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ABSTRACT

A general class of estimators is developed for improving

upon best scale invariant estimators of two or more arbitrary

scale parameters (or powers thereof) for arbitrary positive

distributions with sufficient moments under weighted squared

error loss function. The technique is to compute the risk

difference in terms of moments of the distribution. Some condi-

tions are obtained under which the maximum improvement is

possible, and the form of the estimator can be chosen to achieve

this maximum along any specified ray.

The result is then extended to the estimation of a linear

transform of the parameter vector. Finally, some examples are

given with numerical calculations to obtain the amount of risk

improvement. .

1. INTRODUCTION

There has been considerable interest in improving upon the

standard estimators in multivariate estimation problems. Since

the celebrated work of Stein (1955), numerous results have been

proved which show that the presence of Stein effect is just part
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of a very general phenomenon, which has little to do with the

exact form of the loss function or the underlying distribution.

The simultaneous estimation of location parameters was

investigated by several authors during the past decade culminating

in a unified discussion by Shinozaki (1984). The improved estima-

tion of scale parameters from exponential families has also been

studied recently. The major results in this direction are obtain-

ed by Hudson (1978), Berger (1980), and Chosh, Hwang and Tsui

(1984). The basic technique for obtaining improved estimators of

scale parameters in exponential families is to obtain an unbiased

estimator of the risk, using integration by parts technique and

solving a differential inequality. Recently DasGupta (1986),

however, obtained improved estimators of gamma scale parameters

without a variational argument by proposing an estimator which is

a function of the geometric mean.

In this paper we extend DasGupta (1984, 1986) in several

directions. We consider the problem of simultaneous estimation of

arbitrary powers of scale parameters from arbitrary independent

positive valued distributions under weighted squared error loss.

All that is required is that moments of a specified order be

finite.

Suppose X (X1 ,... ,X ), p > 2, where Xi has density fe.(Xi)

1 '(x/6 x. > 0, e. > 0, i - 1,...,p. Also suppose

2s.
E. (X. 1) < i - 1,...,p. Our problem is to estimatee .

IL 
ae ( 1 1 ... ,eP) under the loss given as
p

p c. s. 2
L(a, -) = E w.8.1 (a. - e.) . (1.)

It can be easily checked that, under the loss (1.1), the best
a 0 0 00invariant estimator of e is 6°(X) (6 (X).. . (S)), where 6O(X)

is given as
6V(X)i r. 2  1S

i ' i 2s X l , i I t I ... p , (1.2)

3

'Si' 1

S.



a. 2S.
where r. = E(X.1 )/E(X. 1), the expectation E(-) taken under

I,s ,2si  1 1

e. = 1. In Section 2, we propose a class of improved estimators

which dominate 6 0(X). Another class of estimators are obtained

which incorporates a prior guess about the parameter vector.

In Section 3, we study the component risk behavior of certain

"best" estimators in the class obtained in Section 1. By

aggregating the component risk, we can obtain an explicit form for

the improvement in risk and identify the direction in which

maximum improvement is attained.

Section 4 is devoted to the estimation of a linear combina-

tion 'es of the parameter vector, where the vector I -(Li,... z)'

is p x 1. Several estimators are obtained which dominate aX 
5

where a- (a,,,.a )' is p x 1 vector and 
s a(X l Some

p p... Soe

examples are given which include estimation of Ze..
ii .

Finally, in Section 5 we give examples of simultaneous esti-

mation of ratio of independent normal variances and estimation of

ranges of rectangular distributions. Some numerical studies are

performed which give the percentage improvements in risks.

2. IMPROVED ESTIMATORS OF e
s

In this section we will develop estimators of e which will

dominate the best invariant estimator (1.2) under the loss given in

(1.1) for p > 2.

Brown (1966) and Brown and Fox (1974) provide perhaps the most

general conditions for admissibility of the best invariant scale

parameter in the one dimensional case. By transforming the scale

problem to the equivalent location problem, it is straightforward

to verify that rs,29X is an admissible estimation for 6 under

squared error loss if EX 2( tnX)<-where the expectation is taken at

6 - 1. That is, referring to conditions (a) - (d) on p. 808 of

Brown and Fox, since the best invariant estimator is unique (a) and

(b) are apparent. The expectation condition immediately implies

4



(c) and (d) as well by appealing to Lemma 2.3.3, p. 1105, of

Brown (1966).

