RD-A191 215 AN ASSERTIONAL CHARACTERIZATION OF SER!&IZ”ILXTV M
»' LOCKINGCU) CORNELL UNIV ITHACAR NY DEPT OF CONPUTE

SCIENCE E R MCCURLEY 09 FEB 88 TR-88-994

MLISSIFIED NOOO14-86-K-0092

XN Frr vl o rayxd FAEEFFEsl Las

(]
\j
]

SAXE 1 ol P Sxs Sy Lrrrrsss AN Y EL LA >

O IO
.l
1)

LOATYC N

0y

U]
-
—y—r—

~
-

L

HH

R R AR RN R AT
-

-4 = © _
R - |
e a

1-6

318
I‘ ME

=

S
I

14

e

4-0

———
e ———
-

50
w
w
[559
[
w
(%

@ig 0% Vg 0Ty B4 4%y 87y 2°

10

=
ll=

= 10

g 00 0% 0% 8% A%, ¢!

-

!

0000000

AU AOA I A A UGS

= - - v A XA S BN - D [P - a_a
- - R S () T e el W AP o - -, LY - - .~

“hI19] 25

An Assertional Characterization
of
Serializability and Locking*

Ermest R. McCurley
Ph.D. Thesis

88-894

L %

+

L

v‘. '.
Rtk

Jﬁ'

3%

T,

e,

O AR A A T

REPORT DOGUMENTATION PAGE /

1. RESTRICTIVE MARKINGS i”m FILE CDP?

3. DISTRIBUTION / AVAILABILITY OF REPORT

Unlimited

UMBER(S)

e 2

4. PERFORMING ORGANIZATION RH
TR 88-894

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Office of Naval Research

63. NAME OF PERFORMING ORGANIZATIQNG eser | 6b. OFFICE S¥MBOL

(If applicable)
Cornell University

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZiP Code)

Dept. of Computer Science, Upson Hall
Cornell University

Ithaca, NY 14853

7b. ADDRESS (City, State, and ZIP Code)
800 North Quincy St.
Arlington, VA 22217-5000

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Office of Naval Research

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-86~-K-0092

8c. ADDRESS (City, State, and ZIP Code)
800 North Quincy St.

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
NO. NO. ACCESSION NO
Arlington, VA 22217-5000 ELEMENT NO 0 ‘
11. TITLE (Include Security Classification)
An Assertional Characterization of Serializabilitv and Lockine

12. PERSONAL AUTHOR(S)
Ernest R. McCurley

13a. TYPE OF REPORT
im

13b. TIME COVERED
inter

FROM TO

14. DATE OF REPORT (Year, Month, Day) |1S. PAGE COUNT
February 9, 1988 122

16. SUPPLEMENTARY NOTATION

37. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

serializability, concurrency, assertional reasoning

Proposed is a definition of serializabilit
many respects.

As a consequence of specif
to formally verify serializability.

the need to explicitly consider trans
Another consequence of specifying ser

form of a method for deriving locking
method is based on a novel view of loc
properties of the system state.

the derivation process can be use

concurrency amongtransactions tha
Exam
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

Bl UNCLASSIFIEDAUNLIMITED [SAME AS RPT

3 o7iC USERS

%ABSTRACT {Continue on reverse if necessary and identify by block number)

y that generalizes previous definitions in
Two methods are described by which this definition of serializability
can be specified in an assertional programming lo

gic using formulas called proof outlines.

ying serializability with proof outlines, it becomes possible
The use of an assertional programming logic eliminates
action interleavings, simplifying verification.

ializability with proof outlines is the ability to
derive synchronization protocols for serializability.

This possibility is realized in the

protocols from assertional specifications. The
king, in which locks held by transactions reflect
Using this method, semantic information available during
d to obtain locking protocols permitting greater

n locking protocols obtained by more traditional methods.

™

™~

21. ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDUAL
Fred B. Schneider

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
(607) 255-9221

DO FORM 1473, 8aMaR

LA X A N X n)

83 APR edition may be used untit exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

TV T 1 ITiig s i T g o, VT T A A A S R i
5 X k (B nl s Anp o N, N () [a B

An Assertional Characterization i
of oy
Serializability and Locking*)

Ernest R. McCurley '."(
Ph.D. Thesis f.:‘:t

88-894 .:,‘
January 1988 -

Department of Computer Science P
Comell University b
fthaca, NY 14853-7501

*This material is based on work supported in part by the Office of Naval Research under contract NO0014-86-K-0092 and the
National Science Foundation under Grant No. CCR-8701103. Any opinions, findings, and conclusions or recommendations
axpressed in this publication are those of the author and do not reflect the views of the Office of Naval Research or the National
Science Foundation.

Ay ‘ G \‘“ ‘ '1‘7'1.'v{t I{u"-
(GRS o X ‘

F
LN

Wy \ P AT T T R L R R R A S N i T L i i iy N R WA R P P 20
'.n".‘n'!‘n‘-l‘.n.l‘:l.l'" WO Tl W n. ..; IS0 Al '-*'- n A MY ™ SR J\V » N e

I . - " - Rt ata Rl 4t siovats ' od, ", Sah & -.
- 3 - - * ®, %, > > d o b . * -

- e - o 1 a "a el w e U

et N . A AR B i I MY (" nta e a M w " u¥a T O -

AN ASSERTIONAL CHARACTERIZATION

OF SERIALIZABILITY AND LOCKING 3

A AT T
- - =

7 S

v

ﬁ A Thesis

. Presented to the Faculty of the Graduate School

'

s N T

of Cornell University

‘I’,’

in Partial Fulfillment of the Requirements for the Degree of E"{

Doctor of Philosophy h

Accesion For)

!ers CRARI v
U
]

y DTIC TAB

W

‘ [Unainnon:.zed : .‘;‘

T =

’

. ; Sy ermminons e)
| Distiretiog]

by 3} Avadardy '“.',d”,% ' , 3,

e ‘

Ernest Robert McCurley Do, 1AV 2euror o

) T Soeetd!) $

January 1988 lA-', ! i §

Yo ,‘ v e b*

A

.

L

>
\
8

LY

.
- -y w W - - PR LA q—‘t -'~f“
PP PO Tt Tl TRt S GRRTTINE QT At v, W v

L O Vi iy Oy Py Y N BN e A N e IO i (S Lol sty PN Zaltasaiad AV TS '
B A0, ¥ T h

R T L S Y O T T R R R L L O R O O O R O O o O O OO I o ‘ 3 TR KT TR T WU RCT AR

) . b
4 o
.f
. -
) .
J b
.‘.
§ {
[}
: .
D) .
' »
o
¥
K ~
' r
). -
>, ’
3 ’”
' v

. 4
§
0:)
3 (© Ernest Robert McCurley 1988)
. ALL RIGHTS RESERVED by
) .
. ‘
“
LY.
n
‘
o
: 4
': 3
._)
;
: b
! \
- g
‘- (‘
& ‘
-~ : .
g .
C4d
% L3
! I
2 ’
H]
3
)
5]
‘ P
l
l
L]
9, L]
: 4
.
)
L)
D O N RN B R IO O R A A s A Y

b G e Un =} WY 5N av, WP uw LW = Ay a0, gt tely RASYE Skl iehy 18, e Sl P SO Al i WL TR
,‘l:
o
O
.'.
!
L) .
i
A
)
-¢
K
R
o
U
oy
i
y An Assertional Characterization of Serializability and Locking
;
1 ’l'
‘.’
e Ernest Robert McCurley, Ph.D.
o Cornell University 1988
e
R
'
'l' .
Y
s The problem of synchronizing transactions in a database system so that concurrent
»
N execution transforms the system from one consistent state to another is called the Con-
M
\-:-: currency Control Problem. Over the past 20 years, a property of concurrent execution
&
g called serializability has evolved as a universal paradigm for solving the Concurrency
\ ~’
.-E:- Control Problem. Up until now, most work on serializability has been characterized
~‘
on
"Wy by an emphasis on sequences of operations. Researchers studying programming logics
s and methodologies have developed a different approach to characterizing the semantics
Al
¥
T of concurrent programs. This approach is called assertional reasoning, and emphasizes
N
T the system state instead of sequences of operations. This dissertation describes the ex-
';:: tension of the formalisms and tools of assertional reasoning to the Concurrency Control
I .
o,
o Problem.
Cd
.
s Proposed is a definition of serializability that generalizes previous definitions in
y many respects. Two methods are described by which this definition of serializability
v - . o
.:::. can be specified in an assertional programming logic using formulas called proof out-

lines. As a consequence of specifying serializability with proof outlines, it becomes

.u’-(-. L)

re

e

&

e e emrat.egn N e . ALY ™
N N’,‘l R .Nf.'fxf. > e { "’ "..'.

Cy
.

NN f‘.-"f'f

AT AN NI AN

"\- f\"‘-

'--I\‘-

-
o

possible to formally verify serializability. The use of an assertional programming logic
eliminates the need to explicitly consider transaction interleavings, simplifying verifica-
tion. Another consequence of specifying serializability with proof outlines is the ability
to derive synchronization protocols for serializability. This possibility is realized in the
form of a method for deriving locking protocols from assertional specifications. The
method is based on a novel view of locking, in which locks held by transactions reflect
properties of the system state. Using this method, semantic information available dur-
ing the derivation process can be used to obtain locking protocols permitting greater
concurrency among transactions than locking protocols obtained by more traditional

methods. Examples are given throughout the dissertation to illustrate the methods

described.

R T L W O 14" gte® e ate’ e a0u’ Aa® Nt 1tg L tat Agt 0 % tat 4a® it RAUTL W YA R §°ga8° 00"y 0% 4% 0%

'

]

R
nfl

Biographical Sketch

L] y rd
-./'.'«' ESEAL

&

o

Rob McCurley was born on July 5th, 1958, in a suburb of Los Angeles, California,

v
third child and only son of loving parents Ernest and Alice McCurley. In his first year 'f
of life, he moved with his parents to Atlanta, Georgia, where he grew up in the heart 2, :
of the New South. He graduated from Peachtree High School in the spring of 1976. E‘é
In the fall of 1976, he enrolled at the University of Georgia. There, he studied :j‘
mathematics and fell in love with his future wife, Janet Bless. The university awarded .,-\:
him a B.S. in Mathematics, magna cum laude, in spring of 1980. :’:E
;

He enrolled as a graduate student at Cornell University in the fall of 1980, where

fiad?

s
x

he studied the science of computers and learned the true meaning of winter. On the

l?‘

happy day of March 27, 1982, he and Janet were married. Cornell awarded him a M.S.

Ll
PN L

in Computer Science in 1983.

rv

'.."q".g';' '{.' i, !,"

T
N 4

N

pd

%%, Wy
”'i a0

i

-

. o vy iy w - e " K UM N S et AL AT e A P Dot S P S O S
: '.‘l "l't‘. -t'b'- W8, .- o. et Ry <)' AU A A LAY o.l.n (%) o.-, » ¥ Ayt hd]) . .

F
X

-
¥
=]
o

-
(=]
=

3

[d

o
D
-.--.

v

LS

>

)

L)

vﬁ-

.

""‘-\\

N

»

=

A
’
S
¢
’
W
7
‘

Pl

-

v

'»

o S L N N)
"f ."';'If{-’.

T

. 4’&' 5 Ty '-"-1'1

d

Acknowledgements 2

[would like to thank Fred Schneider for his immeasurable contributions to both the n

form and content of this dissertation. As my advisor, Fred has spent much time and

effort trying to teach me how research is conducted. | hope he realizes how much 1

appreciate his patience. I would also like to thank the other members of my special
committee, John Hopcroft and Richard Shore, for their time and helpful comments on
early drafts of this dissertation. -

I am grateful for the support of the Office of Naval Research under contract N00OO14- 8
86-K-0092 and for the support of the National Science Foundation under Grant No.)
CCR-8701103 during the course of this research. R

There are many people [would like to thank for their friendship. In particular, [o
would like to thank Tim and Jeanne Lansing for moral support, traveler’s assistance, i
and restraint in harassing me; Doug and Maureen Howe for many pleasurable evenings <
of dinner and conversation; and Jacob Aizikowitz for listening to my musings and E:.
grumblings about research and other topics.

Finally, I would like to thank my family, especially my parents. Though they must !

have thought I was crazy at times, they loved and supported me when [doubted ol

-.'r.’(\r o« g l‘\

. . - - DT I PR A . P R T AR P o g o T W gy Ta ol o L
N T e L i sy R L o S N g N e

o

myself. However, the person | am most grateful to is my wife Janet. Her love and

)
t
!
)
)
[
»
L
.
N
>
!
)

encouragement have meant everything to me; without them, | would have given up

long ago.

N A
R

«
¥

L3

e

p

RN g

Ny

!

2’

L
ety

-ty

Table of Contents

Introduction

1.1 Consistency and Concurrency
1.2 Serializable Schedules
1.3 Related Work
1.3.1 Operation Types
1.3.2 Transaction Synchronization
1.3.3 Locking
1.3.4 Definitions of Serializability
1.3.5 Alternatives to Serializability
1.4 Reasoning About Concurrency
1.5 Overview of Dissertation

Serializability
2.1 Database System Model
2.2 Serializability
2.3 Serializability with Proof Outlines
24 AnExample.
2.5 A More Tractable Method
2.6 Examples of the Second Method
2.6.1 An Alternate Proof of Serializability for ¥l
2.6.2 Sequence Variables with Set Semantics

2.7 Incompleteness of the Second Method for Proving Serializability
2.8 Discussion

2.8.1 Comparing System Models
2.8.2 Comparing Definitions of Serializability

Deriving Locking Protocols

3.1 Proofs of Concurrent Programs
3.2 Interference and Synchronization
3.3 Exclusion Invariants

.......... TSR PL PR TR TSR LI T Yl R N R St O St AL AL Ny
NN AUy '.r' s L 5 A RN AN o -r Lot LN T L AN N BRI

70
7l
3
)

A e e

oL LS

Al

y .
' .
!
" 3.4 Using Locking to Strengthen Assertions Selectively 78 ;
0 35 AnExample. 83 3
h 3.6 Discussiono 103 \
Do 3.6.1 Comparing Locking Protocols 103 ‘
d 3.6.2 Locks and Local State 105 .
2.
2 4 Concluding Remarks 107 \
: 4.1 Summary and Discussion L 107 !
] 4.2 Topics for Further Research 110 y
A Axioms and Inference Rules of Proof Outline Logic 112 ::
) ll
e B The Weakest Precondition Predicate Transformer 116 :;
(]
Bibliography 120 '
o,
"
Y.
G
y N
. .
5 . :
A N
- hJ
: ~
x)
. a

viii

»
i X
)
)
)

. - Vel ay e o .o TR PR PN R LA TPV RL LT O
T N O S IR P A AT RS B SN N S A Y AT A AT W S
) .}N: L}:*L‘.-L? ACH AL N PR o' AP {20a W el idhiatiiabiant

.............

NN RN NN VNN N NIV

)
.
[] []
List of Figures
1.1 Deposit and Interest Transactions. 5
2.1 Database System ¥0. 23
2.2 Synchronized Database System £1 42
2.3 Proof Qutline PO(7])., . 45
2.4 Augmented Database System £1° 55
2.5 Proof Outline PO(7)). 58
2.6 Database System ¥2. 59
2.7 Augmented Database System £2*. 60
2.8 Proof Outline for PO(r!) for 77 of ¥2°. 61
2.9 Database System 3. 63
2.10 Database System ¥4. 66
3.1 Database System X5 for an Idealized Banking Application. 85
3.2 Synchronized Database System (A6,26). 86
\ 3.3 Augmented Database System $6*. L
3.4 Version Lof PO(7g). 89
\ 3.5 Versionlof PO(r{). 39
36 Version2of ¥6*. 92
3.7 Version 2of PO(1g). 93
3.8 Version 20f PO(7y). L 94
39 Version3of A6. 97
P 310 Version 3of B6%. 99
3.11 Version 3of PO(7g). 101
3.12 Version 3of PO(ry). 102
3.13 Serializable Database System (A6,%6). 104
1X
A AT TN T AT RO N RTINS AT T T T NN I S T S vy W7 R SRS

LY ->nw" "t
D 4 4 4 -t

!

o

- .'-b.

SENOCY

TSRS,

[P
- Ay

4

“» Y
’

AN YS S

v

“ F

s
y

v

SRIT L

".‘/‘,.ﬂ’ rL ML

Pr

2 Chapter 1

Introduction

Many computer applications involve information that must be stored, retrieved, and

modified. For example, a bank must maintain customer account balances and update

them as deposits and withdrawals are made; a university must record information

4
; about course offerings and student grades.
: Database systems are computer systems that store and maintain large amounts of

information. Information in a database system is typically stored on magnetic disk
:' storage devices rather than in primary memory because of their high capacity for
P
:'.. data storage and relative involatility. It is accessed through one or more processors
b ¢onnected to these storage devices.
w

Information stored in a database can be viewed as modeling some aspect of the

‘. application it supports. For example, a banking database system might store a list of
: numeric values to model balances of customer accounts. As events, such as deposits
¢
.: and withdrawals, transform the application state, the database state is transformed

wCPe JOo B4 |

\"-'\‘-‘ 0

>
»
-
s

N L R A R A T o (AN AL AN N S A L
- e s P ey W - e, " .’,v.’ PN ol oW [T I iy N Y q\‘f\i" ".-f.\n' St . -
', ‘ AN l..l‘l OO J(" (%) o.- ¥ ‘f . L R -“l‘ NaM "\ o % "% ™) . \

. canll 5u® 3ot Bub Bad Bu® But’ Py v aa¥ > e Jx® fha®_pa® . Sa°ofu"h e S’ Sa* A A Jhat 0aT fat Gu a0t Su Bt N e olat 0NN A
;.l"v""'l"'l ’ P fo?afia% av 0a® SuP it at gy Sab. g1 Auboli=V et et ie" ha®s K

B ’

)

.

o

e

b

'f' 2

:" accordingly by running programs called transactions.

y The correspondence between an application and a database system imposes certain
)

. restrictions on ithe database system state. A bank might require account balances to
-

ol be non-negative, which restricts the stored values that model these balances to be

non-negative. Restrictions imposed by an application on the database system state

are called consistency constraints. A consistency constraint can be thought of as a

% predicate on the database system, although in practice such predicates are often too
o
::; complex to be written explicitly. States that satisfy the consistency constraint are
_ called consistent states.
:; Database systems are started in a consistent state and transactions are constructed
::E so that they model the events to which they correspond, thereby guaranteeing that
. each transaction individually will transform the system from one consistent state to
l-::_ another. A serial ezecution of transactions is one in which transactions are executed
; E. one at a time, starting one only after the preceding one competes. By a simple inductive
,‘ - argument on the number of transactions, any serial execution will transform the system
o
::\ from one consistent state to another.
E:; Concurrent ezecution of transactions, in which one or more transactions are started
J, E)efore previous ones complete, has an advantage over over serial execution. In some
o
& ‘systems, a large portion of transaction execution time is spent waiting for responses
E: from relatively slow I/O devices (such as a user terminals or storage devices). By
Y running transactions concurrently, the time that one transaction spends waiting can be
'\{ used to run operations from another transaction that is not waiting, thereby increasing
.«-
Y the rate at which transactions are processed.
>

-,

i
Sl of T N

¥
\
D)

I~I

LI

e ? s
O T VT N SRR P O CE et S ot Tt et AR L e, AT NI s N A

. - AL

T TRY R .
ey VA.. N N g N

‘2.0 a9, ----‘-- ., vo.l- 8,0 600 828 %0 el %t Yal *at, Wt i <34 .'...‘ o

Unfortunately, without synchronization, concurrently executed transactions can in-
terleave in ways that leave the database in an inconsistent state. The problem of syn-
chronizing transactions so that concurrent execution transforms the system from one
consistent state to another is called the Concurrency Control Problem. Over the past
20 years, a property of concurrent execution called serializabslity has evolved as the
basis for solving the Concurrency Control Problem. Until now, however, most work on
serializability has been characterized by an emphasis on sequences of operations. The
definition of serial execution of transactions is an example of this style of characteriza-
tion. The view that locking protocols exclude operations from executing concurrently
is another example.

A different approach to analyzing the semantics of both sequential and concurrent
programs has been developed by researchers studying programming logics and method-
ology. The approach is called assertional reasoning and emphasizes system states rather
than operation sequences. This thesis describes the application of assertional reason-
ing to database systems. We give an assertional characterization of serializability; it
generalizes previous definitions of serializability. Our approach to defining serializabil-
ity not only allows the correctness of synchronization protocols for serializability to be
proven formally, but also allows semantics of an application to be incorporated into the
derivation of synchronization protocols that allow a high degree of concurrency among
transactions. We illustrate this benefit by giving an assertional characterization of

locking and a method for deriving locking protocols from specifications.

3
S,

L

~ ¥ W v

5|

e et A A0 . 1M et e e uie et et el A A
- Yy gt ~atamd - . . s Al & ' . o TR LT A T T A [- -
L) - - - - - - - . A.

R

2

KT 4

0>

" 1.1 Consistency and Concurrency

",

[}

i3

A simple example illustrates the Concurrency Control Problem. Consider a database
¥

B X

N system that models bank accounts numbered from 0 to V. The database stores account
) balances as values in an array a[0.. N |, with a[i! holding the balance of account number
B\

- 1. Another variable ba holds the value of bank assets. Asis typical of database systems,
. v

(L

these values are stored on magnetic disk.

¥
;:u Disk drives typically provide two types of operations for accessing values: read and
e

Sy

"y write. Let r(z,t) denote a read operation that copies the value of z (stored on disk)
‘Aa

. into a computer memory location denoted ¢; let w(z,e) denote a write operation that
Y
;:j evaluates expression e involving values in computer memory and copies the resulting
=
[~ value back to z on disk.
i "' The requirement that bank assets match the amount deposited in accounts induces
0y
K a consistency constraint ba = Y a1}, specifying that ba equals the sum of values in
R 0<3<N
al0..N]. As customers make deposits and transfer funds within accounts, transactions
oA must be run to update the values in a[0..N] and ba while leaving the system in a
:-'

:_ consistent state.

A

£ Using read and write operations, the transaction DEP(ai],z) of Figure 1.1 incre-
s ments ai] and ba to reflect a deposit of amount z to that account. The transaction
- reads the balance of a[i] into memory and writes the updated balance back, sub- |
J sequently updating ba in the same way to ensure that the consistency constraint will
‘og hold afterwards. In a similar manner, transaction INT(aj],y) of Figure 1.1 increments
."

N a[j] and ba by y=alj|, reflecting the accumulation of interest at rate y by account ;.
M
. ~:
)

2,
g

h)
N o

I

-

. AT R T A AT R R AT AT At AR A AT e A PR SR W et Nt At AN AT R TR AT LT AT At " -y "
e N N TN A NN e e NN e R N A 2 BN S e N A= S S R o

. 0 T
caa - y ®_Rat_Bat »_gat
‘llnybo Nopat 1p¥ Bat dat et LT J U ¢_gat - n

R i

L
o
. b
[y
. : 4
) 5 .
; O
L]
DEP(ali],z): r(a[i],t0); INT(ajyi,y): r(alj,t2); n
2
w(ali], 0 + z); w(aj;,t2 + yt2); &
Y r(ba,tl); r(ba,t3);
w(ba,tl+z) w(ba,t3+yxt2) .
Figure 1.1: Deposit and Interest Transactions. .
r
!
’ Suppose that a deposit of d to account s is made at about the same time interest '
'
at rate r is begin credited to that account. If DEP(a{s|,d) and /INT(a|s|,r) run)
A ~'
; concurrently and without synchronization, transaction operations can interleave in the :::
following order: L
-
"3
00: r(a[s],t0); -
r(a[s],t2); :~
w(afs], t0+d); :
d ¢
5 w(als],t2+r=t2); vy
: r(ba, t1); 1:-'
w(ba,tl +d); Y
r(ba,3); o
w(ba,t3+rxt2). oy
A sequence of transaction operations like 00 that denotes an interleaving resulting from :'.:
1 [

concurrent execution is called a schedule. The use of the statement composition oper-
ator “;” between operations allows the schedule to be viewed as a sequential program
having the same effect as the particular concurrent execution it is modeling. When con-

current execution produces schedule 00, the update w(a(s!,t0+d) by DEP(a[s|,d) is

overwritten by INT(a|sl,r), effectively losing the deposit into a[s|. As a consequence,

h o0 will leave ba =d + Y a[il, an inconsistent state.

—

0<s< N

Yo R M N e ST,

-
\‘

At r T A o
N 5}\{;*\\

h ."v.' |8 -.". L ¢

!
)

-
1?)}

o

Y

. AP

A

‘l‘.l.{l’ [%

4

PR XA

e

E

EF

1)

LA

WY LT e

-
[T R T, ") L]
.F~,P_.I. >», f Ca

1.2 Serializable Schedules

As ol illustrates, not all schedules in which transactions interleave transform a database

system from a consistent to an inconsistent state. One type of schedule that preserves

consistency is a serializable schedule. A serializable schedule is one that “behaves

like” some serial schedule—a schedule that denotes a serial execution of transactions.!
Since serial execution of transactions transforms a database from one consistent state
to another, execution resulting in a serializable schedule will do so as well.

An example of a serializable schedule of DEP(a(s|,d) and INT(a[s|,r) is

ol: r(als},t0);
w(a(s],t0+d);
r(a[s],t2);
w(a(s|,t2+r=t2);
r(ba,tl);
w(ba,tl +d);
r(ba,t3);
w(ba,t3+r«t2).

For any given initial values of a[0..N| and ba, ol leaves the same final values as the

serial schedule

! We describe more formally what it means for one schedule to “behave like” another in Section 1.3.4.

