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SOLUTION TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
OF MOTION BY CHEBYSHEV POLYNOMIALS FOR
LAMINAR SHOCK-BOUNDARY LAYER FLOW

1. INTRODUCTION

Gottlieb et. al. (reference 1) applied pseudospectral methods to the solution of the
one dimensional propagating shock wave problem. They utilized a low pass spectral
filter which they developed together with a Shuman filter, applied to the flow on either
side of the shock wave but not across the shock front itself. The shock location was
determined by examination of the spectral coefficients. Since then, the present author
has developed new techniques for use with pseudospectral methods which have greatly
increased their utility in solving inviscid flows with single or multiple discontinuities.
Pseudospectral methods have been used by the author to solve many classes of com-
plicated time dependent compressible flows using the full Euler equations of motion
(references 2 through 6). Results have shown that flow discontinuities such as shock
waves or contact surfaces are properly resolved as sharp discontinuities. Solutions for
transonic airfoil flows at subcritical andsupercritical conditions (reference 6) were ob-
tained more recently and proved that full pseudospectral computational methods could
also successfully treat compressible inviscid flows about non-planar geometries. With
the completion of the airfoil work, the author has shown that pseodospectral compu-
tational methods are fully suitable for solving any class of inviscid. tiine dependent,
compressible flow using the Euler equations of motion.

The next logical step is to turn to the full viscous equations of motion namely, the
Navier-Stokes equations. Orszag is the most notable in the field when one considers
stability and transition analyses of incompressible hydrodynamic boundary layer and
channel flows (reference 7 for example). He was the first to apply pseudospectral
methods, treating flow stability problems for laminar hydrodynamic boundary layers.
However, no work has as yet been done for compressible flows. Even when one considers
the solution to compressible external flows, pseudospectral methods have not been used

Manuscript approved December 30, 1987.
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at ail due to difficulties in resolving discontinuities. The present work remedies this
‘ difficulty and shows that when techniques developed by the author are implemented. full
X pseudospectral computational methods can successfully solve viscous. time dependent
compressible flows with multiple discontinuities and flow separation.

M 2. GOVERNING EQUATIONS
! The full two-dimensional. time dependent, compressible Navier-Stokes equations
of motion cast in conservation law form are shown below.
A
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where o, ,0, are the normal stresses,7;, and 7,; are the shear stresses, A and p are
viscosity coefficients (Sutherland’s relation is used since the present work deals with
laminar flow) and & is the coeflicient of thermal conductivity. The pressure is obtained
from the following

p

TRy

1
+ §p(u2 +v?), (2€)

The physical flow variables are non-dimensionalized in the following manner.

p=—E
pU?
p="L
1
T
T=-—3 (3)
(#)
L
’U—Ul
= Y
T
_p
p=—
31

The normal and shear stress terms are non-dimensionalized by the free stream
pressure head, (p;U2) . Subscript one denotes free stream properties upstream of the
incident shock wave. With respect to non-dimensional flow variables. equation one
becomes:

ot Or Oy (da
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with the Prandtl number Pr defined by,

! 2
' nC .
Pr=°"=22L (4¢) i
I K V\S
3 .-“’
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This completes the non-dimensionalization of the physical flow variables and the i
. conversion of the Navier Stokes equations to non-dimensional physical flow variables. T
. - . - . '\
. However. it still remains to transform these equations into a suitable computational TN
/ space.  This is discussed below. Several coordinate transformations are applied to g
. . . . . . . h-_
generate an appropriate distribution of points in the flow field. Appropriate here means -
. - . . . . . . »
many points in regions of large gradients and simultaneously few points in regions of )
. small gradients. The final computational coordinates are obtained using a sequence of o
- . . - Y
. four coordinate transformations. Namely. ot
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The terms Cy, C3, A:,Ay and , o are transformation clustering constants which
affect the distribution of points in the computational and physical domains. The final
form of the Navier Stokes equations becomes,

[9.9]
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}? = -E(f_r)g - [E(Q_é r)c + F(Enf?y)gj

All spatial derivatives appearing in equation 8 are calculated by pseudospectral
means. In the present work this involves the use of chebyshev polynomials. The time
derivative U, appearing in equation 8 is evaluated using finite differences. Specifically,
the Adams Bashforth algorithm is used. The resultant difference form of equation 8 is

given by,

. ., 3 OE' 1 _8E"™ 3 oF, 1
T Oty S8 =) - =6t = S6t[==]t — =6¢
L Ult58tl5g) —38tgg]  + 385 — 58

oF
o

The term D, j is an artificial viscosity. In the present work a fourth order artifi-
cial viscosity is utilized and is computed using finite differences. The finite difference

representation is shown below.
Di‘j =y ly
wliere
Hr = "DJ‘U-:LJ-\‘—Z + ('1.1-2 - 4((:'1.)+I + (vz.]—l) + 6(?!.]]