Now we will develop the following notation:
(1) a Ele;

1,01 1 IL

(2) ra M m /iia
( i'aipa i a t~' i'Mi/m~

(3) g() M - X.J" (2.1)
aj j '

(4)Eg(X) Jim. P;

(5) Elg 2(X M rm.
O3 ,2 1 2

-With the above notation, it follows that E (Xr) =r-
el i i ir'

i - 1,... ,p. Classes of improved estimators are given in Theorem

2.1, but first we note

Lemma 2.1. For any aj, j 1...,p,
a./p a.

pn.3 a . j  < 1.
i 3 j i -

Proof. The arithmetic mean-geometric mean inequality.

Lemma 2.2. Under one of the following conditions,

(i) c > 0 and T > 0,

(ii) c < 0 and I < 0,

(iii) c - 0 and arbitrary T,

the following inequality holds:

116-1/p Ec/rc+e 1
.3 O. .E . < 1

Proof. The proof for (i) and (ii) follows from H61der's

inequality.

Lemma 2.3. ri+st as defined in (2.1) is an increasing func-

tion of s if t > 0, a decreasing function of s if t < 0.

Proof. It is clear that X is monotone in X. and

h (xt) - xo edx is R in X..

iiii 5



Thus EXt+s /EX. is increasing in s if t > 0, and decreasing
1 1

in a if t < 0.

We are now ready for

Theorem 2.1. Consider the estimator 6(X) given componentwise

as

6i(x) - 60(X) - bsgn[(ai + - s)saXi ga(X) (2.2)

i = 1,...,p(> 2),

where a. + 8. - s. 0 for all i - 1,...,p- Then 6(X) dominates

60(X) in terms of risk if either (1) or (W') and (2) hold:

(1) ai = (ci + 8i + ai )/p and 8i = -c./2, i - 1,...,p; (2.3a)

(1') All c. equal, all 8. equal, all s. equal and

a. - (s-8)/p; (2.3b)1

and

(2) 0 < b < 2Pd (1) /2ad(2)(2.4)

where d ( ) and d( 2 ) are positive and defined below.

Proof. Let A(e) - R(6,6) - R(e,60), the risk difference. It

is sufficient to show that A(e) < 0. Now, using the loss (1.1), it

follows that

C. 2 20 i 2 B.i
A(M) E E [Ew.e. {b .X. ga(X) + 2r. Xsi,2s.xi' b.X. ' g (X)

ix issi

- 2bie.iXi g (X)}], b. - -b sgn[(a i + 6. - si)si ]

c. 1 28 1 n(i . s)

c EwO. 2 
28 i,e i lb e g a )(nm.,2,, )mi,2 ,., ) m ,

8.+s.
+ 2ri.s.,2s. 1 Lbeig,(e)() . )m. + /.

, j ~,aj,,...+8. a
b ]+g a(e)(n. ). .+ /.

x * a jj~a zai.=i ,6



.2 2.
S •  x 1 i wg2ae(e)b ri,2(.e+6 ),2a

Bi.+s.

+ 2r. b e 1 1 (g)P r.
isii2s i i a a 1,+0 i+si,.i

B.+s.
- 2b.e i 1 1 g (6 )pa r i+ i lo.

9 Mp w~b2 620 i+C ir12c .)2a I .wibi i  ri,2(a.+0•),2a•

+ 2g Mepa r wie. , 1. b.d. (2.5)a i I 1. 1

21..

weedi r isi,2s i * r i+ i +si#Cai - ia i+Bisaip

Now, using Lemm 2.3, it follows that for a. > 0 if a. + 8

1 1

< si, then d. < 0; and if a1 + i > si' then d. > 0. Similarly

0. 1 11

for s < 0, if a . + 8. < 0, then d , < ; and if a. + 8i > sil then

d < 0. Note that b2.,d is always negative. Now, define

d(I  min wildil

i

d m x ,2(ai+ ),2a i

It follows from (2.5) that

) 2 2 ( c , + 2 6 . , .. 1+ B + s i
A~)< g 2ae 2)2 z bd e .xi 2g a ()pao OL d e.