SR L IR TR I T TN LTS I \\"\‘;\x"-\.-‘\
AL A AT AN I\-,‘\I\(\"f W v. Tl e Ca o o AR

o,

S R -‘\-*\f\)\ "**‘ Do N S

e A oy)
. C - - " " MM EN E a RR L I R
Y. Yew LWy SWL N e At afetal, Syt Sal Snl 0l e MEAAARAAL A X COAT AR A0 v At a T e

[2.2.7.7,4

y
s
ol -
N i
™
[o2: r(a[a],tO);
N »
L w(als],t0+d);
r(ba,tl);

Dy
_ w(ba,tl +d);

s r(als],t2);

- w(als],t2+r=12);

Y

ol r(ba,t3);
i; w(ba,t3+r*l2)
N The consistency-preserving properties of serializable schedules imply that the Concur-
)
;: rency Control Problem can be solved by synchronizing transactions to ensure that
x every schedule is serializable.
by
- 1.3 Related Work

::: A great deal of research has been published about serializability. Several different

Cal

- database models have been considered and several different definitions of serializability

w*
'; have been proposed.

’,

-~ 1.3.1 Operation Types

[

-

:;: One way in which database system models differ is in the types of operations that

- ¢an be used to construct transactions. Many models [BBGLS83,BG83,BG81,BSW79, i
.:: GwW82,G83,G78,P79,R83,SLR76,TS85,Y84| assume that transactions are constructed)
- from read and write operations as the ones described in Section 1.1 were. This reflects
;, the use of storage devices, such as disks, that implement these operations in hardware. 1
l-> .
e More recently, models have been devised for systems that support operations other than A
., f
v,

: read and write. For example, a model with operations that traverse and manipulate

>,

~I

¢

o

J'

) Ve ® " LAy

- -
~"1'-'{~"' TR T T I S IO e f"/‘/ T I‘ NG

(4

"~ I"v_..‘- >

- - LR LN LA W, o Wy o
PR ~ LRSS LA BT SRS
/' o ‘.") N \fN-I'N " " " 4.. o , . ,. i o

search structures is considered in [GS85] and one with operations on abstract data
types such as queues and sets is considered in |SS84} and {W84]. The model of [K83)
does not place any restrictions at all on the operations from which transactions are
constructed. Although system models with a greater variety of operations tend to make
analysis of concurrent execution more complicated than in read-write models, they do
make it possible to describe more accurately the semantics of concurrent execution.

Many models also make assumptions about the way operations are ordered within
transactions. In [P79] and {BSW79|, for example, transactions consist of a single read
operation followed by a single write operation, each of which accesses several variables
at the same time. In [Y84], transactions can contain several read and write operations
but the operations are assumed to be ordered so that no transaction writes to the
same variable twice or reads a variable it has previously written. Such restrictions on
transaction structure simplify analysis.

In addition to assumptions about organization, different models make different as-
sumptions about the degree to which semantics of individual operation are known. In
[P79], only the set of variables accessed by a write operation is considered when ana-
lyzing its behavior; the function used to compute the value it stores is left unspecified.
"Fhe same is true in [Y84]. In contrast, the models of [SS84] and [W84] specify not only
the variables that operations access, but also details of how these operations transform
these variables from one state to another. As with restrictions on operation type and
order, weaker assumptions about operation semantics simplify analysis of concurrent
execution. However, models that make stronger assumptions about semantic infor-

mation allow use of this information when deriving synchronization for serializability,

T wTw R w

usually allowing more concurrency than models that make weaker assumptions.
1.3.2 Transaction Synchronization

Another area of difference in various database system models is the way in which trans-
action synchronization is represented. In some models, synchronization is tmplicit—
transactions do not execute synchronizing operations directly but send requests for
operations to a system process called a scheduler [P79]. The scheduler considers the
history of requests when deciding whether to delay or grant a pending request. An ex-
ample of implicit synchronization is timestamp ordering [BG81|, in which a timestamp
is assigned to each transaction as it begins to execute. Each request submitted to the
scheduler is marked with the timestamp of the transaction submitting it. The scheduler
then uses these timestamps to order requests. In other database system models, trans-
action synchronization is ezplicit—synchronizing operations appear among transaction

operations for manipulating data.
1.3.3 Locking

A form of synchronization used in many database systemn models is locking /G78,K83,
Y84,KS79|. In database systems that use locking for synchronization, transactions
dcquire and release entities called locks. In some systems using locking, transactions
explicitly execute operations to acquire and release locks, while in others, locks are
acquired and released implicitly as transactions execute operations. A locking protocol

characterizes how locks can be used to synchronize transactions. A locking protocol

specifies

pasa LA S A SENCAE RSN L

--'Jip-{“

0, -".' 'y'

erd l“

T
»

el O
{\ e Pl

‘y

Jo T

h v MY
. |'l"/f':'

ALY,

A
.78,

‘ ea s s Sl O h bk Al Gt e’ ha’ e y - -
O 2O W ia e 'Y < R -, R A A A Y a

10

e a set of possible modes, or types, that locks can have,
e a compatibility relation indicating what locks can be held concurrently, and

¢ a set of locking rules transactions must follow when acquiring and releasing locks.

Synchronization results from mediation of lock acquisition and release requests ac-
cording to the compatibility relation, delaying requests that are inconsistent with the
compatibility relation.

Previous research on synchronization in database systems has focused on developing
locking protocols that allow as much concurrency as possible among transactions, but
restrict possible schedules to serializable ones. Several protocols have been proposed.
One area of difference between them is the set of lock modes assumed. The set of lock
modes is usually derived from the set of operations that the database system model
permits. Each lock mode typically specifies the operation with which it is associated
and the process that has acquired it.

Lock compatibility relations have traditionally been derived from the semantics of
the operations with which they are associated. Exclusive locks are used whenever the
net effect of concurrently executing transactions can depend on how operations of a par-
t‘_icular type interleave. For example, the value left in a[s| by transactions DEP(a s ,d)
and INT(a[s],r) of Section 1.1 depends on how the write operations w(afs!,t0 + d) and
w(ba,tl +d) in DEP interleave with w(a[s|,t2+r=t2) and w(ba,t3 + r=t2)in [NT.
Consequently, the lock mode associated with write operations would by exclusive. If
both transactions consisted of only read operations, every interleaving would produce

the same result, which implies that the lock mode associated with read operations need

Al S ‘f‘:'-l{.r‘f;-r;.f‘r » J‘\'f.:-f;-f\"-(\.'d‘" >, (\ AN N A S A AL AN TR AN

9,57,

AR VAN AN A A e

u‘fﬁ(‘-

'\\\

N

-
(A

AR RAAR M

L et x

ACICAARS GRS

-".]

L oL Y

2

Ce R A A B P O LR AR

AR

”

hY

PECRE L

S
\
)
ay
\

AT Sl Sl A A

not be exclusive.

Locking rules for acquiring and releasing locks generally require a transaction to

. have acquired and not yet released a lock for an operation before it can execute that
; operation. Several additional restrictions on lock acquisition and release have been
.: proposed. For example, lock acquisition and release is often required to be two-phase
v |[EGLT76], which means that a transaction never acquires additional locks once it has
- released any lock. This divides transaction execution into a lock acquiring phase and

‘ s a lock releasing phase.

N

» A two-phase locking rule is shown to be sufficient to guarantee only serial schedules
'. for the model used in [EGLT76]. The necessity of two-phase locking in the absence of
restrictions on transaction structure is also discussed there. In models where more is

e known about the structure of access to data, locking rules that are not two-phase have
. been proposed. In [BS77], for example, a protocol for transactions that traverse and
.

E modify B-trees that does not obey the two-phase restriction on lock acquisition and
" release is presented. This approach is generalized in {GS85| to obtain locking rules that
are not two-phase when transaction operations are structured to traverse more general
types of linked data structures.

- 1.3.4 Definitions of Serializability
.-:_ As with database system models, several different definitions of serializability have
- been proposed. These definitions differ primarily in the formal definition of when a

.‘; schedule “behaves like” a serial schedule.

- One of the earliest formal definition of serializability, found in \EGLT76", falls into
-

[g
’

"

% |

~ '

o

(*, i) o AN AN S N
ST P Ta) A rA"A RN RIS ‘\qu~d‘f L a NN AT f\f¢.‘f~f\f\f,(‘.'\f O Pl
<CON N A " & £, oL i) i W, A .

200,07

".

L LR e

'
)

u N
." '.l.“l ‘ AR

[]
[

]
\(\ \"-"u 9’&.

it :‘b.!s;'k > ’5"

‘e

N N
.’\‘.l. ﬂ. \l\ bS]

AR TN
AN

CRF

b
;n

LS
AP
LA

LRGN

)

- L IR
LR -.',s"-.‘ A

12

a class of definitions that has subsequently been calied conflict serializability P36 .
In conflict serializability, behaviors of schedules are compared according to certain
conflict relations that they induce. A schedule o induces the conflict relation ('Rs on
pairs of operations in o, where (a,,4;) € CR; if and only if 4, and a, are from different
transactions, e, appears before @, and both operations cannot be run in the other order
and produce the same result. The conflict relation ('Rs is extended to transactions by
defining (7,,7,) € CR; if and only if (q,,a;) € CRs for some operation a, from 7, and
a, from ;.

A conflict relation CR, reflects the potential for one transaction to influence the
behavior of another in the concurrent execution represented by the schedule o. Thus,
the behavior of two schedules can be compared by comparing there associated conflict
relations. Two schedules o and o' are conflict equivalent if and only if CRs and CR_
are the same relations on transactions. A schedule o is conflict serializable if and only
if it is conflict equivalent to some serial schedule ¢’. An equivalent definition sometimes
given is that o is conflict serializable if and only if CR4 is acyclic, since this ensures at
least one serial schedule shares the same conflict relation.

As the second formulation of conflict serializability illustrates, whether or not a
particular schedule is conflict serializable depends directly on the strength of the conflict
;'elation: the more conflicting operations there are in a schedule o, the more likely
CRs 1s to contain a cycle and hence fail to be conflict serializable. For this reason,
operation semantics are used to define conflict relations that relate as few operations
as possible. In models with read and write operations, the conflict relation is defined

so that (a,,a;)€ CR; whenever a, and a, reference the same variable and at least

AL R A e '-..' U ‘.-"‘n _
YA B e I "

AN T e e T e e e e S T LA
R S VR T LA PR AR,

o e

ALY

S

Pl b ¥

‘-.c-‘l\.

ha e PO]

3 l"n‘l () ',- L Kl X

N

W W Al DA SA- G L= AT ANN VLV TPV VIR W
L ek Y Yoo "u e e A B 2l v w0 T -

13

one is a write operation. This 1s because pairs of operations on different variables or
pairs of operations that only read the same variable cannot influence each other. In
models such as |K83) and [GS85], the greater degree to which operation semantics are
specified permits weaker conflict relations to be specified. For example, two operations
that change the value of the same variable do not necessarily conflict as they would if
they were simply considered to be instances of write operations.

Another class of serializability definitions involves those that compare schedules
on the basis of how they transform a system from one state to another. This class
is sometimes subdivided into final-state serializability and view serializabslsty [P86).
In both of these subclasses, a schedule “behaves like” another if and only if both
transform identical initial states to identical final states. However, final-state and view
serializability differ as to what portion of the system state is used to compare the effect
of schedules.

In the definition of final-state serializability found in [K83|, system states are com-
pared according to the value of only those variables that are shared by transactions.
However, it is argued in [Y84] that final-state serializability is inappropriate for mod-
els in which transactions contain read operations because it ignores the values copied
into a transaction’s local storage by read operations and does not take into account
t‘he possibility that transactions might read inconsistent values and behave erratically
or present inconsistent output to users of the database system. View serializability is
therefore proposed in [Y84] as a more appropriate definition of serializability. When
comparing the effect of schedules, view serializability includes in the system state the

values read by transactions in addition to the values of shared variables.

- - - P T ~ n'_
“J"l’"’“:-f"r ‘.F:.f"d'"-" ,f:.f_.r \.(\':.f A "\"'&.”'\"\ ,-"_;J'_‘ .,- \,_',;- o _ \. ,,\ _,\ _\

g .“\.{"_J'\ \

YL P
' ’f "«"."’

SRR

14

In 'P79!, the relationship between conflict and view serializability is explored. It
is proven that every conflict-serializable schedule is also view serializable. In light
of this result, view serializability would seem to be a preferable definition because of
its generality. However, it is also shown in [P79! that the complexity of the general
problem of deciding wheiher a schedule is view serializable as a function of its length
is NP-complete. This makes it improbable that efficient algorithms can be constructed
for synchronizing arbitrary sets of transactions. Because a schedule can be determined
to be conflict serializable in time polynomial in its length, conflict serializability is more

often used in practice as the basis for concurrency control.
1.3.5 Alternatives to Serializability

Some have suggested that requiring every schedule to be equivalent to some serial
schedule is too strict a requirement for database systems (e.g. {L76!). The Concurrency
Control Problem requires only that transactions transform the database system from
one consistent state to another. Every serializable schedule will accomplish this, but
in some cases there may be non-serializable schedules that do so as well.

An alternative is proposed in [G83]. There, every schedule is required to be se-

mantically consistent rather than serializable. A schedule o is semantically consistent

if

e o transforms the system from one consistent state to another, and

e there is a serial schedule o' such that for every initial consistent state, o and o'

leave the same values in a specified set of RS variables (for Requiring Serializab-

ility).

AL PO P T T
C AT ATE S -’-<'-.‘/...f ,t-f..y’Nf\f..f r\(\r t." ! "R W oY % .{\".(-'.Q' e -,\fl, ‘_'. '’ ," N
B Ny . - -

s

. NN

L4

DA

'

£

oy

Y

r'.rs.' .y

Tk R Ry ALY

P AR
'."l. iy N

%
o

5 o »
."fsf:'l’ < "‘ “

%

o
o

AR
XA

MY I I A .
.: ." [’|' ...'.I...’]

Pl ot o e M
NN
- vl hd

SN e RS
‘-

A

15

Since the RS variables need not include every variable of the consistency constraint,
the first requirement is not redundant. This approach has the advantage of allowing
more concurrency than if schedules are required to be serializable. A simple example
of a database system that models an airline reservation system is given in [G83| to
illustrate this. The system contains four variables $X, SY, TX and TY. The value
of 5X denotes the number of passengers on a flight £ X, while TX denotes the type
of plane scheduled to handle that flight: either “small” or “large”. Variables §Y and

TY denote the same information for a flight FY. The consistency constraint for the

system is
(SX 2100 = TX = “large”) A(SY >100 = TY = “large”).
The RS variables are SX and SY.

Two transactions are considered, one that reserves a seat on both flights:

RXY: R1: Increment SX by 1. If $X >100, change TX to “large”.
R2: Increment SY by 1. If SY >100, change TY to “large”.

and one that cancels a seat on both flights:

CXY: C1: Decrement 5X by 1.
C2: Decrement SY by 1.

éuppose that both RXY and CXY run concurrently in an initially consistent state

with X =S§Y =99 and TX = TY = “small” producing the schedule
03: R1,C1,C2,R2.

This schedule will leave SX = §Y =99, TX = “large” and TY =“small”, which is also

a consistent state. It also leaves the RS variables §X and SY with the same values as

R T T)
NI

2 A

525

‘é

2

!"

el 3

2

"-"’-:.l""
I P I it L

16

either of the two possible serial schedules. Consequently, 03 is semantically consistent.

However, 03 is not serializable under any of the definitions described previously and

LS N oL ey a et AT N
B AN A NN M P A I NN

ok would not be allowed in a database system requiring serializability. Thus, an advantage
: of replacing serializability by the weaker requirement of semantic consistency is that
R more concurrency among transactions is possible. A disadvantage of this approach is
Ny
" . o . . .
' that analysis of synchronization requirements for semantic consistency can be more
L . . qe oy . . .
:. complicated than for serializability because of the details of the consistency constraint
) and operation semantics that must be considered.
o
X 1.4 Reasoning About Concurrency
A
<
> .
> A database system can be viewed as a concurrent program—a collection of sequential
o
D
k3 programs that run concurrently. Properties of concurrent programs can be viewed
,F
-'Jl
e in terms of safety and liveness. A safety property is one that specifies that one of a
N
.l given set of “bad” states is never reached. An example of a safety property is partial
~ correctness, which says that execution that begins in one of a given set of initial states
X
~
:': does not terminate in a state outside of a given set of final states. A liveness property
\..
v .
:: is one that specifies that some set of “good” states are eventually reached. An example
K of a liveness property is termination, which says that execution that begins in one of
.’ l
l{ .
"i a given set of initial states eventually terminates.
\,
:::: As the schedules considered previously indicate, execution of a concurrent program
o can produce any of a number of different interleavings of its constituent operations.
~
i The interleavings that are possible depend on the atomic operations that constitute the
3 concurrent program. An atomic operation is one that indivisibly runs to completion
<
i
o o
"
V.7
e .
b .-J ™ - -

" n AT T AT AT AT A’ (TR AN T A A TR ", W W Wy s T W L l',.d‘..-(\f..‘_-f'.-v"._v’ f\-‘
e J,\J, f"" 1% A" \f'-\’\ ~ 'p\ L \ ~ .,_\\\ e e SN

> 17

once started. Following [L80], an atomic operation that executes program text § is
denoted (S5). In the sequel, we will write § in Guarded Command Notation [D76] but
require that § is deterministic.

For all but the simplest concurrent programs, the number of different schedules is
apt to be too large for safety and liveness properties to be verified by considering every
possible schedule. To address this problem, a more tractable approach to reasoning
about concurrent programs has been developed. It is based on the use of a formal
logical system relating program behavior to predicates on program states.

Proof Outline Logic [SA87) is one programming logic for expressing and proving

safety properties of concurrent programs. A proof outline is a formula
{Q}s{r} ;

where Q and R are predicates on the system state and are called assertions; S is an

annotated program, a program in which each atomic operation (a) is preceded by zero]

or more assertions. An assertion that immediately precedes (a) in the proof outline is

called the precondition of (@) and is denoted pre((a)). An assertion that immediately

follows (a) is called the postcondition of (a) and is denoted post({a)). ~
A proof outline { @} S {R} specifies the safety property that if § is started at some

Atomic operation (a) in a state that satisfies pre((a)), then at any point reached

during execution, the state will satisfy the assertion or assertions that appears at that

point. Proof Outline Logic provides a set of axioms and inference rules for inferring

valid proof outlines. These axioms and rules include those of Predicate Logic {S67I .

along with axioms and rules given in [SA87| that are specific to Proof Qutline Logic. 3

A summary of these rules can be found in Appendix A of this dissertation.

.\."--".u., ‘" f'.'-

(AN

L]
l'
[S
I ISTATAI AT AT L A AV AC AT A
‘ p.’.Aﬁhﬁ\’h’t‘f.‘nt{f!:.!_"!_154\"1_‘.::'

‘900 2 82 el ?

€27 000" e $a" Sha" Sha D QAL $0u R0n b S R sl B Rl - e,

18

Dijkstra’s weakest precondition predicate transformer [D76], a function that maps
one assertion to another, is often used in conjunction with Proof Outline Logic to reason
about programs. For 5 an operation or program and R a predicate, the predicate
wp(S5, R) (read the weakest precondstion of S with respect to R) denotes the largest set

of states in which execution of § is guaranteed to terminate leaving R true. From the

semantics of proof outlines and wp, it follows that
{wp(S,R)} S {R}

is a valid proof outline for any 5 and R. Thus, a precondition of § that allows a given
postcondition R to be asserted can be computed using wp. A summary of general
properties of wp along with rules for computing wp(S,R) can be found in Appendix B.

Assertional reasoning is the name given to the style of characterizing program
semantics in terms of assertions on the program state. When compared to other ap-
proaches to reasoning about concurrent programs, an apparent disadvantage of asser-
tional reasoning is the level of detail at which the analysis is carried out. Of course,
this is also an advantage since it is possible to capture detailed semantic information
that is ignored in other formal systems. Another advantage of assertional reasoning
is that properties of concurrent programs are often specified most naturally in terms
of properties of the states reached during execution. For example, a solution to the
Concurrency Control Problem requires every execution that begins in a consistent state
to leave a consistent state. This is an assertional property since it specifies a prop-
erty of the system state (consistency) at points during execution (before and after).
Yet another advantage of assertional reasoning is the ability not only to prove that

a given program satisfies a particular specification, but also to dersve programs from

N o

"
WA

AT

Y
AR

L W
s

A

T, l‘.
[n"'_\

n B 9% |
A

Lo Ly

LR, 8

Sy

o4 % ;

BN P

!y

o
»

g
- . - " o \ S ; NN NN S e N
> %, v*‘ ‘(‘-*--*v-\;'u'-’. '*'\ > "~ *f\)' .*\} 5*\..\ -‘.'- '-)-'\¢-" I*f)}\.*\-\\ﬂ } ¥ " w *

. . . a2t 200" 14 TR
5 o aaa abh ARl » < A A . .
Jak Sal et R s ¥ o W a Y T W N TV v v e ve - A

! 1

.

‘&

%

v l
\', 19 .
D,

their specification, using the inference rules of the logic to motivate refinement of the

3 program.)

c‘
N
1.5 Overview of Dissertation |

2 .
"

J .
- This thesis describes the application of assertional reasoning to the Concurrency Con- .

' L]
b trol Problem. Chapter 2 presents a new definition of serializability that is based on .

i

s assertional reasoning and generalizes previcusly proposed definitions in several respects.

0 ‘
'

‘ A method for using Proof Outline Logic to specify and prove that database systems

iy

* satisfy this definition of serializability is then presented. Chapter 3 presents an as- :

.. :
- sertional view of locking and describes a method for deriving locking protocols. This .
- method is then used to derive synchronization for a database system modeling a sim- .

‘ ple banking application. Finally, Chapter 4 summarizes the thesis and draws some N
o« -

y conclusions from the research presented here. -
’ :
N :
N\ .
X :
g 5
A h] -
3 5
5 x

~

~

h)

X
i

;‘

AT AT ATy A,

- - PG ™ Wy oo a W g u W ¥, Tl =™ & o
p - ~ '\'\'\'ﬁ'\ g g S A N S S e A S AT, S W

IO I TN

"
-V

1 -y
s

R

l'?t '?'-

-wwr

r X

0)

Z
o,
2]
}.
Chapter 2 ;
v
: .ﬂ
° ° ege)
Serializability \,.
",
As discussed in Section 1.3, there is no standard system model or definition of serial- :‘\'
»
>
izability. In this chapter, we describe the system model used in the remainder of this t '
dissertation. We then propose a definition of serializability that generalizes previous ':
'
definitions of serializability in several ways. Finally, we demonstrate how this definition b
4
can be formulated in Proof Qutline Logic. i
¥
2.1 Database System Model o
Concurrent execution of a set of transactions 7g,...,Ty_) is denoted ;'
i ; .
cobeginTy || --- || Ty_; coend. (2.1) .
o
A necessary condition for an atomic operation (S5) in (2.1) to run is that it be enabled, ;
W
which means that the control point before { §) has been reached and the system state be ::'
w
\I
one in which § will run to completion. During execution of (2.1), however, it is possible ::
\‘
for more than one operation to be enabled at the same time. Consequently, a scheduling '
Y,
v
. 20 v
\ ¢
.
\ .
.
=
A "
o m AN (A "M "k M - AR TR Y Y "A®]
DT SO O ot i iy A AT Nt A O X0 e L LD, m L Tty e e

NN AN K

. gy 0 0
P » . - ”
9.2%0 2 Vak ¥ X ‘B o’ gha” pha fha- She e BALSORLY Rl AV] . . -

21

policy must be given to specify how operations are selected for execution from among
those that are enabled. We will assume in the remainder of this dissertation that
concurrent execution of transactions follows a weakly fair scheduling policy 'SA87' —
no operation that becomes and remains enabled will be forever delayed.

Execution of (2.1) terminates when every transaction has terminated. A transac-
tion 7, can terminate in two ways. One is for 7, to complete by executing an operation
(end(T,)) and halting. The other way in which 7, can terminate is to abort. A trans-
action aborts when conditions such as deadlock, system failure, or unexpected input
make it undesirable or impossible for it to complete. 7, aborts by executing an op-
eration (abort(r,)) and halting. Operation (abort(r,)) typically implements recovery
operations to cancel the effect of operations previously executed by ,.

A database system ¥ can be specified by a 4-tuple (V ,C,T,=), where | =
{vg,...,vn) is a vector of variables, C is a predicate on V', T = {7p,..., 741} is a set of
sequential programs, and = is an equivalence relation on the domain of V' (the cross
product of the domains of the variables of 1'). Variables of V' characterize the state
of ¥. Any system state can be written as a vector of constants V' = (v('),...,v:l), where
each v,’ is the value of the corresponding variable v, in that state. For any predicate P
on V', P is true in state V' if and only if P:,/, = true.! Predicate C in the specification
of Tisa predicate that implies the consistency constraint of £; a state is consistent if
C is true in that state.

Each 7, € T models a transaction of £. An ezecution of T is an execution of the

concurrent program

'P,':" 'en denotes the result obtained by simultaneously replacing all occuttences of v, by the corre-
sponding e,.

L WAy .';\.'f\.ﬁ.‘f-'f" iy

(X0 A XA

e

2

5"4 L

e '\' ". ." \

BL X TN
<

rad® P X S .r,'l &

PP
Il
et oy

LAALL AN
P LN

oy

WY 2}
R .
RN AL

i ":‘.'-“'I\i’.'- .

“
~

Y 'hﬂ'.

e A v - et el ot a e el it Ol s 0t ba? 4P b b hed et 8"
|‘|‘4!‘i' el . A a8 o008 Yl Aol R0 LATALS 01 a0 g A TRV T eV) - At ol ol

4
3 2, 22
My cobeginry || --- || Ty_; coend, (2.2)

N and a schedule of ¥ is the sequence of atomic operations resulting from a terminating
execution of (2.2). We assume that each 7, will complete leaving C true when executed
~ in isolation starting with C true. For each 7,€ T, we will assume that V" contains a
Boolean variable cf;, called the completion flag of 7;, such that cf, = true if and only if
T, has completed. This models information that is typically found in system logs.
N The equivalence relation = in the specification of ¥ is a binary relation on the
4 domain of V and partitions the states of £ into equivalence classes. Each equivalence
" class contains the states that cannot be distinguished from one another by the appli-
e cation supported by . This provides an abstraction that hides aspects of the system
- state that are irrelevant to the application being supported. To limit the amount of

information that can be hidden, = is requires to satisfy two adequacy constraints:
AC1. For all system states V' and V",

. (V'=V") = (Vi: 0<i< N: of =¢f").

