avoided.

Full details of Joel's work are recorded in the appendix in the thesis,
"Wave Propagation in Periodic Truss Structures,” and the paper "Wave
Propagation, Power Flow, and Resonance in a Truss Beam." This paper has

been accepted for publication in the Journal of Sound and Vibration.

Power Flow in Structural Networks

In the fall of 1986 and winter of 1987 PhD candidate David Miller was
grappling with control formalisms for structures whose dynamics are
described in terms of wave propagation. One concept that surfaced was the
desirability of influencing the power flow in such structures by active means,
rather than to monitor and actively control the direct response. This
consideration led to the development of a theory and computational
procedure for calculating such power flow. This procedure is briefly
mentioned in the paper, "Active Modification of Reflection Coefficients in
Elastic Structures,” presented by David Miller as an invited paper at the
American Control Conference in Minneapolis, in June 1987, and included in
the appendix of this report. De.id Miller and Prof. von Flctow are
continuing to develop these concepts of power flow, and are preparing

further papers for publication.

Waves in Spacecraft Tethers

Tethered spacecraft are envisioned which covisist of two (or more)

relatively compact bodies ronnected to one another by long, slender wires

under very slight tension. The dynamics and contro! of such configurations

is beginning to receive serious attention of analysts around the world. In the
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summer of 1986, Prof. von Flotow considered the problem and proposed an
engineering model which explicitly separates the motion into slow dynamics

(comparable to orbital rate) and fast dynamics.

The fast dynamics, confined primarily to the tether, are governecf by a
system of partial differential equations. In the linear approximation, these
equations are related to the well-known wave equations, differing
significantly because the e :ilibrium shape of the tether is slightly curved.
The analysis then investigates the dynamics of such a curved, elastic wire in
terms of both travelling waves and in terms of exact frequency-domain
solutions of the governing equations. The analyses are summarized in a
paper, "Some Approximations for the Dynamics of Spacecrafi Tethers," which
is included in the appendix of this report, and which is to be published in the
AIAA Journal of Guidarce, Control and Dynamics.

In the winter and fall of 1987, two undergraduate students in MIT's
Department of Aeronautics and Astronautics, Todd Barber and Earl Gregory,
accepted the challenge to experimentally investigate the dynamics of an
elastic catenary, and to verify (or disprove) the analysis proposed by Prof. von
Flotow. Wave propagation speeds, transfer functions, and mode shapes were
measured, and compared favourably with the analytically predicted values.
The transition from the behaviour of an inelastic hanging chain to that of a
taut elastic string was investigated. These results are summarized in Todd

Barber's report, "Dynamic Cable Response: TheEffect of Cable Sag," included
in the appendix. '




Wave Propagation and Localisation in Disordered Periodic Structures

Wave propagation in periodic structures has received the attention of
dozens of investigators over the past century, beginning with Lord Rayleigh,
who was interested in light transmission through crystals. Recent work has
been motivated by interest in seismology, structure-borne sound, solid state
physics, microwave electronics, and other applications. Our interest
originates in the realization that many future large spacecraft structures will
also be spatially periodic; i.e., truss structures.

Recent work at MIT and elsewhere has investigated the dynamics of
structures which are slightly perturbed from perfect periodicity. Under the
partial sponsorship of this contract, doctoral student Glen Kissel has in the
past two years achieved a fundamental analysis of these effects in structural

systems. He drew heavily on a large literature, primarily in solid state

physics. Glen's writings on this subject (a paper "Localization in Disordered
Periodic Structures," presented at the 28th AIAA Siructures, Struciural L
Dynamics and Materials Conference in Monterey in April 1986, and a PhD
thesis at MIT in September 1987 with the same title, represent an elegant ‘

theoretical summary of a broad disjointed literature, and make significant

new contributions to that literature. Glen also provides a computational
procedure for evaluating the strength of the localization effect in structural
systems. Glen Kissel now works at the Jet Propulsion Laboratories, and is

writing two further papers for journal publication based on his PhD

e —————
e

dissertation.
In the winter of 1987 two undergraduate students, Cathy Sybert and
Tupper Hyde attempted an experimental verification of localization in a

relatively complex structure, intentionally disordered. Their experiment was
8




not a glorious success, as is documented in the report by Tupper Hyde,

"Mode/Wave Localization in Disordered Periodic Structures."

Active Control of Elastic Structures
The preceding section describes the research into structural dynamic
modelling performed under the terms of this contract. We have also been
active in research into active control of such structures as is summarized by

the following paragraphs and by the four relevant papers in the appendix.

Hierarchic Control

An important consideration in the control of flexible structures is the
computational architecture which is used to implement the control. Because
of the large number of modes, sensors, and actuators in a typical flexible space
structure, traditional control system architectures (such as a full state feedback
controller cascaded with a full state estimator) are infeasible.

The approach that has been taken in this investigation is to develop a
hierarchic control system architecture which can greatly reduce the amount of
computation required, while at the same time allowing the procesing to be
distributed. This allows much of the control to be performed locally, so that
the approach also reduces the need for transferring large amounts of data to
and from a central processor.

In February 1987 the paper, "A Hierarchic Control Architecture for
Intelligent Structures,” was presented at the AIAA Rocky Mountain Guidance
and Control Conference (see appendix). The general approzch is to divide the
structure into coarse and fine finite element models. The coarse FEM is used
to control thie lower modes of the structure through a central (or "global")

processor. The local controllers then operate on the residual, which is the
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difference between the global (or coarse) FEM and the fine FEM. Results
presented in the paper demonstrate that the approach may be easily applied to

test cases, and that under some circumstances, stability can be guaranteed.

Control-Motivated Tailoring of Structural Dynamics

The extensive research literature on control of structura! dynamics has
almost invariably taken the approach that the structural dynamics are
difficult to control, and may not be modified to ease the task of the control
engineer. Thus one often reads, for example, that the dynamics of large
flexible spacecraft are characterised by many (even hundreds) of lightly
damped modes (damping ratio less than one percent) spectrally closely spacéd.
Moreover, these modes are poorly known, both with respect to frequency and
mode shapes.

An exception to this approach is the growing literature on
simultaneous design of the control system and the structure. Unfortunatly
most of this literature attempts an "optimal" approach to this design problem,
and the research quickly bogs down to research into computational
techniques of minimizing a complex non-linear function of many
parameters. The examples that have been thus treated are extremely simple,
and it appears that the techniques are computationally limited to such simple
examples. Furthermore, since one can only optimize over parameters which
are modelled, and since inodelling of passive damping is extremely difficult,
this literature tends to have ignored this extremely important design freedom
by assuming some given level of passive damping,.

In August 1986 Prof. von Flotow presented the paper, "Control-

Motivated Tailoring of Spacecraft Truss Structures,” at the AIAA Guidance,

10
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Dynamics and Control Conference in Williamsburg, VA. This paper (full text

in the appendix) takes a very informal approach to:

1.

Quartitatively estimating the benefits of passive damping to the
problem of active control of structural dynamics.

Quantitatively estin.aling the mass penalties associated with
various passive damping treatments.

Computationaliy demonstrating the possitilities for tailoring the
dynamics of a truss beam for active control.

The Accustic Limit of Active Control of Structural Dynamics

In the winter of 1987 Prof. von Flotow was invited to write a chapter

for the Monograph, "i .arge Space Structures: Dynamics and Control," ed. S.N.
giap ge -p y

Atluri, A K. Amos, Springer Verlag, to appear, 1988. The invitation was

accepted, and the result, entitled, "The Acoustic Limit of Active Control of

Structural Dynamics," is included in the appendix. This paper is based on the

relevant work done by Prof. von Flotow and partners over the past few years.

The main points of the paper are:

1.

Modal analysis (or any global model of structural dynamics)
becomes fatally unreliable in the acoustic limit, defined to be the
fr:quencies above the natural frequency of perhaps the tenth
mode.

Passive damping is an important vibration remedy to be used in
this limit.

If active control must be used, then it must be based upon (local)
acoustic models of the struciural response.

Examples of such a control design procedure are given.

11
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A collection of papers, theses, ard reports written under the terms of
this research contract.
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WAVE PROPAGATION IN PERIODIC TRUSS STRUCTURES
by
JOEL SIGNORELLI

ABSTRACT

Wave propsgation in periodic truss-work beams was
analytically investigated. Transfer matrix methods were applied
to the analys!s of two truss beams. The results of a truss with
members modelled as pinned rods agree well with results obtained
from equivalent continuum models of the same structure. Use of
beam models for the truss members shows that the pinned rod truss
model loses fidelity at the {irst resonant frequency of the
lateral motion of the truss members.

The pinned beam truss exhibits complicated mechanical
filtering properites. Each travelling wave mode experiences
alternating stop, pass, and complex mode bands as a function of
frequency. It was shown that complex modes cannot exist alone and
must form {n groups of four. Net power flow in right/left-going
complex mode pairs is found to be zero.

Scattering matricies were deteiwined for fixed and free
boundary conditions. The phase closure principle was then used to
determine natural frequencies of the truss. It was found that
closely spaced resonant frequencies were not identified by this
method. Computed results show subtle erroneous characteristics

which are attributed to numerical effects.

Thesis Supervisor: Andreas H. von Flotow

Title: Assistant Professor of Aeronautics and Astronautics
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1.0 Bacikground

Nany future space structures will have physical
characteristica radically different from those flying today.
Among these will be large direct broadcast satellites, the space
station, and numerious scientific and commercial satellites.
Critical to the success of the Strategic Defense Initiative will
be large space based radar and surveillance platforms. Since the
size and weight of these systems greatly impact launch costs,
these so-called large space structures (LSS) will be built largely
of light and flexible aerospace materials. Because of their size
and distributed flexiblity. the structural vibration modes of
these structures may well be within the bandwidth of the control
system. It is therefore of great importance to be able to
characterize the dynamics of these LSS through analysis and
simulation. One method of analysis involves examining these
structures in terms of wave propagation.

Many of these planned large space structures will be
constructed, in part, by truss-work structures. Truss structures
are favored because of their ease of packaging. transportation,
fabrication. and space assembly. A current example of a large
space structure that will be assembled in part by truss members is
NASA's space station (Fig 1.1). Truss structures generally

consist u. an assemblage of identical elements and are thus
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spatially periodic. Periodic structures have long been known to
act as mechanical filters for travelling waves [B-1]. In order
to gain more insight and understanding as to how wave propagation
properties can be exploited in the dynamics and control of LSS
this thesis examines wave propagation in two-dimensional, periodic

truss~-work structures.

1.2 Wave Propagation in the Literature

The study of wave propegation in periodic structures began
long ago in the field of solid state physics. Noteworthy among
the early investigators is Brillioun who made a significant
contribution to the study of wave propagation in crystals,
transmission lines and atoms [B-1]. Cremer and Leilich studied
flexural motion in periodic beams and showed that waves can
propagate in certain frequency bands but not in others [C-1].
The notion of propagation coefficients was defined by Heckl in
1964 [(H-1]. He investigated wave propegation in periodically
supported, undamped grillages. Mead included damping effects in
the wave propagation theory for periodic beams [M-1]. Mead and
Eatwell theoretically described the so-called complex modes which
have characteristics of propagating and attenuating waves [M-2]
[E-1]. von Flotow introduced thz use of scattering matricies to
describe junctions in structural junctions. He also modelled
members by transfer matricies and demonstrated the superiority of

this approach over equivalent continumm models [V-1].

1.3 The Pressemt Vork

in this thesis, the methods of von Flocow and Mead will be
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employed in the analysis of a two-dimensional periodic truss
structure. Chapter 2 will introduce and develop the concept of
the transfer matrix. Advantage i3 taken of the fact that truss
structures are periodic by examining their dynamics in terms of
the transfer matrix of a single bay of the truss. In Chapter 3
the eigenvalues and eigenvectors of the transfer matrix will be
used to identif{y and characterize the wave modes present 1in the
truss structure. By use of dispersion plots, the mechanical
filtering properties of the truss will be demonstrated. Power
flow in wave modes will be investigated in Chapter 4. And
finally, by through the use of scattering matricies, Chapter 5
describes the interactions of the wave modes with truss
boundaries. Natural resonant frequencies of an example truas will

also be determined.

- 11 -
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Chapter 2 - The Transfer Matrix Method

2.1 The State Vector

A periodic truss structure consists of several identical
substructures called bays. At any station along the truss, a
cross-sectional state vector, Y, which describes the force and
displacement at that station, can be examined. Figure 2.1 shows
one bay of a two-dimensional truss structure and the state vector

associated with each side of the bay.

U : * U
L 3
T = [&] Y= [F.]
1 3
y
L.
z

Figure 2.1 - State Vectors Associated with
One Bay of a Periodic Truss

Each bay consists of four structural members. The state vector is
chosen such that {t describes the forces and displacements of the

endpoints of the members. U, and Us describe the displacements of

-12 -
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the joints on the left and right sides of the bay respectively,
while the forces on the joints are represented by F. and F.. If
only joint translation in the X and Y directions, and rotation
about the Z axis are modelled, the state vector on the left side

Of th‘ W| Yl.' '111 ch

U, F,
U = Uz F. = Fa (2.1)

Ut" ng
where U, = [U,v F, = |Fyv (2.2)
H’:j T‘z

The state vector on the right hand side of the bay, Ya. is similar

and involves the state of joints 3 and 4.

2.2 The Transfer Metrix
The state at any two stations can be related by means of a

transfer matrix, T.

Yl.x = [ T ] Yx (2.3)

where Y, 1is the state vector for the i-th station. The transfer
matrix may be thought of as a spatial state transition matrix
between two stations on the truss. The elements of the transfer
matrix depend on the bay properties and, on frequency. Without
damping the transfer matrix will be purely real.

Once the transfer martix for a single bay has been
determined, the transfer matrix for the entire structure can be

assembled. For a seven bay truss {Fig. 2.2), we have,
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BAY 1 2 3 4 S [ 7

Y Y. Y2 Y5 Y. Y5 Y. Yo
Figure 2.2 - State Vectors for a Seven Bay Truss

The states at the left and right sides of a bay are related by the

bay transfer matrix,
Yy=[T, 1Y

Ya=[Ta] Yy (2.4)

Yieg = [ ‘i‘.., 1Y
By multiplication of transfer mtricie; we obtain,
Ya=[Ts JUTe U Te I Ta [T JIT2 [T, 1Y, (2.5)
But since the bays are considered to be identical, we have,

(T ]1=(Ta]=(T3}=....=[T ]
so that, Ya=[T) Y. (2.6)

which relates the states at the right and left hand sides of a
seven bay truss. T is refered to as the rearward transfer matrix
of the structure [R-1]. The transfer matrix can also be expressed

in terms of its eigenvalues and eigenvectors,
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T. = l’t-l A v, (27)

where p = the matrix of right eigenvectors of T

- g
"

the diagonal matrix of eigenvalues of T

so that by Eqn 2.5, the states at opposing ends of the truss can

be related by,

Yw=[o'A"Dp]Y (2.8)

2.3 Derivation of ths Transfer Natrix

There are several methods to determine the transfer matrix of
a structure. Among these are deriving the matrix from an n-th
order differential equation, and deriving it from the system's
mass and stiffness matricies [P-1]. Tﬁe second method will be
used throughout this work.

The mass matrix, M, and the stiffness matrix, K, for a bay
can be determined by means of a finite element analysis of the
bay. But first, care must be taken to ensure that differences in
displacement and force coordinate definitions between the finite
element analysis and those of the transfer matrix method are taken
into account. For the transfer matrix method, the positive face
of a cross-section of the truss is defined as the face whose
outward normal points in the positive x direction. Positive
displacements coincide with positive du:ections of the coordinate
system, and forces are positive if, when acting on the positive
face, their vectors are in the positive direction [P-1]. Fig 2.3
illustrates the force/displacement coordinate definitions for the

two analyses. Note that in the transfer matrix method forces and
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moments of adjacent elements are of opposite sign so that all

internal forces in the structure are balanced.

UYLQ FYL ) UYI. FYR
6., To F —J On., Tllg—‘
Uxi, Fxu Uca, Fxa

Finite Element Force/Displacement Coordinate Definitions

Uve Ura
e; (b—' L _l e. ’#‘
Uxe Uxa
Fru "‘q Fen
[ J "b_g
Tr Fxa

FYL

Transfer Matrix Method Force/Displacement
Coordinate Definitions

Figure 2.3 - Force/Displacement Definitions for the Finite
Elerment and Transfer Matrix Methods

For the finite element analysis the bay was modelled with eight

elements (Fig 2.4).

Figure 2.4 - Node Assignment for the Finite
Element Analyvsis of a Bay

The nodes located at the member midpoints were included so as to
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better model the bay's higher order modes. The ‘'left' coupling
dof's between adjacent bays are identified by the subscript L, the
‘internal' dof's by I. and the 'right’' coupling dof's between bays

'by R. The finite element analysis produces matricies M and K

such that,
U U, F.
[N] | W + [K]|W = F. (2.9)
UI UI FI

For a truss with only nodal displacemenits as coupling dof's this

Ut UQ U-'
becomes, UL = U, Ui = Us Un = Ue (2.10)
Us
F, Fq Fq
FL = Fa Fl = F; FR = F. (2-11)
| Fe
with U, and Fi given as in Eqn 2.2. After Fourier
transformation, Eqn 2.9 becomes,
U. F.
[K-w*M]|U | =]|F (2.12)
Un Fa

If structural damping is modelled. the leading matrix becomes,
2
[K(1l=-1in)-uw" M] (2.13)

where n is the structural damping coefficient (loss factor). Eqn

2.13 forms the dynamic stiffness matrix of the bay.
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2.4 Coondensation of the Dynamic Stiffness Matrix

'n order to derive the transfer matrix between the the left
and right hand sides of a bay. it is necessary to condense the
{nternal nodes into the dynamic stiffness matrix. We reject the
option of static condensation because we wish to model the

internal dynamics of the bay. The dynamic stiffness matrix may be
partitioned as,

Diu| Duc| Din [UL F.
Dic| Dit| Dia U | = | Fx (2.14)
DIL Dll Dll I. Ul F.

Since the internal forces., F:, must be zero, the second row of the

matrix gives,

Ur = =Dii™! (Die Ul + Din Ua ) (2.15)

Eqn 2.15 1is substituted into rows 1 and 3 of Eqn 2.14, and after

some rearrangement we get,
Die = Du: Dii™! Diu [ -Die Dii ™! Dia UL Fo
—] = |—| (2.16)
<Da: Dit ™! Din I -Da: Di:”! Din + Dan n A
For simplification. this can now be written ac,
[ U, -F.
_A_.t.f“. —_— s | — (2.17)
Ci{D Ua Fa

where negative values of F. have been taken to ensure

compatability of the transfer matrix and finite element analyses
force coordinate definitions. And finally. the transfer matrix is
determined by,

-18 -




|‘u. A | B u. ] 2.18)
I/ | lc-oetal -me ] |R =

or equivalently,

YZ=[T]Y (2.19)

2.5 Truss Closure

Before the global or complete transfer matrix of the truss
can be assembled, the transfer matrix for the wmember closing off
the right end of the truss must be determined.

Consider the end member as shown below. Once again, the
wember is modeled as two elements.

-]
© SRERRRK ™ = f -
L ]
) 1

3

Figure 2.5 - Truss with Closing End Member

The displacements for the end members are,

Ual = UaL an = UQL Usn = Ugn. (220)

while the forces acting on the nodes are,
Fa = Fal = Fg; F‘ =0 F5 = an ‘FQL (2.21)
The end member's mass and stiffness matricies are obtained
from 2 finite element analysis of the member. Following the same
procedure as in section 2.4, we eliminate the internal degrees of

freedon at node 4.
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with A.B.C, and D as defined in Eqns 2.16 and 2.17.

of Eqn 2.21 into Eqn 2.22 leads to,

GEGHIGHE

Combining this with Eqn 2.20 we get,

Uga (1] o 0 0
Usn | 0 [1] 0O o
Fan [ A B ] [1] o
Feaa C D o [I]

Use
Use

FauL
Fast

(2.22)

Substitution

(2.3)

(2.24)

which defines the point transfer matrix across the end member as,

Yean = [ Te ] Yoo
or,

YW =[T]Ya
Sc that for the whole truss we get,

Yo = [T [T Y.

or, Yn=[Tq]YL

(2.24)

(2.25)

(2.26)

(2.27)

where T. 1is the global transfer matrix for the entire truss.
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2.6 Natural Frequencies of the Truss

Once the global transfer metrix for the structure has been
determined, the system's natural frequencies can be determined.
First, boundary conditions are applied to the truss. The boundary
conditions will depend on how the truss is suspended in space.

For example, a future on-orbit experiment will have a truss

cantilevered to the shuttle orbiter as shown below.

Figure 2.6 - A Truss Cantilevered to
the Shuttle Orbiter

If the truss attach points are pinned, and the orbiter is assumed
to be very stiff and massive., no displacements or torques can

exist at those points. This leads to the boundary conditions,

[ Uyy ] [0 ] [ Fie ] -Fuw
gu g Fiy o (2.28)
1 1 - Ta - .
Uo=tu, | = |o Fo = | Fau | ® | Fau
Uay 0 Fa, Fay
Lea Je _ea_L L Ta o L0 v

The free end of the truss has the boundary condition Fa = 0. With

this we obtain from Eqn 2.18,
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U. TA Uag
[ ] i [ ] r (2.29)
0 Ty Fiy

where T. and T, are appropriately selected submatricies of the

global transfor matrix T,. The bottom row of submatricies gives,

O=[Ts] | Fpn (2.30)

The only non-trivial way this can be true is if

det [Th ] =0 (2.31)

A plot of | det [ To («) ]| as a functior of frequency will
indicate the system sigenvalues.

The determination of natural frequencies by thiz-‘;;nuf:{_"xod may
not always work. Some of the eigenvaluc:-s f.he transfer matrix ase
quite large. The result of this is i!_;;;\:‘ when one atteapts to
determine the transfer matrix for n bays, Atl.xe)valuQ of [T]" very
quickly reaches the computational limit of thé computer. A method
will, however, be presented in Sections 5.3 vhich will enable the

natural frequencies of the truss structure to be determined.
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Chapter 3 - Wave Propegation Apslysis

3.1 Eigmvaluss of the Transfer Natrix
A wave propagating along a periodic structure can be
characterized by,
Yiey - E Y, (3.1)

indicating that the state at station i+l is the state at station i
multiplied by a factor . This, together with the basic transfer
matrix relation

Yiey = [ T ] *l (3.2)

forms an eigenvalue problem for §. The eigenvalues are generally
complex and occur in § and 1/f pairs. corresponding to identical
waves propagating in opposite directions [eigenvalues of a
symplectic matrix occur in inverse pairs].

For each wave mode there are frequency regions in which the
wave will propagate unattenuated (pass bands) and regions in
which the wave is attenuated (stop bands). Complex modes (modes
for which the eigenvalue is complex) are also considered to be in
stop bands. The magnitude of an eigenvalue at a given frequency
will indicate whether the wave is in a pass or stop band at that
frequency. If the magnitude of the eigenvalue differs from unity,

the frequency 1is in a stop band. For magnitudes equal to unity,




T

- - — 4 -

Y

the frequency is in a pass band [R-2]. In a stop band, since |f| .
< 1, the crnss-sectional state vector will eventually be

Rl

diminished to zero.

| g <1 stop band
lE | >1 stop band (3.3)
| ) =1 pass band

Eigenvalue magnitudes greater than unity correspond to
negative-going waves and those less than unity correspond to
positive-going waves.

The relation between § and 1/§f can be sesn by constructing a
piot of the § plane (Fig 3.1). For a given frequency, values of
|€] which lie on the unit circle are in a pass band. Those inside
the unit circle are positive-going waves in a stop band while
those reflected outside the circle are negative-going waves in a
stop band. Values of |f| which lie in the interior (exterior) of
the circle, but not on the real axes, are complex modes. As a
function of frequency. the eigenvalues move about the plane,
continually changing magnitude and phase.

In the absence of damping., the transfer matrix, T, 1is real,
thus its eigenvalues will be real or members of a complex

conjugate pair. Complex modes thus occur only in groups of

four--wave mode interaction is necessary. Mono-ccupled systems

(with 2 x 2 transfer matricies) cannot support complex wave modes.
.t is perhaps for this reason that complex wave modes have
received scant attention in the literature, being mentioned in

only two papers [E-1] [M-2].
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Pass Bands Stop Bands Complex Modes
Figure 3.1 - The § Plane
3.2 Propasgation Coefficient
The eigenvalues § are related to the propagation coefficient
L by
g=ett (3.4)
where L is the bay length. pu is generally complex so that
M= pe o+ (3.5)
£=c b o (3.6)
or § =e Lur o 1(kL + 20m) (3.7)
1Y
where kL is the nondimensional wave number. The wave number is
related to wavelength A by
k=2r /A (3.8)
pe (the attenuatton constant) describes the exponential rate of
decay of a wave as it passes through a bay, while u, (the phase
- 95 «
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constant) describes the phase change a wave undergoes as it passes
through a bay [M-2]. The propagation coefficients occur in +/-
pairs, corresponding to negative and positive-going waves
respectively.

Without damping, a wave is non-propegating whenever u, # O,
The classic stop band behavior then has u, = O impling no phase
difference between motion in adjacent bays, and spatial
exponential decay of amplitude. If u, # 0, there is phase
difference between the motion in adjacent bays and the wave now
propagates, but transfers no energy along the length of the beam
[M-2]. The spatial amplitude behavior of such a complex wave
mode is an exponential decay of a sinusoidal envelope. These
relations, including the effects of structural damping, are

illustrated in Fig 3.2 [M-1].

1}
H
0
0
K

4 = no damping
= 0.01
= 0.10

Figure 3.2 - Example Propagatioﬁ Coefficient Values
as a Function of Damping and Frequency

4+ has alternating bands of positive andi zero values. Positive

values {mply that the cross-sectional state variables decrease

from bay to bay.




If structural damping is modelled, all the propagation
coefficients are compiex. This is necessary if energy is to flow
from the source of vibration to the energy dissipating sinks in
-the truss. The presence of damping causes the wave to decay as it
passes from bay to bay. If the damping is light, pass bands can
rstill be seen in the plot of ur. u. is no longer zero in these
bands but {t is much smaller than in the adjacent attenuating
bands.

3.3 VYave Propsgation in a Uniform Two-Dimensional Pimned-Joint
Truss with Rod Nembers

Wave propagation was studied in two different truss
structures. The first truss to be analysed was a two-dimensional
truss coﬁlstim of rod elements. Rod elements do not have
bending stiffness and are only capable of carrying loads in
tension and compression. The rod elements were joined by pinned
Joints, and the members were free to rotate about these joints.
The cross-sectional state vector at each end of the bey consists

of four joint translations and {our joint forces (Fig 3.3).

[ Uay ] - [ Uer ]
UUl UU'I
Ussg Ure
Y. = g::: 2 s Y = g::
F‘Ji Fg-,
3 Fle
L Fya . - . [ Fys ]

Figure 3.3 - State Vectors for One Bay of the
Pinned Rod Truss



Each bay consisted of four members. Each of the members was
modelled as two rod elements. There were a total of 16 degrees of
freedom for each bay. Only four translational DOF and four forces
ccuple adjacent bays. This leads to an [8 x 8] transfer matrix.
The mass and stiffness matricies for the bay were obtained from a
finite element analysis as described in Section 2.3. The physical
properties of this truss were adapted from the Structural Assembly
Demonstration Experiment (SADE) truss of [M~-3]. In this model, it
was assumed that there was no structural damping present, that the
bay longerons were 55 inches long, and that the bay diagonals were
55v2 inches long. The dynamic stiffness and transfer matricies
were assembled as outlined in section 2.4.

The eigenvalues and eigenvectors of the transfer matrix were
then determined as a function of f r@ency by a MATRIXx user
defined command file [M-4]. Eight wave modes are present in the
truss due to the four degrees of freedom present at each side of
the bay. Four of these wave modes are positive-going and four
are negative-goirg. Fig 3.4 and Fig 3.5 present values of the
magnitude, |f|. and phase.¢, of the eigenvalues of the four

positive-going wave modes.

Disporsion Curves for the Four Right-Going Waves

The magnitude and phase of the first mode over the frequency
range O to 100 Hz are approximately zero (Fig 3.4). Because the
magnitude of the eigenvalue is essentially zero, the
cross~-sectional state variables at the right side of the bay are
also essentially zero (Y. = £ Y.). This indicates that the wave

dies out 8o quickly that it can be considered to be confined to a
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single bay. This type of localized, quickly decaying near-field
wave is also known as an evanescent wave. An evanescent wave will
form only at the truss boundaries or at some discontinuity along
the length of the beam. The zero phase of this wave also
indicates that it does not propegate to the adjacent bay and that
its wnwolohgth approaches infinity. So throughout the given
frequency range, this wave is in a stop band.

The megnitude of the eigenvalue of the second wave mode is
approximately unity throughout the bandwidth (Fig 3.4), indicating
that the wave does not attenuate throughout the frequency range.
The non-zero phase indicates that the wave does propagate to the
adjacent bays. For eximple. at 20 Hz the wave has a phase of -15°
which indicates that the response of two adjacent bays in this
mode at this frequency will be 15° out.of phase. With this phase,
Eqn 3.8 indicates that one wavelength of this wave mode will be 24
bays. As a function of frequency, the increasing phase value
leads to decreasing wavelength.

The third mode is shown in Fig 3.5. Like the evanescent
mode, this mode also has zero phase (non-propagating) and does
have attenuation. However, the attenuation is not as pronounced
as with the evanescent mode. In the frequency range shown, the
lowest value of |§| is about 0.8. After traversing many bays,
this attenuation factor will eventually ‘amortize’ the wave, and
as such, the wave is considered to be in a stop band.

As indicated by the |§| value of unity, the fourth wave mode
is in a pass band throughout the frequency range. Its small but
increasing phase value implies the wavelength of this mode

decreases with frequency.
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It should be noted that for any given frequency, the response
of the truss is a superposition of all eight wave modes at that

frequency.

Eigenvectors of the Four Right-Going Wave Nodes

The eigenvectors, v, of the transfer matrix can be used to
generate plots of the wave modes. For the [8 x 8] pinned rod
truss, the éigunvector for a mode at a given frequency isa [1 x
8] matrix. This matrix contains values of deflection from the

original node locations as well as the forces on these nodes.

v = ["] (3.8)
F

U1- Fgl

where U= U F=|Fu (3.9)
Uz- le
Uay Fay

The response at the right side of any bay can be obtained by

ve =§ v (3.10)

where n is the bay number and i is the number of the desired mode.
Once the response of the right and left sides of the bay are
known, the response of the internal nodes can be obtained by Egn
(2.17)

U, =-Diiv"' ( Div UL + Din Un ) (3.11)

The respcnse of the right. left, and internal nodes of each bay
were then ‘propegated rightward' (by rultiplication by §i) and
were obtained for as many bays as was needed to show one

wavelength of a wave mode.
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While plotting the wave modes, only the real component of the
omplex eigenvector was used. This corresponds to taking a
‘snapshot’ of the response.

Because only translational degrees of freedom were included
in the finite element analysis, the deformed truss was plotted as
simply linear connection of the deformed nodes. A scaling factor
multiplied the eigenvectors in order to accentuate the
displacement from the undeformed truss. Unless otherwise noted,
the maximum displacement plotted was equivalent to 80X of the
length of a longeron.

The response of the evanescent mode is effectively confined
to only one bay. The motion consists primarily of extension and
compression of the vertical member, and changes little with
frequency (Fig 3.6).

Fig 3.7 displays one wavelength of the second mode for 10,
30, 40, 50, 70, and 90 Hz. At 10 Hz, one wavelength is 33 bays
long. while at 90 Hz, this drops to 10. For all these
frequencies, the global sinusoidal displacement dominates the
mode. Thus it is labeled the 'S’ mode. At 10 Hz the members

exhibit very little extension or compression. But at 90 Hz, there

S KBS

30 Hz 70 Hz 90 Hz

Figure 3.6 - First Bay of the Evanescent Mode as a
Function of Frequency (Pinned Beam Truss)
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is obvious extension and compressidn in the members do to the fact
that the 's' shape must cycle in only 10 bays, while at 10 Hz,
there are 33 bays in which to do so.

Node ‘three will be labeled the ‘pseudo-evanescent' (PE mode)
mode because, like the evanescent mode, mode three is attenuated
and requires an almost infinite number of bays to exhibit one
wavelength. The difference in these two modes., however, is that
the PE mode exhibits far less attenuation than does the evanescent
mode. In fact, the state vector is not completely diminished for
several bays (Fig 3.8).

The most outstanding feature of the fourth mode 1is the
compression/extension along the longitudinal direction of the
truss at low frequencies. For this reason it has been dubbed the
'CE' mode. At 10 Hz, one wavelength réqulres 297 bays to obseer.
Fig 3.9 shows the first few bays of this mode as a function of

frequency. Also shown is one complete wavelength of the CE mode
at 90 Hz.

Comparison to Contimnm Nodels

The eigenvectors of the S and CE modes exhibit displacements
similar to a beam in bending and & rod in axial compression,
respectively. These modes can thus be compared to results
obtained from continuum models of the same truss. Mills in [M-3]
has developed continuum models for th} same truss as analysed in
this work. Bending is modeled by Timoshenko beam theory,
compression-extension by simple rod theory. Mills' equivalent
values are: axial stiffness EA = 8.7220x10° 1b, bending

atiffness EI a 6.5960x10° 1b-in?. shear stiffness GA =

-3 -
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Figure 3.7 - One Wavelength of the S Mode as a Function
of Frequency (Pinned Rod Truss)
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Figure 3.8 - First Twenty-Four Bays of the PE Mode as
a Function of Frequency (Pinned Rod Truss)

ONINDNENNIN

10 Hz, 24 of 297 Bays

40 Hz, 24 of 60 Bays
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SEINN
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90 Hz. 34 of 34 Bays

Figure 3.9 - The CE Mode as a Function of
Frequency (Pinned Beam Truss)
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1.0693x10° lb, mass per length pA = 4.8627x10"* 1b-s?/in?., and
inertia per length pl = 0.19438 1b-s®. Figure 3.4 shows a
comparison of the computed results with the predictions of
Bernoulli-Euler beam theory (valid for low frequencies), and the
high-frequency asywmptotic behavior of the bending model of
Timoshenko beam theory. The CE mode of Fig 3.5 is compared to an
axial compression wave from the continuum model. It can be seen
that the results obtained from the transfer matrix method are in
close agreemsnt with those of continuum models of the same truss.

The PE mode (Fig 3.5) can be viewed as a Timoshenko shear
mode. This wave mode will not propagate at frequencies below the
cut-off frequency w = VGA/pY . in this case 365 Hz. The
behavior of the PE wmode is thus consistant with the Timoshenko
shear mode. |

The evanescent mode has no equivalent analogue in the

continuum model, and appears to be entirely an artifact of the

truss modeling approach.
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3.4 Wave Propagation in a Unifors Two-Dimensional Pinned-Joint
Truss with Beam Nembers

A wmore realistic representation of the high frequency
dynamics of a truss structure can be made if the elements which
comprise the structure are given bending stiffness. As such, the
second truss structure studied was the same two-dimensional
uniform beam truss as in Section 3.3, but with members modelled as
beams. The beam elements were connected by pinned joints. A
finite element program was developed to determine the mass and
stiffness matricies of the bay. Each member of the truss now has
two translational and one rotational DOF at each end. Care must
be taken to ensure that differences in displacement and force
coordinate definitions between the’ 'finite element analysis and
those of the transfer matrix method are taken into account (Sect
2.3).

For the pinned beam truss, there are 16 translational DOF and
12 rotational DOF in each bay. This produces a [28 x 28] dynamic
stiffness matrix for the bay. The transfer matrix is still [8 x
8]. since there are still only four coupling coordinates between
bays. Internal node displacements and beam rotations have been
condensed into the transfer matrix (Section 2.4). Fig 3.10
defines the member rotations.

Because the members have bending stifrness, it 1is important
to note the members’ resonant bending frequencies. Fig 3.11 lists
the first several nrarural freguencies of the longerons and

diagonal truss members.
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Figure 3.10 - Member Slopes, Pinned Beam Case

A MATRIXx user defined command file was used to produce the
transfer matrix from the dynamic stiffness matrix and to extract
its eigenvalues and eigenvectors. Fig 3.12-16 present dispersion
curves for the four positive-going modes over a O - 170 Hz
bandwidth. These figures can be directly compared to Fig 3-4 and
3-5 which are based upon a model which ignores member bending.

Appendix A contains the propegation coefficient plots for these

modes.

Longerons: w,

70.42 Hz lst pinned-pinned freq.

£
]

159.6 Hz lst clamped-clamped freq.

Diagonals: w, = 35.2 Hz 1st pinned-pinned freq
wy; = 79.8 Hz lst clamped-clamped freq.
w,y = 140.8 Hz 2nd pinned-pinned freq.
with EI = 2.0263E6 lb in®* Liows » 55.0 in
m = 1.016E-4 slug/in Loiac =55.0 Vv 2 in

Figure 3.11 - Pinned-Pinned and Clamped-Clamped Bending Resonances
for Truss Longerons and Diagonals
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" The wave modes were then plotted using a cubic spline
rcutine, A scale factor was used to accentuate the displacements
and rotations of the members in order to make the deformations
visible. Unless otherwise noted, the scale factur was chosen such
that the largest displacement was S0X of a longeron length or the

largest slope (relative to the undeformed members) was 45°, which

ever occurred first.

Eigenvalues and Eimt_ou of the Evanescent Wave Node

The first mode examined was very similar to the evanescent
mode of Section 3.3. The wave is in a stop band throughout almost
all of the frequency range (Fig 3.12).

The difference between the :rod truss and beam truss
evanescent modes occurs in a sharp spike in |E| and ¢ at
approximately 70 Hz. At this frequency, the attenuation constant
becomes non-zero, and there is a non-zero phase, indicating that
the evanescent mode actually propegates. As noted in Fig 3.11, 70
Hz corresponds to the lst pinned-pinned frequency of the longeron
members. Fig 3.13 shows the first bay (of approximately infinite
bays for a wavelength) of the evanescent wave mode as a function
of frequency.

The difference between the beam truss and the rod truss
eigenvector plots (Fig 3.6) is that in the beam truss case, the
wave mode consists not only of extens}on and compression of the
members but also bending of the internal members. Starting at 30
Hz, the diagonal member begins to show pinned-pinned motion. At
35 Hz, the lower longeron also starts to exhibit this motion,

while the diagonal dies out. At 70 Hz, the propagating wave mode
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Figure 3.12 - Dispersion Curves for the Evanescent Mode
(Pinned Beam Truss)

involves pinned-pinned motion of the horizontal longerons. The
evanescent mode starts to exhibit the second pinned-pinned motion
together with lower longeron motion. )

It is important to note that this internal motion was not
present when the truss was modelled with rod members. Therefore,

by using beam elements, the fidelity of the model has been

increased.
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Figure 3.13 - One Bay of the Evanescent Mode as a Function
of Frequency (Pinned Beam Truss)

Eigenivalues and Eigenvectors of the S Wave Mode

The magnitude and phase of the eigenvalues of the second wave
mode are presented in Fig 3.14. This should be compared to Fig
3.4, which represents the same wave mode, but for the pinned rod
truss.

The general trends in |f| and ¢ are the same for both the rod
and beam truss cases until 35 Hz. Because of this initial
similarity, this mode will be refered to as the 'S’ mode. Both
waves are unattenuated and propagating.

The eigenvectors of the transfer matrix were determined as
described in preceeding sections. Fig 3.15 depicts one wavelength
of the S mode while it is in its initial pass band.

Like the S mode of the rod truss, the initial mode shape is
that of a global 'S’'. But whereas in the rod truss the global 'S’
persisted as the frequency increased, in the beam truss the global

‘S’ dies out as the frequency is increased. At 10 Hz, one
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Figure 3.14 - Dispersion Curves for the S Mode as a Function
of Frequency (Pinned Beam Truss)

wavelength simultaneously occupies 33 bays, and the members are
essentially straight. But by 20 Hz, the diagonals start to
exhibit their first pinned-pinned resonance, their deflection
becoming meximum at 35 Hz. The direction of diagonal bending
alternates every quarter wavelength et 20 Hz, while at 30 Hz, it
alternates every half wavelength. By 35 Hz the global 'S' has
essentially disappeared.

After 35 Hz, the rod and beam truss 'S' modes are not

similar. At 35 Hz, the diagonal members of the truss are in their
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Figure 3.15 - One Wavelength of the S Mode
in the First Pass Band
(Pinned Beam Truss)

lst pinned-pinned resonance, after which the wave enters a stop
band at 40 Hz. Apparently when the diagonals resonate, energy
becomes localized {n this motion and does not propagate along the
beam.

At 35 Hz the wave enters a region where it exhibits
properties of a complex mode. In this region the wave both
propagates and attenuates. The complex mode region ends at 39 Hz.

From 40 - 70 Hz the wave enters a classic stop band. Here
the phase is near zero. implying that all ;he elements of adjacent
bays move in phase causing the wavelength of the wave to approach
infinity. The wave exists simulaneously in a near infinite number

of bays and does not propagate. The state vector from one bay to
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the next is however decreased. The first ten bavs of the truss
for 40, 50, 60. and 70 Hz are shown in Fig 3.16. As before. the
diagonals dominate the dynamics for frequencies about 35 Hz, and
give way to longeron movement about 70 Hz. Such modes, as with
the evanescent modes, can only originate at the boundary of the

structure or at some discontinuity along the length of the

BEDNNNNNNNN,

40 Hz

structure.

NSRRI

SNAN AN

70 Hz

Figure 3.16 - First Ten Bays of the S Mode in the
First Stop Band (Pinned Beam Truss)

As the 1st pinned-pinned frequené& of the longerons is
reached, the wave enters a spike-like pass band (70 Hz). From 75
- 90 Hz the mode is complex and is in a stop band. The mode
shapes in this frequency range appear similar to those in the

preceeding stop band. However, because of the non-zero phase
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difference between bays in this region. a wavelength now ocrupies
a finite number of bays. As can be seen in Fig 3.17 (the scaling
has been increased to excentuate displacements), although the
wavelength is finite, the mode does not appear to repeat after
undergoing 360° of phase change. The mode does repeat--the state
vector is attenuated to such an extent after one wavelength that

the wave does not appear to repeat.

SNNNONNNNNNNNNNEREN

75 Hz, 18 Bays

S ENNNS NN NNNR

80 Hz, 18 Bays

SEENNNNNNNSNNSNNNNNNNNNRK

90 Hz, 24 Bays

Figure 3.17 - One Wavelength of the Complex
S Mode (Pinned Beam Truss)

The next pass band begins at 95 Hz and continues until the
end of the bandwidth examined. One wavelength of the S mode for
100, 150, 155, and 165 Hz is shown in Fig 3.18. Global motion is
not present. The second pinned-pinned resonance of the diagonal
members starts to appear around 140 Hz. The wavelength drops off
sharply near the first clamped-clamped resonance of the longerons
(160 Hz). Although the first clamped-clamped frequency occurrs at

160 Hz, the second diagonal pinned-pinned motion still dominates.
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For the O - 165 Hz bandwidth, the S wave mode was in
alternating pass and stop bands. Note that each of the pass and
stop bands were separated by a complex mode region (complex modes

are considered to be in stop bends).

ATRI IR AT AT AT AN A S o N N N N !

150 Hz, 22 Bays J

155 Hz, 19 Bays

ONERNRAN

165 Hz, 8 Bays

Figure 3.18 - One Wavelength of the S Mode in the Second
Pass Band (Pinned Beam Truss)

- 47 -




Eigenvalues and Eigenvectors of the PE Wave Node
Unlike the S mode which begins in a pass band, the third mode
begins in a stop baud (Fig 3.19). It has the same basic
attenuation and phase as for the pinned rod truss PE mode (Fig
3.5) up to 35 Hz, the diagonals’ first pinned-pinned resonance.
Because of this tnittal similarity, this mode has been dubbed the
PE mode. Like the S mode, the PE mode goes through alternating
stop and pass bands, separated by stop bands in which the mode is

complex. Until 35 Hz, the wavelength is approximately infinite.

&1 *

StOP —=b i ¢=P2SS —a %= 5t0p band ———o <+pass -~
band band -complex. band
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20 40 (Y] o0 100 t20 140 180 180

Frequency (Hz)

Figure 3.19 - Dispersion Curves for the PE Mode
(Pinned Beam Truss)
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This mode, unlike the first atop band of the S mode, exhibits
mostly global bending instead of local member bending (fig 3.20).
This should be expected being that global motion, not local member
motion, domi'nntu the dynamics of all modes at low frequencies.

The wave enters its first pass band at 40 Hz after becoming a
complex mode for a range of 5 Hz. The first fex bays of the PE
mode are shown in Fig 3.21.

The complex mode shapes (range 75-96 Hz) are identical to
those of the S mode, with the exception of phase angle sign.
Cowplex modes are discussed more fully in Section 3.5.

At 95 Hz, the second stop band begins. As can be seen in Fig
3.22, the PE mode does not exhibit much global motion. Near 130
Hz the second pinned-pinned resonance of the diagonals aprsars in
the truss plots.

The =econd pass band for the PE mode begins at 155 Hz. The
PE mode of the second pass band is like that of the first except
that now there is more movement in the horizontal longerons and
the diagonals are 1in their second pinned-pinned resonance (Fig

3.23).

Eigemvalues and Eigenvectors of the CE Wave Mode

Once again. the || and ¢ values for the rod truss and beam
truss follow the same trend from 0-35 Hz (Fig 3.24). As with the
CE mode in the pinned rod truss, the f;)urth mode in the pinned
beam case also starts out with at low frequencies with the same
compressioi/extension shape (Fig 3.25). It is therefore called
the CE mode. But by 20 Hz. bending of the diagonals and vertical

longerons can be seen. At 35 Hz, bending seems to be confined to
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Figure 3.20 - First Ten Bays of the PE Mode in the
First Stop Band (Pinned Beam Truss)

Figure 3.21 - PE Mode {n the First Pass Band
(Pinned Beam Truss)
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Figure 3.22 - The PE Node in the Second Stop Band
(Pinned Beam Truss)
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Figure 3.23 - One Wavelength of the PE Mode in the
Second Pass Band (Pinned Beam Truss)
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the diagonals. By 50 Hz, a global 's' shape appears as the
horizonial longerons and diagonals are in bending. Only the

horizontal longerons remain in bending by 65 Hz.
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Figure 3.24 - Dispersion Curves for the CE Mode
(Pinned Beam Truss)

The CE mode is complex :n a 1 Hz band starting at 70.8 Hz.
and continues for O.6Hz.

The first pass band is a small region between 72 and 80 Hz.
Wavelengths in this region are of near infinite wavelength and

their wave modes involve only motion of the vertical longerons.
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Figure 3.25 - The CE Mode in the First Pass Band
(Pinned Beam Truss)
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150 Hz, 7 of 7 Bays

~ Figure 3.26 - The CE Mode in the Secornd Pass Band
(Pinned Beam Truss)
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The second pass band begins at 80 Hz and continues until 155 Hz.
"Initially the motvion consists of longeron bending, but becomes
second pinned-pinned diagonal bending by the end of the band (Fig
3.26).

And finally, the CE mode enters its second stop band at 155
Hz. The wavelengths in this band are near infinite and the motion

consists of second pinned-pinned diagonal bending.

3.5 Complex Nodes

For the pinned beam truss there were two frequency bands in
which wave modes were complex--from 35 to 40 Hz and from 72 to 95
Hz. If the dispersion curves of the S and PE modes are plotted
together, some interesting observations can be made (Fig 3.27).

Both modes are complex throughout -the same bandwidths (35-40
Hz and 75-95 Hz). In addition, the magnitude of the eigenvalues
are exactly the same. The two wave modes couple throughout these
regions, producing the complex modes. The complex modes begin at
the first pinned-pinned frequencies of the diagonals and longerons
at a jolning point. At the break-away points the modes once again
take on seperate character.

The frequency range between 70 and 85 Hz is full of complex
modes (Fig 3.28). Within this range, there are three pairs of
right-going complex modes. The S and CE modes couple for a very
short band centered at 71.2 Hz. At 71 Hz even the evanescent mode
forms a complex mode with the PE mode. But the longest coupling
is between the S and PE modes. These two wave modes are complex
from 72.5 to 95 Hz. Note that the coupling is triggered near the

first pinned-pinned frequency of the longerons.
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Figure 3.27 - Complex Mode Coupling Between the S and PE Modes
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Figure 3.28 - Complex Mode Coupling About 70 Hz
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It would appear then that a complex mode cannot exist alone.
Complex modes are formed in pairs. In fact, when two wave modes
couple to form complex modes. there also exist their left-going
"brother’ modes, which are also complex. So when both right and
left-going waves are considered, four (eight, twelve, etc.)
complex modes must exist simultaneously in the truss. This can bhe
visualizﬁd in the f-plane (Fig 3.29). For example, between 75 and
95 Hz the S and PE modes couple to form complex modes. The
eigenvalues of the right-going complex modes (labeled with an 'r’
subscript) are complex conjugate pairs as are their eigenvectors.
The eigenvalues of the left-going complex modes ('l' subscript)
lie outside the unit circle and also have complex conjugate
eigenvalues and eigenvectors.

Discussion of power flow in cémplex modes as well as
properties of their eigenvectors are presented in Sections 4.2 and

4.3.

4r1m 3

» Re §

Figure 5.29 - Eigenvalues of Fousr Complex Wave Mode
in the § Plane



Chapter 4 - Wave Node Power Flow

4.1 Determimmtion of Aversge Power Flow in a Wave Node

In Chapter 3 it was shown that each wave mode has frequency
bands in which there is propagation, bands in which there is no
propagation, and bands in which there is both attenuation and
propagation (the complex modes). Intuition might tell us that
when a wave propegates, it transmits energy along the structure
and when it does not propagate. it does not carry energy along the
structure. But what about complex modes which share aspects of
both propagating and attenuating waves? Do complex modes transmit
energy along the structure? And if so, how is this possible {f
there is no damping in the system? Mead addressed this point in
1973 and found theoretically that there is no net power flow in
these modes [M-2]. In order to gain some insight into this
question, this chapter examines power flow in the wave modes of a
pinned beam truss.

Instantaneous power {s the product of the instantaneous
velocity and force. While noting that these are vector

quantities, this becomes,

P(t) = v(t) « f£(t) (4.1)
where v(t) = Vu cos(wt + ¢v) = Re (Vewt) (4.2)
V=V ¥ Ve = |V| (4.3)
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and. £(t) = Fa cos(ut + ¢r) = Re (Fe'“") (4.4)
F = Fu & Fu = |F| (4.5)

The instantaneous power flow can now be written as,
P(t) = Re (Ve'®t) « Re (Fe'“%) (4.6)
= Re (ue'®%) « Re (Fe'“%) (4.7)
= Re (lw uet”t) * Re (Fetut) (4.8)

which can be expanded to,

P(t) = Re [tw (us + tu;) (cos wt + tsin wt)]e (4.9)

Re [(Fa + iF:) (cos wt + isin wt)]

After multiplying and taking the dot product this becowes,

P(t) = w [ -ua*Fa sin ot cos wt + ua*F: sin? wt + (4.10)
- u;*Fa cos? ot + u;*F; sin ot cos wt ]

The average power flow over one period, T=2% /w. is dei.ued as,
Pave = I/T J; P(t) dt (4.11)
After integruting Eqn 4.10 over one period we get,
Pave = 172 w (un * Fi = u; * Fa) (4.12)

This then gives us the average power flow for each wave mode. u

and F are entries of the wave mode eigenvectors.
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4.2 Wave Node Power Flow

Power flow was calculated for the eight wave modes present in
a pinned beam truss. The eigenvectors used in Eqa 4-!2 were
normalized so that the x-displacement of node one was unity.

Figs 4.1 and 4.2 show plots of the power flow in the four
right and left-going wave modes. The outstanding features of
these curves are sharp spikes in power flow at member resonant
frequencies. Notice that power flow in left and right-going
‘brother’ waves (i.e., PE left-going and PE right-going) is equal
and oppostite.

Nore detail can be seen when the magnitude of the power |is
pPlotted on a log scale (Figs 4.3 and 4.4). As expected, the S,
PE, and CE modes show power flow in pass bands--power flow in each
left and right-going brother wave pair ﬁeing equal and opposite.
No pover flow occurs in stop bands. Complex mode regiona of the S
and PE modes show up as 'noisy’ data on the plots. But as can be
seen by data from the right-going complex mode pair in the 73-96
Hz bandwidth (Fig 4.5). the megnitude of the power flow in these
complex modes is equal and opposite. Thus it would appear that
the net power flow in a right-going (left—going) complex mode pair
is zero. Mead. however, claims that the net power flow in a
single complex mode is zero [M-2]. It is, therefore. uncertain
whether the equal and opposite power flow shown in Fig 4.5 is
actual or the result of numerical round-off.

Power flow in the evanescent modes, however, is contrary tc
what one would expect. With the exception of a small pass band
about 70 Hz, the evanescent modes are in a stop band throughout

all of the bandwidth investigated. Because of this, one would
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Figure 4.1 ~ Power Flow in the Right-Going Wave Modes
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Figure 4.2 ~ Power Flow in the Left-Going Wave Modes
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expect there to be no net power flow in the right/left-going pair.

By

changing the eigenvector normalization, a check can be made on the

But Figs 4.1-4.4 clearly show that there is power flow.

validity of this result.

4.3 Eigeavector Normlization

The truss structure should 'appear the same’ to a right-going

wave as it does to a left-going wave. This can be seen by

considering Fig 4.6.

A right-going wave mode 'sees’ the truss as

in Fig 4.6(a). The eigenvector normalization used in the

preceeding analysis was to set the x-displacement of node one (u,)
to unity. To a left guing wave, the truss would appear as in Fig
4.6(b).
(a).

Bay (b) can be obtained from (a) by a simple rotation of

In order for the eigenvector normalizations to remain the

the normalization for the left going wave should be made by

setting u, to negative unity.
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Figure 4.6 - Invariability of Wave Propsgation
Under a Coordinate Transform

With the original normalization. the eigenvectors of the 1
left/right going brother waves in pass bands occurred in complex ‘
conjugate pairs. With the new normalization (left-going wodes _
normalized to u; = -1), the eigenvectors had equal but reordered
values (to correspond to the bay rotation). They were now ‘ 1
‘'physically’ similar. The left and right-going waves both 'saw
the same structure.’ !

A sample set of eigenvectors for 80 Hz. is shown in Fig 4.7.
At 80 Hz there are four complex modes present (between the S and
PE modes). Notice that the right-going complex modes (the PE and
S) have complex conjugate eigenvectors (as do the left PE and S).
Also notice that the eigenvectors of the left/right-going brothers
have physically similar displacements and forces with the
exception of the shear forces. The PE and Evan modes clearly show
differences in the shear force terms. What this implies is that 1
the results of the analysis depend on the frame of reference. A
right-going wave sees a different truss than a left-going wave.
This. however, cannot be true. It violates the principal of
invariance under a coordinate transformmtion. This then leads to
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Figure 4.7 - Wave Mode Eigenvectors at 80 Hz

the conclusion that the power flcy observed in the evanescent
modes is a numerical effect, and cannot be believed.

One normalization that would prove useful in the next chapter
is to normalize all the wave mode eigenvectors to imply unit power
flow. If this were done, the scattering matrix (to be discussed
in Chapter 5) will be nnitary -- all columns and rows have unit
magni tude [v-1]. But beczuse power flow in some of the wave
modes is zero, this type of normalization could not be used. If

dampiny, were added to tl.e system, this normalization would be

viable.



ter 5 — ¥ave Mode Condi tions

5.1 Scattering Natricies

All of the analysis of Chapters 3 and 4 was performed without
regard to truss boundary conditions. In order to consider wave
mode propagation in a finite length truss, boundary conditions
must be taken into account. The concept of a scattering matrix
will be used to give the infinite truss closure.

The cross—-sectional state vector, Y, may be transformed into

wave mode coordinates by the transformation [V-1],

Y=0w) VW (5.1)
where W is the cross-sectional state vector in wave mode
coordinates, and o are the eigenvectors of the transfer matrix T.

The cross-sectional state vector W can be partitioned into

components which represent right-going waves., w', and left-going

'0
Y= [——-] (5.2)
w

One can also consider wave modes which arrive at a member

waves, w .

boundary, a, and those which depart a boundary, d. The
relationship between the arriving and departing wave modes at beam

boundaries is depicted in Fig 5.1.
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Figure 5.1 - Representation of Arriving and Departing
Wave Modes at Beam Boundaries

a and d are related by the wave mode eigenvalues, §,
an = §" do (5.3)
a, = §" da

where n is the number of bays

The boundary conditions at the ends of the truss may be

written as,

[ B(w) 1Y = Fexe(w) (5.4)

where the boundary conditions, B, and external forces, F, may be

functions of frequency. In wave mode coordinates this becomes

[ B(w) 1L v(w) ] [:;l = Fexr(w) (5.5)

Partitioning the boundary conditions gives,

[ Ba (U)

After some manipulation, the departing wave modes may be expressed

BO(U) ] [_] = Fexr (U) (5.6)
d

as,

d = -By '(w) Ba(w)a + Ba™' Fexr (5.7)



or, d = S(v)a + By™' Fexr (5.8)

wvhere S(w) is defined as the scattering matrix at the boundary.

With no external forcing this becomes,
d=[ S(w) ] a (5.9)

Components of the scattering matrix are complex, frequency
dependent reflection coeffictents for the boundary. The second
term of Egn 5.8 is the wave mode generating matrix which indicates
how external forces at the boundary generate outgoing wave modes
[V-1]. The reflection coefficients indicate how an incoming wave

mode contributes to generating outgoing wave modes.