I.1 1

g Meze, i i (b2p 2 
d (2 ) K (O) - 2bd (1) p} (2.6)

w h e r e C + 6 . O i +K(e) ga.e) . /., t d.0.Smila

If (1) of (2.3a)holds, then from Lema 2.1 we have K(e) < ,
foiA.(e) < 0 if (2.4) holds. If (I) of (2.ib) holds, then with

Le 2.2 we take 0 s - 0 and Q (s-B)/p. Note that b ia yn tv.,

i.e., (s-o)/p + a 0 s requires 8 a and

17

• - rd. l) i' .. , e ,ew e , ', "d ". . ' - ,". " ."



if c+20 > 0 >0 " 0, i.e., S -c <28 < 2s, if c > - 2s

if C +28 < 0 "r <0, i.e., 8 > s- 2s < 28 < -c, if c < - 2s

c+ 2 0 -7 c 0 - 2s.

Again from (2.6), it follows K(O) < 1 so that A(e) < 0 if (2.4)

holds. This completes the proof of the theorem.

Remark 2.1. Theorem 2.1 is a more general version of Theorem

2.1 in Das Gupta (1984).

Remark 2.2. From the proof of Theorem 2.1, it follows that if

for any i, o. * 8. = si, i.e., c. = -2s , the dominance result does

not follow. Thus, under the invariant quadratic loss, our result

does not quite give an improved estimator. However, if a minor
si

restriction is taken on the parameter space, say min 6. > c, where
i i

c is a preassigned positive number, then estimators of our form

will dominate the best invariant estimator under the invariant

quadratic loss.

Now we will consider further generalization of Theorem 2.1.

For example, suppose we have a prior guess for e, say,

e0 M (01,... ,6Op). How might we incorporate this information in

our improved estimator? The following theorem gives the improved

estimator in this case.

Theorem 2.2. Consider the estimator 6 0(X) given component-

wise as
60 0 8.

6 0 M 6((X) - b sgn[(ai+8-s)s.](xile 0 i) 1 g(xl8 O) ,

i = l ...,p. (2.7)

Then 6 (x) dominates 6 0(X) in terms of risk if either (2.3a) or

(2.3b) holds and 0 < b < 2g (e0)Pd*(1)/ 2d*(2) ,
~ a 2cx(2.8)

where d* ( I ) and d* (2 ) are positive and given below.

Proof. Define k. - i 1, p. Now, we can write

8



6 ( M r. + biki 91(e )g(x)x.0 isi,2s. i1i

where

b. - b sgn[(ai +0i-si)si], i - 1,...,p'

Now, it clearly follows that the risk difference
C. 20.- i 22 2 2

A(e) I .. Ii {b g (0 )kA EXi (g2(X))

a. 8.
+ 2b'r. i s.,2s" g -a (e o)ki E(v .X 1i g (X))

. 13
S. 8

- 2bi 2kig-a(eo)E(Xi'ga(X)))

c .+20. 2
)p Ew. 1 1 2~~r

0 2a.W1e i"  i,2(ai+i),2a

C .+B .+s
+ 2ga(e)pag a(eo)Z w8 I  I

b.{r. r. - r. ). (2.9)
b isi,2si r,ci+6i+si,a i i'.+B,-ia.i

Define
d*( 1) min wikildil

and d*(2)
d -max w k ri wii i'2( i)2

Now following calculations similar to that in proof of Theorem 2.1,

it follows that

A(e) < ~(6/8o ~b 2d * (2 ) .zci + 2a i

2g a(6/eO)pa d*( e8. (2.10)

ii

As in the proof of Theorem 2.1, it follows that if (2.8) holds,

then A(8) < 0. This completes the proof.

9
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Remark 2.3. Das Gupta (1984) considers a special case of

estimators which in our notation would extend (2.2) to
a.

6.(X) - 60(X) + b agn[( +8.8 -s.)s]Xi g (X)e 0. (2.11)
1~ ~ CL 1c i

It is clear that by transformation (2.11) is equivalent to (2.7).
Remark 2.4. Notice that if 60i = 1, i = 1,...,p, then the

estimator (2.7) is the same as that of (2.2).

Remark 2.5. It is noteworthy that the range of b in (2.5)

depends also on the values of e0"

Remark 2.6. The dominance result holds even if X.'s ariseI

from different families of distributions, say, one from exponential

and the other from uniform.