' AC2. For all system states V' and V",

— N vV v
(V' = V") = (CV' =4 CV").
I
‘AC1 ensures that states in which different sets of transactions have completed are

distinguishable. AC2 ensures that consistent states and inconsistent states are distin-
'\v_ guishable.
An example a database specified as a 4-tuple is X0 of Figure 2.1. ¥0 models an

~ application in which a series of independent events move elements one at a time from the

.l)s"’ : ;- < ". ’l {’L,&a‘

........... B P TP
r f\(~f_‘f~f\ﬂ_f\ f__(\\"-l' _-N-"\J‘\J'\J“- s

et atacpra g e
N SRRty _\.r‘_

I S R A L AL)

\ '\'-';*p,-’—«

W e B ARAL LR X et LA

23

S0 = 10,00, T0,=¢)

V0 =(q0,q1,20,...,z5_,¢fo,--scfy 1,
€0 - (ql-q0= QA g0l ~(#k: O k N: cfy=false)),
T0 = {79,-..,7n_1 },
.= 51, (z,,q0:=q0(0),q0(1..));
52;: (ql:=gql-zy);
§53,: (end(7y))
(VO =4 V0") = (g0 = q0" A q1' = q1" A . {\ chk':cf,;')

Figure 2.1: Database System 0.

head of one queue to the rear of another, as in a factory where parts are transferred
from one assembly line to another. V0 contains two sequence variables ¢0 and gl
modeling the two queues, and a variable z, for each 7, in T0 to hold the item removed

from ¢0 and not yet appended to ¢ql. The following notation is used for sequence

‘s the number of elements in s.
s(s) the sth element of s for 0 <1 < |s].
s(s..7) the subsequence of consecutive elements from the ith

to the jth for 0 <1< j < |s| (and the empty sequence if

7<)
s(s..) an abbreviation for s(s..!s|-1).
s1-52 the catenation of s1 and s2.

The conjunct ¢1-q0= @ in the consistency constraint CO specifies that queue el-

ements are not lost in the transfer, while the second conjunct2 (g0l = (# k: 0 _ k.

3(#1: R: P) denotes the number of values s in range R that satisfy P.

o ad

n 2 A KLl o

. ‘ 5
s A N AR e A N R ol S R

)
-
]

7]

r

-

1
[3
f
[
-
13
1
t
)

i
.

[
.
v
»

>
.
3
2
w

n.
»
N
o4
!.
’:
v
o 24
._‘ N: c¢fy = false) specifies that ¢0 contains enough elements for every transaction that
)
" has not completed to remove one. Each transaction 7, ¢ T0 models the transfer of one
L}
- element from the first queue to the second, using a local variable z, for temporary
o storage of the element removed. For simplicity, we assume that transactions of ¥0
-
A terminate only by completing. The operation 51, moves the first element of ¢0 into !
¢
o
z,, and §2, then moves it to the rear of ¢1; §3, has no effect other than ensuring that
- cf, = true.
,:..
! ::' The equivalence relation =y specifies that two states V0’ and V0" are equivalent
“
'~ when each of ¢0 and ¢l contain the same sequence of elements in both states, and the
:‘{: same transactions have completed. The values of temporary variables z,...,zy_; are
2
Y ignored by =(since the particular order in which transactions run is insignificant in '
n\.
this application.
N 2.2 Serializability
<
. Recall that wp(S,R) denotes the set of states in which execution of § will terminate
oL
&
-::\ leaving R true. Using wp, it is possible to formalize the property that a schedule o
X
o
~n “behaves like” like a serial schedule.
- Definition 2.2.1 (Serializable Schedule) Let ©=(V,C,T,=) be a database sys- :
*~
- tem and let SER(T) denote the set of serial schedules for T, each schedule consisting
+B of zero or more transactions of T. Let V be a vector of new variables each having
:'-: the same domain as the corresponding one in V. A schedule o of ¥ is a serializable
: schedule of ¥ if and only if:
I.‘
? [%
. 1
e
<.
L2,
-,.
1] n’

- - e e e - 0 I N I LA LTI SRR LI R T VR IS N AT
R R R AT A —.":'\'.'-"“.‘.".'.' NI ..-.\-’\—\- R SRR A A WY Lo o
a 2 A A Sa aa B) . a2t

~ N W T
’m(\‘“\‘:“\:’h’:

C L T R P R e h"\ -y W™ o,
v o L AL Ao
BN S ARG N AR A

a

Definition 2.2.1 can be interpreted as follows. A state satisfying the antecedent is
one satisfying the consistency constraint and in which execution of o is guaranteed
to terminate in a state indistinguishable under = from V. A state that satisfies the
consequent is one in which execution of at least one serial schedule of ¥ is guaranteed to
terminate in a state indistinguishable under = from V. Thus, the implication specifies
that any consistent state in which execution of & terminates in a state indistinguishable
from V is one in which execution of at least one serial schedule ¢’ of £ terminates in
a state indistinguishable from V. From the assumption that = satisfies adequacy
constraint ACl, it follows that the states reached by ¢ and ¢' will have the same set
of completed transactions. From the assumption that = satisfies adequacy constraint
AC2, it will follow that the state reached by o will satisfy the consistency constraint
if and only if the state reached by o' does. Since o' is a serial schedule that starts in
a consistent state, it will always leave a consistent state, and consequently the state
reached by ¢ will be consistent.

For an example of a schedule that is serializable according to Definition 2.2.1,

consider £0 of Figure 2.1. When N =2, execution of ¥0 can produce the schedule

o4: 510;511;520;521;53¢;53;.
Consider the serial schedule

o 510;520;530;511;521;531.

S A A A e
W A T,

=

Y
o :]

»
¥

454

3 M 3
2

kY
il

R]
5
555

. N %

5

12, 2L 220

Boa

YS!

h
’5

S e, L A R R LA R A LR N S
py -" f:}'l‘l,'.‘."%"- \f'- G L e e . '- Y '-'\v - \'

...... Chie f WP TR TR N AR TRT RO NTY KT ATHT,

26

Using the rules for computing wp (see Appendix B for a summary), it can be shown
that
(C0 A wp(ad, V0 =g VD)) =
gl-q0=Q A g0 > (# k: 0 k< 2: cfy = false) » q0(2..) = q0
A q1-90(0)-q0(1) = g1 A true = cfq = cf |

and
wp(05, VO =g V0)) =
g0(2..) = g0 A q1-90(0)-q0(1) = g1 A true = cfg = cf |
From this it follows that

= (C0 A wp(ad, V0 =g V0)) = wp(a5, V0= V())

and since ¢5¢€ SER(TO),

E(COAwp(ad, V0= VO)) = (\ wplo,VO=(VD).
o' SER(TO)

Therefore, o4 is serializable according to our definition.

Definition 2.2.1 for serializable schedules can be extended to obtain a definition for

serializable database systems.

Definition 2.2.2 (Serializable System) Database system L =(V,C,T,=) is a se-
rializable system if and only if concurrent execution of transactions that begins with

C true always terminates and every resulting schedule is serializable. a
Note that although the schedule o4 is serializable, ¥0 is not a serializable system since
o6: 51¢9;511;521;529;53¢;53,

is not a serializable schedule.

\. AL \,\._'-f,\'..{-.,.I:..,&'\'. . AR T IS AN

'J‘.:-' ;I‘,'.

e,
’_s'-."',\

27
2.3 Serializability with Proof Outlines

Definition 2.2.1 characterizes serializability using wp. It is also possible to characterize
serializability using proof outlines. Two benefits result from such a formulation. The
first is that Proof Outline Logic then can be used to verify formally the serializability
of a database system. The second, explored more fully in Chapter 3, is that it becomes
possible to derive synchronization protocols that ensure serializability.

A Proof Outline Logic characterization of serializability is formulated by intro-
ducing auxiliary variables and operations on them that allow the behavior of serial
schedules to be characterized by assertions. Let ¥ =(V,C,T,=) be a database system

with variables

V = (vg,...,vn)
and transactions

T = {719,.--,TN_1}-

Define a vector of new variables

#ith each new variable 3} having the same type as the corresponding variable v, in
V. Each 9, is called the shadow variable corresponding to vg. With these shadow

variables, construct a set of new transactions

T ={%y,...,"n_1}

......

Tu ot el .

..........

N
2

{

[2

|

[4

L

* -
-
28 A

"

where each 7, is obtained from 7, ¢ T by replacing all reference to vg ~ V" by a reference

A)
—~ b))

g to the corresponding ¥y € V. Each 7, is called the shadow transaction corresponding N
. ~
to 7. =
Let SER(T) denote the set of serial schedules consisting of zero or more transac- :

= - - ~

tions of T. The isomorphism between V' and |” and between each r,c T and 7,- T "

implies that for any serial schedule o' € SER(T), there is a serial schedule 5 SER(T) ;'
that transforms V in the same way that o transforms V. This isomorphism between b5,
§ u
schedules of SER(T) and SER(T) makes it possible to construct a proof outline that wl

1 is valid if and only if o satisfies Definition 2.2.1.

JRMG'C

Theorem 2.3.1 (Schedule Serializability with Proof Qutlines) Schedule o of

-

o o
: database system £=(V,C,T,=) is a serializable schedule if and only if b
13
_ L
. $50(¢): {CAV =V} -
: o _
: { VvV _wp(a,V=V) N
F€SER(T) L
is valid. 0 3
<
~
Proof of Theorem 2.3.1 From the interpretation of $50(o) and of the weakest pre- :‘
condition predicate transformer, $50(o) is a valid proof outline if and only if ‘
: :
—_ — ~
1 ’ E(CAV=VAuwp(o,true)) = wp(a, \/ wp(a, V = V). (2.3) h
; ¢ SER(T) by
Thus, the theorem follows if o is a serializable schedule of T if and only if (2.3). This L
, is proven in Lemma 2.3.4 proven below. m] :-
L] :j
The proof of Lemma 2.3.4 will frequently rely on inferences that are justified by !
=
-
o~
-~
o
L
™
N N N e N N N e

A ot B id BB dub S0 S0 0e0 Nt Bl S Y T 01 o

.........

29

the following two lemmas. The first states that substituting subformulas of 4 with

equivalent ones results in a formula that is equivalent to A.

Lemma 2.3.2 Let A’ be obtained from A by replacing some occurrences of By, ...

By by Bi, ..., B respectively. If
=B, = B{,....,=Bn < B,

then

L CHEER A ASS Y S NS PP EEEN TR SO

= A if and only if = A’

o

Proof of Lemma 2.3.2 By induction on the structure of A. See [S67] for details. O

The second lemma characterizes the distributivity of wp over conjunction with a

predicate B when B does not contain variables referenced by §.

Lemma 2.3.3 For any program S and predicates 4 and B, if § does not change any

variable of B, then

E(wp(S,4) A B) = wp(5,A A B).

a

Proof of Lemma 2.3.3 By definition, wp(S,B) represents the set of all states such
that execution of S begun in any one of them is guaranteed to terminate in a state

satisfying B. Since § does not change any variable of B, then wp(5,B) is the set of

states in which § is guaranteed to terminate and in which B is true. Thus,

3

2t

L

v
.

N ~

W e ety ROTRN O R WY Lads A el - 0707 o e P Sl At IS Nl b 0 DD A d g) - -

30
= (wp($,true) A B) = wp(S, B). (2.4)
By Predicate Logic, wp(S5,4) can be conjoined to both sides of (2.4) giving
! = (wp(S,4) A wp(S,true) A B) = (wp(S,4) A wp(S, B)). (2.5)
Distributivity of Conjunction from Appendix B implies that

I wp(S,4) A wp(S,true)) < wp(S,A4A A true).

Substituting the right side for the left in (2.5) gives

E(wp(S5,4 A true) A B) & (wp(S,4) A wp(S, B)). (2.6)
; Distributivity of Conjunction also implies that
% wp(S,4) A wp(S,B)) = wp(S5,A A B).
Substituting the right side for the left in (2.6) gives
{ = (wp(S,A A true) A B) = (wp(5,4 A B)). (2.7)
Since (A A true) = A4,
E(wp(S,4) A B)& wp(S5,4A A B).
a
Using these lemmas, the equivalence of the serializability of ¢ and the validity of
(2.3) can be proven.
Lemma 2.3.4 ¢ is a serializable schedule of £ if and only if (2.3). a
.w e T N N 2 U T s S N S S T AR R T M

NI

I“' "I . l 'I

AR

LIS
n

o

P

.rtf(rr‘-r — -

SRS AT LS A

o e

P
‘e o

¢

SN el . e
-

N

-
A

-—-r e

"l’ﬁfﬂ-{””"i

:'

\I

‘.

: :
Y,

M

-h. Proof of Lemma 2.3.4 By Definition 2.2.1, ¢ is serializable under = if and only if)
2 - , -

- =(C Awp(a,V=V))=(v wp(o,V =V)) (2.8)
N o' SER(T)

From Predicate Logic,

o . - ,
g EPs(VV: V=V P2

\l

N‘
) for any predicate P. Taking
e N !

P=] \/ wp(d,V=V),

v o'c SER(T)
e and applying Lemma 2.3.2, (2.8) if and only if
< T T YT v

i E(CAwp(a,V=V))=(VV: V=V=(\/ wp(o', V = V))Q) (2.9)
3 o'cSER(T) '
o g
': From the construction of the shadow transactions and definition of SER(T),

. (Ve V=V)ie(V w(E,V=V))

. o!'cSER(T) F€SER(T)

s

o Thus, (2.9) if and only if

(]

4 =(CAwp(a,V=V)=(V: V=V=(\ wp5,V=V)) (2.10) :
v F€SER(T)

" —

: From Predicate Logic, when variables of V' are not free in P,

& E(P=(NV: Q)e(VV: P= Q)

Taking

> =[C Awp(o,V=V) and
¥ Q=(V=V=(VvV w3 V=V))],
o GeSER(T)
5 (2.10) if and only if
o

N

g R LR PRy
~ .\wx-\s_';\.'\.'-'""\"\.'\'\'\-\."\\. \"--\\\\~~.~. SARLRLN A \

J"I‘J‘-’J‘

= (VY (€~ wp(a, VET)) =(V=V=(V wp(&,?ir)))). (2.11)
GeSER(T)

From Predicate Logic,
= (YV: P)if and only if &= P.

Taking

P={(CAruwp(a,V=V)=(V=V=(VvV w3 V=z=V)),

F€SER(T)
(2.11) if and only if

E(CAuwplo,V=V)=(V=V=(\ wpaV=V)) (2.12)

Fe€SER(T)
From Predicate Logic,

EP=(Q@=R)=[(PAQ)=R|
Taking

P =[CAwp(o,V=V),

Q ={V=V] and

R=[V _wp(3,V=V),

FeSER(T)

(2.12) if and only if

E(CAwp(a, V=VIAV=V)=(\ wp&,V=V)) (2.13)

e SER(T)

E(CAV=VAwp(a,V=V))=(\ wp&,V=V)). (2.14)

From Predicate Logic,

. R g i A L A "
o a0 J‘.'-f-rq“ DN N N ... f\v"~l.‘f\f,f.'f..l it . o ' e PNty

P MY Y Y

*«

XY,

e ptay s

DTl

‘9 a5 8 Vel 02 Vel S - 1407 o" e pe Bia- fhe gt AL PUE Dol el e IR

33

(P2 Q) = R)=((PAQ)=(Q"R)).

Taking
P=CrV=V,
Q@ = |wp(o,V = V)l and
R= Vv wV=V)y,

e SER(T)
(2.14) if and only if

=(CAV =V Awp(a,V =V)) = (2.15)
(wp(o,V=V)A(V wp(5,V=V)).
FcSER(T)
Since ¢ does not reference any free variable of (vV wp(7a, V= V)), it follows
G€SER(T)

by Lemma 2.3.3 that

E(wp(a, V=V)A(V _ wp(a,V=V))
e SER(T)
=

wp(o, V=V A(V wpa V=z=V)).

G SER(T)
Thus, (2.15) if and only if

=(CAV =V Auwp(a,V=V)) = (2.16)
wplao, V = v A Vv wp(&,? = T)))

FcSER(T)

Since conjunction distributes over disjunction,

11

(V=VAl V wp(a,V=V)) = VeV rwp(a, V=)
G€SER(T) Ge SER(T)
Thus, (2.16) if and only if

E(CA YV =V A wp(o,i'&sr'))::» (2.17)
wp(o,(V. V=V Awp(a,V=1))
o+ SER(T)

AT]
A

»

SR & IR

‘.-\p » A,

[A

", " - Y
[Y
» ¥ »
IO AR ..

A "

34

Using the property that ¢ does not modify any variable in V" = V and Lemma 2.3.3.

v

VoA wp(e,V=V)) = wp(5,V = VAl

—

V)

I

b= (V-

for each 6 < SER(T). Thus, (2.17) if and only if

E(CAV=VAruw(a,V=V)= (2.18)
wp(o,(V wp(g,V=VAlV=z=V))).

5¢SER(T)
Because = is an equivalence relation, it is transitive and symmetric. From this it

follows that

(V=Vav=V)e(V=VAV=Y).
Thus, (2.18) if and only if
E(CAV=VAuwp(s,V=V))= (2.19)
wp(a,(V wp(G,V=VAV= V)))

e SER(T)
Using the property that & does not modify variables of V' = V and Lemma 2.3.3,
Ewp(3,V=VAV=V)e(V=VAw(V=V)).

Thus, (2.19) if and only if

. E(CAV=VAwp(a,V=V))= (2.20)
wp(o,(V V=VA wp(5,V = V))).
€ SER(T)

Since conjunction distributes over disjunction,

1
I

(V V=VAaw@E,V=V)=(V=VA(wp(3,V = V).
GeSER(T) GeSER(T)
Thus, (2.20) if and only if

................. T RS P
. T N O A AN SR Y

. e »

ey

d‘\-’ "

W
Sl

T T AT AT T

=(CAV=VAwp(o,V=V)) = (2.21)
wp(o, V=V A(V w5,V =V)).
FeSER(T)

Since wp satisfies the property of Distributivity of Conjunction,

Fwp(a,V=VA(V _wp(q,V =1)))
FESER(T)

=

(wp(o,V = V) A wp(o, vV wp(&,V = V).
G€SER(T)

Thus, (2.21) if and only if

E(CAV=VAwp(a,V=V))= (2.22)
(wp(a,V =V)A wp(e, V _ wp(a,V = V))).
GESER(T)

From Predicate Logic,

(PAQ)=(QAR)=((PAQ)= R)
Taking

P=(CAV=V]
Q = [wp(o,V=V)] and

R = [wp(o', vV ‘wp(é?,"7 = V))],
&eSER(T)

(2.22) if and only if
F(CAV=VAwp(e,V=V))=wp(o, \ wp(3,V=V)). (2.23)
GcSER(T)
From Predicate Logic,

= P if and only if = PV

for any predicate P. Taking

™EA Ap NP

" A o tugtng I A A AR, TR
36
P=[(CAV=VAuwp(a,V=V))=swple, V wp(3,V=V))
e SER(T)
(2.23) if and only if
SCAV=T AuploV =V) = wp(oe, \/ wp(3, V=Vt
G SER(T)
Since V does not occurin C A V =V or in wp(o, V wp(a, V =
Ge€SER(T)
if and only if
E(CAV =V Alup(a,V=V)|V) = wp(e, \ wp(5,V=V)).
GeSER(T)
Since® V does not occur in o,
wp(o,V = V)g s wp(o,V=V).
Thus, (2.25) if and only if
E(CAV=VAuwp(a,V=V))=uwp(o, \ uwp(d V=V)).
F€SER(T)
Since = is an equivalence relation, it is reflexive. Thus,
E(V=V)e true.
Thus, (2.26) if and only if
=(C AV =V Auwp(o,true)) = wp(e, \ wp(d,V=V)).
F€SER(T)
By identity, (2.27) if and only if (2.3).
3This can be proven by induction on the structure of o.
Lttt -,:.-:'\‘.-' . _:.r ;'.-\’: RO \.,;r;_; .'__‘. ‘.._.\'.' SN '.-_;;_.\'._;..‘,.'\'-\:“:.\'.\'.- SN

AN, e T A LA e e

'%ﬂ\?fl ' .;-.?‘: X

w
»

Ce it

i S A Y T
R S Ry A

o)

(2.26)

-

(2.27)

e v men
AT o b K e

[N A AL

-" .l. X

.
v
1

?-)?‘7’1'1 .i -'-_,",.;.. * e

' -

s
L4

ot b bt a b, . ‘e (VRO RYATR 4 &b
X} W » W TR A . EOHAL SR L dat A S AN AN W Wy n o W aNe CuWNoWe -
L - - - - - - - - .

- g

? Theorem 2.3.1 characterizes serializability in terms of proof outlines the serializ-
N

;:" ability of a particular schedule of a database system. This result can be extended to
N

o

S obtain a similar characterization of the serializability of an entire database system.

"; Theorem 2.3.5 (System Serializability with Proof Outlines) Database

"

" N
N system L=(V,C,T,=) is a serializable system if and only if execution of ¥ termi-

N —
\ nates when started with C A V =V true and

-

o SDO(X): {CAV=V}

J_- cobegin Ty || --- || Ty_| coend)
‘ { VvV _wp(d,V=V)}

i F€SER(T)

is valid.)
Y

; >

o —

L. Proof of Theorem 2.3.5 Since the variables of V do not occur in transactions of ¥,

execution of ¥ terminates when started with C A V =V true if and only if execution

cIR

2 of ¥ terminates when started with C true. The interpretation of proof outlines and
;, the semantics of cobegin imply that SD0(X) is valid if and only if |
- 550(0): {CAV=V}e{ \ wp(3,V=V))
h FeSER(T) -
"; is valid for every schedule o of £¥. By Theorem 2.3.1, §50(¢) is valid if and only if p.
o is a serializable schedule. The theorem follows immediately from the definition of a ;
f" serializable system. a
: The hypotheses of Theorem 2.3.5 suggest a method for proving a database system
" serializable.
Method 2.3.8 (Proving System Serializability) To prove that a system ¥ = ;
X (V,C,T,=) is serializable: -
A
3
e .,_F ~y cp et ;.f_‘(\f.:.":f\'d“:- NN et ' AL A ATA N N N B SVAON

AR At et al At N

LLY

PEIRLENID
5

38

, @S,

1. Introduce Shadow Variables and Shadow Transactions. Define shadow

variables V' and construct shadow transactions T corresponding to the variables

V" and transactions T of X.

2. Prove $DO(X). Prove that

SDO(Z): {CAV =V}

cobeginry || --- || Ty_; coend
{ VvV _ wp3,V=V)}
#€SER(T)

is valid.
3. Prove Termination. Prove that execution of ¥ terminates when started with

CAV =V true.

a
2.4 An Example
N
We now present an example of the application of Method 2.3.6. As pointed out in ::::'.
e
Section 2.2, Y0 is not a serializable system. However, a serializable system can be o

1
constructed from 20 by synchronizing transactions using a simplified version of the)
- 1)
conservative timestamp ordering protocol in |[BG81|.]

In conservative timestamp ordering, a unique integer timestamp is assigned to each

transaction as it begins to run. A version number associated with each shared variable

~.v“' ",n” " -v'-
At S

holds the timestamp of the last transaction to access it. An operation from transaction

A

Wyt

T, can access v if it satisfies the following conditions.

v oW T, e
Pl
Y RXKRRAS|

¥t

,
LI

A P PP L A ST Vg B W o n Aty
N A g R Y TN

b P W N R S PN

AR AL i Ny

€
[
D
.

39

TS1. The timestamp of 7, is greater than the version number of v.

J

N
~
™
"
~
;
-
L -
.

TS52. No transaction 7, with a timestamp less than that of 7, will later

attempt to access v.

Since each transaction sets the version number of v to its timestamp when accessing
it, condition TS1 implies that the timestamp of a transaction 7, accessing v is greater
than that of another transaction 7, that accesses v immediately before 7,. One con-
sequence of this is that transactions are guaranteed to access v in an order consistent
with that of their timestamps. Another consequence is that the version number of v
is monotonically non-decreasing. Therefore, if a transaction 7, finds TS1 false when
attempting to access v, TS1 will subsequently remain false and prevent 7, from com-
pleting. To avoid this possibility, condition TS2 requires 7, to wait before accessing v
until all transaction attempting to access v and having smaller timestamps have done
so.! The result is that transaction satisfying TS1 and TS2 will access v in ascending
timestamp order without aborting.

We model the assignment of timestamps and synchronization of operations accord-
ing to version numbers as follows. Let clock, vg0 and vql be integer variables holding
the global clock and version numbers of ¢0 and gq1. For each 7, € T0, let ts, be an in-
teger variable holding the timestamp of 7, and let clock be an integer variable holding

" the value of the clock. To model the selection of a timestamp by ,, the operation

50,: (clock,ts;:=clock + 1,clock +1)

‘Many timestamp protocols relax the second condition and abort transactions trying to access vari-
ables with version numbers greater than their timestamp. However, these protocols require older versions
to be maintained for recovery purposes and also require additional machinery to cope with the possibility
of cascading aborts (BG81]. We choose the more restrictive protocol so that the proof of correctness is
not obscured by these additional complexities.

Y

..... “= - -y - - -\- Ll - -‘.-‘.-\-\.~\-\-'..
~ f“-ﬁ-l‘r""' \..r'\'s’ '-}.\-\I\ ~. N j

10

is added to 7, before §1,. To model the update of version numbers when T, accesses

g0 and q1,
vq0:=ts,

1s added to 51, and
vgl:=ls;

is added to 52,.

To denote synchronization that delays an operation § until a condition B becomes

true, we enclose § in a guarded command of the form?®
(if B — S fi).

The following lemma provides a guard B for §!, that ensures that the transactions of

TO0 satisfy conditions TS1 and TS2 for accessing q0.

Lemma 2.4.1 (Timestamp Condition) Transactions 7g,...,7x_; satisfy condi-

tions TS1 and TS2 for accessing g0 if each S1; is delayed until vg0+1 = ts,. Q

Proof of Lemma 2.4.1 Consider operation S1, in transaction 7,. Suppose that §1,

does not run until vg0+1 =ts,. Since

.

vg0+1 = ts; = ts; > vq0,

then delaying each §1, until vg0+ 1 =ts, ensures that the timestamp of each 7, is

greater than vg0 when 7, accesses 0. This is what is required by condition TS1.

