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LOW FREQUENCY OCEAN AMBIENT NOISE: MEASUREMENTS AND THEORY

William M. Carey and David Browning
Naval Underwater Systems Center
New London, CT, USA 06320

ABSTRACT. Low frequency ocean ambient noise data are reviewed and sum-
marized. The experimental data, both omnidirectional and directional,
when not dominated by shipping noise, are shown to suggest wind depen-
dent noise at the low frequencies (<500 Hz). Candidate mechanisms are
examined with the result that wave-turbulence interaction at low sea
states and collective bubble oscillations at high sea states are Identi-
fied as possible sources of this sound. A description of the sonic
properties of bubbly water is presented for low void fractions consis-
tent with those observed in bubble clouds and plumes produced by break-
ing waves. A description of the collective bubble-water mixture as the
resonant oscillation of a flexible volume with a sonic speed determined
by the properties of the mixture is presented.

INTRODUCTION

The interaction of the wind with the ocean surface has long been recog-
nized as a major source of acoustic noise (Knudsen (1948), Wenz (1962)).
Measurements of the omnidirectional noise at the higher frequencies
(>200 Hz) have been found to exhibit wind-dependent characteristics;
and, when not dominated by shipping noise, the most likely mechanisms
are related to bubbles, spray, and splashes associated with white caps,
as well as capillary wave/wave interactions (Urick (1984)). Furduev
(1966) has proposed that the characteristic broad maxima in the ocean
ambient noise spectrum between 0.2 kHz and 1 kHz be attributed to cavi-
tating bubbles. Kerman (1984) discusses these mechanisms in detail
(also see Fitzpatrick (1959)), but stresses the noise generated by the
non-resonant oscillation of entrained gas bubbles which result from wave
breaking and which are forced by intense velocity of the gravity-capil-
lary waves. For wind speeds with a friction velocity greater than this
critical velocity, Kerman concludes that sound is produced with a veloc-
ity to the 3/2 power, frequency to the -2 power, and intensity propor-
tional to the number of bubbles. However, in the absence of white caps,
since noise persists, capillary wave/wave or non-linear wave inter-
actions may be important (Mellen (1987), Kuo (1968)).

At the other extreme of the spectrum (<2-5 Hz), ambient noise asso-
ciated with ocean microseisms dominates. Recently, this noise has been

-A -_ 7-.1
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shown by Nichols (1981) and by Kibblewhite and Ewans (1984) to be due to
wave/wave interaction. The microseismic effect was postulated by Lon-
guet-Higgins (1950) and confirmed by several authors, including Latham
and Nowroozi (1968). Several authors have studied the generation of
sound through the second-order pressure effect (Brekhovskikh (1967),
Goncharov (1970), Hughes (1976), Lloyd (1981)). Kibblewhite and Evans
concludes with theoretical arguments and measurements that the dominant
noise source in the 0.1 to 5 Hz range is the non-linear wave interac-
tion. Although difficulties were found in predicting absolute levels,
both data and theory showed a frequency dependence to the -6 power.

In the very low frequency (VLF, 2-20 Hz) and low frequency (LF, 20-
200 Hz), signals from surface shipping ar2 a significant contributor to
the measured noise and have been observed to extend to 500 Hz. In this
region, noise contributors can be a great distance from the observation
point, and consequently the noise field exhibits the effects of sound
propagation in both the horizontal and vertical directions (Carey
(1986), Von Winkle (1985)). Wagstaff (1981) showed that, if one knows
the locations and types of ships, then one can describe the characteris-
tic of the horizontal noise field. Although the vertical noise distri-
bution, including the broad horizontal maxima, could be qualitatively
explained, several discrepancies were observed. Wind-driven noise could
explain these differences, and the sources of this noise are the subject
of this paper.

EXPERIMENTAL EVIDENCE

Omnidirectional noise data at low frequencies which are free from flow
and flow-induced vibrations (Strasberg (1984)) are very difficult to ob-
tain. Several investigators (figure 1) measured the spectrum between 2
Hz and 2000 Hz in the deep sound channel or near the bottom. However,
most of this data from the relatively heavily trafficked northern hemi-
sphere reflect distant shipping noise in the 2 to 200 Hz range and, con-
sequently, little local wind speed dependence is observed such as shown
in figure 1. VLF/LF ambient noise experiments must be carefully exam-
ined to ensure that the results are either from distant or local sources.