3. COMPONENT RISK AND MAXIMUM IMPROVEMENTS

In this section we study the component risk behavior of the
estimators given in (2.2) and in (2.7) when f.(x) - f(x)

1

in1,...,p. In this case, we take r. a,B -ra, and m. ,s = ms "

The following theorem gives the maximum improvement of the

estimator of the form (2.2) when b is the midpoint of (2.4) and the

direction at which the maximum attains.

Theorem 3.1. Suppose Xi is distributed with pdf f (x )
11e.

1 f(x/.), i - 1,...,p. Consider the estimator defined component-
2.

wise as

6 -(X) r X - bXnX0 i 1 .,p, (31)
i s,2s i I • .1

with b - rP d/r2'I

where

d t rs, 2s r ++s, a -r ,a. (3.2)

Then the maximum improvement in risk when the loss is (1.1) with

c. = c and w. I 1 is attained when 6.'s are equal, say, to 6 and the
2 1 1 °A

10%

~~YP7&7~~ ~~~~~~~ -I A WA.'%t~f *-. ~ s



'. : G A W & & - " - .. '.i W~ 
a  

-
J

. . -.i ]; . -

amount of improvement is

d 2 m2p c+2 S0.3
d r 2(B) a p. /m2 )

Proof. The difference in risk for the ith component is A.(e)

where

AM(e) - R(60,e0) Wiles

- -8C[E{b x. Rx. - 2bX . Hec(r X! -

1 I J I j s,2s 1 1

W-()C[b 262(a+ ) (n(a)) 2/
1 1 -i 2a 2(a+8) 2a

-2bOe+x+s(n (a))mp (m r /M m /M
1 O ar . P +5+s s,2s /a + a

(where ni I 8)
ji i .j

= e [ 262Gzx+B) (n(a) mpr
1 1 i 2 a r 2 (aO), 2 a

-2b ta+s(n(c). mPd]. 0.4)
- i -i ; "

Substituting b in (3.4), we obtain

A.(M) = Oc [2 rp  -0+B+S dmp (ia)Sa ,2a (d/r2(a+8) ,2 8. d

(r 2p /r 2  ci2(Ta))2 6 2(a+8) Pcr
- ,2i 2 (a+ 8 ), 24 U -i 1

p
= c:+2s d2 c 2ia -- +a-s n (a)(2  8 +a-s (a))). (35)

r 2 (a+B) 2

From (3.5) it follows that the maximum improvement occurs when

6 ? + B - s  ( ) - .
1-1

Since this is true for each i - 1,...,p, maximum overall improvement

occurs when all 8. are equal, say to e, and the total improvement by
1

sunning (3.5) over i is

g1



r2a 2(a+O) a0  m2ci

This completes the proof of the theorem.

We note that summing (3.5) over i yields the total improve-

ment of 6 for general e. The component risk associated with 60 is

clearly 8. 2(1 _ m 2/ ws hence the total risk for 60 is
IL

2

(1-!- ) Ee. + (3.7)
m2s 2

If w define the percent relative improvement in risk as

?I-R(6,6 0) - R(6,6) 10(38

then in the case where all e.i are equal (3.8) does not depend on

6 and becomes

d___ 2 ___ 2 (3 a ( a)2 .9)

m 2s

We recall from (2.3b) that in (3.1) a (s-o)/p. Consider

the limiting PI as p -~ -. If EX t(-)<-for some t > 0, this

insures that lim (m )-p m 2p 1. Hence the limit of (3.9)
2a

becomes

r.8 r 2 s m~ (3.10)

s s,2s

In the case when - 0,sa1, this reduces to 1 - m r1,2
as in Proposition 4.1 of Das Gupta (1984).

Remark 3.1. Theorem 3.1 is a more general version of

Das Gupta (1984) Proposition 3.1.

12



Theorem 3.1 obtains maximum improvement along the ray

(6,6.. 6)s ei. Suppose ye have prior information leading us

to seek maximum improvement along the ray defined by a specified

vector e0* If we use the estimators in (2.7) or (2.11), ye will

find that maximum improvement occurs again along the ray 61.