$Guarded Command Notation semantics specify that if B — S fi executes S if started with B true
and will fail to terminate if started with B false. Since atomic operations run to completion once started,
execution of (if B — S fi) delays until B becomes true.

A N A P N R S i Sl

Sl GL A O B A SR

- - - .’
LA
~

. ‘;J":J'_‘I

e

i *e"aa’ ",
N0

Ay
.

Pl

‘,'-s{w..'.’

1TSS

7
L4 .

v -’1’1}1
o

YT 4
i

\‘.I.‘ 'l,'.ﬁ-".‘ % 5' “y

e e]
DO,

o
r »

L vy
'. -l. '. l‘ l‘

e
N o N LN

" r'c L) 4 »
-*-’-)/l' v

2

e

T A,

YR TE T FETF

o
F
-
E%'- 11
*\
Now consider operation 51, in a transaction 7, ; # 1 that runs after §1,. Note that
”
P;-’ assignment vg0:=ts; in §1; leaves vq0 - ts;. Since
%
vq0+1=ts; = ts; > vq0,
o
:: then ts; > vq0 will be true when §1, runs. The assignment vg0:=ts, in §1; ensures
‘3. that vq0 > ts,; after S1; runs. Since
>
(vq0+1=ts; A vg0 > ts;) = ts; > ts;,
then delaying each $1; until vg0 + 1 = ts; ensures that the timestamp of 7; cannot be
~
* less than the timestamp of 7; when §1; runs after §1;. This is required by condition
TS2. a
By Lemma 2.4.1, access to g0 will satisfy TS1 and TS2 if vg0+ 1 = ts; is chosen as
the guard for each §1;. By a similar analysis, it can be shown that access to g1 will
;_'.':-j satisfy TS1 and TS2if vgl + 1 = ts; is chosen as the guard for each §2;. Because of the
: synchronization that has been added to transactions, the conjunct
: v90 = vql = clock
3 . . .
- has been added to the consistency constraint C1 to ensure that transactions complete
. when executed in isolation starting in a consistent state. In addition, the definition
::'.,- - of =, has been changed to ensure that continues to satisfy adequacy constraint AC2.
N
--J - . . .
o~ This gives the synchronized database system X1 of Figure 2.2.
; We can now apply Method 2.3.6 to prove that £l is serializable. First we define
'.'_j shadow variables
-
N ﬁ: @,ﬁ,iﬁ,...,iN_l,2}0,...,le-l,cak,@,!m,ﬁo,...,{:!N_l '
3 !
A
N
D

G i

1=(V1,C1,T1,=)
V1=1(q0,q1,20,...,2x8_1,¢cfo,...,cfn _1,clock,vq0,vq], tsg,... .tsn |,
Cl={ql-q0=Q N iq0| > (#k: 0 k< N: cfg = false) ~ vq0 = vql = clock},
T1={75,....,Thy_1 }
| = §0,:
S1;:

(clock,ts;:=clock +1,clock +1);

(if vg0+1 =ts; — 2,,90,v90:=¢0(0),q0(1..),ts, fi);
§2;: (ifvgl+1=ts; — ql,vgl:=¢ql-z,,ts, fi);

53,: (end(t)))

(VI'= V1) (q0' =q0" A gl =q1" A A cfl =cff

0< k<N

A vq0' = vq0" A vql' = vql1" A clock’ = clock")
Figure 2.2: Synchronized Database System L1
corresponding to the variables of V'l and construct shadow transactions

ci&k,ﬁ,::cﬁk+1,cl§c\k+l);
if vg0+ 1 = i3, — %;,90,vg0:=g0(0),¢0(1..), {3, Fi);

{
{
(ifvgl+1=1s, — ql,vql:=ql 3,6, fi);
(end())

: !
corresponding to each T,.

Next, we prove that

SDO(E1): {C1A V1=V1}
cobegin) || --- || T};_, coend

{ Vv _wp(3,Vi= V1)}

—

GcSER(TH)

is valid. To do this, we first construct the full proof outline®

8 A full proof outline is one in which every atomic operations is preceded and followed by at least one
assertion.

« - o ® . . . L L S
" '\‘\)\ﬁ‘\)\ "xf\ _y -\’\'.:.J- “J‘\f').'f\f-f '/%f\}\f\}.ff.'\f\ ’- h] '\""\ 'h.,.\"\f’ K

v
'

Ll ALl

PATOEN -l‘ A

13

FSDO(S1):
{ClAVI=VI}
< CLOCKQ, VQO(), VQlo,...,CLOCKN_l, VQON—la VQIN_1::0,...,O>;

{IA A 0=VQl,=VQ0,=CLOCK.}
0§k<N

cobegin PO(7}) || -+ || PO()y_,) coend
{vq0 = vgl = clock A g0 = gO(N ..) A g1 =q1-(g0(0..N~1))
AN A cfy =true A vg0 = vql = clock = clock + N'}
0<k< N
where each PO(7]) is the proof outline for 7| shown in Figure 2.3. In each 7/, auxiliary
variables|C73,0G76] CLOCK;, VQO; and V@1, are used to record whether 7| has

incremented clock, vq0, and vql, respectively.

Each assertion contains the invariant
I. JOATLATI2AI3N I4.

The first conjunct

10: clock =vg0=1vql A (Vk: 0<k<N: 0< VQ1,< VQ0, < CLOCK <)
Aclock =clock+ ¥ CLOCK Avg0=vg0+ ¥ VQO,

0<k< N 0<k<N
Avgl=vgl+ ¥ V@I,
0<k<N

specifies that clock, vq0 and vql remain equal, and bounds the values of clock, vq0 and

291 in terms of the values of the auxiliary and shadow variables. The second conjunct

I1: |q0|>2N~- £ VQO,A|g0|2N
0<k<N

Ang0=g0((¥ VQ0.).)Aql=ql:[¢0(0..(¥ VQIl;)-1)]

bounds the size of q0 and g0 and specifies in terms of the auxiliary variables the

elements that have been transferred from ¢0 to ¢l1. The third conjunct

2 A L A 2 o a3

EV. M

R P N N NI
R S A

; : e P R i At AT 4
AN A ' A 'y ' N A A A S R N S A AN

i S T T T O T O T U TR TN Ty —r—O Y
N 28" 0aa" o'd Vo WY AT A ¥ At O O P TR VN T W Wa W, N ath 42 gl g te N
'L ‘Gt an'i s, n A AT AT AT A T a W e T VX a.

44
I2: A CLOCKp =1 = tsg < clock
0« k< N
A A (CLOCK;=1ACLOCKp=1) = ts; # ts;
0-j#k< N

specifies that different transactions choose different timestamps, while the fourth and

fifth conjuncts

13: (Vv: vg0 < v <clock: (Fk: 0<k< N: CLOCKy=1A VQO,=0A v=ts))

and

14: (Vv: vgl<v<vq0: (3k: 0<k<N: VQOrL=1AVQ1l,=0Av=1ts))

specify that some transaction TL has a timestamp tsg = v for every value v between

vq0+ 1 and clock or between vgl +1 and vq0.

The proof FSDO(Z1) is a straightforward application of the axioms and rules of

Proof Outline Logic, and is omitted here.

From FSDO(X1), SD0O(X1) can be inferred as follows. From FSDO(Z1), the proof

outline

{C1AV1=VI1} (2.28)
cobegin || --- || Ty_, coend

{q0=qO(N.)Aql=q1-(¢0(0..N=1)) A A cfy=true}
0<k<N

f::a.n be inferred using the Assertion Deletion Rule followed by the Auxiliary Variable
Deletion Rule. It can be shown by induction on N that
wp(Fo;...;7N_1, V1= V1)
= (vg0 =vql = clock A g0 =qO(N..)A q1 =ql-(g0(0..N -1))

A A cfy =true A vg0 = vql = clock = clock + N),
0<k< N

= post(FSDO(Z1)).

| N s A A R e
o A AN A G e b e S AR N L 2SS

ANy

|r‘:*'..:&f"'&f“" ."\' -"1"’:“-‘\

~

AT

l._“

P

-y o

i TSN AN T PO K ey PPl At

P AR e ats e it e SR i AN N

PO(T]):

8 {I Nvgl<vg0<clock N CLOCK,=0A VQ0;=0A VQ1, =0}

' 50,: (clock,ts;, CLOCK,:=clock +1,clock +1,1);

{IANvql <vg0< ts; < clock A CLOCK;=1AVQ0;=0A VQ1,=0}
: S51;: (if vg0+1=ts; — z,,90,vq0, VQO,:=4q0(0),q0(1..),ts;,1f1);
{I N vgl <ts; <vgl<clock A z; = ¢0(ts; —(qu%—l)%—0 ¥ N VQOoL)

<k<

ACLOCK,=1AVQ0;=1AVQ1,=0}

S §2;: (ifvql+1=ts; — ql,vql,VQ1,:=ql-z;,ts;,1Fi);
{IAtsi<vgl<vgO0<clockA CLOCK;=1AVQ0,=1AV@Ql;=1}

§3;: (end(7}))

- {I A ts; <vql < vg0< clock A cf; =true A CLOCK; =1 A VQ0;=1A VQ1,=1}

- Figure 2.3: Proof Outline PO(7}).
Since 7;...;7n_, € SER(T1),

wp(To;..-;TN-1, V1 Elﬁ): V wp(&, VIE”‘I),
#€SER(T1)

and SDO(X1) can be inferred from (2.28) using the Rule of Consequence.

Finally, we must show that execution of L1 terminates when started with C1 A V1 =
V1. Recall that we have assumed concurrent execution of transactions to be weakly
fair. The following lemma provides a general strategy for proving termination under

" this assumption, and will be used here and in subsequent examples.

Lemma 2.4.2 (Termination Under Weak Fairness) If concurrent execution of
~ transactions is weakly fair, execution of any database system T will terminate if the

~ following two conditions are satisfied.

» o™l

28 Y St e

ATy e

A AL

e o v o v,

wSeVa u s ® B]

M2 AN

- - R " N T YT 4
s \ - R Nl St A VaX a¥ e RNy M W WL WuN. VLWL e J

46

T1. Every execution of ¥ consists of a bounded number of atomic opera-

tions.

T2. As long as execution of ¥ has not terminated, there is at least one

enabled atomic operation.

a

Proof of Lemma 2.4.2 Suppose £ has not terminated. Condition T2 guarantees
that there must be at least one enabled atomic operation §S. If no operation runs, then
S will be forever delayed in spite of the fact that it is enabled, which would violate
the assumption of weak fairness. Thus, some operation will run as long as execution
of ¥ has not terminated. Condition T1 states that there is a bound on the number of

operations that can run before ¥ terminates. From this it follows that ¥ will eventually

terminate. a

Thus, we can prove that execution of £l terminates when started with C1 A V1 =

V1 true by showing that execution of Y1 satisfies conditions T1 and T2 when started

with C1 A V1= V1 true.

.
‘Theorem 2.4.3 Execution of ¥1 satisfies conditions T1 and T2 of Lemmma 2.4.2 when

started with C1 A V1= V1 true. |

Proof of Theorem 2.4.3 Since each 7] of L1 contains only four atomic operations
and does not contain any loops, Xl trivially satisfies condition T1. Now, we show that

Tl satisfies condition T2. Suppose execution of £1 has not terminated. Then there

: AT El "'-"'f"-“'- o, .r_.-'.r R
ON ""’f""-\."x"\"\.-\’-'(\’"'\'\\.\ "'\ ""'”N\\‘-‘- \ 'r\ ™ l\- “h

N

4
s, 5

N

A T W ¥ W W NS

)

ot

AN T

LA s)

AV]]

> ¥ v

‘-\J‘ !

o 3 :'.*'ﬁ.ﬂ.\' :l. "-l.l.-_ .

LA LN

Y

ae

3'))-’.) i

v asrs

»
-
-,
"
-

J
‘.

17

must be at least one atomic operation § such that control point preceding § has been
reached. Suppose that § is 50, for some transaction T'I. The states in which $0, will

run to completion are those that satisfy wp(S$0,,true). Since

wp(50,,true) = true,

50, will be enabled when it is reached. Thus, condition T2 will be satisfied when 50,

has been reached.

Suppose that §1, has been reached. Note that

pre(S1;) = (11 A VQO0; =0),

= |q0]| > 0.

Thus, ¢0 contains at least one element when S1, has been reached. In addition,

pre(S1;) = (13 A vq0 < clock),

= (I3 A vq0 < vq0+ . < clock),

= ((Vv: vg0 < v < clock:

(Jk: 0<k<N: CLOCK =1AVQ0,=0A v =ts))
A vg0 < vg0+1 < clock).

Since vg0 < vq0 + 1 < clock implies that vg0 + 1 satisfies the range of the universal quan-

tifier in /3, the quantified expression can be instantiated with vq0 + 1 substituted for

v. Thus,

pre(S1;) = (3k: 0<k<N: CLOCK =1A VQO0, =0/ vq0 + 1 =1ts;) A !q0! -0.

It follows from the interpretation of FSDO0(L1) that when execution of ¥l starts with
C1 A V1=V1 and reaches S1,, there is some | such that CLOCK, =1 A VQ0, -0 7
vg0+1=ts; A |q0) >0. Since CLOCK =1 A VQOg =0 implies that the control point

before S1; has been reached and

_pl afS) ahg o N o)

T e

48
(vg0+1 =tsg A |q0] > 0) = wp(51y,true),

then S1; in 7, will be enabled when §1, is reached. Thus, condition T2 will be satisfied

when 51, has been reached.

Suppose that 52, has been reached. Note that

pre(S52;) = (14 A vql < vq0),
= (I3 AN vgl <vql+1= vq0),
= ((Vv: vgl < v <vq0:
(Jk: 0Sk<N: VQOp=1AVQ1l=0Av =ts))
Avgl < vql +1 < vq0).

Since vql < vql +1 < vq0 implies that vql + 1 satisfies the range of the universal quan-

tifier in /4, the quantified expression can be instantiated with vql + 1 substituted for

v, from which it follows that
pre(52,) = (3k: 0< k< N: VQOr=1AVQIl,=0A vql +1 =ts).

It follows from the interpretation of FSDOQ(X1) that when execution of ¥l starts with
C1 A V1=V1 and reaches §2,, there is some transaction 7, such that VQOg =1/

VQly=0Avql+1=tsg. Since VQOp=1A V@1, =0 implies that the control point

before 52; has been reached and
; vgl +1 = tsp = wp(52;,true),

then §2; in TL will be enabled when §2, has been reached. Thus condition T2 will be

satisfied when §2; has been reached.

Finally, suppose that §3, has been reached. Since

wp(§3,,true) = true,

l""."J.

o,
4

 as
Y

C A X R
RS

PN

ey
"-’J{

‘-
3

.. PPy
',‘*." o L o ®

PO SN
AT)
b g

"

5 2r
{

s v,
S,
[y & '.l-

v
.l .I

]

LA

‘.'_a .
b)

AN

Ly
't‘l

h 5"1’3

o
L)

R p—
..Jﬂ-)"l.j e

'.‘."

FL -
55
St

L] Faryn 4
Wy

B h e a A * " e ot il V" a i "ala alfa® S et bt Mat Sat et et OO0 bt Bat. Sk Aad” fe®- A R BT AR RO RO Bhe SOURCSE TR A R
." "t p el Nl A v An s a¥a NN

s
B~
’..
N
2
e 49
Y
-y 53, will be enabled and condition T2 will be satisfied.
f.
;i{ Thus, execution of X1 satisfies conditions T1 and T2 of Lemma 2.4.2 when started
A o
foe with C1 A V1 = V1 true, and consequently will terminate. 0
-2 2.5 A More Tractable Method
.
e
Ng
N The preceding example X1 with Method 2.3.6 is misleading in one respect. Because of
s, the uniformity of transactions in T1, all serializable executions of £l leave the same
W
o values in ¢0 and ¢1. For an arbitrary serializable database system X, however, the size
'y
of assertions in the proof of SDO(X) can be proportional to the number of different
o
B serial schedules. If ¥ contains N transactions, there are 3 (IZ) possible serial
" 0<k<N
e schedules, a number that quickly grows intractably large.
S
E™ A more tractable method of proving database systems serializable in Proof Outline
2.
e Logic can be obtained by moving shadow transactions from the postcondition of the
. proof outline into the transactions themselves. This is accomplished by constructing
T h an augmented system. For L=(V,C,T,=), let £*=(V*,C,T* =) be the database
LGy .
o system in which V* is the vector obtained by concatenating V and V, and T* =
r.
‘g
. {r0,---»Tn_1} is a set of augmented transactions in which each 7 constructed’ by
v
. . replacing some (§;) in 7; by (5;;7;).
‘,'.::: For o* a schedule of £*, let ¢* |y be the schedule of transactions in T obtained
:': by deleting the operations on V from o*, and let o* | p be the schedule obtained by
> deleting the operations on V from o*. Note that ¢* | i/ is a schedule of T that transforms
A
,': variables of V in exactly the same way as ¢*, and 0* |, is the sequential composition
M -I
oY
A‘-: "We define nested angle brackets (...(Sy)...) to be equivalent to (... Sy ...}).
B
A o
o
o
"
>
Y

. Ud
L - o T N T P TP A YOI L P 1 '_""
'J“w"I?d‘:}:‘.‘.:“\-'\f\.‘al R O L \ REN, X

50

of shadow transactions that contains 7, if and only if 7, completes in ¢* | . If each 7
has been constructed so that operation (§,;7,) runs if and only if 7; completes, then

the serializability of ¢* |} will follow from the equivalence of V and V after o* runs.

Theorem 2.5.1 (Schedule Serializability with Proof Outlines II) Let £* be
an augmented system for database system ¥ =(V,C,T,=) in which each 7} has been
constructed so that (§;;7,;) runs if and only if 7; completes. Let ¢* be a schedule of
DI (]

SS1(e*): {CAV =V}

0,!

(V=V}
is valid, then o* |y is a serializable schedule of X. O

Proof of Theorem 2.5.1 §51(¢*) is valid if and only if

o~

E=(C AV =V Awp(c®,true)) = wp(a*, V = V). (2.29)
By Lemma 2.3.4, ¢* |y is a serializable schedule of ¥ if and only if

=(CAV=VAwp(c*|y,true)) = wp(a®ly, \ wp(d,V=V)). (2.30)
Fe€SER(T)

Thus, the theorem will follow if it can be shown that (2.29) implies (2.30). This is
,’
‘proven as follows.

Since V and V are disjoint, every operation of *| |, commutes with every operation

of o l . From this it follows that
Fwp(a®,R) = wp(a®|y;0”,R)

for any predicate R. Due to this and Lemma 2.3.2, (2.29) if and only if

ORI NI I :

padie gt Aot Bie A% SRS

.

400

L L
P L S

"

vy v,
1SACAN AN
l'l5 —

LA R R I Y
PN A

R

= (C 2 V=V orwp(a pset potrue)) = wp(o” it p Vo= V). (2.31)

By Lemma 2.3.3 and Predicate Logic,

wp(o™iy0” ¢ true) = wp(a® ,wp(a* o true)),

(';'.

= wp(a®' | true A wp(o®' c,,true)),

= wp(o" ', true) A wp(o®: potrue).

Thus, (2.31) if and only if

S

v

",

L% [N
113’1".5 1@

E(CAV= VoA wp(o® 'y, true) A wp(o™ !, true)) (2.32)
= wp(o*|y;0°ly,V = V).

Q¥

Since conjunction is commutative, (2.32) if and only if

AN, o4

E(CA V:V/\wp(a"!v,true)/\wp(a‘!v,true)) (2.33)

(YN
R

= wp(o*|y;otly, V =V).

e
4

By Predicate Logic, (C A V = V) = Ci!//* and because U‘1V is a serial schedule of

shadow transactions,
V .
Ci} = wp(o I‘*/,true).
Thus,

=(CAV =V A wp(o®|;,true) A wp(a™ |y, true))
S (C A V:V/\wp(a‘!v,true)).

" Thus, (2.33) if and only if

=E(CAV=VA wp(o®|y,true)) = wp(a®| 0”5,V = V). (2.34)
By definition,
wp(o"[v;a'!i,, V= V)@wp(o'!v,wp(a'lf/,l = V))

PRI PN N N
A% T S Wiy AR

4 S a *"."\

52
Thus, (2.34) if and only if
=(CAV =V Awp(a® y true)) = wp(o® v, wp(a™ oV =) (2.35)

By construction of T*, o*| 7€ SER(T). From this it follows that

wp(a™|5,V=V)=(\ wp(a,V=T))
€ SER(T)

and by monotonicity of wp,
wp(a*|y,wp(a*ly, V=V)) s wp(a®ly, \ wp(@ V=V)).
F€SER(T)
By Predicate Logic, if A’ is obtained from A by replacing some occurrence of B by
B',and =B = B', then =4 = A'. If =4 = A', then = 4 implies &= A’. From this it
follows that (2.35) implies
E(CAV =V Awp(c*|y,true)) = wp(a®ly, \/ wp(a,V=V)). (2.36)

FcSER(T)
By identity, (2.36) if and only if (2.30). a

Theorem 2.5.1 can be extended to obtain a tractable proof outline whose validity

implies that every schedule of ¥ is serializable.

Theorem 2.5.2 (System Serializability with Proof Outlines II) Let £©* be an
2ugmented system for £ in which each 7} has been constructed so that (S,;7,) runs if

and only if 7, completes. T is a serializable system if execution of £* terminates when

started with C A V =V true and

SDI(E*): {CAV=V)
cobeginT; || - || Tn_) coend

{v=V)

>

BT 2

Lt s R U

.l. l'r w ‘{51".- l' .

NN

i 4'-‘{,'1,'- S S AR

& 7 Balid ‘,‘N-'-.l".

-

’1':';‘;?-‘4- -f- LN)

- R R T P N R R P N .J’-.J‘J‘-’-
RS S o~ "s" N e e e e e P o e T A

¥ P SRS ORI NI RN N NN

53
1s valid. a

Proof of Theorem 2.5.2 Since variables V do not occur in transactions of ¥, exe-
cution of ¥ terminates when started with C true if execution of L* terminates when
started with C A V =V true. The interpretation of proof outlines and the semantics

of cobegin imply that SD1(X*) is valid if and only if
$SS1(a*): {CAV=V}e*"{V=V}

is valid for every schedule o* of £*. By Theorem 2.5.1, the validity of $51(¢*) implies
that ¢* |y is a serializable schedule. Since every schedule o* ||/ is a schedule of T, the
validity of SD1(X*) implies that every schedule of ¥ is serializable, and the theorem

follows by Definition 2.2.2 of a serializable system. a

Theorem 2.5.2 serves as the basis for a simpler method of proving the serializability

of a database system.

Method 2.5.3 (Proving System Serializability II) To prove that a system ¥ =
(V,C,T,=) is serializable:

1. Introduce Shadow Variables and Transactions. Define shadow variables
V and construct shadow transactions T corresponding to the variables V' and

and transactions T of T.

2. Form Augmented System. Construct an augmented system Y° -
(V*,C,T*,=) in which one operation (S,) in each 7, T is replaced by (5;;7,)

and 7, runs if and only if 7, completes.

3. Prove SD1(%*). Prove that

.......

ANA A RRIRS B A A

1

Co mTaE g 0P

P rL L

&l

P A

Ny -'ﬁ-“-"

ava e Aok A gl el ok (et gt it At e SR SUAELAR AR A S

o aan- o At AT
PR A IR} A e] g Pl el o el it

51

SD1(

]
*

c {CAV =V}

cobegin 7j || - ! Ty - coend
(v=V})

is valid.

4. Prove Termination. Prove execution of £* terminates when started with (' *

V=1V true.

2.6 Examples of the Second Method

We now present two examples that use Method 2.5.3 to prove serializability. In the
first example, we give an alternate proof that ¥1 of Figure 2.2 is serializable. In the
second example, we prove that replacing equivalence relation =g of ¥0 by one the:
reflects the semantics of a different application results in a database system that is

serializable without any synchronization at all.

2.6.1 An Alternate Proof of Serializability for ¥l

As the first step of Method 2.5.3, we define shadow variables
,

Vi: qo,a,io,...,EN_I,30,...,Zf~_l,cﬁ;k,@,@,ﬁ0,...,E!N_l

corresponding to the variables of V1 and construct shadow transactions

P R A oS RTINS
PRI TPV AN N R I A AN Fody DN RSN

~ w..‘_\.-.

:U
Y,
:

E.‘

T

K

"J
.

o3
"4

X X Wy)

_a,

L)
AR

55

SI* = (V1*,C1, T1%, =),
V1t =V1-V1,
T1* ={7g,...,7%_1}
(clock,ts;:=clock +1,clock + 1;7});
(if vg0+ 1 =ts; — z;,90,vg0:=¢q0(0),q0(1..),¢s, fi’;
§2;: (ifvgl+1=ts; — ql,vql:=ql-z;,ts, fi);
(end(r})

Figure 2.4: Augmented Database System ¥1°*

(cﬁo?k,tf;,-::cio?k+l,c52k+l);

(if vg0+ 1 =fs; — 2,,90,vq0:=g0(0),q0(1..), £, fi);
(if;q\l+1 :{:’i - a»&l\li:ﬁ'inﬁt ﬁ)r

(end(F)))

corresponding to each 7.

Next, we construct the augmented system ¥1* of Figure 2.4. Each 7 is constructed
from 7/ by replacing S0; with ($0,;7;). In this position, shadow transactions will
execute in timestamp order. By our assumption that transactions always complete,
50, is reached if and only if 7] of £1 completes, as required.

Next, we prove that

2 SDI(T1*): {C1A V1=VIi}

cobeginj || -+ || 7y_, coend
{Vi=, Vi}

is valid. To do this, we first construct the full proof outline

. g ."‘-r’ -
’-'r'."'\ \"\ \""‘. \.""""") -

oo

L 4

v
~

'.I'
Mok 4

St
i K

[
e
P,

v~
A

FSD1(S1%):
{C1A V1=Vi}
(LQI$CLOCA’Ov VQOO) VQI(),.:.,CLOCI\’N,_[, VQON—I» VQIN*I

:=|ql1},0,...,0);
{IA(VE: 0<k<N: 0=VQ1,=VQO0,=CLOCK)}
cobegin PO(7g) (| -+ [| PO(ry_,) coend
{qO:Ef)AqI:ﬁAO i\chkzzf'k/\quS@/\vql:mAclxk:cﬁo;k}
<k<

where each PO(7) is the proof outline for 7] that shown in Figure 2.5. Auxiliary
variables CLOCK;, VQO, and VQ1, are used again to indicate when 7] has incremented
clock, vq0, and vql, respectively, and an additional auxiliary variable L@Q1 is used to
record the initial length® of q1.