5.2 Derivation of the Scattering Matricies for a Pinned Beam
Truss Attached to the Shattle Orbiter

Scattering matricies will now be determined for the case of a
pinned beam truss attached to the shuttle orbiter. Consider the
orbicter attached truss shown in Fig 2.6. The mass of the orbiter
is assumed to be much greater than that of the truss, thus
enabling the left side of the beam to be treated as being attached
to a 'brick wall’'. Therefore, the cruss left boundary condition
is zero displacement. This leads to writing the boundary

conditions of Egn 5.5 as,

1 0 a,
1 0 Yeor| Yea||—]=0 (510
1 0 d.
1 0
where Yf <1 and Yf » 1 Trepresent the eigenvectors of the
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right-going and left-going wave modes, respectively.

As discussed in Section 2.5, the last bay on the free end of
the truss must be closed by the addition of an end member. The
dynamic stiffness matrix of this member is frequency dependent and
so, - therefore, is the boundary condition. This then leads to the

frequency dependent free end boundary condition,

A B A
[ I ] [YE al Yo ] [i-] =0 (5.11)
C D ds

where A, B, C, D are elements of the dynamic stiffness matrix of

the end member (Eqns 2.16,17).

In this example, the eigenvectors were normalized so that
x-displacement of node one of each bay was unity (the same
normalization used to determine the power flows of Chapter 4).
The left and right scattering matricies were calculated from O to
170 Hz. in steps of 0.2 Hz. Figs. 5.2 and 5.3 depict the real and
imaginary components of the scattering matricies as a function of
frequency. More detailed plots of the elements of the scattering
matricies are contained in Appendix B.

Each entry of the scattering matricies, S;,, represents how
much departing wave mode j is created by incoming wave mode 1I.
For example, the first column ot Ss and S. indicates how the
outgoing evanescent, S, PE, and CE wave’modes ares produced by the
ircoming evanescent wave mode.

Checks can be made on the validity of these reflection
coeffieients by examining limiting cases of these values. As

noted in Chapter 3. at low frequencties the S mode resembles a beam
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in bending, while the CE mode resembles a rod in
tension/compression. Since the wave mode eigenvectors have been
normalized with the x-deflection of the first node equal to unity,
checks can be made on the reflection coefficients of the CE mode
at both ends. Fig 5.4 shows selected terms of the left and right
scattering matricies at low frequency. The S.(4.4) plot indicates

that the reflection coefficient for the CE mode at the left

boundary should be -1.0 + i0. while 1 + i0 at the right.

The incoming CE wave mode must satisfy the zero displacement
boundary condition on the left end of the truss. The reflection i
coefficient for this wave mode can be easily determined. Consider
the arriving wave mode at the left boundary (Fig 5.5).

The zero displacement boundary condition can be met by
visualizing a phantom wave, wy,n, being created oehind the boundary
and travelling to the right. The phantom wave has equai but
opposite magnitude at the boundary as compared to the CE wave.
This wave then, exactly cancels the displacement of the incoming
CE wave, thereby insuring zero displacement at the boundary. The
boundary amplitude of the phantom wave is 7w out of phase with the
incoming CE wave. The reflection coefficient is then -1 + i0.

A check can be made of the S:(4.4) term by a similar process.
The incoming CE wave mode must satisfy the zero slope boundary
condition at the right end of the truss. In this case, the
phantom wave will have the same magni tude'as the incoming CE wave,
and will be in phase. This leads to a refiection coefficient of 1
+ 10.

$.(2.2) and Sa(2.2) can be verified by thinking of the S mode

as a Bernoulli-Euler beam in bending. For :his case, however,
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Figure 5.5 - Enforcing the Zero Displacement Boundary
Condition by Means of a Phantom Wave

consideration must also be given to near-field effects. The
reflection coefficients (at low frequency) for the pinned and free
ends were found to be consistant with those determined in [C-1]

(H~1].

5.3 Natural Frequencies by Phawe Closure

Recall that in Section 2.6 a method was presented for
determining the natural frequencies of a truss by using the global
transfer matrix of the structure. It was pointed out that even
for trusses consisting of a small number of bays, it may not be
possible to determine the natural frequencies due to large
eigenvalues of the transfer matrix (generally associated with the
evanescent modes). By transforming the problem to wave mode
coordinates and employing the phase closure principle this
difficulty can be eliminated. The phase closure principle states
that natural resonances occur at frequencies at which all wave
modes complete a circumavigation of the b»am with a total phase
change of 2nw.

For the case of a seven bay truss Eqn 5.3 becomes,

an = £ do (5.12)
a. = £ da
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where £ is a diagonal matrix of eigenvalues associated with the
right-going wave modes. Eqn 5.9 can be written for both
boundaries as,

d. = [ S. ]a; (513)
da =[Sn ]a..

By repeated substitutions of Eqns 5.12 and 5.13, we obtain with

ax, after one circumnavigation of the beam,
ar € §7 S, E7 Sa an (5.14)
Resonance occurs when this relation is an equality;
[E" S E"Se-1]an=0 (5.13)

The only non-trivial way this can be true is if the determinant of

Eqn 5.15 is zero. Therefore,
det [ 'S § S -1]=0 (5.16)

is a satisfied at a truss resonance.

Notice that, by replacing only one value in the formulation
(the number of bays). the natural frequencies for a truss with an
arbt trary number of bays can be determieed "quick as a bunny."
The order of the problem does not increase with increasing number
of bays because the dimension of the transfer matrix |is
independent of the number of bays in the structure.

Fig 5.6 is a plot of the determinant of Eqn 5.16 for a seven
bay, pinned beam truss with one free and one pinned end. The
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natural frequencies of the truss can be identified whenever Egn
5.16 tends to zero. Resonant frequencies determined by this phase
closure method are listed in Fig 5.6. These frequencies reproduce
those determined by a finite element analysis of the same truss
except whenever the modes are closely spaced. The finite element
analysis obtains five modes within the 35.13 - 35.31 Hz bandwidth
wvhile the phase closure method locates only two. This remains
true even when frequency steps of 0.001 Hz are used in Eqn 5.16
(Fig 5.7). The same results also occur about 70 and 154 Hz.
Because the isolated modes are so accurately determined, one may
be tempted to attribute the phase closure method's failure on
numerical round-off rather than the physics of the problem. This,

however, remains to be shown.
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Figure 5.6 -~ Natural Frequencies Obtained by Phase Closure
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‘Chapter 6 — Conclusions and Recosmendations

s Syermr—eny il

L This thesis computationally investigated wave mode
propagation in two-dimensional, periodic truss structures. Some

} conclusions based on this research follow.

1) The transfer matrix technique proved useful in that the
dyramics of a complete truss beam were determined by
anaiysing only one of the periodic elements. Conventionel

1 analysis tools such as the finite element analysis become

computationally cumbersome as the number of degrees of

freedom needed to mudel the structure increases. In the
t transfer matrix method the order of the problem depends soley

on the order of one of the periodic elements.

i 2) The method of obtaining natural frequencies of the truss by
} sequential mulctiplication of the transfer matrix and
subsequent application of boundary conditions is only

practical for cases in which the eigenvalues of the transfer

o

matrix are not large.

ety -

+ 3) The results obtained by examining a pinned rod truss by

. transfer matricies closely match the results obtained by

continuum models of the same structure.




4)

5)

6)

7)

8)

9)

As with continuum models of the truss structure, the pinned
rod truss loses its fidelity at the first resonant frequency
of the truss members. The rod modeliing masks all local
member dynamics that would be present if member bending were

modeled.

The pinned beam truss exhibits complicated mechanical
filtering properties. As a function of frequency, there are
bands in which certain wave modes will propegate and bands in

which wave modes will not propegate.

At low frequencies, non-evanescent modes are characterized by
predominantly global displacements whereas at higher
frequencies this displacement becomes localized in the truss

members.

Complex modes must form in pairs and cannot exist alone.
Thus in a pinned beam truss, there must be at least four
(eight, tweive etc.) or more complex mudes present in order
for any to exist at all. Mono-coupled systems cannot support

complex wave modes.

Complex mode formation is initiated at member resonant
frequencies. No explaination could be found for termination

of complex mode coupiing.

Net power flow in a right-going (lefr-going) complex mode

pair is zero.
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10) Several results were obtained that indicate there may be

11)

1)

2)

numerical round-off errors in this formulation.

a. Power flow was evident in the evanescent modes
throughout much of the of the bandwidth examined.

b. Shear force terms in the eigenvectors of modes in
stop bands are not invariant under a coordinate
transformation.

c. Closely spaced natural frequencies of the truss are

not detected when analysed by phase closure.

By using the phase closure principle and the eigenvectors of
the transfer matrix 'n wave mode coordinates, the restriction
imposed in 2) can be circumvented.‘ In fact, by changing just
one variable in the formulation, the natural frequencies for
a truss consisting of an arbitrary number of bays can be
deterinined. As stated i 10), however, this method will only

locate isolated resonances.
Following are some suggestions for follow-on research.

Investigate wave propagation in a three dimensional periodic

truss structure.

Identify and characterize wave modes experimentally.
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3)

4)

5)

6)

7)

8)

Develop vibration isolation and suppression schemes which

exploit the filtering behavior of truss beams.

Investigate localization effects in random periodic

structures.

Determine if issues of (10) are due to numerical round-off

error or are inherent in the transfer matrix formulation.
Investigate when and why complex modes decouple.

Resolve the questions involved with power flow in complex
modes. Is the net power flow in a single complex mode zero

or equal and opposite to that of iis coupled ‘'brother?’

And on a more practical and mundane level, determine a quick

and reliable automated method to sort eigenvalues!
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- tion Coefficients for a Pinned
Beam Truss

The next two pages contain the propagation coefficients, u.
and u,. of the four right-going wave modes for the pinned beam

truss. An explanation of these plots can be found in Section 3.2.
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This appendix contains the left and right scattering
matricies for a pinned-free truss. The elements of the scattering
matricies are presented in more detail than possible in Figs 5.2
and 5.3. Each page represents a column of the given scattering
matrix. For example, the first page presents the first column of
the left scs <+ring matrix -- how the arriving evanescent mode
produces outgoing Evan, S, PE, and CE waves. The solid lines
correspond to the real component of the reflection coefficient
vhile the dotted lines correspond to the imaginary part of the

ref lection coefficient.
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WAVE PROPAGATION IN PERIODIC TRUSS STRUCTUR.S (4’9 +
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Cambr idge, Massachusetts

¥

Abstract

Wave propagation in periodic truss-work
structures is analytically investigated. Transfer
matrix methods are applied to the analysis of a
truss beam, The results, with members modeled as
rods with pinned joints, agree well with results
obtained from an eguivalent continuum model of the
same structure, Use of beam models for the members,
including bending, shows thar the pinned rod model
loses fidelity above the first resonant frequency of
latecal motion of the members. The truss, modeled
with beam members exhibits complicated mechanical
filtering properties, Fixed and free boundary
conditions are converted to reflection matcicies.
The phase closure principle is invoked to predict
natural frequencies of a fixed=-free portion of the
truss, It is found that closcly spaced resonant
frequencies are not identified by this mathod.
Computed results show subtle erroneocus
characteristics which are attributed to numerical
effects.

1. Background

Many large space structures will be
constructed, in part, of truss-work camponents. A
current example is MNASA's space station. Truss
structures generally consist of an assemblage of
identical bays and are thus spatially periodic.
Periodic structures have long been known to act as
mechanical filters. In order to gain more insight
and understanding as to how such filtering
properties can be exploited in the dynamics and
conttol of large space structures, this paper
examines wave propagation in several mathematical
models of a truss beam.

Any survey of the 1litaratute of wave
propagation in periodic structures must mention the
book by Brillouinl, Since Brillouin's book, many
papers have treated wave propajation in periodic
structures, primarily mono-coupled systems (systems
with one coupling coordinate linking neighborimg
bays) . els used include spring-massz, strings
and " rods’, and periodically constrained beams®.
Thesa works have all verified Brillouin's dictum
paraphrased here: "A one-dimensional periodic
waveguide supports as many travelling wave modes in
each direction as the (minimum) number of ccupling
coordinates between bays, Each wave-mode exhibits
alternating (possibly overlapping) frequency ranges
of pass-band and stop-band behavior. The number of
pass bands is equal to the number of degrees of
freedam within each bay." Few works have dealt with
multi-coupled periodic wave guides, Mead has
approached the problem mathematically, both for
general situations’?, amd for a specific model
(Timoshenko beams with periodically attached
inertias)®, Hodges, Powers and Woudhouse have
teported theoretical anmd confirming experimental
work on wave propagation in psziodic, tib-stiffened
cylindrical shells’., Eatwell® has considered wave

#Graduate Student

+Assistant Professor,
Aeronautics and Astronautics
Members AIAA

propagation in periodit fluid loaded plates. 1In
each study, the introduction of multiple coupling
coordinates between bays has permitted a new type of
travelling wave mode; the ‘conplex mode' which both
travels and is spatially attenuated, Such modas
were also discovered in this woek, in which four
coupling coordinates between adjacent truss bays
were used.

A structural analysis is incomplete without
consideration of boundary conditions. In this
paper, conventional boundary conditions for truss
beams (equations relating forces and deflections of
boundory points) asre converted to  wave-mode
coordinations, The result is a matcix of fregquency
dependent reflection coefficicnts at wach boundary.

This paper then invokes the phase-closure
principle to define and calculate natucal
frequencies: "Resonance occurs at those frequencies
at which each propagation path closes on itself with
total chamge of 2k n  (k=1,2,..) after one
circumnavigation,” The truss is thus modeled as a
multi-mode waveguide, terminated by reflection
matricies, rather than an assemblage of lumpad
parameter member models.

2. Wave Modes; Definition and Decivation

A wave mode, on a one-dimensional waveguide is
described by both a wave-mode eigen-shap2, and by an
associated propagation coefficient, The eigen-shape
is that unique mix of cross-sectional variables
which propagates with constant relative value anrd
phase along the member. The associated propajation
coefficient specifies the wavelemgth (or,
equivalently, phase speed) with which propagation
occurs. A tensioned cable, for example, can support
(in the classic approximation) three wave modes in
each direction; one axial with a velocity of JEA/U ,
the other two are lateral with velocity of VI7w.
(BA is axial stiffness, T is tension, u is linear
mass density).

Note that, in agreement with Boillouin's quote
given in the introduction, these three wave modes
correspord to the three modeled deflection
coordinates.

Wave modes in periodic structures can be
analagously defined. We select any reference
cross-section in each bay, introduce kinematic
assumptions, aml assign a numbet of deflection
variables to define the deformation state of that
cross-section, (Mead has shown that a wise choice
for the reference cross-section is the one that
minimizes the number of deflectinn variables
required), A wave mode is then defined as that mix
of cross-secticnal variables which repeat with fixed
relative amplijude and phase in each subssquent bay
alorg the structure, A corresponding propajation
coefficient per bay defines wavelength and
propagation speed,
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Wave Modes in a Truss Beam

This paper investigates the travelling wae
modes supported by two models of a truss beam
constiained to move in a plane, Fig 1 is a sketch
of the beam and of the chosen repeating element.
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Fig 1 State Vectors Associated with
One Bay of a Periodic Truss

The members are modeled as being pinned at the
junctions, thus four deflections are required to
define the deformation of the coupling
cross-section. 1If one introduces the corresponding
four coupling forces, and groups the coupling
deflections and forces into a "cross-sectional state
vector”, then the dynamics of the bay can be
described by a transfer matrix relation;

Y = [1] Y, Q)
This bay transfer matrix is square, with dimension

This transfer matrix can be obtained in many
ways, In tnis analysis, for purposes of direct
comparison with a conventional finite element
analysis, we derive T(v) by exact numerical dynamic
cordensation of a finite element model of the bay.

Two bay models are used, each based upon a

particular finite element discretization. Each
model yields a mass ard stiffness matrix:
%l |f
(k-uw2my o =lr, )
Yr Fr
which is then partitioned into 1left, cight amd

internal degrees of freedom and manipalated to yield
the transfar matrix:

Wi Oy e U] R
o o to | vl R &)
w ! i P ! 1
o +ooe to | ol |F
LoRL ! PRt e R R

- 1
PP P Ot P Vg O W1
------ S ROy il AR R B A I L Y
Ort P1r O oOpp Oy PyptPpe | {YR] [Pk
-
A B u -F
Ll = LJ 5)
¢ 0 UR I‘R
(Negative values of F, have besen taken for
campatability of the trﬁnsfe: matrix and finite
element analysis force coordinate definitiona.)
) -7l a - I
o T s e (6)
Fe C-D8" A -DB Fy,
YYo= LTI Y M

The first bay model uses 4 pinned-rod elemants
and yields 8 by 8 mass and stiffness matrices,
Thus, no internal degrees ~f freedom need be
eliminated. The second bay model includes member
berding effects, Eight beam elements are used, as
sketched in Figure 2.

6

3 8

2 5

1 7
4

Fig 2 Finite Element Model of Bay used to Include

Member Bending Effects

Nodes 2,4,5 and 6 are clamped, nodes 1,3,7 and 8 are
pinned., The resulting 28-degree-of-freedom finite
element model thus includes 20 internal degrees of
fr-edom. Note that only the lincar deflections of
modes 1,3,7 and 8 are external degrees of freedam;
the resulting transfer matrix is again 8 by 8,

Wave Modes Properties Inferred from
The Transfer Matrix

A wave propagating along a periodic structure
can be characterized by,

Yi+1 = Yi (8)

indicating that the state at station i+l is the
State at station i multiplied by a factor ¢ .
This, together with the trangfer matrix relation

yi‘). = [ T ] Yi (9)

forms an eigenvalue problem for £ . The eigenvalues
are generally complex and occur in £ and 1/ ¢ pairs,
corresponding to identical waves propagatitg in
opposite directions (Eigenvalues of a symplectic
matrix occur’in inverse pairs].

For each wave mode there are Frequency tejions
in which the wave will propagate without attenuation
| £ | =1 (pass bands) and regions in which the wave
is attenuated |£ | < 1 (stop bands).
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The relation betwean ¢ and 1/ can e seen by
constructing a plot of the [ plane (Fig 3).

im g Im ¢ Im&,‘

’

) Re & Re ¢ Re ¢
k3

Pass Bands Stop Bands Complex Modes
Fig 3 The Plane

For a given frequency, values of | € | which lie on
the unit circle are in a pass baxd, Those inside
the unit circle are positive-going waves in a stop
band while those rellected outside the circle are
negative~going waves in a stop bamd. Values of |5}
which lis in the intecior (exterior) of the circle,
but not -on the ceal ares, are termed canplex wave
modes. As a function of frequency, tha eigenvalues
move about the plane, continually chamying magnitude
and phase.

In the absence of damping, the transfer
matrix, T, is real, thus its eigernvalues will be
real or members of a complex conjugate pair.
Camplex modes thus occur only in groups of four;
wave moue interaction is necessary., Mono-coupled
‘systems (with 2 by 2 transfer matricies) cannot
support complex wave modes.

Particular results were, cl‘\culated for a truss
beam used in prior studies™’*", The bay members
werc assuned to have no structural _damping, a
bending stiffness EI = 2.0263e§ 1b-in“, mass per
length m =),10163-4 slug/in, an axial stiffness of
EA = 4,36le6 1@ and longeron an] batten length of
55.0 in. Mills” developad continuum models for this
tcuss, a Timoskenko beam model for bending, and a
rod model for extension. Mills' equivalent values
for the truss are: axial stiffness EA = 8, ]22E6 lb,
bending stiffness FEI = 6,5568.9 b~ in®, shear
stiffness GA = 1,0693e6 lb, mass per length m =
4.252e4 1b-:s‘/in‘.nd inertia per length 1 =
?.19438 1lb-s®,

Figures 4-8 present dispersion curves and wave
mode shapes for the four right-going wave modes.
Comparison with predictions of the continuum model
is provided. Wave mode shapes were derived fram the
transfer matrix eigenvectors, One wavelength of a
wave mode is shown at a given frequency.

At low frequencies the first wave mode shape
exhibits a global sinusoidal r+sponse ard is thus
labeled as the bending mode, The dispersion curves
for the bending mode indicate complicated mechanical
filtering of this mode as a function of frequency.
At low frequencies the mode is in a pass bard
(propagation with no attenuation). The mode shape
shows mostly global response. As the ficst rescnant
frequency of the bay diagonals approaches, the
rtesponse now becawes more localized in the bay
diagonals. At 35 Hz (the diagonal members' first
pinned-pinned resonant bending frequency) the mode
becomes complex for a narrow bandwidth, both
propagating and attenuating, At 48 Hz the mode
enters a stop band, a region in which the vave mode
will not propagate. The sharp spike at 79 Hz
correspords to the first pinned-pinned resonance of
the bay longerons. ‘The mode once again becomes
camplex after this resonant frequency. For higher
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Fig 4 Dispersion Curves and Wave
Mode Shapes for the Berding Mode

frequencies, the truss response is no longer global,
but becames localized in the truss members.

*

Predictions based on Timoshenko beam theory,
and results of the analysis with pinned rod mambers
canpare almost exactly, but diverge fram those of
the more complete model at higher frequencizs,
Internal resonances campletely daminate the motion
at these frequencies,
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Fig 5 Dispersion Curves and Wave M -
Shapes for the Shear Mode

Unlike the bending mode which begins in a pass
bard, the second mode examined begina in a stop
band. This mode initially has zero phase
(non-propagati ng) and does attenuate, These
properties are similar to thogse of the Timoshenke
beaw shear mode, which is a near field below w e
VGA/ P T ' = 368 Ha. Because of this initial
similacity, this mode is labelled the shear mode.
Like the berding mode, the shear mode goes through
alternating stop and pass bands, separated by bands
in which the mode is complex., Below 35 Hz, the
vavelemgth is infinite. The complex mode shapes
{range 75-95 Ha) are identical to those of the
vending mode, since these modes Couple to create the
carplex modes in this frequency range. Near 138 Hz,
the second pinned-pinned resonance of the diagonals
appears in the mode shape plots.
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Fig 6 Dispersion Curves and Wave
Mode Shapes for the Compression Mode

The low-frequency behavior of this wave mode
is essentially just crmpression-extension amd all
models predict similar response. This mode is
characterized by quite large pass bands separated hy
nacrrow Stop hands. Complex mode formation for this
mode only occurrs between 7¢.8 and 71.3 H2. N:ar
5S¢ Hz, the compression/extension response s
suppressed by quite active longeron amd diagonal
response, Only the horizontal longerons remain in
bending by 65 Hz. Near 158 Hz, the response is
confined to the second pinned-pinned resonance of
the diagonals.
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Fig 7 Disperison Cutves and Wave hode
Shapes for the Evanescent Mode

The megnitude and phase of the fourth mode over
the frequency range investigated is essentially
zexo, This indicates that the mode ‘dies out
Quickly' so “hat the response can be considered to
ba confined t. a single bay. With the exception of a
very harrow pasa band at 72 Hz (the first
pinneu~pinned diagonal resonanc: of the diagonals),
this mde is always in a stop band, The response
of the first bay as a function of frequency is shown
abcve. Detween 71 and 72 Hx, the evanescent mode is
canplax, There {3 no analcgous wave mude in the
continuum model .

Complex Mode.

Cmrlex wve modes have .ot received much
attentior in the struct.ral dynamics literature, and
appear to uwo(‘ br-m sentioned in only trree
published papers®: The pinned-beam truss model
reveals two tuqum:y bands in which wave modes are
co plex--from 35 to 40 Hz and from 72 to 95 Hz. If
the dispersion cutves of the bending and shear modes
ate plotted together, some interesting ocbservations
can be sade (Fig 8).
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Fig 8 A Complex Made Coupling
Between the Bendirg ard Shear Modes

Both modes are crmplex throughout the same
bandwidthg (35-48 Hz ana 75-9% Hz). In addition,
the mgnitude of the eigenvalues are sxactly the
same. The two wave modes couple througiout these
regions, producing the complex modes, The complex
modes begin at the first pinned-pinned frequencies
of the diagonals and lorgerons at a joining point,
At the braak-away pointa the modes once aain take
on sspscate chactacter.

The frequency tange between 78 and 85 Hi is
full of complex modes (Fig 9). Within this rame,
there are three pairs of vight-going complex modes,
The bending and compcession modes couple for a very
short band centered at 71,2 He, At 71 Hz even the
evanescent mode forms a complex mode with the sheac
mode. But the lorgest coupling is between the
berding amd shear modes between 72.5 and 95 Hz.
Note that the coupling is triggered near the first
pinned-pinned frequency of the longerons.
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Have Mude Powet tlow

The precedim figures show that each wave mode H
has fraquency bands in which there is propmation, Vons
bards in which there is ro propsjation, amd bands in :
vhich there is Both attenuation and propagation (the Lo
camplex modes) . Intuition might tell us that when a
Wave propagates, it tranmeits enetgy along the
structure and when it does not propajate, energy 3 e

N T LY [ e PN N
Rand

cannot move. But what about complex modes which :
shate aspects of both propmiting and attenuating Brooly
waves? 0O complex modos transmit energy alom the i b
structure? And if 80, how is this possible if there £

is no damping in the system? Mead addrested this @
point in 1973 and foumd thiontgnny that thetre is :
no net power flow in these modes”, v

semple

Instantaneous power is the product of the n1
irstantaneous velocity and force. While noting that no
these ate vector quantities, this becuwes,

o.0m P | " ) )
P(Y) = he (velvh) < pe (reVY AR AT S
e Re m.lut) ‘ Ra ‘»hiut) ae Bending Mode
= Re (iw \lh") * Re (hh)t) 1.oen

VAR Aol

which can be expanded to

1.0cY

P(t) = Re liw (up + luy) (coswt + lsinwt)ls AL roef
1.0w?
Re ((Fy + IF)) (cosut + isinu t)) < e / “
The average powetr flow over one period, T=2 * /w, = weeB L0 e pis o ofoiiotiam amm et tant ceama o pors
is defined a8, é . vand St
P ' § h
wg = V1 o) a na  §
After integra‘ing over one pericd we get, ' '
Pm L] 1/2 ﬂ(uk . rx - u! . PR) (13) (NN | I
This then gives us the average power flow for each B o
wave made, were it alone presant in the structure, .o i
Interaction between wave modes, creating other forms 1 Al l el L H
of power flow, is also possible. ¢ ” w a "o 0n e e

Vroso nev fns) 1
Power flow was calcilated for the eijht wave

modes present in 2 pinned beam truss, The Shear Mode
eigenvectors used in Bqn 1) were normalized so that !

the axial-displacement of node one wis unity (see

Figure 1). '
e 13 B e B ROP A e Py D e @ AL k
Figs 1 shows plots of the log of the ot
magnitude of power flow in the four left-going wave b
modes.

As expected, the bending, shear, and canpression
modes show power flow in pass bands—power flow in
each left and right-going brother wave pair being
equal and opposite. No power flow occurs in stop
bands, Complex mode regions of the bending and
shear modes show up as 'noisy' data on the plots.
But the magnitude of the power flow in these camplex
modes is equal and opposite. Thus it would appear
that the net power flow in a right-going
{left-going) complex mode pair is zero. Mexd,
howaver, claims that net power flow in a simgle
complex mode is aero”. It is as yet, uncertain
whether the equal and opposite puwer flow is actual N : R K :

or the result of numerical round-off. oot b 3

Compression Mode
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Fig 18 Magnitude of Power Flow in the
Left-Going Modes

Power flow in the evescent mode is also
contrac)y to expectation. With the exception of a
small pass band about 70 Hz, the evanescent modes
are in a stop band throughout all of th: bandwidth
irnvestigated, Because of this, one would axpect
there to be no net power flow. Since Figure 18
suggests that power is flowing, numerical effects
ace suspected, and are presently being investigated.

3. MNave Mude Bourdary Qonditions

All of the analysis of Chapters 3 and 4 was
performed without regard o truss Dboundary
conditions. In ordet to consider wave rode
pcopagation in a finite length truss, boundary
conditions must be taken into account. The concept
of a scattering matriz will be used to give the
infinite truss closure.

The cross-sectional state vector, ¥, may be
transformed into wave mode coordinates by the
transformation

Y= vy W {14)
where W is tha cross-sectional state vector in wave

mode coordinates, and u are the eigenvectors of the
transfer matrix T.

The cross-sactional state vector W can be
pactiiioned into components which crepresent

right-going waves, w+, and left-going waves, w .

(15)

We also label

wave modes which arcive at a
member boundaty, a,

and those which depart a
bourdary, d. The relationship between the arriving
and departing wave modes at beam bnundacies is
depicted in rig 11.

d, = A =~
{ ]
— — oy

Fig 11 « Reptesentat.on of Artiving and
Depatting Wave Modes at Beam Bounvlariws

a ard d ate related by the wave mode eijenvalues,

n
agan ¢ 4
L (1e)

W b dy

whete n is the number of bays

The boundary conditions at the ends of the
truss may be weitten as,

L) ) Y= rF  to)

thete the boundary comditions,

an

8, and external

totces, F, may be functions of frequency. In wave
mode coordinates this becomes
2
(a1 1oy @) ) = Fgele)  UR)

o

A partial inversiun yields the boundary comdition in
casual form,

d= 'Bt.-;1 W) Bytu)a + B!:v.1 Faxt
a=Swa+ sl Font (20)

whete S({w) is termed the scattering matrix at the
boundary, With no external forcing this becames,

(19)

or,

d=[Sw ] a (21)

Components of the scattering matrix are
complex, frequency deperdent reflection
coefficients. The secord term of Eqn 20 is the wave
mode generating matrix which indicates how external
:‘:;ceg at the boundary genetate outgoing wave

es”,

Decivation of the Scattering Matcices for a
Pinned-Free Trus3 Beam

The boundary conditions for the pinned eid of
our truss (taken to be the left end) are

!
i
Y, = 0
: L (22)
1
i
\

Followirng the preceeding derivation, we obtain the
scattering matrix given in Figure 12, More detailed
plots of the Individual entries are available in
teference 11,

Application of the free boundary corditions at
the right end requires a bit more care, These
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boundary conditions must include the effect of the compcession wave is well know to be 1 for a free-end

member which campletes that end, end -1 for a fixed end. The S(4,4) plot of Figure
up fy 12 indicates that the reflection coefficient for the
— L_ Uy f3 compression mode at the fixed boundary tends to
-1.0, while S(4,4) at the fee ard terds to 1.8. The b
: Yy fz low-frequency limiting behavior of these two terms
ue £y is thus correct.
This member has a force-deflection relation 4. Natural Frequencies by Phase Closure
| The phase closure principla states that lL
A 8Bj! ul.. natural frequencies occur when all wave modes
B =0 {23) complete a circumnavigation of the structure with a
¢ D ! [ 3 total phase change of K= . For the cass of an
[}

nbay truss, the wave modes arriving and departing ‘
the two ends are related by (Fig 11)

where [A B; C D} can be obtainel from dynamic -
cordensation of a finite element model of that a = ;“dL Y
number . n (24)

a, = £ d

In this analysis, the member was modeled by 2 L R
beam elements, thus the 9 dimensional finite element where £ is a diagonal matrix of eigenvalues
model must be reduced to the form equation by associated with the right-going wave modes. Egn 21
dynamic condensation of five internal degrees of can be written for both boundaries as,

freedom,
d =Syl ay
Chacks can be wade on the validity ol these {25) |
reflection coefielents by examining limiting cases dR = [5g) 2 J
of theze values. At low frequencies the bending \

mode resembles a bewms in bendim, while the py repeated substitutions of Egns 24 and 25, we
compression  mode resenbles a rod in  obtain ay after one circunnavigation of tre beam,

tension/compression, Since the wave mode

sigenvectors have been normalized with the axial apet"s "spa (26)

deflection of the first node equal to unity, checks R

can be made on the reflection coefficients of the Resonance occurs when this relation is an equality; 4
compression  mode at  both erds, The {
deflection-normalised reflection coefficient of a te” S, T Sg-11=0 t27)




The only non-teival way this can be true is Lf the
deterninant of Bgn 27 is gecto, Therefore,

det { ¢ "8, £"s ot 0 @)
is a satisfied at a ttuss resonance.
Notice that, by replacing only one value in

the formulation (the number of bays), the natural
frequencies for a truss with an acbitracy nuaber of

bays can be determined "Quick as & bunny.® ihw’

ordet of the problem does not increase with

increasing number of bays, but resaing that of the
transfer matceix,

Fig 13 is a plot of the detecminant of Bqn 28
for a seven hay, pinnad beam truss with one free and
one pinned end,” e natutal freguencies of the
truss can be identified whenever Eqn 28 terds to
teto. Mesonant frequancies deternined by this ghase
closuze method are listed in Mg 13, These
frequencies rqxﬁuu those detetmined by a finite
elament snalysis’® Of the Same truss except whanever
the modes are closaly spaced. The finite element
analysis obtaing tive modes within the 35.13 - 35,
Hz bandwidth while the phase closure method locates
only two. This remaing true even when f{requency
steps of 0.001 Mz are used in Bgn 29, The same
results alw occur about 70 and 154 Hz. BecCause the
isolated modes are a0 accurately determined, one may
be tempted to attribute the phase closure method's
failure on numetical round-off, This, howevet,
tesaing to be shown.

5. Umodeled EBffects

Linear behavior has been assuwed, AR actual
spacecraft truss may  exhibic significant
ron-linearities, pscticularly if it is deployadble
and thus has relatively loose joints. The effects
of suwch Jjoint non-linearities upon the cesults
presented here ate not known, It seems plausible
that the situation would becase even more camplex,
arnd that the pattern of stop and pass bands, at an
given response asplitude, would suffer sawe sort ©
blureing.

Even were an actugl ttuss linear, it would not
be perfectly periodic. Small, unintentional
variations from pecfect periodicity would be
present. The statistical effect on wave propagation
of such random variat*om in bay properties is the
subject of referencell, This reference shows that
the firat-order effect i3 that all wave modes at all
frequencies will be spatially attenuated. The
degree Of attenuation is  proportional to
"randomness® and inversely proportional to the
"coupling strength" batween bays. (Suitable
mon~dimensional measures of randomness and coupli
strerngth nust be inttoduced). ™he phy:lcra
exploration for such localization 1is that the
coherent wave is scattered into incoherence; the
vibtationsl energy is transferred into a spatially
localized rcesponse., We thus anticipacz that an
actual truss (as crapared 0 its  {lvalized
mathematical model) wili exhibit the characteristics
described by this papsr only approximately.
Real-world effects (non-linearity, disorder, and
othery) will tnd to modify this response
(especially at higher frequencies) to be more of an
ill-defined local rattle that slowly appears and
disappears in local portions of the structure.

Present finite
Analysis Eluments
12.18 12.18 wi 78.51
33,97 33,97 wi .52
35,13 38.13 wi 0.54
%S k1911 wi 7.5
i 35.29 wi n.5%
? 35.3¢ wi n.57
i 35.31 i 70.%9
AYA U] Sm.'f Mi ;o.:s
51.84 51, 9.59
64.51 64.51 13‘:3 n.o
§7.08 §7.08 103,83 103,89
-7 5.5 121,14 121.12
/i 70.84 147,91 147,91
70.22 .22 153.45  153.45
i 70.39 - N
i 70.49 /i 154,57
/i 7¢.43 n/i 154.69
i 70.47 155.38 )
n/i 70.47 157.87 157,07
/i 70.49

/i = not identified
? = possible identification

Figure 13 - Natural requencies Obtained
by Phase Closure

6. OConclusions

This research camputationally investigated
wave mode pcopagation in two-dimensional, rceriodic
truss structures, Same conclusions based on this
research follow,

1) The transfer matrix technique proved useful in
that the dynamics of a complete truss beam were
determined by analysing only one of the periodic
elawents, Conventional analysiy tools such as the
finits element analysis became computationally
cunbersane as the number of degrees of freedom

. P - 5



needed to model the structure increases. In the
transter matrix mathod the order of the nroblem
depends only - on the ordet of one of the
crosg-sectional state vector.

2) The method of obtaining natural frequencies of
tie truss by sequential multiplication of the
transfer matrix and subsequent application of
boundary corditions is only practical for cases in
which the eigenvaluss of the transfer matrix are not
large,

3) The results obtaired by axamining a pinned rod
truss by transfer maxricies closely match the
results obtained by continuum models of the same
structure.

4) As with continuun models of the truss structure,
the pinned rod truss loses its fidelity at the first
resonant frequency of the truss members. The rod
modelling masks all local member dynamics that would
be present if member bending were modeled.

S) The pinned bean truas exhibits complicated
mechanical filtering properties,

6) Coanplex modes must form in pairs and cannot
exist alone. Thus in a pinned beam truss, there
must be at least four (eight, twelve etc,) or more
camplex modea present in order for any to exist at
all, Mono-coupled systems cannot support complex
wave modes,

7) Complex mode formation i3 initiated at member
reonant frequencies. No explaination could be
found for termination of complex mode coupling.

8) Net power flow in a right-going (left-going)
complex mode pair is zero.

9) Several results were obtained that indicate
there may be numerical round-off errors in this
formulation,

a, Power flow was evident in the evanescent
modes throughout much of the bamdwidth
examined,

b. Shear force terms in the eigenvectors of
modes in stop bamds are not invariant
under a coordinate transformation,

c. Closely spaced natural frequencies of the
tru3s are not detected when analysed by
phase closure.

18) By using trhz phases closure principle =¥ the
eigenvectors of the transfer matrix in wave mode
coordinates, the restriction imposed in 2) cen be
circumvented. In fact, by charging just one
variable in the formulation, the natural treuicncics
for a truss consisting of an arbitrary number oIl
bays can be determined, As statad in 18), however,
this method may only locate isolated rasonances.
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ACTIVE MODIFICATION OF WAVE REFLECTION AND TRANSMISSION
IN FLEXIBLE STRUCTURES
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ABSTRACT

A theory for active contrel of elastic vave
propagation in structures is developed. Attention
is focused on active modification of the scattering
behavicr of discrete locations in a stiuctural
network. The wave mode input/output relation at a
structural junction containing control actuators
can be altered in two ways. First, the closed loop
reflection and transmission coefficients can be
specified, and the necessary [eedback to achieve
these coefficients determined. Second, an optimal
wave controller can be formulated which maximizes
the average power dissipation at a junction. If
the opeti loop structure is stable, then the opcimal
control guarantees stability. since energy is
sctively dissipated at the junction. Seample
controllers are derived and simulated for a
free-free beam to descnstrate the techniques and
indicate the achievable perforsance.

INTRODUCT 10N

Modal analysis of structural dynamics is a
poverful and widely applied technique. The
technique, however, is limited to systems with a
relatively sparse spectrum, since the mndal
paramsters. purticularly eigenshapes, are atherwise
known to be extremely sensitive to small parameter
perturbations of the structure (l1). Since modal
density increases with mode number, this
sensitivity has prompted one analyst to suggest (2)
that it is possible to make the wmodal model too
complex (of too large a dimension). Analyses (3,4)
for some future space missions show that hundreds
of modes of an elastic spacecraft can contribute
significantly to performance degradation. Many of
these modes are considerably beyond the range where
they may be confidently modelled. Thus, one faces
the problem of controlling structural dynamics
which are weil beyond the frequency range in which
modal analysis is applicable.

One alternative is the achievement of
significant levels of damping by passive or by
active means. Direct velocity feedback between
duc] (colocated and of like type) sensors and
actua:nrs has been shown (5) to be unconditionally
stapi lizing {f the matrix of feedback gains is
positive definite. This concept has been
formalized in a two level control architecture,
kuown as HAC/LAC (6). Although the feedback gain
matrix may, in principle, be full, experience hes

* Research Asaistant, Member AIAA
Assistant Professor

shown (7) that a restriction to local velocity
feedback (a disgomal gain matrix) results in
negligible degradation in performance.

This paper develops an altertative to direct
velocity feedback for active demping. Feedback
compensators., bused on spatially local wmodels,
actively modify wave transsission and reflection -
characteristice of the structure. Such reflection
and transmission coefficients are relatively
insensitive to modelling errors. depending only to
first order upon jocal pursmster perturbations.

Prior work (8.9) has shown that, in special
cases, compensators designed for active absorption
of travelling waves can be very similar to direct
velocity feedback. In general they can be quite
different.

TRAVELLING WAVE DYNAMIWJ

Modelling wave propagation through structuress
of arbitrary complexity can become impractical.
However it is invarfably poasible to find many
components in any sctructure for which a wave
propagation viewpoint is feasible.

This paper considers one such component; a
Junction of an arbitrary number of slender
onu~dimensional elastic members (Fig. 1). The
wmembers are viewed as waveguides along which a set
of discrete decoupled travelling wave modes may
propagate. Thess travelling wave mudes are coupled
to one another at the junction, the dynamics of
which are described by (requency dependent
reflection and transmission coefficients. Since
the remainder of this paper builds upon the
travelling wave description of junction dynamics,
wve provide a brief summary (10).

r .

This section makes reference to Fig. 1 which
shows an arbitrary junction of several members. and
may include a flexible body. The brundary
conditions, which may be a function of frequency w,
describe how boundary motions interact with member
forces and externally exerted influences. Such a
relation has, the general form

B(o) ¥() » [ Buo) Bo() 1 [} ] =@

wvhere the vector u contains the boundary motions
and f contains the member forces at the boundary.
The square matrices B, and B, contain the

homogeneous dynamics of the boundary while Q is a
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Figure 1 The generic junction. The Jjunction can
include a flexible body and can be connected to
many menbers. Each member supports incoming w, and
outgoing vo wave modes. External influences Q way
also be applied.

vector of external influences (forces and relative
deflections) acting on the boundary.

This boundary relation can be transformed into
a relation governing the local wave behavior. A
full rank transformmtion is made from physical
variables u and f to wave mode coordinates w, as
follows:

v [f]=[i] [n] @@

where the transforsation Y has been partitioned
into square submatrices and the vector of wave mode
amplitudes has been partitioned into tncoming and
outgoing wave mode amplitudes w, and w,. This
transformation i{s a characteristic of the members
attached to the junction. Each wave mode
propagates along one of the members, independently
of the remsinder of the member response.

Associated with each wave mode is a frequency
dependent mix of member deflections and forces
(each column of Y(w) in Eq. 2). Substituting Eq. 2
into the boundary relation (Eq. 1) gives

te 1 [in]{n]ee

which is an expression of the boundary conditions
in wave mode coordinates.

Equation 3 can be rearranged to give the
input/output relation governing a junction with
outgoing waves resulting from the scattering of
incoming waves and generation by external forcing:

WemSw +¥Q (4)
where
S = ~[ Bu¥us + BeYeo ] [ BuYui + BeYy, ] (5)

¢a [ B +BiYeo ] (6)

In this junction description, the matrices S and ¥
represent homogeneous and ncihumogeneous wave
behavior and are called the srattering and
generation mtrices, respectively, Both may be
complex and frequency dependent. This description
contains only looal junction and atructural
dynsmics and does not contain infersmtion about
other portions of the structure.

The scattering behavior of this junction
description can be altered actively through
exertion of extermal influences. such as comsanded
wmotions or applied generalized forces. which depend
upon incoming wave wmotion at the junction. Before
doing so, methods are required to help determine
the pcll'form and stability of such active
control.

Travelling waves can move elastic and kinetic
energy through a structure. The net power flow out
of the junction is a quantity of interest and can
be used for control design. The power [low out of
a junction is given by

Power = %'.f(t) (7)

It is necessary that care be taken to ensure that
the entriss in u and f are ordered such that their
dot product represents power flow out of the
Junction with positive net power flow indicating
that more power flows out of the junction than into
the junction (an exsmple of this is given later).
Note that power flow is a time dependent quantity,
which {s a bilinear function of the boundary forces
and velocities. Hapce, the aversge power flow is
not simply the sum of the pover flow of the
individual wave modes. However, the total average
pover flow is equal to the sum of the average power
flow at each frequency. due to the orthogonality of
sines and cosines at different frequencies.
Therefore we consider the average power flow at
each frequency o independently.

The time average power flow over one cycle is

Pavo(w) = i-.(u)" P(0) w(w) (8)

where w is the vector of wave mode amplitudes, and
the superscript H denotes the complex conjugate
transpose. The matrix P is given by

i Yair"You Yui"Yee _rYn"Yul Yei"Yee
P 'i"’[[\r.."h. Y..."v..] LYee" Y Yc."Y.n]] (9)
Pave is real for any mix of wave modes in w since P

is hermitian. A passive, nendiasipative junction
will have zero net power flov (P.ave = 0).

’

CUNTROL DESIGN

Two methods for wave control derivation are
presented in this section. In the first method,

- the closed loop mcuttering mtrix ts fully or

partially specified, and the control which achieves
this behavior is derived. In the second method,
the control is derived such that it minimizes a



cost based upon ths sum of junction power flow plu-‘

the control effort expended. Finally, the
performance achieved by both methods is discussed.

!t the utoml!y applied influence Q ia given

by a linear combinmtion of the incoming wave mode
anplitudes

Q=Fwm (10)
then the junction relation will have the form
Weu[S+?F]lwieS.wm (11)

1f the control designer specifies the entries
needed in the closed loup scattering matrix Sc..
then the frequency depeudent gains can be found
(10). For example, all cutgoing waves can be
eliminated by setting the closed loop scattering
mtrix equel to the mull satrix using the gain

Fe-9's (12)

Since wave modes may be difficult to meesure, Eqs.
1 and 2 can be used to derive equivalent feedback
using physical defluctions u.

Optimal control is defined by the minimization
of some cost, typically based upon the response of
the system and the effort expended in control. For
the wvave control problems, with a goal of sctive
darping, net power flow out of a junction is an
obvious quantity to ainimize since that increases
the energy dissipation at that junction.

Using Eq. 8. a possible cost functional has
the form

-

J-%I(v"?' « RQ)d (13)
-

where R penalizes control effort. Since the wave

mode amplitudes are affected by the contrecl action,

the w vector is a function of the incoming vave
modes and the control, so that .

"[s-. :‘00] (14)

Then the integrand of Eq. 13 is given by

w,"Puiwy + W "Pio(Sw, + )
+ (Swi + ¥Q)"Parmy
+ (Sw, ¢+ N)“’oo(s'l + %) (15)

where the P watrix has been partitioned as
PII PI.
e [R he] te)

This cost functional can be minimized by
wminimizing the integrand at every frequency. The
integrand is minimized with respect to the control
Q when

Qu ~[¥P? ¢ R} ¥ [Po) ¢ Poe8) ws ~ F w, (17)

This gives control exertion which is proportiomal
to the incoming wave wode amplitudes. Again. these
wave mde amplitudes oan be transformed to give
proportional feedbmck of physical deflections at
the Junution using Eqs. 1 and 2.

The second derivative of the integrand of Eq.
13 (Eq. 15) with respect to Q is

¥ P ¥+ R (ll)

Poo is hermitian and positive semidefinite, since
outgoing waves propagate energy away from the
Junction. (In fact, this condition defines ocutgoing
wave modes.) If R is chosen to be positive
definite, then Eq. 18 is positive definite and the
;:nn;ol in Eq. 17 minimizes the cost functiomal in
. ‘J'

Several properties of Eq. 17 can be readily
sesn. For conservative systems that support only
propagating waves, energy is carried independently
by cach wave. This causes Pss to be of full rank
and Py, to be the zero matrix. This allows a
control to be derived using Eq. 17 with R equal to
the zero matrix. In other words, {f ¥V is square
(all actuator types used) then there exists a
minimum achievable cost and it corresponds to the
control derived using Eq. 12. :

For systeme with evanescent waves, P.o vil/
not be of full rank and R sust not be nonzero in
order to prevent inversion of a singular matrix.
In this case, actuator cestrictions such as
saturation limit the achievable performance. If
only a subset of posaible controls is availabla,
there are situations in which the product ¥ P..¥
will result in a merix of full rank and R can be
set equal to the zero matrix to obtain minimum cost
with the available sctuators. Note that with
R = 0, the resulting closed loop scattering matrix
will be nonzero. This is because the outgoing
svanescent wave can combine with the incoming
evanescent wave to dissipate energy ar the
Junction.

Since P.ve ia never positive for an
uncontrolled junction and the control in Eq. 17 is
chosen to minimize the quadratic in Eq. 13, the
optimal feedback gunrantees dissipation in the
sctive junction independent of the incoming wave
mode: mix.

FREE-FREE BEAN EXAMPLE

The derivation and properties of wave control
can be best demonstrated using an example. A
free~free beam i3 chosen for the example structure
because such u beam exists in our laboratory (Table
1} allowing designs to be experimentally
demonstrated. The Bernoulli-Euler beam model
supports one evanescent and one propagating wave
mode in each direction.

#
d '} .
The first step i3 to derive the boundary
conditions for each beam end. The free-free beam
and externally applied {nfluences are shown in Fig.

2. The boundary condition relations for the left
and right ends are



Teble 1 Free-Free beam and sctuator apecifications

Beam Properties!
Material
Length 1 = 7.3152 "
Barding Stifiness El = 31.1 Nt/m
Mass per Unit Length pA = 2,8533 kg/m

Actuator Properties!

0.061 ©.0039] _s
B = [1.573 -0.1108) ¥

. B, = [‘1) o.c‘m]

sa] v <[] oo

L.R L.R

where the primss denote spatial partial derivatives
of the transverse beam displacement v.

The four wave solutions to the Bernoulli-Euler
beam equation are

-ikx+ivt .

Ve Wepl "..m‘ﬂt *

1lxrivt . '-".-hﬂut

Wipl (w)

where the wave number

k= (Mx)lai “l/l (21)

1s a positive, real quantity and the subscripta and
constants are defined as

rp: rightward propagating

re: right end svanescent

1p: leftward propagating

le: left end evansscent:

: mass density

: cross—-secticmal area

: modulus of elasticity

: cross—-sectional moment of inertia

~in>v

Lt YL
HL('FLli

YRt YR
- tFR Wy

Figure 2 Schematic of free~free beam. Orientation -

of external influences Q and beam deflections, v
ard v', are showmn.

For the left end of the beam in Fig. 2, where
the active junction control will be performed, the
incoming and outgoing wave mode amplitudes are
defined as

w Yo
" e =

For the remainder of this eample, only the left
Junction will be deamlt with explicitly.

Evaluating the entries {n the transformation
matrix of Eq. 2, using Eq. 30, gives

v : : 1 1 LI

v' H -tk =k liw
<EI v'''| ® [161k® -EIK® ~1E1k® E1k®|[wes | (33)
El v ~E1k* EIk* -EIx® EIk*}lwi.

with x = 0 at the boundary position. Substituting
Eqs. 28 and 23 into Eq. 19 and solving for the
scattering and wave generation satrices as defined
by Eqs. 5 and 8, respectively, gives

s- [ ) (3)

1+4 [ 1 -k ]
¥ A et 3 L3
L Elka * "lk ( ’

The transfer function irom an external force
applied to the right end of the beam to the
transverse displacsment at the same end can be
expressad as

vpel(1000]Y [gR](I-stESR}"ESLﬂR [“,] F (28)

where

E- [3-'" 2...] (an

and 1 is the length of the beam. This i3 an exact
solution of the governing equation and boundary
conditions.

The next step is to derive the net power
matrix P at any beam cross section. This is done
by subatituting the square wubmatrices of Eq. 23
into Eq. 9. The resulting matrix, using the
definition of wave number in Eq. 2:, 1s

(o NN
Oo=~0Q0
DO-O

P = 2 &k (pAEI)'’? (28)

CQOC -~
§
3

Since the wvave mode amplitude vector is
defined by Eq. 22, the (1,1) and (3,3) entries in
Eq. 28 represent the power flow associated with
propagating waves. The imaginary (4.2) and (2.4)
entries represent pover propagated by the
fnteraction between the two evanescent modes. Note
that the evanescent modes do not propagate power by
themselves. '’

).{ b

Now chat the junction dynamics and power
relations have been derived, junction control
compensation con be formulated. First, the closed
loop (1.1) scattering matrix entry will be set to
zero assuming that only one physical deflection



weasurewent is available., Thie remults in no
outgoing propagating wave b.;l" cruh:ul by an
incoming propagating wave, nce t
characteristic attenuation length of the svanescent
modes i3 invera;ly prepertienal to the square root
of Irequency (Ei. 18), the inpertance of this (1,1)
sntry becomsa more obvieus at higher [requencies.
Second. optimal feedback of phyatoal deflection
wessuremtnts will be derived. Perforsance of the
two designs will then be evaluated. In the
following discussion, the F and C satricea denote
incoming wave mode and physioal deflection [eedd ok
ins, respectively.
" Feedback of a physical deflection can be
achieved by setting Q = G u in Eq. 41 and
substituting for u from the top half of Eq. 23.
The gain for vhich the closed loop (1.1) scattering
mAtrix entry is zerc can be extracted in closed
form or numerically at various values of frequency.
If & transverse displacessnt measurement is
chosen in conjunction with torque actuation. giving
feedback of the form

N(w) = G(v) u(v) = g(v) v(w) (29)
then the closed loop scattering matrix has the form

1 “f{-r{1-1 l1¢1-2v
Sev = T (T+1) [ l-lsalf) u-r(l-t)] (30)
vwhere
rafltlx (31)
2E1x"

Setting the (1.,1) term to zero and using the
definition from Eq. 21 gives

T e or &(v) = -t (pAEI)'“%  (32)

This corresponds to feedback of transverse velocity
to torque through & gain equal to -(pAEI)’®. The
resulting closed loop scattering matrix i

sn-[_? },] (33)

The power flowing out of the closed loop junctiom,
at each frequency, can be found by substituting
Eqs. 313 and 11 into Eq. 8 to.get .

Pave = %'l'[-: i ]'u = %'t"?e;'l {34)

This quadratic yislds a real value for average
pover. The eigenvaluse of the closed loop power
matrix are 1.414 and -1.414. This means that Pc,
fa ar indefinite matrix and may amplify certain
incoming wave mode mixes. Therefore, junction
dissipation depends on the mix of incoming wave
modes, and therefore on the dynamics of the
remainder of the beam.

Optimal feedback can bde derived using Eq. 17
with R equal to the zero matrix since only torque
actuation is being used. This results in incoming

174

wave mode feedback of

F Bl [ (=1-1) (144) ] (38)

or. equivalently, feedback of deflection and
rotation with

G205 (EN)™*(M)I L0 (-141) &' ] (38)
This only calls for rotation feedback and does so
through what can be termed a half differentiator
since it provides a frequency dependence of ¢'’?
and a forty=five degree plase lead. This results
in a closed loop scattering matrix of

see [ ] (1)

The remulting net power is
Pave = i'u" [ -: _: ]'I - i'n"e;'l (3)

This closed loop power mmtrix hes eigenvalues equal
to 0 and -2. Therefore. the matrix is negative
senideflnite and enargy is oever ganerated at the
Jurction.

Fig. 3 compuares the closed loup responses with
the open loop response, found using Eq. 38, using
the feedbacks given in Eqs. 32 and 38. The opem
loop system 18 provided with about 0.5% demping
through the addition of a linear dashpot at the
right junction. Note that the feedback in both
cases result in 135 degrees phase lag and a
logarithaic magnitude rolloff slope of -3/3 above 1
red/sec. This matches the receptance from force to
displacemsnt at the right end of a semi-infinite
beam. In other words, at high frequencies (above 1
rad/sec v Fig. 3). where evanescent modes become
insignificant, the bemm behaves as {f it were
swmi-infinite. Fig. 4 1llustrates that the
corresponding power flow out of the left juncticn
is negative for all frequencies. Noting Fig. 3,
the performance is slightly better at low
frequencies for the optimml feedback, since
evanescent wvaves are being explojited to increase
Junction pover dissipation.

Fig. S cowpares the clossd loop transier
functions to the open loop tramsfer functicon with
the dynemics of a torque wheel actumtor included
(Table 1). The actuator dynamics were igncred
during control design, but need not be. Note that
the controller derived by setting Sc.(1.1) « 0
results in an instability at 72 rad/sec. This
instability was verified using a [inite element
mocdel and is seen tn Fig. 6 where the power flow
out of the junction becomes a positive quantity
near 67 rad/sec. An interesiing feature can be
sden by comparing Fig. 3 with 5 and Fig. 4 with 6,
Kote that wizn the compensator is derived based
upon the correct model, resonant behavior appears
to vanish. Whan not based upon the exact model,
resonant behavior still exists, because wave
cancelling is not exact, and instability occurs for
the compensator i{n Eq. 32.
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Figure 3 Nagnitude (a) and phase (b) of beam
transfer function from unit forcing at the right
end to colocated transverse displacement for a)
Sc.(1.1)~0 control. b) optimal control, and c) open
loop. Actuator dymamics qre not included.
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Figure 4 Net power flowing out of the left
Junction for unit amplitude forcing at the right
end and for a) S:.(1.1)=0 control and b) optimal
control. Actuator dynamics §re not included.
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Figure 5 Mognitude (a) and phase (b) of beom
transfer function from unit forcing at the right
end to colocated tranaverse displacemsnt for a)
Sc.(1.1)=0 control, b) optisal control, and c) open
loop. Actustor dynamics grq included.
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Figure 6 Net powar [lowing out of the left
Junction for unit amplitude forcing at the right
end and for a) Sc.(1.1)#0 control and b) optimal
control. Actuator dynamics garg included.



CoNCLUSIONS

Wave junction contrel takes advantoge of
combining iht rebuatasas of culocmted feedback with
the high performace of feedback gains optimized at
every frequency. The performance and dissipation
of the junction control can be determined without
knowledge of global atructural behavior. Since the
design depends only upon local dyramics, 1t cannot
be sensitive to wodelling errors in distant
portions of the structure. By maximizing junction
dissipation at all frequencies, high performance
vibrastion suppression is achieved, perhaps even to
the ex . ent of elimimating rescrant behavior {n the
structure. It was shown that deaigning
coapensators without regard to actuator dynamics
causes a degradation in performance. But, the
actuator dyramics may be included in the boundary
cohditions to prevent this, :

Several disadvantages wust also be faced in
using this schems. The cowpensators are typically
complex functions of frequency. These can be
difficult to implement, and may become mere
difficult wvhen actuator dynamica are modelled.