Rather, we extend Theorem 3.1 using estimators slightly more

general than those in (2.7). We retain the same setup as in

Theorem 3.1 and consider estimators given componeatwise as

6 0(X) - r5 2  X 8 - b (X /0o ) 0R(X XOA ) 0,i -l1... p. (3.11)

In order that such estimators dominate 60D we need the risk

difference

eo(0 - r mp I b.ec2
&()-g 2 a(e) g-2 a( 2(ci+$),2 2a z

+ 2g (e) g_(e ) mp d E b ~ C+~ 0

with d as in (3.2). Let b. Me(0 )b where h(-) > 0 and let

h -min he(%.), h - max h(6 8 ). Mimicking the argument of Theorem
i Oi

2.1, if b is between 0 and 2h rp 2 d/(R) 2 r2 (~)~ then (3.11)

will dominate 6 0'

Turning to component risk, if we take

b- h rp2 /(K 2(c ,c then the difference in risk for the

ith component is, analogous to (3.5),

0. 2  2 2a a ~ - B~cx-s () (2heB: 8 +c-6 (ai))
8.s di -e 28  in-] .i L-2-(I r 2 (a0 B,) 2 a (K) i i(h) 1 -

(3.12)

The msaximum improvement occurs when M~e Oi)e - is constant for

all i. If h~., - . ,a this occurs along the ray defined by e.

We sat-rize the above as

13



Theorem 3.2. Suppose X. distributed with p.d.f. f ei(Xi)
- 0. f(x./e). Let 0 be an arbitrary positive vector.

1 11 0
Estimators of the form (3.11) uniformly improve upon 60 for bi

satisfying conditions given below (3.11). Componentvise risk

improvement is given by (3.12) and is maximized along the ray defined

by eO.

4. ESTIMATION OF A LINEAR COMBINATION

In this section we will consider estimation of a linear com-
bination of powers of scale parametric. Suppose the parameter

function to be estimated is y(0) t i.e. (we take 1. y 0 w.l.o.g.)
i 1 1 1

L(y(O),a) " (a y(e)) (4.1)

and a.

6o(X) Z a.X.A (4.2).3.3

is an arbitrary linear estimator of y(e).

The following theorem gives an estimator of y(O) which has

smaller risk than 6 0(X) under the loss (4.1).

Theorem 4.1. Consider the estimator

s./p
6(X) - 60(X) + b X.3  . (4.3)

j a

Suppose

d - L. - ju 1,...,p,

and

d 0 min d. d max d..

Then 6(X) dominates 6 0(X) under the loss (4.1) for p > 2 if one of

the following conditions hold:

(I) d. > 0, Vj = 1,...,p, and 0 < b < 2pB/p Pd(1)/P 29/p

(2) d. < 0, Vj - 1,...,p, and 2p pd < b < 0

14



If any d. a 0, j - 1,...,p, this approach fails to provide an
J

improved estimator.

Proof. Let &(y(e)) - R(Y(6),6(X)) - R(Y(e),6 0(x)) be the

risk difference. Then it clearly follows that

2s.lp aj/p
(y(e)) b2P (I e. 2by(e)p (t e. )

2s/p j3 G/P. .

a. s./p
+ 2bP j 6/ , a'.Joi e.3 )r. +j/

3 ~ ~ ~ ~ 3 3 3 ' P6j/

2 
2s./p 3./p a.

p2s/p e. 3  - 2bPs/p TI 8. E e .Jd.
3 3

Now the proof follows similarly to Theorem 2.1 using Lemma (2.1).

Remark 4.1. If we write a. £.r. , we are improving upon

the corresponding linear unbiased estimator. Here

dj t.(1 - r. r.s/p).j , js ,s.+s./p~s/

But by Le-a 2.3, the term in parenthesis is always < 0; whence if

all £. have the same sign, the unbiased estimator is inadmissible.

If we write a. - r js2s. ' we are improving upon the corres-

ponding linear combination of best invariant estimators. Here

d. .(-rjsj2s r js )+s /p's / ). Now by Lema 2.3 the term

in parenthesis is always > 0. Whence, if all I. have the same3

sign, this estimator is inadmissible as well.

Remark 4.2. Interestingly, if for example s. = 1 and all L. are
3 3

equal, say, I > 0, i.e., we are estimating LEO, then with 6

as in (4.2), we need an expander if L is sufficiently large;

whereas, we need a shrinker if L is sufficiently small. This
paradoxical dependence upon an arbitrary L is intuitively reason-

able as a response to the relative magnitude of y(e).

Remark 4.3. Theorem 4.1 is directly applicable in the esti-

mation of systems reliability when two or more components are

15



connected in series. In those examples, often our problem is to

estimate r e. where e.'s are scale parameters of the ith life
i1

distribution.