Wittenborn (1976) (figure 2) performed an experiment with hydro-
phones that spanned the water column. Hydrophones within the sound
channel showed little dependence on local wind speed between 10 Hz and
200 Hz. However, the hydrophone below critical depth showed an inferred
local wind speed dependence (10 to 500 Hz) for wind speeds between 5 and
15 kns with levels of 47 dB and 56 dB re IPPa @10 Hz. The 15 kn spectra
showed a slowly varyin 0 road band characteristic between 56 dB at 10 Hz
and 65 dB at 500 Hz (f ). Wittenborn cites an earlier experiment with
noise levels of 69 dB for 300 Hz at 30 kns, compared to the 300 Hz lev-
els of 44 dB at 5 kns, 51 dB at 10 kns, and 63 dB at 15 kns. These re-
suits suggest two wind noise mechanisms for the cases of low and high2
sea states with the intensity having a squared6vgloclty dependence (U ).
The abrupt transition between 10 and 15 kns (U , based on the levels
at 10 and 15 kns and not considered a true velocity dependence), as
shown in figure 2, may be a threshold characteristic associated with

2
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Figure 1. Selected Low Frequency Ambient Noise Measurements. The re--
gion less than 5 Hz is dominated by wave/wave interaction. The measure-
ments between 5 Hz and 300 Hz show little local wind speed dependence,
but, rather, the effects of distant shipping and other distant noise
sources.
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Figure 2. Ambient Noise Level vs. Frequency for the Wittenborn Experi-
ment. The 4850 m deep hydrophone shows the local wind speed dependence
(=200 Hz) with the influence of distant noise sources less than 100 Hz.
The 3960 m deep hydrophene is dominated by distant noise sources less
100 Hz.

breaking waves. (These results agree with the observations of Worley
(1982), insofar as his data show a threshold-type behavior between the

3
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NL NL1 + 20nLOG(WS) 

INVESTIGATOR f n w s (m sec)

PIGGOTT JASA 36(11) 13 2 1 10-20
13 0 1-5

141 1 53 3 5-20
<50 21

PAYNE JASA (1967) 50-100 22

WHITTENBORN (19761 200-300 1 65 25-5
34 5-75
1 75-15

CROUCH JASA 3(2)-72 11 1 73 5-20
28 209

SHOOTER JASA 73(6)-81 141 1-1 39 5-10
150 11-132 10-15
177 1 36,1 57/ 81

WORLEY JASA 71(4)-82 100 .85-1 5 10-15
200 1 65-2.0 5-10

WILSON JASA 73(1)-83 10 2.07 5-10

BURGESS JASA 73(1)-83 37 1 66 5-15
FACTORS AFFECTING WIND SPEED DEPENDENCE ARE 1 DISTANT SOURCES.
2. OVERLAPPING WIND SPEED REGIONS. 3 SOUND PROPAGATION FACTORS

Table I. Low Frequency Ambient Noise Wind Speed Dependence

data corresponding to wind speeds between 2.5 and 5 kns and between 5
and 10 kns at 200 Hz. This effect was especially pronounced at 400 Hz.)

Although Wittenborn made use of both refractive effects and bathy-
metric blockage, noise from distant sources was still found to influence
his results (for example, see figure 2 between 10 and 100 Hz). The cor-
rupting influence of distant noise sources (ships, whales, volcanoes,
etc.) has the effect of obscuring the low-frequency local wine speed de-
pendence. Consequently, the literature reveals a variety of estimated
wind speed dependencies; i.e., the estimate of a parameter n, where
NL - NL1 + 20 n log (W.S.). (The mean square pressure would increase
with 2n power of wind speed.) Table I lists several of these estimates
of n, ranging from 0.85 to 2.0 for wind speeds between 10 and 20 miser.
The problem with these estimates also lies in the fact that the data
clearly show a region of no wind dependence, a threshold-type behavior,

and region with a wind dependence of n-2.0.

Figure 3 illustrates this trend with the data of Piggott (1964).
One observes the frequency dependent cross-over between the low wind
speed and higher winds regions. Furthermore, the lower the frequency,
the higher the wind speed will be at which the wind speed dependence
point is observed.