Each assertion contains the invariant
I: TOANTLATI2AI3A IA.
Here, the first conjunct

10: clock =vqg0=vql A (Vk: 0< k< N: 0< VQ1, < VQ0, < CLOCK, < 1)
Aclock =clock A vg0+ ¥ CLOCK,=vq0+ L VQO,

0<k< N 0<k<N
Avgl+ ¥ CLOCKy=wl+ © V@I,
0Sk<~ 05k<~

specifies that ci:ck, 1;;0 and vgl remain equal, a result of executing shadow transac-
tions atomically, and bounds values of clock, vq0 and vql in terms of the shadow and

auxiliary variables. The second conjunct

8Note that consistency constraint C1 does not imply that initially q1 is empty.

IR PGSR LG PR N A
N T Y AN e T

57

I1: @O =N - € VQOgrig0l =N~ T CLOCK,
0< k<N 0<k<N

ALQL-0Aql|=LQl1+ Y CLOCK;

0<k< N
Aq0=[ql((LQ1+ ¥ VQOg).))| 0
0<k< N
Agl-lgl((LQ1+ ¥ VQ1)..) =4l

0<k<N

bounds the size of sequences ¢0, ¢0 and q1 and specifies in terms of the auxiliary

variables the elements that have been transferred from ¢0 to ql. The third conjunct

12: A CLOCKg=1= tsg <clock
0<k< N

A (CLOCK;=1ACLOCKy=1)= ts; #1s;
0<j#k<N

specifies that different transactions choose different timestamps, while the fourth and

fifth conjuncts

13: (Vv: vg0< v <clock: (3k: 0< k< N: CLOCK=1AVQOL=0Av=ts))

and
I14: (Vv: vgl<v<wvg0: (Fk: 0< k< N: VQOr=1AVQ1l,=0A9v=ts;))

specify that there is a transaction ‘rL with timestamp tsg = v for every value v between
vg0+1 and clock or between vgl +1 and vq0.
The proof FSD1(X1*) is a straightforward application of the axioms and rules of
" Proof Outline Logic, and is omitted here. SD1(X1*) can be inferred from FSD1(Z1*)
using the Assertion Deletion Rule followed by the Auxiliary Variable Deletion Rule.
Finally, we show that concurrent execution terminates when started in a state

satisfying pre(SD1(X1*)). This proof is exactly the same as the proof of termination

in Section 2.4, so we will not repeat it here.

Ty

h

Sl
AR N

(

AR
v'l"'l“

LT
g o
A""l

;-

IEARBY

¥

(4

v
¢

- E)
SN
RN SO,

P
L N

it
VY,

=y 'ﬁ.'

w”

P

»
-
AS
A
o

- B - q ¥ " 30" 3823 £ R A 8.
) 'R TR OO W R X T K RV ¥ % N A . L AR AR ARMIANLM A) A

58

PO(7}):
{I A vql < vq0 < clock A CLOCK; =0 A VQ0,=0A VQ1, =0}
S50,: (clock,t.s,-,CLOCI\',-:zclock+l,cloc/c+1,1;?,');
{I A vql < vq0 < ts; < clock A CLOCK; =1 A VQ0, =0A VQ1,=0A cf, = true}
S1;: (ifvg0+1=ts; — z;,90,vq0, VQO0,:=¢0(0),q0(1..),ts;,1fi);
' {1 Avgl<ts; <vg0<clockNz;=ql(LQl+1ts; —(vg0+1)+ T VQO)
ACLOCK;=1AVQO;=1A VQ1;=0A cf ;= true} ket
§2;: (ifvgl+1=ts; — ql,vql,VQ1,:=ql z,,ts;,1fi);
{I A ts; <vql <vq0<clock A CLOCK;=1A VQ0; =1A VQ1;=1A cf, = true}
{ 53;: (end(7)))
. {I A ts; < vql < vq0 < clock A CLOCK; =1 A VQ0;=1A VQ1, =1 A cf; =f,}

Figure 2.5: Proof Outline PO(T}).

2.6.2 Sequence Variables with Set Semantics

GOV

Database systems in which variables are instances of abstract datatypes are considered

a

* 5

in (SS84|, where it is shown that by ignoring parts of the state that do not produce

G e i

visible differences in the values of the abstract datatypes implemented, a larger set of

" hh

schedules can be considered serializable. This view of serializability can be formalized in
I?ur system model by using the equivalence relation. We illustrate this by considering
“the transactions of the database system Y0 described in Section 2.1 in a context in
which sequence variables ¢0 and ¢l are viewed as implementing sets.

Recall, £0 models an application in which a series of independent events move

' elements of ¢0 to g1. Suppose g0 and gl are treated as unordered collections instead

of as queues. Database system 2 of Figure 2.6 models this situation. Note that the

W O N W W Y e W O M M M M e T TRFRE W

59

$2 = (V2,02,T2,=,)
V2=(q0,q1,2p,...,2N_1,cfp, - cfN-1)s
C2=({g0}U{ql} = QA 10| = (#k: 0 ko N: cfy = false)),
T2 = {79,---,TN_1},
Ti=S51;: (2i,90:=q0(0),90(1..));
§2;: (ql:=ql-z;);
§3;: (end(ry))
(V2= V") & ({g0} = {g0"} A {g1'} ={a1"} A A cf{ =cf)
0<k<N

Figure 2.6: Database System 2.

variables V2 and transactions T2 of ¥2 are the same as V0 and T0 of 0. However,

the consistency constraint C0 of 20 has been replaced by the weaker constraint
C2: {q0}U{ql}=Q A|q0|>(#k: 0<k < N: cf; = false)
and the equivalence relation =(has been replaced by the weaker relation

(V2= V2") s ({q0'} = {q0"} A {ql'} ={q1"} A A cfi=cfl)
0<k< N

to reflect that the order of elements within g0 and g1 is no longer significant.
For any initial state satisfying C2, any schedule o of T2 will leave a consistent state

in which ¢0 and ¢1 contain the same elements as they would after some serial schedule

2

o', although o and ¢' might order the elements of ¢1 differently. Consequently, every

schedule of £2 will be serializable under Definition 2.2.1, as is easily proven using

Method 2.5.3.

First, we introduce shadow variables

—

—

V2: <H)vq17£0a-"’£/v—lvcf01“-aCfN‘l>

60

£2° =(V2*,C2,T2*, =),
Vot = v2. V2,
V2=(q0,q1,20,....2x_1,for-rcf w_1),
T2" = {75,y _1}
T =51, (2,,90:=q0(0),q0(1..); 7,);
n 52 (ql:=ql-zi);
A §3;: (end(7]))

MY wie > Tle d e S bt abal b el

Figure 2.7: Augmented Database System ¥2°.

and construct shadow transactions

Fit (%i,¢0:=q0(0),q0(1..));
(ql:=ql-5;);
(end(7;))

for each r; of X2,

L]

Next, we construct augmented system ¥2° of Figure 2.7.

Next, we prove that

SD1(£2*): {C2A V2=V2}

cobegin g || --- || T3, _; coend
{v2="V32}

is valid. This follows by the Assertion Deletion and Auxiliary Variable Deletion Rules

from the validity of the full proof outline

. -‘..---h\\"-|‘.'\"-l“"
D AN SN AN AT N, (ALY,

ot e A AN ol LA

61

PO(r}): {1+ D,={}}
Sl (24,90,D,:=4q0(0),q0(1..),{q0(0)}; 7,);
{I/\D,:{z,}/\;],:true}
52,: {q1,Dy:=q1l-2,,{});
{[/\l),:{}/\;:-],:true}
§3,: (end(7]))
{IADi={}Acf=cf,}

Figure 2.8: Proof Outline for PO(7) for 7 of £2*.

FSD1(£2%):
{C2A V2=V2)
(Do,-...Dy-1:={}---,{})
{rn AN Dp={}}
0<k< N

cobegin PO(7g) || --- || PO(Ty_,) coend
{{q0} ={q0} A {q1}={qI}A A cfi=cfi}
0<k<N

where each PO(r) is the proof outline for 7} given in Figure 2.8. Auxiliary variables
D, have been added to indicate the elements of @ that have been deleted from ¢0 but

not yet added to g1. Each assertion contains the invariant

I: q0=q0A({q1}u |J Di)={ql}Alq0l-(#k: 0<k< N: cfg = false).
0<k< N

The proof of FSD1(X2*) is straightforward and therefore is omitted here. From
FSD1(%2*), §D1(X2*) can be inferred by applying the Assertion Deletion Rule followed

by the Auxiliary Variable Deletion Rule.

L)
i

. . . : .
e Finally, we must show that execution of ¥2* terminates when started with (2 A
I.’
e —_
‘ :: V2= V2 true. To do this, we use Lemma 2.4.2, which states that under the assumption

..... S R
..... - . J'\J‘ .\.r Y \f\-.\ T

o
"
v
o 62
that concurrent execution of transactions is weakly fair, execution of ¥2* will terminate
:: if conditions T1 and T2 are satisfied.
Theorem 2.6.1 When started with C2 A V2 = V2 true, execution of ¥2* satisfies con-
?' ditions T1 and T2. 0
) g
Proof of Theorem 2.6.1 Since each 7, of £2* contains only four atomic operations
and does not contain any loops, execution of £2 trivially satisfies condition T1.
v
: Suppose that execution of ¥2* has not terminated. Then there must be at least
one atomic operation § such that control point preceding § has been reached. Since
o FSD1(X2%) is valid, pre(S) will be true when § is reached. Since
%
::' pre(S) = wp(S,true)
. for every S in FSD1(X2*), then § will be enabled when it is reached, and condition
-
N T2 will be satisfied. |
N :
2.7 Incompleteness of the Second Method for
o L4 * * oqe
- Proving Serializability
: The characterization of serializability in terms of proof outlines given by Theorem 2.3.5
~ &s complete. This is because the property that database system ¥ is serializable is
~ -~
~
Y equivalent to the properties specified by the theorem’s hypotheses, namely (i) SD0(X)
‘
ra is a valid proof outline and (ii) execution of ¥ begun in a state satisfying pre(SD0(X))
x is guaranteed to terminate. Because it is derived from Theorem 2.3.5, Method 2.3.6
.
o

for proving the serializability of database systems is complete relative to the method

with which validity of SD0(Y) and termination of ¥ are proven.

», ._'._-.. ---‘.'\.‘-_"

=’ o & A

e e A A e L ALt AT ac
A AN A A, f.\-'\-}'v‘\.‘ ENS

FASN

2 i
w
63
o
N 83=(V3,C3,T3,=3)
3§ V3= (Z(),t‘,122,23,1‘2:0,1‘:1,Tt‘z,cfo,cf] scf?)v
i C3 = true,
v, T3:{T0,T1,T2}, .
. /
: T =81 (rzgi=z,); y

:' §52,: (zgyp1:=rz+1);

; §3,: (end(7,)) \
o (V3 =3 V3" = (V3 = V3. !
_,,.' Figure 2.9: Database System 3. |
) In contrast, the characterization of serializability in terms of proof outline that is -
"’ ¥
‘.: given by Theorem 2.5.2 is not complete—there are serializable database systems ¥ for .
5]
:- which it is not possible to construct an augmented system £* such that SD1(X*) is !
. valid. For such systems, it will be impossible to use Method 2.5.3 to prove serializability. ;
. \ .
i\ An example of such a system is £3 of Figure 2.9. E
KN

) T3 is serializable, but there is no way to construct an augmented system ¥3* such
.- that §D1(X3*) is valid. To see this, assume the contrary. Thus, assume there is an .
""_: augmented system £3° for which §D1(X3*) is valid. Consider the schedule K
L ‘

, aT*: §10;511;520;530;512:521;531;529;539 X
: = :
x .of £3*. In o7*, note that §1,, which reads z;, precedes §23, which writes z;. Conse- -
" i
o quently, rz; will be left holding the initial value of z;. Likewise, §1;, which reads z9,

- precedes §2;, which writes 29, and so rz9 will be left holding the initial value of z5. ,
o,

W

. From the validity of $D1(X3*) and the interpretation of proof outlines, it follows .
L

- that

»‘: :
rl .
& \
' ;
v,

.;':..'b’\,'-."\-_'-q.\“‘-. \¢"...‘1J'\'.-.'\."u-,"-.,'l"&*'\‘

‘- -, P I UL IO SO ‘y‘ :.“'_v'_'
N O N N B T A N N N TR A AL N RIS

A BB A e e f A S e ol VLI WIWY Y TV IR WIRT N WLE Y SN .

64
{C3AV3=V3}a7" {V3=13} (2.37)

is valid. This implies that shadow transactions 73, 7| and 72 in 07 run in an order
that leaves 7z, and rZ, storing the initial values of Z; and zj, respectively.

Since the last operation of 7§ precedes the first operation of 75 in 7%, %5 will run
before 73, regardless of how the augmented system L3 is constructed. Thus, 677/
must be one of the schedules 7y;79;7, 70;71;T2 or 71;7g;72. In the first and second
cases, 7z will be left holding a value one greater than the initial value of #;, while
in the third case, 75 will be left holding a value one greater than the initial value of
Z;. This contradicts the values of ¥Z| and 72, inferred from the validity of SD1(¥3*).
Thus, $D1(X3*) cannot be valid.

Incompleteness of Method 2.5.3 arises because shadow transactions can model only
limited serial behavior when they are used to construct an augmented system. In
any schedule ¢* of an augmented system ¥*, each shadow transaction ¥; runs during
execution of the augmented transaction 7] that contains it. If r7 and T; do not
interleave with each other in o*, then the order in which #; and 7; run will be the
same as that of 77 and 7. For this reason, the proof outline SD1(X*) of Method 2.5.3
specifies that every schedule o of the original system ¥ behaves like a serial schedule

¢’ in which the order of transactions is consistent with the order of non-interleaved

transaction in 0. Database system L3 demonstrates that not every serializable database
system satisfies this property, and consequently not every database system can be

proven serializable using Method 2.5.3. In spite of this, the tractability Method 2.5.3

compared to Method 2.3.6 makes in preferable in situations where it suffices.

. R T P e A At
LS R R S g A N . SEANA TSP AR LR S AR LGRS Ay

LIS PR

.y
A",

4

TRV T

65

2.8 Discussion

2.8.1 Comparing System Models

By constructing transactions from appropriately chosen atomic operations, the system
model presented in Section 2.1 can model any of the database system models described
in Section 1.3. For example, a system implementing read and write operations such
as those used to construct the transactions of Figure 1.1 can be modeled by using an
atomic operation (t:=a[i]) to denote each read operation r(a[i],t) and (a[i]:=¢) to
denote each write operation w(afi],e).

Explicit synchronization is represented in our database system model by includ-
ing synchronizing operations among the atomic operations from which transactions
are constructed. Implicit synchronization is modeled in one of two ways: either by
introducing a scheduler process to which transactions make operation requests, or by
modifying transaction operations to perform the function of the scheduler themselves.
This second approach was illustrated in Section 2.4, when the synchronized database

system ¥1 was constructed from 0.

2.8.2 Comparing Definitions of Serializability

In Section 1.3, we divided definitions of serializability into two classes, those character-

"izing schedule behavior in terms of conflict relations and those characterizing it in terms

of state transformations. Definitions 2.2.1 and 2.2.2 generalize in two ways definitions
in the second class. One generalization results from the inclusion of the equivalence
relation for database system state equality. This allows various criteria by which previ-

ous definitions of serializability compare system states to be represented. For example,

PE I,

AN
LA

&%

2l

L
\1"
"

>
)
['of
7

A
~ld

L}

Y

o % &
Gr'."‘.':'i.

L

n’~I

-?'- f.'

oL

NN
A

LR R
A“A'.
v &y

4
2
»

Pl

LY X, 8, T
PR O A A
-.1.'-,\

2
£y

&)
g

P
s,
',v'

Ny
I,l.- "

7

B

i

]
« &z

Y
Lt

X
)
y
N
3 \
1 66 b
y P
‘ \
) L4=(V4,04,T4,=y) '.‘_
Lr“l:(z’yvbaz’cf()vcfl)v N
C4 =(z +y =1000), .
» T4:{T0’Tl} "i
: ro=Al: (ifb— y:=y+17]-b - z:=2 - 17fi); N
A2: (ifb — z:=2-17[]-b — y:=y+17fi); 2
A3: (end(7p)) y
A\
¢
W
T1=B1: (z:=z); 3
\ »
; B2: (end(7)) b4
(VA =4 Va") o (2 =2" Ay =y" A =" A2 =" Nefy=cff Acfl =cff') '.:
- ':
] :
. Figure 2.10: Database System 4. e
final-state serializability can be represented by Definition 2.2.2 by choosing = so that o
V'= V" if and only if V' and V" agree on the final values of every shared variable :
L gt
of the system; view serializability can be represented by adding auxiliary variables to -
[transactions to record the value obtained by read operations and choosing = so that o
)
V'= V" if and only if V' and V" agree on the final values of both the shared variables Qe
» .v ‘
) and the added auxiliary variables. :‘
. A second source of generality in Definitions 2.2.1 and 2.2.2 results from the use :::
-4
of wp to compare the way in which schedules transform the system from one state A
to another. A schedule that is final-state or view serializable is required to “behave !

o
, like” a particular serial schedule; a schedule serializable according to Definition 2.2.1 ;“
is allowed to “behave like” different serial schedules depending on the initial state. To ;

o« ot

7.

67

".. "-'.- ',A.'.I;. L™ ':

see this, consider 34

of Figure 2.10. In particular, consider the non-serial schedule

;
s 08: Al;B1;B2;A42; 43
¥
\.-
’ of 79 and ;.
\.
-'.j The two possible serial schedules of ¥4 are
& 09: Al;A2: A3;B1; B2
‘ and !
’: :
N c10: B1;B2;A1;A2;A3.
Schedule o8 is neither final state nor view serializable because neither ¢9 nor 10
N : .]
N individually produces the same final state as o8 for every consistent initial state. In
.7
E o
. particular, 08 produces different values of z depending on whether b = true or b = false
;l initially.
g
,; According to Definition 2.2.1, o8 is serializable if and only if
!
~ = (C4 A wp(08, V4 =4 VA)) = (wp(09, Vad =4 V4) vV wp(al0,Vd=4 V). (2.38)
‘_':ﬁ Computing wp(09, V4 =4 VZ) and wp(cl0, V4 =4 VZ) using the rules of Appendix B :
'..: gives
R : Vi
~ : wp(o9, V4 =4 V4)
A . - - -
_,-: =(z-1T=ZAy+1T7=yAb=bAz-1T=2Atrue=cfg A true =cf))
-# L
- and 1
% wp(o10, V4 =4 V:t) a
ﬁ :(z“IT:EAy%»lT:i/\b:E/\::E,\true:JO/\truerﬁl). i
]
- Computing wp(o8, V4 =4 V’i) gives
>
-
~
-~
>
S
:--1.¢.r_/.f-.r.'.’.r.f - . . . D I ,.

- e . N AR S N S O - B LGN \- \f\-\f
\. ~ _ * - . . A " PO SR N N S . - "

g

-,

4

-

! 68 -
. B
wp(o8, V4=, 74) ;:i
: =((b= (2-1T=FEAy+1T=§Ab=bAz=3" true=cfy " true = cf) ':.j
: - N
y Ab=(2-1T=ZAy+1T=§rb=brz-1T=ZA b

X ___ 7 .
true = cfg A true = cf)], ~
, - ~ ™
] =l(b= wp(cl0,V4=4 VA)) A (~b = wp(a9,V1=4 V1)) "
4 Y \
For any predicates P and @, it follows tautologically that :::
g

'
{C4N(b=P)A(-b= Q) =[PV Q. §
¥ o
— — P
Taking P to be wp(010,V4=4 V4) and @ to be wp(c9, V4 =4 V'4), (2.38) follows triv- E::
g
ially. Thus, o8 is serializable according to Definition 2.2.1. i:'ﬁ
One previous definition of serializability that is similar to ours can be found in 3
! e
’ [C81]. Like Definition 2.2.2, the definition of [C81| characterizes system behavior by :.‘Ej
\ RN
' the way in which the system state is transformed. Our definition and that of {C81} '
also share the property that final states are compared using an equivalence relation on ;:
-
states, although the equivalence relations that can be specified in [C81] are limited to .
7
those having the form L
-
l‘.‘
(“"E V")‘v:(L,':Lf”) b}

for some vector of variables U/ containing a subset of those appearing in V. subset of
those that can be specified in our definition.

However, a more significant difference between the two definitions of serializability
is in the formalism chosen to describe the way in which concurrent execution trans-
formns the system from one state to another. Instead of using wp to describe program
semantics as we do here, the definition of (81 uses an extension of Dynamic Logic

FL79,H79 called Concurrent Dynamic Logic P87 to reason formally about concur-

N S S A R A e T T Sy Y "‘A" ."' ’\ :'1"1‘.15

a

. 5y "a m Attt P U P A U UL P A R A A I S AN)
TR R AT AT RN L '.‘,-'.PJ'_.D_-.' BN A f\f.f.‘.'_,f‘.. PN .\J'l_.-‘-_l I‘J‘ -"_I‘I\(‘_‘ LN VAR \J',,. WY

69

rent program semantics. The main advantage using wp in Definitions 2.2.1 and 2.2.2
is that it provides a better foundation for translating Definition 2.2.2 into Proof Out-
line Logic, and Proof Qutline Logic is more familiar to programmers than Concurrent

Dynamic Logic.

4
A

AN é.?",{'.',.{ flls

;;n.",‘

LI
PR

_
PN)

B

o)
LN

“ e
e
[AEN

. '.. '.' I. o

"‘n“\ J‘ “')“}\J’

-

Ly

LY N)

TN AN AC A AN

DR S R Y L L L I

~ AN NI AL ¢

>

e

B I TN YT

N A N A
g™ % f’.\{ > A

Vo ¥ ‘ v ColC M A A g
;‘.“ .'.l."..-." N W T W ¥y 0 g T L RS y . . Fa e LA A A Cad -

3 Chapter 3

w'
o,
Deriving Locki
-
- eriving Locking Protocols
-
..
,.
-,
<. Fsing Method 236 or Method 295 8 0f € hapter 2 a proct that a database <y stern © «
o
g
seriahizable 1s partitioned 1t a proof of a safety Droperty Dartiar orrectnecs e b
\.':,' })V SDL o SDUY" 1 and a proof ol a veness property ettt \ et
4
~
-
N spvrlfymg the safety pProperty assoorated with serigizatogty an 4 [sree! Vo "
N
’
> 1t becormes possible to venfy formally sy b zation srotoe s
N In this chapter. we dlustrate 4 secaned Senebt 0 Lar i goning fe ariat 0 e oa
o
4
N
.’ abiity in this way the alubity o dervee oo G st DrcToa b o et aa
\i
ustng ohligations that anse in the prod o reeitiman 0 o iiate e 1 e g
o
e synch t W »
’: yunchromzing operations e oatart with 4 genera e et L oA L it e g
Lo
N ‘
o requirrinents can be derived while constegc g a4 red catiine We e e
N
v
assertional characterization of KNI 1A A ows Nirne AT e e e
.,
:' to bhe satished by using cocling operat.o
.-. [[4 Y Al o~
.
[
Y
~l
L4
~5
P
S Thy
0
'
P
M
”,
)

- . PR . L. . P .

\
PP » - o g & 7
R AT T o AN AT AT TN AT AL AT A

a)

E
:
:

7l
3.1 Proofs of Concurrent Programs

Before considering the specific problem of deriving synchronization to ensure serializ-
ability of database systems. we hirst examine how proof outlines for concurrent pro-
grams are constructed Note that both SDO(Y) of Method 2.3.6 and SDI(X*) of

Method 2 53 have the general form
PFPony,. {)cobegin ry | coend{R} 13 1)

in Proof Outhine Logie, PO(Y) 1s inferred 1n two steps First, the cobegin Rule
wuthinanzed with other rules and axioms of Proof Outhne Logic in Appendix A) s

appited 1o obtam a full proof outline
PO () cobegin Pl)ir,) PPOiry |1 coend{R} o320

Then “he Vasetton Deletion Kole s apphed to deiete intermediate assertions from

} l'l!l' bt l’l’«‘_
" rnh"ill Mone cequires 1O v catoafy four By pothieses I he hrst hivpothess

Caates Ay et BEh "y Aaetf WA valld |;r‘u>' et ne

H ey oey are cain! procl Sutiimes

Ye e fay pothesis of e ruho.in M oiie rnsures *hat the precoandition b et
it} i Wil e trge wher e grrent eged gt darts

"2 v pev rero. pee 110y
e T N e N I ALY K & et e At tent e ke gl Tern, At

Wt e et it YR A o

“ “,n - [v . YL RIS P
AL L L I Y A Al n e

aintadat bat Ge oSt v o at, Aat o B e oBi aR SR S

72
H3: (post(PO(mg)) A ... A post(PO(Tn_1))) = R.
The last hypothesis of the cobegin Rule is called interference freedom '0G76). For a
an atomic operation and A4 an assertion in FPO(X), a is parallel to 4 (denoted a || A)

if a occurs in one transaction and 4 occurs in the proof outline of another. Interference

freedom ensures that no atomic operation invalidates an assertion to which it is parallel:
Hy: (Va,4: a'' A: Nl(a,d): {pre(a) A A}a{A}).

When ¥Nl{a,d) is not valid for some a parallel to 4, we say that a interferes with A.

A full proof outline satisfying the hypotheses of the cobegin Rule can be con-
structed by a step-wise derivation in which sequential proof outlines are chosen to
satisfy some of the hypotheses initially, and are transformed in a series of steps until

they satisfy the remaining hypotheses SAXT'.