Nany extensions to this theory of active
control of wave propagation are possible. One
might, for exasple. attespt to adapt such
controllers by observation of their performance.
One might attempt dynamic estimation of incoming
wave modes, using purtial seasurements and theory
yet to be developed. One aight make these
wofsutements some distance “upstresa” from the
actuator to provide for actuation and sensing
dynemics., and thus smake the theoretical
compensators easier to implement. This promises to
be an interesting area for research.
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SOME APPROXIMATIONS FOR THR DYNAMICS OF SPACECRAPT TETHERS

) A. H. voa Flotew

INTRODUCTION

Past analyses of the dynamics of spacecralt tethors have geaenully
besn of twe types; sither quite simple models were wond, typically witd
the tether amsumed to be sirnight and inextensible, or comprehensive
simalations|1,2,3] were prepared for computer implementation. General
agresment oa the importance of various physical effects does not seem
o have besa reached. Each analyst has individually made the choice
of which offecte to model, semetimen quite arbitrerily. Refervace 2is &
broad summary of werk published t0 date, and includes S7 cloations.

The work roported ia this paper was motiveted by the philsophy
thai the appropriate spproach 1o developiag aa eaginesring model of &
physical system ia to include no more thaa the bare minimum of effects
required (o reproduce the behavicur of interest. Since this is neces-
sazily an iterative procedure, this paper builde upon insights gleaned
from the results of previows analysss. Speciral separation i invoked to
reduce the dynamics to a relatively fast vibrational motion, decoupled
from and superimposed upoa the slow roll/yaw librations of the sys-
tom. It is suggested (with experisnental evidencs) that, becanae of the
Jow tensions experieaced by spacecral tethers, aca-linear exteasional
strem-straia behaviour will be importaat.

Infnitesimal parturbations of the tether from its slowly varyiag
quasi-squilibrium are described by o system of linear partial differen.
tial equations, in which loagitudinal and lateral motion are coupled
by slight curvature of the equilibrium shape. These equations are
noa-dimeasionalised and investigated with respect to waw propage-
tion, revealiag that for wave leagthe much smaller than equilibrium
radiws of curvature, lateral and loagitedinal motions effectively decow-
plo. Assumptioa of point-mass dynamics for the ead bodies leads 4o sa
of which can be quite different from those of the classic cable approxd-
matioa. Effects of tether stiffases, curvature, tension, leagth, retrieval
rate, sic. are illuminsted in torms of non-dimensions) parameters.

The intens of this paper is 4o provide simple conceptual models of
the motion of sethervd sasellites, both to guide development of fature
simulstions, aad 4o provide a basis against which to compare simulatioa
resulie,

APPROPRIATE MODELS OF TETHER ELASTICITY

To date, models of tether elasticity have ruaged from that of aa
inextensible chain, to that of & beam with acn-symmetric croms-sectioa
and with torsional straia energy. It is eady to show that the *bendiag
leagth,” lg, beyoad which the effects of bendiag stiffaess, K7, are neg-
ligible compared to those of tension, 7', is given by iy » /FT/T. With
tsther diameter oa the order of one millimeter, and tether tension on
the order of & faw Newtous, this beadiag characteriatic length is on the
order of a faw cantimeters. Thus, for such tethers, with lengths of many
meters or kilometers, bending stilfness does not contribute significantly
to global restoring forces, and & beam modael is inappropriate.

Beading stiffaess does, howswer, coatribute non-linearly to the ex-
tensicasl siress-etrain behaviowr of such tethers. The natural form of
a real wire is Rot strmight. Reiidual stresses of unapecified origia, and
a spiral shape dus to deployment from a reel will both be preseas. The
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charecteristic leagth of thess imperfections may vary well be comparss
bie 10 the beading leagth. Figure 1, adapied from reforence ¢, presents
relevaat experitiontal revulte.
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FIGURE 1 A wire ezhibita a aca-lasar strem-ctraln relation duwe
o streightening. This gure compares the results of one exper-
lmemt with an amalysis based upes the sssumption that the ua-
srased wire shape Is @ by wound on & spos!l of radius r.

Nea:Linesr Extensional Stiffae of 2 Wire

Spacecralt tethers will ofven operaie under very low tensics, even
nhunhwumhﬁnmdnmhuﬂnbdm
We are thus interested in the sxtensional stress/strain bebaviour as tea-
sion approaches swro. The most common assumption has been bilinear;
linear elasiic for extensional struin, aad sero temsion for compressive
strain. The experimental results of Figure 1 show the behaviour 4o be
more complex.

Two approximate analyses of the force/deflection bedaviowr of a
wire with initial curviness can be offered. Both predict a similar aca-
linear stress/straia behaviour:

== 5 (1)
{valid for small strain, approximately —0.08 < ¢ < 0.01). The strain, ¢,
is thus seea to bi:the sum of two contributioas, a linear elastic exteasion
proportional to the tension, T, and inversaly proporticaal to the axial
stifase KA, and a non-linear shortening dwe to the wires's tendency
to returs 1o its unstreseed shape as T — 0. The value of x depends
on the assumptiona made in the derivations.

If an inexiensible wire's unstressed shape is aasumed to be a helix
drdiur.pinlmhcuo.udmhmhb(th'inhthhdy
wouad on a reel of radina r), thea the tension, T, required to extend
the wire t0 3 leagth A (while preveating untwisting) is given byls|




T-F -y @
whers £l ia the beading and GJ the tomicsal stiffaem. It we deline
the rain with respect 10 the wice's archagih, ¢ = (A~ L)/ L, aad imh
Jo] € 1, thom exprassion (3) redwen ¥

oJ K1
ik e e ®
which, siacs GJ w B, bacsmes

¢= -(;)' i amBIVAR )

Aa alterastive derivation stiempie o madel & olightly wrinkied wa-
srossnd shape by iak rduerion of a sinwseidal planer wriakie with am-
plitade & and wavalengih A. 1 is et difiiculs W show that under this
asumption, the wasisa/struin bebavieur of the axially inextemsible
wire besomes

e=-(@? i a=anvAEAN® )

aa A — L. Equation {1) is then the sam of tha nen-linear shortening
of squation (4) or (8), aad the Linear slastic sxtensica T/BA.

The experimental curve of Figure 1 was wessured for a leagth of
telion-insulased siranded copper wire sold oa a small plastic real. This
wire was uader considerstion for wee as a spacecraft tether{d]. Plansible
values have beon inserted into expressiens (1) and (4) o cakeulats the
theorwtical curve in Figure 1.

It would be interesting 1o spacalate about (or %0 measure) the low-
tension strwms/etrsia behaviowr of other candidate tethers. Effecha of
braiding, siranding, twist and other tether details would podestially
»dd %0 the non-linesrity introduced by resideal stresses. The remine
summarised by Figure 1 suggest that such son-linear behavioar will
be mach more important than many of the other non-linear olfects
included in past analysws. For \be mission studied ia referencs 4, the
noa-tinear Sexibility, 54(s), can be greaser than the linear Senibily
by a fester of up %0 one thousaad!

FIGURE 2 It is proposed to forgo detailed modeling of the tether
“wrinkies” ia favour of modeling only the approximate position and
using & moa-linear streas-strain relation. The tether position would
then be modeled with a resolutioa of approximately is = VEI/T.

Ln principle it is pomibie to model this vabtle offect of tether bond-
ing sillness by waing & beam model for the Wther and resslving the
detalls of the tether shape. The reseintion demanded wenld be o the
order of & Aw contimotans (he bending Joagedh); hwe would loat e
a hopolemaly large somputer simelation for vthers of mverl kilome-
tors loagth. The approash intreduced in the presseding paregraphe
would be %o nee b olastis cable model, with & ned-linenr siress-atnuin
bedavieur & in equation (1). Figure 3 indicases that the Wther posi-
tioa weald thea be modeled 10 a precision oa the order of the beading
lengeh, adoquate for mast purposes.

RAFERRNCER FRAMES AND BQUATIONS OF MOTION
Tha equations of metion of aa slastis cabl: {ne bending or torsionnl

i have loag besn kaownl], sad are soucisaly expressed in vecstor
wotarion;

W5 =TT +? ®
where 4 is the mass por whid struined length of the dather, R{s,t) is
the vector position of the tether as a fanctisn of time, ¢, snd strained
arcleagth, s. The arclongth is conveniontly mesrrred from cne ond of
the tether, say within ead body 4 Extersal forees per wait kagth
are indicated by vecior B. The seasien, T, is given a8 a fanctica of
s, whore & = |GR/3s) ~ 1, by equatien (1), If \be tether is %o be
modeled as constant hagth, eqeation (1) in replaced by the constraina™
HOR/3s) = 1. (The isens of whea an in-elastic model of the tether is
appropriase is discussed ia a subsequent section.)

The boundary conditions required to complete equations (0) will
depend o the dynamics of the sad bodies of the tethered sateliite
system. The force enerted by the tather on the sad body A (st o = o)
i just )

Pa =T - o) Frlemea m
Note the appearancs of the (normally negligible) thrustiag term duwe b0
sether deployment.

Refereacs 3 reports the development of & simulation based upoun a
fialte difference discresisation of equatica (8), and boundary conditions
built wpoa equatioa (7) and the ussumption of suitable models for the
end bodies. The refereace frame chosea is earth-contered inertiai, thea
relative moticn must be resolved s the small difference of two large
aumbers. In this refivence frame, oquations (8) and (7) are highly
aoa-linear in the thres components of R

A more common approach has beea to introduce a tether reforence
frame{1,3], aad to express tsther motioa with respect to this frame.
This tethor frame has historically been chossn with oae axis defined
by she tether attachment points ca the two bodies and the other ammi
deliaed via their orientasion with respect to the orbital plane (we Fig-
wre 3). If tether deflections are expressed with respect to this frame,
then the rotational motions of the reference frame add coriolis, cea-
tripetal sad angular acceleration terms o the sime derivatives of equa-
tica {6) and (7), and the equations describing tether deflection are
coupled to those describing system attitude. Since the angular velocity
of the tether reforencs frame is defined by end body motion, which de-
peads (in part) upoa tether forces, the equations of motion governing
system attitude are aleo coupled to the partial differential equasions
governiag tether deflections.

o
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e approseh of refersace (1] hes been to aumerically simuinte
\his syviem of oquations. The tether shape ia discresioed by the iaire-
duetion of shape fuactions of by & lumped mass medel The resulting
srdiaary difforsatial equations ¢aa then be invegroved forwand ia time.
wmwmnmmmnu “wniff*;
some motions sccar much faster thon ethers, aad the iategration time
mmhmnhc'ﬂ“mdm.ﬂdnﬂ

THR APPROXIMATION OF SPACTRAL SEPARATION

As altersative appresch 1o eatrecting infermativa from & niff sye
e of ordinary diffarential equations is e intreducs the appreximation
of spectral separatiea. This approximation is bused wpen the realise
tioa that the offect of coupling between fust aad slow dynamics of &
aystem o well apprenisaated by the intreduction of twe ssumphions;

1 The slow dynamies deline & quasi-equilibciam from the poist of
view of Whe Dust dynamies.

2 The Ant dynamion modify the the slow dynamies quasi-statically,
that is, they participate in the slow dynamies at their instamte-
acons equilibrinm levels.

The best reforenca for the theory and practiss of speciral separetion,
with application te many enamples, is perhape an unpublished beok
drel.[9}

Table 1 is & suammary of estimates of the sigen-froquencinn of 2
tethered system, both in symbolic and numerical form. The numbere
wed are represeatasive of the hallan/American shuttle tsthored satel-
Lte system. Note thas the numerical astimates for this specidie system
indicate shat most internal metions will be much faster than pitch and
roll of the entire systam. The one exceptien 0 this speciral ssparation
is the peadnlar attitnde escillation of the erbiter due 20 Wother easion
acting ot the end of the tether deployment boom.

TABLE 1 Estimates of Purieds of Vibratien

of » Tuthered Satellite Syvtem

Deacriptioa Symbolic Numerical!
System Pitch *: 3100 seconds
System Roll - 2700 seconds
Elastic Bouncs 2:\/ v 61 sesonds?
Tuther Modes:

First Lateral 1 1AV/ 3 0 seconds

First Loagitadinal 13V 9 seconds?
Ead Body Attitede 2!\/& . orbiter: 1000 seconds

sub-satellite: 13 scconds

1

Numerical values nsed are: orbital rate we = 1.16 x 10™% per second,
(low earth orbia), axial wifaess KA = 10°N, orbiter mass m, = 10°kg,
sub-satellite mass mg = 500Ag, tether length L = 20km, tensica T =
4ON, tether mam demsity 4 = § x 10~%kg/m, arbiter inertia [, =
107kg ~ m?, orbiter astach point offset d = 10m, sub-sasellite inertia
I, = 125kg ~ m?, sub-satallite attach poins offset d = 0.75m.

2

Thia period is based oa a linear elastic model for tether axial stiffness.
The nou-lnsar stress-etraia bebaviour of the tather to be used for the
Italian/American mission is a0t available.

THR QUASIRQULLIBRIUM TRETHERR SEAPR

The attitude motion of & general rigid bedy in orbis, respeadiag v
eavironmental vorques, is well understoed.[13] The mation of & geaernl
fexibls buady i orbis, and its internstion with the gravitstional feld
s Joms woll understood. Initial studies have chown thaad the rigd bedy
motion is wesemtiaily unperturbed by Gexible dolormations as ag
these deformations resain small relarive be cystam dimensions,{10] aad
their satarel froquenciss remaia porhage o facter of ton11] larger thaa
thaa the erbital rete w,. Review of Tuble 1 reweals shat, with the
ameption of ochiter sttitude matisn, the naturel Nrequencios of the
intorual motioa of the tethored system are indend much faster thaa
orbital rete. If slow end-body attitude metion can be igaored or b
attively costrelled, the attitede librutions of the dethered spvtem will
occur mueh tihe thess of & rigid body, u leng = iadernal dellestions
remala small compored o Wther loagth.

Roforenees 13 and 14 hawe considered the eqailibrinm loagitedinal
siraia aad venslon disribations in & tether, subject be the assumptions
of Unear slasticity and a constant gravitatisnal gredisst astiag aleag
the axis of a straight tether. These stadies have mathematically ese-
firmed the validisy of » simple appresimation, saaet for inSaitesimal
sAbar strain; Wadee esnion is offectively constash if bath end mames
are much greater than tother mass, aad spatially parabolic if wether
mass s sigaificans.

The quasi-equilibrinm shape of & ether in act necossarily straight.
Lateral forces due %0 awrodynamic drag, gravity gradiemt, slectrody-"
asmie interaction with the sarth's magaetic field and coriolis offects
due te retrieval or depleyment of the Wther frem s massive cud body
will all deflect the tether laderally ageinst tensile testering foress. Bach
of thase foress will vary with time and spaes, both ia magaitede and
direction, with much of the variation occuriag at freqencies compare-
bls o orbital rete. Orderof-magnitede wtimates of thess laterul forems
e
Awedynamic Drog
(mmospheric deasity 10™1¢ 10 10™1%g/em?)

10* 10 10°*N/m

Bectrodyssmic
(earth's maguetic feld in Jow sarth orbit)

2 % 10" N/m/Ampere

Gravity Gr-dieat
(v in lazeral deflection in meters)

vXx 10~'N/m

Coriolia L x10~*N/m
(L ia retrieval or deployment rate, in m/s)

Numaerical values givea ia Table 1 have bova wsed where noeded.

The approximation of spectral separetion permits caleulation of
aa instantanevus tether shape by insisting upoa static equilibrinm with
these lateral forees. If one ansumes that the tether experionces o linear
foree deasity., P, waiform ia direction and maguitude aloag the wire,
thea the equilibrium curve is planar, and is givea by the solution of

TR +P=0 ®

together with an appropriate stress/strain relation. Since this curve
will ba very shallow, we will assume it (o be & portioa of a circular are
of radivs, B, & » L, and will sssume tension, T, to be indepeadent
of o. Basic equilibrium analysis then yields B = T/R,, (P, is the
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polate) and mid poist sng of § = L/3R. Using & venslen of T = &N,
-a.mummdum-'nln.w.mam
of R = 2000 km and & mid poinh sag of § = 35 metems for & Wother
loagth of 30 hm. Thest valuss boouse R = WO m, and § = 30
Mlm&hﬂldlhn‘tuﬁldtﬂ.mm
squilibrium radies of curvatars, £ = R/L, is \hes s0ea 10 be very large
(vppvenimately 100), sad independons of hagh.

RNeforsnes 10 sad 11 define the Nbration of & Senible qyosem la
vorms of the sttitnde of & reforeace frame whish erigin romains 8 the
dolurmed syvom mass sonter, 8ad which artitnde in delaed by ortheg-
caality of the system Baxible and rigid bedy metion. The tether frume
satishes this delaitisn of stitnds suly spprenimately, even when the
end bedies are medeled a8 poist mamsss. Sines (he oquilibriam slope
of the sether with reapest o the line ssaneeting the twe aMtach peiaie
is very amall {appresimately 1/20), the curved tother will couple the
twe ead bodies mash 00 & tiraight tether would, and eyetem Kbraticn s
esssatially the same as the Nbrutioa of the tether frame. Roborenee 11
comes Ve & similar conciusien.

The slewly varying equilibeiam shape we will coasider ¢an thws be
summarised as follows: A global piteh and roll Kbration of the syutem
creades & Wpadially near uaiferm \eusion in the tether, which verim
slowly ia time. The equilibrium tether shape is meurly straight, with o
sdallew plansr sag whish slowly changw amplitede and swings abomt
the line connecting the twe tether attachment poimte. This equikibriem
ia statiz when obearved oa the time scales of isternal Wther modes.

FAST TRTHEER MOTIONS
Tast ther metions are of interest for severnl resssas;

1 Shmeletions have showa(s] shat such tether motions may gru w dur
ing retrioval.

2 For mancuvem invelving intermitent thrusting of the ead bed-
108,(2,18) such fast tsther metions will be encited directiy.

3 The performance of kinetic isclation and sub-gatellite atiitude con-
trol aystems based upen remete tethering of & swmsitive paylead te
a nolay space stasion,| 16} depends streagly eu these tetber dynam~
s,

Prisr studin(?] of the dynamise of slightly curved alastic eablaa
have concinded that even very slight squilibrium curvature can have
s great influeice upea perturbational metisn. The fendamental sym-
metric mode of a planed-pinned wire was shewn %0 change chaructor
whea a noa-dimensional pareumeter, 2! = (L/R)*EA/T, wcesded o
critical value. The valus of this parameter defaes whether the tother
behaves extensibly (A < 27) or incatensibly (A > 3v) us ia is perturbed
from the equilibrinm shape. The values of Table 1, together with the
estimate of R/L = 100, yield & valus of A = 3, very near the critical
valus. Simce these values are culy estimates, aad sinee the boundary
conditions en spacecralt tethers are wery difflerent from thoss treated
in reforenss 7, an analysis is apprepriste.

‘This section derives the equations of motien governing infnitesimal
porswrbations of a slightly carved tether. The equilibriam curws is
taken 40 be planar, and the perturbations are delned within this tother
oquilibrium plane, and sormal te it. The offects of small coupling due
to the slow (order w,) angular velecition of the reference frame are
ignoted, consistent with the appreximation of spectral sspantion.

Figure 3 defaes the small parturbations w{s, 1), v{s,1), wis,t),
£(0,%) and p{s,¢) of the tether with recpect to its oquilibrium shape,
defined by (s} and y(s) whare o in the equilibrium arcleagth. This
squilibrium arclagth differs slightly from the natural arclagth, 2,

{see Figure 3) depondiag upen the equilibeium sension. The teasien s
‘aben 1o be the sum of the squilibrinm valws, T(s), aad & parsurbasing
r{s,t). Under the ssamprions justiled ia Ve precosding pasagroaphe,
and wing the equilibriam dofacd by cquation (3), eqnstions (8) san
be axpanded v}

la alate of Atder sanilibeinm:
Aniak
Ao "
Lateral:
LR (R (10)
Nocmal b the nlase of iethee sonilibeinane
T = ()

whete terme of sscend and higher erder ia perturbational quantitin
Aave boen dropped. The perturbational teasion is givea by
- T o

where 57 ia the olfective epensional tiffaam of the cother as the squi
tibriam strela {see Mgare 1).

FIGURE 3 T oquatioas of motion goveraing infinitesimal tather
defiections from the equilibtium curve taa be expressed in several
different coordiaate systemas. Curvilinear coordinates are uselul for
oxposing the high frequency wave-propag..ica limitiag behaviour,
und can be weed for an eigua-analyis.

Refareace 7 mahes farther approximasions, valid for very shallow
pianed-pianed catemaries, %0 manipulase squations (9), (10) aad (13)
iato a single second order partial differeutial for w{o, t). We prefor the
approach oreference 17, in which cabls deflections are expressed ia
\orms of compoasnis tangeatial and perpeadicular to the equilibrinm
curve (sen Figure 3). Equations (9), (10) and (12) caa ba transformed,
using the transformation

weeg-ag ()
9-(%'0'”% ()

into an equivalent system;



Pursliel s equilibriam \shen

() o5t 5 @-)-5 (5

Perpeadicalar to oquilibviam vethern

2 ()R- TG erd) e (F) w

where R = (dy/ded®a/de? - da/ded®y/ds®) =" is the equilibeiam radive

of curvature of the tether. Byurtion (11) romaine anchanged.

Bguations (11}, (18) and (16) aew desuribe the pertarbeticnsl me-
& % of an dlastis eabls Srom o platar oquiluitriom corve. The curm
aond 20t b shallow, aee 2eed the radiue of curvature, R, be constand
with o. N is cloar that curvature csapie the twe compencats of the
planar metion; equations (185) and (1C) are coupled by torms iavelving
L/R. As R — @, the conpling disappean, aad the oynaticns redwes
' e fumilier dosonpled wave squations for amial and lasersl metion
of aa dastin cabls. Matisn nesrmal o the oquilibriem plase remalas
waaliwted by curvetane.
Waes Presasation Alsag the Thiher

Byuatiens (185) aad (16) are cuitable for investigetion of the ia-
lnhh&dlhllm“nﬂhhmww
propagation of desoupled laternl and tangential waves. We aspume o

solution of the form
Q=@

where 7{w, 8) = a{w, s) + 1k{w, o) is known 28 the propagation cosll-
ciemt. Substitution of squaticas {17) iade {18) and (18) yields & pair of
coupled second order pelynomiale in 7 and w. Thess polynomiale are
satisled along the lines shutched in Pigure d. Wo 0ee that wave propage-
h“ﬂ%h“)l,hhwht&nﬂh
becemen small relative 4o the redins of curvasun. Since the frequeney
has boea coa-dimensienalived with respect lateral wave spend, /175,
three values of T/ 57 (both sasamed constant with o) give three difhn
ot vilues of noa~dimensionsl tangential wave speed. Investigation of
the correaponding weve-mede sigen-vecter, (&, 9,)T, reveals that the
Tespotne consiste of pure emtensional (&, , w,) = {1, 0), or pure lateral
(€. %) = (0, 1) motion for AR > 1. Aa orderol-maguitede analysia
of the terma of equations (185) and (16), as [TR| — oo will yield &
similer insight.

brvine aad Canghey{?| repert w2 approvimate cigen-analyvis of
oyuations (9), (10) and (12) for pianed-pianed boundary conditicns
and shallow pareboliz catenaries. They conclude that the caly mode
MM”&&M&nM«Mh&.Mn
metrie laderal mods. Por analysis of & vthered spacecrsl system, w
are isterested in difierent boundary conditions. A greral aad body
dldndhdmenwﬂn.a-pbxhudwm
including offects of end bedy Sexibility and attitude motion. We for
IMNMhMWmMMMM
Mﬁuh&uhthdnphﬂ.moﬂd«dﬂypuudby
m».mmmmmmmmm
mass only severnl tizmmes move mansive than the tether.

Introduction of the non-dimenslesal cross-sectional vector

Fetee, BATgE i, §y (a0

pormits writiag (Fourier transformed) equations (18) and (10) =

.0 " [ ] oh
0 -
r.(“ e o : Y )r (s
] YR -*+18% o

e, m'i)

L
o /e, r/ﬂ)-u Y
(. 10°Y)
o ne. a-') /
/

= fl, r‘) (9, 9% o, 1Y)

| ([[‘

1 [}
Nea-dimsnaional hegesney, wBV3IT
PIGURB ¢ Dapuweion curves of lntoral and wuageatial waves prop-
agering tlong & wther with wniform squilibriem wasise and tedle .
of curvature.

whers ¢ = T/BA, R= R/L, 6 = win/u]T, and the spatial derivarive
is talen with respont o & nep-dimessional distance, ¥ = LIT/de.

Bowadary conditiens oa cither sud of the tether are convenionsly
expressed 20 & madrix vquation;

B@)'=t | (20)

whore £ ia ihe vector of applisd forces or eaforeed displacements, s
appropriste. To define a pinned ead At 2 = 0 oquation (20) would

smploy
Be(aote) ¢ oe=(¥D).

and £, is aa eaforced displacement. A point mass, m, at ¢ = L s
described by

(0 ae ) o wm(ME)L,

The geaeral form of the wolution of squation (19) is

o)
T(0,0) m (Tye*/ Tpeme/t [yqnevit r..w/'-)(g:) (a1)
Cy

where ['; is the ¢*» sigenvector of the matriz in equatioa (19), and ()
is the correspoading sigeavalue. Application of bouadary coaditionn st
the two ends, sach in the form of aquation (20) permits evaluation
of the constaats C;, i = 1,2, 3,4 in terma of the force vector (&, £1)°.
The response aaywhere aloag the tether can then be expressed in terma
of & matrix of tranafer functions;

I{e,0) = H{s,5) (::) (32)
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Thawe 10 \ransler fazctions caa be be evalusted for say vales of
8,0 < ¢ < L, sad say vl of @, aad relase the respoane aleng e
sother 40 the oncitation st the twe rnds.

Dranalee Punadines

The transier fanetions of oquation (23) will vary slowly with time,
sinee hay depend wpen the current oquilibrinm sondition. This equi-
Kbriam eneblishe salees of susien, T, redime of curvetans, R, aad
dufinee the dicostions of ¢, § and u. (Note that deliestions normal bo
the plane of vether oquilibriam, 4, decouphs from ¢ sad 5. The nie-
vast \reashr functions can be dorived from oquation (11) and suitable
bouadery ssaditions.)

Figure § gives & plot of N, o( L, 5), parametarioed with thres noa-
disvnciensl grougs; R = R/L, ¢ = T/FX sad m/pl. Thls trenshe
fuaction shows the tangential ascalorstion of the far cad of the tther
(e = 1) belag entited by » uait latersl soncleretion a4 the near sad
(e = 0). If ke equilibrinm tether shape Were straight, this respease
would be . Pigure Sa shown, for a Rnsd oquiliveiom ¢/F4 aad o
fined snboatellite mase ratio, m/ul, the retie of £{s = L) sad gfe = 0)
a8 & fanction of frequency. As expacted, \he Jow frequency respeass
tends towards swre s the tether besomes uirnight, R/L — w R is

cloar that ewa olight tether curvature will couple these twe metions, |

particularly o) ressnante.

Figare 55 chows the same curves for sa incronsed valne of T/FL
The low frequency imiting behavisur tvmains sachanged, however the
soa-dimensisnal frequencies of the iret e ressncnses are shengly of-

| Magnitude, | N, 5|, macoes/metre

. ll-—_i-b. (M) 3], etous/smeton

1
Frequency & = Wl \/WTT
FIGURE & Tranek¢ Nuactioas of the ¢

g } resp at one
end of the tether 16 & lyteral excitation At the other end

Figures Sa aad S0 yield Listle insight isee e charecter of the 2
derlying vidbration. Figures ¢ show the evelution of the S few aatunnl
froquencios snd mods shapes as & fuaetion of twe son-dimensionsl po
rameters, R/L sad T/FA R/L is held bund ot A wlnes, R/L =
10, 100 while T/5Z is varied. S:reag medal conpling is prodicted be-
cweun the 1we lowest laverel modes whenever AY 5 10. At A? w30 (very
<Jooe 10 the value predicted by rehrence 7) these mode shapes betome
ideatical, and their coatribution disappeare from all trasaler Noactions,
Parther mudy is required 4o saderstand this behaviewr. The lateral and
loagitudiaal medes can alse souple streagly. Figur 64 chows such con-
pliag betwesa the At fow laternl modes and the lengitudiaal bounse
mede.

EFFECT OF DEPLOYMENT OR RETRIRVAL

The procesdiag analysis has ignered offecte of deployment and re-
wrieval ea the fast bether dynamies, both the corislls ceapliag due 40 &
seageatial velocity of the tether, and the gradual length chaage.

Bibet of Tuther Transiadional Velasity

Rotrieval of the tother o a massive ond bady will regult in 2
oquilibrium tramslational velocity of the tether alomg ita equilibrinm
curve. This trussiational velecity will sdd cerielis coupling tarms Vo
oquations (15) and (16). Refwrense 8 has shown that such trunsiasiosal
veloeity will have a negligible offoct upen the perturbational metion
of an clastit casenary w leag as thin welecisy is much lasg than the
classie lateral wave spend T, Retrieval apend of spasecral vt
is Lmited by sititnde wtabilisy considerstions o L/L <€ w,, which,
on \he basis of the spectral mparsiion asumed implies L < /T70
lgacring the offest of this corvielis coupling ia thus consistent with the
assumption of spectzal separution upea which the precesding analysls
in based.

Rlisct of Gredual Lensth Chanses

The prececdiag paregraph argues that relative tather leagth changes
will be small over the perisd of even the Nundamental tether mode.
Whea this is sasislied, tether mode shapes will be offectivaly thoee of
the constant length system, but their amplitude will very slowly with
the lougth. An approximate expression for this dependence can be
derived by sssumiag & given mede shape, of ampliteds & and geomer-
rically independent of boagth, and inalsting upou conservation of straia
energy. mb&hmmdﬁouuuﬁc‘/bmmmif
the mode is primarily tangential, and that T'a®/L remain constans if
the mode is primarily lateral. Since T is approximately proportional
to leagth, lateral deflection amplitudes should be approximataly inde-
pendent of Jougth. This agress with the simulation results reported in
reforence 2. The dependence of 574 on leagih is more difcult to ap-
proximate. If the non-linear effects can be neglected, thea EA = E4 s
independeas of leagth, and tangeatial tether vibrations should decrease
during retrisval according 40 & ~ VL. If the tether mode is coupled lat.
oral and axial, then ita depondence oa leagth should be some weighted
average of the individual dependencies.

MODELING LIMGTATIONS

The insights gained in these analysws were achieved caly at the
cost of rather savere assumplions. [aterest wes resiricied o tethered
systems involving one tether and twe end bodiss, with a Specirem pen
mitting the approximation of spectral separntica. The resalss of Fig-
ures § and & show that for some cholcen of parameters, the asumplion
of spectral mparstion will be violated. The coaclusions reached will
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not be applicable to very different systems such as tathers with neg-
ligible end masses, massive tapered tethers, multiple tethers, rapidly
spianing vethere, and maay others.

The sigen-analysis preseated is based upoa the assumj.:ion of small
deflections. References 18 aad 19 have coasidered larger amplitude
motion of cables. Refersuce 18 shows that the quadratic terms ia the
straln energy expression of a shallow cateaary remaia dominant oaly
8 loag as deflections remain small compared to the equilibrium sag.

‘h
.E R/L = 100
< F -
X 8k
3 sk
]
E, Ik \_,,,\’%_/—-«~\‘
3 ?
z - em. N - .
"N‘““g'p-—.--.-,'.'r..—..--.-‘.-'n:;.-—.- el et
extenaible — '-\'L/R)'ﬁ/r [ AT

who/uiT

Frequeary, &

1] -]
inextensible

[}
A= (L/RPIEA/T

PFIGURE @ Trends of the Arst fow aatura) frequencies and mode
shapes of 4 tethered aystem wish slight equilibrium curvature. One
end mase is cffectively infinite, the other has five times the tether
mase, m/ul = §,

Equations (15) and (16) are thus only valid for very small deflactions,
lese tham § = L/SR m 0.091L. Referemce 19 derives the equations
of motioa of & sequencs of assumed deflection modes of a spacecraft
tether, where the reference state is taken to be straight, and axially
unstrained. This work shows that non-linear effects will couple axial
aad both lateral deflection modes, and by integration of the equations
of motiok, shows this coupling to be aignificant when deflections become
a8 Jarge as 0.1L.

Unmodeled effects which threaten to be important are end body
attitude r10tiom and fexibility. Vary slow end body attitude motion
would still permis speciral separation, simply redefining the reference
equilibrium. Fast end body attitade motion, and end body flexibility
will potentially couple strongly to the tether modes. Table 1 estimates
the sub-satellite pendular motion o have a period of 13 seconds. One
should expect stroag coupling of this motion with the bounce mode, and
with several (perhaps the 40**) lateral tether modes. The introduction

of fast end body astitude dynamics would require the wee of atleam two
more aca-dimensional parameters, perhaps d/L and d\/m/T;, where
d ia the offset between the tether attach point and the end body mas
canter, m its mass, and [, its inertia. A study of the effects of this
coupling is lef as a topic of future research.

SUMMARY

This paper has investigased the dynamics of typical tethered apace-
craft systems ia an expository approximase way. The motion is shown
to occur at two time scales, one comparable to orbital rate, the other
much faster. Spectral saparation is invoked to approximately decouple
this moticn,

Fast tether vibrations occnr with reapacs to a slowly varying quasic
equilibrium. The equilibrium shape of the tether is estimated to be
slightly sagged from a straight line, and the small perturbations from
this equilibrium are deecribed by a system of linear partial differen-
tial equations. Non-dimensional parameter groups are identified which
govera the character of the fast tether vibrations.
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Abstract

A cable pinned on both ends was excited by a variable frequency shaker and various aspects of
its dynamic response were measured, including cable wave propagation speeds, resonant frequencies,
and resonant mode shapes. Cable tangential velocity at a point was determined by using
electromagnets to create a magnetic field that the cable oscillated in, thus giving rise to an induced
voliage in a small filament wrapped around the cable at that point. This voltage produced made it
possible to experimentally determine cable wave propagation speeds and resonant frequencies.
Resonant mode shapes were determined photographically. Results were compared to a new
theoretical model that used the midspan deflectioii of the cable as a running parameter. All
experiments were performed at three different sag levels to test the validity of the model. The results
of the experiment presented a limited proof that the model proposed accurately describes actual
behavior. It was concluded that certain non-modeled effects, particularly three dimensional cable
oscillations, were significant in the actual experiments and recommendation has been made to

incorporate these effects into the theoretical model.
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1. Introduction

A curved cable sustaining driving oscillations exhibits a complex dynamic response that is
largely a function of how much the cable is sagged. A cable with a small degree of sag (with the
term “small” defined more quantitatively later) behaves in a well known manner. This behuvior
is predicted analytically by the so-called "string equation”, which is the linear differential
equation that predicts the completely familiar nommal string vibration modes. A cable with a
large degree of sag behaves in a somewhat different way; however, its analytical solution is
completely determined by solvixig a different linear differential equation. This classic "hanging
chain™ equation, as well as the string equation, have been known for centuries.

As one might expect, the dynamic response of a sagged cable with an intermediate sag
should exhibit a dynamic response intermediate between the results obtained for the string and
the hanging chain. However, an analytical model of the behavior was not formulated until

recently. In a paper! entitled Some Approximations for the Dynamics of Spacecraft Tethers,

Prof. A.H. von Flotow proposed a model to explain the intermediate behavior for the
intermediate sag case. His model predicts that there are two coupled differential equations which
are functions of sag describing the tangential anci lateral motion of a driven cable . My parmer
and I have attempted to verify the validity of Prof. Flotow’s model by driving a pinned-pinned
cable with a variable frequency shaker and measuring its dynamic response. We have chosen
three figures of merit to determine experimentally: wave propagation speed along the cable,
resonant frequencies, and resonant mode shapes. We performed our experiment at three different
sag levels: a shallow sag representing string behavior, a large sag representing hanging chain
behavior , and an intermediate sag representing the interesting intermediate behavior. By using
an eigenvalue solution technique, solutions to Prof. von Flotow's equations of motion can be
§olved and theoretical results for wave propagation speeds, resonant frequencies, and resonant
:mode shapes can be ascertained for all three experimental sag levels. Clearly, then, the results
from theory and the results from the experiment can be directly compared and the validity of
Prof von Flotow’s model (barring large experimental errors) can be established.

" In addition to possibly verifying a previously untested hypothesis, a further motivation for
our experimental study is the real-world application to spacecraft tethers. In a situation when the
bnly link between an astronaut and the mother ship is a spacecraft tether, the very safety of the
;astmnaut depends on the dynamic response of the spacecraft tether. Unfortunately, my partner
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and [ were unable to simulate the pinned-free boundary conditions of a zero gravity environment.
However, a reworking of Prof. von Flotow's analysis with our pinned-pinned boundary
conditions was done and thus good experimental verification of the pinned-pinned case with our
pinned-pinned analysis will represent a verification of Prof. von Flotow’s general model.

The methods used to experimentally determine wave propagation speed, resonant
frequencies, and resonant mode shapes are quite complicated and I will explain the basic
principles here. Basically, a way was needed to measure the tangential cable velocity at a point
along the cable. After much brainstorming, a reasonable solution was proposed.. If the tangential
velocity of the cable at a point could be converted into a voltage, we would have a quantitative
measure of the cable’s tangential velocity at that point. However, this can be accomplished
relatively simply by remembering simple electromagnetic theory. A wire moving through a
magnetic field develops a voltage proportional to its velocity through the magnetic fieid.
Therefore, by wrapping a small copper filament around the cable at a point and allowing this
point of the cable to shake through a magnetic field, a voltage could be generated in the filament
which could be sent to an amplifier and then to a signal recorder. Indeed, this was done in order
to measure wave propagation speed and a cable velocity (tangential) vs driving frequency,
'resulting in a transfer function plot, which exhibits peaks at the resonant frequencies. The
experimental determination of mode shapes has a much simpler solution. After experimentally
varying the frequency until a normal mode occurs, a time exposure photograph could be made at
that frequency. A "washed-out" picture of this mode shape could thus be obtained. All of these
prerimental results can be compared graphically to theoretical results, which is a much clearer
hethod to compare experimental and hypothetical results than comparing numerical data.
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| 2. Theoretical Background

An attempt will be made in this section to point out the main points in Prof. von Flotow's
theoretical model derivation and to explain how our theoretical results (to which our
experimental results were compared) were obtained. To begin, we must review the dynamics of
a hanging cable (refer to Figure 1). An equation can be derived for the radius of curvature R in
terms of the length of the cable L and the midspan deflection, or sag, & by considering simple
geometry. We obtain the following result:

R= LY/ss ()

By considering force equilibrium on the cable, an equation relating the tension in the cable T to
the sag 3 can be formulated:

T-mgR= ML (2)

where m is the mass per unit length of the cable and g is the acceleration to due to gravity.
From Prof. von Flotow’s paper (Ref. 1), the following non-dimensional parameter may be a

convenient way to reduce data and make it more general. This non-dimensional parameter A is

defined as follows:
N (R) SF (3)

where E is the Young’s modulus of the cable and A is the cable cross-sectional area. In this
paper, it was discovered that for 1"-‘2 | . 5 was small enough for the cable to be treated as a
string. Similarly, for 1‘&15 ,0 was large enough for the cable to be treated as a hanging chain.
However, for A230. ° asatthe interesting intermediate case described in the introduction
section. Kucwing th <, 1t only remained for my partner and I to dztermine the value of sag
needed to give us the desired value for 1 . )

However, this can be done simply by substituting in . quations 1 and 2 into equation 3 for R
and T, respectively. The - .. : of this substitution:

.' 11 = me LT (‘{)
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FIGURE 1. GEOMETRY OF A HANGING (ABLE

R= Radws of cvevature of cable |
S‘: V\‘\)SPM\ ACQ\CC\‘\OA UF cble |
L= Leng‘*\\- o cable | *

= Angle subtended ab coee of radius oF corvature ¢
From m‘\&‘?m Yo one cable eng |

T= Tension :ugpof\: UL bl
A= Cm;-_xec\:\m\ area of c,&‘o\c i
E= Yw\g‘r Modolis 4 cable |
M= mars pec m\.t‘* \w{“\ O'F cable
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‘Therefore, since all quantities except for § and A can be experimentally measured (and indeed
were measured), for a given value of x‘ , the value needed for 8 is completely determined.
Plugging in the numbers, we arrived at the following settings for 8: for the low sag case ( A 8 |
), 50,0350 meters: for the high sag case (12 18 ), 5=0.200 meters; and for the intermediate sag
case( A2 30 ), 5=0.140 meters.

I won't attempt to rigorously develop the analytical model used in Prof. von Flotow's
paper, as the mathematics are quite abstract and complicated. Basically, linear partial coupled
differential equations were formulated and solved by vsing an eigen-analysis solution technique.
The resulting solutions were similar to a set of solutions prepared by a UROP student of Prof von
Flotow’s a year ago, with one modification. Our analysis used pinned-pinned boundary
conditions while the boundary conditions discussed in Prof. von Flotow'’s paper were pinned-free
boundary conditions. Because of the large amount of matrix algebra involved in this solution
technique, the problem was solved on a computer using the programming language MATRIXX, 1
which has fantastic matrix manipulation techniques. The code wes written to predict theoretical
mode shapes and transfer function plots of cable tangential deflection at a point vs. driving ‘
frequency. Refer to Appendix A for a copy of the program used to predict the transfer function [
plots and a page explaining the variables and constants used in the program. The output of this
program was three plots of cable tangential deflection vs. driving frequency for the three J
different sag cases mentioned above. These graphs can be seen in the results section of this }
report. Appendix B contains the programs used to generate mode shape data at the given L
resonant frequencies. These resonances were determined by locating the peaks of the transfer A
function plots. Again, a sheet is included to define the variables used in the computer program.
Appendix C contains the data obtained from executing this program. This data, which represents

cable tangential deflection vs. non-dimensional cable length, can be plotted on top of given plots

of the cable in the equilibrium position to obtain the deflected shape of the cable at the resonant ’
;ftequencies. Hence, these plots can be directly compared to plots made by taking data from \
actual time exposure photographs. Again, these plots will appear in the results section next to !
their theoretical counterparts.

f The analytical model for determining the wave propagation speed down the cable is to use b |
the classic formula known for centuries:

. ¢t {Vm (s) 1'
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¢/ where T is the tension supporting the cable at the ends and m is the mass per unit length of the
~ cable. The value for T can be obtained from equation 2 and a numerical value can be obtained
for the wave propagation speed for each of the three sag levels. Again, these numbers will be
presented in the results section in a table comparing theoretical and experimental wave
propagation speeds. \

One important result that should stated at this point is that theory predicts mode coupling
for the intermediate sag case. Mode coupling occurs when two different resonances mode
_Shapes are excited at closer and closer frequencies. In fact, as the resonant frequencies merge
into the same frequency, 8 mode shape with mixed characteristics of the two parent modes is |
seen. This mode shape coupling, as predicted by Prof. von Flotow's model, actually was ( '
observed when the theoretical plots of the first four mode shapes were printed out for the
intermediate sag case. If nothing else, this helps to confirm that our number-crunching truly \
represents the solution (for our boundary conditions) of Prof. von Flotow's previously untested :
theory.
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3. Experimental Apparatus
3.1 General Setup

A section of the strong back in lab was procured and our apparatus was sctup.
Subsequently we attached a twelve foot long nylon cable to the strong back with one vertical and
one horizontal cable clamp. The horizontal cable clamp was found in lab and simply bolted
rigidly into the vertical strong back wall. We found the base of the vertical cable clamp in the lab
as well. Using a lathe , we machined threads into the vertical aluminum rod that the cable
attaches to and screwed it into the rigid bolted-down base. With this design. it would appear that
our assumption of pinned-pinned boundary conditions is a valid one. This base could be moved
horizontally and bolted again -- thus, this offered us a way to vary the midspan deflection.

A variable frequency shaker was mounted near one end of the cable. Either a wave-tech
generator or a frequency spectrum analyzer was used to drive the shaker (after passing through
an amplifier) at a fixed frequency or as a white noise, respectively. The choice of the driving
mechanism depended on which of the experimental variables we were trying to measure (mode
shapes or resonant frequencies, respectively).

As mentioned in the introduction, a magnetic field is necded to measure tangential velocity.
This quantity was needed for the resonant frequency and wave propagation speed phases of the
experiment. From theoretical considerations, a practical minimum for the required magnetic field
Strength was found to be about 10,000 Gauss. It is difficult to obtain magnetic field strengths of
this magnitude in the lab; therefore, my partner and I decided to construct electromagnets that
would give us the required magnetic ficld strength. This proved to be a demanding task. Indeed,
the construction of these magnets took up the majority of our macliining time. Please refer to
:Em 2 for a diagram showing our magnet construction scheme. The cable, when driven, moves
;renicaﬂy in the air gap of the electromagnet. A small copper filament wrapped around the cable
at this point will achieve a voltage when passing through this magnetic field. The necessary
number of tums of wire around the magnet core was determined to be approximately 2500. The
wire was wrapped around the core by using a lathe.
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3.2 Wave Speed Propagation
" In this phase of our exp~riment, both magnets were used. The small copper filaments
wrapped around the cable were connected to leads that lead to a two-channel oscilloscope with

memory. In the experimental procedures section, the method of obtaining the wave propagation . 1
speed will be explained. Please see Figure 3 for the experimental setup for the wave speed +L
propagation phase of the experiment.
]
{
3.3 Resonant Frequencics -
For this part of our experiment only one magnet was needed. A frequency spectrum r

indyzer drove our variable frequency shaker( via an amplifier) with white noise, The induced L
voltage in the coil was then sampled by the input channel to the frequency spectrum analyzer. 1
Please see Figure 4 for the experimental setup for this phase of the experiment.

3.4 Mode Shapes

In the final phase of our experiment, all magnets were removed. A manually controlled
wavetech generator was used to drive the shaker at a fixed frequency. A construction paper {
background was painted black and used as a backdrop for our photographs. We used a 750W
spotlight to illuminate the cable so it would register on a time exposure photograph. A 35mm A
camera with a wide angle lens was used to photographically record black and white pictures of
the mode shapes. Please refer to Figure 5 for the experimental setup for the resonant mode
shapes of the experiment.
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4., Experimental Procedures

4.1 Wave Speed Propagation

The experimental procedure in this case was particularly simple. We tweaked the cable at a
point to the right of the right magnet. This tweaking motion was accomplished by applying a
sharp pulse to the cable with one finger. When the transverse wave had propagated along the
cable to the point where the right magnet was located, the sudden displacement of the cable at
this point triggered our two-channel oscilloscope to begin a time sweep on both channels. It took
a small but measurable time for the transverse wave to propagate down the cable to the second
magnet. When the wave reached this point the first non-zero signal was generated on the left
magnet channel. By comparing the two channels on the oscilloscope, it was observed that the
channels registered a very similar signal separated by a time delay. By knowing the distance
between the two magnets, we then calculated the wave propagation speed along the cable by
simply dividing the distance by the time delay. This experiment was performed five times at
each of the three sag levels. The average of the five trials was calculated and is displayed in the
subsequent results section, compared with the theoretical value of the wave speed for each case.

One source of error in this experiment is certainly the setting of cable sag. Especially for
the case of small sag, a small error in setting the midspan deflection can cause a large change in
the experimentally measured wave speed. Therefore, we would expect a better correlation

between theory and experiment for the case of higher sag.

4.2 Resonant Frequencies

Performing this experiment was the most difficult in terms of the actual implementation. A
position was selected for the magnet near the right end of the cable. For each of the three
midspan deflection levels, a total of ten trials werg used and an average s taken. For each trial,
the frequency spectrum analyzer outputted a white noise signal. This was fed through the shaker
amplifier to the shaker. The measured cable response at the magnet location due to this white
noise was amplified and fed back to the frequency spectrum anaiyzer. The frequency spectrum
analyzer then Fourier analyzed the incoming data to obtain a transfer function of voltage in the
coil vs. the driving frequency. Since the voltage in the coil is proportional to the tangential
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velocity at this point, the frequency spectrum analyzer actually had data for the cable velocity vs.
frequency transfer function. This transfer function data was plotted by the spectrum analyzer and
saved on floppy diskette. Later, hardcopies of these transfer function plots were printed out.
Sinoe. at a paint, the tangential cable velocity is maximized at the resonant frequencies of the
;ribrating cable, the graphs of the (plotted) transfer function should have maximums st the
resonant frequencies. Therefore, the resonant frequencies can be read directly from the transfer
function plots.

The sources of experimental error in this phase of our experiment are numerous due to the
complexity of the data taking process. Circuit noise appears to be the primary source of error,

especially in the low frequency range.

4.3 Mode Shapes .

In this phase of our experiment, the lab was darkened as much as possible and the data was
taken at night. A spotlight was shined down the length of the cable in order to create a white
washed-out picture of the desired mode shapes against the black background. We varied the
frequency on the wavetech generator until we had visual confirmation that we had indeed excited
a pure mode of the system. Once this frequency was set, three one-second time exposures were
made: one at the optimal f-stop (read from a lightmeter installed in the camera) , and one at the
next higher and next lower f-stops. We obtained these three pictures for the first four measurable
mode shapes for each of the three sag settings.

Sources of error were numerous here too. The most pronounced effect was the existence of
three-dimensional whirling modes, which were neglected in the analytical model provided by
Prof. von Flotow. Therefore, a washed-out photographic mode shape might appear two-

dimensional even if in actuality it was a whirling three-dimensional mode.
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(8. Results and Discussion

5.1 Wave Propagation Speed

The results of the experimental wave propagation speed are compared directly to the
theoretical results for each of the three different sag levels of .035 meters, .14 meters, and .20
meters in Table 1. As mentioned before, we expect a better correlation between theory and
experiment in the higher sag cases. Clearly, this is exhibited in the data, with experimental
results from the two higher sag cases actually quite consistent with the theoretical results.

There are many possible sources of error in this experiment, and below I mention ones 1

feel to be the most significant.
1. Ervor in setting midspan deflection

2. Error in generating a consistent impulse by hand for different data trials.

3. Error in the value for the Young’s modulus of the cable. (This changes the
theoretical value of the wave propagation speed)

Even with these errors, I feel the results are significant and offer reasonable proof that the
theoretical model actually predicts the experimental behavior in the two higher sag cases. The
lowest sag case will probably need to be confirmed with a more elaborate experimental setup to
minimize the errors mentioned above. Overall, I would say that experiment and theory match

reasonably and our results show some degree of validity.

5.2 Resonant Frequencies

As mentioned above, we will compare data graphically in this phase of the experiment. The
results and discussion are preserited below for each of the three sag levels. It should be noted
that the actual value read from the theoretical vs. experimental graphs cannot be compared
because the experimental graphs represent cable tangential velocity vs. driving frequency while
the theoretical graphs represent cable tangential deflection vs. driving frequency. However,
since the velocity and deflection scale with each other (with a phasc delay), the general shapes (
w therefore the resonant frequencies, which are where the peaks of each graph occur) can be

compared.
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5.2.1 Low Sag (5 20,035 m)

Plesse compare the theoreticul transfer function plot Figure 6 to the experimental transfer
function plot Figure 7. It can be seen from Figure 6 that values for the first four resonant
frequencies are 3.1 Hz, 5.9 Hz, 8.9 Hz, and 11.8 Hz. Looking at Figure 7, we find a clear second,
third and fourth mode at 6.1 Hz, 9.4 Hz, and 12.4 Hz, respectively. However, the resonant peak
at the first mode is obscured by low frequency noise in the circuit. ‘The results for modes two
through four are encouraging, It appears that the experimentally determined resonant frequencies
are only slightly higher than their predicted counterparts. This good correlation helps to validate
Prof. von Flotow’s dynamic model in the low sag case.

Again, in this situation, the sources of error were numerous. Clearly the low frequency
noise in our circuit is a major source of error, as an entire resonant peak was obliterated by its
presence. Attempts were made to reduce the noise; indeed a good deal of noise was rejected by
reducing the antenna effect of the wires in our circuit. Unfortunatc:,, time did not permit any
further modification to eliminate undesired signal noise. The inaccuracy in setting cable sag
could easily account for the fact that our experimental data was (consistently) slightly higher
than the predicted results.

5.2.2 High Sag (8 = 0.200 m)

The theoretical transfer function plot Figure 8 can similarly be compared to the
experimental transfer function plot Figure 9. From Figure 8, the first four resonances are found
to be at 2.5 Hz, 3.0 Hz, 4.1 Hz, and 4.9 Hz, respectively. Again, low frequency noise appears to
have affected our results in the experimental case, but I believe I can discem the first four
resonant frequencies at 2.6 Hz, 3.6 Hz, 4.6 Hz, and 5.3 Hz. These results arc fairly consistent,
but not quite as close as the low sag case. Again, the experimental values are seen to be slightly
higher than their theoretical counterparts.

Possible sources of error in the high sag case include circuit noise st low frequencies (as
before), incorrect values for the Young’s modulus of the cable and partirularly three dimensional
Vibrating effects not incorporated into our model. In this case, the noise was more pronounced
than in the low sag case, thus rendering the experimental transfer function plot more difficult to
read.
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§.2.3 Intermediate Sag (8 = 0.140 m)

Please compare the theoretical transfer function plot [igure 10 to the experimental transfer
function plot Rigure 11. From FRigure 10, the first four theoretical resonant frequencies can be
seen to be 3.0 Hz, 4.5 Hz, 5.9 Hz, and 7.4 Hz . Reading the values of the first four experimental
resonant frequencies from Figure 11, I find the peaks to occur at 3.1 Hz, 4.2 Hz, 6.3 Hz, and 8.1
Hz. These results are promising, as well, and the correlation is pretty good. This is encouraging,
for the case of the intermediate sag levels represents the little-known hybrid case between the
well known string and hanging chain behaviors and is the important case that we originally set
out to analyze.

In this intermediate case, possible sources of error include any of the sources present in
cither the high sag or low sag case, although probably to an intermediate extent. For example,
inaccuracies in measuring the cable sag would be more significant than in the high sag case and
less significant than in the low sag case. In general, the most pronounced effect was again the
presence of three-dimensional vibration modes, with a mixture of vertical oscillations and
horizontal oscillations of the cable. Remember that we neglected the horizontal oscillations of
the cable in using Prof. von Flotow's two-dimensional model.

5.3 Resonant Mode Shapes

Slides were obtained from the photographs that were taken of the experimental resonant
mode shapes. These slides were then projected on a wall and adjusted until the subsequent
washed-out mode shape could be traced on graph paper taped to the wall. We needed to do this
in order that the experimentally obtained mode shapes would be the same size as the theoretical
mode shape plots. Only then can a reasonable comparison be made.

As it tumed out, our pictures were too underexposed to allow for sharp mode shape
photographs (that is, the washed-out pictures of the cable were not bright enough) . However,
using the method described above, feasible results were obtained with minimal effort.
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5.3.1 Low Sag (8 = 0.03§ m)

In this classic string case, the first four mode shapes corresponded perfectly . See Figure 12
and 13 for the first four theoretical and experimental mode shapes, respectively. Little more can
be said about these results -- they were expected to be quite consistent and they are.

5.3.2 High Sag (5 = 0.200 m)

For this sag setting, the experimental and theoretical results were similar, but not exact. See
Figure 14 for the first four theoretical mode shapes and Figure 1S for the corresponding
experimental mode shapes. The first and second mode shapes seemed to correspond very well.
The third theoretical mode shape showed two nodes (points where the cable is stationary) near
the middle of the cable, while third experimental mode shapes had only one node at the center.
This is due to the fact that it is difficult to experimentally excite certain mode shapes for some
reason (proximity to other resonances , presence of whirling modes, etc.). Therefore, in this third
mode case, the true third mode was not experimentally excited at all. A similar phenomenon
occurred at the fourth resonance -- the experimental case had one node at the center and two
nodes closer than halfway (o the center while the theoretical case had one node at the center and
two nodes halfway to the center. However, the general shape in each is approximately the same.

5.3.3 Intermediate Sag (8 = 0.140 m)

In this case, results were a little more bizarre. Please compare the theoretical mode shapes
plot (Figure 16) with the experimental mode shapes plot (Figure 17). For the first mode, the
coupling between the traditional first and second string vibration modes as predicted by theory
was seen in the experimental case. Modes three and four also matched well when we compared
iheory and experiment, giving a symmetric three node and four node result, respectively.
However, the results for the second mode were not consistent. Theory predicted a symmetric
two-node scenario, whereas our experimental results showed another coupled mode with no
nodes. Again, this was probably due to the problem of trying to expenmentally excite the correct
mode. Notice, also, that the resonant frequencies in this case ( 4.5 Hz theoretically vs. 5.2 Hz
expemnentally) are sizeably different. This clearly points to the possibility that an experimental
jmodc shape was bypassed.
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6. Conclusion

It appears that no absolute statement conceming the validity of Prof. von Flotow's model
can be made with our crude experimental results and sizable experimental errors. However, in all
three phases of the experiment, it appears that our results suggest that Prof. von Flotow's model
is a valid one and experimental results can be predicted by his theories.

The mode shape coupling seen in the intermediate sag case was predicted to occur as it did.
Since spacecraft tethers operate in the intermediate sag case, this mode coupling probably would
manifest itself in the pinned-free boundary conditions of space. Of course, the rormal modes are
different for this case of pinned-free boundary conditions -- it is the coupling of these new
normal modes that we predict. Perhaps this may someday be tested in a zero-gravity environment
to further validate Prof. von Flotow's model.

Finally, we would like to recommend that the horizontal dimension be taken into account in
a more advanced theoretical model. The horizontal motions of our cable were simply too large
too ignore. In fact, whirling modes were occasionally set up where the horizontal motion was the
same magnitude as the vertical motion. Clearly, in this situation, the assumption of a two-
dimensional model is no longer valid. However, adding a third dimension would significantly

complicate the theoretical model, so tradeoffs would be involved.