Distant noise sources influence vertical noise directionality (Von
Winkle (1985), Browning (1982), Bannister (1986)). This influence of
the distant source produces a broad maximum in the vertical noise inten-

sity centered on the horizontal. This phenomenon results from the con-

4
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Figure 3. Ambient Noise Spectrum Level vs. Wind Speed, Piggott (1964)

version of higher angle rays to lower angle rays by either reflections
from the basin boundaries and seamounts or refractive effects due to
shallowing sound channels at the higher latitudes. Wagstaff attributed
this effect to surface ships. Since the spectral variation of the hori-
zontal noise is generally smooth, and since ship signatures arp narrow-
band in this frequency range, wind-produced noise over seamoutiLs,

slopes, and at high latitudes was speculated to be an important contri-
butor. The broad maximum along the horizontal has been observed in var-

ied geographical locations, such as the sparsely shipped Southern Hemi-
sphere waters of the South Fiji Basin (shown in figure 4). At the lower
frequency the data clearly show a broad maximum. At 105 Hz one observes
the influence of a single ship. These results are similar to data ob-
tained in the North Pacific and the North Atlantic (Carey (1986)).

The experimental data were examined to obtain measured levels use-
*ful in the estimation of the source level of wind-produced noise at the

sea surface. These results are shown in Table II, primarily at 50 Hz.
The estimated levels based in the Wittenborn data are shown in the table
to be between 43 dB at 5 kns and 51 dB at 15 kns, consistent with the

estimates by Wilson and Kewley using the same data. Vertical noise can-
not be used for local wind-driven noise; however, estimates for a cylin-
drical basin with sloping sides yields levels in the 50 dB range. Kew-
ley has carefully estimated source levels, and his curves are shown in
figure 5.

In summary, we have presented data which indicate the presence of a
wind-driven noise in the 10 to 200 Hz region of the spectrum. The low
wind speed range (<8-10 m/sec) appears to have a weak dependence on the
wind speed, 0 < n < 1; the high wind speed region (>7.5 to 15 m/sec)
appears to have a dependence of 0.85 < n < 2. These estimates point to

% N %% %
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Figure 4. Vertical Noise Spectrum Level versus Angle from the Horizon- iq

tal, Browning (1986) '

the uncertainty in our knowledge of wind speed dependence and spectral

characteristics. .

POSSIBLE MECHANISMS [,

The fundamental mechanisms for the production of sound in turbulent

regions may be derived from first principles. The basic procedure can be e
found in several treatments on hydrodynamic noise, most notably Light- ",.
hill (1979), Ffowcs Williams (1969), Dowlfng (1983), and Ross (1976). ..
We have rederived the inhomogeneous wave equation with source terms in

V)-

appendix A for the purpose of ranking the various mechanisms capable of
the production of sound at the surface of the sea in the 10 to 200 Hz "-
range. The basic approach is to write the equations governing the con- ..
servation of mass and momentum with source terms. The equation of state .°

is specified, fluctuation quantities assumed, linearization employed,
and the inhomogeneous wave equation is formed. The integral solutions
to this equation are formulated by use of the Kirchoff Method (Stratton
(1941), Jackson (1962)) and of the divergence theorem. The derivation

61
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* OMNIDIRECTI :NAL MEASUREMENTS WITH HYDROPHONE BELOW CRITICAL DEPTH

INVESTIGATOR/FREO 10 Hz 50 Hz 100 Hz w.s.(kns)

WHITTENBORNE (1982) 48 dB* 50 44 5 N.E PACIFIC
50 51 47 10
57 58 60 15

MORRIS (1978) - 70 63 10 N E PACIFIC
0VERTICAL NOISE MEASUREMENTS ALONG THE HORIZONTAL

INVESTIGATOR/FREQ 50 Hz 70-80 Hz 100 Hz

BROWNING (1982) 67 dB 70 65 FIJI BASIN
WAGSTAFF (1981) - - 69-66 N.E PACIFIC
WALES (1981) 95 87 82 NW. ATLANTIC
AXELROD (1965) - - 65-69 N.W. ATLANTIC
FDX (1964) - - 60-65 NW. ATLANTIC
FISHER (1986) 74 - 60 E PACIFIC
ANDERSON (1979) - - 65-69 N PACIFIC

" SEMI-EMPIRICAL ESTIMATES. * dB//(uPa /Hz)

WILSON (1983) NL=5OdB+30LOG(W.S) @ 50 Hz
BURGESS & KEWLEY (1983) NL=37.3 15LOG(W S.) @ 50 Hz

" SOURCE LEVEL ESTIMATES BASED ON OMNI MEASUREMENTS.

f = 10 Hz 41 (dB//uPao.2/Hz @ lm)@ 5 kns. 50 dB @ 15 kns
50Hz 43dB@5kns 51 ldB@ 15 kns