Remark 4.4. Theorem 4.1 can be easily extended for the esti-

mation of a linear transform Le where L ( ij ), an r x p

matrix.

5. NUMERICAL STUDIES

In this section, we study PI as in (3.8) for our improved

estimators (2.2) in three interesting cases.

In the first two, we take s. 1 - and, for simplicity, c. C,

0. = -c/2, i - 1,...,p. This implies from (2.3a) that
1

Sp-l (1 + c/2) and the improved estimator (2.2) becomes

. = a X + bX.c 2  11 X.l+c/2)/p (5.1)
• x• i •

where 0 < b < 2P d 1 )/p2 d(2). We set b as the midpoint of this

interval.

Example 1. F-distributions. Suppose S - (Sip... S ) and

T - (T,,,.,T are independent where Si  i Xn i and

T. n". , i 1,...,p. Our problem is to estimate 6. a 2./2

1 1n 2i 1 1

- 1,... ,p. The best scale invariant estimator of e - (e 1 , ... ,e)
is 6 (X) - (6 (X), ... 6 (x)) where

p

6 0(x) - a.X. , i = 1,...,p, (5.2)

with X. z Si/Ti and ai = (n2i - 4)(nli + 2)-1  i - I,... ,p, and

individually the XI. are admissible.

For convenience we set n_ * n1, n2 i " n2 and

M. +r(_) (5.3)
]i,a 1n2 2 2 2 2

16



provided - n1/2 < a < n2/2. Thus for a given 8, we can readily

evaluate (3.5), (3.7), and ultimately (3.8). In Table I we

present PI for various p, c, and (nl,n2) combinations. 6 was

created by selecting each coordinate randomly within the given

range. The results for a typical value are presented along with

the maxim PI using (3.9).

Example 2. Reciprocal Beta. Suppose Yi is distributed as

ii..Be(2 + EI), c > 0, i - 1,2,... ,p, and we seek to estimate

- ,...,1 ), i.e., - -1. For convenience we transform

to X. - Y. and taking ei = i1 we have at 8.6 1, f(X) - (2 + 0

• X-( .+) The best invariant estimator of 6 is (1 + 0-CX.

and is admissible from the discussion at the beginning of Section 2

since E > 0. Using (5.1) and noting that m a (E+2-)-i (c+2), a< 2,

it is straightforward to calculate (3.10) which becomes, for

c > -2,

(1 + c/2) 2 (c + 2)(E + 2 + c) (5.4)

(1 + c/2 + C)2 (C + 2 + c/2)
2

Using (5.4) we see that for p large if either c or c - i , - 0

while if c and c are close to 0 nearly 100% improvement is possible.

Table I1 displays results for small to moderate p using (3.8) with

8 as in the previous example.

Example 3. Simultaneous Exponential and Rectangular Distribu-

tions. Here we consider X. arising from two different distribution-

al families. Suppose Xi have p.d.f. as follows:

-x./0.e-1 e , ,xi > 0, 0 > 0

f(Xi]Oi) = i -1  0< <8 6 > 0 (5.5)
f(XI8) {~, -

= Pl+l,...,p , 0 < x. .< e.i' i

A

with pl > 1, p > 2. In estimating 0 = °l"'"p ), the best

invariant estimator is 6O(x) (w(x),...,6O(X)) where 0(x) - a.X.,
1 p 1

a. = 1/2, i p< Pl a. - 3/2, i > pl.

17



TABLE I

F-Distribution.

Percent Relative Improvent in Risk

c 0

U a5 na 1 0 n 1 20 ni- a 1 5-,w10

L:2 na 5 na -10 n 2 20 n 2 a10 na -20

(0.12) 25.23 9.75 4.82 10.94 6.20
8. equal 25.31 9.78 4.84 10.97 6.22

1

(0,12) 39.90 18.24 9.23 21.54 12.20
6.i equal 53.24 24.33 12.32 28.74 16.28

p - 10

(0,12) 44.24 21.0f 10.72 25.43 14.33
6. equal 64.21 30.52 15.57 36.91 20.79

1

p - 30

(0,12) 49.85 24.28 12.41 29.80 16.70
6.i equal 72.07 35.11 17.95 43.09 24.14

p - 2 c-i1

(0,12) 29.80 17.92 9.93 19.83 12.65
6.i equal 30.02 18.05 10.01 19.98 12.74

(0, 12) 33.81 24.25 14.38 27.37 18.60
6.equal 57.17 41.00 24.31 46.28 31.46

10

(0,12) 34.02 25.77 15.59 29.09 20.27
6.i equal 66.02 50.02 30.26 56.45 39.34

4p, 30

(0,12) 35.62 28.05 17.19 31.51 22.41
6.i equal 71.54 56.34 34.53 63.29 45.01

11



TABLE I (Continued)