I. Transfer Function Plot Programs




APPEND (X A

TPM\I‘P& 'F“W\O'Hﬂ\ ?lo‘F Pr‘vjf\m.} w"‘rt\ c&r LM"“'\M
a{‘ fr‘anm S\{M.bd(}




n=191; Cafﬁ 1: $20.035m

delta=0.035;
l«3.537;

e=<1600000; aF [ow SAG

a= 0000143;

mu=,00152;

epsbar=t/(e*a);

tbar=1/(8*delta);

frerat=l#*gqrt(mu/t);

sfix=,951;

fext=1;

fextbefext/t;

i=1;

wEin=6.283185307;

wmax=125.6637061;

abar=,0233;

nassg=, 09935,

mbar=mass/(mu*l);

for i=0:n,...
whar=frerat*(wvmin+((wmax-wmin)/n)*i);.
b0=(1,0,0,0;0,0,1,0};:...
bl=(1,0,0,0;0,0,1/abar-mbar*(wbar)**2,1]);...
amate={0,epshar,0,0;1/(rbar**2)-(wbar)*+*2,0,0,...
-1/(rbar*epsbar);0,0,0,1;0,1/rbar,1 /((cbar)x. ..
*2repsbar)-(wbar)**2,0]);...
[evec,eval]= eig(amat) .
yO=evec;...

compexl=exp(eval(l,1l));

compex2=exp(eval(2,2));

compex3=exp(eval(3,3));.

~ompexd=expl({eval(4,4));...
=evec*diagonal ([ compexl,compex2,compex3,compexd]);...

amatu=[1,0;0,1;0,0;0,0)*(bO*y0);...

dmatl=[{0,0;0,0;1,0;0,1])*(bl*yl);...

dmat=dmatu+dmatl;...

commagl=exp(eval(l,1)*sfix);...

commagZ=exp(eval(2,2)*sfix);...

commag3=exp(eval(3,3)*sfix);...

commagé=exp(eval(4,4)*sfix);...

ymat=evec*diagonal([commagl,commag2,commag3,commagd]);...

hmat=ymat*inv(dmat);.

outvec(j)-20*log(abs(hmat(3,4)));...
outfreq(j)=.9+(3j/10);...
je j+l;...

nd
eturn




n=191; C“«“ O’Z: g= 0.20~\

delta=0.20;
1=3.537;

::*33(7)5000; H lGH’ -CAG

a J0000143;
mu=,.00152;
epsbar=t/(e*a);
rbar=1l/(8+delta);
frerat=1l*sqrt(mu/t);
sfix=.951;
fexte]l;
fextb=fext/t;
j=1;
wain=6.283185307/2;
wrax=125.6637061/2;
abare.0233;
mass=.09935:
mbar=mass/{mutl);
for i=0:n,...
wbar=frerat*(wmin+((wmax-wain)/n)*i);...
b0={1,0,0,0;0,0,1,0};...
bl=[{1,0,0,0;0,0,1/abar-mbar*(wbar)**2,1]});...
amat=(0,epsbar,0,0;1/(rbar**2)-(wbar)**2,0,0,...
-1/(rbar*epsbar);0,0,0,1;0,1/rbar,1 /((cbar)»*...
*2#epsbar)-(wbar)**2,0);...
[evec,eval])= eig(amat);...
yO=evec; ...
compexl=exp(eval(l ):
compexZ=exp(eval ( )
compex3=exp{eval ( )3
~ompexd=exp(eval( | I
.=evec*diagonal( pexl,compex2,compex3,compexd]);...
dmatu=[1,0;0,1;0, 0)*(b0*y0);...
dmatl={0,0;0,0;1, 1)*(bl*yl);...
dmat-dmatu+dnat1;
commaglwexp(eval(
commag2=exp(eval(
commag3=exp(eval(
commagd=exp(eval( *sfix);...
ymat=evec*diagonal((commagl,commag2,commag3,commagd]);...
hmateymat*inv{(dmat);...
outvec(j)=20*log(abs(hmat(3,4)));...
outfreq(j)=.45+(3/20);...
j= j+1;...

*sfix);...
*sf%x),...

e Nt S —

»
@0
[a]
. o
x
o
-

and
return



n=191;
delta=0.14;
l=3.537;

t=.167,

e *000000;

a~ 40000143
mu=,00152;
epsbar=t/(e%a);
rbar=1/(8*delta);
frerat=alrgqrt(mu/t);
sfix=.951;
fext=]1;
fextb=fext /t;
i=1;
wrin=6.283185307;
wmax=125.6637061;
abar=.0233;
mass=,09935;
mbar-mass/(mu+*l);
for i=0:n,...

whar=frerat*(wnin+((wmax-wmin)/n)*i);...

b0=(1,0,0,0;0,0,1,0);..

bl={1,0,0,0;0,0,1/abar-mbar*(wbar)*+*2,1];...
amat={0,epsbar,0,0;1/(rbar**2)-(wbhar)#*+*2,0,0,
-1/(rbar*epsbar);0,0,0,1;0,1/rbar,1
*Z*epsbar)—(wbar)**z 0],.

[evec,eval]= eig(amat);.
yO=evec; ...
compexl=exp(eval(l
compexZ=exp(eval
compex3l=exp(eval(
mpexd=exp(eval(
_s=evec*diagonzl(
dmatu={1,0;0,1:0,
dmat’-[0,0;0,0:1,
dmatedmat -+amatl;
commagl=exp(eval(
commag2=exp(eval(
commagl=exp(eval(
commagd=exp(eval(
ymat=evec*diagona
hmat=ymat+*inv(dmat);...

2
3
4
(
0;
0
1
2
3
4
1

1
2
3
4
(

’
’
’
!
(

outvec(j)=20*log(abs(hmat(3,4)));...

outfreq(j)=.9+(j/10);...
= j+1;...

and
return

. e

):
)i
;,
pexl,compex2,compex3,compexd]);...
0}*(b0*y0);...

1)*(bl*yl);...

)*sfix) ;...

yrsfix) ;...

y*sfix) ;...

)*sfix);.

commagl, commagz commag3,commagd]);...

J: ﬂ./qm
TNTERMEDIATE SAG

Case 3

/{(cbac)w..
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EXPLANATION OF PRIGIAM SYMBILS

LAl # O‘F Jd’q P")’,
éclml S N m\ta 3 pan .)e-F{eoPtm <m)
L= L, cable ieo\f“. (m)
t= T, cable tension (N)
e E ) a»“t YOW\SI w()vlu_g CN‘(m")
q-= A) cable X-5 «rea )
myv 2 }J ) Mmajs /W\,.|+ ltns'ug a'{; (AHG (kj{h‘\)

CP’L‘( = g: ) V\“\"yiﬂ’\\ll\f‘l"\( l %t’(.t rﬂ'.‘.?o

\

rbtr’ < F, V\Ov\'at.ma:‘um\ NJ\W,\‘ J'F‘ wrvd‘w(

freret = B y ™ atizel 'Frclucm( Ratio (9
s'ﬁv\ = 9 ) .\w\--:)‘u\u;\cml d)stwnce o'{l' MAJMJ' (ocd'\m\ &\ol\j M“f
Lot = £ ) normalize extrernadl Pore (N)
fedb= B ) v\ovx-c)‘omth.f\vml QX'\IV'Ml. 'Fofc,(
A= leop vars «ble
Wmin = Weia Miniaum v\\luc "F ‘Prutvw'( (f‘t) (.f>
Wwe = Weag 4 Magirvm " “ "
A.Ll.f‘ = 7&‘) H‘n- 5\IMMS\(:M‘ A sdance oF JL\AE‘C( fu\u"}'?m + wq_“‘
Mmags = m S"\A.ktr mass C(‘j)

Aoy = M ) rva -8t eiensional mas s r._‘F,o

)()35\ Bg ) 5‘ ;i 'Dﬂ'r\al.n( cu\)] +\un; M&‘\‘F\(CC}’

amat = A ) 5&\\" vector W\u‘\'rr)g

wat = K . r.'hw} matriy

mak GUY= Hau = cabie +m~te¢n'\’}1\ deflectiim = ovtvec

th'Frtt'-‘ w2 ,)r\.ulxs feq vency (,H‘t—)

Plots arc of Loy LHs) v w
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APPENDIX B

Mode fluf)( Ja,'(\ PNJMJ w?‘”\ ckf(«mﬁm
016' Pr‘gfm ;7mllol;




n=50;

delta=.035; C i ¢ g:‘- 5
1=3.537; a5e 0'03 ™M
em61600000

e=61600000;

a= )000143;

mu=,00152; Low SAG
epsbhar=t/(e*a);

rbar=1l/(8*delta);

freratsl*gqrt(mu/t);

fext=];

fextbmfext/t;

abar=.0233;

mass=,09935;
mbar=mass/{mu*l);

inquire w ’'Enter frequency (rad/s)’

wbar=frerat+*w;

b0={1,0,0,0;0,0,1,0};

bl={1,0,0,0;0,0,1/abar-mbar#*(wbar)**2,1];

amat={0,epsbhar,0,0;1/(rbar**2)-(wbar)*+*2,0,0,-1/(rbar*epsbar);...

0,0,0,1;0,1/rbar,1/((rbar)**2*epsbar)-(wbar)**2,0};

[evec,eval |=eig(amat);

yO=evec;

compexl=exp(eval(l

compex2=exp(eval(2

compex3=exp(eval(3

compex4-exp(eva1$?
'0
, 0
H

yl=evec*diagonal x1,compex2,compex3,compex4d]);

dmatu=(1,0;0,1;0 *(b0*y0);

dmatl={0,0;0,0;1 *(bl*yl);

dmat=dmatu+dmatl

dir inv(dmat);

for i=0:n,...
commagl=exp(eval(l,1)*(i/n));...
commag2=exp(eval(2,2)*(i/n));...
commag3=exp(eval(3,3)*(i/n));...
commagé4=exp(eval(4,4)*(i/n));...
ymat=evec*diagonal ([ commagl,commag2,commag3,commagd]);...

hmat=ymat*dinv;...
outmod(i+l)=abs(hmat(3,4));...
length(i+l)=i/n;...

:nd
return



n=590;

delta=.200; -

1=3,537; C’UC 2 g,o,gwm
te.117;

e=30000000;

nue. 00152 HIGH SAG

epsbhar=t/(e%*a);
rbar=1l/(8*delta);
frerat=l*gqrt(mu/t);
fext=1;
fextb=fext/t;
abar=.0233;
mass=,09935;
mbar=mass/(mu*l);

inquire w 'Enter frequency (rad/s)’
wbhar=frerat*w;
b0={1,0,0,0;0,0,1,0);
bl={1,0,0,0;0,0,1/abar-mbar*(wbar)*+*2,1};
amat=(0,epsbar,0,0;1/(rbar**2)-(wbar)**2,0,0,-1/(rbar*epsbar);...
0,0,0,1;0,1/rbar,1/((rbar)**2%epgbar)-(wbar)**2,0]);
(evec,eval]l=eig(amat);
yO=evec;
compexlwexp(eval(l
compex2=exp(eval(2
compex3=exp(eval(3
compexd=exp(eval(4
([ x1l,compex2,compex3,compexd]);
0 *(bO*y0);
0 *(bl*yl);

yl=evec*diagonal
dmatu={1,0;0,1;0
dmatl={0,0;0,0;1
dmat=dmatu+dmatl;
di- r~inv(dmat);

for i=0:n,...

commagl=exp(eval(l,1)*(i/n));...
commag2=exp(eval(2,2)*(i/n));...
commag3=exp(eval(3,3)*(i/n));...
commagd=exp(eval(4,4)*(i/n));...
ymat=evec*diagonal ([ commagl,commag2,commag3,commagd});
hmat=ymat*dinv;...

outmod(i+l)=abs(hmat(3,4));...
length(i+l)=i/n;...

end
return




DA I A S Al e - ’-VWW'W'——-—**ﬁ—v—————

Gy e e s © e g LIRS DI

. e I LW P

n=50; - 4
it e CHE 3: §= O

t=,167;

e=36000000; f&CE
a~ 0000143; 2 M ATE 5
mu~.00152’ INTE'\I ED(
epsbarst/(e%a);

rbar=l/(8*delta);

freratel*sqrt(mu/t);

fext=]1;

fextb=fext/t;

abar=,0233;

mass=,09935;

mbar=mass/(mu*l);

inquire w ‘Enter frequency (rad/s)’
wbar=frerat*w;
b0=(1,0,0,0;0,0,1,0]);
bl=(1,0,0,0;0,0,1/abar-mbar*(wbar)*+*2,1];
amat=[0,epsbar,0,0;1/(cbar**2)-(wbar)*+*2,6,0,-1/(rbar*epsbar);...
0,0,0,1;0,1/rbar,1/((rbar)**2*epsbar)-(wbar)*+*2,0];
[evec,eval l=eig(amat);
yO=evec;
compexl=exp(eval(l
compex2=exp(eval(2
compex3=exp(eval(3
compex4=exp(eval(4
(( xl,compex2,compex3,compexd]));
0 *(b0*y0);
0 *(bl*yl),

yl=evec*diagonal
dmatu={1,0;0,1;
dmatl=(0,0;0,0;
dmat=dmatu+dmat
dir +inv(dmat);

1))
0 2));
v 3)):
4));
compe
;0,0])
;0,1)

0
1
1

for i=0:n,...

commagl=exp(eval(l,1)+(i/n));...
commagl=exp(eval(2,2)*(i/n));...
commag3l=exp(eval{3,3)*(i/n));...
commagd=exp(eval(4,4)*(i/n));...
ymat=evec*diagonal([commagl,commag2,commag3,commagdj);...

hmat=ymat*dinv;...
outmod(i+l)=abs(hmat(3,4));...
length(i+l)=i/n;...

end
return



EXRLMAT N 0 F (New) PROGRAM SyMBsLS

W= resonant 'Frt UQM‘ () {;)
ovtmed = cable fam Jeh“'\ﬂ ) Q‘P(Cc"’uu
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Localization in Disordered
Periodic Structures

Glen J. Kissel*

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Disorder in periodic structures is known to«..  spa-
tial localization of normal modes and attenuation of waves
in all frequency bands. This paper uses a wave perspec-
tive to investigate these effects on one-dimensional peri-
odic structures of interest to the engineer. Relevant work
in the fields of solid state physics and mathematics is re-
viewed. A limit theorem for products of random matrices
is exploited to calculate localization effects as a function
of frequency. Localization is studied on two disordered
periodic systems using both theoretical calculations and
Monte Carlo simulations. The problem of localization in
multiwave systemns is briefly discussed.

Nomenclature

a element of Cayley matrix

A cross-sectional area of rod

Agy amplitude of left traveling wave at right{left)
end of bay

b element of Cayley matrix

Bp(y amplitude of right traveling wave at right(left)
end of bay

C Cayley matrix

E Young's modulus

H (superscript) hermitian transpose

A nondimensional transfer function

i 1= -1

k wave number

k, spring constant

*graduate student, Department of Aeronautics and Astronautics
student member AIAA '

N,
o(+)
p(*)
£

ry

ty

Hy

nondimensional spring constant
random mass of jth bay

average mass, mass of perfectly periodic struc-
ture

number of bays

nondimensional internal force, jth point
terms of order greater than the argument
probability density function

reflection coefficient of jth bay

reflection coefficient of N bays
transmission coefficient of jth bay
transmission coefficient of N bays
(superscript) matrix transpose

transfer matrix

random transfer matrix, jth bay

transfer matrix, function of random variable a
displacement of jth mass

nondimersional longitudinal displacement, jth
point

wave transmission matrix, jth bay
a state vector

normalized state vector or direction of state
vector

eigenvector matrix
random variable
localization factor
nondimensional jth mass

mass density per unit volume



o} variance of random variabla a

w radian frequency

@ nondimensicnal frequency

v (superscript) complex conjugate

<> average of a random variable

La(s) indicator function, its value is one when the

argument lies on A and 0 otherwise

1 Introduction

This paper describes some of the consequences of dis-
order in what are normally perfectly periodic structures.
The periodic structures of interest are those having repet-
itive bays along one linear dimension and include the
skin-stringer panels found in airplane fuselages and truss
beams that will form the support structure of the space
station. See Figure 1. The dynamics of periodic :ystems
are characterized by frequency bands that alternately pass
and stop traveling waves (assuming no damping) with the
frequencies of the structure lying within the passbaads.

) ~*Docked
~.m—— " Shuttle

Figure 1. Truss beam extending the length of the space
station, from ;1.

Because of manufacturing or assembly defects, no
structure will be perfectly periodic. Disorder can occur
in the length of bays and in the material and mass prop-
erties of the structure. The disorder is assumed to be
distributed among all the bays and not confined to just
a few. Recently, Hodges and Woodhouse [2,3| demon-
strated with simple examples that this disorder in peri-
odicity can have some amazing consequences. Disruption
in the periodicity will lead to attenuation of waves in all
frequency bands independent of any dissipation in the sys-
tem! Equivalently, each normal mode, whose amplitude is
equally predominant along the length of a perfectly peri-
odic structure, will have its amplitude spatially localized
in the disordered counterpart. See Figure 2.

This localized behavior of the mode shapes, ar equiv-
alently the attenuation of all .he traveling waves, means
that energy injected into one end of a disordered structure
will not be able to propagate, but will be confined to the
region near the input. Because such behavior can impact

wf“?’- 4vv. T

R

N NN
(a)

W%"\\-/Lb%ﬁ\yv—-

(h)
Figure 2.
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o

(a) Mode of a perfectly periodic structure, from 3).
(b) Localized mode of a disordered structure, from (4}.

“disturbance propagation in and control of structures, as
well as complicate schemes to id-ntify the actual damping
of a system, engineers should be aware of the localization
phenomenon.

Localization effects have been studied extensively by
solid state physicists but only recently by engineers. This
is the first paper to calculate frequency dependent local-
ization factors for disordered periodic systems of interest
to the structural dynamicist.

In Section 2 the literature relevant to the study of
localization, including works by physicists, mathemati-
cians and engineers is surveyed. The modeling of peri-
odic and disordered periodic systems carrying one pair of
waves is discussed in Section 3. Section 4 explains how
the theory of products of random matrices is used to cal-
culate frequency dependent localization factors when one
parameter in each bay is disordered. in Section 5 local-
ization effects are investigated for a chain of springs and
disordered masses. Section 6 includes an examination of
a rod in longitudinal compression with periodically at-
tached disordered resonators. Section 7 includes a brief
discussion of the localization phenomenon in multiwave
systems. Concluding remarks are made in Section 8.

2 Survey of Localization Litera-
ture

The study of localization has a colorful history span-
ning three decades with contributions from researchers
around the world. In this section we survey some of the
relevant contributions to localization studies by solid state
physicists and mathematicians and discuss the handful of
engineering papers that have recently appeared on the
subject.

The localization phenomenon was first explained in
1958 by Philip Anderson [5] in the contexr . electron
transport ir. disordered crystals. As aresult of his original
contribution, the phenomenon is occassionally referred to
as Anderson localisation. Anderson was cited in part for
his work cn localization when he was awarded the Nobel

- ————
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Prise for Phyuics in 1977. Despite a Nobel Prige, some
fundamental questions arose about even the existence of
localisation. As a result, localisation in one-dimensional
Systema received a fresh look in the early 1980's (6,7].

In 1963 Furstenberg {8] published an important limit
theorem on products of random matrices. Because a dis-
ordered periodic structure can be modeled via a prod-
uct of random transfer matrices, with each mattix mod-
eling one bay, Furstenberg's theorem is obviously rele-
vant to the study of such systems. In 1968 the Russian
mathematician Oseledets(9] proved another limit theorem
for products of random matrices relevant to multiwave
one-dimensional systems. Mathematicians have taken re-
newed intersat in the theory of products of randoni ma-
trices as indicated by two recent publications 10,117,

The Japanese physicists Matsuda and Ishii 12]
pointed out the importance of Furstenberg’s work to one-
dimensional disordered systems. However, theorems on
products of random matrices have generally received scant
attention from physicists working on localization, because
they have relied on their own heuristic techniques, and be-
cause they have been more interested in two- and three-
dimensional systems which cannot be as easily handled
with transfer matrices.

Hodges [2] was the first to exploit the analogy between
locs 1zation work on periodic systems of importance to the
solid state physicist and some simple periodic models of
interest to the structural dynamicist. Hodges and Wood-
house 3| also demonstrated the phenomenon experimen-
tally. More recently Bendiksen [13] has examined mode
localization in closed disordered periodic structures, like
a compressor rotor and a dish antenna. These closed sys-
tems are not mathematically equivalent to the linear one-
dimensional structures under consideration here, Pierre,
Tang and Dowell {14 also examined localization, but only
with the aid of a deterministically disordered beam on
three supporis. None of these engineering papers pro-
vided analytical calculations for localization effects over a
wide frequency range.

The most rigorous examination of localization in an
acoustical setting has been that by Baluni and Willem-
sen |15]. They effectively used Furstenberg's work to find
frequency dependent localisation factors {defined below);
however, their application was for layers of sandstone and
shale with random .nicknesses.

In this paper localisation effects as a function of fre-
quency will be calculated for simple periodic structures of
interest to the structural dynamicist. These calculations
are greatly facilitated by making use of a traveling wave
description of the structures.

3 Models of Periodic and Disor-
dered Periodic Structures

-y

2R andhin i — e -

Before discussing the calculation of localization effects
we will show in this section how periodic and disordered
periodic structures can be modeled. The discussion will
be confined to aystems desctibed by 2 x 2 transfer matri-
ces.

A periodic structure in one linear dimension consists of
identical substructures connected in identical ways. When
each substructure can be modeled with a 2 x 2 transfer
matrix the system is called a mono-coupled periodic struc-
ture. Each transfer matrix relates a 2 x 1 state vector X,
to the succeeding state vector x;,, along the length of
the structure. The formulation of the transfer matrix as-
sumes a sinusoidal time dependence, and no damping is
included in the models so that the effects of disorder can
later be highlighted.

Because each substructure or bay is identical, (as in
‘16' it is assumed that the boundary conditions are such
that the transfer matrices at the ends of the structure are
the same as those modeling the rest of the structure) the
state vector at the end of the structure is simply related
to that at the beginning by

xy = TN%g

Because we are raising a transfer matrix to the Nth
power, we only need to examine the transfer matrix T to
understand the dynamic properties of the periodic struc-
ture.

Priefly, a periodic system is characterized by alternat-
ing frequency bands known as passbands and stopbands.
In the passbands waves travel according to e*'*, where &
is the real wave number and the positive sign indicates
negative-going waves and the negative sign positive-going
waves, The wave number k refers to the phase difference
of mot’ ns in adjacent bays. In the stopbands, waves
travel according the ¢*® or ¢*{3*'*) _ The real exponent a
implies nontraveling or attenuating waves. The a+ 17 ex-
ponent implies adjacent bays vibrating out of phase with
each other in addition to wave attenuation. Only in the
passbands can energy be transmitted along the structure.

This underlying wave structure becomes apparent
when the transfer matrix T and T are diagonalized. Di-
agonalizing TV we get in the passbands:

C"N.
[ e-iNb ] (1)
and in the stopbands we get:
e*Na
[ C—Na ] (2)

Note that a and k are functions of frequency.

The natural frequencies of the periodic structure lie
within the passbands. In particular N natural frequen-
cies lie in each passband of an N bay structure. (This is
only strictly true when each bay has symmetry of mass




and stiffness about its midpoint. If the bay is unsymmet-
tic, one frequency will occur in a stopband. See {17 for
details.) For a periodie structure the mode shapes have

equal amplitude along the entire length of the stiucture.
The reader is teferred to [16,17,18] for a more extensive
discussion of the proparties of perfectly periodic struc-
tures.

Now we consider the case when the structure is not
perfectly periodic. Even relatively minor variations from
bay to bay can drastically change the dynamic picture pre-
sented above. The mode shape amplitudes of the disor-
dered structure are spatially localized and not extended as
in the perfectly periodic case. Equivalently, waves are at-
tenuated in all frequency bands including what had been
the passbands of the perfectly periodic structure. It is
this latter wave attenuation effect that is studied closely
in the paper.

When a periodic structure is disordered, the transfer
matrix for the entire system is not TV, but rather a prod-
uct of random transfer matrices:

fIT,=T.‘...T1 (3)

I=1

The transfer matrices are assumed to be functions of a
single random variable, like a mass or a spring constant.
In addition, the random variables and in turn the ran-
dom transfer matrices are independent and identically dis-
tributed. Thus the disorder is distributed equally among
all the bays and not confined to just a few.

Unlike the case of Equations 1 and 2 for the peri-
odic system, one cannot simultaneously diagonalize each
transfer matrix of Equation 3 with the same similarity
transformation. However, it is possible to put each of the
random matrices forming the product into the following
wave transmission form:

AL
5] )

This is a wave transmission matrix for one random bay
inserted in the middle of an otherwise perfectly periodic
structure carrying a pair of traveling waves. Physically,
t,'? represents the ratio of transmitted energy to incident
energy, and |r;|" the ratio of reflected energy to incident
energy. Energy conservation implies that :t,'* + r,.? = 1.

t
. ]

Ar | _ o
Bg -&

V"-

1
0
)

.

So the transfer matrix in wave transmission form for
the entire structure is:

S R
Iw, =] % (5)
1=1 l;, ‘.N

The wave transmission matrices in Equations 4 and
5 are matrices of the Cayley type written as:

c=[:. :] (6)

#Tv—m D . o 7

A random transfer matrix T, can be put in Cayley
form via a certain similarity transformation:

C,=X"'T,X

We also reyuire that the similarity transformation diago-
nalise the transfer matrix of the perfectly periodic struc-
ture. Hori (19| has given conditions that the transfor-
mation should satiafy to ensure that T, can be trans-
formed to a matrix of Cayley type. The Cayley form of
the transfer matrix may not be precisely the wave trans-
mission form of Equation 4; however, in Equation 6 a
will be precisely ;E while b may differ from :4, by at most a
phase factor. The wave transmission or Cayley forms are

convenient for understanding and calculating localization
etfects.

4 Calculation of Localization Fac-
tors

In the introduction the dynamic effect of localization
was described as being an attenuation of waves and a spa-
tial localization of modal \auplitudes. We will see that the
waves in the disordered periodic structure are attenuated
as ¢~V where v is the real localisation factor. It has
been argued that this same exponential, e-7V, describes
the envelope of the localized modal amplitude [12,20].

As mentioned earlier, a long disordered periodic struc-
ture can be modeled as a product of random matrices.
The question arises as how to measure the effect of this
randomness. Coes one examine the reflection coefficient
for this disordered periodic structure and then show that
it is very large for the disordered system indicating de-
caying wave propagation? This point is critical and even
confused some solid state physicists in the late 1970's.
Choosing the wrong variable to examine can lead tu very
misleading resulits. Anderson et. al. 6] argued some-
what heuristically that the appropriate variable to aver-
age when studying localization effects is the natural loga-
rithm of the absolute value of the transmission coefficient
of the system. Ironically, Matsuda and Ishii {12, relying
on Furstenberg|8], much earlier had shown Inity! to be
the key variable to average. Here a much more straight-
forward argument than 12| is made to show the relevance
of In ity to localization studies of systems described by
2 x 2 transfer matrices.

Furstenberg (8| showed that products of random ma-
trices follow a law of large numbers. (This is most easily
seen if this product acting on some input vector is viewed
as a Markov chain [10]). One result of 8] was the follow-
ing equation:

1
¥ = '!L:g”—‘lnll'l‘..--.'rxll (7)

or 1
‘1="li_f'3°;ln”w""'w‘” (8)
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where v > 0. The norm here is simply the 2-norm or the
maximum singular value of the matrix product. Recall
that the singular values of a matrix A are simply the
positive square roots of A¥A or AA¥. This aorm is aiso
defined as IR O

HXII

The most insight into the mearing of v comes by ax-
amining the maximum singular value of the matrix prod-
uct of 5 in wave transmission fcrm. Recailing Fquation
5 a little algebra shows that

A _ 1+iry|
T W5l = —

=1 ‘

so from Equation 8
) 1
v = lim Sln(l+levl) - Injtw]]

Because 0 < |ry| < 1, taking the limit means the first
term will vanish and we are left with

= lin -ll [¢
v = i ‘Nﬂ.‘vl

Note that an average over an ensewmble of in 'ty is not
taken. Furstenberg’s theorem tells us that by letting .V —
oc we need not average over an enseiable. Variables like
In |t x| behaving in this way are called self-averaging. This
result indicates why In|ty]| is relevant to the study of lo-
calization.

We are able to coasider as well disordered periodic
structures with finitely many bays. These can be simu-
lated hy a product of a finite number of random matrices.
The final matrix product can be put in wave transmis-
sion form, after which the transmission ccefficient can be
extracted and the localization factnr calculated as
. In ItN_J_

—~

Because we have nnt allowed N to tend to infinity we raust
really average In |ty| over some ensemble. This is accom-
plished computationally via a Monte Carlo simulaticn. So
for the case of finitely many bays:

~ = -
i

_< Inity! >
N

The aext goal is to show how the localization factor
can be ccmputed analytically fo. models descrited by 2x 2
transier matrices. In addition to Equation 7, the local-
ization factor, v, is the following limit:

7= lim ~ln|[Ta... Tz

where again the matrices are independent and identizally
Aistributed.

Furstenberg found that this limit .an be calculated
from the following double integral:

1= [ [n)T(@)xlp(e)dap(x)dx (9)

For this 2 x 2 case % represents a point on the anit circle.
Equation 9 is valid subject to the probability density for %
being invariant with respect to the probability density for
the random variable inside the transfer matrix. In other
words, for Equation 9 to be valid we must find a proba-
bility density for the direction of a vector, such that when
it 18 multiplied by the random transfer matrix, T(a), the
resulting vector will have probability density for its direc-
tion identical to that of the premultiplying vector.

This required condition of invariance is described
mathematically in marny ways including:

[ rap@idn = [ [ 1o p(e)den(rlér (10

Ui
where A is son‘m\. along the unit circle. This equation is
known in the solid state r; ys.cs I'ierature az the I"-'son-
Schmidt self-consistency condition [21].

Unfortunately it is difficult, if not impossible, to {ind
the invariant probability density for %. Therefore Equa-
tion 9 can rarely be soived.

One must then consider approximations to the local-
ization factor. Because it is never quite certain over what
frequency ranges these approximations are valid, Monte
Carlo simulations are used to check those ranges.

Baluni and Willemsen {13] suggested a Taylor series
expansion of terms inside the integral 9 as well as 10
except for the probabiiity density of @. This leads tc an
approximation for the localization factor which is good to
order in the variance of the disordered parameter in the
transfer matrix. The motivated reader is encouraged to
consult [15]. The answer is arrived at conveniently when
the random transfer matrix is put in wave transmission
form. The localization factor is then calcuiated as

6% (inl W‘jl)

- 2 \
v = 2 —Sar o3 +o(o3) (11)

It is this equation that we will use to compute the wave
attenuation effects present in disordered periodic struc.
tures. Note that only the (1,1) term of the wave trans-

mission matrix (or Cayley matrix) is nceded in Equation
11.

5 Localizaticn Effects for a Mass-
Spring System

In this section we will use a simpie example to derron-
strate the localization calculations. The structure is the
infinite mass spring system shown in Figure 3. First con-
sider tie transfer equation for one bay of the svstem:

“i+1]=[2—”:—."‘ -1 u;j
L7 L 1 0 Y-y

For the disordered system, m is replaced by m; whete
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Figure 3. A chain of spring+ and masses.

m =< m; >, The terms are nondimensionalized as fol-

lows:
Ui+t = 2~ Q'u,' -1 u;
uy 1 0 Uiy
where
w?
W= e
(®)
and
m,
Uy = —
m

For the perfectly periodic system u; = 1. From the
condition that |trace(T)| < 2 in a passband we can see
that a single passband exists for the perfectly periodic
system when:

O<w<2
All higher frequencies are in the stopband. A more exten-
sive discussion of the perfectly periodic structure can be
found in (16]. The wave number for the passband of the
periodic mass-spring systera is governed by this equation:

‘32

osk=1~—
¢ 2

Using an appropriate eigenvector sim.larity transfor-
mation, the random transfer matrix is put it in Cayley

form. Heie 4
e 1
=7 o]
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and

-t | (=9)/(2sink) (ve™*)/(2sink)
x [("e“")/(sink) (—s‘)/(zs;nk)]

The transfer matrix in Cayley form is now:

[ e} (1 + 16;) i6; ]
-5, &1 idy)
where §; = (@*(u; ~ 1))/(2sin k)

Note that the (1,1) term of this Cayley matrix is
(t(us))~!. Using Equation 11 , the localization factor to
order of the variance in the nondimensional mass is:

y = @'ad
8sink
with sin® k = @? - °—: then:
@iad

ARarTrpr-:

If we ullow @ — 0, the localization factor is:

@Yot
1= —8—"
and switching back to dimensional form, at low frequency:
y= wiod
8k,m

which is the result usually found in the physics litera-
ture and is derived through much more torturcus methods
than are used here. The theoretical result of Equation 12
is plotted in Figure 4 for the passband of the underlying

Legend
theoreticai

< monly carle
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Figure 4. Localization factor for mass-spring system.
Maases disordered, with < u; >= 1 and o3 = .333 x 107,
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perfectly periodic structure. Localization would provide
only a small amount of added attenuation to that already
occurring in the stopband.

A Monte Carlo simulation: was made of the disordered
mass-spring system using 200 random transfer matrices.
The random nondimensional mass, u;, had a uniform
probability density function with width of .02 centered
around < p; >= 1. As a result, 0} = .333 x 107*. Monte
Carlo results are also shown in Figure 4. Notice how well
the Monte Carlo simulation tracks the theoretical result.
The plo* will be raised or lowered depending on whether
the disorder is greater or smaller as reflected in the nondi-
mensional muss variance.

Clearly the maximum attenuation occurs as we ap-
proach the nominal stopband. At @ = 1.9G, for example,
where v = .1654 x 10~? a wave will have decayed by a
factor of .44 after 500 bays even though no damping is
present. A modal amplitude for a normal mode at that
frequency would be confined to an exponential envelope
governed by v = .1654 x 10~3, The localization effect
is obviously less pronounced at lower frequencies, but is
nonetheless present.

The attenuation zaused by the disorder is urlike that
of dissipation. Here localization prevents the wave from
traveling along the structure, uniike the case for a per-
fectly periodic system, where the wave would travel with-
out attenuation. Localization tends to confine the wave
near its point of origin, where it is eventually dissipated by
the damping that inevitably exists in all real structures.

6 Localization Effects for a Rod
with Disordered Resonators

In this section we investigate localization factors for a
model proposed by von Flotow [18] which mimics some of
the important behavior of a truss structure. The model is
a longitudinal wave carrying rod with attached resonators
that represent the vibrating cross-members present in a
real truss structure. The model and relevant properties
are shown in Figure 5.

k, m
SYTIY FIVYL NEY YL e reian®
1 P e ’l

i 1 | 1 :

4 >4
E, A p !

Figure 5. Rod carrying longitudinal waves with attached
resonators.

The tranafer equation for the perfec.ly periodic model

Uin | 2
Nin

(- -
oo p-H )0
sa+ Bt 4 e

where
€ = cosmW
$ = 1nwQ
I=1rw

where the nondimensional transfer function of the at-
tached resonator is:
1

IWED LT

. 1
H ={=- -1

‘T )
and where the nondimensional frequency, stiffness and
mass are:

The transfer matrix models a bay extending across a
length of rod, across a resonator, and then across another
length of rod.

Hers the attached mass is randomized so that u, be-
comes a nondimensional random variable and u =< u; >.
A discussion of the dynamic characteristics of the per-
fectly periodic structure can be found in [18]. The wave
number k for the passbands of the perfectly periodic struc-
ture is determined by

By applying the transformation:
isink ~1sink ]

X= s (A1 +e)/@2) 3+ (H1+0)/(2)

and

X1 = [ (—1)/(2sink) (28s+ I:I(l +¢))t ]
() /{2sink) (23s+ H(1+¢))!

the transfer matrix in Cayley form is obtained:

[ e*(1 - 14)) i6; ]

—161' e“"(l + I&,)

where _
_ (sinr@)AH;
T 2(sink)r@
and
g o=(L__1 ya_(L__1 yu
AHi - (k’ u—}zﬂ,gl‘j) (E, G'Jzﬂ‘:[.l)

Again our attention focuses on the (1,1) term, which is
the reciprocal of the transmission coefficient for one bay.
Applying Equation 11 , the localization factor for a rod

with attached resonators having disordered masses is:
N (sin? r@)a?
7= (sin” &) (@) ((1/k) — (1/P7W))®
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This localisation factor is plotted for the first four
passbands of the system in Figure 6, For this plot £, = .5
and u; is random with a uniform probability density func-
tion of width .02 centered around < u; >= .2. This im-
plies that o3 = .333 x 10~ A little thought reveals that
at low frequency the localisation factor will go as @?.

These results were confirmed with a Monte Cavlo sim-
ulation of 200 bays with probability density mentioned
above. The Monte Carlo results are also shown in Figure
6 and these results track the theoretical calculations quite
well,

Clearly the maximum attenuation exists arnund the
first stopband. This stcpband occurs around @ =
(%)% /x, the frequency at which the average attached res-
onator vibrates. Note that a wave near the first stopband
at @ = .45 will have decayed by a factor of .25 after 200
bays even no though damping is present. The localization
effects diminish substantially in the higher passbands.

7 Localization in Multiwave Sys-
tems

When a periodic structure is modeled with a transfer
watrix of size 2n x 2n with n > 1, the structure will
carry n pairs of waves. Fewer results are available on
localization effects in such multiwave disordered periodic
structures.

e

e T T *—v_

T

Recent work by Pichard |22} on multiwave solid state
systems has used the thecrem of Oseledets(9,11]. To use
Oseledets’ theorem, we assume that the tranafer matrices
are independent and identically distributed and that they
are symplectic. A matrix T is symplectic if TTIT = J

where: I
0
-5 o)

The symplectic property also implies that the eigenvalues
of T will occur in reciprocal pairs.

The theorem of Oseledets tells us that

im[(Ta...T)T(Ta. .Ty)|% =B

n—o00

where B is a random mat:ix, whose eigenvalues are non-
random. The spectrum of B is:

[ eth

¢+‘ln
e=n

where 4; > ... > .

The eigenvalues physically represent n pairs of waves
traveling in both directions. The theorem of Fursten-
berg allows us to calculate v,. However, in this multi-
wave case with v, < 4, v, represents the wave with the

Legend
theorsticel

< monle carlo

Figure 6. Localization factor for rod with attached res-
onators. Masses disordered, with < u;, >= .2, ol =

333 x 10™* and k, = 5.
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least amount of decay and thus it carries energy along the
structure farther than the wave represented by ;. Thus
“n is the quantity of interest when calculating multiwave
localizatiun effects. What analog tc "}l is represented
by 7 is not clear, though Anderson [23]has speculated
about this point.

Clearly the study of localization effects in multiwave
systems is a fruitful acea of research. The best guidance
for such work will prebably come from {23,22,10)].

8 Conclusions

Disruption in the regularity of periodic structures can
have some dramatic structural dynamic consequences.
Normal mode shapes will be spatially localized and travel-
ing waves will be attenuated in all frequency bands, even
in the passbands of the perfectly periodic counterpart.
In this paper we have seen how these localization effects
for disordered periodic structures carrying a single pair of
waves can be calenlated.

We have reviewed some of the work of physicists and
engineers on the localization phenomenon. Only a few
researciers have taken advantage of limit theorems for
products of random matrices to calculate localization ef-
fects as has been done here.

We used the underlyir.g wave mechanics of these sys-
tems to facilitate localization calcu:ations. In particular,
a random matrix product modeling a disordered periodic
system can be transformed to a wave transmission matrix
after which it is easy to show that the localization factor
4 = liMy§meo lﬂh“ﬂ Furstenberg’s limit theorem for ran-
dom matrix products was exploited to state a formula for
the localization factor :00d to order of tie variance of the
disordered parameter.

Localization calculations were then demorstrated on a
mass-spring system with disordered masses and on a rod
in longitudinal compressicn with disordered resonators.
In both cases the theoretical ;esults were confirmed with
Monte Carlo simulations.

The multiwave localization problem was briefly men-
tioned with some lines of research pointed out.

Future papers will examine beams with randomized
lengths between supports for which localization effects
tend to be quite pronounced at high fiequency. Periodic
structures with several parameters simultaneously disor-
dered will also be discussed.
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Chapter 1

Introduction

1.1 Introduction to Localization

This thesis describes some of the dynamic consequences of disorder in what are
normally spatially periodic structures. Periodic structures are frequently encountered
in many fields of engineering and physics. Periodic electromagnetic waveguides, crys-

“alline structures and periodic truss structures are some examples that come to mind.

The periodic structures examined here are systems having repetitive bays along
one linear dimension. Those of interest to the structural dynamicist include beams on
evenly spaced supports, the skin-stringer panels found in airplane fuselages and truss

beams that will form the support structure of the space station. See Figure 1.1.

The dynamics of perfectly periodic systems have special characteristics. Most no-
tably they are characterized by frequency bands that alternately pass and stop traveling
waves (assuming no damping) with the natural frequencies of the structure lying within
the passbands. See Figure 1.2 In addition, the normal mode shapes of periodic struc-

tures are themselves periodic. See Figure 1.3.
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Figure 1.1: Periodic truss stucture along the length of the space station from [Covault

86)

Figure 1.2: Alternating pass and stopbands of a perfectly periodic structure. The

attenuation coefficient, a, represents the decay per bay
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Figure 1.3: Mode of a perfectly periodic structure from [Hodges and Woodhouse 83]

Because of manufacturing or assembly defects, no structure will be perfectly peri-

odic. Disorder can occur in the length of bays and in the material and mass properties
| of the structure. The disorder is assumed to be distributed among all the bays and not
confined to just a few. Recently, [Hodges 82,Hodges and Woodhouse 83] demonstrated
with simple examples that this disorder in periodicity can have some amazing conse-
quences. Disruption in the periodicity will lead to attenuation of waves in all frequency
bands independent of any dissipation in the system! See Figure 1.4 This is a result of
the multiple scattering effects from the randomized bays. Equivalently, each normal
mode, whose amplitude is periodic along the length of a perfectly periodic structure,

will have its amplitude spatially localized in the disorde:ed counterpart. See Figure
1.5.

This localized behavior of the mode shapes, or equivalently the attenuation of all

the traveling waves, means that energy injected into one end of a disordered structure
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Figure 1.4: Attenuation in all frequency bands of a disordered periodic structure

Figure 1.5: Mode of a disordered periodic structure from {Dean and Bacon 63]
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will not be able to propagate arbitrarily far, but will be confined to the region near
the input. Because such behavior can impact disturbance propagation in and control
of ltriactureé. as well as complicate schemes to identify the dynamic characteristics of

a system, engineers should be aware of the localization phenomenon.

A simple example from [Hodges 82] will intuitively illusiute the localization phe-
nomenon. Consider an infinite chain of equivalent pendula with nearest neighbors
connected by identical springs. This is an example of a perfectly periodic structure
and so its mode shapes will be periodic. Now consider disordering this system by re-
placing each pendulum by one with a random length. In this way the natural frequency
of each pendulum is random, and so we no longer have a perfectly periodic system.
First assume that the spring constant between each pendulum is zero, s-o that each
pendulum vibrates independently. This is a trivial example of raode localization. Now
consider adding a tiny amount of the same spring constant between each pendulum.
In this case each pendulum will vibrate at a frequency different from its neighbor, and,
with the spring stiffness being so small, its amplitude will not couple significantly with
its neighbor. Indeed, if there is ouly a small probability of encountering within a short
distance a pendulum with the same natural frequency as the one under consideration,

we can understand how the vibrational amplitude of this pendulum will be localized.

Though the appellation “localization™ comes from the fact that normal modes are
spatially localized, we will be studying the phenomenon from a traveling wave per-
spective. Very few analytical results are available dealing directly with normal modes
in disordered systems. Our approach is consistent with that in the field of solid state

physics, where the phenomenon was originally discovered.

The localization phenomenon makes for a particularly attractive field of study. From
the perspective of structural dynamics this is true because it seems to manifest itself
as a damping mechanism even though vanishingly small damping may be present. The

study of localization is frequently referred to as one of great mathematical richness
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and subtlety and this has made for a challenging course of research, especially as we
have made use ol the mathematics for products of randomn matrices. The fact that
the localization phenomenon has been studied for many years by solid state physicists
allows us to borrow the insights and avoid the mistukes from their analogous work.
In addition, any new results generated by this research have immediate applicabil-
ity to virtually any disordered periodic system, even outside the structural dynam-
ics fi-id. Finally, connections between localization theory and the rapidly developing
fields of fractals [Rubin 84), chaos [Ikeda and Matsumoto 86} and superconductivity

|Lee and Ramakrishnan 85 have been noted.

1.2 History of Localization Studies

The study of the localization phenomenon has a colorful history spanning three
decades, with major contributions from researchers in the United States, United King-
dom, Japan, France and the Soviet Union in the fields of solid state physics, mathe-
matics and only lately in engineering. In this section we review some of that history in

order that we can place the contribution of this thesis in proper context.

1.2.1 Solid State Physics, Mathematics and the Localization

Phenomenon

Two notable papers in tl.e 1950’s [Dyson 53,Schmidt 57 explored the effects of
disorder on the eigenvalues of an infinite mass-spring chain in one linear dimension.
Though they did not examine the effects of disorder on the ecigenvectors or on wave
propagation, some of their results help explain the mathematics of wave transmission

- in such randomized systems.
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The scientist to first describe eigenstate localization was solid state physicist Philip
W. Anderson, whose 1958 paper [Anderson 58] showed that an electron in a three-
dimensional disordered lattice of infinite extent had a finite probability of not being
transported from its original site as time tended to infinity. In honor of his original
contribution, the phenomenon is sometimes called Anderson localization. Localization
was at first not well understood or even believed by many people. But through the
efforts of researchers like [Mott and Twose 61] it gained acceptance in the solid state
physics community. Meanwhile [Borland 63] examined the one-dimensional localiza-
tion problem from a nonrigorous probabilistic perspective and [Dean and Bacon 63
did numerical simulations of disordered mass-spring chains of finite length showing
that eigenmode localization was much more pronounced at high frequency than at
low frequency. The solid state physics literature on localization has become quite ex-
tensive over the years and much of it is not relevant to this thesis. The reader is
referred to [Ziman 79,Erdés and Herndon 82,Lee and Ramakrishnan 85 for extensive
bibliographies relevant to that field. The remainder of this review will encompass those

physics, mathematics and engineering papers that have had some impact on the thesis.

The pioneering work of [Furstenberg 63] on products of random matrices has pro-
vided rigorous results that have immediate applicability to the one-dimensional local-
ization problem. This is so because each bay of a disordered periodic structure can
be modeled with a random transfer matrix, and, as a resuilt, the entire structure can
be modeled with a product of random matrices. The researchers [McCoy and Wu 68]
were apparently the first to recognize the importance of Furstenberg's therorem to
disordered physical systems when they studied random Ising models of ferromagnetic
systems. However, [Matsuda and Ishii 70] and [Ishii 73] were the first to bring Fursten-
berg’s work to bear on the localization problem. They carefully related Furstenberg's

results to eigenmode localization and wave propagation in disordered chains and some

simple quantum mechanical 1nodels.
In [Oseledets 68] a Russian mathematician proved a multiplicative ergodic theorem
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that has enhanced our understanding of the asymptotic behavior of products of random
matrices. This theorem has important applications to the study of the localization phe-
nonmenon in systems carrying a multiplicity of wave types at a given frequency. Lately,

[Pichard and Sarma 81-1], [Pichard and Sarma 81-2] and [Pichard and André 86] have

~ examined localization in solid state multiwave systems. In analyzing these systems they

have exploited the work of Oseledets on products of random matrices. Mathematicians
have taken renewed interest in the theory of products of random matrices as indicated

by twe ~er=nt publications, [Bougerol and Lacroix 85,AMS 86).

The work of [lierbert and Jonres 71,Thouless 72] provides another perspective as far
as the calculation of localization effects are concerned. They derived a formula for the
localization factor (defined below) which is a function of the spectrum of the disordered

system. Their approach is nearly as rigorous as that using products of random matrices.

In 1977 when Anderson and Mott (and Van Vleck) were awarded the Nobel Prize
in physics, they were cited in part for their work on localization. In his speech in

Stockholm, Anderson [Anderson 78] made the following comment:

Localization ...has yet to receive adequate mathematical treatment, and
one has to resort to the indignity of numerical simulations to settle even

the simplest questions about it.

While it is still true thai we must use numerical simulations to confirm our «nalyticai
insights about localization, we will argue in this thecis that mathematical tools are
available which allow us to answer some very important questions about localizaiion

in one-dimensional systems.

Despite . Nobel Prize, [Czycholl and Kramer 79| raised serious questions with their
numerical work about even the existence of localization in one-dimensional systems.

This prompted [Anderson et al 80] to do some fundamental work on the localization
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problem in one dimension. They derived what they called a scaling variable for one-
dimensional disordered systems carrying a single pair of waves. This variable, involving
In|t|' where ¢ is the transmission coefficient for a bay, was argued to be the statisti-
cally meaningful quantity to average when examining one-dimensional random sys-
tems. They also argued that the variable satisfied a central limit theorem. Earlier
[O’Conn-r 75) had made an important contribution toward establishing a central limit
theorem for disordered periodic systems. Subsequently [Abrahams and Stephen 80|,
[Andereck and Abrahams 80] and |Stone 83] provided numerical evidence to support
the central limit theorem ideas of [Anderson et al 80]. Apparently [Le Page 82] has
provided the definitive mathematical work supporting a central limit theorem con-

tention.

1.2.2 Structural Dynamic and Acoustical Applications of Lo-

calization Theory

Solid state physicist C. H. Hodges [Hodges 82| was the first to recognize the rele-
vance of localization theory to disordered periodic systems of interest to the structural
dynamicist. He used wave arguments to calculate localization effects at high frequency
for a beam on randomly spaced supports. His work raised the possibility that disorder
could have a dramatic impact on the dynamics of what are normally spatially periodic
structures. Unfortunately, his analysis provided little indication of how localization ef-
fects varied with frequency, and his techniques were not applicable to a broad range of
periodic structures. Both the insights and shortcomings of his work motivated research

leading to this thesis.

1The precise scaling variable they used was In FIF’ which is simply ~21n [t]. They usc the term scaling
variable in the sense that the mean value of the variable for two bays is the sum of the mean values of
the variable for each bay individuvally. Also the variance of this variable scales at lcast according to a

weak law of large numbers.
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In a later paper |[Hodges and Woodhouse 83] attempted tc apply the work of
[Herbert and Jones 71,Thouless 72] to estimate localization effects in two passbands
for a taut wire with unevenly spaced masses. They also conducted an exj.eriment on

the wire-mass system which qualitatively confirmed the localization effects.

More recently [Bendiksen 86,Bendiksen and Valero 87,Cornwell and Bendiksen 87|
have examined mode localization in closed disordered periodic structures, like compres-
sor rotors and dish antennas. These closed systems are not mathematically equivalent
to the linear one-dimensional structures under consideration here. [Pierre et al 86] and
[Pierre 87,Pierre and Dowell 87] have also examined localization, but only with the aid
of deterministically disordered systems with as few as three bays. None of the engi-
neering papers so far provided analytical calculations for localization effects over any
significant frequency range. This thesis and [Kissel 87] are the first publications to
calculate frequency dependent localization factors for disordered periodic systems of

interest to the structural! dynamicist.

The most rigorous examination of localization in an acoustical setting has been that
by [Baluni and Willemsen 85]. They effectively used Furstenberg’s work to calculate
frequency deperdent localization effects; however, their application was for layers of
sandstone and shale with random thicknesses. The paper [Sheng et al 86] also examined

localization with geophysical applications in mind.

Recently, more solid state physicists [Anderson 85,Flesia et al 87] have recognized
that localization manifesis itself in acoustical and optical systems. They append the

term “classical localization™ to the phenomenon when it occurs outside the context of

quantum mechanics.
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1.3 Goals, Approach and Contribution of Thesis

The ultimate goal of this research is to provide the analyst and experimentalist with
the tools to decide (given some engineering judgement of the disorder) how significant
the dynam,. :ffects of disorder will be on a periodic structure as a function of frequency
and the properties of the structure. This thesis is & major step toward the goal of pro-
viding tools to rigorously examine the localization phenomenon in one-dimensional dis-
ordered periodic structures. We present the tools for mono-coupled disordered periodic
structures (structures in which one bay is connected to its neighboring bays through
one coupling coordinate) to calculate, analytically nnd numerically, localization effects
over a wide frequency range at moderate levels of disorder. In addition, an important

new tool is presented here to guide localization work on multiwave systems.

The approach of the thesis is probabilistic, as opposed to tha deterministic analysis
of [Bansal 80,Pierre and Dowell 87]. The methods of probability theory allow us to
model our uncertainty in a way that yields meaningful answers. This is particularly
true when we make use of theory on products of random matrices, which puts uson a

firm mathematical footing.

What had the most profound impact on the direction of the research was the obser-
vation of confusion about localization in the late 1970’s in one-dimensional disordered
systems. In this instance the confusion could have been a.voided had more researchers
availed themselves of the appropriate mathematical tools. The very important obser-
vation about the In|t| being the key statistical variable in the study of localization can
be easily deduced in a few algebraic steps by making use of wave transfer matrices and

Furstenberg’s theorem. This is explained in Chapter ‘3.

It is the philosophy of this thesis that the transfer matrix formalism accompanied
by the appropricte th:ories on products of random inatrices can lead to a better under-

standing of the iocalization phenomenon. This philosophy has been needlessly neglected
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in most of the theoretical localization literature to date. The reason that theorems on
products of random matrices have generally received scant attention from physicists
working on localization is that they have relied on their own heuristic techniques, and
that they have been more interested in two- and three-dimensional systems, which

cannot be as easily handled with transfer matrices.

The first principal contribution of the thesis is the explanation of how random trans-
for matrix techniques can be used to model disordered systems, deduce transmission -
properties and calculate localization effects. This includes a discussion of the impor-
tant transformation to wave transfer matrix form and the relevance of the theorems of

Furstenberg and Oseledets to the one-dimensional localization problem.

The second principal contribution is the calculation of localization effects as a func-
tion of frequency for three disordered periodic models of interest to the structural
dynamicist. In most instances the localization effects are found to be strongest at fre-
quencies near the stopbands of the normally perfectly periodic structures. Localization

effects are also pronounced when the length of a bay is disordered.

The third principal contribution is the derivation of the localization factor for mul-
tiwave one-dimensional systems as a function of the transmission matrix. This at last
allows a rigorous treatment of localization in multiwave systems. Because transfer
matrix methods can be used to model almost any disordered periodic system in one
dimension, including systcms of interest to the solid state Vphysicist, the results here

will be of interest outside the engineering field as well.

In addition to these principal contributions, we will note in the body of the thesis in-
stances where previously published results are extend:d and where mistaken approaches

and conclusions exist in the literature.
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1.4 Preview of Thesis

Before studying the effects of disorder on periodic structures, Chapter 2 presents
a brief discussion of the modeling and dynamics of perfectly periodic structures. Here
the transfer matrix formalism is introduced and the important passband and stopband

property is discussed. The modeling of disordered periodic structures is next presented

and the very important wave transfer form of the transfer matrix is introduced.

This serves as a prelude to Chapter 3 in which we discuss Furstenberg’s theorem
on products of random matrices. This is the tool used to study localization for mono-
coupled periodic structures. With Furstenberg’s theorem in hand, we are able to deduce
the asymptotic behavior of the transmission coefficient, 7,, of the n bay disordered
periodic structure. We will show that the wave intensity, |7,|, decays as e~™, where
~ is the localization factor. We are also able, using the same theorem, to estimate
the localization factor as a function of the level of disorder, frequency and physical

properties of the system.

This theory is demonstrated on three examples in Chapter 4. The first and sim-
plest example is a linear chaih of springs and masses. Initially only the masses are
disordered and then only the springs, followed by masses and springs disordered si-
multaneously. All calculations are confirmed by Monte Carlo simulations. Similarly,
a rod with attached resonators is studied. First the masses, springs and lengths are
disordered individually, after which all three variables are disordered. The last mono-
coupled example is a Bernoulli-Euler beam on simple supports with random lengths

between the supports.

2

Most real structures carry more than a single pair of wave types at a given fre-
quency, so localization in these multiwave systems should be investigated. Unfortu-
nately, Furstenberg’s theorem will be of little use for investigating localization effects

in multiwave structures; however, the theorem of Oseledets is precisely suited to mul-
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tiwave analysis. In Chapter 5, after discussing Oseledets’ theorem, we present a new
result — the localization factor for multiwave systems in terms of the transmission ma-
trix, r. The significance of the result is discussed, and an analytical technique for

calculating the localization factor for multiwave systems is suggested.
Concludir.g remarks and suggestions for future research are made in Chapter 6.

Several appendices are included and are referred to frequently in the body of the the-
sis. Appendix A discusses some definitions and properties from matrix theory and group
theory used in the thesis. The derivation of the wave transfer matri:. for mono-coupled
systems is discussed in Appendix B. In Appendix C the modeling of a mass-spring
chain, a rod with attached resonators and a beam on simple supports is discussed,
both when they are periodic and when they are disordered. A simple method to calcu-
late localization factors, not depending on theories for products of random matrices, is
discussed in Appendix D. In the final appendix, Appendix E, we examine some prop-
erties of scattering and wave transfer matrices that will be useful in Chapter 5. The
reader should at least scan these appendices before proceeding with the rest of the

thesis.
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Chapter 2

Transfer Matrix Models of Periodic

and Disordered Periodic Structures

2.1 Introduction

In this chapter we will describe the nature of periodic structures of interest in the
thesis and = »w how transfer matrices are used to model these structures. Some of
the properties of periodic structures are mentioned, including the important passband
and stopband characteristic. The modeling of disordered periodic structures via a
product of random transfer matrices is then discussed, along with the very important

transformation of these matrices to wave transfer form.
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2.2 Perfectly Periodic Structures

2.2.1 One-Dimensional Periodic Structures

In Chapter 1 we described the kinds of periodic structures of interest in the thesis as
those with repetitive bays in one linear dimension. These identical bays are connected in
identical ways to form what is intended to be a perfectly periodic structure. Because we
are looking at structures in a linear dimension, our discussion excludes closed peric;dic
structures like a compressor rotor or a dish antenna which can be modeled as one-
dimensional periodic structures [Bendiksen 86]. We will not be examining periodic
structures in two or three dimensions as they are much more difficult to model with
transfer matrices, and, in addition, the localization effects are understood to be much

less pronounced in these higher dimensions than in the one-dimensional case.