100Hz 37dB@5kns 56dB@ 15kns

* VERTICAL LEVELS YIELD FOR A MEAN WIND SPEED OF 10kns, 50dB@50Hz AND 54-56dB@100Hz

Table II. Ambient Noise Source Levels

in appendix A is similar to those of Huon-Li (1981) and Yen (1979), and
the basic result is the following:

)2

4C2(p-po) = 47TP I [Oqi't]dV/R - x [F] dV/R + x I [T] dV/R -

1I j )pU/,t] dS + j. 12poUu, + pouu + P] d.S
R

The first term, I [cq/,t} dV/R , represents a monopole term. q represents
mass addition rate per unit volume. The second term represents an ex-
ternal force acting on the volume and has a dipole character. These two
terms could be important in the incorporation of entrained bubble oscil-
lation and translation. The third term is the Lighthill turbulence
stress tensor and is known to represent an acoustic quadrupole. The

term I1 I,[pU/O't] dS involves the motion of the boundary and can act as a
monopole. The final integral involves the turbulent and compressive
stresses acting on the boundary and is seen to have a dipole character.
In particular the term ii' x l[2poUu] dS.R represents the wave turbulence
interaction and is dominant since it represents a product of a fir..
order U ; and second order term u .

Noise generation by the interaction of surface waves and turbulence
near the surface was suggested by Concharov (1970). He calculated lev-
els of 80 dB at 10 Hz and 40 dB at 100 Hz by assuming a Pierson-Mosko-
witz surface wave spectrum and Kolmogorov's similarity hypothesis. His
expression can be shown to be equivalent to the above integral. Howev-

er, instead of using velocities, he employs the displacement spectrum
for the surface wave and turbulence. His expression is p(cw) 40 n 21o2 .

7
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Figure 5. Source Level vs. Frequency and Wind Speed, Kewley (1986)

Yen and Perrone (1979) derived expressions yielding the frequency-depen-
dent radiation characteristics for the wave/wave, wind/turbulence, and
wave/turbulence interaction mechanisms. Their results for the wave/tur-
bulence interaction (70 dB at 10 Hz and 50 dB at 100 Hz) show a linear
dependence on surface wave velocity (U) and an inverse square dependence
on frequency (wo) :

P(cwk) - 2 • 10 2 p 2 os 4 8 • U/C! 2

The Yen & Perrone result contains three interesting factors. The
linear dependence on surface wave velocity is consistent with the pre-
viously discussed experimental results prior to wave breaking. The & -2

dependence is also consistent with the observed behavior at low frequen-
cies; i.e., an overlap region composed of the interaction of the low and
higher frequency roll-offs. However, of particular note is the cos'6 de-
pendence. This sharply peaked angular dependence would accentuate the

role of the ocean bottom and basin boundaries with respect to the verti- .-

cal noise directionality. Thus, wave/turbulence interaction could be a
source of noise in the 2 to 200 Hz region for those sea states low
enough that breaking waves do not occur, due to the fact that it appears
as a physically realizable mechanism (considering the uncertainty of the
turbulence spectrum).

Kerman (1984) shows that, above a critical wind speed of approxi-
mately 10 m/s, small (micrometer (pm)) bubbles are produced and can be a
source of higher frequency sound. Thorpe (1986, 1982) has performed in-
teresting experiments which demonstrate the existence of bubble plumes
and layers composed of pm-size kubbles6 (mean bubble size approximately
50 um with densities between 10 to 10 bubbles/m ) extending several

8
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meters below the surface. M.Y. Su (1984) has shown that fresh water

breaking waves produced in wave tanks produce bubble plumes which pene-

trate to depths on the order of signicant wave height, with bubbles of
centimeter diameters due to coalesence (which is absent in salt water).
Several reviews (see bubble references) have been written on the exis-

tence and densities of bubbles produced by breaking waves. At high sea
states a residual layer is formed of micro-bubbles with a density that
decreases exponentially with depth, and bubble plumes which are con-

vected to several meters depth by the vorticity beneath the wave. Even
though individual bubble oscillations with these micron-size bubbles
could not produce VLF/LF noise, collective oscillations of the bubbly
mixture driven by the hydrodynamic pressure field could produce sound.