c 2

n1 - 5 nI  10 nI - 20 nI " 5 n1 a 10

2 n 2 m 5 n2 = 10 n2 " 20 n 2 a 10 n2 a 20

(0,12) 17.91 23.14 15.01 24.55 18.96
0i equal 18.14 23.44 15.51 24.87 19.20

(0,12) 15.78 20.97 15.82 19.31 19.01
ei equal 34.87 46.35 34.97 42.68 42.01

p- 10

(0,12) 12.57 19.84 15.72 15.60 18.48
ei equal 33.96 53.59 42.45 42.13 49.90

(0,12) 10.07 19.64 16.12 12.64 18.59
ei equal 29.53 57.98 47.60 37.33 54.90

TABLE II

Reciprocal Beta J,

Percent Relative Improvement in Risk ex

C 0

p 2 E - .01 C is .1 C " 1 C - 10

(0,12) 75.95 56.36 10.21 0.22

ei equal 76.20 56.54 10.24 0.23

(0,12) 68.74 56.00 14.43 0.41
ei equal 91.74 74.03 19.25 0.55

(0,12) 65.57 54.43 15.28 0.47

ei equal 95.16 79.00 22.17 0.68

(0,12) 67.18 56.36 16.65 0.54 I
ei equal 97.13 81.49 24.07 0.78 S

XII
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TABLE II (Continued)

ci

p-2c a.01 E1 -i1 c - 1

(0,12) 61.16 52.46 16.07 0.48
8.i equal 61.61 52.84 16.19 0.49
p1

(0,12) 50.91 44.68 16.68 0.68
e8. equal 86.08 75.55 28.20 1.15
p-10

(0,12) 46.82 41.48 16.41 0.73
8.i equal 90.87 80.50 31.84 1.41

(0,12) 46.58 41.49 17.01 0.78
8.i equal 93.55 83.33 34.14 1.60

c 2

(0,12) 1.91 14.16 18.51 0.81
e.i equal 1.93 14.34 18.75 0.82

(0,12) 32.81 30.34 15.14 0.86
e.i equal 72.50 67.05 33.45 1.89
p-10

(0,12) 30.13 27.77 ;3.92 0.86
6.i equal 81.37 75.01 37.72 2.31

p1 3

(0,12) 29.14 26.87 13.68 0.88
e. equal 86.03 79.33 40.38 2.611

20



In order to insure the existence of necessary expectations in

(2.2), we take 0 - 1/2 so that a a 1/2p whence our estimator has

ith coordinate

a +X. + bX /2 _X/2p (5.6)i 2. 1 3

In (5.5) a. - r(a + 1), i < pi, while m. - (a + 1)1 i > p
Again taking b to be the midpoint of (2.4), we can calculate (e)

exactly using (2.5). Straightforwardly,

0 Pl c+2 1 p c+2R(6,6 e + - E e.
0 1 i 4 1

p1+l

so that P1 in (3.8) may be obtained. Some values are presented

in Table III with e as in the previous examples. Generally, small

improvement is observed. In fact, if pl > 2 and pO - p1 > 2, one

would do better overall by creating a dominating estimator of the

form (2.2) for the first p1 coordinates, a different dominating

estimator of the form (2.2) for the remaining p - p1 coordinates and

then combining the two. We do not pursue details and extensions

here.

TABLE III

Exponential/Uniform

Percent Relative Improvement in Risk

pil pl = 2 pl = 2  pl 1 8 pin 5 plO 10

p a 2 p - 4 p - 10 p - 10 p -10 p - 20

(0,12) c - 0 0.31 1.46 1.79 2.53 1.79 2.71
c - 1 0.27 1.26 1.76 2.39 1.68 2.65
c = 2 0.69 1.09 1.75 2.32 1.67 2.55

e. equal c f -1 0.69 1.84 2.22 3.44 2.96 3.42
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