2.2.2 Modeling of Perfectly Periodic Structures

The key modeling tool used throughout the thesis is the transfer matrix. Each
bay of the periodic structure is modeled with a linear transformation, T, which relates
a state vector of one cross-section to the state vector of the succeeding cross-section,
namely:

X; = Tx,-_,

This is a difference equation, where the matrix T can be thought of as a spatial state
transition matrix evaluated between the points j and j — 1. One transfer matrix is
associated with each bay in the structure. The state vector may consist of generalized
displacements and forces, for example, or it might consist of the generalized displace-
ments of neighboring bays. The transfer matrix can be found by manipulating the
dynamic equations of motion of a bay, possibly derived with the finite element method.

The derivation of transfer matrices is discussed at length in [Pestel and Leckie 63]. The
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formulation of the transfer matrix assumes a sinusoidal time dependence (e*!) in the
equations of motion. No damping® is included in the models so that the effects of

disorder can later be highlighted.

The transfer matrix will always be of even dimension, as will the state vector. For
most of the thesis we will confine our discussion to bays mbdeled with 2 x 2 transfer
matrices, which in turn means each state vector is 2 X 1. These structures are called
mono-coupled periodic structures because each bay is connected to its neighboring bays
through one coupling coordinate. Mono-coupled periodic structures carry only a single

pair of waves.

Because each bay is identical, the state vector after n bays is simply related

[Faulkner and Hong 85] to the state vector at the beginning by
Xn = T"xo

Because we are raising a transfer matrix to the nth power, we need only examine the

transfer matrix T to understand the dynamic properties of the periodic structure.

The three transfer matrices describing the three example periodic structures in this
thesis can be found in Appendix C. These structures comprise a chain of springs and
masses, a rod in longitudinal compression with attached resonators and a Bernoulli-

Euler beam on simple supports.

2.2.3 Properties of Perfectly Periodic Structures

To appreciate the consequences of disorder in pericdic structures we must first ex-
amine the modal and wave properties of periodic structures without disorder. There

is extensive literature on perfectly periodic systems and the reader is referred to

1The analogous assumption in the solid state localisation problem is to neglect inelastic scattering

mechanisms.
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[Brillouin 46,Miles 56,Mead 70,Cremer et al 73,Mead 75-1,Elachi 76,Engels 80] and
|Faulkner and Hong 85,Mead 86]). The literature specifically examining periodic sys-
tems carrying a multiplicity of wave types is much less abundant, [Mead 73], [Mead 75-2],
[Signorelli 87], [Bernelli et al 87]. The properties we are examining below are for struc-

tures with transfer matrices of dimension 2 x 2.

In a periodic stiucture the vibrational mode shapes are themselves periodic, i.e.,
have amplitude equally strong along any section of the structure. As we will see shortly,
the natural frequencies at which these modes vibrate tend to occur in clumps along the

frequency axis.

Dual to the modal properties of the structure are the wave properties. Two types
of waves, traveling waves and attenuating waves, occur in alternating frequency bands
known as passbands and stopbands, respectively. In the passbands waves travel accord-
ing to e***, where k is the real wave number and the positive sign indicates negative-
going waves and the negative sign positive-going waves. The wave number k = ’T" is a
spatial frequency which refers to the phase difference of motions in adjacent bays. Here
A is the wavelength and & varies in magnitude from 0 to 7 or some multiple thereof. In
the stopbands, waves propagate according to e*® or e(®+*)_ The real exponent a im-
plies nontraveling or attenuating waves. The a+ ix exponent implies adjacent bays vi-
brating out of phase with each other, in addition to wave attenuation. Both k and a are
functions of frequency. Only in the passbands of the perfectly periodic mono-coupled
structure can energy be transmitted along the structure [Mead 75-1]. Another type of
wave - a complex traveling wave - can occur, but only for systems modeled by transfer

matrices of dimension 4 x 4 or greater [Mead 75-2,Signorelli 87,Bernelli et al 87].

The frequency ranges of passbands for mono-coupled periodic structures can be
found by determining those frequencies at which the eigenvalues of its transfer matrix
. are complex, e*'*, By examining the characteristic equation of the 2 x 2 transfer matrix

T, where det(T) = 1 because we have assumed no damping, we readily deduce that
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pl;ssbands occur at frequencies where |tr(T)| < 2. Otherwise, the eigenvalues are real,

et® or e**+'" and we are in a stopband.

This passband and stopband property is characteristic of any periodic aystem,
whether it be an electrical network, a periodic truss structure, a layered acoustic
medium or a periodic potential along which electrons might propagate. It is important
to remember that in the frequency ranges of the passbands of the perfectly periodic

system there is perfect transmission of waves and energy.

The connection between the wave description and modal description for a finite
structure is formally made with the phase closure principle [Cremer et al 73,Mead 75-1]
and [Signorelli 87). This principle says that at a natural {frequency, the total phase
change of a wave as it travels backwards and forwards once through the entire structure,
including the phase changes at the boundaries, is an integral multiple of 2x. The
connection between this wave description of a periodic system and a modal description
becomes more apparent by noting that the natural frequencies of the periodic structure
lie within the passbands. For a periodic structure of infinite extent an infinite number
of natural frequencies lie densely in each passband. For an n bay periodic structure,
n natural frequencies lie within each passband. (This result is strictly true only when
each bay can be modeled as having symmetry of mass and stiffness about its midpoint.

If the bay is unsymmetric, one frequency will occur in the stopband {Mead 75-1}).

Another property of mono-coupled periodic systems to note is the order in which
the passbands and stopbands occur. For periodic systems connected to the ground, a
stopband will occur first as a function of frequency followed by a passband after which
the pattern is repeated. This makes sense because clearly the low frequency motion
is constrained by the connection to the ground. For periodic systems not connected
to the ground, this pattern is reversed, with a passband occurring first followed by a

stopband and so on.
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No real structure will have an infinite number of bays, but frequently a structure
with a finite number of bays can mimic quite well the properties of an infinite structure,
especially if it is long. But surprisingly, [Roy and Plunkett 86} note good agreement

between passband/stopband properties of a theoretically infinite dissipationless beam

~ with attached cantilevers and their experimental results for such a system with only 15

cantilevers.

2.3 Disordered Periodic Structures

Now that we have described the kinds of periodic structures of interest, and some

properties they possess, we turn our attention to disordered periodic structures.

2.3.1 Nature of the Disorder

The term disor "=r refers to each bay of the structure having one or more of its
properties departing ir. a random fashion from the average. We assume here that the
disorder is distributed equally among all the bays and not scattered in a few. (In some
literature [Toda 66] the term localization refers to the effect of disordering two well
separated bays out of an otherwise perfectly periodic system. We are taking a more
general definition of localization which encompasses a finite to an infinite number of
disordered bays without any intervening perfectly periodic section of bays.) With this
kind of disorder, the properties of the bay being disordered, whether masses, springs or
lengths, can be modeled as independent identically distributed random variables. Note
here that we do not model continuously disordered systeuv.s like a turbulent atmosphere
[Wenzel 83] or a beam with mass that is a random function of length [Howe 72]. Rather,

our disorder is discrete in that it occurs from bay to ba'~

When several variables of a bay are disordered we assume that the random variables
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are mutually independent. Because the randomness for any variable will not be con-
sidered too large, we will make use of “narrow” uniform probability density functions
from which to draw the random variables. This is also in conformity with the practice

in the solid state localization literature.

2.3.2 Modeling of Disordered Periodic Structures

For the disordered periodic structure we will contirue to use the transfer matrix
formalism established in Section 2.2.2. For each bay now the transfer matrix, T, is
simply a function of one or inore random variables, T;(ay,...,a,). See Appendix C
for the random transfer matrices of our three periodic structures. Because the random
variables are independent and identically distributed, so also are the random transfer

matrices.

The disordered perindic structure with n bays cannot be modeled as T®, but is

modeled as a product of random transfer matrices:

This is the key modeling assumption of the entire thesis. We will examine one important
asymptotic property of products of random matrices and deduce from that the nature

of the localization pheromenon.

2.3.2.1 Wave Transfer Matrix

Because strong wave attenuation already occurs in the stopbands, our focus is on the
¢Tects of disorder in the passbands of the normally perfectly pericdic structure. Unlike
the case for the perfectly periodic structure, we cannot simuitaneously diagonalize each

T; with the same eigenvector similarity transformation. However, we caa transform
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each random transfer matrix, T1';, forming the product into a wave transfer matriz, W;

seen in the following equation (see Appendix B):

- 1 ry 1 - :

Ai | _| & “H] 4 2.1)
— - :“- 1 — .

B; B Bj-1

where 2 is the ampiitude of the left traveling wave and E is the amplitude of the right

traveling wave.

This is a wave transfer matrix for one random bay inserted in the iniddle of an
otherwise perfectly periodic structure carrying a pair of traveling waves. The wave
amplitudes in Equation 2.1 are those supported by the periodic system surrounding

the disordered bay. The transmission coefficient, ¢;, is the complex amplitude of a wave

‘emerging from the right of this random bay when a wave of amplitude 1 is incident at

the left. The reflection coefficient, r,, is the complex amplitude of the reflected wave
when a wave of amplitude 1 is incident from the left. Physically, |t;|? represents the
ratio of transmitted energy to incident energy, and |r;|? the ratio of retlected energy to

incident energy. Energy conservation implies that |t;|* + |r;|* = 1.

Some readers may be more familiar with r; and ¢; appearing in a scattering matriz.

The scattering matrix corresponding to Equation 2.1 appears in the following equation:

Zj-l r; Bj-—l ]
B; 4 1 4;
The scattering matrix relates wave amplitudes leaving a bay (which are on the left of
the equation) tc those entering the bav (which premultiply the scattering matrix). The
disadvantage in using the scattering matrix to analyze a disordered periodic system is
that it is not a trausfer matrix. This means that the scattering matrix for two or more
bays cannot be realized by simple multiplication of the respective scattering matrices.

The scattering matrix for two or more bays is realized through a complicated “star

product” described in [Redheffer 611
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We will use the wave transfer matrix precisely because it is a transfer matrix and
because it allows us to model disordered periodic structures by pure matrix multipli-

cation. So the wave transfer matrix for the n disordered bays is: "

n L e
—_ T T
[w;=| ™ -
,‘=1 ._e.l _—
L 4 Tn

where 7,, is the transmission coefficient of the n bay disordered system, and p, is
the reflection coefficient of the n bay disordered system. Here |r,|? is the ratio of

transmitted energy to incident energy for the disordered structure.

2.3.2.2 Properties of the Wave Transfer Matrix ' -

The wave transfer matrix has some special properties that will be exploited to
simplify our analysis of the localization phenomenon. First, because we will always use
transfer matrices of determinant one to model our disordered bays (this is true because
no dis.sipa.tion is included in the models), the correspbnding wave transfer matrix will

have unit determinant. Thus the wave transfer matrix is an element of (see Appendix

A) SU(1,1) and Sp(1,C).

Recall that the original transfer matrix, T, was real and of unit determinant, and
so was an element of the group SL(2,R). What has happened in going from T to W
is that we have taken advantage of an isomorphism between SL(2,R) and SU(1,1).
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Chapter 3

Furstenberg’s Theorem and
Calculation of Localization Factors
for Mono-Coupled Disordered

Periodic Structures

3.1 Introduction

As has been discussed earlier, disordered periodic structures can be modeled via a
product of random transfer matrices. In this section we will exploit the mathematical
theory of products of random matrices to reveal an important transmission property of
disordered periodic systems. 1t is precisely this transmjssion property that we associate
with the localization phenomenon. In the chapter we will formally state Furstenberg’s
theorem, then restate it in more familiar terms. We then relate the localization factor
. to the transmission coefficient of the long disordered system, after which we will find

an approximate analytical expression to calculate the localization factor.
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3.2 Furstenberg’s Theorem

A rigorous statement about the properties of a product of a finite number of random
matrices is difficult to make; however, we can come to some rigorous conclusions on
properties when the number of matrices in the product becomes very large. We will

focus on one property that was originally proved in [Furstenberg 63] and which we

~ specialize to 2 X 2 matrices. One formal statement of this limiting behavior of products

of random matrices is as follows:

Theorem 1 (Furstenberg’s Theorem, original form) Let T,,T,,...,T, be tnde-
pendent tdentically distributed 2 X 2 random matrices with distribution u. Let G be the
smallest closed subgroup of SL(2, R) containing the support of u. If G is a noncompact
subgroup of SL(2, R) such that no subgroup of G of finite index is srreducible and if

E[maz(In||T;||,0)] < +oo
then there exists v > 0 such that for each xo # 0
lim —~In [T, Tyxo| = 1
Jim =~ In||Tn - Tixol| =7 wep.

and

.1
lim - In|Tp---Th=v wpl.

and if v is a u-invariant distribution on P(R?)(P(R?) is the projective space of R?,
namely half of the unit circle), then

7= [[ 10| TR|du(T)dv(x) (3.1)

where % is in P(R?).

The condiiion of invariance for v is stated mathematically in many ways including:
TR
/ 14(R)dv () = / / La{ gy (T} (8)
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where 14(#) is the indicator function; its value is one when the argument lies on A and

0 otherwise.

There is one special direction for the initial vector xo for which the Furstenberg

result will not hold for a given realization of T,::-T,. Namely if %X, is along this

~ special direction, then

.1 A
lim -';ln“T,,---Tlon = —7

n—oo

Thisis a consequencé of the theorem of Oseledets which will be discussed in Chapter 5.

The above theorem can be modified and restated in more familiar terms with just

a few assumptions and some explanation.

As stated in Chapter 2 we are considering our random matrices to be functions
of one or more random variables, where the random variables are drawn from some
probability density function (Dirac delta functions are permissible in our definition of
probability density functions, so probability mass functions are possible in the above).
We exclude Bernoulli random variables (random variables having probability density
functions with ma: at only two points) in our transfer matrices because they can result
in the distribution v having neither mass nor density. The distribution for ¥ would
be a so-called continuous singular probability measure. So now probability measures p

and v become p(a) and p(X), respectively.

The subgroup G can now be interpreted as the set of all matrices generated by
the probability density functions of the random variables plus the inverses of those
matrices, plus the identity matrix, plus any products of the above matrices. The
conditions concerning noncompactness and irreducibility of G have been shown by
[Matsuda and Ishii 70] to be equivalent to requiring that G contain two elements in
SL(2, R) with no common eigenvectors. In addition, [Goda 82] has shown that the

Furstenberg result will hold for matrices in GL(2, R) as long as

Jim ~In(]] |det T4() =0 (3.2)
=1
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Finally, the theorem will also hold for matrices with complex entries

[Bougerol and Lacroix 85].

Now that we have clarified some of the conditions under which Furstenberg’s the-
orem holds, let us examine why the Furstenberg result, Equation 3.1, is reasonable.
As -the deterministic vector xg is propagated by the random matrices, its direction, R,»
begins to take on a probability density of its own. In fact as n — oo, the probability
density of this direction becomes invariant witii respect to the probability density for

the random transfer matrices. Specifically, the invariance condition means if
Xp = TpnXn-)

then as n — oo

P(Rn) = p(Xn-1)
This condition of invariance is frequently called the Dyson-Schmidt self-consistency
condition in the solid state physics literature [Ziman 79]. This condition of invariance
does not hold for systems in two or three dimensins or for closed periodic structures in
one dimension [Ziman 79, page 309]. Therefore, as n — oo the two relevant probability
distributions are those for T and X, and the double integral of In || TX|| over these two

distributions seems reasonable.

With these points in mind, we can restate Furstenberg’s theorem as follows:

Theorem 2 (Furstenberg’s Theorem, modified form) Let W;, W,,..., W, be
complez valued, invertible, independent sdentically distributed 2 X 2 matrices where
W, = W;(a) s a function of the random vector a with probability density p(a). If at
least two of the random transfer matrices do not have common eigenvectors, and if

lim % In(]] | det W;]) = 0

i=1
and if
Elmax(In [ W;]],0)] < +o00
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then there ezists v > 0 such that for each 2o # O

lim ~ln[|Wo- - Wigo] =v  w.p. 1

n—o n
and

Jim ;l;ln [Wa-Wi[=7 wpl
where

/ In | W (a)Z|p(a)dap(E)dE (33)

where p(Z) ts snvariant with respect to the probability denssty function p(a) for the

random transfer matrices, i.e.

[ 1a@p(e)de = [[ 14 e)dap(a)as

where A 1s any arc along the half unit eircle.

A number of other properties for products of random matrices can be shown
(Bougerol and Lacroix 85]; however, Furstenberg’s theorem gives the one property which,

as we will see, is relevant to localization in a disordered periodic system.

Furstenberg’s theorem is a law of large of numbers for products of random matrices.
More recently a central limit theorem [Le Page 82,Bougerocl and Lacroix 85] has been

proved for products of random matrices. The central limit theorem tells us that

1 satridbution
50 Wa - Wi - no) 22557 N (0, o%)

The conditions on the random matrices are a little more restrictive than the ones for

Furstenberg’s theorem, but determining whether they apply to the transfer matrices

considered here is left for future research.
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3.3 Localipation Factor as a Function of the Trans-

mission Coefficient

Now we will relate the Furstenberg limit theorem for products of random matrices
tu a transmission property of disordered periodic systems. From Furstenberg’s theorem
we know

.1 .
'1="1Lrg;ln||W,‘---W1H w.p.1 (3.4)

Recall that a product of n wave transfer matrices is of the form:

IiIIW5= [ j; __12: ] S (3.5)

n
To apply Equation 3.4 we first take a matrix norm of Equation 3.5. Here we choose

the maximum singular value (see Appendix A); so a little algebra gives:

T 1+|Pn!
v = lim ~In( [7a] )

or
.1 1
= lim - In(1 + |pa]) - ;ln |7nl

Knowing that G < |pn| < 1, the first term vanishes, and we are left with

v=-lim i— In |7,| (3.6)

Now we can understand the relevance of 4 to the dynamic properties of a disordered
periodic structure. Asymptotically, Equation 3.6 says that the absolute value of the
transmission coefficient decays exponentially with n, the number of bays. The rate
of decay per bay is governed by 4 which will be called the localization factor. Thus
traveling waves will no longer be propagated perfectly, but will tend to be confined
near their point of origin according to the localization factor 4. This result says that

|7a? ~ ¢~31, the transmitted energy decays exponentially with n. It has been argued
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[Matsuda and Ishii 70,Pastawski et al 85] that the now spatially localized modes are

governed by an exponential envelope of the form e~™".

We observe that In|r,| is a statistically well behaved variable, namely we have
derived an asymptotic relation for it based on a law of large numbers for products
of random matrices. Notice also that we are not taking an expectation of In|r,| to
find «; the result holds as n — co. Randum variables with this property are called

self-averaging [Pastur 80,van Hemmen 82).

The notion that the In|r,| is statistically well-behaved is further strengthened if
one applies these same manipulations to the central limit theorem for products of
random matrices. Thus using the available mathematical tools, we confirm in just a few
steps the conjecture about the statistical behavior of In |7,! by [Anderson et al 80] and

[Stone et al 81].

3.4 Calculation of Localization Factors via an Ap-

proximation to Furstenberg’s Theorem

In this section we will simplify Equation 3.3 of Furstenberg’s Theorem; this will

lead to an approximation for the localization factor, 4. First recall Equation 3.3

1= [[n|W(a)2|p(a)dap(z)dz

then without loss of generalit;” we have:



where for the moment we suppress the dependence of ¢t and r on a. So,

1 [ e o]
W(a)2 = — ‘. ; ‘ -
V2 [ gt
After some complex algebra we find:
W (a2} = l- -3 ""l

Now the equation for « is

[1n |% ~ Te7|p(o)dap(6)d0 (3.7)

where p(8)df must satisfy the invariance condition:

W(a)£(6)
[146)p(6)d8 = [[ 1( (Twiaz (@) P dor(0)48 (3.8)

Because p(6) can only be found in rare instances [Pincus 80, we will find an ap-
proximation to - by taking a Taylor series expansion about < a >, recalling that a is
a vector, of the terms in Equations 3.7 and 3.8 and retaining terms to first order in o2.
This approach has been discussed in [Baluni and Willemsen 85|. Let us first recall the
form of the Taylor series expansion for a multivariable function. The first three terms

He) = f(o)lcar + z(a,— <o)l )|<¢.> +

ii:( -<aq>)(ai—-<a >)‘ai&a—)|<a>+“‘

== oo 0a;

DO

We now examine the expansion of In |7l; — %&}e“"l. The first term in the expansion

is simply that for the undisordered or perfectly periodic system. Recall that

1 sk y
[? _%]=[e 0]

* 1 ~tk
-+ & 0 e

for the perfectly periodic system in the passband. Therefore the first term is:
Inje*| =0
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The second term in the expansion will not be needed because the terms

(au— < oy >) vanish when integrated over p(a).

Finally, the third term is examined. Because the terms in the random vector are

mutually independent, we know that (qy— < & >)(a;— < a; >) ¢ # I will vanish after

~ integrating over p(a). We are left with

1L Il - '{{Se“"l
52 (u—<a>) 5a7

l<¢>

=1
So 7 to first order in the variance of the ays is:
1d a’lnIL —'°e“”|
1= 5 ZG:‘/ ‘(—% 3#;% |<a>P°(0)do (39)
I=1 o]

where we now must find p"(8) which is p(6) to the zeroth order in the variance of a.

To find p°(6) we examine Equation 3.8 where we only look at terms to zeroth order

. .
in o3, namely:

/ 14(6)p°(6)d8 = [ 1A(ﬁv‘—’%§§%|m)p(a)dap°(o)do

W et 0 1 et 1 e'(k+0)
Eleca> = —_— = —
(@)2|<e> 0 et | V2| o V2 | -ilk+0)

We therefore require p°(8) to satisfy

but

[140)°(0)d0 = [ 1a(k + 6)5°(6)a0

Because k can take on any value between 0 and 7, or some multiple thereof, we must

have that p°(6) = 1, which is a uniform probability density function.

To further simplify Equation 3.9 we note that

In|-1e - r—(i)e“"l =In |—1—| +In|1 - r(a)e™¥|

t(a) t(a) t{a)

The term In|1 — r(a)e™®| can be expanded in a series, and recalling

¢~ = cos 26 — vsin 20, the term vanishes after integrating.
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Therefore we are left with

o i F;) 2 a
or
1 Injt(a))
= =Nt T 2
1 2 ;1003 80“ |<°> + 0(0.)

M= % i:’:.—a—}?}j‘|<-.> + O(O:) (3‘10)

where

< oy >
< a>

i

o
<oy >

<aq >
The prime indicates that all but the {th term is evaluated at the mean value. This
latter result says we can calculate localization effects by disordering one variable at a

time in a transfer matrix.

Notice that the localization factor to first order in the variance is simply a sum
of the localization factors for each variable randomized individually. We suspect that
as the variance of the disordered variables increases the estimate of 4 will be poorer

because we have retained terms only to first order in the variances.

We also note that Furstenberg's theorem has been shown to be robust to uncertainty
in the probability law of the random transfer matrices The paper [Slud 86] shows that
if the postulated probability measure for the transfer matrices is “close” to the actual

one then the asymptotic behaviors will be arbitrarily close.
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A technique to approximately calculate localization factors without resorting to

theories on products of random matrices is presented in Appendix D.
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Chapter 4

Calculation of Localization Factors
for Three Mono-Coupled

Disordered Periodic Structures

4.) Introduction

This chapter will illustrate localisation calculations for three periodic structures
that can be modeled with 2 x 2 transfer matrices. The results will show dramatically
how localization effects can vary with frequency. The anaiytical results are compared
to Monte Carlo simulations of these systems. We provide, where possible, a physical
explanation for the observed localization effects.

The first system examined is a chain of spring and masses. This simplest possible
system provides a convenient vehicle to illustrate the calculation of localization effects.
Indeed, this thesis provides the first comprehensive examination of the localization

effects of a disordered mass-spring chain.
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The second example is a rod in longitudinal compression with attached resonators
which mimics some of the important dynamic behavior of a real truss structure. Unlike
the mass-spring system which has only a single passband, tle rod with resonators has
an infinite number of passbands. We examine localization effects over several of these

passbands.

The final example is ¢ Bernoulli-Euler beam on simple supports. When we disor-
de: the distances between the supports we will see a very pronounced effect near the

stcpbands of the underlying periodic structure.

In our analysis we will consider the random variables, oy disordered +p% from the
average va'ue < og >. A disorder of +p% from the average value < oy > translates into
a uniform probability d«:sity function with width of 321%‘3- and height of ;iq‘%;. The
uniform probability density function will be centered around < a; >. Note that the
variance of any random: variable with a uniform probability density function is always

width?
12

4.2 Localization in a Mass-Spring Chain

We will examine at length the localization effects in a chain of spring. and masses.
The mass-spring chain is an excellent example to begin our discussicn of localization,
not only because of its simplicity, but also because this system and its analogs have been
studied over the years, giving us the opportunity to directly compare our results with
those already published. Even though the mass-spring chain and its equivalents have
received a lot of attention in the literature, amazinglsr it has not received exhaustive
treatmeni. For example, in the literature the chain is examined with only the mass

disordered and the localization factor calculated is generally valid over only the first

* half of the passband. In this thesis we will study localization in this chain where masses

and springs are disordered and the equation we present for the localization factor will
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be valid over virtually the entire passband.

In the next sections we will first examine the chain with only masses disordered and
oresent our analytical approximation of the localization factor based on Equation 3.10.
These results will be confirmed by a Monte Carlo simulation. We will also compare this
analytical resuit with the on. usually found in the literature. The localization factor

will be studied for three levels of disorder: masses with a .1%,1% and 10% variation

- above or below the nominal value. We will see that the localization factor depends only

on frequency and the level of disorder. Throughout the thesis any such dependencies

are suppressed when writing the localization factor, 4.

Next we examine the chain with only springs disordered and show that this disorder
is dual to the mass disorder. Finally both masses and springs are disordered and we

again confirm the analytical results with a Monte Carlo simulation.

4.2.1 Only Masses Disordered

We first examine a chain with disordered masses, which in the physics literature is
identified as isotopic disorder, referring to atomic systems with various isotopes. This
chain with masses disordered has been examined in [Matsuda and Ishii 70,Rubin 84];
its electrical circuit analog was studied in [Akkermans and Maynard 84], and the solid

state analog in [Stone et al 81] and elsewhere.

The mass-spring model and its transfer matrix are presented in Appendix C.1. We
make use of a nondimensional frequency, @, in the transfer matrix and our analysis :

W

k
L7
2 m

W=

The condition for the existence of a passband (see Chapter 2) tells us that only one

passband exists and occurs for

O0<w<l
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In the passband waves and energy travel with perfect transmission. However when the

system is disordered, the transmission is disrupted; and the resulting disruption in the

passband is what we are examining.

In our analysis we will first consider masses disordered from their average value
~ on the chain. We make use of nondimensional quantities wherever possible. Here the

nondimensional mass is u;, where
, m
ui=— and m=<m; >
m

and m is the mass for the perfectly periodic system. The transfer matrix for one bay of
this chain with a disordered riass is shown in Appendix C.1 and the (1,1) term of that
transfer matrix is ‘(:ﬁ’ Equation C.1, which can be used in Equation 3.10 to calculate
the localization factor, 4,. For this mass-spring system with masses disordered we will
go through the calculation of the localization factor; this will serve as an example of
the steps necessary to do the calculation for any disordered system. Equation 3.10 now
becomes
1,0 (Inlgi)
T = 5”“—6;4;.__ <p;>

where = indicates we are neglecting terms of order greater than the variance. From

Appendix C.1.1 we have

1 o .
tu) (=)
where
5 = (- )
7 sink
and where

cosk =1 — 26?2

Suppressing the subscript j, we now have

. 1 ,8In(1+6%)
i e N

Letting




we have the first partial derivative

dln(1+6?) 266"

. 1+62
Taking a partial derivative again we have
dIn(1+6%) 268 + 26' + 266"
ou? (1462 1462 14862

We have to evaluate the above terms at < u >. Note that § evaluated at < u > is

zero, so now we have

.1
Vu = -4—0:26'2|<#>

or
. 20ta?
T = =3,
sin k
Knowing cos k from above, we can calculate sin® k and so finally for the mass-spring

system in the passband, 0 < @ < 1:

g =

Wt gt (1)

We observe that the localization factor is a function of the nondimensional frequency
@ and the variance of the nondimensional mass. Clearly the localization effects increase

with frequency and also with the amount of disorder. At low frequency

@io

2

2
M

Tu = ((D — 0) (4.2)

indicating that ~, is proportional to @2 at low frequency. The low frequency estimate of
the localization factor for a chain with disordered masses is the one usually seen in the
literature [Matsuda and Ishii 70], but in the following dimensional form(and derived

through much more torturous methods than are used here):

. wio?

The nondimensional analytical results of Equation 4.1 and Equation 4.2 for masses dis-
ordered +.1% from the average value are plotted in Figure 4.1 with the nondimensional

frequency ac the abscissa and log,,(v,) as the ordinate.
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The frequency dependence of -y can now be seen explicitly. Note the rising value of
~ as it approaches. the stopband near @ = 1. This makes physical sense, because the
masses are vibrating at higher frequencies as we approach the end of the passband, so
we expect that disorder will have a greater impact than it would for masses vibrating
at lower frequencies. The dashed line represents the nondimensional low frequency esti-
mate of 4,. Clearly it provides an adequate estimate of ~, for about half the passband,
while it grossly underestimates the localization effects at the highest frequencies of the

passband.

As an example, let us consider the effects of localization at @ = .9995, where
Y = .1665 x 1073, This result tells us that on average the transmitted energy, |7.|?,
after 1000 bays will be ¢~3-1666x107°1000 — 79 of the incident energj even though no
damping is present. A modal amplitude for a normal mode at that frequency would
be confined to an exponential envelope governed by e™™ with v = .1665 x 10~%. The
localization will be less pronounced at lower frequencies, but is nonetheless present.
The attenuation caused by the disorder is unlike that of dissipation.. Here localization
prevents the wave from traveling along the structure, unlike the case for a perfectly
periodic system, where the wave would travel without attenuation. Localization tends
to confine the wave near its point of origin, where it is eventually dissipated by the

damping that inevitably exists in all real structures.

Our localization result in Equation 4.2 is one-half the result! presented by
[Chow and Keller 72]. In their work they calcuiated the effects of randomness on the
coherent portion of waves traveling through a random chain. We can reproduce their
results with the aid of Appendix D. If in Appendix D we proceed to find the mean value
of 7, and then take the natural log, instead of averaging In |7,| directly, we will get twice
the result of Equation 4.2, Clearly, they are averaging the wrong varia.Ble, Ta. In ad-

dition to making the statistical arguments about averaging of proper variables, we can

INote that the relevant result in [Chow and Keller 72] has a typographical error on the bottom of
page 1412. It should read Imk(w, ¢3) = __{‘_."“;:o 1> .
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make the following physical argument to explain their results. By examining only the
coherent or mean wave, as was also done by [Eatwell 83], they really neglect the inco-
herent portion of the wave which can also carry energy. When we average over In |1, | we
are taking into account all the energy transmitted, because by definition |r,| is the ratio
of transmitted energy to incident energy. Other authors have pointed out the invalidity
of averaging other quanitities like |r,| [Hodges 82], p, [Baluni and Willemsen 85| and
F;—:.-‘F [Stone et al 81].

The validity of the analytical result should be verified by some numerical simulation.
Specifically, we want to see whether the analytical result is valid for the entire frequency
range of interest and for increasing levels of disorder. The obvious simulation is to
multiply a huge number of random transfer matrices at a given frequency to see if

indeed

~=—lim lln[r,.l

n—oo n
Because we cannot really take an infinite number of products, we must resort to averag-
ing In |7a| over an ensemble of realizations of the chain. The question arises whether to
use a large number of matrices per ensemble or a large number of ensembles and a few
matrices. Upon examining this issue numerically, we found that we did not even have to
take a product of random matrices to get Monte Carlo results that matched our analyt-
ical results. Rather, averaging In |¢;| from an individual matrix ov r a sufficient number
of realizations (in our case 1001) gave excellent agreement with the analytical results
over large frequency ranges. A similar observation was made by [Pastawski et al 85].
The agreement was good in the sense that the mean value of the Monte Carlo sim-
ulation tracked our aralytical results well (as can be seen in the numerous figures),
but also in the sense that the standard error was congistently one to two orders of

magnitude smaller than the mean value.

Recall that in a Monte Carlo simulation [Hammersley and Handscomb 64] the un-
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biased estimator of the mean value is
1 1 4
<lnjtj| >= =Y In|t;|
L g
)=1
where r is the number of realizations in the simulation. We estimate the standard error
as:

standard error =

Sle

where s? is the unbiased estimator of the variance:

r
= 23 (nltl- <Infty] >)
r—-1:3

Again the standard error was one to two orders of magnitude smaller than the mean
value for the simulations of all three structures. The results of the Monte Carlo simu-

lation are indicated with the small triangles in Figure 4.1. They confirm the validity

of the analytical result over the entire passband.

Now we choos: to increase the disorder in the masses so that they vary £1% from
some nominal value, which means that the uniform probability density function has
width of .02. Examining Equation 4.1, we would simply expect our localization factor
to be scaled by the new a: compared to the previous result. Indeed this is what we

confirm with our simulation illustrated in Figure 4.2.

Finally we examine the chain with a 10% variation in the masses. Such a highly
disordered state would probably not occur through unintentional assembly or manufac-
turing error, but rather we look at this highly disordered situation to see if the theory
accurately predicts the localization effect. Because of the increased disorder we will

clearly have greater localization, as is pictured in Figure 4.3.

Notice, hoewever, at high frequency that our theoretical result overpredicts the lo-
calization factor. For example, at @ = .9999, at the very edge of the passband,
YMonteCarto = -1178 and Yeacoreticat = 8.332. This discrepancy can probably be attributed

to the neglecting of higher order terms in our Taylor series expansion performed in
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Chapter 3. These higher order terms could become significant as we approach the edge
of the passband (@ = 1), just as the term to first order in o,’, in Equation 4.1 becomes

significant as @ — 1.

4.2.2 Only Springs Disordered

Consider a chain in which every mass is exactly the same, but each spring, k,, va;ies
in a random fashion from some average value. This localization problem for the mass-
spring system has been rarely discussed in the literature. One researcher, [Goda 82]
(citing [Toda 66]) argues that the localization problem with only springs disordered is
exactly dual to the localization problem with only masses disordered. Our calculations
support this contention. Duality {Toda 66] here means that each mass of a mass-spring
svstem can be replaced by a certain spring and each spring can be replaced by a certain
mass such that the new system behaves in the same way as the old and in particular

has the same natura! frequency.

To examine the problem, we begin with the transfer matrix for the chain with only
springs disorcered, which is in Appendix C.1. Here E.,- is the nondimensional spring

constant. Identifying Rf—) in Appendix C.1, we again use Equation 3.10 to calculate
(2]

7;, and find:
@?*o}
Ly

So indeed this is the same as Equation 4.1 with o: replaced by 02_, and confirms Goda’s
contention that the localization problem with masses disordered is dual to that with
springs disordered. This means that all the localization results displayed in Figures
4.1-4.3 will apply to the problem of springs disordered by simply replacing the word

mass by the word spring.
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4.2.3 Masses and Springs Disordered

Finally we consider the situation where both masses and springs are disordered. As
was stated in Chapter 3 the localization factor for this situation is simply the sum of
the individual localization factors when a single variable is randomised. So
. @0} +0})

Tk, =Wt N, = n o
We check this result with a Monte Carlo simulation in which both masses and springs
are randomly varied form their average values by +1%. The Monte Carlo results again

track the analytical results. See Figure 4.4.

Before closing this section, one final note is in order. When [{Goda 82] originally
considered the localization problem of masses and springs disordered (without solving
for 4,3,), his transfer matrix did not have unit determinant, so he knew he could not
use Furstenberg’s original theorem which requires unit determinant for the random
matrix. As a consequence he spent most of the paper proving that the Furstenberg
result will hold even if the determinant is not unity, sc long as Equation 3.2 is satisfied.
Apparentiy Goda was not aware that the transfer matrix could be reforrnulated so that
even when both masses and springs were disordered the transfer matrix would still have
unit determinant. The transfer matrix Goda used had the state vector containing two

adjacent generalized displacements:

dn
dn1

while the state vector we use contains a generalized displacement and a generalized

nondimensional force at the same point.

dn-y
fn—l

resulting in a unit determinant transfer matrix.
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4.3 Localization in a Rod with Attached Resonators

In this section we investigate localization factors for a model proposed by
[von Flotow 82] which mimica some of the important behavior of a periodic truss struc-
ture. The model is a longitudinal wave carrying rod with attached resonators, where
the attached resonators represent the vibrating cross-members present in a real truss
structure and the continuous rod models comnpression, bending, shear or any continuous
deformation of the truss member. This simple model allows us to gain some insight into
the dynamic behavior of truss structures without having to deal with models of real
truss members involving transfer matrices of dimensions possibly 12 x 12 or greater.

The model and relevant properties are discussed in Appendix C.2.

We will explore the localization phenomenon when the attached masses, the at-
tached springs and the distances between the attached resonators are individually
disordered. Finally we examine the system when all three variables are disordered.
Our results will indicate that the most pronounced localization effects will occur at

frequencies near the stopbands.

4.3.1 Only Masses Disordered

We first consider disordering only the masses on the attached resonators and eval-
uate the effects on the transmission properties of the system. The transfer matrix and
wave transfer matrix when the attached masses are disordered are presented in Ap-
pendix C.2. Note our use of the nondimensional mass, i;, where < j3; >= ji. In all of
our examples for the rod with attached resonators i = 0.2 and k, = 0.5. These values

allow for the ease of presentation of results and are consistent with [von Flotow 82].

Ncw we use the equation for ;(—:;;, appearing in Appendix C.2, in Equation 3.10 and




—y

find that .

(sin 7!'(;2)0,’1
S R o PR ((1/k) — (/)

Clearly the dependence of v, on frequency is much more complicated than we found

= (4.3)

for the simple mass-spring system. An analysis of the localization factor shows that it

. is proportional to @? at very low frequency, as was the case for the mass-spring chain.

We now examine the localization factor over the frequencies of the passbands of the
periodic system. Ouf first analytical and numerical results are for the rasses disordered
+.1% from t™ - - verage value of & = .2. As can be seen in Figure 4.5 we have excellent
agreement betwec-. the analytical and Monte Carlo results even when the localization

factor varies by seven orders of magnitude over one passband.

Sfame distinguishing features are noticeable for this type of disorder. First, the
lncalization factor is largest in the vicinity of the first stopband. This first stopband
occurs aroundé @ = (%)%/ x = .5033, the natural frequency at which the average at-
tached resonator vibrates. Adding even more resonators would compound this effect.
Sccond, we notice that the localization effects generally decrease with increasing fre-
quency. This resul. seems reasonable because we suspect that at higher frequency, the

attached mass vibraies less and less because of its inertia.

INot,ice that near the second and higher stopbands (each of which begins at integer
values of @) the localization factor decreases with frequency approaching the beginning
of the stopband, while nn the other side of the passband the localizatioﬁ factor is clearly
amplified near the stopband. One explanation for this behavior is that the frequency
at the beginaing of the second and higher stopbands (@ = 1,2,--:) coincides with the
frequencies in the perfectly periodic syvstem at which the rod of length [ between the
resonators vibrates as if it had fixed-fixed boundary conditions [Mead 73-1]. Some
calcr]ations confirm this effect. Therefore, at these integral frequencies, the rod does
not vibraie at the noints of attachment of the resonator, thus the fact that the mass

on the resonator is disordered would have little impact on the dynamic behavior. On

hanatthhah antiialiat o TR 1'7"* - vl"***""' T e — S T Yy T T e



——_

—_—w T T T T

B /200N

-3

—_—— ————

-wr-

‘6’0 = 'y pue Z'0 = ¥ Y)Im anjea 38eIdAT IIdY} WOI} YT F

PAISpIOSIp SISSEU Y}IM SIOJRUOSAI Payor))e pue pol I0j 10708] UOIIRZI{ed0 ] Gy ¥MBL |

m
L ‘9 G b 4 ' 2 y! ‘0
L A i 1 i 4 A Fv
o
A
(4
V
IR
o
AnPw o-MQ—
o |
o
- O
v  oleD uop
[ed132109Y)
-




the upper end of each stopband each segment of rod no longer vibrates in a fixed-fixed

condition and so the disordered mass can now influence the transmission properties.

T5 give us some idea what the nondimensional frequencies might correspond to in
reality, we have substituted some values for the physical parameters. From Appendix

C.2 we have

(ST

wi(£)

"
We choose a length ! of 9 feet (2.74 m), E of 45 x 10° Ib/in? (3.103 x 10° kN/m?) and

W =

p of .063 1b/sn® (1.7 x 10® kg/m?®). This corresponds to a graphite epoxy rod, and the

bay length was suggested at one time for the space station. With these values we find
that @ = 1, the beginning of the second stopband, corresponds to w = 15,491 rad/s or
a frequency of 2465.5 Hz.

We next consider the attached masses disordered with a 1% variation from the
average value. In this case the localization effects are increased proportionately through
o; in Equation 4.3. We show the localization factor as a function of frequency in four
passbands for this level of disorder in Figure 4.6. We essentially see the same pattern

we saw for the lower level of disorder.

Finally we increase the disorder of the mass to +10% of the average value of the
nondimensional .nass. The results are presented in Figure 4.7. Again we see the familiar
behavior of the localization factor as a function of frequer.cy. As we did in the previous
section on the mass-spring chain, we notice that the theoretical prediction diverges from
oux Monte Carlo simulation when the localization factor has a value of .1 or greater,

Again this must be a result of only calculating ~; to first order in aﬁ.

In summary, we conclude that the localization effects are strongest in the vicinity of
the stopband associated with the natural frequency of the average attached resonator,

while the effects become less and less significant at higher frequencies.
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4.3.2 Only Springs Disordered

We next disorder only the springs of the attached resonators, where the average
nondimensional spring constant, < E,,- >=k, = .5. We will examine springs disordered
+.1%, +£1% and £10% from the average value. In all instances the localization effects
follow, as a function of frequency, a pattern very similar to that seen for only masses
disordered. One difference we will note though is that at the same levels of disorder,
the localization effects that are due to the mass disorder are greater than those due to
the spring disorder in the first passband. In the second and higher passbands the trend
is reversed and we find that disorder in the springs has greater localizing effects than

does the comparable disorder in the masses.

The transfer matrix and wave transfer matrix with the springs disordered is dis-
cussed in Appendix C.2. By using Equation 3.10 we find the localization factor for

only springs disordered:

_ (sin® 7@)of,
~ 8(sin’ k) (w@)2k((1/k2) — (1/@*n2R))4
Note that 4, is very similar to 4, though they are not dual to each other.

V. (4.4)

This localization factor is plotted in Figure 4.8 for +.1% variation in the springs.
The results of the Monte Carlo simulation are also plotted at several frequencies and
follow very closely the analytical results. One discrepancy between analytical and
Monte Carlo results occurs at the lowest frequency shown. This is a consequence of
working with numbers that are too low even for double precision simulations. Note the
frequency dependent pattern is very similar to that for the case when the masses were
disordered. Again we see the most pronounced localization effects occurring around
the first stopband. In addition the localization effects become less prononnced with
" increasing frequency. We again see that on the immediate left hand side of the second

and higher passbands the localization factor is diminished while on the immediate right
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hand sides it is amplified.

Comparing this localization factor with the one for masses only disordered we find
that ~, is consistently larger than <, in the first passband. This difference can be
as much as one or two orders of magnitude at the very lowest frequencies plotted.
The lower the frequency the greater the difference. On the other hand, for the second
and higher passbands the localization effects due to spring disorder are consistently
greater than those due to mass disorder. These differences can be as great as four
order: of magnitude at the highest frequencies seen in Figure 4.8. The effect is more
pronounced with increasing frequency. Similar effects are noted for the higher levels of
disorder. These eflects seem reasonable if one considers the effect of wiggling the end
of a spring with a mass on the other end of it (this is essentially what the rod is doing
to the attached resonator). At low frequency, most of the motion is associated with the
movement of the mass, while the spring stretches and compresses very little. Therefore
we expect that disorder in the mass will have a greater impact at low frequency than
will disorder in the spring. This is indeed what we cbserve. At higher frequencies, as
we move past resonance, « = .5033, the inertia of the mass will cause it to move little
while the spring will see a lot of motion. So disorder in the springs should give a much
larger contribution to localization effects at high frequency than should disorder in the

masses. This too was observed.

Finally, the localization factor is pl.sted for variations of £1% and £10% in the
nondimensional spring constant in Figures 4.9 and 4.10, respectively. With increasing
disorder the localization effects are amplified, and we again see that our theoretical
results mispredict the localization factor near the first stopband for the highest level

of disorder.
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4.3.3 Only Lengths Between Resonators Disordered

Now we allow all the resonators to be the same with z = .2 and k, = .5, while we will
disorder the lengths between the attached resonators by +.1%, £1% and +10% from

the nominal value. The transfer matrix and wave transfer matrix for lengths disordered

are discussed in Appendix C.2. Note that we use the nondimensional variable [; = a5

so that < [; >= 1. With the lengths only disordered we will find a startling change
in behavior of the localization factor as a function of frequency compared to the cases

where only the masses or springs were disordered.

The calculation of the localization factor for lengths only disordered, 7, is much

more complicated than that for the previous two cases. Applying Equation 3.10 we
find:

o= :——[[—wc:) sin(7@) H cos(r®)
— (7@)? cos? (n@) — H sin’ (n@) sir; (r@)

;:,:,kk {2(7@)? sin*(x®) — 2(7@) H cos(7@)

4 _f? + m co;’(m?:) N

(43)

At low frequency ~j behaves as ©?, as was the case for 4, and %,

This localization factor is pletted in the first eight passbands of the underlying
perfectly periodic system in Figure 4.11. Here we iinmediately notice some striking
differences from our previous localization plots for the rod with attached resonators.
We notice that the localization effects are amplified on either side of all sfopba.nds. We
also notice that for a narrow band of frequencies in each passband, the localization
factor is greatly diminished. Note that it was difficult for the Monte Carlo simulation

to reproduce the extremely small localization factors seen in the plot in the middle
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of the passbands. We do not believe that this is a result of numerical problems at
these low values, but rather is a result of our neglecting higher order terms in our
Taylor series expansion that apparently make a significant enough contribution at those
frequencies. At higher disorders the effect is even more pronounced. The fact that these
discrepancies do not show up in the fifth and eighth passbands is because we have not
found that frequency where the localization factor takes it smallest values in those

passbands.

These effects seem reasonable because the wavelength of the traveling wave at the
end and beginning of each stopband is some multiple of the length between the res-
onators. Thus we would expect that disorder in the length between resonators would
have its greatest effect at those frequencies as opposed to other frequencies where the
wavelengths are not so correlated with the bay length. Why ~; becomes so eﬁctremely

small in the middle of the passbands is not clear.

Similar effects are noted when the disorder in length is increased to +1% and
+10% from the nominal value. The correspondihg localization factors as a function

of frequency are shown in Figures 4.12 and 4.13.

4.3.4 All Three Parameters Disordered

Finally we examine what might be the most realistic situation in which the masses,
springs and lengths between the resonators are disordered. The transfer matrix as
a function of f;, k,; and [; is presented in Appendix C.2. Again we assume that
< B; >= .2, < k; >= .5 and < [; >= 1. Here w; will disorder both the masses
and springs +1% from their average values, while we will only disorder the lengths by
+.1% from its average value. As was explained in Chapter 3, the localization factor

- with several variables disordercd is simply the sum of the localization factors when each
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variable is disordered individually,

Vak S = T T, U

In Figure 4.14 we see that our analytical results and Monte Carlo simulation agree
very well over eight passbands for these levels of disorder. In this case the localization
factor is greatly amplified around all the stopbands, particularly the first one which
is associated with the natural frequency of the average attached resonatcr. The local-
ization effects tend to diminish with increasing frequency. For these levels of disorder,
we find thet the localization eflects are predominately caused by the mass disorder in
most of the first passband, while in most of the second passband and in the middle of
the subsequent passbands the dicorder in the springs has the greatest contribution to
Yai,i- Only near the second and subsequent stopbands does the disorder in the length
predominate in the localization factor. The physical reasoning given earlier when each

parameter was disordered individually helps to explain these effects.

4.4 Localization in a Beam on Simple Supports

The final example concerns a Bernoulli-Euler beam on evenly spaced simple sup-
ports in the perfectly periodic case, and on randomly spaced simple supports in the
disordered case. The perfectly periodic system is presented in Appendix C.3 and its

dynamics have been discussed extensively by [Miles 56,Mead 70].

The beam on randomly spaced supports has been discussed in [Yang and Lin 75)
and [Lin 76]. There they considered a beam on up to six supports and numerically
averaged frequency response functions when the beam was under point loading or con-
vected loading. Their results were consistent with what one would expect from local-
ized dynamics. Unfortunately this approach gives very little insight into the underlying

mechanisms associated with disruption of periodicity. Our approach is analytically rig-
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orous and centers on a variable which is known to be statistically well-behaved and has
physical meaning. In [Bansal 80| a situation similar to ours was considered in which a
disordered segment of beam was inserted between perfectly periodic beams on supports.

However, the analysis was for deterministically disordered segments.

The transfer matrices for the perfectly periodic system, as well as for the disordered
system are presented in Appendix C.3. The random length is nondimensionalized so

that I; = 1

and < l:- >= 1. From the equation ior ™ and Equatiun 3.10 we
i
can calculate the localization factor. The calculation is quite involved and many of

A
<l,‘>

the terms needed in the calculation are presented in [Yang and Lin 75,Lii. 76]* After

extensive calculation we find

N = -0-[29, + 29,9, + 2¢"

+ 299! — (29:9, + 29:9!)?]

where

gr =cosk
g = —V@[sq + cos key)/ss
gy = —@cos k[2¢q + 8183)/53
gi = sink

g smk\/(:;[cos K — C4Cg

+

a\/_ [smh’\/_cos @ — cosh V@ sin® Vo]/s?

4si
3We believe one term in Appendix A of [Lin 76] and Appendix I of [Yang and Lin 75| should read

by = —(&/EDN{sa(t) +2cos bea(l)]/ss(l)
= ca(D[23(1) - 81 (Dss())/53}
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" _@sink

9 = 2 [(84 + 2czcos k) /sy
— cq(2¢] — n83)/s3)
wa

+ 2sink[28’ cos® k — s;84]/s}
Clearly, we will have to look at a plot of ~; in the passbands to make some sense of

the above equation. This has been done in Figure 4.15 where we have disordered the

nondimensional length by #:.1% from the average value.

In the eight passbands we clearly see that the maximum localization effects occur in
the immediate vicinity of the stopbands, while in the m'ddle of the nominal passbands
the localization factor is greatly diminished. These result: ;eem reasonable because
in the perfectly periodic system at the beginning of the stopbands it is well known
[Mead V0] that each span of the beam vibrates as if it were clamped on both ends,
while at the end of each stopband it vibrates as if it were pinned on both ends. In-
deed, the traveling waves become standing waves at the edges of the stopbands. Thus,
the dynamics of the system are very sensitive to the distances between supports at
frequencies near the beginning and ends of the stopbands. This explains the large lo-
calization factors at those frequencies. At all other frequencies the wave motion is not

so physically correlated with the span lengths.

To give some meaning to our nondimensional frequency, we choose some properties
for our physical parameters corresponding to those given in [Yang and Lin 75]. From

Appendix C.3 we have
plt
El>

If we let the thickness of the beam be .05 inches and the width be 1 inch, E be 10.5x 10°
Ib/in? and u be 2.616 x 1074 Ibs?/in?, we find that for @ = 100, we have w = 1530.5
rad/s or 243 Hz.

Ww=w

Finally, we examine the case of extreme disorder where the distances between the
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supports are randomized by +10% from their average value. The localization results
are plotted in Figure 4.16. Our localization factors take on very high values and we see
that the theoretical result overpredicts the Monte Carlo simulation. Yet, the simulation
clearly shows the same pattern observed at the lower disorder. The localization effects

are mosi pronounced near the stopbands.

We also notice that the localization effects seem to become stationary with in-
creasing frequency in that the pattern of the localization factor as a function of fre-
quency does not change substantially. This may be a function of the phase randomness
ideas discussed by [Hodges 82,Lambert and Thorpe 82,Lambert and Thorpe 83] and
{Baluni and Willemsen 85]. The argument here is that at high enough frequency com-
plete phase uncertainty in the wave sets in leading to a particularly simple calculation
of the localization factor. The calculation leads to the conclusion that the localization

factor will be a constant as a function of frequency. In {Hodges 82] it is found that

Y = In |[tiupport]

where t,upport is the transmission coefficient for one support on an infinitely long beam.
From [Cremer et al 73, page 321] we find that |t,,ppore]* = .5 This gives a value of
the localization factor that is .347. Clearly, though, we do not observe the localization
factor becomning a constant as a function of frequency. Instead it is noticeably amplified
in the vicinity of the stopbands. Therefore the notion that the localization factor
becomes a constant with frequency must be considered misleading for this kind of
system. However, the fact that the localization factor behaves in the same manner

from passband to passband at high frequency could be a consequence of these phase

randomness ideas.
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4.5 Observations

We have collected a lot of results in this chapter on localisation effects in some
useful structural dynamic examples, so we need to reflect on some of the insights we

have gained.

Clearly the localization effects increase with greater amounts of dis_order, though
our theoretical results hav~ * . ulty tracking the localization factor when it becomes
greater than v = .1. More importantly, localization effects are strongly varying func-
tions of frequency. Whenever the first frequency band is a passband, we notice that
the localization factor is proportional to frequency squared. The most dramatic fre-
quency effect we see is that the localization effects can be quite pronounced around
the stopbands. The localization factor was particularly high in the vicinity of the
stopband associated with the natural frequency of the attached resonator on the rod.
This result indicates that localization eflects could be quite important on periodic truss
structures which have a number of cross-members. Rea! periodic truss structures are
really multiwave systems which will be investigated in Chapter 5; however, we suspect
that the insights we have generated with the mono-coupled systems should generalize
to the multiwave systems. We also notice that disorder in the lengths of bays result
in quite pronounced localization effects in the vicinity of stopbands as well. Specifi-
cally, we see that the localization factor when lengths are disordered consistently take
on high values at the edges of the passbands, while they are consistently small in the
middles of the passbands. This is in contrast to disorder in masses and springs where
the localization factor does not vary so dramatically over any but the first passband.
Because localization can become quite pronounced in the vicinity of stopbands, exper-
imental measurements on real periodic structures in those frequency regimes could be

susceptible to the effects of disorder.

In addition, our analytical and numerical work has clarified some of the few, yet

misleading, results that have appeared in the literature. Most published results up to
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this point have simply indicated that the localization effects increase with frequency
and take on constant values at high frequency. Clearly these results are mistaken. Our
work indicates that the importance of localization effects can vary greatly over even a

single passband and generally become quite pronounced near the stopbanda.
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Chapter 5

Localization in Multiwave Systems

For the bulk of this thesis we have considered the localization phenomenon in mono-
coupled disordered periodic structures, i.e., systems modeled with 2 x 2 random transfer
matrices. However, most real structures are better modeled with transfer matrices that
are of dimension 4 x 4 or greater. This implies the structures can carry a multiplicity of
wave types at a single frequency as opposcd to the one wave type in the mono-coupled
case. Periodic structures of this kind are called multiwave or multichannel systems.
Frequently in the solid state physics literature the term “wire” is used to describe these
systems in contrast to the term “chain” used to describe mono-coupled systems. Just as
there are many complications in going from single-input single-output to multiple-input
multiple-output control system design and analysis, there are analogous complications
in poing from disordered one-dimensional systems carrying a single pair of waves to

disordered one-dimensional systems carrying a multiplicity of waves.

Before embarking on our analysis of multiwave systems, let us review the terri-
tory we have covered for mono-coupled disordered sysiems. After briefly summarizing
some relevant properties of periodic systems, we demunstrated that disordered periodic

structures can be modeled via a product of random transfer matrices. That product of
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random matrices was then transformed to a wave transfer matrix involving transmission
and reflection coefficients. By employing Furstenberg’s theorem on products of random
matrices, we were able to show that the transmission coefficient, r,, is well-behaved in
the sense that

. 1
1=—alga;ln|r..|, v>0

Furstenberg's theorem also provides us with a closed-form solution for 4 involving a
double integral over two probability density functions. Because one of the probability
density functions is virtually impossible to find, we were forced to approximate the

double integral to first order in the variances of the disordered variables.

We then examined the localization factor for th -. one-dimensional diaordéred
mono-coupled periodic structures. For reasonable levels of disorder our analytical so-
lution to 4 provided a good aprrcximation to the Monte Carlo calculations of the
localization factor. We noticed that the localization factor was a strongly varying func-
tion of frequency taking on its greatest values at fr:quencies near the stopbands of the

underlying perfectly periodic system.

We believe the approach followed in the study of mono-coupled disordered periodic
systems should be followed in the study of multiwave systems to yield the best results.
Indeed, as we will see below, this approach has already been successful in giving us the

multiwave localisation factor as a function of the transmission matrix.