It is well known (see appendix B) that a small amount of bubbles in
water significantly changes the bulk compressibility while not drasti-
cally changing the density. Wood has shown that the sonic velocity (Cm)
can be described by the following relationship between void friction
(x), density (pm), and bulk compressibilites (K):

Cr2 = [(-x) p, + Xpg]1(1-x) K, + xK.J

The consequence of this result is shown in the figures of appendix B.
Small volume fractions result in large changes in the sonic speed when
the mixture can be treated as a continuum. For example, the sonic ve-
locity of the bubble mixture with a 0.2% volume fraction is approxi-
mately 225 m/s. Ffowcs Williams (1969) describes the efficiency of the
radiation from a cloud of bubbly turbulent flow:

4n'C25(p-po) = 4nP =.1 [aq/at] dV/R

For a compact source with a small gas volume fraction
4 (p-po) = 477P 1 .q dV,

R at
Ffowcs Williams estimates that

D

dp: = A(1-x)p = -pC2 Ax -P p-p (p/R) m' (C/CM) 2, m u/Co

Thus he concludes that "a cloud of bubbly flow radiates very much more
efficiently than turbulence alone;" that is, the radiation from such a
flow would be (C/Cm) = 1975-times larger than the radiation from turbu-
lent flow. However, one must account for the presence of a pressure
release surface.

An alternative approach is to consider the bubble cloud as a flexi-
ble sphere of radius a with composite mixture properties and to assume
it is compact with respect to the acoustic wave length and the vorticity

and turbulence scales. Then the forced oscillation of the bubble cloud
in absence of a boundary is t : t-R C ,O :Iq dV: d (p0v)dt

Vt) 3w a3P

P(R.t) = r(t')4nR = Po = . . . ... m Co/Cm) f(w)/R,4nR (l -x)
where f(w) represents the simple harmonic oscillator transfer function.

This forced oscillation of a bubble cloud can have a resonant behavior

9
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(Fitzgerald and Mellen (1982)). The bubble cloud is simply a monopole

source and the presence of the boundary can be approximately taken into

account via the surface image interference effect. Thus, we find the

following for a cloud of micro-bubbles below the pressure release sur-

face driven in forced oscillation by the hydrodynamic forces:

ip(R't)12 [ 3co2a p m2(Co/C_)2f(w)] 4 (2 )z 
2

p(R (() IR 2- (A )sin8
(1-x) R

This xpression shows a frequency-dependent efficiency approximately

(z/A) at a given bubble cloud depth. This term indicates that, as seas

pick up, the deeper the plume, the more efficient the radiation at
longer A. Furthermore, we note that this monopole has an m improvement

over the non-compact bubble cloud.
Thus, the low-frequency noise could be caused by wave turbulence

prior to wave-breaking and, thereafter, by aggregate bubble (bubble
cloud) oscillations exhibiting a threshold-type behavior and velocity

squared dependence for the mean radiated pressure.

APPENDIX A: DERIVATION OF THE SOURCE INTEGRALS

The purpose of this appendix is to briefly outline the derivation of
source terms important to the production of sound near the surface of

the sea.

Conservation of mass: ap'/t + ap'v,/x, = q •

Conservation of momentum: __p'v, +_ p'vv aP',,+
at ax, ax,

where P, = -p'6, +#D, +,,06,, (ref. Hinze, p. 17)

p, = 2/3p. D., = )U,,3x, + 3U,/'x, and 9 = 1 '2D,, = xak

Taking alat of the continuity equation and ?lMx, of the momentum equation
yields upon subtraction:

a2p'/ t2  
a 

2 P V ,V, + - 2F +
ax. ax, ox, Nx, ."xI '

'Po .'Pov=U+u, (u/ax 0),.p'=po+p,--- =--- =0

a - C2 uu2p/,X= U, ?2pl_, 'x, +
.(ppuu 23'(po+p) Uu.
2(P °+P )U 'U ' 2 ) P 0 P U U

+ X, x, 3x,

JC~p6,, P,, aF, cq

x x x x, It

10
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For the case of incompressible, invisid flow with no sources or sinks:
*" Po U,U,

a2pouu,/ax ax, + 2 + 2p/x , = 0
.x, 2x,

Compressible fluid: C 2 p

1/C2 a2 P/at2 - a2P/ax , = 0q/t - afe/a X, + a 2 T,,ax, ax,

T, = 2 po Uu, + pouU, + P. - C 0,.

(in most instances P,,-C&,= 0, (Lighthill)).
Since P=po la/ t =-ijpop , we finally have the wave equation with the
source terms:

a2 
0 1 a2 p _ 1 _ _fe, - a2 T, , _47r f(x,t).