Method 3.1.1 (Deriving Full Proof Outlines) To derive a full proof outline
FPOiY {Q)}cobegin PO(r,) - PO(ry) coend{R}

that satishes the hypotheses of the cobegin Rule, do the following.

I Construct Sequential Proof Outlines. Construct valid sequential proof out-

lines POITy). PO(ry |)in satusfying hypotheses Hl and H2.

2 Eliminate Interference. While hypothesis Hi remains unsatisfied, do the fol-

Inwmg
ral Enumerate and check the interference freedom formulas.

th) Choose aninvabd Nl{a, 4) for an PO(7,) and 4 1n PO(7)) and do one of

the fuuuwulg

N AN IS NPT A e

*

m i mm oM S A AP a A

g S

o

73

o Strengthen pre(a). Replace pre(a) by a stronger assertion! pre(a)’

i

such that the interference freedom formula {pre(a)’ A A}a{A} is valid,
strengthening assertions that precede pre(a) as necessary to ensure

that PO(r;) remains valid.

MO hR

o Weaken A. Replace 4 by a weaker assertion? A' such that the interfer-
ence freedom formula {pre(a) A A'}a{A'} is valid, weakening assertions

the follow A’ as necessary to ensure PO(7,) remains valid.

3. Check that the resulting proof outlines satisfy hypothesis H3.

3.2 Interference and Synchronization

Even when PO(X) of Equation 3.1 is not valid, it is often possible to derive synchro-
nization that ensures that PO(L) is valid by examining where constructing FPO(X)
with Method 3.1.1 fails.

It will always be possible to construct proof outlines PO(tp),...,PO(ry) that

satisfy hypotheses H1 and H2 as specified by the first step of the method. Suppose

%hat in the second step, an invalid triple N/(a,A) for a in PO(7,) and A4 in PO(T))

is discovered. Two options are available: replacing pre(a) by the stronger assertion
pre(a) A (A V wp(a,A)) or replacing A by the weaker assertion 4 V post(a). However,

the other hypotheses of the cobegin Rule effectively limit the strength of pre(a) and

'pre(a)’ is stronger than pre(a) if pre(a)’ = pre(a) and pre(a) £ pre(a)’.
1A' is weaker than Aif A > A’ and A’ 2 A,

- ~ L LR R R L TR SR TR Sl S N
B R T N P X" e W (G0 et g B D Yl AN Y A R DS b e fha e ea pNa lia e pia SRR A A te gt Al Paiie pte Tte i i oA tuR R A .
¢ .

. the weakness of 4.

In particular, hypothesis H2 limits how strong pre(PO(r,)) can be made. Because
\ H1 requires PO(7,) to remain valid, the strength of pre(PO(7,}) effectively Limits the
strength of pre(a) and other assertions that follow pre(£ 0(7,)). In a sunilar manner.
: hypothesis H3 limits how weak post(PO(r,)) can be made, and consequently how weak
A and other assertions preceding post(PO(7,)) can be made. Because of these Limita-
tions, it is possible to reach a point in Method 3.1.1 at which an invalid interference
freedom formula NI(a,A) has been identified, but pre(a) cannot strengthened or 4
weakened enough to eliminate this interference without making it impossible to satisfy

. one of the hypotheses H1 through H3.
_ Such conflicts can be overcome if a method of selectively strengthening assertions

can be found. With such a method, pre{a) could be strengthened enough to el

f nate interference while assertions that precede it are left weak enough to ensure that
‘: other hypotheses remain satisfied. Likewise, A could be made weak enough to el
nate interference while assertions that follow 4 are strengthened to ensure that other
hypotheses remain satisfied.
In the remainder of this chapter, we will demonstrate how locking can be used to
4 i‘mplement synchronization required to do this. We first show how locking can be used
1 to ensure that concurrent execution of transactions preserves a certain type of invan

ant, called an ezclusion mmvarant. We then show how the problem of strengthening .

assertions selectively can be reduced to one of preserving invanants of this type

S PR O L M S NI NULMICSIRTIRTI g0 Yy S S e T S A O AT N
e e N e T B S e T A s T e RS .

75

3.3 Exclusion Invariants

A locking protocol A can be specified as a triple M, LOC R | where M s a set of lock
modes, L s the lock compatibility relation on these modes, and R is the set of rules
that transactions must follow when acquiring and releasing locks. A lock with maode
*M" is denoted €y . Locking protocols described in the hiterature often use locks that
are associated with system variables. In read-write locking protocols, for example, each
read or write lock is associated with a particular variable or set of vanables. Locks
associated with variables can be formulated in our notation by including associated
variables in the mode of the lock. For example, read and write locks on z can be
denoted € g,y and iy (,), respectively.

The set of locks held by a transaction 7, is denoted ls,. Lock compatibility relation
LC s a predicate on the lock sets of the transactions of . To add locks to Is;, 7,

acquires them with the operation
acq(IIMOJ,“.,l!M‘i),

and to remove locks from ls,, 7, releases them with the operation
PCN"_"O},...,[{M‘]).

The predicate
ls. ! {l{M()]"t[MhJ}

is true if and only if 7, has acquired locks I'MOI""‘('MU but not yet released them.
A database system synchronized wiik a locking protocol can be denoted by a pair

'A,L). Here, A =(M,LC,R) is locking protocol and £=(V,C,T,=) is a database

F T T ST . P AP
N, WS AN AT AT AT A N L LI T T AT S S S i T L A S A .
! B:&’M-’ Pl fad el s dn o o ada AR Laatas

a2 o

A S A SR SN

e = A A s aem A A Al m B

- <
P\f.:

ey . A 228)

- v ‘& at - B o A Dl el 2l A g dC A At Al gl LI Ml D R PR R A A i i A o N
., g, ¢, ¥ ,.¥V.N .9 =) -

-

”
) r
”
v
’
-
Ky
76 v
l'l
svstem such that 1 ocontains the lock set s, for each transaction 7,0 T, (' L(" and)
each transaction r,- T follows the rules of R o
A
The local state of a transaction 7, 15 the part of the system state that only r, can
'\
modify For example, variables that only 7, can modify are components of the local e
o
state of 7,. as 15 the value of the program counter of 7, A predicate LP 15 local to 7, -
D . s
if LP 15 a predicate on the local state of 1y »
A
An rzeluston mvariant 1s a predicate of the form ":-'
2
-

NI LP L),

where LP and LQ are predicates local to different transactions 7, and 7,, respectively.

T R

Locking nnplements synchronization that prevents sections of different transactions

from interleaving with each other. If we view locking assertionally, locking protocols

-y

L/

can be used to preserve exclusion invanants. This 1s accomplished by giving modes and

rules that couple the | al state of transactions to the sets of locks they hold, and lock

SN XS

compatibility relations that provide the necessary exclusion The following theorem

L o]

suggests a way to do this. \'_

e

Theorem 3.3.1 Let LP and LQ be local predicates of transactions 7, and 7, of ¥, :::.:
and let “Af0" and “M 1" be modes of the locking protocol A of ¥ Then PN

R

LP = L!‘ - {llMo'}, (33) ,-:;

LQ = s, 2 {€ yy)} {3.4) L]

and ‘.:_
'1(1’l2{(!M0]}A131;{I[Ml}}) (3.5) »

N

¥

\-P

.y

R P N N R A A ST IIEIN AR A

* e
i

imply :

(LP ~ LQ).

UL UK

Proof of Theorem 3.3.1 By Predicate Logic, (3.3) and (3.4) imply

Lol p o

(LP ~LQ) = (Isy o {liyggi} M lsy {liygy). (3.6)
Since 4 = B ifand only if ‘B = -4, (3.6) implies

sy - {Epyporb sy - {lpyp}) = (LP 2 LQ)
From this it follows that (3.3), (3.4) and (3.5) unply

(LP ~ LQ)

’n.’s’\{& KA & r.‘b LR AR

3d

From Theorem 3.3.1 follows a method for using locking to guarantee an exclusion

invariant.

‘Method 3.3.2 (Guaranteeing Exclusion Invariants) Let ¥ be a database sys:
N tem synchronized under locking protocol A - M, LC R and let LP and LQ be local

predicates of transactions 7, and 7,, respectively, of ¥. The transactions of L can be

synchronized to ensure that

o XI. (LP~LQ)

STV PP g

* '

remains true by doing the following.

1. Introduce Lock Modes. Add new lock modes “M0” and “M1” to M.

2. Strengthen Lock Compatibility. Strengthen LC so that
LC = —‘(13‘ > {l[MO]} A IJ] D {&M”})
3. Strengthen Rules. Add rules to R that ensure that

LPI: LP = ls, Q{t[MOI}

LQI: LQ = Is) 2 {tiyy}

remain true at all times.

3.4 Using Locking to Strengthen Assertions
Selectively

We now return to our original goal, which was to synchronize transactions so that an
Zassertion P in a proof outline PO(r,) can be strengthened selectively. Without loss
of generality, assume that P is to be replaced by a stronger assertion P’ such that
P' = (P A B). For certain choices of B, the problem of replacing P by P' can be

reduced to one of guaranteeing a set of exclusion invariants, as we now show.

Lemma 3.4.1 Let

N e oy SR e e Lt D
B LS el . " h - - 0 . » A

? x

=

N YA

DY

e

.'.,','l'l

g & JUN

RN
P A

DL NS L

NS S

S i T
AT

PN

EAILOE

;

5 8 'n"-{)

.I

LTINS CN SN

...(, -y

r
o5
=

-,

.-.r"l-'h'-'

- ¢ DA
a v

»

et

AR

-
..‘ u.‘ l.' -" »

- NN
AhY Y

!
:‘-‘n'

T vs
1]

a
A

3

rrd
AR P

O
L XA

.
N

FPO(S): {Q}cobegin PO(ry) " - PO(ry.;) coend{R}

be a full proof outline for a database system ¥ and let P be an assertion in one of the

PO(7,). Let LP be a predicate local to r, such that

P = LP

(3.7)
and for each 0-_j #1- N let LQ; be a predicate local to 7, such that
P=Bv LQ,). (3.8)
0« y£s- ¥
Then
(Pr A ~(LPALQ,)) = (PAB)
0~)z N
)
Proof of Lemma 3.4.1 From (3.7) and (3.8) it follows that
P=(LPA(Bv '\ L@ (3.9)
0<j)#3< N
Since conjunction distributes over disjunction, (3.9) implies
P=(LPAB)V (LP A LQ,)). (3.10)
. OS]#I‘ N
Because
(V (LPALGN=~(A ~(LPALQ,)
0)#s< N 0<jy#s- N
and because disjunction is commutative, (3.10) is equivalent to
P=(-(A ~(LPALQ))V(LPAB)). (3.11)

0<)£ N

. -
........ -

- -.’ v-_v- 'ﬂ\-'.- :f‘."\" \‘.*\‘. ¥ ‘\"\ \'\'.\

.‘_ -'. » ‘J‘_;J‘:.'.:J -’.:"’ ‘_'-:J'_:}"'h -I;J' '-':-{'\"J' -_-;.
'™ h o ¥ W N

A

80
By Predicate Logic, (3.11) is equivalent to

(P A (LP *~ LQ,)) :(LP " B).
Ve N

from which it follows that

Py A (LP - LQn - B N
0 y)zs ¥

b

Because P appears in the antecedent of (3 12y and P - P (3 121 imiphes

(Pa AN (LP L@ (P B)
0-)z N

—
—_—

Provided local predicates LP and L@, satisfying hypotheses 13 71 and 13 %1 can be

found, Method 3.3.2 can be used to strengthen P with each of the exclusion invariant«

(LP ~ LQ,). The resulting assertion P will imply P A vLP Ly and
0oy N

therefore by Lemma 3.4.1 will satisfy P’ : (P * B) This gives the following methaod

for using locking to strengthen assertions.
Method 3.4.2 (Selectively Strengthening Assertions) Let
FPO(Y): {Q}cobegin PO(ry) - PO(ry ;)coend{R}

be a full proof outline for database systemn £ and let P be an assertion in one of the

PO(r1,). To strengthen P to an assertion P’ such that P' : (P * B}, do the following

-‘—"

4

1. Choose Local Predicates. (hoose a predicate LP local to 7, such that s
T,

P LP ?

o ~ - . E : I T FE R Y PR XS | TN T AT N 'f'{'ﬂ"i“l"l“n"‘d‘f '{\f 2
NI 0 SN AN O e s kb

RBAASONE X AR AR

"‘

X1

and forecach by 20V choose a predicate LQ) local to 7, such that

I K V /Q))
wogyes N

2 Guarantee Exclusion Invariants. ['s¢ Method 33 2 to strengthen \ s that

P g,

i~ wvanant for cach 0) 20 N lake P70 F A P,

sing Method 342 to help elinnnate interference by selectively strengthening as
sertions, our method for proving the serializability of a database systemn - Method 270 4
can be transformed into a method for derving svnchronization that ensures 1 s ser:

alizable

Method 3.4.3 (Deriving Synchronisation for Serialisability) 1. aervew aon

R prnln(n{ A M IO R for database svstem Vool sach that AT ~

setializable. do the following

| Approximate A\ Y . Choose an mtial version of A and modify Y as e essan

to follow A

[

Define Shadow Variables and Transactions. Dehne shadow varnables Voand

shadow transactions T corresponding to the vanables V and and transactions /

of ¥

3. Form Synchronised Augmented System. C(onstruct an augmented system

—

R

>

Cew & s"\ A
. F ORI

a"'

»
02

e
7 a0y

s

AR -~
',

-'

7’
"

.,
sy,

RN
2t % %%

."
[%

g
(X

‘s

/

‘s %
I.IL&

5
RNy

v .';.

2

L] ..I ﬂ.
AL

N

o

W

hY

% Y

’ﬁ >,

[l

i Derive Synchronization. Strengthien the locking protocol A so that it becomes

possibie tooconstruct the valid, full proof outiime

AV A T
cobegin /') -° FO-, ,'coend
. |

a~ ' n;«l“ ~

a Construct Sequential Proof Outlines. Cunstruct valid proof outhnes
fror -t Frov '; o ~atisfhving .‘x)pn(?wst'> H! and H2
 Eliminate Interference. W'iiie hvpothesis Hie remains unsatished, do the

pow ing
Froamerate and cheoa the nterference freedomn formulas

Chesose ar nvabd Moo b far oo Povryand 4 P()(r)) and do

e ot the “HHU\\IHK

o Strengthen pr o . I possibie. teplace precan by stronger asser-

¢)
ton preat such that {prera

tha{ t} s valid. strengthening
assertions that precede preiad’ enough that PO(7,) remains valid
as r~quired by hypothesis H1 but not enough that hypothesis H2 1s
invalidated If hy potheses H1 and H2 prohibit strengtheming pre(a)

enough to eliminate wterference, use Method 3.4.2 to selectively

strengthen prera without invahidating these hypotheses.

o Weaken 1. If possible, replace 4 by a weaker assertion 4’ such

that the nterference {reedom formula {pre(a) * 4'}a {4’} is valid,

weakening assertions that follow A’ enough that FPO(r,)) remains

St L, A NS Y Y ENTY LY.L S A

ma

S m e r smmmmaa 4 ¢ B F & CEHENG ™ TeTw V. 8

“AO-R191 245 AN ASSERTIONAL CMTERIZHTXN SERINJZ”ILITV L4 2/2
OCKIIG(U) COR‘LL UNIY ITHACA NY DEPT OF
ER UILEV 89 FEB 88 TR-88-89
UNCLASSIFIED N...i‘-i‘ K-08 F/G 1274

N XL Vi

U NI IR N NS

KR EWAL

% 4

A g9 g%8 4 ti

‘St 08 0 o

98,08, 9% 0N,

$a004,0' 0,000,000, 078

A A A YN

h

ol

009 5,0 000003000 0,0 0,

= S Ps Rrnny GOSS W) s n: WP B ¥ Yy B A O

~
.
b
0y

—————
—

jes
=
ym
u
1-4

I

1-:25

.————=
]
—

I

83

valid as required by hypothesis Hl but not enough that hypoth-
esis H3 becomes unattainable. If hypotheses H1 and H3 prohibit
weakening A enough to eliminate interference, use Method 3.4.2 to
selectively strengthen an assertion following 4 so that A can be

weakened without invalidating these hypotheses.
(c) Check that the resulting proof outlines satisfy hypothesis H3.

5. Infer SD1(X*). Using the Assertion Deletion Rule, Infer

SD1(Z*): {CAV=V}
cobegin 7 || --- || Ty_, coend
{(v=V)
from FSD1(X*).

6. Prove Termination. Prove that execution of £* terminates when started with

CAV=V true.

3.5 An Example

‘:I'o illustrate use of Method 3.4.3 to derive locking protocols for serializability, we
consider a database system that supports a simple banking application. In deriving
synchronization for serializability, we will illustrate another point as well. This example
was first used in [L76] to argue that serializability is inappropriate as a correctness

criteria because of the restrictions it imposes on concurrency among transactions. We

D R e AR ot
fw‘-f\,\f‘.._'_.\'\"v’\"’- *

o NN T AR T e S N N A

-, .'}\}“} ~

N 2t a¥atate sl . Vel el af Sa 0 Rt vad Sul Ul ol eof Gol OF Bl B Sol)
LS TN On K LN W ‘RN ARy NHX N R AN ¥ 4% 4% t ; LW LW LW A a8a at, ‘atacaly "at.) M

0y
)
84
a..- will show that choosing an equivalence relation more accurately reflecting the semantics
::E of the banking application makes it possible to derive a locking protocol that does
::: ensure serializability while at the same time ensures a high degree of concurrency
by among transactions.
.
%’- Database system L5 of Figure 3.1 models a simple banking application. Variables
g
& V5 include an array a[0..N] that models account balances. For j >0, array element
;‘5 a(j] holds the balance of a customer account; a[0) holds the balance of a dummy account
I that is equal to minus the sum of customer accounts, modeling the bank’s financial
4

obligation to its customers. This implies a consistency constraint that the elements of

: a sum to zero.
.. L]
;.' Transaction 7y models an auditor that inspects account balances to determine if
b
s funds have embezzled. The auditor accomplishes this by copying account balances
'::'l into a ledger [for inspection at a later time. V5 contains an array {(0../N] modeling
o the ledger used by the auditor to record account balances. Transaction 7, models a
)
' sequence of deposits, withdrawals and transfers. (A deposit to or withdrawal from
X an account afj] would be implemented by a transfer between that account and the
o bank’s account a[0].) Here, 7, is shown performing only two such updates, to simplify
analysis. To ensure that array references by 7; are within a’s range of subscripts, €5
. a
~ ‘bounds variables ¢0, d0, c1 and d1.
e,
_'f: States equivalent under =5 are those in which corresponding elements of a(0..N]
. and variables ¢0, d0, ¢1 and d1 have the same value, and in which elements of /[0.. V]
-
-,,' sum to the same value.> The latter property of =5 reflects that only the sum of ledger
"4
'h:: 3This value is 0 for consistent states.
]
Ly L
[L
¥ L
@
P
..4
)
R L N A STl

PO Y

85

£5 = (V5,C5, T5,=5),
V5=(a[0..N),1[0..N],k,c0,d0,t0,c1,d1,t1,cfo,cf),
C5=(N>0A0= 5 a[jlA0<c0<d0<NAO<cl<dl<N)
0<<N
T5 = {79,71},
10 = A0: (k,1[0):=0,a[0]);
dok#N —
Al: (k[k+1]:=k+1,alk+1}])
od;
A2: (end(7p)),
1= T0: (a[c0],a[d0]:=a[c0]+t0,a[d0] - t0);
T1: (a[cl],a[d1l]:=a[cl]+t1,a{d1]—t1);
T2: (end(my)),
(V5' =5 V5")

& (a'[0..N]=d"[0..N]A ¥ 'il= % "]
0<y<N 0< <N

A0 =c0" A d0' =d0" Acl' =el" Adl' =d1" A cfy=cfy Acf]=cf]")

Figure 3.1: Database System 5 for an Idealized Banking Application.

entries is significant in the context of the banking application.

When 7 and 7; run concurrently, it is possible for T0 or T1 in 7; to credit an
account ¢ that has already been recorded in /[0..N] and debit an account d that
" has not yet been recorded. If this occurs, then [[0..N] will not sum to zero when
7o completes, and the auditor’s ledger will incorrectly reflect that funds have been
embezzled. To prevent this, we use Method 3.4.3 to derive a synchronized system

(A6,%6) that is serializable.

First, we choose a trivial locking protocol A6 with no rules and add lock sets to the

™ 4 L ¢

f e r Mt AN A TR E ATA AT e T K"ATw e At et T ~,.-'
14 "“‘ v n .!— o h e ..'V ., .‘-. ol T ,“. O .-n. oy \'_\'. N T w .,_, _\'A. 5', -"__ -., \ ' ‘ . R’\
s - M X XN) g X 5

. N . a e e R A Bt Maf fa S’ i -k v TR 2’6 .2 0.8 0.4 6.0 YaB Vad Tak “ak “ald ad sl
.3- T VWL VLA RGOSR, A it e 8e"10a-4%2 %00 0l - ol oltn’ 2R a4 - W W

: |
N

“

r‘,

5 86

.

y

N A6 = (M6, LC6, R6),

N

::: M6 = {}, ’
" LC6 = true, .

g RS =}

. o6 = (V6, C6, T6,=g), :
> V6={(a[0..N],l[0..N],k,c0,d0,t0,c1,d1,t1,cfo,cfr,lsg,lsy),

C6=0C5 §
A‘.

A §
p (V6 =¢ V6") ‘
|
& (a'[0..N]=d"[0.NJA £ V= & V[jlAncfy=cfy Nefl=cf]

0<j<N 0<j<N

N Ael' =c0" A d0' =d0" Acl'=c1" AdY =d1" Alsy=lsf A lsj = Is]')

P,

8

; Figure 3.2: Synchronized Database System (A6,%6).

o variables of 5 to give the synchronized database system (A6,¥6) of Figure 3.2.

Next, we define shadow variables

. =(a@[0..N],1[0..N],k,c0,d0,20,c1,d1,21,¢fg,cf 1,030, 031))
" ,
W corresponding to those of V6, and shadow transactions ‘

7 = (k,1(0]:=0,a(0]);

[dok#N —

i (k[k+1]:=k+1,a[k +1)))
! od, .
- (end(7p)) R
E and
: 4
i)

D
K

R)
A
iV

: S W W i iy 1%) Ce N
“u'l.o'l..",u ‘.a".o",o.t PN e DN O B X B X Bt e W " W, ’ Y

-,'\'\'\] .

£6* = (V6*,C6,T6*,=¢),
V6* = V6- VB,
T6* = {7g,71},
19 = A0: (k,1[0]:=0,a(0]);
dok#N —
Al: (kl[k+1):=k+1,a[k+1])
od;
(end(ro);7)
: {a[c0],a|d0]:=a[c0] +t0,a[d0] - t0);
(a[cl],a|d1]:=alcl]+t1,a[d1]—t1);
(

end(7)); 7)

Figure 3.3: Augmented Database System ¥6*.

corresponding to 79 and 7. With these we form the augmented system (A6,26°) of
Figure 3.3.

Next, we strengthen the locking protocol A6 so that a valid full proof outline
FSD1(¥6%) can be constructed from which §D1(X6*) can be inferred. We present

the derivation of A6 as a succession of versions of (A6,56*) and FSD1(£6*). Each

version follows from the previous by a change to the database that makes progress

towards satisfying the hypotheses of the cobegin Rule.

As a proof outline for the initial version (A6,X6*) of Figure 3.3 we construct

» LIS
" NN -.‘-..-\- \q \fh f\- .'l‘ .f\(-f‘ X f "' (\f\-f' 4'.‘ \q w’.‘- \, ¢ J\J‘\ \ \ ‘..‘\o\ o

W -

e e

Al

AL YN0

. v - . R . R N, A
'h'_l),k"i."‘; YU N R Lo fah, o’ ",“t.l'c.\. A N L U b N L L Y LR e et N Wy, YR, .

88

FSD1(36°):

{C6 A V6=V6}

cobegin PO(7y) || PO(7{) coend

{al0..N]=3[0..N|A £ ljl= £ Ijlrcfo=cfohrch=cf
= 0y N 05N ~ ~

NcO0=cOANd0O=d0Acl=clAdl=dl Alsg=1Isg A lsy =Is;}

where PO(75) and PO(]) are the proof outlines of Figures 3.4 and 3.5. Each assertion

of PO(rg) and PO(ry) contains the invariant

10: C6AcO=cOAd0O=dOAt0=10Acl=clAdl=dlAtl=tl
Acfy=cfo A cfy =cfy.
It is easy to verify that FSD1(E6*) satisfies hypotheses H1 and H2 of the cobegin

Rule, so we omit the details here.

Next, we enumerate and check the interference freedom formulas. When this is

done, we find that NI(TO0,post(A0)), NI(T0,pre(Al)) and NI(TO,post(Al)) are in-
valid because T0 can make the conjunct

(X W+ 3 alih= > aljl

0<y<k k<j<N 0<y<N
of the loop invariant P0 false by transferring funds between an account in a{0..k| that

has already been audited and an account in e[k +1..N| that has not. For the same

reason, NI(T1,post(A0)), NI(T1,pre(Al)) and NI(T1,post(Al)) are also invalid.

It is not possible to weaken P0 by deleting this conjunct because doing so would
make it impossible to obtain a postcondition post(PO(7)) strong enough to satisfy hy-

pothesis H3 of the cobegin Rule. Consequently, we strengthen pre(T0) and pre(T1).

Since

{pre(TO0) A ~(c0 < k < d0) A PO} TO{ PO}

S8 S

-y

B AV KX

- -t

W,

Sy

‘y w oz 2.°

AT

-

PR

42t auat g 0ae: Vit g A LA AN ¥ R A0ariSe @¥a b a0y KRN VBRI I IETT L WA Wy N YIRS WY IR TR NV

89
| PO(7):
; I0OA T alj]= alj
| { AOgjgN 7] OSJZSN 71}

AO: (k,l[0]:=0,a[0]);

| {10AP0O: (T Ij]+ T alil)= £ ajjl}
| 0<y<k k<j<N 0<)<N
dok#N —

{IOANPOAK#N}
Al (k[k+1):=k+1,a[k +1])
{10 A PO}

od;

Io I[j) = alj
{ AOSJZSN 7] OSJZSN'I[JI}

A2: (end(79); %)
{ron v ljl= ¥ 15}
0<j <N 0<5<N

Figure 3.4: Version 1 of PO(7§).