Perfectly periodic multiwave structures have been examined by (Mead 73, Mead 75-1]
and [Roy and Plunkett 86,Signorelli 87,Signorelli and von Flotow 87,Bernelli et 1l 87).
Just as mono-coupled periodic structures have passbands and stopbands, so do multi-
wave periodic systems. However, in the passbands of multiwave systems, both traveling
and attenuating waves, frequently called evanescent waves, can exist simultaneously.
Indeed, even complex waves, those which propagate according to ¢***2, are known to
exist, yet these act as if they were evanescent waves. Because evanescent waves are

already strongly localized, our focus in this chapter will be on the effects of disorder
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on the traveling wav-s 'Biittiker et al 85|,

The localization phenomenon in multiwave systems has received much less attention
than its single wave counterpart. A+ derson [Anderson 81] derived a scaling variable
for multiwave systems from an analysis of the scattering matrix. Several researchers
[Pichard and Sarma 81-1,Pichard and Sarma 81-2,Pichard 86,Pichard and André 86)
and [Imry 86| have used the transfer matrix formalism and theory on products of ran-
dom matrices to study multiwave systems, thongh mainly with the intention of extend-
ing the results to two- and three-dimensional systems. In [Johnston and Kunz 83-1]
and {Johnston and Kunz 83-2] the localization problem of multiwave systems is ex: m-

ined in its own right.

In our analysis of the problem, we state our assumptions about the wave transfer
matrix, which follows from certain properties of the scattering matrix. As we shall
see, rurstenberg’s theorem will not be of use in analyzing multiwave local:zation. As
in [Pichard and Sarma 81-1], we will use the theroem of Oseledets to guide our work.
Two subsections are devoted to discussing this important theorem. Our goal is to find

the multiwave analog to ocur mono-coupled result:

.1

We will indeed derive a multiwave analog to this and compare our result with three
others that have appeared in the literature. Physically, our goai is to find that wave
in the multiplicity of attenuated waves, which is attenuated the least by the disorder.
This least attenuated wave carries energy the farthest and so is the one of interest when

thinking about localization in multiwave systems.
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5.1 Wave Transfer Matrix Assumptions

Our wave transfer matrix assumptions will follow from two properties of the scatter-
ing matrix usually found in the solid state literature [Anderson 81] and
[Johnston and Kunz 83-1,Biittiker et al 85]. We assume the scattering matrix cf one
disordered bay sitting in an otherwise perfectly periodic system is both symmetric and
unitary.! The symmetry of the scattering matrix follows from the symmetry of the
impedance (or admittance‘matrix) .describing the bay [Carlin and Giordano 64] and
unitarity follows from assuming no dissipation and excluding any evanescent waves

[Biittiker et al 85]. See Appendix E.

Our two assumptions about the scattering matrix, S, translate into two properties

of the wave transfer matrix, W. First

S symmetric <= W symplectic

and second

S unitary <= W € SU(d, d)
These properties are discussed in Appendix E. Both properties will be important in
the derivation of the multiwave lccalization factor in what follows. The wave transfer
matrix W can be derived from the corresponding real transfer matrix, T, by premul-

tiplying T by the transposes of the left eigenvectors and posimultiplying by the right

eigenvectors corresponding to the traveling waves.

5.2 Theorem of Oseledets

As we did for mono-coupled systems, we will in the case of multiwave systems rely

on a theory for products of random matrices to guide our work. We use the theorem

1This corresponds to the physical assumptions of time reversa! symmetry and current conservation

in the solid state localisation problem.
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of Oseledets [Nseledets 68| specialized to symplectic matrices; however, the reader is
referred to [Bougerol and Lacroix 85] and [AMS 86] to better understand its relevance
to the problem at hand. We divide the relevant portions of Oseledets’ theorem into
several parts. First we will state a result concerning the eigenvalues of an asymptotic
matrix product, then we will discuss a vector propagation interpretation of the same
theorem. In the final section we will see how the Lyapunov exponents (defined below)

might be calculated analytically.

5.2.1 Eigenvalues of Limiting Matrix

Let W, W,, ..., W, form a sequence of independent identically distributed random

symplectic matrices of size 2d x 2d. Suppose also that -
E(sup{lnom.z(W;),0}) < 400

If we set V, = W,, ... W; then the sequence of matrices (Vf V,,)fvT converges w.p.l as
n — oo to a random matrix B with 2d nonrandom eigenvalues €7, ..., €%, e7 7, ... e™n
where 4, > -+ > 44 > 0 [Joknston and Kunz 83-1]. These ~;s are the Lyapunov expo-
nents of the random matrix product W, --- W;. In random dynamical systems, Lya-

punov exponents are considered a measure of stochasticity [Benettin and Galgani 79).

The eigenvalues physically represent d pairs of waves traveling in both directions.
The theorem of Furstenberg applied to 2d x 2d matrices allows us; to calculate ~;, which
is the uppermost Lyapunov exponent. However, in this multiwave case with 74 < 7,
~4 represents the wave with potentially the least amount of decay, and so it carries
energy along the structure farther than the wave ref)resented by M. As a result, vq is

the quantity of interest when calculating multiwave localization effects.

Note that we can also express the Lyapunov exponents of this random symplectic

matrix product in terms of its singular values (sec Appendix A), o; = 0;(V,). If
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we recall that the singular values of a symplectic matrix occur in reciprocal pairs:

01,"',0’4,0;1,"',01—1 where oy > -+« 2 04 2 1. Then w.p. 1
= lim Slnoy(V,) 1<j<d
e AN 2J>

This result [Bougerol and Lacroix 85] wi'l be very useful in the section in which we

derive 74 as a funct.on of the transmission properties of the systerm.

5.2.2 Vector Propagation Interpretation of Oseledets’ Theo-

rem

Another aspect of Oseledets’ theorem involves the limiting behavior of a random
matrix product premultiplied by a nonrandom vector. This aspect will help explain one

of the properties mentioned in connection with Furstenberg’s theorem in Chapter 3.

Given the assurnptions and results of the previous'section, let ¢, > ¢y > -+- > ¢,
(with r < 2d) be the strictly decreasing sequence of distinct elements of

(915 **sYds —Vds***»—m1). Then there exists a strictly increasing sequence of subspaces
{0} =84,CS Cc..-Cc§=cCcH
(known as a filtration of C?9) such that if
2o € S5\ Sij+1

then
.1 .
nanc}o;lnHW,‘“'wlzo“=¢’j J<Tr

Here 2o € S; \ Sj+1 says that zg is an element of the subspace S; but not an element of

’

S;+1. Also we have
dim S;4; — dim S; =
number of elements of the sequence (Y1, *,Yds—"dy***»—"1)

which are equal to v,
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This vector propagation property is best understood by examining the example
of 2 x 2 real transfer matrices. In this case our sequence of Lyapunov exponents is

(7, —m) where vy > 0, 80 r =2 and ; = 7, and ¢); = —7;. We have the sequence of

subspaces »
{0} =8 cCc 8 cC S =R
If
Xo € S\ Sy
i.e.,
% € S, \ {0}

where S; is a particular line in R?, then

1 ,
lim ;ln |Tn - TiXo|| = —m

n—oo

What direction X, takes in R? will depend on the particular realization of the infinite

matrix product. Likewise if Xo € S, \ Sz, i.e,, Xo € R? \ S; then

o1
Jim ~1In | Th-  Tixo|l = m

These vector propagation ideas are the basis for numerical methods to calculate Lya-
punov exponents of various dynamical systems [Benetiin and Galgani 79] and

[Pichard and Sarma 81-2,Ikeda and Matsumoto 86).

- This propagation behavior is very analogous to what happens when a vector is
propagated by a product of deterministic matrices, T, whose eigenvalues are A and i—
with A > 1. If we choose any vecior v, so long as it has some piece along the eigenvector
associated with A, then as n becomes large the direction of T"v will become aligned
with the eigenvector associated with the A. If, on the other hand, the vector v is
aligned with the eigenvector associated with % then T"v will always be aligned wiih

that eigenvector no matter how large n is.
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5.3 Localization Factor for Multiwave Systems as

a function of the Transmission Matrix

In the previous sections we have identified the dth Lyapunov exponent, 44, of the
matrix product W, - -+ W) as the localization factor for a multiwave disordered periodic

system. Much as we did for mono-coupled sytems, in which we showed

.1
7= - lim ~lnjm|

we want to find 44 as a function of the transmission properties of the system. Work
relevant to this issue has been done by [Anderson 81], [Johnston and Kunz 83-1} and

[Imry 86].

Here we assume the 2d x 2d wave transfer matrix is symplectic and is an element

of SU(d,d), so

n 1.—1 _T—lp
v“ = H w" - :l- . ':l- ) (5.1)
=1 ~Tn Pn Tn

The form and proy .rties of the wave transfer matrix were established in Appendix E.
The two assumptions about the wave transfer matrix are those made by [Anderson 81],
[Johnston and Kunz 83-1)], {lmmry 86], though [Anderson 81} adds more restrictive as-
sumptions. For the rest of the discussion we will suppress the subscript n on the

transmission and reflection matrices, r and p, respectively.

We will show that the localization factor (or the dth Lyapunov exponent of V) is

.1
N = — nllg}o - In am.x(r)‘
or
1 1
v = — lim - Inftr(rr¥)]z
or
.1
T4 = = lim —In |7 max
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where 7 is d x d and r;; is the i5th element of 7 and all the results hold w.p. 1.

The derivation of these results begins by recalling
1
4 = Jim —1nou(Va)

Recalling that the dth singular value of V, is the positive square root of the dth

eigenvalue of V¥V, we have
1 -
= “llglo o In Aq( J'{IV")

Consider the matrix

2(rrH) 1 -1 ~pT(r*rT)"! — (rrH)?
— (rr¥) e - e
_pH(TTH)—l _ (T'TT)—lpt 2(1.01.1‘)—1 -1
Here VZV, is symplectic, so its eigenvalues will occur in reciprocal pairs Ay, -, Aq,

ﬁ,---,;—l where A\; > -+ > Mg > 1.

Our analysis will be simplified by recognizing the following :

(VEV,) + (VEV,) = | 4T A 0 (5.3)
0 4(*rT) 1 - 21

where each block in the matrix is d x d. The matrix has repeated eigenvalues
AL+ 1,00y A+ & for a total of 2d eigenvalues. However, we notice that these eigen-
values are the eigenvalues of the two diagonal blocks of this block diagonal matrix.
The eigenvalues of each block are clearly real because both blocks are Hermitian. In
addition, each block is the complex conjugate of each other, and real eigenvalues be-
ing invariant with respect to complex conjugation, both blocks must have the same

eigenvalues.

So the eigenvalues, u;, of 4(r7#)~! — 21 are

1 1
— A — p—y A —
3|Engels 80,Pichard and André 86] recognised a similar result, though [Engels 80], working in a dif-

ferent context, never realised he was dealing with symplectic matrices.
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where

Now let u;[*] be the jth eigenvalue of the indicated argument. So

A + ;\l = pald(rr¥) —21)
d

= 4pmn|(rr¥)?) -2

where we have used a couple of determinant identities in the last equation. Now taking

the same limit on both sides:
lim = In( + 1) = lim = In{4pmunl(rr¥) ] — 2)
n—w 2n Ad n—o 2n

We notice that

1
,\_,)

.1 1 1
Jim o In(Aq + lim In In(Ag)(1 + ’\—3)

1
32)

. 1 . 1
Jim o-1n(Ag) + lim o= In(1 +

Recalling that Ay > 1, the second term above must vanish in the limit. So we are left

with (recalling the definition of v, )

. 1
Y4 = nlL!‘);lgg;ll’l(kd)

N S T
= Jim o In{4pn () ] - 2)

Note that
1
i Hy-1) _
I‘mm[(rr ) ] qu[”’"]
So we can write .
4
= lim —In(———— -2
T 2n " Hemax|T7H ] )
or
4 = lim L ln(——L—)(4 — 2Umax[T7H])
n= 2n “mulTTH] )
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or

= lim - In(——
"= %o Bmax|TTH]

)
+ lim L In(4 — 2pmax|rrH))
N=s00 2n max

In Appendix E we show that 0 < pma|rr¥] < 1, so that the second term above must

vanish in the limit.

We are left with:

1
% = = Jim o In prax[rr¥]

or recalling the definition of singular values

44 = — um 1 In Omax(7) - (5.4)

n-+on

As a byproduct of this analysis we can find all d of the Lyapunov exponents of V,

in terms of the transmission matrix r. First recall from Section 5.2.1

1 -
Aj + N pil4(re)™t - 21
= 4u;(rr¥)Y] -2
Note here that
1 N
ui[(rr¥) Y = ————— 1<y <d
”‘J[( ) ] I‘d—j+l[ff"] R s

So taking limits on both sides and discarding vanishing terms we find:
1,
i = = Nim —inoeju(r)
This reproduces our result for 44, and also tells us that
= - lim llno (r)
8} i d

R |
= - lim - In Opin(7)
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Now we return to examining ¢ and proceed to show that in addition to Equation 5.4
- i Y Hyk
e =— lim ;ln[tr(rr )]
First examine
1 M
- lim n Intr(re)

Take an eigenvector d-composition of the Hermitian matrix rr#, and rewrite this as:

1 : H
—'\ll‘r&-z-;lntr(Udtcg{p;}U )
where U is a unitary matrix. Recalling that tr(ABC) = tr(BCA) ‘or compatible
matrices we see that the above limit equal;
.1 .
- “]Lr& E—?: In tr(dtag{p.-})
or
— lim -l—ln( + o0 4 pg)
nth 2n Hh ; ifd
or

. 1 Ha | Kd
— gl 1+ — 4. ... 4=
Jim ™ In(u, (1 + o +. 4 “1])

Recalling that g4, > -+ > ug4 > 0, we have that the term in bracke!s is finite and
boundead below Ly 1 and above by d, so when taking the limit, we are left with
~ lim —In [rrH)
n—w 2n K1 :

which is precisely equal to

.1
= Jim ~1In Omux(r) = 7

Thus we have indeed shown that

Y= — "l:.rg %ln[tr(rr")]* (55)

One final simplification in our result is now possible. Starting with

. 1
Y = — lim n In[tr(rr¥)]
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let r;; be the sjth element of the matrix r. Now (this is the square of the Frobenius
norm of r)

S5

=] )=}
= "+ '+ + radf?

tr(rr")

i

We have that for one element of r, |5;| > |ru|, & # 1,1 # J, and we will denote it
' IT.‘,‘IN.. So

tr(rt?) = Irsfhae (50 30 Tl ""'

=1 j=1 l'ul

So
V== hm oy ln{lr., Imc:(zz 75 |T|J|

and because the term in parentheses is finite and bounded below by 1 and above by

d?, it vanishes aftcr taking the limit, so we are left with

1
Y = = Jim ——In |rij{ma
or
= — lim ~1n 7] (5.6)
Td R n 1) [maz .

This result tells us that the wave that propagates the farthest is governed by the
transmission coefficient with the largest absolute value, which makes perfect sense.
Notice that our result agrees with our localization result in the mono-coupled case

where the matrix r is a scalar.

Now we are in a position to compare our result with three others that have appeared
in the literature. In [Anderson 81)], a scaling variable, mentioned in Chapter 1, is
cerived for multiwave systems in which Anderson tried to mimic the techniques which
accurately gave him the scaling variable for mono-coupled disordered periodic systems
[Anderson et al 80]. In addition to assuming that the scattering matrix was symmetric

and unitary, he also assumed, in order to make the problem tractable from his point of
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vi:w, that certain chennels in what he called a back reflection matrix were independent.
In the paper he acknowledged that this latter assumption was not correct, but guessed

it would have little impact on the final result. The acaling variable he arrived at was

1
peIn(1 + m)
with
1
P = 2 m—*o
pr = 1764, m-ﬂﬁ‘m

For us ’.—'r"!;p"' — +00 is the relevant limit. An analysis of our results indicates that we

would exp ct the scaling variable to be

1
Inf-——
n(tr[fr” ])
Apparently the difference between the results is a consequence of Anderson’s extra
assumptions on channel independence. Note also that Anderson’s result does not reduce

down to the scaling variable in the mone-coupled case.

A much more direct comparison of results can be made with [Imry 86]. Imry made
exactly the same assumptions about the wave transfer matrix as we have, and, through
the work of Pichard, was aware of Oseledets’ theorem. In his paper, Imry makes some
heuristic arguments concerning tr(rr¥) leading to the inverse localization length, %,
(the same thing as our multiwave localization factor) being
% = - lim ;1‘- Intr(r+¥)

The problem with this result is the missing square root over tr(rr¥),

Finally we compare our result with [Johnston and Kunz 83-1) who relied rigorously
on theories of products of random matrices, In their paper, Johnston and Kunz used the

work of [Tutubalin 68,Virster 70}, though they were aware of Pichard's work. Arguing
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as we have, that the amallest Lyapunov exponent of a random symplectic matrix prod-
uct is the localizsation factor for long multiwave syatems, they derived the localization
factor as:
| “= -x‘llu.\';l‘-lnlr.ﬂ forany 1;

This result differs from the one presented in Equation 5.6 in that our 74 involves only
the limit of |f;;|mes. To evaluate whether the result of [Johnston and Kunz 83-1] makes
sense, we see if it gives us the correct answer for the undisordered or perfectly periodic
system. For a perfectly periodic system with n bays, the transmission matrix, r, would
look like:

C—‘h"

e—l‘k‘l\

with all the off-diagonal terms zero. In [Johnston and Kunz 83-1] the claim is that we
can take any element of r and get the proper localization factor. Yet if we choose any

off-diagonal term we get the following absurd result:

.1
w = - lim Tin(0)

., —00
= - lim —
n—o pn

This is in contrast to Equation 5.6 which takes the element of r with the maximum

absolute value, namely, |e~**/| = 1, from which we find
ve=-lim (1) =0
w = - lim —In(1) =
This is precisely the result for perfectly periodic systems, i.e., there is no localization.

Note that all tnree of our localisation results, Equations 5.4, 5.5 and 5.6 only hold
as n - 0o. Indeed all three must give equivaleni answers in the limit. However, if we
were to evaluate each of the three expressions for finite n wo would likely find three

different answers. This is a consequence of

[7ijlmas < Omen(r) < \ftr(rrH)
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Clearly, when we are averaging one or a finite number of bays over an ensemble,
I7ilmes 8ppears to be the variable to average, otherwise we would misprecict the
value for 4. Indeed, we conjecture that by averaging — In|r;|mes Over a large en-
semble of wave transfer matrices we could compute an accurate estimate of 4. This
observation could lead to a method which would bypass the necessity of multiply-
ing as many as 10,000, 50,000 or even 60,000 matrices together as has been done in
[Pichard and Sarma 81-1,Johnston and Kuns 83-2,Garcla et ai 86).

However, before pursuing some complicated numerical analysis, we should firsi try
to discover an analytical solution for 44 with which to compare any numerical result.

This is tha subject of the next section.

5.4 Calculation of the Multiwave Localization Fac-

tor Via p-Forms

Similar to our approach in Chapter 3, we need to examine the analytical tools to
actually calculate 44, the multiwave localization factor. For mono-coupled systems we
“ad Equation 3.3 that gave a closed form solution for 4. We will discuss the analegous

equation for +4 in this section.

The mathematics for calculating Lyapunov exponents for products of random 2d x 2d
matrices becomes increasingly complex compared to the case of 2 X 2 matrices. In par-
ticular, we will be making use of p-forms. The recent book, [Bougerol and Lacroix 85]
is an excellent reference on the mathematics necessary to handle multiwave discrdered
systemns. For completeness tlie relevant theorem is as follows and is adapted from

[Bougerol and Lacroix 85, page 89]

Theorem 8 (Calculation of Lyapunov Exponents) Let W, , W,,..., W, be in-

104




——rm—— o

dependent tdentically distributed 2d x 2d random symplectic matrices with distribution
4 and let p be an integer sn {1,...,d}. Suppose that W,, the smallest closed semigroup
in Gl'(d, C) containing the support of u, is p-contracting and L,-strongly srreducible and
that E[In ||W,||] ss finite. Then the following hold

T > Tp+1

For any nonzero 2, in L,,

1 E
Jim = 1n [|APW, - Wago|| = 3

=1
and

P
Jim, iln [APWoe - W = )
i=1

There exists a unique pu-tnvariant probability distribution v, on
P(L,) ={z € P(A’E*);z € L,}

then '
S = [ [ 1n AWl du(W)as, (2) (5.7)

s=1

Clearly to calculate v4 we do it inductively. Namely, we have to calculate from

Equation 5.7
Mt t+u
then
Mt +

from which we can obtain ~,.

’

To illustrate the increased complexity of this multiwave localization problem we
note that for a 4 x 4 matrix, W, we have that A!W is just the matrix W while A*W

is a 6 x 6 matrix in an appropriate basis. This also means, wvhen p = 2 in the above,
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that £ will be a 6 x 1 vector. We should also note that the norms of these p-forms take
a particularly simple form:

|APW| = 01020,

where o; is the sth singular value of the matrix W.

The path of the research seems clear. First the conditions of Theorem 3 need to
{ be clarified to show that thuy clearly apply to transfer matrices that would occur in
practice. Then an approach similar to that in Chapter 3 could be taken. Namely,
i we cculd perform a Taylor series expansion on the relevant terms of Equation 5.7 in
order to get some analytical approximation for 44 to first order in the variance of the
disordered parameter. Then we would be in position to calculate localization factors

numerically and have some analytical results with which to compare them.

5.5 Summary

In this chapter we have tackled the very difficult problem of localization in one-
dimensional multiwave disordered periodic systems. The multiwave nature increases
the complexity of analysis considerably compared to the localization problem in mono-
coupled periodic structures. Our first task was to clarify the assumptions on our wave
transfer matrices, after which we appealed to the theorem of Oseledets to understand
the asymptotic behavior of products of random multiwave matrices. We noted that
\ the theorem of Furstenberg was of little use here. The principal contribution of the
chapter was the derivation ¢ the multiwave localization factor (the dth Lyapurov
exponent) as a function of the transmission matrix for the disordered system. This
1 issue hias been addressed, but in our view unsatisfactorily, by a number of solid state

physicists. Thus our results ar.d insights should have some impact in the solid state
- field where traditionally most ‘of the localization work has been done. In addition,

the recent work of [Pichard and Sarma 81-1,Pichard and Sarma 81-2] indicates that
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our result may have some impact in clarifying the localization mechanism in two- and
three-dimensional disordered systems. Finally, we pointed out the tools that can be

used to analytically calculate the localization factor.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this thesis we have explored the effects disorder has on the transmission properties
of normally perfec - periodic structures. Disorder is known to spatially localize the
mode shapes of disordered periodic systems, so the term localization is used to describe
A the various dynamic manifestations of disorder. The localization phenomenon has been
most extensively studied in the context of solid state physics and only recently with

disordered systems of interest to the engineer in mind.

This thesis has provided the tools with which engineers can decide the importance
“\ of the dynamic effects of disorder ox mono-coupled periodic structures. The first prin-
cipal contribution was the elucidation of random transfer matrix techniques to model
disordered systems and calculate transmission properties. This included a discussion
of the important transformation to wave transfer matrix form and the relevance of the

thecrems of Furstenberg and Oseledets to the one-dimensional localization problem.

The second principal contribution was the calculation of localization effects as a
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function of frequency for three periodic models of interest to the structural dynamicist.
In most instances the localization effects were found to be strongest near the stopbands
of the normally perfectly periodic structures. This result indicates that care must
be taken when doing experimental work at frequencies near the stopbands of what
are ostensibly periodic structures. Effects of length disorder in the bays were quite

pronounced, even at high frequency.

The third principal contribution was the derivation of the localization factor for

multiwave one-dimensional systems as a function of the transmission matrix.

6.2 Recommendations

The localization phenomenon is a fascinating and difficult problem to tackle. This
thesis has presented some very useful tools that have allowed us to make some impor-
tant progress in understanding localization effects. Thie primary recommendation is to
continue work with random transfer matrices and theories on products of random ma-
trices to gain further insights about the phenomenon. The tools we have discussed in
this thesis have immediate applicability to many other fields of engineering that involve
disordered periodic systems, as well as the field of solid state physics where localization

work is traditionally done.

The analytical formula for calculating the localization factor to first order in the
variance could be extended to include higher order effects. This would allow us to pre-
dict anaiytically the transmission behavior for highly disordered systems at frequencies
waere the localization phenomenon is most strongly felt. Possibly some asymptotic
analysis near the stopbands would be another alternative to pinning down the trans-
mission behavior there analytically. The issue of localization in one-dimensional sys-
tems which include damping should be addressed as well as the manifestation of the

phenomenon in finitely long structures with fixed boundary conditions.

109



The localization phenomenon in multiwave systems with the evanescent waves in-
cluded should be studied more rigorously. This, however, will require a better under-
standing of the wave transfer matrices in these situations, for which there is a dearth of
information in the literature. Indeed, we observe that there is a need for a comprehen-
sive study of the interrelationship of admittance, impedance, real transfer, scattering
and wave transfer matrices for both periodic and disordered periodic multiwave sys-

tems.

In Chapter 5 we have presented the background that could lead to an analytical
formula, analogous to the single wave case, for localization effects in multiwave sys-
tems. This is a very important area of research needed to understand localization
effects in multiwave systems. Also, as [Pichard and André 86] have pointed out, the
one-dimensional multiwave analysis could prove to be the key to understanding the
localization phenomenon in two- and three-dimensional systems. Localization of clas-
sical waves in two-dimensional systems has recently been studied by [Flesia et al 87].
Only after the analytical issues have been explored should we proceed to examine
the numerical issues in multiwave one-dimensional analysis and possible extensions to
higher dimensions. The results in Chapter 5 could potentially simplify the numerical

computations considerably by eliminating the need to multiply huge chains of matrices.

While we think that the transfer matrix formalism is a powerful tool to study the
localization phenomenon, we also feel that the Herbert-Jones-Thouless formula should
be explored to see if it can be easily applied to structural dynamic systems. Some
efforts in this direction have already been made by [Hodges and Woodhouse 83]. Also

[Johnston and Kunz 83-2] have developed the corresponding formula for multiwave sys-

>

tems.

Other important issues continue to be explored in the literature. Systems with
correlated disorder among the bays, as opposed to the usual case of independent iden-

tically distributed random variables, have been studied by [Johnston and Kramer 86].
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The impact of system nonlinearities on localization effects has been addressed by
[Doucot and Rammal 87].! In the nonlinear case the transfer matrix formalism will

be of little use.

An intentionally disordered periodic system could be valuable for the attenuation
of propagating disturbances. However, if active control is performed on the same
structure, the fact that the mode shapes are spatially localized may complicate the
control effectiveness of actuators that are placed at locations where mode shapes have

little amplitude.

Some experimental structural dynamic/acoustical verification of localization has
been reported by [Hodges and Woodhouse 83,Pierre et al 86,Dépollief et al 86] and by
{Hyde and Sybert 87|, where the latter work was inconclusive. Further experimental
work would clarify our analytical and numerical thinking. These experiments would
have to be done with care. Initially, the dynamic charac’eristics of the perfectly
periodic system should be understood experimentally. Clearly, the effects of damp-
ing and boundary conditions need to be taken into account when comparisons are
made with our analytical results. In an actual experiment on a disordered system,
the measurements would have to done over many realizations in order that the re-
sults could be compared with the theoretical prediction. The experimental techniques
of [Hodges and Woodhouse 83,Roy and Plunkett 86] seem particularly attractive. In
these cases a disturbance was inserted in*o one end of the system and the effectc were
measured at the other end. The beam " iih cantilevers of [Roy and Plunkett 86] was a
perfectly periodic system but could be easily randomized and would provide an excel-

lent structure to verify multiwave localization effects.

The study of the literature has provided invaluable insights into the localization
phenomenon. Future researchers should continue to avail themselves of the work done

on localization in many fields in order that maximum progress can be achieved in

'In solid state physics this is equivalent to considering electron-electron interactions.
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understanding the effects of disorder.
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Appendix A
Matrix and Group Properties

In this appendix we collect most of the matrix and group properties mentioned in the
thesis. First we note that all of the matrices in the thesis will be of even dimension,
2d x 2d, where d ranges from 1 to some finite value. In addition, all matrices will be
invertible and so they are elements of the group GL(2d,C). Here the letter G stands
for the word general which means that the matrix is invertible. The letter L stands for
the word linear. The 2d inside the parentheses implies the matrix dimension is 2d x 2d,
and C tells us that in general the matrix elements are complex. If we were restricting

ourselves to matrices with only real entries, C would of course be replaced by R.

Frequently we will make use of matrices which have unit determinant; these matrices
are elements of SL(2d,C). The letter S stands for the word special which means that

the matrix has determinant equal to one.

Some of the more familiar matrices we will use ar» unitary matrices, which satisfy
wWiW = WwWH =1
Note that unitary matrices arc elements of SU(2d). Symmetric matrices satisfy
wli=w
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even if they have complex entries, while Hermitian matrices satisfy

wi =w

The symplectic (Sp) matrix group will be frequently encountered in the thesis. Sym-
plectic matrices are always of even dimension and their group is ideutified as Sp(d, C).

A matrix W is symplectic if

WIigw =3
where
0 I
J =
-I0

where I is d X d. Note that we take a transpose even though W is a complex matrix.

The inverse of a symplectic matrix is easy to find:
W= -JwTJ

An important property of symplectic matrices is that their eigenvalues occur in recip-
rocal pairs, A and } [Bougerol and Lacroix 85). It is also not difficult to prove that

any 2 X 2 matrix with unit determinant is automatically symplectic. This tells us that

SL(2,C) = Sp(1,C).

The special unitary group, SU(d,d) will be met in the thesis. A matrix W is an
element of SU(d, d) if

wilaw = A
where
I O
A=
0 -1

where again I is d X d. The 2 x 2 matrices which are elements of SU(1,1) are of the

form

B Tl o N —




This matrix is in the so-called Cayley form [Hori 68].

We will make use of matrix singular values in the thesis. Any reader not already
familiar with singular values and ti.c singular value decomposition of a matrix is en-
couraged to consult [Noble and Daniel 77]. The singular values, o, of a complex 2d x 2d

invertible matrix W are
o (W) = (MWW §=1,...,2d

where we assume that the o; are ordered such that o; > 0,41. Note that the singular

values of a symplectic matrix will occur in reciprocal pairs o and 1

The maximum singular value, Omes (W) coincides with the spectral norm of a matrix:

w | We||2 W
amg =max———=
( ) 20 "3"2 “ "3

where ||z|; is the usual Euclidean length of the vector z.

Another matrix norm that is useful is the Frobenius (sometimes called Euclidean)

norm:
IWir = {tr(W¥W)}}

- (O3

=1y=1
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Appendix B

Derivation of Mono-Coupled Wave

Transfer Matrices

In this appendix we show how the wave transfer matrix, W; of a bay (ordered or
disordered) is calculated for frequencies in the passbands of the normally periodic

system. In terms of the left and right traveling wave amplitudes, A and E, we have:

-

Bj-1

Q—-. 2.—
L

where

The approach is to express our traveling wave amplitudes first in terms of a state
vector involving generalized displacements, then to express the wave amplitudes in
terms of a state vector which inciudes generalized displacements and generalized forces.

. This latter relationship is what we desire because all of our real transfer matrices involve
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a state vector which includes generalized displacements and forces, namely,

i ] (B.1)
fia1 ‘

u;
=T
Hs

where
T Th ]

T,‘ =
Ty, Ta

and where y; is a generalized displacement and f; is a generalized force. Note that u;

and f; may be nondimensional. When u; is nondimensional, then the wave amplitudes
will be nondimensional as well. Again T, is the transfer matrix for the periodic or

disordered system.

The generalized displacements of the perfectly periodic system can be expressed in

terms of the wave amplitudes via

where

Note that k is the wave number of the pesfectly periodic system.

Now from B.1 we find

where

1 0
V = )
TaTi' Tu - TuTia'Th

TR
fs B

So now we find

where




Equations B.1 and B.2 imply

A; A
lextrx | T
B,‘ B,'_l
So the wave transfer matrix for a single bay is T
W, =X"'1,X (B.3)

Note that we have used the perfectly periodic wave basis to derive our wave transfer
matrix, whether the real transfer matrix is random or not. The columns of the matrix
X are the eigenvectors of the transfer matrix of the perfectly periodic system. When
the transfer matrices are random, the eigenvector matrix will be that for the avsrage
transfer matrix. So for the perfectly periodic system in the passband the wave transfer

matrix looks like

while in general

1 _u l

W;= ":L :’ 1

IS |

Note that both matrices are elements of SU(1,1). ;

Finally, we note that ;‘; can be shown to be invariant with respect to the scaling
of the eigenvector similarity transformation used in Equation B.3, while % will be off |
by at most a magnitude and a phase factor. Using the eigenvector transformation X 1

defined above, though, we are guaranteed to get exactly the wave transfer matrix, W,.

132



T —

———— - = = o

Appendix C

Models of Three Periodic and

Disordered Periodic Structures

In this appendix the three periodic structures examined in the thesis are described.
The first system is a chain of springs and masses. The second structure is a rod in
longitudinal compression with attached resonators. The final structure is a Bernoulli-
Euler beam on simple supports. For each system the transfer matrix for a typical bay
of the perfectly periodic structure is presented along with the associated state vector.
Also shown are the eigenvector similarity transformations which induce a wave transfer
matrix. Most variables are nondimensionalized in the transfer matrix descriptions.
Then a single variable is randomized and the associated transfer matrix is presented,
along with the relevant terms in the wave transfer matrix. Some general properties of

transfer matrices are discussed in [Rubin 64].
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Figure C.1: Mass-spring chain.

C.1 Mass-Spring Chain

A chain of springs and masses is one of the simplest periodic structures we can
examine. The system is pictured in Figure C.1 and a typical bay is shown in Figure
C.2. This choice of bay (as opposed to one involving a spring and a half of two masses,
for example) ensures that the det(T) = 1 whether m, k,, or both are disordered. For

this bay:

g | [1-=2 1] ¢
L w? 1 L
h‘j k. -tl j-l

Here d; is the displacement of the jth mass and f; is the force on the jth mass. Note
that -,‘L_,. has units of displacement as does d;. Let @? = ;ﬁ;—m, which is the frequency

at which the passband ends, then




S et o - - y - - —7'1 - vvf"*‘f”" S meTT e T T T T

..u,u_

Figure C.2: One bay of mass-spring chain used to form its transfer matrix.

From the condition that |tr(T)| < 2 in a passband (see Chapter 2), we see that a
single passband exists for the perfectly periodic system at 0 < @ < 1. All higher fre-
quencies are in the stopband. The wave number (the spatial frequency of the traveling

waves) for the traveling waves in the passband of the mass-spring chain is governed by
cosk =1 — 2&°

A more extensive discussion of the mass-spring system can be found in

[Faulkner and Hong 85].

The eigenvector similarity transformation used here, which will induce a wave trans-

fer matrix (see Appendix B), is:
X =
e 1 et _1
and its inverse is

(e* ~1)/(2isink) —1/(2isink)
(1 —e**)/(2isink) 1/(24sink)

X =
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C.1.1 Only Masses Disordered

Now consider disordering only the masses, i.e., let the mass be a random variable

and let u; = where < m; >=m so

My
<m;>"?

1- uj46)2 -1
T(u;) = .,
uid@ 1

The corresponding wave transfer matrix is, where we suppress the subscript 7 on the

transmission and reflection coefficients.

W(kj) = X"T(u;)X =

_rr 1
TIT
where
1 .
7= et (1 — 16)) (C.1)
and
- ; = —Ciki&' )
where
6 = 2@2(1 - ﬂj)
7T sin k

C.1.2 Only Springs Disordered

Now consider disordering only the springs, i.e., let k, be a random variable and let

l‘;.- = l‘:—, where < k,; >= k,. The transfer matrix is:
J <k,i> J
. 1% 1
T(kci) = ks For
40?2 1

In the corresponding wave transfer matrix

-:- = c“’(l - 151)
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where

and

where now

3 20 1

i)

C.1.3 Masses and Springs Disordered

Finally with both the masses and springs disordered we have:

1— %% 1
T(u;, k.;) = Y
(15, Kaj)
45)2[41' 1

Note that we have no need to compute the wave transfer matrix in the calculation of

the localization factor when both the masses and springs are disordered, because of the

additive nature of the localization factor discussed in Chapter 3.

C.2 Rod with Attached Resonators

The second model is a longitudinal wave carrying rod with attached resonators that

represent the vibrating cross-members present in a real truss structure. The model and
relevant properties are shown in Figure C.3.

The transfzr equation for the perfectly periodic model is:

a‘ R(1- 7
O | _[ e+% 1-2] [0, )
Niq gs+ Bt o4 A N;

_ U,

Uj:T
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Figure C.3: Rod with attached resonators

is the nondimensional longitudinal displacement of the jth point and

_ N,
= B4

is the nondimensional internal force at the jth point. Also
€ = ¢OSTW
8 =18inTw

I=11@

where the nondimensional transfer function of the attached resonator is:

138



- k,l

ko = EA
L
#=1an

The transfer matrix models a bay extending across a length of rod, across a resonator,

and then across another length of rod.

A discussion of the dynamic characteristics of the perfectly periodic structure can

be found in [von Flotow 82]. For our work on the rod with attached resonators, we

will use & = .2 and k, = .5. These values put our first stopband around @ = .5033
which is the natural frequency of the attached resonator. This particular stopband
frequency makes for ease of presentation of localization effects in the first passband. In
real structures the stopband associated with the resonant frequency of a cross-member

is likely to be much closer to @ = 0.

The wave number k for the passbands of the perfectly periodic structure is deter-
mined by ~
Hs
cosk =c+ —
23

The eigenvector similarity transformation that induces the wave transfer form is

1 1

isink/(; - g-(,l,;—c)-) —tsink/(§ - ﬁ%;il)

and
~i(; — 259)/(2sink)
i(4 — BUoely /(25ink)

X =

e B

C.2.1 Only Masses Disordered

Now disorder the mass, m, of the attached resorator. So let

i =
“’_pAl
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be the nondimensional random variable, < fi; >= ji. Note that we do not feel compelled
to divide by the average value of i because this variable is already nondimensional.
Now the random transfer matrix T(g;) is found by replacing f, which occurs in H, in

the nonrandom transfer matrix, T, by ;. In the corresponding wave transfer matrix

% = *(1 - i5;)

and
r .
—-t-=—l6j
wnere _
(sin 7&) A H;
' 2(sink)r@
and
! 1 ., 1 1,
AH’—(E, Q’w’ﬂ) (k, InEl S

C.2.2 Only Springs Disordered

Now consider disordering the springs of the attached resonators. Let

-k - _
k,; = _E% where < k,; >=k,

be the nondimensional random variable. The transfer matrix T(k,;) is the nonrandom
transfer matrix with k, replaced by k,;. The wave transfer matrix is the same as for

the disordered masses except that

_ 1 1 1
AHi=(— - —) 1 - (= =~ ——)!
? k,; w’n’ﬁ) (k, :7)271'2/2)

C.2.3 Only Lengths Disordered

Finally we examine the disordering of the bay length, i.e. the distance between the

resonators. Let the nondimensional random variable be




where < I; >= 1. The transfer matrix for the lengths disordered is

- R T, i T. Rl -co I.
cos(mal;) + AogER) i) 4 Al
—ﬂ’(:)z-, sin(ﬂ’CJ,) + Mw COS(’ND[,-) + Hlin(lwri!

2%

() =

In the corresponding wave transfer matrix

l_a_s'[ﬁ+u]

t 2sink
and
r_ i[-8+ v
t 2sink

where a is the (1,1) term of T(l;) and where

B = [-7&l;sin(xwl;) + ULt (;os(wd'rj)]][g - g%l]
and |
_ . sin(r@ly) | H{1 —cos(naly)],, . H(1+¢)
v=I ral; + 2m2el; liss + 2 ]

C.2.4 All Three Parameters Disordered

Finally the transfer matrix for masses, springs and lengths disordered, T(,, k,;.[;)

is simply T(/;) with H replaced by

C.3 Bernoulli-Euler Beam on Simple Supports

The final systemn examined is 2 Bernoulli-Euler beam on simple supports shown
in Figure C.4. In setting up the transfer matrix for the beam on supports we will

usz much of the terminology of [Yang and Lin 75,Lin 76|, except we nondimensionalize
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Figure C.4: Beam on simple supports.

where possible. The transfer matrix for a bay relates the slope, ¢, and nondimensional

moment at adjacent supports

¢j _ cosk 7“5 ¢J‘_1_
M| T Eeintk cos k 1M

ETly Eij-1

where _
sinh @ cos V@ — cosh /@ sin V&
cosk = - -
sinh v& — sin V@
where
@ = wy|Bo
~“VET

4 = mass of beam per unit length

and where (adopting the notation of [Yang and Lin 75,Lin 76))

]
a = —
Ss

¢y = (cosh V@ cos Vo —1)/2
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sy = (sinh V@ ~ sin v@)/2
s, = sinh V@ sin V@
¢ = (cosh V@ ~ cos V@) /2

The eigenvector similarity transformation which induces the wave transfer matrix

-l g ot

| iLsink —iLsink

is

X1t=

3WVouink

Now consider disordering the length | between each bay and let the nondimensional

_—Ja
2/@sink ]

Djrs P

random length be
- lj
l; =
< l,‘ >

where < I; >=1. So the transfer matrix T(;) can be written by simply replacing v&
whenever it appears as an argument of sin,sinh,cos and cosh by \/5f,-. Anywhere [

appears it can be interpreted as < [; >.

In the wave transfer matrix for the beam on disordered supports

a(i;) sink asin? k(f,)
2a 2a(l;) sin k

1 -
't- = COSk(Ij) + t[

and R .
LA asin’ k(i)  a(l;)sink
t 2a(l;)sink 2a

]

Once again, whenever the argument (f ;) appears, it implies that the underlying circular

and hyperbolic functions should have /@ replaced by /G_Ji,
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Appendix D

A Simple Method to Calculate

Localization Factors

This appendix describes the calculation of localization factors using a simple method
which does not depend on theories involving products of random matrices. The method
has given very g« - results for systems with sufficiently low randomness and over
wide frequency ranges. The method is applied to systems that can be described
with 2 x 2 transfer matrices and is a generalization of a result which appeared in

[Akkermans and Maynard 84].

Briefly, the method involves taking a transfer matrix which is a function of a random
variable and expanding it in terms of a Taylor series expansion about the average
vtlue of the random variable. Only the first two terms of the expansion are retained,
after which they are converted to wave transfer form via the appropriate similarity
transformation. Products of this low order form are taken, but only terms of order one
are retained. From this low order representation of tne matrix product, the transmission
coefficient, 7,, is extracted and the localisation factor, <, is calculated as

__< In|r| >

n
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First consider the bay transfer matrix which is a function of the random variable

u, T(a) or T for short. Now expand T in a Taylor series expansion about the mean
value of a.
aT (ba)* 3T

T= T|<-> + 603;'«» 4 2! wl<c> + oo

Consider retaining orily the first two terms:
aT
T = Tlca> + 60‘8—‘|<o>
a

Now choose an eigenvector transformation that induces a wave transfer matrix, so

e+it a b
| +da
e 'k 1y a

So now we have approximated the jth wave transmission matrix as

[ et + (6a;)a (6a;)b ]

qux = x-lTI<¢>x + 60x~l-aa-§l<°>x =

W, = .
()b €* + (6ay)a

Now let us calculate [I}., W, by retaining terms only to first order in éa;. Note
for example that terms like éayéa; { # 3y will vanish by mutual independence when

averaging. The final result gives:

fiw, < |

et 4 e("")*cz(}[:",.‘=1 saj) (2,1)°
e (T, Saye DY (1,1)° ]

The (1,1) term of the above matrix product approximation is our approximation to '—‘"-

From this, one can calculate |1, |%:

lral? = 1/[1 4 a‘e‘“(i ba;) + ae““(é so;) + |¢z|’($l §a;)?]

=1
Taking the natural log of |7,|?

In|ra)* = In(1) - In(1 + a'e‘*(.‘; ba;) + m:"""(i:l ba;) +1al*(D_ 6a;)?)

Recalling the following expansion:
22 2

ln(l+l)=l—-§'+—3——"" |l|_<_11 z# -1
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So retaining terms to first order in 2:

Injral? = —a*e* (32 6ay) - oa-‘*(éaa,-) ~ a(3 bay)?

=1 ) =1
Now taking the average of In [rs|! and recalling that < éa; >= 0 and invoking inde- f
pendence of éa;s we arrive at:
n N 4
< >= —[a}(} < (5a;)! >) = —|a|*na}
=1
Now
<lIn|r| >
7=
n
or

_ _<In[n|*> . l|a|*a}
- 2n T2
which is the final result.

R U ST S

We find the result agrees with caiculations from Equation 3.10 when ‘l’ has the
forms e*(1 + 15;) or (1 + ¢4;). So this formula is valid for the mass-spring chain and |
the rod with disordered masses or springs on the attached resonators. The formula will !
not give accurate results for the rod with disordered lengths between resonators or for |

the beam with random lengths between supports. |
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Appendix E

Properties of the Scattéring and

Wave Transfer Matrices

In this appendix we discuss some of the properties of the scattering matrices and
wave transfer matrices used in the thesis. These matrices will be used to describe
the propagation of traveling waves in the passbands of periodic or disordered periodic
structures. We will state the scattering and wave transfer matrices in their most gen-
eral forms and then impose conditions on the scattering matrix ai.d discuss what this
implies for the wave transfer matrix. Note that we will suppress any subscripts on our
transmission and reflection matrices. The scattering and wave transfer matrices are of
dimension 2d x 2d. Scattering and wave transfer matrices are discussed in {Redheffer 61]
and in [Carlin and Giordano 64,Hlawiczka 65] and for some specific disordered systems

in {Osawa and Kotera 66,0mar and Schiinemann 85].

The scattering matrix, S, in its most general form is

Xj—l | t ]3,‘—1 (E.1)

B; t 8] Ay
where A and B represent vectors oi traveling wave amplitudes in the indicated direc-
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tions. The ~orresponding wave transfer matrix involves a rearrangement of the state

vector, so that we relate waves on the right of a bay to those on the left of a bay:

A, t7! ~t7'r Aj-
i ) i (E.2)
B; ft-! t—-ftlr Bja

Now we require that the scattering matrix be symmetric. This means that

T

-
I
-

g
I
4>

and

t=t7

These are exactly the same conditions needed for the symplecticity of the wave transfer

matrix W, namely that

wWiiw =J

be satisfied. Thus

S symmetric <= W symplectic

Now we impose the requirement that S be unitary, namely
sfs =887 =1
Now S¥S =1 tells us that
rfr+tit =1
tht + #9p =1 (E.3)
it +t98 =0

These are precisely the same conditions that must hold when W is an element of

' SU(d,d) or

WIAW = A
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We conclude that
S unitary <= W € SU(d, d)

Now imposing both symmetry and unitarity on the scattsring matrix we have

r t
S =
tT —t-I'r't
~where r = rT and —t~''r*t = —tTr't"¥. Equivalently when the wave transfer matrix

is symplectic and an element of SU(d, d) we have

t1! —t~Ir
W =

_t—ltrt t—lt

From the condition t¥t + ### = I above, we can prove that
0 < uftht] <1
where yu;{#] is the sth eigenvalue of the indicated argument. Also note that
it t] = pi[tt¥]

so that all the results stated beiow hold for tt¥ as well as t¥t. First we assume that

t¥¢ is invertible so that it is positive definite:
tft >0

We also have that #71 is at least positive serni-definite:

From Equation E.3 we have

Doing an eigenvector decomposition on the above equation we get

tit

I-¢H¢

= U(I- diag{m[#"#]}) U
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The positive definiteness of t¥t and the positive semi-definiteness of ### now imply

and

0 < wftft] <1

which is the desired result.
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ABSTRACT [

Theories have bheen developed predicting wave and mode localization in ’t
disordered periodic structures, but anly ohe experiment has been previcusly
conducted to test the theory. Theory predicts attenuation of wave amplitudes
at all frequencies, and spatial localization of mode shapes in a disordered
periodic structure. Our evperiment tests for amplitude localization in a
truss model. The apparatus consisted of a steel ribbon under tension
(modeling the truss) and spring-mass svb-structures (modeling cross members)
spaced evenly along the ribbon length. The perfectly periodic structure had
equal oscillator mass in each bay and the d.sordered structure had random mass
in each bay. It was shaken at one end and ribbon amplitudes were measured at
each bay. There was little 2r no difference between the disordered case and

the control case in the amplitude versus position profiles. A single mode

could not be identified in the control or disordered experiments due to s

L

non-zero damping. An alternate experiment using the same structures involved
forcing the ribbon at one end with white noise and reading the ribbon
amplitude near the other end. By taking the Fourier transform of the transfer
function of output amplltude over input force, a lecaliztion factar can be

deduced. The results again showed no localizatlon, \
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INTRODUCTION

Many engineering systems deal with vibrations of one form or ancther, An
important engineering system that is getting a lot of attention is the space
station, A major component of the space station will be large trusses.
Theoretical and experimental research has beern done on these periodic
structures; however, it is assumed that the structure is perfectly periodic.
Yet, there could be inconsistencies iq the material properties or the exact
length of the bays of the truss structﬁre. These inconsistencies cause a
certaln disorder in the structure. Ancther example of a periodic structure is
an aireraft skin stiffened with stringers located at intervals across the

skin, In both the gpace truss and the skin-stringer systems, the main

structure has sub-structures located across the malin structure,

Disorde=, whether designed or unintentional will change the oscillitory
properties of any system., The disorder will disrupt the vibration propagation
properties found in the perfectly periadic structure, The difference in the
properties from one bay to the next causes reflections of travelling waves and
tends to spatially localize amplitudes in cne region. It is important to
understand this localizatlion phenomenon iIn narder to exploib it and to be aware

N
of possible problems it could cause, It can be useful in isolating vibrations
to areas where the energy can be dissipated harmlessly and not propagate bo
more sensitive areas of the structure. The localiztion could be harmful if
large amplitude vibrations localized in a sensitive area (2speclally important
in the near-zero damping conditions of space). One can exploit this
phenomenon in a space station design, where, for example, the vibrations

caused by a meteor strike on a solar panel would not be transmitted down the




truss to more sensitive parts of the space station.

Previous work

Disorder in a periodic structure was first connected with solid state
physics and the mathematics of random matrices. The localization phenomenon
was first explained by P. W. Anderson in an article on electron transport in
disordered crystal lattices.l In 1963, H. Furstenberg wrote on products of
random matrices, which can be applied to the craveling wave properties of each
bay in a disordered structure.2 The only experiment on the structural
dynamics application of this phenomenon was performed by Hodges and Woodhouse

3 They used

using an eight bay model and randomizing the length of the bays.
seven beads on a string as their apparatus, plucked it at ohe end, and
measured string amplitude near the other ead, A localizaticn factor was
deduced t'»sm the Fourier transform of the string amplitude. The results of

the Hodges and Woodhouse experiment showed a moderate amount of localiztion

even for very weak discrder.

QOverview of our experiment

Our study is centerved on a disordered truss structure where the
cross-member in each bay has a random oscillatory behavior (natural
frequency)., The disorder is distributed acrass the whole structure, In
probability terms, this is called "independently and :dembically distridbuted,”
which means that the random property in a bay does;'t Jepend 2n that »f any
other bay, The disorder that s present in the system should cause an
attenuation of travellng wave amplitude at all frequency bands. This is

different from the perfectly periodic system, where waves are attenuated only

in certain frequency wanges (stop bands) and travel without attenuation in

o




other frequency ranges (pass bands)., This attenuation can be equivalently
described as mode localiza%ion, where significant amplitudes are confined to a
region in the disordered structure and are equally predominant along the

perfectly periodic structure (see figure 1J,

Tigure 1: Typical wode shapes “or a pertsactly perisall structure g L1-Y]
and 1 ilsordered periadic structur: (bottom).
\

The experiment consists of an idealized truss structure made of a steel
ribben under tension and idealized sub-structures made of spring-mass

ascillators (see figure 2). The disorder in the structure is realized by

randomizing the mass of the spring-mass sub-structures. We attampted to keep

the effective spring constant and bay length constant fo» all bays. A sine
wave was input to a shaker at one end of the ribbown, and rlbbon amplitudes
were measured at 2ach bay to get amplitude versus »osition graphs at varylag
frequenies above the stop band. A localization fachtor was to be kaken from
these graphs by fitting the ampilitudes to an exponential decay anvelope.
Figure 3 shows this envelope, where the localizion factor 1s one aver thev
localiztion length. An alternative experiment, simila> to that of Hodges and

Woodhouse, was conducted on the same structuve, We input a vhite nalse force




to the ribbon at one end and measured ribvbon amplitude near the ather end.
Using a digital signal processor, a transfer function of ribbon amplitude over
forcing input wvas determined, Fsllowing the method of Hodges and Woodhouse,
we tried to deduce a localization fagtor from the Fourier transforms of the
transfer functions of the disorderd case compared to the perfectly periodic
case, Due to some non-idealities in the experiment, there wag no localization
determined by either or the twc methods attempted. In hindsight, we found
that to see localiztion cleanly, a different experimental setup would nave to

be used.

l : :
N

T

Tigure 2: nr axperimencal structure avdels 3 vibraciag t™uss with
vidraziag 3ug-structres,
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Theoretical Analysis

Graduate work on this topic is currently being done at MIT by Mr. Glen
Kissel, under the counseling of Professor Andrew von Flotow. In Kigsel's
paper "Localiztion in Disordered Periodic Structures," products of random
matrices are used to develop a theory that predicts localization.h The end
result of these mavhematical calcnaltions is a frequency dependent
localization factor for the disordered periodic structure. Kissel uses a
mathematical model of an infinitely long, undamped periodic structure with

traveling waves.

Kissel models each bay of this structure with a two by two transfer
mat»ix, which implies a pair of waves btraveling along the structure (one to
the right and one ta the left). No damping (dissipation) is madeled o make

the effects of localiztion more pronounced. No end conditions are modeled to

- : ; a . .th :
make the calculations easier, The transfer mabtrix of the bay is denated

by T, and relates wave transmission from the left side to the »ight side af

J

the hay as shown:

Ag . ri t) B& U\
BR ) t) r) AL

st et , e} . .
The transmission coeftlicient Af tne 3 bay is tj, and the weflaction
coefficient is rJ

traveling from »ight to left and wava B ls travalipg fvom left to »ight,

, and the superscipt * lennotas complex conjugate, Wave A is

2 2
Consevation of energy considerations give (tj)“+(rj) = 1.




A section of the structure can the he modeled by multiplying the trangfer
matvices far the bLays togeiher, If the structure section of n bays is denoted

vith the subscript N, the wvave transmission characteriatica of that section

tan be described by:

Ay) ﬁl T Be @)
%R N 32\ J _A\. N

Where the product iz of the form:

w\
] ‘rw
Tl |y e 3)
. : -(-n* *
j=t Ea >/' *

~ bN
Kissel randomizes the transmission and »eflection coeffients of the model

to introduce disorder. Through these calculations, a localization factor x is

determined, This factor is She average wave attenuatisn factse per bay, so is

defined by

g Lol )

N

where < > denotes a statistical average. 17 3 is the attenuation Tactor per

. . X .
vay there will be an average decay envelape like e’ , where x is the number of

bays awvay from the localiztion center,

A localiztion factor expression was developed by Mr, Kissel and depends

on saveral non-dimensioral parameters (fraquency, stitffruess vratin, and mass

ratio): : “ (5)

&)

~
%

—
i~ (7]

x




kN

where w is the frequency of oscillation, L is the length of the structure,jo
is the mass density of the structure, A is the cross sectional area of the
structure, T is the tension, and m is the mass of the mass-spring

substructure.

A Taylor series expansion of Furstenberg's formulas is used to arrive ab:

A —
oo sin (FT)

¢ Sc\'\lkP {CWE'YO<A>* ﬁ‘-{ e]

\6 L\:}\ :

*
where O 1is tnhe variance of M and <&> i1s the statistical average of . k

reprs :nts a wave number for the perfectly periodic structure and is defined

by:
cos k= coslrw) +-Si_n(_‘fl—-— Cﬁ‘
P LY T
where 7\ =.E; | 0)
K (ga)ida> U

We adapted Mr. Kissels fcrmulas te our experiment and the results of

versus frequeacy are plotted in figure 3.

A more clear explanation of the difference between the modes expected in
the perfectly periodic case and those expected in the disordered case was
given by Prof. von flotow. Figure 4 shows that bthe localized mode pnenomenon
is predicted only in the first pazs band {ah the natural frequency of the
mass-spring sub-structures, wo)‘ This medsl theory predicts 30 closely spaced
modes all in the vicinity of LA In the second and higher passbands, the
sub-structares vibraite with a much smaller amplitude than the main structure,
aud there is littl. differnce between tre disordered and perfectly periodic

structures.
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Experimental Apparatus

The experimental structure consists of a steel .rivbon that models a
truss. 30 evenly spaced mass-spring resonators model the substructures of the
truss (see figure 5). The ribbon is ten mil thick steel, six inches wide and

eight feet long. It is clamped at both ends and tensioned to about one third

of its ulbtimate stress. A shaker is attached.near one end to input a force

into the ribbon. The mass-spring substructures consist of "diving-board"

cantilevered beams made of four mil thick shims. These diving board

resonators have washers bolted to the tips and vibrete in the vertically

through holes cut in the ribbon. The holes are one and three quarters inches -

in diameter (centered three inches apart), and the shim resonators are one
half inch wide and one and a half inches long. The spring-mass properties are
provided by the bending stiffness of the cantilevered shim and the washer mass
at the beam tip. The washers sre bolted to the tips of the shim resonators.
In the perfectly periodic tests ap equal number of washers were bolted to each
of the 30 resonatosr tips. In the disordered case, the number of washers on
the tip was changed to a random humber (from zero to twelve). The number of
washers for each bay of the disordered structure was generated by a
pocket-calculator random number generator. Each washer weighed a little less
than a gram, and the nut and bolt weighed approximately the equivalent of two
washers. The effective spring constant of the cgnbilevered shim was such that

under full loading (twelve washers), the Eip sagged a half an inch at rest,

o
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"4iving boari" mags-ipring sub-structure.