This inhomogeneous wave equation can be integrated by use of the
Kirchoff method (Stratton (1941) and Jackson (1962)) to yield:

(x,t) dV [f] + 1 -dS [1/R aplan - a/an(1/R)o + 1/CoR aRlan ala/t].Ix - x'j 4 7r

This solution, when applied to our specific problem with the properties

of a[ ]/ax. and a[ ]/aYi, as well as the divergence theorem, yields the
desired results:

4 fCg(p - Po) = 47rP = I [aq/at] dVR - 2 2x, f [fe,] dV/R + a2/Jx,ax,. [T,,] dV/R -

-.1 I, [awu/at] dS + a/ax, .I [2poUu, + pouu + P,] dS/R

APPENDIX B: MIXTURE THEORY

A.B.Wood (1932) showed that the sonic speed could be calculated for
an air-bubble/water mixture by use of the mixture density (pm) and the
mean compressibility (km). The mixture can be treated as a continuous

medium when the bubble diameter (d) and spacing between the bubbles (D)
are much less than the wavelength of sound. In the case of low frequen-
cies, for the mixture with a volume fraction (X) of gas we can calculate
the mean density and compressibility as follows:

Pm (1 - x)p, + xpg
-dv, dv, v dv, v-

Km = = - + - (1 - x)K,+ x K.
v,_ dP v, dP vr vdP v,,,

This imples that a state of equilibrium prevails and the mixture mass is
conserved, and the pressure, P, is uniform throughout the mixture (a low

frequency assumption). Since the sonic speed is

C2 -- dP/dp = (pK)

we have Cm? : C 2, = [(1 - x)p, + xpq] ((1 - x)K + xK 0)

Cm
2  (1- x)/C + x2/C2 + (x)(1 - x) P C 29 p, p, C2, C2

9i
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1800'
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1400-
C 2= jxP + 1 - x) PI !xK, (1 - x) KI
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FRACTION BY VOLUME OF AIR IN WATER (xi

Figure B-i. Low Frequency Approximation for the Mixture Speed

The expression for the sonic speed poses the question of whether %
the gas compressibility is described by an isothermal or adiabatic pro-

cess, especially since the single phase sonic speed is known to be adia-

batic. However, in the case of an air-bubble/water mixture, the con- V
trolling physical factor is the transfer of the beat generated in bubble

compression to the surrounding liquid. If the transfer is rapid, then
the bubble oscillation is isothermal, ( IvP =-v/P, K, = I/P) , as compared to
the adiabatic condition (v/QP = -v yP. K,: ,'yP) . Thus, in use of the

above equations one must use either for the adiabatic or isothermal

case, C,=C,./,, y . Isothermal conditions are most likely to prevail for

air-bubble/water mixtures due to the large thermal capacity of water.

Examination of the above expressions shows that as x - 0, Cm - C,-2, and as
x 1,C _-

2-Cgas one would expect. The striking characteristic revealed

by these equations (shown in figure B-i) is the sharp reduction in the

sonic velocity at small volume fractions; i.e., X-0.002 + Cm-225 m/sec.

These equations may be approximated for the air/water mixture:
yP Y zi P

px (1 - x) ill (1 - x)

C_ (x = 0.5) = 20 msec

Karplus (1958) used an acoustic tube to determine the standing wave pat-

tern as a function of air volume fraction. His results are shown in

figure B-2. Close agreement was found between the inferred sonic speeds

12
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Figure B-2. Measured and Computed Mixture Sonic Speeds. a) Measured
Mixture Speed vs. Volume Fraction at 500 and 1000 Hz, Karplus (1958); b)
Measured Dispersive Character of Mixture Speed Below 2000 Hz, Karplus

(1958); c) Measured and Computed Mixture Sonic Speed Showing the Beha- 2
vior Below, At, and Above Resonance, Fox, et al. (1955)
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and results calculated with Wood's expressions. Similar results have

also been observed at the low frequencies by Campbell and Pitcher

(1955). These results are also observed at the higher frequencies above

and below resonance. Several studies and texts have been written on

this subject and are listed in the references. An example of the agree- N
merit between theory and measurement near the vicinity of bubble reso- %
nance is shown in figure B-2c. It is important to note that most calcu-

lations performed at these higher frequencies use Km = I + Kg, rather

than the Wood approach Km = ( - x)K + xKg. This difference is unim-

portant near resonance and for small volume fraction but is important

as one approaches the low frequencies of interest to this paper. One

can show that the correct expression is:

1 (1 - x) 1

- , + ((10- 2 ,,.) + 2i6 W/wo)

when h.f. and l.f. are the high frequency and low frequency values of

the sonic speed.
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