PO(7f): {I0A A alj]=a[j]}
0<)<N

T0: (a[c0],a(d0]:=4a[c0]+ ¢0,a[dO0] - t0);

{10 A 1o 1oal)=ali] A alc0] =@[c0] + 0 1 a[do] = 3[d0) - t0)

T1: (a[cl],a[d1]:=a[cl]+t1,ald1]-t1);

{10 Aj;éco,.ﬁ),cl,dla[j] =8(j] A a[cO] =@[cO] + tO A a[dO] = @[d0] - tO
Aalcl]=a[cl]+t1 A a[d1] = a[d1] - (1}

T2: (end(ry);7)

{IoA A aj]=al5]}
0<)<N

Figure 3.5: Version 1 of PO(r;}).

O 'Y L) A " L AL W R LY NG P LT T TS TS) A -
"!t". RO .o. 5 .n !n .- \ .v.n -' o.n % ““ K adld v. y,y '* W L) . ".! o,

\\
A0 PN e W 4N Ny) MoK aN us)

o L
P o o e

W, PN T s Jag

» A

o

“-."l e

RRRANN, W Ao arax

N

e

90
and
{pre(T1) A ~(c1 < k<dl)A PO} T1{P0O}

are both valid, interference by 70 and T'1 can be eliminated by replacing pre(T0) and

pre(T1) by stronger assertions pre(T0)' and pre(T1)' such that
pre(T0) = (pre(T0) A ~(c0 < k < d0))

and
pre(T1) = (pre(T1) A ~(cl < k< dl)).

However, strengthening pre(T0) and pre(T1) in this way would require replacing
pre(PO(1})) by a stronger assertion that implies both —(c0<k < d0) and ~(cl<
k < dl). Since neither C6 nor V6 =g V6 in pre(FSD1(£6*)) imply these predicates,
strengthening pre(T0) and pre(T1) in this way would violate hypothesis H2. Conse-
quently, we use Method 3.4.2 to strengthen pre(T0) and pre(T'1) selectively.

To facilitate application of the method, we introduce a Boolean array At[0..N] of
auxiliary variables local to 7; and another Boolean array In[0.. N| of auxiliary variables
local to 7{. Elements of At are used to indicate in the local state of g the value of
k at points where assertions that are interfered with appear. This is accomplished by

‘adding assignments to 7§ that ensure

A = At[k]

Y

for every assertion 4 in PO(7g) that contains PO.

P
7
'.'.

In a similar manner, elements of In are used to indicate in the local state of 7]

\ A

the indices j in the range ¢0<j < d0 at the point preceding 70, and those in the

]

oA sy

X

<,

‘;l

4

AL A A

»
91
range cl < j < dl at the point preceding T'1. This is accomplished by adding to 7}
assignments that ensure
pre(T0) = /\ In{j]
c0<j<do
~ and
{ pre(Tl)= A Infj).
cl<y<dl
This gives the second version of (A6,%6%), where A6 remains unchanged from Figure 3.2
and ¥6* is shown in Figure 3.6. The proof outline for this version is

FSD1(%6*):
| {C6 A V6=T6)
(At[0],In[0],...,At[N],In[N|:=false,...,false);
: {C6AVE=V6A A -At[j]A-In[j)}
0<5<N
cobegin PO(7) || PO(r]) coend
{a0..N]=3[0.N]A £ Ijl= T lljlAch=cfonch=cf
. _ 0SSN 0 SN R _
AcO0=cOANdO=d0Acl=clAdl=dl Alsg=1Isg Alsy =Is,}

where PO(75) and PO(7]) are the proof outlines of Figures 3.7 and 3.8.

With the introduction of these auxiliary variables,

{pre(TO)A A -At[j]A A} TO{A}
0<;j<do

‘and

{pre(T1)A A -At[j]A A} T1{A}
cl<j<dl

now are valid for every assertion A containing P0. Thus, we can prevent T0 and T1
from interfering with assertions containing P0 by strengthening pre(T0) and pre(T1)

to assertions pre(T0)' and pre(T1)' such that

w,

KOO0 ..".0' . ety ‘._ |‘_‘. ! - l!,l",l'.. o 20 1 U SN0 e 0 5 O T T Do T Oy O O Ui Uy Loy

s ol gl g oy o8 34

DI EEP

ey

PR

L 35 JEARTRE N S T2 B

T g AL

TNt G

a

......

92

£6* = (V6*,C6, T6*, =),
Vé* = V6.V,
Te* ={r5,71 }
15 = (At[0}:=true);

A0: (k,1[0]:=0,a[0]);

dok#N —
(At[k+1]:=true);
Al: (kI +1):=k+1,ak+1]);
(At(k—1]:= false)

od;

(At[N]:=false);

A2: (end(7g); %)

71 = (In[c0],...,In[d0 - 1]:= true,...,true);

TO0: (a[c0],a[d0]:=a[c0]+t0,a[d0] - t0);
(In[c0],...,In[d0—1):=false,...,false);
(Incl),...,In[d1 - 1]:=true,..., true);
T1: (a[cl],a[dl):=a[cl]+t1,a[d]l]—t1);
(In[cl),...,In[d1~1):= false,...,false);
T2: (end(m);%)

Figure 3.6: Version 2 of £6*.

AXENT

:q .

P
e

‘ccwj-".'. a_ = =
P I3

Sl

NN LN

N e 38 §
. {l"’ ""‘ "l(

Gl

r g

)
G A A R T A

3
-
Py
A
.
%
[]
d
s
.
A
,
5
d
L]
.
.
[4
A
v
d
3
L}
.
.
O3
d
.
-
-
.
Cd
C
-
-~

f-.

-
-w .
-

; 93 7
W
hN
h
0 PO(r}):

{10n A -Atliln ¥ afjl= T alj})
- 0<j<N 0<j <N 0<y<N
(At[0]:=true);
. {1onatola A ~Athln £ ajl= ¥ a5} 3
» 0<j<N 0<j<N 0<)<N ,
. 40: (k,1[0]:=0,a[0]); ;
W {I0A Atlk}A A -At[j] A PO: > I+)= ¥ ajj :
: vy e (0, T elib=) & ali) ‘
. dok#N — \

{I0A At[EJA A -AL[jJAPOAk#N)}

i 0<)#k<N
> (Atlk+1]:=true);
\
> {IOA At[K) A At(k+1]A A ~ALJAPOAk#EN)
2 0<j#E<N

AL (kdk+1):=k+1,afk +1]);

: {10 At{k-1] A AL[EJA A -At[j] A PO}
3 0<j#k<N
~ (At[k—1]:=false)
: {10A AtlkjA A -At[j} A PO}
0<j#k<N .

! {IOA AL{N]A A -At[j]A] = ajj
: Ny AN)= T)

(At[N):=false); ‘
g . '
- N {I0A A -Atf5]A Ihl= a|j :
; _ oMy U] OSEN s} og:‘:gzva[]]}
& A2: (end(7y);7p)
: {IoOA A -Atfj]A I[j] = 15
y oy AN T)= T T
l" r
i' Figure 3.7: Version 2 of PO(1]). |
%
o :
i' :
l.. l

ui'_- : - wa 'j""';" M N A A '-F_:-P‘ 'I.'J‘;’.‘-’.;" e

it 0a® 1a Ba” fa® ot Bat 0¥ gt 1oV tu' S

wvewwT vy

ot

PO(r]):

S gt 020 008 0e® 2y et Gat Bt seb jat le*afn’ S Bt A Bt et Jletuial ol PR ORL SR el A R

94

{1on A -I[jjA A aljl=alj]}
0< <N 0< <N

(In[c0],...,In[d0 —1]:=true,...,true);

{10n A Ijjln A -IfilA A alj]=a[j]}
c0<jy<do ~(c0<5<d0) 0<y<N

T0: (a[c0],a[d0):=a[c0]+t0,a[d0] - ¢t0);

{1on A Infjin A ~Infjin A alj]=a[j)
c0<j<d0 ~(c0<35<d0) 7#¢0,d0

Aa{c0]=a[c0]+t0 A a[d0] = a[d0] - t0}

(In[c0],...,In{d0—1]:=false,...,false);

{IoA A ~InjlA A afj]=a[j]
0<)<N J#¢0,d0

A a[c0] =a[c0]+ t0 A a[d0] = a[d0] - t0}

(In[cl),...,In[d1 - 1}:=true,...,true);

{Ion A In[jiln A -InfjlAn A a[jl=alj]
cl<y<dl ~(c1<y<dl) j#¢0,d0

Aale0] =@[c0] + t0 A a[d0] = a[d0] - t0}

T1: (a[cl],a[dl]:=alcl]+t1,a[d1]-t1);

{1on A In[jiA A ~Inff]A A alj] =alj]
cl<j<dl ~(c1<y<dl) j#¢0,d0,cl,d1

Aa[c0] =a[c0]+t0 A a[d0] =a[d0]—t0 A a[cl]=a[cl]+t1

Aa[dl]=a[dl]-t1}

(In[cl],...,In[d1 - 1]:=false,..., false);

{1I0A A -InfjliA A a(j] = a[j] A a[c0] = a[c0] + 0
0<j<N 7#¢0,d0,cl,dl

Aa|d0] =a@{d0] - t0 A a[cl]=a[cl]+ L A a[dl]=ad[d]] - t1}

T2: (end(m);7)

{Ion A -In[jlA A afj]=a[j]}
0<j<N 0<)<N

Figure 3.8: Version 2 of PO(1y).

XA

X A SR

Tffrﬁ‘l".

I.'.‘\.\"

LLLLLEL: QP NS

e

R ad SN T S

.
'

t

K
atdf 4

pre(T0)' = (pre(T0) A ~At[j))
for every ¢0<j; < d0 and
pre(T1) = (pre(T1) A ~At[5))

for every ¢1 <j < d1. We do this using Method 3.4.2.
To use Method 3.4.2 to strengthen pre(T0) with a particular ~A¢t[j|, we must choose

a predicate LP local to 7] such that
pre(T0) = LP.
Since
pre(T0) = In[j]

for each c0<j < d0, we choose LP = In|j].

g

As the next step of Method 3.4.2, we must choose a predicate L@ local to 735 such

AR

that

30

pre(T0) = (~At[j] v LQ).

Since

- P . .
-(’A.’l."."'. ey

pre(T0) = (~At[j] v Atfj])

. tautologically, we choose LQ = At(j].

i ‘-."J-’.Ii.xd'-'%‘

As the last step of strengthening pre(T0), we strengthen the locking protocol A6

to guarantee that

~(Injj] A At[5])

e o et A (P e T N Y o A QGNAN AUR RN AT A

W W W e — T =

v v w ww -~

R MR)

96

is invariant. Following Method 3.3.2 for establishing exclusion invariants, we define

modes “IN{j|” and “AT{j]", strengthen LC6 so that
LC6 = ~(Isy 2 {t vt A lso 2 {8 aT))

and add rules to R6 that ensure
LINj: Inlj] = Isy 2 {{ynpn}

and
LAT): At[j] = lso 2 {¢ 411}

remain true.

Method 3.4.2 is used to strengthen pre(T1) with ~At{j] in a similar manner. Since
pre(T1) = Infj]
and
pre(T1) = (-At[j] v Atj])

for each ¢1 <j < d1, we choose LP = In[j] and LQ = At[j]. Strengthening A6 to ensure

that ~(Inlj] A At[j]) is accomplished exactly as before.

Repeating for each appropriate value of ;j the steps described above for strength-

ening pre(T0) and pre(T1) with ~At[j] results in the third version of A6, shown in

Figure 3.9. Since ¢0, d0, cl1 and d1 are not known in advance, we have made the
modes, lock compatibility constraint and rules of A6 general enough for any possible

values. The rules of R6 have been abbreviated by the invariants they require to remain

true.

AT AR AT AT T AT e e e T T T e L O

“x

1

AL

- - -
-
- - -

(2

s

.

e 2

5-

TR T s e Pl

'iﬁ'h'ﬁ\'t""

s ('-\-':

- .-.5\\".\\';‘
2

{

«

e 97

K

e A6 = (M6,LC6, RS6),

o M6={AT[0],IN[0],...,AT[N],IN[N1},
1

v - . »

y LC6= A -(Is; D¢ Alsg 2 (& sriin})s

i A (b1 2 {¢n 5} {aT;)

o, R6 ={LINyg,LATy,...,.LINy,LATy}.

\J

D)

;:. Figure 3.9: Version 3 of A6.

N

® Having strengthened A6, we must also modify ¥6° to ensure that it continues to

?
¥ ': follow the locking protocol. The rules of R6 require each LAT,; to remain true, and

[

._ so 75 must hold {(in(;)) Whenever In(j] is true. Since each At[j] is false before the
i cobegin, 7; satisfies these rules initially. To ensure that 7§ continues to satisfy R6, we
)

:é add an operation to acquire ¢ AT(j]) at the point where At(j| becomes true. The rules

' -~
P
:: of R6 also require each LIN; to remain true, which implies that v must hold £ 47(;),

P

} whenever At(j] is true. Since each In[j] is false before the cobegin, 7] satisfies these

7
:* rules when it starts. To ensure that 7| continues to satisfy them, we add an operation
- to acquire e[le’]] at the point where In[j] becomes true.
>, Addition of these acquire operations requires that the consistency constraint C6
A
. . . .

- also be strengthened to ensure that transactions complete when started in a consistent

4

Y state. We accomplish this by strengthening the consistency constraint to
2 S 06 C6Alsg=ls={}).

%

) To ensure that they leave a consistent state when started in one, 7§ and 7| must release
i 4
-~ every lock they acquire. To promote concurrency, we place release operations to that ;'l

>

'_:‘ locks are released as early as possible.

2 Since LAT; is true whenever At(j] is false, we add operations to 7 to release each
. 1

v

14

N

g » S PR PP TR TR VI IR RA R N S) R R ST
"' c.«".)”“n,&. 0 oy "‘.- " " ,l. 4. »- Y Lo Las 2z ‘

Ly »

98

€ 4T}y at the point where At[j] becomes false. Likewise, we add operations to 77 to
release each £[;y(;} at the point where In{j| becomes false. This gives the third version

of ¥6* in Figure 3.10 and completes the third version of (A6,£6*). The proof outline
for this version is
FSD1(¥6*):
{C6' A V6 =TVE6}
(At[0],In[0],...,At[N],In[N|:=false,...,false);

{C6'AV6=V6A A -At[j|A~In[j]}
0<)<N

cobegin PO(7§) || PO(7{) coend
{al0..N]=a0.N]A ¥ llj]= ¥ li|Ach=cforch=ch
0SSN 05N _ R
ANeO=c0ANd0O=dO0Acl=clAdl=dl Alsg=1Isg Alsy=Is;}
where PO(7g5) and PO(7]) are the proof outlines of Figures 3.11 and Figure 3.12. Each

assertion of PO(ry) and PO(r}) contains the stronger invariant

I1: C6 AcO=cOAdO=d0At0=10Acl=ciAdl=dlAtl=E]
ANefo=cfoheh=cfy Alsg=Is) ={}

A A LIN;A A LAT;.
0<)<N 0SjSN

When the interference freedom formulas are enumerated and checked again, we find

every formula NI(a,A) to be valid. Thus, FSD1(X6*) satisfies hypothesis H4 of the

cobegin Rule. We have been careful to preserve hypotheses H1 and H2, and it is easy

to verify that
(post(PO(7¢)) A post(PO(7y))) = post(FSD1(Z6"%))

as required by hypothesis H3. Thus, FSD1(%6") is valid.

As the next step of Method 3.4.3, we must infer

e e ode TR 27 ¢ 0 3 0 U8 € 0 Pl T Vot TR Sa Bie Ria T RO A30 1

O

' - -

99

6" = (V6*,C6',T6*, =),
V6* = V6.V,
C6' = C6 A lsg =18y ={},
T6* ={rg,m1'},
T = (acq(l[AT[O]]);At[O]:=true);
A0: (k,l[0]:=0,a[0]);
dOk#N —
(acq(l[AT[k+1]]);At[k+1]::true);
Al: (k[k+1):=k+1,alk+1]);
(At[k—1]:=falae;rel(£[AT[k_l”))
od;
(AL[N]:=false;rel(Z 47 (ny)));
A2: (end(1); 7o)

‘

(a[c0],a[d0]:=a[c0] + t0,a[dO] - t0);

(In[c()],...,In[dO— 1] :=fulse,...,false;rel(l[lN[con,...,l
(acq(l[”v[cl]],...,t[lN[dl_lH);In[cl],...,In[dl ~1]:=true,...,true);

(a[el),a[d1]:=a[cl] +11,a|d1] - t1);

(In[el],...,In[d1-1] :=fal.se,...,falae;rel(l[,N[cl]],..

T2: (end(ry);7)

Figure 3.10: Version 3 of £6*.

WA O AT T LA AR T \-F, LAt -I\ S N E .',‘.r S
» " L) L& L a » LW " L)

T = (acq(e[”v[c()”, l[lN[do_ln);[n[cO],...,In[dO—1]:=tr‘ue,...,t1‘ue);

SN -1

-* .’ I\I\f\-’~. \

[IN[do-1))));

T RO WY ATHTOY RS

\\"\\\\\\- .

KR,

¢

&
oo

3

h

|':'

W, 100

h

)
9 SD1(Z6"): {C6A V6= Vb6}cobeginr] ' 7; coend{V6=¢ 16}

)

K)

:::. from FSD1(¥6%). This is accomplished by first applying the Assertion Deletion Rule
w

- to obtain

N
Ko —
R {C6AV6=V6}
"’ In{0], 4t[0],...,In[N|,At|N|:=false,..., false;
LIS

cobegin 7 || 7/ coend

g { V6= 6}

\]

::::. and then applying the Auxiliary Variable Deletion Rule to delete assignments to ele-
f1e ments of In and At.
\C,' Finally, we must prove that execution of ¥6* terminates when started with C6 A
W
) —
&E V6 = V6 true. To do this, we use Lemma 2.4.2, which states that under the assumption
o
. . that concurrent execution of transactions is weakly fair, execution of £6* will terminate
: :' if the following two conditions are satisfied.

N
T1. Every execution of ¥6* consists of a bounded number of atomic operations.
.'v T2. As long as execution of ¥6* has not terminated, there is at least one enabled
:'. atomic operation.

19

Theorem 3.5.1 When started with C6 A V6 = V6 true, execution of ¥6* satisfies con-

a

e ditions T1 and T2. o]
-

e
<8
e Proof of Theorem 3.5.1 Note that the number of iterations of the loop in 7§ is
:_'. bounded by N. Since every other operation is executed as most once, execution of £6°
Cd

)

:: satisfies condition T1.

‘-.

y Suppose that execution of £6* has not terminated. There are three possibilities:

7
N
]
0
.o
[} j .. f' . . -, - g YL v. .- lvq*l*‘ YR rY)
At S kot At g X T Wt 0 Ve W% W, 0% ™.

vy ¥ X

e

'\,"‘ A .q“o ,n.

101
PO(7g):
{IOAIsg={}A A -AtiA £ djl= ¥ ajj}
0<j<N 0<J<N 0y N
(acq(l4(o))); AL[0]:=true);
(10N Iso={tiqrpop} A ALOJA A ~atlA ¥ afjl= T alj]}
0<y< N 0<y<N S A
A0: (k,100):=0,a[0]);
{IOAlsoz{f[AT[k”}/\At[k]/\ A -Atlj]
0<)#k< N
APO: (T i+ £ afjl)= £ aljl}
0<y<k k<j<N 0y N
dok#N —

{10/\ L’O:{l[AT[k]]}A Al[k] /\0(‘ ¢/\k\ Nﬂr“[j] ANPOAkE#N}

(acq(lq(ks1))); L[k +1]:= true);
{I0OA Isg= {t[AT[E]]’l[AT[k+l]]}A Atlk| A Atlk+1] A A
0<)#k< N
ANkE#N}
Al (kJdlk+1]:=k+1,alk+1]);

{I0 A Isg = {l[AT[E—l]]’t[AT[k”}A Atlk -1 A Atlk) A A
0<y£k<N

(At[k—l]::false;rel(l[AT[k_”]))
{10/\1.’0:{[“1[&”}/\ Al[k]/\o /\k‘ ‘v‘ﬂAl[j]/\PO}

<tk
od;

{10 A lso = {4 n I N ALUNIA A Atjia © 1) = Y‘Nabl}

05y« N 0<)< N 0-7<
(A‘[N] ::[alae;rel(l[M[N”));

{I0Alsg={}A A -AtflA T ljl= < ajj|}
0<)<N 0<3<N 0-5- N

A2: (end(7g);7o)

{I0Alsg={}A A -Atfjla £ 1= © 151}
0<y)<N 0<j;- N 0 - N

Figure 3.11: Version 3 of PO(7§).

Y GO N e N N e N
a2 0 1 oo X W X I 4 . M

~At[j] A PO

~At[j] A PO}

-.;‘ “.-'.]

. i a%"a’2 et 400 % s % a0 s 0a ol Agtats ot tad . S gat ¢ U o g - -~ .
-3
G
N/
)
102 N
9
A
PO(ry): {10Alsy={}A A ~InljjA A alj =aij'} P
0<je N 0 JN N
{acq(l[m[con,...,l[,N[doflH);ln{cO],...,ln[dO-—1!::true,...,true);
0N Iy ={f o Lungo-1} A A InjlAn A ~Injy. 2
' c0_y- dO ~(c0=3-. d0)
A A ali]=aljl) 3
05N
T0: (a[c0],a[d0]:=a{c0] + t0,ald0] - t0);
l~‘
{10 A ls) ={L N 4 A A Infi) A A ~Inij: !
LINTc0] [IN1d0-1]] c0-_)<do] =(c0< 3 d0) o :‘::
A A alj]=alj] A a[cD] = @[cO] + t0 A a[dO) = &[dO)] - £0} o
7#¢0,d0 Pt
(In[cO],...,In[dO—1]::falae,...,falae;rel(l[m[co”,”.,l[,N[do_l”)); ' 4
{(IoAlsy={}A A ~Infjln A alj] =alj] A a[cO] = a[cO) + tO Y
0<)<N 3 #¢0,d0 "
A a|d0] = a[d0] -0} <
(acq(l[”v[cl”,...,l[,N[dl_l”);ln[cl],...,In[dl—l]::true,...,true‘;;
{IOAl"l:{t[[N[cl”"'"l[lN[dl—l”}A A Iﬂ[J]/\ A *ln{]‘ ::
cl<y<di “(eclvy< dl) \,;
A A a[j]=alj] A a[c0] =a[c0] + tO A a[d0] = a[dO] - t0} ™
1#¢0,d0
T1: (a[cl],a[dl]:=a[cl]+t1,a[d]]-t1); »
{10/\l"l:{t[lecl]]""'l[lN[dl—l]]}A A In[j] A A ~Inly] N
: cl<y<dl ~(cl< y«dl) f.
A A afj]=da{j} A a[cOl =a[cO] + tO A a{d0} = a{d0| - tO Y.
7 #¢0,d0,cl,d1 -3
Aalel]=alcl]+t1 A a[dl] =a|d1]-t1}
(In[cl],...,ln[dl—1]:=[alse,...,false;rel((r,N[cl”,...,l,,N[dlkHl)); .
l ! L . s
{Ionlsy={}A A ~In[jln A aljl=dlj}} b
0<y<N 0y N ")
T2 (end(n);#) g
{Ionls =}~ A ~Injln A alji=alj]}
0<y<N 0y N

Figure 3.12: Version 3 of PO(r]).

103

e One of 7§ or 7| has reached an operation §, that is not an acquire operation.
e One of 7§ or 7{ has reached an acquire operation 5, and the other has terminated.

e Both 7§ and 7| have reached acquire operations §, and S5

Assume the first case. Since FSD1(XZ6°) is valid, pre(S,) will be true when 9, is

reached. For every S, in FSD1(X6") that is not an acquire operation,
pre(S;) = wp(S;,true).

Thus, §; is enabled.

Assume the second case. Since both transactions release every lock they acquire,
the lock set of the terminated transaction will be empty. This implies that the acquire
operation S, is enabled.

Assume the last case. Without loss of generality, assume that §, is an operation of
7¢ and §, is an operation of 7{. Note that the lock set of 7| is empty when an acquire
operation in 7| has been reached. This implies that S, is enabled.

In each case, at least one operation is enabled. Thus, £6°* satisfies condition T2. O

Thus, database system (A6,L6) of Figure 3.13, obtained by deleting auxiliary and

shadow variables from (A6,36%), is serializable.

.
’

"3.6 Discussion

3.6.1 Comparing Locking Protocols

Database system locking protocols are usually specified operationally. Lock modes

typically correspond to the types of operations from which transactions are constructed

L0 Sl Tl Col Sl Sa U Sal S ol gl -;q::

s

‘:' -w.,’, -)

syen!

5

N

AANS

v W W ANy Ny Wgl N WY AL N L el ol Sah, Vudl 40 U NN VN UVIVIN,

”

]

)

¥

|} r
~

ey

104)

1 "
1 y

A6 = (M6, LC6, R6), <
M6 = {AT(0],IN(0),..., AT[N|,IN[N}, -
. B) N N
: LCG—OS]/\SN (lalg{f[”v[j”}/\ 130‘—){l[AT{]]]})7 :“'
; R6={LINy,LATy,...,LINy,LATy}. :
6 = (V6,C6', T6,=¢), '
C6' = 06/\13():161:{},
T6={T0,Tl}, ‘F
7o = (acq({ s 1(0))); $f
A0: (k,1[0]:=0,a[0]);
dok#N —
(acq({ 4Tk +1))); 5
AL (R Jlk+1):i=k+1,a(k +1]); Y
(rel(fark_1))))
od; ‘-
(rel(li o)) .
A2: (end(7g)) ks
1 = (acq(¢ N (co)]-- -+ IN[do-1])))
T0: (a[c0],a[d0]:=a[cO]+¢0,a[d0] - t0);
(rel(¢nico)s - N [do-1])))5 .
(acq(¢(N (c1]o- -4 aN{d1-1])))5 ot
T1: (a[cl],a[d1]:=a[cl] +¢1,a[d1] - t1); 5
((rel(¢inier))s- - QN (dr - 1)))5 H
. T2: (end(m)) !
1 h)
: Figure 3.13: Serializable Database System (A6, ¥6). E
L5
N
N
~
....................... A" PR I) "\ PN N ‘, S _"\ * __\ 'r'.) \ ','-_."r;.\.'r-.'.,;.\'.\c.\:::

i

. an g =

- W .