The choice of the cantilevered beam approach to the resonator was
determined by a need to restrict freedom of movement to the vertical
direction. At small amplitudes of tip oscillation the mass travels

approximately only up and down. An attempt wes made to keep tip oscillation




from being too great and thereby keep the oscillations linear, The

thicknesses and tension and average tip mass considerations wer2 made on two

guidelines: (1) the average tip mass in a bay is approximately the same as
the mass of the ribbon in a bay; (2) the pinned-pinned first mode of the
oversll structure is significantly higher in i‘requency than the natural

frequency of the average vesonator. Both the average tip mass and the ribbon

. mass. per bay are about seven grams. The first global ribbon mode is at about

30 hertz and the average rescnator has a natural frequenéy of about eight
hertz. Since most testing occurred at frequencies less than 20 hertz, this

kept us from exiting the global ribbon mode at 30 hertz,

The ribbon was supported by the rallroad type I-beams of the test bed in
the basement of building 33 at MIT. Angle iron clamps were used at the wall
{and shaker) end of the ribbon and the other end was clamped to the tensioning
lever. This lever consistea of a four foot long beam effectively hinged to
the btest bed on the end (see figure 6). The other end had iron and lead
weights placed on it to transfer tension to the ribbon clamped to upper side
of the lever base. This lever transfered weight of about 150 pounds into
tension of about TOO pounds. This constant tension was used through all

experiments and could not bhe affected by creep or temperature changes.
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Figure H: Tensioning lever icheme ietail, The force 2
e placei on the end la mangcified by the lever and applied
as tension on the ridbbon.
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A magnetic distance sensor is used to measure the ribbon amplitude at any
bay. This devige outputs a voltage proportional to the distance Letween the
ribbﬁn aﬁd the tip of the sensor probe., A recording oscillascoée is uged to
measure the AC peak to peak amplitude of this voltage. In calibrsting the
‘sengor, we found it to operate linearly in the range needed with a DC voltagea
of about negative six volts. The sensor is held by a movable stand and the
tip hg%gpg gan.bg_adjusted_sp thgt ;he sensor is mgasgriqg AC”ampl§§ude$ ;p
its linear range. The stand can be moved to any bay and »idbon amplitudes
measured from beneath the ribbon at a point in the center of the ribbon
directly between the holes, A second identical sensor is placed to measure
shaker amplitudeAso that output amplitude voltages could be normalized to
input amplitude voltages, getting a non-dimensicnal ribbon amplitude at each

bay.

A quick look at some errors inherent in the manufacture of our

experimental strucutre reveal that even the "perfectly periodic'" case is

et

somewhat disordered. The location of the small hole through which the bolt
e ——————

passes 1s in error of about ten percent from tc bay. The epoxy technique
yilelds a fifteen pevcent errcr that ~ffects the coefficient aof end fixity and
therefor the effective spring constant. These two major manufacturing

inconsistencies yield a possible errar in the natural frequency of an

s i e vt

.-‘—‘—'———_
oscillator to 25 percent. This ervar in resonant freguency wWwas seen in the
.
///// initial testing of the perfectly periocdic structure.

/ j 7
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Amplitude versus Position Experiment

From this experiment grsphs of ribbon amplitude at each bay versus hay
position were generated for sinusoidal inputs of several frequencles above the
stop band. The nﬁminalveipérimenﬁal pl#n.was to iaéntify ;Aspecific localized
mode in the disordered structure and deduce its localization factor using an
'fexégnential'cufve~fit-tb3the“gmplitudeiﬁgtsusfpdaibioﬁﬁgruﬁhs3a$*Sh6wn ih
figure T. The perfectly periodic case was expected to exhibit no

localization.

< ' . oo
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Flgure T: Original asthod of ietermining locallizatlon length with an
axponential curve Iit. This zetnad could zot be used because i
gingle mode could not be identified.

Procedure

A signal generator is used ta generate a sine wave of a frequency betweex
10 and 20 hertz. This sinusoidal input is amplifieé and sent to the shaker
that forces the ribbon with the same sinusoid. The amplitude of the =ibbon ak
the shaker is adjusted (by adjusting the volume of the amplifier) to be

approximately a sixteenth of an inch {coresponding to five volts peak-to-peak

from the distance sensor above the ribbon, next to the shaker). The other

%




i, magnetic distance sensor was placed under the ribbon and its height adjusted
' 86 that it is operating in the linear range. The probe tip was positioned

beneath thQ ribbon at a location directly between the holes of each bay; On

our intitial tests, we noticed a sudbstantial 30 hertz component of the ribbon

emplibude due to the first global mode of the entire ribbon., This should not

youivor
be present in a linear system, if we zre exciting it at frequencies less than

20 ﬁertz, but our system is rel@tively non-linear. To avoid the effect of
this component on our ribhon amplitude measurements, we low pass filtered the
sensor output with a cutoff frequency of 2T uertz. The peak-to-peak amplitude

of the filtered ocutput of the sensor was measured from the oscilliscope and

recorded for each bay. We did tests ak 12, 1k, and 16 hertz for both the

perfectly periodic structure and the disordered structure, ‘

Results

Amplitude versus positicn graphs were generated using the non-dimensional
amplitude arrived at by dividing the measured peak-to-peak amplitude.voltage
by the five volt shaker amplitude. The position variable is the index of the
bay where the amplitude was measured and numbers from 3 to 29 {sensor would

not fit beneath bays 1, 2, and 30). Error in the amplitude measurement is

! estimated to be five percent due to the precisisn of reading uthe oscillascope k
éx¢ﬁ“l}- and the error of the sensor. Figure 9 shows the results from the 14 hertz i\
\p‘féL tests of both the perfectly perisdic and disordered cases. There is little or 1
abyif no difference between the amplitude versus posigion plots of the nwo cases, )|
94

This is obviously not what we suspected, since it implies that there is no
difference in the two cases determined by this method. The hests at 12 and 16 g
hertz were almost identical to the 14 hertz test shown. All three tests

showed both the perfectly periodic and the disordered amplitude versus

'S



23394 T 9% PIFONPUOD SEBA 3627 SIYUL “IFBD PIISPACSIP SY] pue
aswo ofpotaad A13993a9d ayy 103 uoyjisod Aeq snsaas apnyyidee uoqqiy ‘ 2anfy4

\Aoq) LIO1}180

o¢ ” i o <1 (o

L

WOONYY - - -
MO0V —e—

£0

2

7 Spnyidwy

EARA g
Qv Y

(

(R




position graphs falling from about twice the input amplitude near the shaker

‘end to near zero at the far (clamped) end. Since the first three testa showed

no localization and indeed no difference in the two cages, we did not

experiment further.

Discussion

ﬂfhe nnﬁinal ekpéiimenﬁal ﬁlan wasiéo idénhify a sihglé-ﬁode iﬁ the
disordered structure, We were not able to do this due to non-zerc damping
which causes moda’l overlap. Theoretically, there are 30 modes in the
structure, all near the average natural frequéncy of the resonators (8 nertz).
If this were true, these modes would have t6 be spaced extremely close
together in frequency. Since the damping due to air friction is not zero, we
could not excite one specific mode without exciting the others. The problem
is that the modes are closely spaced and lightly damped (rather than undamped,
as theory assumes). Figure 9 shows the difference that the damping makes on
the ability to isolate a single mode. Mode equations reveal that the modal
spacing over the mode frequency has to be much greater than the damping in
order to be able to excite a single mode. Ifjgu; {s the frequency difference

between two adjacent modes:

§<< 2

\wd
This condition is far from present in our experimental setup, so in 20-20

hindsight, we realize chat we could not identify a single mode.

?

— e == §>c

Figure 3: Megzitude of ribbon amplitude over f‘requen'c:,' rersus frequency.
Ouiy when there ia infinitesimal damping can only one mode be
excited.
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Another non-ideal condition present ln our setup is the relative disorder

ir the supposedly perfectly periodic structure, The 25 percent possible errcr

in the natural frequency of the rosonators_makes-Lhecontrsl-case not valid as

‘-—',_ N .
_3 control. The trend of ribbon amplitude decaying avay from the shaker may be

localization, but even if this is the case, the disnrdered structure is much
more. disordered than the perfectly periodic case, and should exhibit a greater
localization. There is no vay to determine i1f the small.disorder in the
perfectly pericdic setup is causing localization without building a setup
that is more strictly perfectly pericdic. The decay tovard the clamped end
could also be Just due to the fact that there is a clamped end; the theory

| that is belng tested assumes an infinitely long struciure (no end
constraints). The inability to identify single modes in the disordered case
and the relative disorder in our control case prevent this experiment from
determining localiztion. Ignoring damping in the development of theories
makes it difficult to test those theories in an experiment where Jamping is

unavoidable,
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Trangfer Functiion Bxperiment

Since no conclusive results were obtained {n the first experiment, we
attempted to adapt our experiment to the axparimental method used by Hodges
and Woodhouse on their headed strling experiment. An alternate experimental
using the same apparatus involved forcing the ribbon at one end with white
‘noise and reading the ribbon amplitude near the other end. A localiztion can
then be deduced from a comparison of the spectrums of the tranéfer functions

of the disordered structure and the perfectly pericdic structure.

Procedure

We used a PC based digital signal processor to generate our forcing
waveform and to sample the »ibhon amplitude. A whike nolse waveform was
created by selecting the random output waveform from the signal processor (the
»ibbon was forced equally in all frequencies). The white noise forcing signal
was also fed back into a channel of the signal processor for digital sampling.
The magnetic distance sensor was placed and calibrated as in the first
experiment, but was stationary at the 27th bay for this second experiment.
The sensor output voltage was fed into s separate channel of the signal
processor for dlgital sampling. A Hanning digital law pass filter was used to
prevent sampling alias. Both signals were sampled so that frequencies up to
20 hertz could he determined, and a Aigital fast Fourier transorm done to get
their spectrum. These spectra were determined ten himes and the resulks
were then averaged. Using math software avallable with the signal p“ocessor,
we divided the spectrum of the output amplitude by the input forcing Lo get
the spectrum of the transfer fuaction. This transfer function spectrum was

integrated over frequency and the "step" near 8 hertz measured graphically.
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The test waa done on the perfectly pericdic case (aix washers in each bay) and -

the disordered case (same random configuration as was used in the amplitude

versus position experiment), as well us a "semi-random" configuration (only

five or six washers on each).

The significance of this step height is deteramined through some médal - - -
analysis. If we assume the transfer function of output ribbon amplitude to

input forcing is given dy

wie) ; .,
(l(.w o - e AN

vwhere f; is the modal residue, given by the product of the modal amplitudes at
the driving point and the response point. We expect the ratic of the modal
residues for the two cases to> be related ©o the localization factor:
. tmmd.‘- ) “~ "\’!\L‘-\"'i> L
\ él
(_"\ (Deréed|

vhere L is the number of bays vetween excitation and respinse. If one assumes

as Hodges and Woodhouse did, that is constant over the frequency range

examined then:
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Results
The spectrums of the transfer functions and their integrations are shown

in Tigure 10 for both the perfectly periodic case and the disordared case.

Remembering J ‘ step pevledct
‘S“(P TLVVM

then the step height for the perfectly periodic case should be larger than

that of the disordered case. The step heights determined by our experiment
‘ow the disordered case to be about {ive times greater than the perfectly
periodic case, This result implies negative localiztion, which is a
meaningless concapt. The step height determined for the semi-random case was
larger than that of the perfectly ﬁeriodic case, and smaller than the full

random case, as might be expected.

‘w (\"n.-) 2.

Flgure 10: 3pectra {left) and integrated spectra (right) for the transter
functions »f the perfectly perisdis 2nge (tsp) and rha disordered
case (bottom). For localiztion to se spsarved, the dtep of the
perfectly periodic case should be larger than the dlsordered case
(doesn't he~ *n),




Discussion
. The result of no localization int this second experiment is due %o the
unexpectedly large step in the disordered case compared to the perfectly
fy periodic case. The large step height of the disordered case is due to a large
component in the frequjizy response near 8 hertz. This result could possibly
AL §EET —
be due to a local eexk at the sensor location. This local peak could be due

h

%o mode localiztion or due to the resonstor of the 27°" being excited at its

ﬁaturél frequency.. We could avoid this possible local peak §ﬁenomenon by 4 ‘ h
averaging the response of many different configurations of the same

randomness. This is done by generating more random numbers (still zero to 1
twelve washers) and changing the washer placement configuration. Averaging

the results of many configurations would reduce the effec's of possible

singularities at the sensor location. Furtermore, the relatively low step

height in the perfectly periodic case could be due to the unintentional

disorder or the modal overlap problem discovered in ghe amplitude versus “
position experiment. The modal theory predicts 30 closely spaced frequency
respolise modes near 8 hertz, but the spectrum showed only a "lump" rear 8

hertz. The lack of identifiable spikes is probably due to the modal overlap

caused by non-zera damping.
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Conclusions

Although we did not support nor disprove the wave/mode localiztion
theory, this was a useful experiment. We suspected to observe localiztion in
the disordered structure when we were designing it, aad we expected to be able
to produce a near perfectly periodic control structure, The fact that neither
of these goals was achieved leads to two useful conclusions: all real world
structures have some inherent disorder that cannot be totally eliminated, and
this particular theory assumes some idealities that canrot be acheived in a
real structure (i.e. zero damping or infinitely long). We did some additional
researcin and found that the couplipg of one bay to the next figures
significantly into the localization prediction. Inh our case we were
constrained to have very little coupling from cne bay to the next. The Zmall
coupling was due to the high ribbon tension neccesary to keep from exciting
the full ribbon mode. There also seemed to be little coupling between the
ribbon and the reconators; at most frequencies the resonators seemed to be
Just "going along for the ride" and not influencing the ribben or the next
resonator. We attempted to make up for this small coupling with a large
degree of randomness in the disordered structure, A different experimental
setup would perhaps be better for observing localiztion if it used large
coupling between bays and only a small degree of disarder. Our only defineite
conclusion is that localiztion theory can be neither proved nor disproved with
this particular experimental setup. The experiment must meet the constraints

agssumec by the theory if the theory is to be supported,
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Recommendations

In subsequent experiments, the perfectly periodic system must beas
perfectly periodic as possible to be a valid control, Also care must be taken
to better fit the coupling/disorder constraints and the damping/end conditions
constraints. Hodeges used a mathematical model of a coupléd pendula system in
his initial research; perhaps this system could form the basis of an
experiments. The coupled pendula apparatus could consist of many {more than
30) pendula connected together with relatively soft springs. The whole
experiment could be conducted in a vacuum with>anvimpedence matched far end;

this would better approximate the zero damping and infinitely long constraints

on the system. Another idea 1s a slinky type traveling wave experiment where

reflected wave phenomena could be observed by eye. In both cases only wesak
disordering of the bays would be necessary to observe localiztion since the
coupling would be stronger. This topic definitely warrants further study, h
and I would enjoy experimenting on a disordered system where the wave/mode

effects would be slow enough in tim2 and large enough in size to be observed 1
by the naked eye. This condition would praovide a better understanding of the

reflection and transmission eftfects, on which the localiztion theory is based.
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A HIERARGHIC OONTROL ARCHITECTURE FOR INTELLIGENT STRUCTURES
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Benjamin A. Ward , Steven R. Hall'

The development of an echelon hierarchic
feedback architecture applicable to intelligent
flexible structures, t(.e., structures with
widely distributed sensors and actuators, is
presented. The control functions are divided
into global and regional control, which in turn
are performed in one centralized global
controller and many decentralized regional
controllers, each of which is associated with a
finite control element. The global processor
calculates global control forces based on
virtual measurements of the global nodal states
of the finite control elements. Each regional
processor reduces measurements from the sensors
within its element to yield the virtual
measurements of the nodal states, and likewise g
the regional processor distributes global

control forces to the actuators in its element.
Residual control, implemented by regional ‘
processors, acts on the difference between the

global estimate of the motion of the structure Y
and the actual regiona! measurements. Residual
and distributed globel control forces are
combired to form the complete hierarchic control
forces. A MINO zero analysis provides a method
for evaluating ths effect of the global and
residual controllers on the poles of the system
for performance requ:rements.
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INTRODUCTION

The large dimensions and high performance requirements of envisioned
space structures will result in close modal frequency spacing within the
bandwidth of the control system. The control of structural vibrations
will therefore be a critical part of the primary control system for many
applications, including large communication satelittes and precision
optical structures. Control system design techniques which focus on
modification of vibratory characteristics of flexible structures will be
necessary in future system design procecdures.

The goal of this research is to develop a hierarchic control methodology
for fiexible structures. This methodology is based on the assumption of
an intelligent structure, t.e., a structure which incorporates widely
distributed sensors and actuators possibly numbering in the hundreds or
even thousands. Such high numbers are quite feasible with the projected
technology for distributed components (Ref. 1). A feasible approach for
such a highly distributed intelligent structure is to distribute the
control functions into an echelon feedback architecture. The primary
reason for developing this particular control methodology is to reduce
the computational burden of structural control by dividing the control
among wany independent processors while limiting the input/output
handling requirements of each processor to a smaller number of
measurements and control commands. Further, it is proposed that this
distribution be done in such a way as to complement the dynamic modeling
of the structure.

The most conceptually simple traditional approach which might be
considered for structural control is full state feedback, in which each
control force is a function of every measurement. The computational
rcQuirements of such a scheme are quite demanding and can become a
limiting factor in the real time application of control of a structure.
In addition, the possible lack of access to the full state would make a
full state feedback implementation unlikely. For these reasons, full
state feedback control of large systems has generally been avoided.

Another apprnach to the control of flexible structures is to feed back
the measurements from a small number of sensors to drive the available
actuators. Such an approach can be based on optimal or suboptimal
direct output feedback (Refs. 2,3). Alternatively, the measurements can
be used to drive a "full” or reduced order estimator (Refs. 2,4,5).
Such approaches have evolved by the extension of techniques originally
developed for relatively modest dimensional systems (such as the six
degree of freedom dynamics of an aircraft or spacecraft). They have in
various ways been modified to take into account the high dimensional
nature of the structural control task. Yet they are still conceptually
focused on doing the most with a small number of sensors and actuators.

The above approaches call for a central processor to perform, at a
minimum, & computation of the order of the number of sensors times the
number of actuators, and at a frequency which is a multiple of the
highest mode to be controlled. The estimator based sysctems must also
perform additional calculations to update the dynamic estimate. But as

(2)
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the number of sensors, actuators, and modeled modes increases, the
number of computations required per second increases at a power between
N? and N* even for output feedback systems. One must begin to consider
systems which distribute the processing, preferably in a way which will
also ruflect the physical distribution of information flow in the
structu.u, and therefore reduce the possibility of unwanted control
spillover.

A division of control effort, suggested by Aubrun and Margulies
(Ref. 6), is that thure be two parallel control tasks, high authority
control (HAC) and low authority control (LAC). The objective of LAC is
to supplement the natural demping iu the strusture by providing simple
state feedback at all colocated sensors and actuators, reducing the
possibility of destabilization due to control spillover from the HAC.
Th’~ colocated LAC feedback mechanism provides simple damping to the
wvhole structure with good stability characteristics (Refs. 7,8). The
HAC loop is then designed to meet performance specifications for the new

plant which 1includes the supplemental feedback. There 1is no
coordination between the control effort of the HAC and LAC loops. The
input/output requirements of the HAC controller offer no improvement i

over single control approaches in that the HAC loop generally requires
the processing of every measurement to determine every control force.

Another control architecture, which addresses the issues of dividing the H
control responsibility and computational and input/output burden, is

hierarchic control (Ref. 9). The hierarchic feedback structure
considered here is based on the assumption of widely distributed sensors
and actuators and involves a two-level echelou feedback architecture
(Fig. 1). Level 1 consists of many autonomous regional processors which
interface with the sensors and actuators in seperate finite control |
elements of the structure. The design of these finite control elements
must also allow for the distribution of the processing among independent
processars, i.e., the structural model and control must be regicnally L
banded. The functions of the regional controllers are coordinated by e

global processor, at level 2. "

CLOBAL
CONTROLLER

Level 2

Level 1 REoton 1 | REGION 2

_ L;-—_—_———‘—’ } dat. bus
| R
. REGION R e
CONMTROLLER GONTROLLER CONTROLLER
Structure [FIRITE CORTROL FINITE CONTROL FINITE CONTRO:L
(Plant) TLENENT & ELENENT 2 ELENENT K b 3

Fig. 1 Two-level hierachic control structure.

In contrast to the HAC/LAC formulation, the information flow in this
design does not require that any single controller be responsible fou
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coordinating all the measursments and control forces of the system.
This greatly reduces the input/output burden of any single processor.
In addition, with sufficiently simplified control tasks performed at the
global and regional levels, computational requirements can theoretically
be reduced by two or more orders of magnitude compared to a full state
feedback design.

This peper details the development and evaluation of a two-level achelon
hierarchic control methudology for implementaticn in flexible structure
control. The methodology outlines the division of control between
global and regional control and specifies the control functions
performed at the two different levels. MNethods of analyzing the control
interaction between the two control functiona is discussed in terms of
pole-zero analysis. The procedure is then applied to the simple example
of a rod in extension.

HIERARCHIC CONTRGL SYNTHESIS

Architecture

The fundamental idea behind the hierarchic control formulation presented
here is a parallelism between the division of an original large finite
dimensional structural model into finite control elements and the
division of control authority into regional controllers overseen by a
global controller. Just as short wavelength disturbances are propogated
in a structure locally (i.e., the stiffness matrices are banded), the
control is distributed into local regions. And as it is possible for
long wavelength modes to develope, there is also a global coatroller.
Global control is based on nodal state information represented at the
nodes of a finite control element reduction of the original large finite
dimensional model of the structure (Fig. 2). The global model
characterizes structural motion by virtual displacements q, and
velocities gy at these discrete node points. These global virtual
states are related to the degrees of freedom of the original finite
dimensional model by the element interpolation functions (e.g.. Tq,:). in
a manner discussed below. Likewise, satructural forces can be
represented by equivalent virtual forces acting at those same node
points. The regional control model is based on the original finite
dimensional model ¢f the structure. This is the level at which the
location and influence of the physical sensors and actuators are
important. This method of representing the structural behavior by
boundary nodal values is conceptually similar to the component mode
synthesis approach of structural dynamics (Ref. 10).

The corresponding division of control function in a two-level hierarchic
controller is outlined in Fig. 3. The global controller is responsible
for implementing control functions based on tlie global nodal states ﬁq
As in finite element structural modeling techniques, the effectiveness
of the global controller is based on the assumption that the global
model accurately describes the structural motion. The regional
controllers, when combined form the residual control block in Fig. 3,
operate within the global element boundries based on & the residual of
the local measurements y and the estima.es of the local measurements

(4)
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interpolated from the global estimates x,. The specific objective of
the regional controller is to perform inner loop compensation within
each region to force the structure to track the behavior expected by the
global model.

FINITE CONTROL ELENENT NODE LOCATIONS

q. . T Q.‘ q'a Q

r " r 1

LI LI

1+ Ta q'a . q,. q" q'v q,. q" q'xoq'uq“u

|=F C Element 1 <~ F C Element 2 =]~ F C Elewent 3 |

% 9 Q.

ORIGINAL FINITE DIMENSIONAL NODEL OF FREEDON
Fig. 2 Control dowains based on finite dimensional wodel

Control Objectives

The objective of the global control is to control the overall behavior
of the structure based on the global finite control element model.
Three basic tasks are involved in implementing global feedback and are
shown in Fig. 3: the measurement aggregation which reduces the system
moasurements y into an estimate of the states in the global model £,
the computation of the virtual global control commands v, from the
estimates of the global states; and the distribution of the global
control which calculates the physical control forces v. to be applied to
the system based on the global commands.

GLOBAL CONTROL GLOBAL 3TATE
BISTRIBUTION IRTERPOLATION

MEPASURERENTY
AGGREGATICN

Fig. 3 Hierarchic Contrcl Functicnal Block Diagram

The residual controller operates on the difference between the global
finite element model and the original, higher dimensional model of the
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structure. The estimated global states are interpolated to form a set
f eatimated wmeasurements that are consistent with the nodal states

. These measurements are differenced with the actual weasurements of
the system ¥ to form an estimute of the residual error . The residual
controller calculates control forces u. to drive the residual error to
zero. The combined global control forces v. and residual control forces
u. are then commanded of the actuators.

In order to understand the steps involved in Fig. 3. consider first the
original finite dimensional model of the structure. This model is
derived using any appropriate finite element, finite difference, or
other modeling technique. As with most structural models, the inherent
danping is initially assumed to be zero. The second order dynamic
equation describing the atructure is then

Nq+Kq=?Pu (1)

vhere q € K® is the vector of the generalized coordinates, u € B® is the
vector of control inputs, N is a symmetric, positive definite mass
mtrix, K is a symmetric, non-negative definite stiffness matrix, and ¥
is the control influence matrix.

For the following development of the two—level hierarchic control
technique, two simplifying assumptions will be made. The first is that
complete measurements of the full state of the original finite
dimens:onal model (q-r and §.) are available. This assumption is
intentionally restrictive in order to simplify the presentation of the
technique. In most systems, the full state must be eatimmted from
partial state measurements. The second assumption is that the system
has as many nonredundant actuators as generalized coordinates (i.e., ¥
is aquare and full rank). This assumption is also restrictive and
further simplifies the analysis. Since the probable application of this
technique is to systems with large numbers of 4istributed sensors and
actuators, these restrictions are not as severe as wmight be thought.
Currently, research is underway to analyze the implications of reiaxing
these constraints, but the remsinder of this presentation will accept
the restrictions.

Global Control Synthesis

The objective of the global control law is to control the long
vavelength wotion in the structure that is critical to the system
performance. In the global wmodel, the motion of each finite control
element is defined in terms of the global nodal degrees of freedom as
shown in Fig. 2. According to finite element theory, the wotion of
every point within the finite control element is specified in terms of
exact interpolation functions (such as T,, in Fig. 2) and the associated
nodal degrees of freedom. In this formulation, the f{inite element
interpolation is applied to an existing finite dimensional model, rather
than the coantinuous structure. Thus, each finite control element
contains a unique subset of the original finite dimensional model
tdegrees of freedom and an associated subset of the sensors and
actuators. In terms of the global degrees of freedom, the original
degrees of freedom can be represented as

(6)
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q{q) =T q (2)

where g€ R’ 1s the vector of global nodal degrees of freedom of the
global model and a, is the number of global degrees of freedom. T, is
an interpolation matrix constructed by combining the local transfor-
mation matrices from each finite control element into a aingle matrix.
T, is also used to consistently interpolate from the global to the
original model velocity by differentiating Eqn. 2 with respect to time.

The consistent global equation of motion is obtained by substituting
Eqn. 2 into Eqn. 1 and premultiplying by T, transpose, yielding

Nq +Kq =T Pv, (3)

wvhere N, = T, N T, is the global mass matrix and K, = T, K T, is the
global stiffness matrix. Since a, is usually much smaller than a, this
system has a far greater number of actuators than generalized
coordinates. Since a full state feedback control of the global system
will result in at wmost a, independent control forces, a transformation
must be defined for distributing those a, global control forces over the
entire set of A actuators. In this sense, a nodal force is spatially
distributed over the discrete actuators within the element.

A global control vector, v,, is defined so that the control vector
consists of n, independent virtual global forces, each associated with
one of the global degrees of freedom in the vector q,. These virtual
global forces must then be distributed into physical forces, v.,
according to the geneoral relation

v. =8 v (4)

vhere S; is the global force distribution matrix. One way of specifying
a complementary choice of S8, which is consistent with the measurement
interpolation is to require

S, =¥ N T, (5)

This choice of S8, will provide that the control force distribution
matrix is banded with respect to the regions in that the control
comands can be divided ameng the regions for application to the
structure by the actuators controlled by the regional processors. The
effect of this choice of S; can be seen by substituting Eqns. 4 and S
back into the global dynamic wodel, Eqn. 3, yielding
B oq+K q =Ky, (6)

It is seen that the global control force distribution causes the virtual
global controls to appear as global node acceleration commends and thus
results in structural accelerations which are consistent with the globel
model . Each global control force 1is distributed by the global
interpolation matrix, multiplied by the local mass to generate the

appropriate force, and then multiplied by the inverse of the control
influence matrix to obtain actual control commands (Eqn. 5).

Since the global nodal states required for global control are not

directly measured, the virtual measurements must be estimated by
spatially filtering the physical measurements within each control

(7)
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olemens. The global finite control slement formulation assumes that the
interpolation functions (Eqn. 2) provide an exact description of the
structural deformotion for the subset of the degrees of freedom within
the elemant. In reality, there is a difference, or residual, between
the actual structural deflections, described by the original finite
dimensicnal model, and the global description, The error based on the
estimated globe) dilplacamon:: ls given b;

.-q-'r'q. (7)

vhere : € R* 1s the vector of the estimeted residual degrees of (reedom.
The optimal estimate of the global state is Jefined in terms of
minimizing a walghted quadratic of che estimate of the residual.

a, = (TLRT) T NqsT,'q (8)

The resulting matrix that relates q to q, is actually a pggudo left
inverss of the transformmtior. matrix T,. In other words, q, is the
veighted least squares estimate of the global states based on the
interpolation functions. The mass was used as the weighting matrix due
to tha similarity of the pseudo inverse with the standard modal
orthogonality condition. If tlie actual mode shapes are represented by
the ‘*ransformation matrix, T,, then Eqn. 8 will yield an exact
transformation from physicai to modal coordinates. For consistency, the
same transformation is used for both displacement and velocity.

Now that the measurement aggregation functicn (the transformation from q
to §,) has been defined, t.e effect of the global control loop on the
structure can be exr.ninad by substituting the reduced global control law
back into the original equation of motion, which ylelds

.l @

u‘q'+xq-u1;r’,"r;‘q+n1':r‘:vr,q (9)

where Ff donotes the feecback gains and has bLeen hroken into velocity
and displa-.ement submatrices. Equation ® can now be used to predice
changes in system performance due to the global control loop.

Residual Control Svsthesis

The residual ocontrol (icner loop) of the hierarchic control s«zheme
generates control signals based nn the residual error between the actual
measurements of the ~tates of the original finite dimensional modec! and
the interpnla.ion of the virtual global states. The objective of the
residual control (s to suppress the local structural motion that is
inconsistent with the global model dynamics. One of the primary
requirements of the residual ocontrol implementation is that it be
performed within each of the regions based only upon local {nformation
end information received from the global coutroller. Also, the residual
contrul should not excite the glotal motion of the structure. These two
requirements will restrict the possible control implementations. In
addition, it is desirable ti-+ the residual control be computationally
simple.

In order to analyze the residual control, consider the estimate of the
displacement residual error as

(8)
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e=q-q = (I-TT )q (10)
The general form of the feedback law that implements the residual
control is

u =-F e-F, e (11)
v :

Since the residual control is designed not to excite global motion, the
component of the structural acceleration that results from residual

control forces must be analyzed. This acceleration, which will be
called the residual control acceleration, is
a =N'vu (12)

An estimate of the global acceleration due to the residual control
acceleration can be determined using the same estimation matrix that is
used to determine the reduced order global state measurements from the
full order measurements (Eqn. 8)

/ -L =1
§ =T, Wy (13)

The first requirement that the residual control only affect the residual
motion is satisfied if Eqn. 13 is identically zero.

One restricted form for the residual feedback gain that meets this
requirement, and the requirement that the feedback be applied based only
on local information, is
-y -1

F,‘ =a¥v N , Fr, =9 K (14)
where a and B are nonnegative scalar constants. The residual control
acceleration for these gains is
a' = - a‘e - B°é (15)
Here, the residual control acceleration is in direct proportion to the
estimatas of the residual states in the system and will be called direct
proportional feedback. In addition, if a and § are negative, the
control acceieration always acts against the residual displacement and
velocity.

To analyze the effect of the direct proportional feedback on the
dynemics of the system, consider the reduced model based only on the
residual modes. Just as the global model describes the dynamics of a
subset of modes in the system (Eqn. 3), there also exists a model of the
subset of the residual modes of the system. This reduced model requires
a transformation that relates a set of residual model states to the full
order residual of the system. The transformation T, maps the n,
dimensional global displacement vector q; into the n dimension vector
space of q. Therefore, the residual must reside in the remaining
subspace of q that is orthogonal to the subspace of q;. The dimension
of that subspace is n: s n -~ ngy., Therefors, the complete vector q can
be expressed as

Q=T q + Tq q, : (16)

where qr € R*" is the vector of residual degrees of freedom and T. is
the residual transformation matrix., The combination of the two mapping
functions in Eqn. 16 must span all possible vectors q ({.e., the matrix
T, spans the null space of T,).

(8)



The exact choice of the residual transformation matrix is found by
considering the estimated global degrees of freedom based on Eqn. 16 and

premul tiplying by T;L (Eqn. 8) to obtain ;
" -l ]
q =T, T, q +4q (17)

To make the estimate of the global degrees of freedom equal the actual
values, the first product in Eqn. 17 should always be zero. This

product is identically zero only when T;L T- 1is null. Examining the
definition of T;L in Eqn. 8, this requirement reduces to

T, KT, =0 (18)

(t.e., T, 1is orthogonal to T; with respect to M). The combined
requirements of Eqn. 18 and that T. span the null space of Ty fully
specifies the space mapped by T-.

The reduced order residual model can now be formed by assuming that the
residual motion in the structure is orthogonal or decoupled from the
global motion in the structure. Thus, theré is a subset of structural
motions for which T, q; is zero and the remaining motions are described
by the relation

q{q.} =T, q (19)

Substituting this into the original equation of motion (Egqn. 1) and
premultiplying by T. transpose yields the reduced order residual model
equation of motion

M g +K q =-aM q -0N q (20)

where M, = T, M T, and K- = T, X T.. While the reduced order glnbal
model characterizes the longer wavelength modes of the higher order
dynamic model of the system, Eqn. 21 provides a reduced order
characterization of the remaining modal dynamics.

The effects of the residual feedback on the reduced order residual model
is best evaluated if Eqn. 20 is transformed into modal coordinates
(Ref. 11) to obtain

E +pE +(a1+A)E =0 (21)

where £, € R"" is the vector of the residual model modal coordinates and
A is the diagonal matrix of the residual model squared natural
frequencies, It is clear from the form of Eqn. 21 that the deci'y rate
(B/72) for each of the residual model modes is the same. Likewise, the
increase in the square of the natural frequency (a) is the same for all
modes due to Jirect proportional feedback. Thus, it can be concluded

that direct proportional feedback affects,6 all residual model modes
equally.

One possible selection of the residuai control feedback gains a and 8 is
to chose them as the averages of the closed loop gains of the full state
optimal regulator solution applied to the entire structure, The
residual wodes’' deccay rates can be made to approximate tae full order
optimal regulator decay rates of the residual modes if B is selected as

B=2/n 30 (22)
(10)




where a? is the real part of the closed loop poles of mode { of the full
order optimal regulator and the summation is made over all system modes
in the residual model. A similar approch can be used in selecting the
stiffness parameter a. The stiffness increase of the residual modes is
chosen to equal the average stiffness increase of the associated modes
in the full order control system by selecting a to be

a=2n 3 (0 -0) (23)

where w? is the closed loop natural frequency of mode i of the optimally
controlled full order dynamic model and w, is the open loop natural
frequency of mode i of the full order dynamic modzl. The hierarchic
control that results from this selection of a and B and the global
control of the previous section can now be combined to analyze the total
system performance.

HIERARCHIC CONTROL ANALYSIS

Using standard techniques, the two-level hierarchic control scheme can
be designed with stable controllers for each level of control. However,
since the two controllers do not operate in isolation, the two control
functions will interact with each other. Large levels of control
interaction may result in system destabilization. Therefore, the
ability to accurately predict the closed loop dynamics of the hierarchic
control implenentation is an important concern.

Control Coupling

In order to evaluate the effect of control interaction between the
global and residual control, the mechanisms through which these
functions interact must be established. The full closed loop dynamic
equation can be written by combining Eqn. 9 and Eqn. 20 to obtain

Mg+Kaq=- (N T;F:dT;L + aM(I - T,T,"))g
~ (M T:F:VT;L + BM(I - T.T.))q (24)

where the terms involving F: result from the global feedback
implementation and the terms invoiving a and B result from the residual
feedback implementation. The coupled dynamics of the two subsystems can
be obtained by substituting Eqn. 16 into Eqn. 24 and premultiplying by
suitable transformation matrices to obtain

n‘iq‘i + x9 q9 + K9 r q" = xg F):a qq - n‘i P):qu (25)
Lad T .
nrqr + qur + K!l’qli =- a.xrqr - ﬁ.nl'qr (26)

The two subsystems of Eqns. 25 and 26 are th¢ zlobal and residual models
developed in the previous section with the addition of an elastic

coupling term, K;, = T; KT-. VWhen K;- is identically zero, T; exactly
represents a linear combination of ny natural modes of the original
system, and T. exactly represents a linear combination of the other n.
natural modes. The coupling between the two systems will be light if T,
closely approximates a subset of the normal modes and the control forces
have been selected to not introduce any further coupling.

(11)
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To guarantee  that the full hierarchic feedback system is stable, one
viable solution is that the control implemented in the global and
residual design models (kEqns. 25 and 26) must duplicate the effects of
passive components. With this restriction, both models will act as
stable passive systems. This will guarantee system stability siuce the
coupling of two passively stable systems cannot result in overall system
instability (Ref. 9).

MIMO System Zero Analysis

The assurance of a stable control design is just one important aspect in
evaluating the effect of control coupling in the hierarchic control
design. The primary design goal is not Jjust one of stability, but of
mcating specific performance requirements. This means that the effect
of the hierarchic control on the closed loop dynamics of the system must
be understood.

The primary method of analysis used in this section is based on the
relationship between the generalized zeros of MIMO system (Ref. 12) and
feedback system response. With few exceptions, such as the work done by
Taylor (Ref. 13), MIMO system zero analysis has not been applied to
structural control design. MIMO system zeros are close counterparts to
zeros of classical single-input/single-output (SISO) systems and their
properties can be exploited in many of the same ways.

There are twe important properties of MIMO system zeros that directly
relate to output feedback control laws. The first is that system zeros
remain invariant under output state feedback (Ref. 14). The second
property is that if the MIMO system has | finite system zeros, then j of
the 2n system poles will converge on the finite zeros and the remaining
(2n-4) poles will go to infinity as the output feedback gains are
increased to +® in a positive definite manner (Ref. 15). Both these
properties are familiar to SISO feedback systems and are used explicitly
in root locus analysis design. For the same reasons, the MIMO zeros are
important to MIMO feedback system design. In particular, the evaluation
of the MIMO zeros of the global and residual control functions will be
importar : to the evaluation of the hierarchic control design.

Three topics will be discussed with respect to MIMO zero analysis of the
complete hierarchic control structure. First, the mechanisms which
cause system zeros in the global and residual control implementations
will be established. Second, the relationship between global and
residual system zeros and the closed loop dynamics of the full order
structure will be examined. Finally, an exact method of determining the
location of these zeros and the mechanisms that influence their
locations is established. The culmination uf these results will provide
valuable guidelines for the hierarchic control design.

For the hierarchic development presented in the hierarchic control
systhesis, the initial structure had full state measurement and complete
independent control. Given these constraints, it can be shown that
there are no zeros {or the full system. However, MIMO zero analysis is
useful for analyzing the subsystems defined by the global and residual
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control functio..s. The global feedback gains perform output feedback
around the residually controlled structure and, therefore, will not
affect the location and number of possible zeros of the global control
system. Since the global measurement and the global control influence
matrices are designed to isolate motions in the structure that are
consistent with the reduced order global model, there are many motions
in the structure that cannot be represented or affected by this control
system. These motions will be characterized by the global system zeros.
The analysis of the residual control system zeros is nearly identical in
that zeros arise in this system that correspond to structural motions
that cannot be represented or affected by the residual control system.

The relationship between global and residual zeros and the closed loop
dynamics of the structure will be examined through the evaluation of a
particular example. This example is the unique case in which the
reduced order global model exactly characterizes a subset (nq) of the
structural modes. Subsequently, the motions described by the residual
model must exactly describe the rema‘ning n. modes of the siructure.
Thus, the global and residual subsystems are totally decoupled (i.e.,

K;r = 0). .

For this simple case, the subsystem decoupling can be described in terms
of global and residual control system zeros. For complete decoupling of
the two subsystems, it can be shown that the measurement matrices of the
two subsystems are each orthogonal to the modes of the other.
Therefore, the global controller must have decoupling zeros at each of
the residual pole locations. Likewise, the residual controller will
have system zeros at the global pole locations. Therefore, for
completely decoupled subsystems, the zeros of the two subsystems will
correspond exactly with the locations of the closed loop poles of the
combined system.

The next step is then to consider the effect when Tq and T. do not
provide exact models of the global and residual system modes. The
global and residual zeros will not disappear, but rather many (or all)
of the decoupling zeros will become transmission zeros. If the new Tg
is very close to the decoupling matrix Jjust discussed., the zeros of the
global or residual control systems should be close to their previous
locations (i.e., the poles of opposite system). If chis is the case,
the zero locations offer an approximate description of the closed loop
dynamics of the structure.

For selection of Ty that does not provide exact or near decoupling
between the global and residual subsystem, the relationship between the
respective system zeros and the system dynamics becomes less clear. It
is clear that feedback of the residual system will affect the zeros of
the global system and vice versa. The relationship between the controls
and the closed loop zero locations can be determined through the results
of two theorems (Ref. 9).

Theorem 1! In the limit, as the global displacement feedback gain,
Fqa, becomes very large (in a positive definite sense) and IlIFgqll >>
IFgvll, 2n. of the system poles converge to the closed loop poles of the
residual control model (Eqn. 21) and the remaining 2n, of the system
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poles are the closed loop poles of the global model (Eqn. 9).

Theorem 2: In the limit, as a>>? and |a| >> |B]|. 2r, of the system
poles converge to the closed loop poles of the global contiol model and
the remaining 2n, of the system poles are the closed loop poles of the
residual model. '

These theorems summarize the analysis of the closed loop poles of the
coupled global and residual subsystems. Of these closed loop pole
locations, 2n, converge to the closed loop pole locations of the
residual model and 2n, converge to the closed loop pole locations of the
global model. Since the residual model pole locations remain fixed as
Fqa is incrersed and since these are converging points of the full order
system poles, they must also be the zero locations of the global
controller. Likewise, since the global model pole locations are fixed
as a is increased, the remaining converging points are the =zero
lccations of the residual controller.

From this analysis, it is clear that the proximity of the global and
residual control system zeros to the poles of the actual system is a
direct indicator of the decoupling between the global and residual
controllers. For perfectly decoupled control systems, the zeros of the
global control system correspond to 2n, of the system poles and the
zeros of the residual control system correspond to the remaining 2ng
poles of the system. Even with coupled subsystems, the poles of the
complete system will tend to follow the poles of the uncoupled
subsystems, depending on the amount of coupling and the relative
magni tudes of the feedback gains.

As with all finite element applications. a more accurate model of the
structural modes will produce more accurate predictions of the response.
For the application to the control problem, accurate modeling of the
structural modes is seen to reduce the control problem into decoupled
subsystems which can be effectively controlled using the hierarchic
control technique. The natural conclusion from this analysis is that
the free model parameters should be selected to provide the lowest
coupling between the giobal and residual controllers.

EXAMPLE

For the following example, the hierarchic control technique will be
applied to the case of controlling a bar in extension using widely
distributed sensors and actuators. A possible model for the full order
control problem is shown in Fig. 4. This lumped parameter model is
assumed to have seven degrees of freedom with a sensor and actuator on
each mass. In addition, the value of each mass and stiffness is set to
unity.

(14)
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Fig. 4 AT Degree of Freedom Model of a Bar in Extension

The open loop pole locations of the full order system are shown in the
first column of Table 1. This model will be used to demonstrate the
various synthesis processes in the development of the complete two-level
hierarchic controller.

Global Control

Assume that, due to performance requirements, the glcbal control will
nominally control the relative position of degrees of freedom q;, qs.
and q7 of the original model. These three degrees of freedom will be
the locations of the global degrees of freedom qq,, qq2. @&nd qg5. The
global finite control element model defined by these three nodes will
have two finite control elements. The degree of freedom q, will be
assigned to the first global element so that the full order degrees of
freedom included in the first element are 1 through 4 and in the second
element are 5 through 7. A linear interpolation between the global
nodes is used to define the relationship between the global degrees of
freedom and the regional degrees of freedom within each element. The
interpolation between global and regional degrees of freedom is given by

q{1} = To{1} qs{1} and q{2} = T4{2} q,{2}

where

a{1} = [a1 @2 @a a¢ ]'. {2} = [as 96 a7 ]’

q.{1} = [Chi q“]t- Q. {2} = [({qz Cha]t

3210

T {1} =§[o - a]r. To {2} -‘[f ;:]T

Combining these two regional relations results in the glcbal
interpolation relation (Eqn. 2), where

The reduced order global model (Eqn. 3) can now be formed by using the
interpolation matrix T; for both displacement and velocity. The open
loop pole locations of the global system are shown in the second column
of Table 1. The modal frequencies of the global model are very close
to the modal frequencies of the first three modes of the full order
system. The rigid body mode is identically modeled in the global mcdel
and modes 2 and 3 are 10X and 4X higher than the full model.
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As was stated previously, the main computational effort of the
hierarchic control technique is distributed among the many regional
processors, which are overseen by the global processor. Therefore, the
global state aggregation (Eqn. 8) is divided into three sequential
processes, one performed at the regional level and the remaining two at
the global level.

~ - T -1 -1

q =N T Nq=N =z =N Iy({i)
Yorking from right to left in the above squation, the first process,
which is performed by the regional processors, creates regional
estimates y,{i} of the global nodal states by multiplying the regional
measurements by the regional mass and interpolation matrices. Since the
mass matrix is unity, this becomes

vol{1} = [y¢p ysp0]" = Tol1) q{1)

va{2) = [y2 yi2] = To{2) af2)

The remaining two processes are performed at the global level. In the
first, the regional estimates of the global nodal states are sent to the
global processor to form a new intermel!ate estimate of the global nodal
state z, by averaging all of the regional c:*imates at that node.

1 t

zo = [y( r(v$p*vid) y@ ]
The second global process then correlates these intermediate virtual
estimates into the final virtual displacement estimate gq by
premultiplying by the inverse of the global mass matrix defined in
Eqn. 3. A simple check will verify that these steps reproduce the

pseudo left inverse of the transformation matrix as defined in Eqn. 8.
The formation of the estimated global velocity is identical.

Since the actual form of the global control 1is not critical to the
hierarchic control formulation, a simple full order optimal regulator
was derived with the state penalty placed uniformly on displacement, no
velocity penalty, and a nondimensional control penalty of unity. The
poles of the optimally controlled full order system are listed in the
first column of Table 2 and shown in Fig. 5. The optimal regulator
problem was then solved for the 3x3 global syster using the known T, and
S, from Eqn. 5. The closed loop poles of the global model are shown in
the second column of Table 2 and also in Fig. 5. Comparing the closed
loop pole locations of the global model with the closed loop pole
locations of the lowest three modes of the full order system indicates
that they are very similar. The global control synthesis has,
therefore, resulted in implementation that effectively isolates the
first three modes.

Residual Control

The functions of residual control consist of obtaining estimates of the
residual error state and applying colocated feedback based on the
estimate, The two steps to the estimation process are global state
interpolation and differencing the interpolated state estimates with the
actual measurements. From the regional interpolation functions Ty{i}.
the residuval states in each region can be independently calculated by

+

(16)




the associated regional processor using Eqn. 7 where the estimates of
the global states are given to the regional processors from the global
processor.

To demonctrate the synthesis of a reduced order residual model, th~
first step involves the formation of the residual transformation matrix,
T.. For the model of the bar in extension, the residual model had four
remaining degrees of freedom (or modes) to be modeled. In addition, it
must also be orthogonal to Ty with respect to N (Eqn. 18). The
resulting residual transformation matrix can be obtained as

.360 =,270 - €10 6 .840 270 - 360
r ,082 - 478 -, 138 497 - 138 - 476 262
Te = .217 - 831 413 0 -,413 831 - 217
.089 =~ 347 _818 - 488 81K - 34T 089

The open loop poles of the residual model are shown in the last cclumn
of Table 1. These pole locations are very close to the open loop pole
locations for the highest four modes of the full order system. In all
cases, the residual model poles are slightly below the comparable poles
of the full order system.

The process of constructing direct proportional residual feedback and
its effect on the closed loop dynamics depends on the selection of the
feedback parameters a and B. Using the four highest modes of the full
state optimal regulator solution, Tqns. 22 and 23 were used to compute
values of a = 0.193 and B = 0.613. The closed loop pole locations of
the reduced order residual model for these residual feedback parameters
are shown in the fourth colum of Table 2 and in Fig. 5. As was
predicted from the analysis of the residual model, the poles of all four
system modes have been affected equally.

The full hierarchic closed loop pole locations are shown in the last
columm of Table 2 and in Fig. 5. It can be seen from these pole
locations that the residual contrel has caused the decay rates of the
four higher modes to increase by approximately the same amount. The
closed lcop pole locations of the r2sidually controlled system are also
very closc to the closed loop pole locations of the higher four modes of
tte full hierarchic implementation. The closed l.op poles of the full
state optimal regviator are also very close to those of the full
hierachic controi implementation.

CONCLUSIONS

This paper has presentad the i{nitial development of a hierarchic control
technique for flexible strucuures. A two-level architecture was
outlined which consisted of many decentralized regional controllers and
one centralized gl »hal controller. The hierarchic architectuie was
developed to both reduce the computational requirements and to reduce
the input and output communication requirements compared to using a

single centralized processor for a system with a large number of sensors
and actuators.
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The hierarchic control methodology 1s capable of yielding low
interaction between the global and residual control functions. It was
found that the interaction between the global and residual control
operations is only due to elastic coupling between the global and
residual control design models. For global feedback gairs that meet
cartain requirements, it could also 5 guaranteed that the coupling
would not destabilize the structure.

There are several issues that should ba addressed in the future
development of the hierarchic conirol design. First, the control
synthesis was developed under the constraint of full state measurement
and full actuation of the highest order control design model. A control
synthesis which relaxed this constraint should be developed and
evaluated through system zero analysis or some other technique. Also,
analysis of the performance of the hierarchic control design through
numerical simulation and laboratory experiment should be performed to
verify the viability of the control design. Finally., the regional
controller implementation was of the simplest proportional feedback
desiyn. Regional controllers based on traveling wave, distributed
parameter or component mode concepts should also be investigated.
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Table 1
OPEN LOOP POLES OF THE FULL SYSTEM
OOMPARED TO THE SUBSYSTEM POLES

Full 7 DOF 3 DOF Global 4 DOF Regional

0.0 £ 0,000t 0,0 &£ O, ,0001i

0.0 + 0,448t 0,0 3 0 4831 '

0.0 £ 0, 8681 0,0 4+ 0,8991!

0.0 £ 1 247! 0.0 £ 1, 24121
0.0 £+ 1 8641 0.0 + 1,8562!
0.0 £ 1 802! 0,0 ¢ 1,001
0,0 4 t 960! 0.0 % 1,937
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Table 2
CLOSED LOOP POLE COMPARISON OF THE FULL OPTINAL REGULATOR
VITH THE SUBSYSTEN POLES AND FULL HIERARCHIC DESIGN

Full 7 DOF 3 DOF Global 4 DOF Residual Full Hierarchic
Optimal Reg Optimal Reg  State Feedback Control Design
-0,707 $ 0,.7071 -0,.707 % 0 707 0,707 3 0,707
0,041 $ O,.7801 -0,038 % 0, 786 0,032 3 0,776
=~0,.499 4 1,0011 -0,40% 3 1 0221 -0 488 3 O w98
-0,383 3 1, 208! ~0,308 £ & 2811 =-0,910 % 1 308
~0,.314 £ 1 898! ~0_208 % 1,892 =0,307 3 1 898\
-0.274 3 1 023 -0,200 4 1,029 -0,307 3 1 @29
-0,.284 4 1 988! -0,308 £ 1,963t -0,30% $ 1 978!
3
°3 - X Full State Opt Reg
28 1 & 3 DOF Global Opt Reg
24 91 @ 4 DOF Residual Feedback
22 1 % Fuli Hierarchic Design
2 v x
1.8 - X
1.8 =
14 -
12 - X «
1 - »*»
08 =
- »
08 -
o4 -
0.2 -
° | 1 ] L § L 4 L ¥
-i -08 -0.8 -04 -0.2

REAL PART

Fig. 5 Closed Loop Pole Comparison of the Full Optimal Regulator
with the Subsystem Poles and Full Hierarchic Design
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tural dynamies. The coste and benelite of passive dampiag sngmenter
tion are sstimaned; \he “oaclusion is drawa that the optimum nrectunl
duiga will be ia the *  half rplane®. New resulta oa dynamic i
loriag of trees-werk ¢ tures are presated. The propesed tchaiqene
anploit iaherent charsawriotios of sud Mructares to redece the mam
podaky saseciaded with passive dax . lag angmentatiea.

The coatrel of fexible stractures ia proviag to be a sericus chal
leage to the capabilities of coatrol theory. Fratures of the strectural
dyaamics which axacerbate the dificultion inclede:

s A strecturel regpease characterised by & dease apectrum of stree.
tural mede.

* The preciee prediction of these modes i dificult, both with respect
to their frequencies and sspecially their guine (mode shapw).

+ Most aerospace stru..ure are characterised by low natural damp-

ing.

It is clear that the strecture can be redesigeed to case the conitol
tash. Maay approachws to such redwign are possible. Perhaps the
most irnportant is pastive dampiag augmeatatioa.

A realisable stabiliziag controller does aot sxist for infaite-dimen-
sicaal models of undamped Sexible strectures|i,2]. “For succomlul ap-
plication, svery coatrol scheme relies upon and presumes the existence
of a Ruite asmouat of strectural damping.®|1) This statement becomes
lom abaclute for large bat finite dirmensicnal mathematical models of
strectural responss; Beverthelus there can be ao doubi that passive
damping is very walel

Although it haa proven posible to desiga stabilising controllers
for quite large mathematical models of structural dyaamics, these con-
trollers are oftea uwasccaptably sentitive to modelling enors.  Refer
ence [1] separates those modelling errors iato four coutributions: e,
due to parameter ervors, o dus to troncation ervors, ¢g due Lo incor
rectly modelled disturbunces, and ¢, due to wamodelled non-linearitios.
A practical coatroller must be robust with respect 1o sach of thesn o
rory,

One recent paper{3] reports the design of an eighteenth oxder com-
pensator and the problems encountered when attempting o make the
design robust with respect to trucation errors . In this case the
“trath model® included 150 elastic modes, each with a damping ratio
of ; = 0.001. Although a stabilising controlier was desigaed, atability
was achieved oaly as considersble cost in parformance, and robustaees
to other types of modelling errars {and to additional truncation er
vors) was aot demonstrated. The authors state; *We have not achieved
performance robwstaess with o designs and have suggested that
remiedy must begin with the reexaminativa of the design model of the
plant.® Oae thesis of this papar is that a reexamination of the *truth
model® would be equally produciive. In particular, a structure with
150 clastic modes, each with 2 damping ratio of ¢ = 0.001, has never
been built. Such bahaviour is displayed caly by idealised mathemati-
cal models of strectural dymamics. As vech_ the utility of developing
spucialined techniques for such models is questionable.

Damping is or- wpect of structuzal dynamics that is usually very
poorly modelled , purversely, is important 1o coatro! design. Evea
& relatively emall amount of pamsive damping cam be very helpful. A
prcine maasure of how helpful in caly available as oae outcome of
detailed study of individual cass. aeverthaless sstimates are avaliable
for the genaral situasion.
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wraasfer matrin. Graa demonstrates that the high frequenty behaviowr
of the siagular valves of an optimal regelaser (a controller which mia-
imisee & quadralic comt fancuion, neing sutpur feedback), is inversely
propartisanl to freqeeacy;

o wia ®

If a Kalmaa fiter is wsed 10 estimate the stades, the high frequeney
limiting behaviewr of the singular values of the conpensater s

ociw — ) & ;-:' Q)

Transfer functions describiag nrectural response are often written »
«a infaite sum;

IR ES r ®

The maximum valee of the stre.’“rul resporss occure At rescasace,
w n /1= 2w and has the valee

A: A
IQVI—Q"‘;; W
A siagular value decomposition of the losp transfer matrix weald
thus display a high Irequency behaviewr

1/og {regulater) (%)

v = o) = { /%  (compemsater) ®)

If a given value (sey waity) for the maximem siagelar valwe of the
loop transfer matrin implies unconditional stability, thea for a givea

coatroller and structure, the frequency above which the system will be
waconditionally stable is related to the damping ratio by

o> {h/fi (regulator) m
ko /\& {compensator) (v

where kp and ko are constants.

An increase of the damping ratio ¢ from say ¢ = .00 to ¢ = 0.0}
would thus substantially reduce the bandwidth required of a “truth
model®. The implication is that the controller could then also be Jde-
signed with reference to a lower order model and that the control im-
plementation would simplified.

To augment the foregoing discussion oa the approximate baaelts
of passive dampiag, it is wseful to estimate the costs associated with
passive damping augmentation. For space applications the prime cost
driver appears to be total mass, thes it is appropriste to express thuee
costs a8 & mase penalty. No unified theory or analysis can be called
upoa to provide these sstimates, rather it seams appropriate to review
past accomplishments and to evaluate them ia terms of oae figure of
merit: the relative mass penalty incurred por damping ratio achieved.
This Egure might then become one eatry in a gradiest matrix usd ia
aa optimisation schema.

A receatly published book|4]| has beea a useful source of such data.
Thia book reviews linear damping treatments as they have beea applied
10 asrospace structures. Such damping treatments may be broadly clae-
sified into two groups; static and dynamic. Static dampiag treatments
usually take the form of viscoslastic materiale which, whea applied to
the structure, deform proportionally to instastansouws strectural de-
formations, thus the tarm “static®. The composite loes factor is then
approximated by the weighted average of matsrial loss factors, sach

,Vn




ted according to the frastion of strals snergy in that material
‘l‘o'd.otom meximum demping pow mass of viscoslastls material added
to the structure, geometries muss be devised which create large strains
in the lossy materiat, Past practice has been to add thin surfase laysrs
of shese materials to existing structures, as sketched in Figure 18, Re-
view of results reported i reference (4] suggests that the mass penally
asvociated with achleving & composlie loss factor of n with such aa
spproach (s approximately

%(_' I.l"l: l" (9)

valid for small n, say # < 0.10 and aegligible inherent structural damp.
ing, ny m 0, Note that she mass penalty lucurred to achiove » givan
composite loss factor depends iaversely on the loss factor, ng, of the vie
coslastic maserial, These inaterial loss fastors Lre typieally frequency
and temparature dependens. Plgure 2 shows this dependende for & ma-
terial being marketed for space applisations, (ndieating thas lose fastors
greater than n9 = 0,6 ¢can be previded over & frequensy range of one
decade, or for o given frequensy, over a temperatuse range of §0 Fahron.
helt degress. The frequency and temperaiure range of high damping

Camping ktorals, Ky (14im)
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FIGURE 1 Surface damping traatments typleally empley »
thin layer of viscoslastic material, which may be constrained
to daform strongly In shasr by a stiflf constralning layer The
mass penalties agsocisved with this type of damping sre givan
by expressions (9) and (10}

ean be extended by usiny sevaral vissoelastls materisls o1 geernetries,
each sctive in & particular cempersture/iraquency range. The mass
penalty asociated with this tachnique will be approaimately sdditive
to that predicted by equation (9).

One approach used to enhanee the offectiveneas of such stiatie
damping treatments s to sandwich the viscoolastic material between
the structure and & thin, extensionally stiff, constraining layer (see rig.
urs 1b). The constraining layer induces large shear deformation of the
viscoalastic matarial when the subsiructure deforms. Review of results
reported In reference (4] suggests that the use of constraining layers
reduces the mass penalty associated with achisving & composite loss
factor of n to

AM B81t01.8
- _"
/]

valld for small n, say n < 0.10 and negligible inherens structural dampe
ing, ny,m m 0. The tentative conclusion vo be draws from QUM
tions (9) sud (10) {s that static viscoelastic damping treatments will
introduce & modess mass penalty, adding perhaps three parcent in mass
to achleve a loss factor of n = 0.02, (¢ = 0.01)

Further geometric techniques are avallable to reduce the mass
penalty of damping trestmants, The bazie (dea Is to locate (or cree
ate) wreas of high sirain for a given siruciurs) deformation, and to
place lossy material into those locations, One such approach s the
tuned vibratlon sbsorber. This devics uses dynamic eMects Lo create
large local straing av & particular frequency, This fraquency 18 then
typieally chosen such thas ihe device i tuned to & particular struc:
tural resonance. The result ls thas the structure s srongly damped

(10)
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FIGURE 3 At least one viscoolastic matarial is being mar.

keted for space applications; Ganeral Hlectric Corp.'s SMRD

10090, Thase perfermance curves were taken ‘rem rafer:
anee {4,

over a relativaly narrew frequency range, The mass panalty associated
with this approach s sumawhat more difieult to avaluate, since it will
depand upon many facters. Results raperied in references (4] and 8],
both based upon single tuned vibratien absarbers applied to beamy in
bending, suggest tha to achieve a modal damping ratlo of ¢, & mass
penalty of

.Aﬁ'- m1/6¢ =1/3n, (1)

will be inccrrad, using optimally tuned and damped absorbars, If this
result can be extrapolated 1o arbitrary structures, the tentative con.
clusion Is that modal damping ratios of ¢ = 0.01 can ba obiained with
8 8 mass penalty of AM/M = 0,008 per damped mode. Subsequens
discussion suggests she poniblllty of using portions of the struciure
a2 tuned vibraiion absorbers; thus this mase panalty may be further
reduead,

During vibratiou of truse structures, the largass straing are typls
sally at or in the jolnte; thes thess would be sMcient lesations to plase
damping trestmants, An analysis of the «fcet of such joins damping|e]
thows that damping s manimised when the joint stifness s comparss
ble to member stifness, Thris seams 1o imply a reduction in global trum
otiffiness, with concomitant reduesion In (requencies, Buch a atiffinens ree
duction may not be necessary; jints can be made stiff in extension and
dissipative sad compliant in rotstion. Extensional joint stifness con
iributes to global truss stiffnese, rotational joins motien can be used for
ethcient damping. The mass panaity associuted with such & technique
is diMculs to entimate; fursher discussion is postponed o & subsequent
jechion,



Assive Dampiag

Many easly stractural control axperiments 7] were concerned only
with astive damping sugmentation, As such, the results might be com-
pared with passive damping techniques; in particular, the mase penalty
associsted with an active damping implementation might be estimated,
When summiag the component masses iu aa active dampiag system,
the question arlses what masess to assign to power supplies, Alters, and
assorted laboratory equipment, If all squipment used in the experi
ment is included, it is doubtful if an experiment has been parformed
in which the control system weighed less than the structure! Although
flight hardware will doubtiess be less massive thaa laboratory equip-
ment, the mase penalty of an active damping augmentation system is
likely to be quite high. It is not clear that the mase penaltion estimated
for passive damping treatments can be improved upon with aa sciive
damplag system,

Active damping sugmention systems may actually destabiline high
frequency moedes. A minimum smousnt of passive damping must be
present to prevens this destabilisssion, which oceurs because the la-
evitible roll-off of the sctive aystem.[8| The level of active damping
that can be achleved o proportional to the passive damping already
present, (8] sthus an astive damping system is perhaps beet thought of
&4 & multiplicative approash; an undamped Infinite-dimensional strue-
ture canaor be damped by purely active means, Damplng inherent in
many of the beams, plates and other laboratory structures used to date
hes often been Insuficions to prevent such instability,

Talloring of the structural response specirum has been & common
appressh for avoidiag interastions between spacecr.ft attitude control
systems and strucswral dynamies. The structure bs simply ssiffened to
ralse the strustural sigen-frequencies beyond the control bandwidth,
A frequensy ratlo of six to ten (9] between controller bandwidth and
structural resonances bo typleally suficions, Since structural frequencies
ssale {nversely with dimensien, this techaique will net be practical for
arbitrarily large structures. Extonsion of such spestral saparation to the
problom of astive conirol of the firss fow modes of & strricture s possitle
in principle; ene would aeed to design the structure vo provide a brosd
resenancefree range In she viciaity of the control roll-off, Figure 3
makes this peins graphically, To be ofective, shis range would need to
be quite broad, on the order of one decads,

Iv does nos appear prastical to achieve this goal with structural
re-design, If “reconance free® Ls (nterpreted somewhat liberally to ia.
¢lude weli-damped resonances, the approach may become feasible, i
damplag (s provided by passive tuned vibraiion absorbers, such cone
tlderations may be used 10 choose modes to tune to. Realisation of
this idea threugh minor madifications of existing trusswork structures
sppears feasible, and is dlscussed [n & subsequent section.

froaguensy

froguany

FIGURE 8 One approach te “spactrum talloring” Involves
stiffaning of the structure to ralse the elgen-frequencies be.
yond the controller bandwidih, The anzlogue to this for ex.
tramaly large structures would be te provide an intermadiate
resonance-free range,

Much ressarch has been performed on the strong eflec of netuator
snd sensor positioning on the parformance of acsive conirol systeine,|10]
Actuator and sensor positinning governs the residuss and serves of
siruceurs| transfor functions, bus to Bret order, nes tha poles. Thus
the polessero sequence along the sw.axis s changed, potentiaily altering
the Interaction beswaen modes and the conirol system (o ba stabilising
or destabilising(2], In tha extreme ease of dusl sensing and actuation,
sll residues are positive, and all modes stably Intaraciing,[11) Attempte
to optimise astuator and sensor positions|10), tend to be computating
intensive, Lasight into the process is lost, and the optimisation may
convergs to any of several loeal opiima.

Residue talloring can also be sccomplished by modificasion of mode
shapes by structural re-design. This need not modify the resonans
frequencies|12], but in general will do so.

The formt!lntlon of residue and spectrum tailoring leads to struc.
turel optimisation Refarences (12,13] and {14] are representative of this
approach, Althoagu aptimisation is beyen:] the scope of this paper, one
obearvation will be made; it is unlikely thas & globally optimum strue.
turel design will be schisved by shufMing transfer function poles and
saroes along the jweaxis, prrticulacly in view of the relatively mod-
ot mass penaltios associated with passive damping trestments, The
potential system benefits of passive damping in terms of reduction of
comploxity and sise of the active control system are just too great, The
optimum structural design will be in the "left-half s=plane®.

TAILORING OF TRUSS STRUCTURES

Truse structures appear to offer opportunities for synergistic offects
is dynamic talloring, This is due to thelr relatively unique dynamie
properties; the cosxistence of very different *local® and *global® modes.
Figure 4 shows a truse strucsure scheduled for on orbis vibration test in
1969.(15| The vibrations of this structure will be governod by member
slongation (snd Jolns compliance) up to spproximataly 10 Ho, This
freqnency range includes the fret § Sexible modes when the beam is
fully deployed.[18) The pinned-pinned frequency of the diagonal mem.
bers {s st 12 Hu,(18,16] Thus, st or near 13 Hs, these 168 disgonals
will participate strongly in the response, adding 336 *local® vibration
modes. This will be rapested as higher frequencios, in the vicinity of
¢ach local resonance, To begin to model these local degrens of freedom
with s Buite sloment method would require spproximately 1700 degrees
of freedom. An slternative, based upon aa Iaput/outpus description of
s single bay, lo under development{17). In the remainder of this paper

this efecs Is examined uslng fuite slement niodels of & simples truse
stiueture,
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PIGURE 4 This deployable t2uss beam, scheduled lor naar
term on-orbit vibration tast, will display extrame modal de-
generacy ot approximately 12 M1,
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Pigure § is & skotch of o planar model of as MIT experimental
structure, the Jiruciures Assembly Demonstrasion Experiment (SADE)
trase. A three-dimensional version of this truss has been under consid-
eration for & shuttle payload bay sssembly and vibration experiment,
The dynamics of this truss were the subject of & recent MIT theais(18],
in which the vibration mode shapes sketched in Pigurc § were reported.
The dimensions used in the analysis were (for ench member): bending

MODE ), 41.3 M2

MODE 4, 61,4 Mg

MODE 9, 74, Hs

o >

MODE L), 84,4 Hs

IO I IR R

Conceptual nedel

PIGURE 8 This planar truss was the subject of & recnt
MIT Masters thesis|18]. 1t Is 2 plansr model of 8 truss under
consideration for experimental assembly on orbit,

stifness £/ = 2.02x10% [b=in?; stretching stiffness £4 = 4.36x10% 1},
mass density u w 1.01 x 10™¢ sluga/ineh; with member lengths of 88
and 85v/7 inehes. The members are thus quite slender; If a solid saction
were used, the slendernese ratios would be 20 and 29 for the two mem.
ber lengthe, Note that in Figure & all modes beyond the frst two are
primarily member medes; member motion ls much greater than joint
motion, A conceptual model of auch » truse is & continuum beam wih
periodically attached vibratirn absorbers, Member axtensional stiff
aess geverns the global modes, while member bending deformation has
the global effact of a Jocal vibration absorber. These *vibration abe
sorbers® are strongly coupled (the jointe are clamped), thus each local
mode involves severa! membars,

The frequencies of member modes are governed by the bending
nabural frequencies of the members, Member bending eigen-frequencies
will potestially be very low, comparable Lo global frequencies, especially
If she atructure has been opilinised with respecs to statlc loading[19],
or if deployment hasdware (a binge) is present on the member,[15] For
this examgle, the diagonal members have pinnedepinned and clamped.
clamped natural frequenscies of 35 and 80 Hs respectively; the corrs
sponding (raquencies for the shorter mambaers are 70 and 160 Hs, Thus
there are saveral indistinet groupe of membar modes, each raughly am
soclated with one of thess local resonances, For this axample, *he first
group of six membar moces (s associated with diagonal mamber hend.
ing and occurs tn the range 80 to 68 Ha, between Lhe pinned-plnnea +nd

clamped-clamped frequencies of these members. This is followed by &
mixed mode with both global and local response as 74 Hs, followed
by many local modes beginning at 82 Hs, At these frequencies the
system responss is characterised by many similar and closely spaced
modes. Many small non-linearities (joint backlash, member buckling,
Jolnt friction) are sure to be important, but are ignored in this analysis.
Their expected effects wili be briefly discuseed in a subsequent section,

The member modes will be comparatively easy to damp; local
straing are large and rotational joint motion is excited. A small amount
of damping material, strategically placed, will have s large effect. Good
locations would be member surfaces, even better would be internal to
the joints, The mass penalty of this damping might be estimated by
expressions (9) to (11), with tha reference mass taken to be only the
mass of those members participating in the response, The mass penalty
would thus be correspondingly reduced.

Figure 6 gives a selocted transfer function for this example. Damp-
ing is assumed to be present in two ways; Figure 6a assumes a uniform
loss {actor of unspeciied origin and of level n = 0,01, Figure 6b is an
attemps to illustrate the effect of local damping treatments; the modal
loss factor is estimated to be the weighted average of two values, the
bending lose factor v« ng = 0,05, and the extensional loss factor of
ny = 001, Each is weighted sccording to the fraction of the modal
sirain enurgy attributable to that type of member deformation. The
Introduction of the large bending loss factor is an attempt to model the
offect of joint and other local damping treatments,

Inspaction of Figure 6b reveals that this membor bending damping
has litsle influence on the global modes, but that the member modes are
all effectively damped with loss factors of n = ng = 0,08 (¢ = 0.028),
This observation suggests the possibility of tuning the local modes,
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PIGURE 6 A reprasentative tranzfer function for the truss
of Figure § is dedicted. The member modes near 83 H2
do not participate strongly in this response sinca both the
driving and the response points are ot Joints. Very different
transter functions rasult from drlving or observing st member
midpoints., The effect of assuming large local damping is
most strongly feit in the higher frequency “mamber® modes,

and using them to damp tae global modes. This can be done with
only minor influence upon the global frequencles, Figura 7 shows the
results of iwo such atiempts, The results of Figure 7s were calculated
with the bending siiffness of the disgonal menbars reduved by a factor
of (43/63)% in an attempt to tune these modes to the second bending
frequency at 30 Hs. The result s & reduction of the amplitude of that
mode, due to an increase of its Joss facior from n = 0,031 to n = 0,038,
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FIGURE 7 The diagonsl members of the truss of Figure 5
can be tuned to resonate at selected frequencies, This figure
shows two results; one with the diagonal members sctiffened,
the other softened, with respect to the reference truss,

The frequency decreased only sligktly, to 44 Hs. This modal loss factor
can only asymptotically approacii ng = 0.08, higher vaiues of local loss
factors, achievad with additional leca) damping treatment, would lead

to
of
an

further damping of this global mode. Figure 7b shows the effect
{ncreasing the membaer bending stiffness by a ratio of (74/60)?, in
attempt ta tune to the mixed mode st 75 Hs. the effect in this

case 1o less pronounced; this moda slresdy involved significant memter
motion,
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MODE 9,
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FIGURE 8 If the Jolnts of the SADE truss were pinnad.
the pattern of mode shapas would be quite different,
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FIGURE 9 These transfer functions corraspond to the
moda shapes of Figure 8, Note that the member modes are
much more tightly grouped than for the case with clamped
joints, and that the global modes are effectively unchanged.

Greater tuning freedom is available if the joints are pinned rather

than clamped, Figure 8 shows & few node shapes for the SADE truss
for the case of pinned joints. With thase joints, there is less coupling
of member motion, thus the frat member modss come very tightly
grouped about 38 Hs, in the range 33 to 37 Hs. 'The ninth mode,

compagite loce factor
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FIGURE 10 Whaen the joints are pinned, the mambers may
be much more precisely tuned. This transfer function shows
the rasult of tuning the diagonal membars to the first bend-
ing mods. Note that a factor 30 reduction of the response
amplitude (compare with Figure 9b) has besn schisved.
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FIGURE 11 A relevant vibration test of a truss structure.

at 52 Hs, is essentially the second bending mode, as before. This is
followed by many more tightly grouped member modes, sach associated
with either the diagonal or the short members, In more complex truss
structures, such as the one sketched in Figure 4, one would expect
such mode groups to be associated with a more complex form of local
resonance. A representative transfer function fcr the SADE truss with
pinned joints is given in Figure 9, both with a uniform loss factor of
n = 0.01, and with the composite loss factor computed as before.

Tuning of this truss is relatively straight forward. Figure 9 suggests
the possibility of tuning the diagonal members to the first bending
mode (the second bending mode is already heavily damped.) Figurs 10
shows the same transfer function as Figure 9, but with the bending
stiffiness of the diagonal members reduced by a factor (12/35)3. For
reference, selected mode shapes are also given. Note that bending of
the diagonal members now participates strongly in the first mode. The
large reduction in peak amplitude at 12 Hs is due to the damping
introduced by this local vibration. The members are acting as effective
vibration absorbers,

E:.perimantal verification of the results of this paper is needed.
The low mass penalties predicted for passive damping augmentation
of structures in general and of tuned truss structures in particular,
might be verified. Laboratory tests would be adaquate, the relatively
large damping levels of interest would not be difficult to measure. One
relevant experiment has Leen performed. Figure 13, adapted from ref-
erence (20], describes a vibration experiment performed on a current
spacecraft truss-work beam, The transfer function shown is similar in
character to thoss of Figures 6, 7, 9, and 10; high frequency modes
are indistinct and strongly damped. For this beam, the local mem-
ber frequencies begin at approximately 30 Hs. Local damping in this
beam is due to non-linear effects in the joints rather than to damping
treatments,

Cffect

The structural models used in this paper may not oe valid for
investigation of the effects described. It is well known that small cou-
pling effects become important when the eigen-frequencies of a linear
model are closely spaced in frequency. A truss-work structure will ex-
hibit many non-linearities, most notably joint friction and backlash and
member buckling. These non-linearities will couple the closely spaced
modes, leading to beating and potential limit eycling of an actve control
system,

These modes will also be very sensitive to small parameter varia-
tions, particularly the mode shapes. Since the individual member bend-
ing motion is only weakly coupled to its neighbours, the phenomenon of
mode localisation|21,22,23] must be expected. Member modes will be
spatially localised rather than extending through the entire structure,

The moderate frequency response of a real spacecraft truss-work
structure may thus be characterised by a strongly damped local rattling
motion which slowly exchanges energy with other such rattles, The
impact of such dynamics on the performance of an active control system
is unknown.

SUMMARY

The claim was made that a structure which is optimised for active
control implementation will include significant passive damping. This
claim was supported by estimates of mass penaities of passive damp-
ing treatments, and estimates of the benefits in terms of reduction in
control system sise and complexity. Subtle effects in the dynamics of
truss-work structur,s were highlighted, and the possibility of their ex.
ploitation for control-motivated dynamic talloring waa investigated.
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reported in reference [20], is summarizad In this figure. Note
that high fraquency resonances are indistinet. much live the
computed resuits of Figures 6,7, 9, and 10,
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THE ACOUSTIC LIMIT OF CONTROL OF STRUCTURAL DYNAMICS

A. H. von Flotow
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

ABSTRACT

This paper investigates the acoustic limit of active control of structural dynamics; the limit
as the control bandwidth includes a very large number of natural modes of the structure. The
point is made that in this limit modal analysis cannot provide reasonably accurate models of the
structural dynamics, and that control design with respect to modal models is then of questionable
value. Alternative modeling approaches are reviewed. A particular wave propagation formalism,
applicable to modeling the acoustic response of networks of slender structural members, is described
in some detail. 'Control options designed with reference to this formalism are reviewed, and

speculations as to future developments of such control are offered.

1. INTRODUCTION

Modal analysis is a powerful analysis technique, central to the disciplinc of structural dynamics
since the publication of Rayleigh’s(1] book. Nevertheless, practicai limitations to the applicability
of modal analysis do exist. This paper attempts a definition of one such limitation, the high-
frequency acoustic limit, and points out the relevance of this limitation to the technology of active
control of structural dynamics.

It is difficult to define the boundary between structural dynamics and structural acoustics,
indeed, one might even insiet that the former includes the latter. The boundary between analysis
techniques is somewhat more clear; modal analysis relies upon a globa! description of an entire
structure, while structural acoustic response is typically described in terms of the scattering prop-
erties of local components. Exceptions exist. It may be convenient to describe some portions of a
structure in terms of acoustic parameters and other portions via modal analysis. Structures which
are coupled to a fluid or elastic body|[2] of infinite extent are examples of such exceptions, since it
is then convenient to employ modal analysis for the structural response, and acoustic techniques

to define the effect of the infinite medium.



The discussion of this paper will be confined to structures of finite extent. Even in such
situations techniques of structural acoustics may be preferable to modal analysis. A structural
component, though finite, may be effectively infinite. This limit is approached if the component
is much larger than disturbance wavelengths or if damping levels are high enough to attenuate
a disturbance before many reflections can occur. Both situations tend to occur when excitation
frequencies include many of the structure’s natural modes. The frequency boundary between
structural acoustics and structural dynamics thus depends upon the structure under consideration.
A reasonable division for aircraft might be a few tens of Hz. Ultrasonic devices are well described by
modal analysis at frequencies of several hundred kHs. Large flexible spacecraft, with fundamental
frequencies below one Hz, would enter the acoustic response regime at frequencies as low as a few

Hz. Figure 1 attempts to provide a graphical version of these arguments.
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FIGURE 1 Approximate boundaries between the regions of applica-
bility of modal analysis and local acoustic analysis are sketched in the
s — plane. The high-fequency limit of modal analysis is due to sensi-
tivity to parameter uncertainty. The low frequency limit of acoustic
modeling is less well defined, and depends on geometrical complexity
of the structure.



A relatively strong argument can be made for a high-frequency limit to the applicability of
modal analysis. It is more difficult to define a low-frequency limit to the applicability of acoustic
techniques. Local descriptions of component scattering behaviour can, in principle, be evaluated at
any frequency, including sero, and can be linked into a global description, either in the frequency or
the time domain. ‘The convenience of such an approach will depend upon the geometric complexity
of the structure, since this will govern the number of components and interconnections that must
be independently modeled. The low-frequency limit of structural acoustic analysis is thus set by

Questions of convenience.

 The advent of active control of flexible structures has underscored the limitations of structural
‘modal analysis; high-performance active control depends upon a design model of high fidelity.
Analyses of the response of proposed large flexible spacecraft suggest that hundreds of modes|3,4
will contribute significantly to the performance metric, often defined as a line-of-sight error or
other measure of image quality. One is thus interested in the response at frequencies well within
the acoustic regime. Unfortunately modal analysis is unable to predict details of such responses
reliably, and control design with reference to such a model is then of questionable value.
An increase in the level of passive damping can make a major contribution towards an engi-
neering solution of active control of structural dynamics and structural acoustics. Passive da.mﬁing
treatments tend to result in modal damping ratios which increase with mode number. Strongly

damped modes can often be safely ignored, since they will not contribute strongly to degradation
of the performance metric, nor couple with the control system. The virtues of passive damping

can be quantified with respect to the impact on control design.[5| Mass penalties associated with
passive damping treatments need niot be enormous. Recent estimates(6] suggest that damping ra-
tios of five percent can be obtained in the fundamental mode with a mass penalty of five percent.
Higher modes can be damped passively with a much lower mass penalty, and the bandwidth of
such damping can be effectively infinite.

If passive damping treatment is excluded or insufficient, and active control of structural dy-
namics to acoustic frequencies must be accomplished, then it is appropriate to base the control
design upon acoustic medels. Since these models are local, acoustic control will also be local. Such

control theory is not well developed; only a few studies have recently been published|7,8,9,10].

2. THE ACOUSTIC LIMIT OF STRUCTURAL DYNAMIC MODELING
Mathematical modeling of an elastic structure invariably introduces a sequence of mathemati-
cal idealisations. One of these is the constitutive law assumed to apply, others are the introduction

of simplifying kinematic assumptions leading to beam, plate, shell, membrane and other idealized



models of components and boundary conditions for their connection. Assumptions of linear elas-
ticity and infinitesimal deformations lead to a linear model of the structural dymanics of each
component. If the components are linked by linear boundary conditions, they can be assembled

into a global linear model which describes the dynamics of the entire structure.

2.1 A LIMITATION OF MODAL ANALYSIS

Modal analysis is a further raanipulation of this global model. For relatively simple structural
idealisations, spatial discretisation may be avoided and the modal parameters (natural frequencies
and mode shapes) may be calculated as exact solutions of the global modcl. For most structures of
practical interest, discretisation must be introduced and the calculated modal parameters are then
only approximate solutions of the global model. The difference is perhaps only of academic interest,
since any level of the model is merely an approximate description of the structure. Although
one alternative produces modal parameters which are exact solutions of the lowest level of the
model, neither approach yields the exact modal parameters of the structure. These exact modal
parameters may .10t even exist, since even the slightest non-linearity or temporal variation of

parameters excludes rigorous modal analysis.
It is often stated that a structure is infinite dimensional, and that discretisation of the mathe-

matical model obscures this property by the enforcement of a finite number of degrees of freedom.
Several analysts have questioned the validity of this claim,[11] pointing out that the origin of the
infinite dimensionality of the structural model can be traced to the introduction of the ideali-
sation of continuum constitutive laws, and that the infinite-dimensional viewpoint certainly fails
when the model dimension exceeds the number of atoms in the structure. This paper refrains
from contributing to this debate, and rather points out that a practical limit of modal analysis is
reached long before the number of modeled natural modes approaches the number of atoms in the
structure. The origin of this limit is the extreme sensitivity of modal analysis to modeling errors.

Several perturbation analyses have been published which define this sensitivity analytically.
These analyses depend upon assumptions of linearity and time invariance of the model and its
perturbation. Courant and Hilbert[12] offer an analysis in terms of operator notation, specific to
self-adjoint operators: .»

Let the eigenvalue problem be defined by

L(up) + Apun =0 (1)

where L is a linear self-adjoint operator assumed to describe the structural dynamics and A,,
Un, n = 1,2,3,..., are pairs of eigenvalues and eigen-functions of L. If the structure is actually

described by another linear operator, slightly perturbed from L;



L(Bn) — €rp + Aniin =0 (2)

where the function r defines this perturbation and ¢ is a small parameter, then the eigenvalues
An and eigen-functions @, of this perturbed operator can be related to those of L by a classic
perturbation analysis. For the case of non-repeated eigenvalues )\, the analysis goes as follows:

Expand the perturbed eigenvalues and eigen-functions in terms of the small parameter ¢;

G = Up+ Wp + Ewp +...
In=An+€in+Evn+... (3)
The first-order perturbation of the n* eigenvalue is then the inner product un =< run,un >, and

the first order perturbation of the n** eigen-function, Va, is given by a sum of the contributions

of the other unperturbed eigen-functions uj, j # n;

_ Z < rup,u; > An (4)

J#’! < L(un),un > An - A]

A similar argument in terms of matrix notation, valid for non-self-adjoint systems, has been pre-
sented in reference [13].

Modal density is invariably an increasing function of frequency; natural frequencies become
ever more closely spaced as the mode number increases. Inspection of equation (4) reveals that
this results in high-frequency eigen-functions with extreme sensitivity to small modeling errors.
Modal analysis is thus limited to frequency regimes where relative spacing of natural frequencies

remains large compared to the relative parameter uncertainty;

< run,u; > An — Ay
<Llun),un> © (8)

Experience suggests that this limitation will not include hurdreds or even tens of modes of any
structure. Many modes can be calculated, but the informatiqn, though detailed, will be useless.
Alternatives to modal analysis of linear structural dynamics, applicable to the high-frequency
regime, have been developed by acousticians. These analysis techniques can be classified ac-
cording to whether a stochastic or deterministic approach is taken. Hodges and Woodhouse([14]
recent review paper is a reasonable starting point for study of the stochastic approaches. These
approaches include asymptotic modal analysis and statistical energy analysis, and predict mean
levels of response to broadband excitation. Response to narrow band excitation is not available,

nor is deterministic response to any form of deterministic excitation. Such stochastic approaches



are not useful for the design of active control, but can be used for performance analyses of open

or closed-loop systems of very high order.

3.2 WAVE PROPAGATION ANALYSIS

A wave propagation analysis of structuui acoustic response yields a deterministic model '
upon which active control can be based. A complex structure is modeled by an assemblage of local
component models. Euh component i_s described in the frequency domain by frequency-dependent
scattering or propagation coefficients and by the equivalent impulse responses in the time domain.

'Only a few books|[2,15,16,17,18] have treated the subject of structural acoustics. The focus
of these books has varied, this variation reflecting the wide variation of approaches to the prob-
lem. Lyon's[15] book on statistical energy analysis does not contribute to deterministic solution
techniques. Junger and Feit[2] are primarily concerned with the coupling of structural response
to the acoustic response of a surounding fluid. Auld[16] treats problems arising in ultrasonics and
response of crystals and di-electric materials. Cremer and Heckl[17] and Graff{18] treat situations
relevant to this paper; wave propagation and scattering in structural components which can be
idealized as beams, plates, shells, membranes and rods.

The treatments of both references [17] and [18] tend to be very example-oriented; indeed it
is difficult to develop a generic treatment of wave propagation in arbitrary structures. Too often
each new example considered introduces new types of behaviour. If the scope of the analysis is
restricted to structural components consisting of slender one-dimensional members and their inter-
connections, quite a general treatment is possible. Such a formalism was developed in a recent

dissertation[19] and in two derivative publications(20,21].

3.2.1 WAVE PROPAGATION ON SLENDER ONE-DIMENSIONAL MEMBERS
Modeling of a slender one-dimensional member begins with the introduction of kinematic
assumptions. Each cross section is assumed to deform from its reference condition according to
a number of deflection variables. These variables are a function of only one spatial coordinate,
the axial location of the section, hence the member is termed “one-dimensional”. If the measures
of cross-sectional deformation are continuous functions of th» axial coordinate, introduction of
a constituitive relation leads to a set of partial differential equations in time and in one spatial
dimension. If the member is spatially periodic (an important subset, siuce this includes periodic

truss beams), the cross-sectional deflections are defined at a set of discrete locations.

2.2.1.1 DISPERSION AND WAVE MODES IN CONTINUUM MODELS
A continuum model of a structural member is traditionally formulated as a system of coupled

partial differential equations. Fourier transformation yields a system of coupled ordinary differ-




ential equations. For the purpose of this analysis, it is convenient to transform into a system of
first-order, ordinary differential equations;

% = Aw)y (8)

in terms of the “cross-sectional state vector” y of physical cross-sectional vaiables. The dimension
of y ia equal to twice the number of deflection variables assigned to the cross section. The choice of
the additional variables in y is not unique; they may represent internal forces, or spatial derivatives
of the deflection variables.

Diagonalization of (8) may be interpreted in terms of wave propagation along the member.
The eigenvalues of matrix A(w) are *propagation coefficients”® 4;(w) = a;(w) + ik;(w), (¢ = V=1),
of traveling wave modes. The wave modes appear in forward and backward traveling pairs, thus
the eigenvalues of A(w) appear in pairs (7;, =v;). For non-dissipative models, A(w) is real. Its
eigenvalues are not arbitrary complex pairs, but are restricted by the principle of conservation of
energy to the first and third quadrants of the complex ~-plane. Thus they are either real (near
fields), or pure imaginary conjugate pairs (traveling wave trains). For dissipative models A (w)
becomes complex; the eigenvalues now appear anywhere in the first and third quadrants of the
complex y-plane.

The cross-sectional state vector w of the diagonalized system

I(w) = diag(—M .. = Tns 1 -+ Tn)

X o) w ()

is related to y by a frequency dependent matrix of eigenvectors

y=Y(ww (8)

Each element of w represents the amplitude of a wave mode, with the corresponding eigenvector
occupying a column of Y(w). These wuve modes travel independently of one another within the
member; each has the form w;(w) y;(w) e~ (w) =,

The polynomial equation det{A(w)--+,1] = 0 defines the dispersion relation between frequency
and propagation coefficient. The phase speed ¢, is defined by ¢; = §. The group velocity ¢, is
defined by ¢y = %‘f. A medium for which these speeds are frequency dependent is called dispersive.
In such media, the signal distorts as it propagates. Most structural models of interest, with the
exception of the simple wave equation describing torsion and compression of a rod, and lateral

deflection of a cable, are strongly dispersive.

N tpmpo——




The Timoshenko Beam Continvum Model

Bending and shear deformation of symumetric, solid section, slender beams is well described
by the Timoshenko beam model, even to frequencies where the wavelength approaches the beam
thickness. This model is also often used as an equivalent continuum deacription of truss-work
beams in bending since the shear fexibility of such beama becomas important at inuch lower wave
numbers than for solid aections. The governing partial differential equations of this model are
typically given as a sacond order pair in terms of the detection variables ¥ (face rotation), and w
(face translation)[18];

&'w

3 2
GA.(?! + O w ,) pPA— T - 0 (9)
2 2
GA,(v + -:—':) - EI: ‘f + I:“: 0 (10)

The cross-sectional state vector can be chosen to contain only deflections and the associated internal
forces; y = (—w,¥, M, V)T, where the additional variables M = EJ %—} (bending moment), and
V= GA.(%% + ¢) (shear force), have been used. With this choice, the equivalent system of

ordinary differential equations is

-1

& 0 10 =
0 0 4 O .
@ _ 11
dz 0 -pl? 0 1|7 (1]

pAw? 0 0 0

To make this ex:mople specific, four beam parameters of a continuum model|22] of a lattice beam
were chosen. These correspond to a proposed space lattice beam with very slender members,
overall width and thickness of 5 m, and bay length of 7.5 m. The values are; pA = 2.39 kg/m,
pl =118 kg—m, EI = 1.77 x 10® N —m?, GA, = 2.94 x 10® N. Structural damping of n = 0.01
is assumed.

The resulting dispersion curves are displayed in Figures 2a and 2b. This member supports two
wave modes in each direction; traditionally they have been termed bending and shear mcedes|18],
according to the dominant entry of the corresponding eigenvector. A key point to note in these
dispersion curves is that both the attenuation coefficient a(w), and the wave number k(w) become
>roportional to the frequency w for large frequencies. Both modes are dispersive, but have non-
dispersive asymptotes. This non-dispersive high-frequency asymptotic behaviour can be exploited

in calculating transient response by wave propagation.[21]
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2.2.1.2 DISPERSION AND WAVE MODES IN PERIODIC MODELS

In the previous example the Timoshenko beam model was assumed to apply to the lattice beam
sketched in Figures 2a and 2b. It has long been known that periodic structures in general{23], and
lattice beams in particular(24,25), display somewhat different dispersive behaviour, This difference
becomes significant when the wavelength becomes comparable to the length of a single bay, and
at frequencies at which degrees of freedom internal to a single bay resonate. The corresponding
dispersion curves display discontinuities and branching behaviour not exhibited by the dispersion
curves of the “equivalent” continuum model.

Both these limitations can be overcome by the application of methods which explicitly exploit
the periodicity of the structure, A convenient approach is based upon the transfer matrix of a
basic cell. This matrix relates the cross-sectional state vector of coupling deflections and forces on

one side of a cell to its counterpart on the other side;

Yier = Ty(w) ys (12)

One method of calculating the transfer matrix, T, (w), of a single bay employs finite-element
derived mass and stiffness matrices(25|.

The defining characteristic of a wave mode propagating along a periodic member is the fact
that the entire cross-sectional state vector is multiplied by a complux factor, say £, as the wave

passes through each cell;

Yitr1 =€ ¥4 (13)

Equations (12) and (13) form an eigenvalue problem for §. These eigenvalues appear in pairs
(&, é), corresponding to similar waves traveling in opposite directions. Equivalent propagation
coefficients ~j(w) can be obtained from solution of the equation &;(w) = e*(¥)leeit (where loq is
the cell length), Care must be exercised to choose the correct branch of the complex logarithm.
The vorresponding eigenvectors of T, (w) have an interpretation identical to that of the wave-mode
eigenvectors of continuum members (equation(8)), but are meaningful only at cell interfaces.

The important effect of periodicity, from the point of view of wave propagation, is to introduce
discontinuities into the dispersion curves. Two types of discontinuity may appear. Excitation of an
internal degree of freedom results in an additional branch in the dispersion curves, at the resonant
frequency of the internal degree of freedom. Other discontinuities occur when k = ﬁfT (when the
cell length is an integral multiple of the spatial half-wavelength)., This is well beyond the range

where an equivalent continuum model may be expected to be valid.



A Periodic Member in Torsion

Pz.aaps the simplest model of a periodic truss-work member is an equivalent continuum model
which has been made periodic by the addition(at regular intervals) of masses, springs, or arbitrary
dynamic systems. Torsion represents the simplest of this class of problems. We choose Noor’s[22]
equivalent continuum model for torsion of the member treated in the previous example. Periodicii y
is introduced by mounting five percent of the inertia of the rod on torsional springs, fastened i.o
the rod at intervals equal to the bay length of 7.5 m. These springs are chosen to resonate at
wr = 40 rad/sec, and are meant to represent an arbitrary internal degree of freedom. A structural
loss factor of n = 0.01 is assumed for this internal degree of freedom, and for the continuum model.
The continuum model haz the parameter values GJ = 3.67 x 10N — m3, pJ = 23.86kg — m.

The cell transfer matrix for such a model may be calculated exactly. The transfer matrix of a
single cell is given by the product Tcerr = Trrerp TroiNT Trigrp wWhere the “field” transfer
matrix, TrrELD, Is an exact solution of the governing partial differential equation, and relates the

cross-sectional state vector at two points of a continuous rod, separated by a distance Lﬂ-‘,-“;

cos(®) %‘gjain(w)

(GJ’ 5—.’:)..'4,“ T [ -#88Lsin(@)  cos(@) (afgg)m (14)

where @ = L"-‘,-“w\/ é‘-_’-, The “point” transfer matrix of a locally applied external torque [Igxr =

H(w)d is

(G.‘r’gg)mm. - [sz) 2] (Gjﬁ'%);.m (18)

The local degree of freedom is modeled as a simple oscillator, H(w) = —w?Iz/(1 - ()%).

The dispersion curves of this model are given in Figure 3, The internal degree of freedom
introduces the discontinuity and the additional branch at its resonant frequency, wg = 40rad/sec.
Figure 3 shows that the resonant frequency of the internal degree of freedom becomes an upper
limit for the applicability of an equivalent continuum model.

A real truss-work member will have many such internal resonances. Each of these resonances
creates its own discontinuity, and its own additional branch in the dispersion curves. Reference (25]
reports a computational investigation into the wave propagation behaviour of a particular truss
beam, with each bay modeled via finite elements. Each of the wave modes supported by this
model exhibits many discontinuities in its dispersion curve. A new type of traveling wave mode is

reported in this work; a “complex wave mode” which both travels and is spatially attenuated.
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2.2.2 WAVE-MODE TRANSIENTS ON MEMBER SEGMENTS

The transient response of disturbance propagation along elastic members is conveniently cal-
culated in terms of the traveling wave modes. Indeed, it is this convenience which prompted
their introduction in the frequency domain description of the previous section. This transient
calculation has historically been the focus of much work(18]. A computational approach based on
extensive use of the discrete Fourier transform is reported in reference [21]. These calculations are
not central to the remainder of this paper, particularly to the control design of section 3; their
description is omitted here in the inverest of brevity.

2.3.3 SCATTERING AT JUNCTIONS AND DISCONTINUITIES
The following discussion is based upon the “generic® junction of Figure 4. This sketch, and
the notation (with the exception of the external forces, sf) can be found In most basic texts on

microwave circuits.[26]
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FIGURE 4 The generic junction. The junction can include a flexible
body and can be connected to many members, Each member, j,

transmits incoming wave modes, a;, and outgoing wave modes, b;.
External forces are grouped in the vector sf. The notation is standard

in microwave circuit analysis(26).

Associated with each member j, is a cross-sectional state vector y;, of size nj, defined at the
(arbitrary) interface between the junction and the member, This state vector may be transformed
into wave-mode coordinates according to the transformation derived in the previous section. Each
wave-mode state vector w; can be grouped into incoming a; and outgoing b; wave modes.

The junction boundary conditions are conveniently defined in terms of the composite junction

ms

state vector, gy = (¥T,y7 -+ ¥T,)7, having dimension gn = 7%, n;. The boundary conditions

can be expressed

pB(w) gy = #f(w) (16)
where sB(w) is & (possibly lively) function of frequency and has pn columns and &~ rows, and
pf(w) i & vector of size &4, of externally applied forces and deflections. If the junction contains a
flexible body, and is described by a system of ordinary differential equations, its description may
be reduced to the form of equation (16). Such reduction is described in reference [19] and is a
relatively standard procedure in structural dynamics.

‘The junction boundary conditions can be transformed into wave-mode coordinates by use of

a block-diagonal matrix of member transformation matrices;



Y, w1
Yz Wa
py = pY(w) pw = : (17)

After partitioning into incoming and outgoing wave modes, sw = (3aT, sb7)7, and re-ordering,

the junction boundary condition becomes;

(#Ba(e) #Ba(ol] (2) = otlw) (18

If the sub-matrix sBy can be inverted, then the boundary equation (18) can be written in “causal”

form;

pb(w) = pS(w) pa(w) + p%(w) pf(w) (19)
where the scattering matrix, sS(w) = —sB;}(w) sB,(w), is a matrix of frequency-dependent
transmission and reflection coefficients and s ®(w) = gB~!(w) is a matrix describing the generation

of outgoing wave modes, gb, by the external forcing sf.

Junction of the Timoshenko Beam and Periodic Torsion Models
Numerous examples illustrating the application of the above derivation have been presented
in reference [19]. The example presented here describes the perpendicular junction of the two

members treated above. For this junction, the boundary conditions are;

1 0 0-100 0 0] ,

1 00 0 00 ~1 0 A

00 0 0 01 0 0 ("“‘“M ) =0 (20)
0 -1 0 0 10 0 1 YRODg

Transformation into wave-mode coordinates and derivation of the scattering matrix is done nu-
merically. The scattering matrix is presented in Figure 5, over the frequency range 0 < w <
1200rad/sec. Periodicity of the rod member has been suppressed by setting H(w) = 0 in equa-
tion (15). Most of thz activity in the frequency dependence of these scattering coefficients is due to
the very dispersive nature of the Timoshenko shear mode. This mode exhibits a cut-off frequency
at w = 500rad/sec (see Figure 2).

2.2.4 TRANSIENTS IN JUNCTIONS
The calculation of transient wave scattering through a junction described by equation (19)
has been the topic of published work{21]. This transient behaviour is not relevant to the control

design techniques proposed in the next section, and 50 is ommited here for brevity.
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FIGURE 5 The scattering behaviour of the junction of a beam in
bending modeled with Timoshenko beam theory and two rods in tor-
sion. The periodicity of the torsion model has been suppressed by
choice of H(w) = 0 in equation (15). The cut-off behaviour of the
Timoshenko shear mode (at w a 500rad/sec) has a strong effect on
these curves.

3. ACTIVE CONTROL OF STRUCTURAL ACOUSTICS

Active control of structural acoustic response, with reference to an explicit structural acoustic
model, is an almost untouched field of investigation with only four known publications|7,8,9,10].
Conversely, control design for structural dynamics is the subject of a large literature[27]. Control
design techniques developed for systems of low order are being extended to models with many
(tens or even hundreds) of the structure’s natural modes of vibration. Such extension is a de facto
attempt to achieve active control of structural acoustics. Unfortunately a modal description of
structural dynamics to these frequencies is essentially useless, as has been discussed in a previous
section.

Since high fidelity deterministic models of structural acoustics are spatially local, control
based upon such models will share this property. Each local controller will be based upon the local
dynamics of a component. Supervisory coordination between these local controllers is possible, but
the theory for such an architecture has not yet been developed. This section reviews approaches

to component control design based upon wave propagation models, and draws upon previously

published work for specific examples.



3.1 ACTIVE MODIFICATION OF WAVE PROPAGATION ON MEMBERS
Theory for the activa control of disturbance propagation in structural members has not been
developed. One could visualize many possibilities for such a spatially distributed control; design
objectives might be to distort the symmetry of the wave propagation properties of the mem-
ber. A member might be actively modified, perhaps in selected frequency ranges, to propagate

disturbances in only one direction. Such member control might be spatially discretized for imple-

mentation with discrete actuators, or might be designed for a spatially discrete member such as a

truss beam. Many possibilities exist, all have yet to be investigated.

3.2 ACTIVE MODIFICATION OF JUNCTION SCATTERING BEHAVIOUR
Equation (19) is the frequency domain description of reflection, transmission and wave gen-
eration at a junction of one or several structural members. Two approaches to control of such

scattering have been developed, both build upon equation(19).

3.2.1 SPECIFICATION OF CLOOSED-LOOP SCATTERING BEHAVIOUR

One might, based upon intuitive reasoning or analysis, wish to specify values for selected
reflection and transmission coefficients of the closed-loop junction behaviour. Obvious choices for
such a specification would be zero for some coefficients, although the specification might be more
general, perhaps frequency dependent. This would result in selective absorption of incoming wave
modes, or shunting of some incoming disturbances into selected outgoing directions.

If the controller exerts influences (forces and relative deflections) upon the junction which are

grouped in the vector gf, and thic .ntrol effort depends linearly upon the incoming wave modes

ag, then the control law

pt(w) = ¥~ Hw)[sScL(w) — pS(w)|sa(w) = Ca(w)sa(w) (21)

leads to the desired closed-loop behaviour;

blwi - Scer(w)sa(w) (22)

Measurement of the incoming wave modes ga(w) may not be practical since they are related
to physical variables through a frequency-dependent transformation (eque’ion (17)). Use of this

transformation permits manipulation of equ~- . (21) into the form

pf(w) = gScr(w)sa(w) = Cy(w)sy(w) (23)
where the control forces are now given in terms of the physical variables gy.

The preceeding discussion has not considered the possibility that only a few actuators are

available at a given junction to effect control. In this situation, the number of independent entries




in gf(w) would be less than the dimension of ga(w); more wave modes depart the junction than
one has actuators available. Several options have been developed for this situation[9,19]. One
might attempt to minimize a sum of squares of departing wave-mode amplitudes. One might set
selected departing wave modes to zero, while letting the others behave as they will, or one might
influence only subsets of the scattering coefficients. Each approach leads to a control of the form

of equation (23).

Ezampies of Wave-Shunting Control De-ign

Two examples, taken from prior published work, 2re offered here to clarify the above discus-
sion. Figure (5), from reference [9], gives tne open-loop scattering behaviour of the junction of
three members. One is modeled in bending with Timoshenko beam theory, the other two are mod-
eled in torsion with simple rod theory. The member models thus support four incoming and four
outgoing wave modes. As an arbitrary design exercise, a compensator has been calculated which
prevents waves from departing the junction along one of the members, that is, with reference to
Figure (5), b1 = 0. The control force to accomplish this was (arbitrarily) chosen to be an external
moment applied to the junction.

An external torque, Mgpxr can be included in the boundary conditions of equation {20) by
introduction of an external forcing vector sf = (0001)T Mgxr. The boundary conditions are
then readily manipulated into the form of equation (19), where sS(w) is given in Figure 5. A bit

of algebra, done numerically at each frequency, yields a compensator of the form

Mgxr = Co 04+ Coyta+ Cugwe + Cyp¥E

+ CMagME + CvyVE + Cyplp + Cry7B (24)

where 8 (rotation) and r (torque) are the cross-sectional state variables of the two torsion members
at the junction, and w (lateral deflection), ¥ (face rotation), M (bending moment) and V' (shear
force) are the four cross-sectional state variables of the bending member at the junction. Sub-
scripts denote which member the variable corresponds to. Note that all eight local cross-sectional
state variables are used by this compensator. The open loop scattering matrix of this junction
(Figure §) shows that all arriving wave modes must be countered. One of the eight compensators
of equation (24) is displayed in Figure 6 (the other seven are available in reference [19]). Note that
this compensator is both infinite dimensional and infinite in bandwidth.

Reference [9] takes this computational example somewhat further. The junction is imbedded
into a structure, and transcendental transfer functions are calculated with and without this wave-
absorbing control. The change in the structural response is dramatic.

A second example is taken from reference [10] and treats reflection cancellation for the free

end of a beam in bending. A beam, if modeled with Bernoulli-Euler beam theory, supports one
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FIGURE 6 Frequency dependence of one of the eight compensators
of equation (24). This compensator feeds local rotation at the junction
depicted in Figure 5 back to a co-located external torque. The control

task is to set b; = 0.

traveling wave mode in each direction. The governing differential equation permits another type
of response; near fields which decay exponentially with axial distance and have a simple harmonic
temporal behaviour. With reference to Figure 7 the deflection field can be written

v = atet‘k:+€wt + anekz+|‘wt + bte—t'kz+|'ut + bne-—kz+1‘wt (25)

where k = \/w\/ pA/EI is known as the wave number, EI is the bending stiffness, pA is the mass
per length of the beam and a:, an, b: and b, are wave mode amplitudes at the left end of the
beam, defined in Figure 7. If an external control torque, Mg xT, can be applied to the beam at

the left end, the corresponding boundary conditions can be expressed in the form of equation (19)

be _ [ —i 144\ [ 1+ —1> \
(b,.>‘(1—i i)(an)+2w\/__-ETpA (—i, Mexr (26)

The important entry of the scattering matrix is S(1,1) since this term governs the creation
of outgoing traveling wave modes as a function of incoming traveling wave modes. One choice for

the compensation that achieves S(1,1) =0 is

Mgexr(w) = ~iy/pAEIwv(z = 0,w) | (27)
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ScL = (ft :)) (28)

The compensation of equation (27) can be seen to be velocity feedback of local deflection to
applied torque. The effect of finite actuator dynamics and other sources of gain roll-off yet needs

to be investigated. The question is important to this example since experimental verification is

planned.

3.2.2 OPTIMAL WAVE ABSORPTION

A recent development[10] in the theory of traveling wave contrcl is the proposal of a meaningful
cost function associated with the actively controlled junction. Minimization of this cost function
then leads to a control design, which since a reasonable quantity is being minimized, is termed
optimal. The proposed cost function is a weighted integral over frequency of the wave power

flowing out of the junction along the members and the power exerted by the control forces;

0
J =/ (sWwHPsw + sf AR gf) dw (29)
-—00

where the supe;script H (Hermitian) denotes complex conjugate transpose. The first term in the
above integrand is the power flow, as a function of frequency, being carried out of the junction
by wave motion. The matrix P depends upon the characteristics of the members attached to the
junction under consideration, but is always Hermitian.[10] The second term in the integrand is a
quadratic penalty on control effort. The matrix R can be chosen by the control designer. It can
be a function of frequency but must be Hermitian.

Since outgoing wave modes depend upon the control effort, this cost function can be further

expanded using the substitution

= () - pa
o (ﬁb) (ﬁsﬁa'*‘ﬁwﬁf) (50)

The cost functional is minimized with respect to the control, sf by

[

of = —[¥T Py s + R| " s WH[Pys + PpypSjpa (31)

where the power flow matrix has been partitioned in an obvious way into square submatrices.

The optimal control, given by equation (31), differs from the control which achieves zero outgoing

disturbance, Scr = 0, derivable from equation (21) as

sf = —pw_lpSp‘a (32)

‘In part, this difference is due to the penalty associated with control effort. If the control penalty,

g




R, is set to zero in equation (31), then the Py, term still creates a difference between the two
control laws of equations (31) and (32). The presence of the term Py, in equation (31) is due to
another effect. This term attempts to exploit power flow coupling between wave modes to draw
the elastic energy into the junction more effectively than merély waiting for it to arrive. The
off-diagonal entries of the P matrix are often sero, however, and it is not yet clear if this type of
*energy vacuuming” will be useful in application. The following example is intended to clarify the

situation.

Optimal Wave Cancellation at a Free Beam End
This example is a continuation of the beam example begun in the preceeding section. The
junction is the termination of a single beam, so that the power flow matrix will correspond only

to the four wave modes supported by the Bernoulli-Euler beam model;

-1 0 00

P=20kpaET| 2 0 O (33)
0 0 10
0 - 0 0

The wave modes are ordered pw = (at @n by 5n)T. From inspection of equation (33) one can
deduce that the incoming traveling wave mode causes power to flow into the junction, the outgoing

traveling wave mode cause power to flow out of the junction, while the two near fields can cause
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FIGURE 7 Schematic of a free-free beam in bending. The left end of
beam is actively terminated by a wave absorbing controller, applying

external torques, Mgxr, in response to local deflection or slope. The
right end is excited by a lateral force.

power to flow in either direction but only through interaction’with ancther. The in-phase portion
of one near field interacis with the out-of-phase portion of the other near field to cause a net
power flow. One near field is created at the junction. Equation (31) suggests that ore exploit
this interaction between near fields to increase the power flow into the actively controlled junction
beyond that which is carried by the incoming traveling wave a;.

When the requisite values of P, s®, and a value of R = 0 (no control penalty) are inserted
into equation (31), and the boundary conditions are used to convert tc physical variables, the

optimal control becomes




Mgxr = \E1/2\/pAEIV=i0 :—:(: = o,w) (34)

which involves feedback of the beam slope to the applied torque through a temporal *half dif-
ferentation”.

Leaving aside, for the moment, questions of realisability, it is instructive to investigate the
performance of such wave controllers in simulation. Figure 8 is a simulated transfer function
of a finite length of the heam. It is clear that the effect of compensation of the form of either
equation (27) or (34) would have a profound effect vpon the behavivur of the beam segment. Seen
from the driven (right) end, the controlled beam behaves essentially as if it extended to infinity.
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FIGURE 8 Magnitude and phase of the lateral deflection of the right
end of the beam of Figure 7 to a lateral force also applied to the right
end. The left end is controlled by a wave absorbing controller whick
either sets Scz(1,1) =0, or minimises wave power departing the left
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3.3 EXPERIMENTAL VERIFICATION OF TRAVELING WAVE CONTROL

The computational exarples presented above have used very ideal aasumptions in the deriva-
tions. In particular, no attemnts were made to account for actuator or sensor limitations. Without
exception, every compensator derived was of infinite bandwidth. The compensation is specified in
the frequency domain, and is in general infinite-dimensional.

Wave absorbing compensation with finite bandwidth will always be derivable; one must simply
trade performance n&timt bandwidth. Several possibilities for doing this in a rational way come to
mind. One mi.ght use a frequency-dependent control penalty matrix R(w) in the optimal control
derivation with the frequency dependence chosen such that the compensation gain rolls off as
desired. One might specify a closed-loop scattering matrix S¢; in equation 21) in such a way
a3 to create the same effect. As a last resort, one might simply roll-off the ~ompensation with

low-pass filtering. The trade-offs of these techniques have yet tc be thoroughly studied.

Whichever technique is used to make the bandwidth of the wave absorbing compensators
finite, their infinite-dimensionality will, in general, remain. Simplified and realizable approxima-
tions of such infinite-dimensional compensation can always be derived. A rational approach for
deriving such approximations has not been developed. Since the compensation is specified in the
frequency domain, » frequency domain fit with a realizable transfer function seems reasonable.
Such techniques, and their laboratory application to this problem, have yet to be developed.

To date, only one experiment in active control of traveling wave in structures seems to have
been reported(8]. This experiment attempted the cancellation of the reflection of bending waves
on a thin(l mm) sheet of stainless steel in the frequency range from zero to 25 Hz. Tke tip
deflection could be sensed; actuation of lateral force was possible. The ideal compensation involved
feedback of the tip deflection to the lateral force through a temporal “half differentiation”, as in
equation (34). Several analog circuits were used to crudely approximate this ideal actuation. ‘The
compensation actually achieved was finally very similar to a previously calculated optimul velocity
feedback.

The performance achieved by the approximate wave-absorbing compensation in this exper-
iment was very comparable to that achieved by the optimized velocity feedback. Although the
two concepts represent alternative approaches to the problem of active damping of structural

vibrations, this experiment did not permit a solid conclusion of their relative merits.

3.4 POTENTIAL EXTENSIONS OF TRAVELING WAVE CONTROL
The active control of traveling waves in structures is a very recent development. Only relatively
crude theory has been developed, and an even cruder experiment has been conducted. Many

extensions to this work can be considered:




1 The sensitivity of traveling wave controllers to errors in the local acoustical models should be
investigated. A first order sensitivity to first order perturbations in the model is expected.

2 Explicit account might be taken of actuator and sensor dynamics during the design of wave
controllers. It is anticipated that the specified wave control compensator will then include an
inversion of these dynamics.

3 The approximation of specified wave control compensators with analog circuitry or digital
hlters should be studied. It seems likely that realizability of these compensators will be
improved by measuring the approaching wave disturbance some distance “upstream” of the
point of actuation. Withv such precognitive sensing, the inversion of actuator and sensor
dynamics may even be possible,

4 Adaptation of wave controllers is possible. A signal upon which to base the adaptation might
be the level of the outgoing wave mode which the control is designed to cancel.

5 De ~lopment of controllers based upon the propagation behaviour of members rather than
scattering behaviour of junctions is a possibility. Such work would have to face the problem
of non-existence of distributed actuators and sensors, and should perhaps focus on periodic
truss beams.

6 Cooperative behaviour among several wave controllers and/or a global controller based upon
a low-order modal model might be studied.

7 All the control schemes proposed must be realised in hardware to be useful. Such experimental
work is perhaps the most important missing aspect of the work performed to date in active

control of structural acoustics.

4. SUMMARY

This paper makes the point that high performance active control of structural dynamics over
a bandwidth including many lightly damped modes is impractical if the control design is based
upon a model derived via modal analysis. The fidelity demanded of the model is simply beyond
that achievable with modal analysis. The analysis technique is too sensitive to small perturbations
and uncertainties in the model parameters.

Alternatives exist. An important possibility is passive damping in conjunction with active
control of a small subset of the lower modes. Active damping through direct velocity feedback
can also be used. If active control of a lightly damped structure over a bandwidth including many
modes of vibration must be accomplished, then local, struciural acoustic models of the response
are suita_le for the contrel design. This leads to local traveling wave control.

The paper presents a formalism for the synthesis of traveling wave models of a particular

class of structures; networks of slender elastic members. A review of control design techniques




applicable to the control of disturbance propagation in such structural networks is presented. The

conciusion is drawn that the theory is very incomplete, and speculations are offered as to future

developments.
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