-’:. v“.‘-'\f‘-"

- ~ . . , ~, . > L]
- o gt an-ant at 20,0 08000 0 Y Pty hatg® -

105

and the compatibility relation typically specifies that modes associated with operations
of a given type are exclusive when the outcome of transaction execution is influenced by
the order in which operations of this type interleave. Rules for acquiring and releasing
locks almost always require a transaction to hold a lock when executing an associated
operation.

In contrast, the locking protocols derived using the method of this chapter are spec-
ified assertionally. Lock modes correspond to predicates about the system state, and
lock compatibility relations forbid different transactions from simultaneously holding
locks when the associated predicates should not be simultaneously true. Rules for ac-
quiring and releasing locks enforce a coupling between the state of a transaction and

the set of locks it holds by requiring a transaction to hold a lock with a given mode

whenever the associated predicate is true.

3.6.2 Locks and Local State

Locking protocols derived using Method 3.3.2 associate the locks held by a transaction

T, with its local state through rules that require invariants of the form
LPI: LP = 1s;D {l[M]}

o remain true. Since no other transaction can modify the local state of r; or change

"the contents of its lock set, the requirement that LP is local to 7, ensures that LPI

is not interfered with. This property simplifies the task of synchronizing r; so that
LPI remains true. In addition, this property makes Method 3.3.2 appropriate for syn-

chronizing transactions to eliminate interference, since it avoids introducing additional

interference in the process.

'\"-I'

o

7, "\{\'1‘_‘ .-" y A

N e T

AL

)

. ,"'.*.I?‘D‘{‘.’

v,

S . » 0 > o~y ® a® A
Sty S gt e 12" % VP La® bt bt L v ottt € fat » 0 0 J b

. - - .. -
- - ~ o A alll oW S SR AR s £ Y 8

K 106
2

) Section 3.5 demonstrated that the search for appropriate local predicates required
¢ when using Method 3.4.2 to strengthening assertions can lead to introduction of local

auxiliary variables to capture relevant properties of the local state of transactions.
d While this may seem somewhat cumbersome, it does tend to make explicit the points

Y at which locks should be acquired and released.

y Sy =

=X A F

."s '."(&{‘:,'- " 3

s
., ‘-)4.'\ AR R

'»‘ v
o

JORYDN
DA

»

i

l.-.
e

.-(l..

R

P

”

- Ty R R T L S I T N
- -_,-_-.‘... .-_-_'., A .._-._ -"-'_.'_‘. '. ‘ »

« - ~alt " et 2 abe
) " " K ~ 192 1% 2" ‘. ‘.. --‘ - - -. N 4" bl % .4--~*. ‘ \/ »-A] . —‘I - a - - - - -

o

P AN

" | S

5

5

Chapter 4

2R
ot o

Concluding Remarks

L4 ST T Py

4.1 Summary and Discussion

s

P LW, ._-...‘._.

This dissertation has addressed two fundamental problems that arise in the context of

database systems: the characterization of serializability and the construction of locking

protocols to synchronize concurrently executing transactions. In contrast to the use

o
'l'

oot

., 8
.

of operational reasoning that has dominated previous research on these problems, we

e

have used assertional reasoning to analyze the semantics of concurrent execution of

PR

transactions. As a result of this effort, we have been able to apply to database systems

>

the tools and techniques that have been developed for reasoning assertionally about
R

“more general types of concurrent programs. This has lead to insight into semantics

L

, % % T,

e

q

of serializability, provided new methods for specifying and proving the serializability

"

of database systems, and suggested new ways of constructing locking protocols for

database synchronization.

In Chapter 2, we presented a formal definition of serializability. A unique feature

| YR TA,
€SI _

Iy
-'r

107

LAY

o

-',~/-
.

.
A

P T B T A T A N O N A AN A

W " o - A AP LAS i Sh and et g Zos sag 2se a e o she" a8 SAScateco il R e p Ui e o D o
o e i i Sd el tul At Sl I ac Al talh Sad Sl Sl Sl ol R L v .
) WY a e Ya" e i e f e 8 AN P R

.

[/

108

of this definition is an equivalence relation with which final states reached by schedules
are compared. The equivalence relation, which can be derived from the application
supported by the database, makes explicit the way in which the effects of different
schedules are reflected in the system state. It does this by partitioning the set of
systems states into equivalence classes, each containing states that are indistinguishable
by the supported application. The inclusion of this relation as a parameter of the
definition can be viewed as a generalization of previous definitions, which make implicit
assumptions about aspects of the system state that are relevant.

Our initial characterization of serializability shared with previous ones the property
that the serializability of a database system is defined in terms of the serializability of
each of its possible schedules. Because of the potentially enormous number of different
schedules possible in a typical database system, it also shares with previous definitions
the property of limited utility as a practical basis for verifying the serializability of
database systems. For this reason, we turned to proof outlines to obtain a more useful
characterization of serializability.

Proof outlines provide a way to reason formally about a concurrent program with-
out considering every possible interleaving of its operations. We presented two char-
acterizations of serializability in terms of proof outlines. The first was equivalent to
our original definition; the second was strictly weaker, specifying a property that only
implied serializability under the original definition. Translation of serializability into
proof outlines was made possible using shadow variables and transactions to model se-
rial schedule behavior in the system state. Our two characterizations of serializability

with proof outlines differ concerning how these shadow variables and transactions were

v WM g @ o M Ty T "0
;‘;h:‘.r?::'.-?.'}.f}f}.a_'f_ (AP S V)

. o v gat
' DTN WA U WA N AN AR WY S 0at et bat bat * Sa®_ byt J o alia® > e, ®,

o

Ay

3

109 o

used to accomplish this. %'

Our first characterization of serializability with proof outlines used shadow trans- ':

actions within assertions to specify the set of states reachable by serial executions s
of a database system. This necessitated a proof outline with a postcondition of size E
proportional to the number of different serial schedules for that system. This num- R
~

: ber, though smaller than the number of all types of schedules, can be large enough in : 4

many situations that the proof outlines used to specify and prove serializability grow ~‘

’ unwieldy. \ ‘
Our second characterization of serializability avoided this problem by moving the i

shadow transactions from assertions into transactions themselves, where they run se-
rially along side other transaction operations. This makes it possible to characterize .-::

serializability with simpler assertions, because serial behavior is captured implicitly in

the state of the shadow variables as the shadow transactions run. .:;r

Our use of proof outlines to characterize serializability provides not only a way to .c:

N,

characterize and reason assertionally about serializability, but also provides a frame- Er

work in which synchronization to ensure serializability can be derived from the proof .::‘

outlines that specify it. We explored this possibility in Chapter 3, where we described a l: :

method for deriving locking protocols for database systems. Our method is built upon

a

; 'II " PR

“an assertional characterization of locking: locks are associated with predicates on the

system state and lock compatibility is induced by restrictions on configurations of states

L3
»

during concurrent execution of transactions. This is different from the traditional view

of locking, in which locks are associated with operation types and lock compatibility

A A

is motivated by restrictions on the types of operations that can run concurrently.

L 20

. e,
.'.'-_,

[N

.\-\- | L o 4

Pty

e e e e i mre T artecarstar. T S TS SN W TR
T L R T T A e g e e L T T s T e e PRI A = .
i . .. LA, . 5 A G . a A g

T A

Cowls

LI' .c" .’.‘

E

e

RALLI & e

ey
£y

- & p
:\"."v’ﬂr 5]

S AP X L O

N ks

s
INEAES

o
)

PR

110

U'sing our method, locking protocols are derived using full proof outlines for trans-
actions. Since full proof outlines contain assertions before and after each operation,
information about the context in which operations run is available while deriving syn-
chronization. This information can be used to identify those interleavings of operations
that do not violate serializability, and incorporated into the derived locking protocol
to increase concurrency among transactions that follow it. Locking protocols derived

operationally are not able to capitalize on such information.

4.2 Topics for Further Research

In our database system model, we have assumed that database systems execute a fixed,
finite number of transactions concurrently. Such a model is appropriate for special
purpose databases that support applications in which the set of transactions necessary
can be determined in advance. It is not as appropriate for systems in which new
transactions are introduced and executed as time passes. Further research is needed to
determine the extent to which the results of this dissertation can be applied to these
types of database systems.

Serializability is an instance of a type of virtual atomicity that appears in areas of

concurrent programming other than database systems. An example of one such situ-

‘ation is described in [HW86|, where concurrent processes access instances of abstract

datatypes by invoking abstract operations. To simplify the design of processes in such
systems, processes are constructed under the assumption that individual abstract oper-
ation invocations run atomically. When abstract operations run concurrently, however,

the operations from which they are composed can interleave to violate these assump-

3 - . D = A 1%] AR T -' \.’-.-.l" " ,""..
Fad l,.... A n.o'lJ .0".-. a8,y X » e Wi oy AX alln ",‘»I. J. A he N L RYRY

A

111

tions. To prevent this, abstract operations are synchronized to guarantee a property
called linearizability that ensures every concurrent execution is equivalent to one in
which abstract operations run indivisibly. Analysis of linearizability and other situa-

tions requiring virtual atomicity is warranted to see if the assertional tools developed

in this dissertation are useful.

o N L e W
\/ W valia AN " AN e LR fal LA A A ot Dl S An Aot VT Ve A Ve o Y Vo Y)
- [- - . s v L : . - -

,.
' ¥

’
[}

- N

-4y

Appendix A

R ARy e m e B ata sl e Sl St e
S . o St

s

L] [
3 Axioms and Inference Rules of
\ ¥
. ° >
Proof Outline Logic]
g 3
L)
y skip Axiom. E
) {R)}skip {R) ’
Y !
: Assigment Axiom.
b Let Z=2j,...,zy be a vector of simple variables (i.e. not elements of records or :
18 s
: arrays) and let €=¢g,...,ey be a vector equal in length to Z of expresions in ¥
[
; which the types of each e; and z; are the same.]
: 3
> {RE}z:=% (R} :
L] AN
[:‘
N,
N
t. :-
')
\ 112 N
A N
!

]
[
}

SR e P T X IR BT LS LS LI AD LV IS L 5.5 B8 SN B B N NN - - - - .J - - . - - - -~ ’ ’
B LN l‘o."n,\ |?l'-.l‘n,l'|.. .‘ L R ; X N . .,0" o."o. LA, LA

. " TRy ~agd St At Ar? ¥ a” e’ da“a " AR 1R 419 4N 000 0 L Ok Iaf gk tat ? . P ol WoVIVIWIT LYY,
\“{ SV WA . e e e Ny

"

0 113
%
sy Acquire Axiom.

\
%: For acq(f[mol,...,l[mk]) an acquire operation in T,,
"y

) ls;

{(LC = R),}

’::: acq(l[mol,...,l[mk})
& (R}

N Release Axiom.
For rel(l[mo],...,l[mk]) a release operation in T,
R

¢ (L€ = R):)
'.- b'—{l["‘o],,l[mk]}

S-i rel(l[,,.o],...,t[mk])

S {R}
o

w Statement Composition Rule.

~ {P}50{Q}, {Q}S1{R}
& (PYS0;{Q}SL{R)
e if Rule.

{BOA Q}SO{R},....{Bn A Q}Sn{R}

<
a (@)

- if BO — {BOA Q}SO{R}
e
2 ; 0Bn — {Bn A Q)}Sn{R}

. : fi

-

-3 {R}
W
14

o

Y

L%
"W

WY

i 3 " W X . - - A Ay A n, CUL VT S R VPN LW ~ v . w R IR I
:‘.‘0’.’&’.’-‘.‘ Q." 6. N1, M ~ .. * ety',0. Ol e X N '~-G ..J.. 0. .* DA S et 'hr‘ o 8! B D ¥ {4

I.*

)
;:
Q}&

'

114

do Rule. :}.
G
{BOAT}YSO{I},....{Bn A l}Sn{l} Ry
L
{1} N

do BO — {BO A I}S0{I} -

:

0Bn — {BnAI}Sn{l} z
od Fa
{IAN-BOA...A-Bn} -
Rule of Consequence. .\
{Q}S{R}, Q' = Q,R=> PR o~
{Q'}s{Rr"} 2

Assertion Deletion Rule. -

-y 7w,
“{;"‘ fvl..f‘.?'.f..l'~‘ ey

Let 5" be the result of deleting one or more assertions from annotated program

s’

{Q}s'{R}
{Q}s"{R}

Atomicity Rule.
{Q}5'{R}

~
—_——— P\:

(@Y (5" (k] %
r:')

Auxiliary Variable Deletion Rule.

Let AV be a set of auxiliary variables in annotated program § and let 5|4 be “n

the annotated program obtained by deleting from S all assignments to variables _,:

.I'
of AV. If Q, R and the assertions of § do not mention any variable in AV, then b
N

v
{Q)5(R)]

{Q}SIzw (R} N

&
7
a

™~
-
N,
[\

]

>
%

e
e Pl e W W Lol o o N W MV, AL LG Tt T R AR (L G) ' O G G \-.';\’,\'\'\"_\'-.'\ > '\-

2y 2% WS Wy () L. o 3 KLl S BT e By Rt ot ol 0) L

OOV

115

cobegin Rule.

Let POy,...,POyN be full proof outlines (ones in which at least one assertion
preceeds and follows each atomic operation.) Define a !l 4 if and only if a is an

atomic operation in one proof outline PO, and 4 is an assertion in another proof

outline POj.

HO: PO,,...,PON_,,

Hl: Q@ = (pre(POg) A ... A pre(POy_y)),

H2: (post(POp) A... N\ post(POy_,)) = R,

H3: (Ya,A: al|l A: Nl(a,A): {pre(a) A A}a{A})
{Q@}cobegin POy || PO, || --- || POy_| coend{R}

T N W VN VIV VN SN *"

..\

rhy!

Appendix B 4

=

s

The Weakest Precondition

ot =

..

Predicate Transformer

"z v
SO ".'f

Yy #y

EaZ A% R

iy
.
.

The weakest precondition of § with respect to R, denoted wp(S,R), represents the

2y

set of all states such that execution of § begun in any one of them is guaranteed to

e

,,
4

terminate in a finite amount of time in a state satisfying R [G81]. wp satisfies the

‘5

following properties.

RRARE
!

Law of the Excluded Miracle. .,_.
wp(S,false) = false. }!l‘
* (]
Distributivity of Conjunction. :c- '
-
(wp(5,Q) A wp(S,R)) = wp(5,Q A R). i
o
-\(
R
Y
v-:'

.
"~

\l

116 ;\
LY

PSRN

A T D o Tl e et AN T S SN T TN R A N L N DT S SN N A N AT AR A AR Y;
3 , 'y J Bl aX » Ny, '« We Ba i A & B 2 N

e oo fae et et e’ e . , o a2 Staabegh e st e b at s ph st uat e Sl U WA R AR B SERE R
P _ .
o
X
=
O 117
W
- Law of Monotonicity.
‘J
™ If Q = R then wp(S,Q) = wp(S,R).
>

Distributivity of Disjuntion.

(wp(5,Q) vV wp(5,R)) = wp(5,Q V R).

222 P L

Al

Myl Distributivity of Disjuntion for Deterministic §.
. (wp(5,Q) vV wp(5,R)) = wp(5,Q vV R).
:; skip Axiom.
L wp(skip,R) = R.
v
N
he Assignment Axiom.
>
S
> . . .
o Let Z=2zg,...,zy be a vector of simple variables (i.e. not elements of records or
-
A arrays) and let €=eg,...,ey be a vector equal in length to Z of expresions in

<%

)

which the types of each e; and z; are the same. Define DOM(eg,...,en) to be

X

the predicate that describes the set of all states in which each e, is well-defined.

» LR
ACAPCA,

wp(2g,...,ZN = €0,...,eN,R) = DOM(eq,...,ex) A Rg::::::x.

; "- "n [l.

!

LS

Tarm &Ny
AR

rAS

3

i
o

a

(A AN
UL NEY

8|

LS R

1
!
'

. v) A A AT T T Y
SIS TS N I AR T A e A I R . ", >
MRS DA AN NG R LA

¢ tat * . Q - s Q S S fat Su' S0 gu® Sat Sy P TV ST TS TS T WU
WU - ‘ - - * . . . “r - - - - - - - - - - - MW e W LW,

118

if Rule.

Let IF denote

if By — S,
0B — $i

0By — Sn
fi

and let BB denote

BoV ByV -V By,

wp(IF,R)=(DOM(BB)ABB A A B;= wp(5;,R)
0<)<N

do Rule.

Let DO denote

dOBO — 50
0B, — $i

0By — Sy
od

and let BB denote

ByVv ByV---V By.

';_‘nn.\.\\,
c’.-‘ ¥

C ray e, . YN e s At e e ol b I R N L I T e)
e T S e T P S N

e Pagn b

o

-
o

h f-*ﬁﬁ\\ '

£ 43

'{ -"‘l .l' .(."

=

""l"'"._(Pyl ok W o o

AL A

AR A

" .—A.;’ ‘l..l'.

"'I [

Ho(R) = -BB A R. ¥

and

T . ~ e
N
£ .
,
3 ‘]
U
119 :
Define .
Lj .
]

Q
: Hy(R) = Ho(R) V wp(IF, Hy_y(R)) ‘
|, ‘
g for k > 0.
g {
N wp(DO,R) = (3k: 0< k: Hy(R)).
E Composition Rule.
'_-- wp(S51;52,R) = wp(S1,wp(52,R)). &
‘:.: .

. -
L] ‘-
‘)
) b.
- \
E ..h g (]
x d
xXi
]
t4
’ .r
')
o "
f L}
N Y
v .
P .
i n
) R
o !
.
1 .
y -, . - LI P I PN S - - . - T Nt .t B
!. n ".f' Lo : J‘ .' ." Yy S '-" e ".".r AN . "‘ ‘ .p ‘.p‘.’ _-‘.,‘_n\ ._ ‘;'\- B AT, VLIS WL !

T—— v - W W T VW T W T W T W T W™
AL Sl i Al fadt ol bl gl ok e \'ﬂ(_'-"..“»_'._"'."..rkv'.r“r'_‘qu.v‘_ AR/ o ac gRR ARSI L AP, TR T T TSN TN Y
Bt WA M, D e Xl P Sl X

¥ Bl T) » - - -

.
<

...-,.}
Chal NN 4

Canc 2 L]

XA

Yy
o AR

P

2 .'?'.

Bibliography

S

ry
&

.
8-

\BBGLS83| C. Beeri, P. Bernstein, N. Goodman, M. Lai, and D. Shasha. A con-
currency control theory for nested transactions. In Second Annual ACM

Symposium on Principles of Distributed Compuling, pages 45-62, ACM,
1983.

ey
! &

. ’-

P

[BG81] P. Bernstein and N. Goodman. Concurrency control in distributed data-
base systems. 4ACM Computing Surveys, 13(2):185-221, Jun. 1981.

'BG83| P. Bernstein and N. Goodman. Concurrency control for multiversion data-
base systems. ACM Transaclions on Database Systems, 8(4):465-483,
1983.

(BST7) R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta

Informatica, 9:1-21, 1977.

[BSW79] P. Bernstein, D. Shipman, and W. Wong. Formal aspects of serializability
in database concurrency control. IEEE Transactions on Software Engi-

: ..1 ﬁ'f’ ‘('F\',W‘.'l,", l'- ". L

s
1

A

neering, SE-5(3):203-216, May 1979. :]
[CT3| M. Clint. Program proving: coroutines. Acta Informatica, 2:50-63, 1973. -
(C81) M. Casanova. The Concurrency Control Problem for Database Systems. -
: Lecture Notes in Computer Science, Springer-Verlag, New York, New o

York, 1981. ::':
[D76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Inglewood,

New Jersey, 1976. N
[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and . L. Traiger. The notions of :

N NS

consistency and predicate locks in a database system. Communications of

the ACM, 19(11):624-633, Nov. 1976. ;
o
IN ()
120 N
Q
)

A e

I'.{". Yo

- - » o o PR T SRR S S LR LT L RIS ST N Rt A Lalt SN o SR (o AR
R L O v L A A TS AT, Uyt Sy U s g Y iy S v P s Y T o SV VA AR, R At

: . : L " s .
0 gat 0 gt gt et 0t 1r¥ e’ et Batiygs hat fe' ut g byt W g Nedo W dud A VL a0 A A gt o

. . Bu® a0 L0 Sl Sy SR R N W LWy a0 W W, My W, W, Nf‘
:_‘f,\
v
»
2
4
%
121 o
|
. N .\‘
| FL79] M. J. Fischer and R. E. Ladner. Propusitional dynamic logic of regular .(-‘Q
| programs. Journal of Computer and System Sciences, 18:194-211, 1979. ~
-‘
'G78| J. Gray. Notes on database operating systems. In R. Bayer, R. Gra- $"
ham, and G. Seegmuller, editors, Operating Systems: an Advanced Course, N
Springer-Verlag, 1978. oy
'
<
(G81) D. Gries. The Science of Programming. Springer-Verlag, New York, New ':-:
York, 1981. o
e
{G83] H. Garcia-Molina. Using semantic knowledge for transaction process- ‘
ing in a distributed database. ACM Transactions on Database Systems, gl
8(2):186-213, Jun. 1983. o
.
'd
(GS85] N. Goodman and D. Shasha. Semantically-based concurrency control for A
search structures. In Principles of Distributed Systemns, pages 8- 19, ACM, ﬁ
1985. e
([GW82] H. Garcia-Molina and G. Wiederhold. Read-only transactions in a dis- =
tributed database. ACM Transactions on Database Systems, 7(2):209-234, ::':;
Jun. 1982. c"4
R
[H79] D. Harel. First Order Dynamic Logic. Volume 68 of Lecture Notes in .:-;.
Computer Science, Springer-Verlag, New York, New York, 1979. :::
\
[HW86| M. P. Herlihy and J. M. Wing. Azioms for Concurrent Objects. Technical :::::
Report CMU-CS-86-154, Carnegie-Mellon University, Oct. 1956. ®
:_‘.
[K83] H. F. Korth. Locking primitives in a database system. Journal of the :"\
ACM, 30(1):55-79, Jan. 1983. I;-_;.‘;
N
[KS79] Z. Kedem and A. Silberschatz. Controlling concurrency using locking. In Se
IEEE Foundations of Computer Science, pages 274- 285, IEEE. 1979. ’
:{L76] L Lamport. Towards a Theory of Correctness for Mults-user Data Base "
’ Systems. Technical Report CA-7610-0712, Massachusetts Computer As- T
sociates, Oct. 1976. e
(L80] L Lamport. The ‘Hoare logic’ of concurrent programs. Acta Informatica. N

14:21-37, 1980.

R
2

[0G76] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319-340, 1976. 3

vaB el . ateaveate st A% A% e el e] RV AR o TR "l et St 1 o0 a8 0at fa¥ it oV GhE Ayt S0 Rt 018 e’ s olut) g% et e
Tapte pia Rty Dig gt Pa’a e A% Fal Y x Wm » & A

l

2

v 122

A
)

P79 C. H. Papadimitriou. Serializability of concurrent updates. Journal of the

’ ACM, 26(4):631-653, Oct. 79.
p ‘P86 C. H. Papadimitriou. The Theory of Database Concurrency Control. Com-
A puter Science Press, 1986.
: 'P87! D. Peleg. Concurrent dynamic logic. Journal of the ACM, 34(2):450-479,
&4 Apr. 87.

N

N 'R83| D. P. Reed. Implementing atomic actions on decentralized data. ACAM

e Transactions on Computer Systems, 1(1):3-23, Feb. 1983.
;‘ 1S67] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
fx-

N [SA8T] F. B. Schneider and G. R. Andrews. Concurrent programming: centralized
- and distributed. In Current Trends in Concurrency, Springer-Verlag, 1987.

o [SLR76] R. E. Stearns, P. M. Lewis, and D. J. Rosenkrantz. Concurrency control
"’: for database systems. In I7th Symposium on Foundations of Computer

:- Science, pages 19-32, 1976.

a'
o /S584) P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract types.
ACM Transactions on Computer Systems, 2(3):223-250, Aug. 1984,

¥ 'TS85] A. Tuzhilin and P. Spirakis. A semantic approach to correctness of con-

- current transaction executions. In Proceedings of Principles of Distributed

- Computing, pages 85-95, 1985.
S ‘W84 W. E. Weihl. Specification and Implementation of Atomic Data Types.
::: Ph.D. dissertation, Massachusetts Institute of Technology, 1984.

-:::' Y84 M. Yannakakis. Serializability by locking. Journal of the 4 CM, 31(2):227- j
-2 244, Apr. 1984.

:]
X : :
’ ~ L
3 ;'
N {
Y :
FN Y
'. h
2, 3
-, :
.

ol 1

i !
: 1
s

\
) N .

i !
7 |

%

n

I A A NN _’I.'I_.-’\f.'f\f‘.-".'f. Ty 0 A TR AT A S AT A A
e Po &) . . A " . e

"""" NG N e S T P N SR L S LN
T A N AN A A T AT AL AL N A I R NN PN

;';G'ﬂ' SO0, 0,000, 0,000 00 800,00 T TN A N W " 977" Plox 0 din" gha DA NG S S htn MR il A 0 R8s S Moie Sab ke it hglt it Bat iie® il gt ty’ > ?
| e
@ L
¥ 2
n P
'y
2 s,
o) "
Py
o A
]
I. . i)
)0 :,‘\'r]
v e
A %N
» "h,
™ N
v" Lt
b
W
» L
, wis
I
Ev fu,
% R
>4 s

-

A s N
ha e

[5

I

a,..

=]

{\'i‘l'i'nﬂ

)
7 }.r":r'.'

| A7

[

et

e O M
; YA YD
L2 -.'-\,'?."s‘ Vo

SIS

R e A Bt o o o e e e e e e