My = —DU[[;""‘Z-J + [?;-'2‘] - 4((v1+1 2 + i’»—x.]] + 6['1.}]
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3. PSEUDOSPECTRAL METHODS ’
) [
& a
" Pseudospectral solution techniques involve the use of series of functions to represent P
I the global properties of a flow field and its spatial derivatives. In the present work a
Chebyshev polynomials are used. They are represented by T,(r) where o~
y ]
4 Tn(x) = cos [narccos ()] (11) 3
J .--
: =
or <
\
N o
: T, (6) = cos [nf) (12a) o
~ :;'
Y
where ’
: =
"y ':‘\
2 # = arccos(x) (12b) -]
g N
- A function of a single spatial variable and time such as F(x.t) may be represented lﬂ
2 as o\
. :_::
F(z, t) = An(t)Ta(z) (13
i (z,t) = Z ( ) L.
A ~3
- Ry
The time dependence is represented entirely in the spectral coefficients 4, (¢) while, ;"
the spatial dependence is represented in the Chebyshev polynomials T,,(r). The Cheby- &
1 shev polynomials are evaluated at discrete points r; where E‘;
¥ ..
< | o
. ™
- T, —COQ[\T (14) -;\

-

where N, is the total number of modes used to represent the spatial variation of
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< the function F{x,t). The spatial derivative of the function F(x.t) is represented as J
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(a; ) = Z An(f)(l)Tn(‘Tj) (1-.)(1)
) n=0
where
5 Na
A, V() = C; Z pAL(1) (15b)
n p=ntl
and
p+ n = odd
Co=2
Cn>0 =1

The A,'s are determined from equation thirteen. Inverse FFT’s are used to obtain
the A,'s from the known functional values F(x,t) at the known collocation points r;.
The spectral coefficients of the spatial derivative , A, , are determined from the
recurrence relation equation 15b. Direct FFT's are used to evaluate the sum in equation
thirteen to obtain the functional values at t+6t. The low pass spectral filter developed
by Gottlieb at ICASE is used to damp spectral oscillations. It is shown below.

(——()R" (16)
with ) i
1;_ _ ’I\ - I\() _
I\ mar Ky

. (S I
1\0 - _I\mar
6

where IX is the spectral wavenumber and I,,.; 1s the maximum wavenumber
corresponding to the total number of collocation points.
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N The following free stream conditions were selected to match one of the wind tunnel R
experiments reported in reference 8. An experimentally measured surface pressure |
b distribution is included in the above reference so that a direct comparison can be made o
” between the experimental and numerical distributions. The free streamn mach and N
. . - - . L/
y unit Reynolds numbers are 2.05 and 695,000 per foot respectively. The free stream e
. —~ . . . '
N Prandtl number is 0.71. The incident shock wave was generated by a six degree wedge. A
The physical extent of the computational domain is 0 < y < 0.3 foot and 0.2 < L
o r < 4+0.2. No attempt was made to select an optimmum shape for the computational .
n boundary , such as alligning constant coordinate lines with the incident and reflected -
LS . . . N
~ shock wave system. since the purpose of the present work is to determine whether .
L\ . . . .
- pseudospectral computational techniques can actually solve the full time dependent. =
compressible Navier-Stokes equations of motion with discontinuities. The flat plate )
"y, . . . . .
K surface lies in the range —.14 < r < 40.2 so that several grid points lie ahead of the N
0 plate leading edge. Sixty four modes each were used to represent the flow field in the ~)
> x and ¥ directions. The physical space computational boundary is ~liown in Figure N
> ; \ 1 ; g N
o 1 along with constant coordinate lines showing the degree of clustering in both the p
x and y directions. As can be seen, points are highly clustered in the v direction at f
~ the surface. This was done to properly resolve the flow separation zone and attendent RN
. . . . “~
> shock structure which arises very close to the plate surface. Points are only mildly -
N clustered along the x-direction since an airfoil coordinate transformation which clusters 4
.- points about the leading and trailing edges was used with the clustering parameters N
" detuned. The inflow boundary conditions were to keep all flow variables fixed because \
-, of supersonic inflow. Along the upper boundary flow variables were held fixed at ‘.
o - > g
' post incident shock conditions since for the flow considered the reflected shock does
v . . v
» not extend to the upper boundary location. At the outflow boundary conditions at -
- . . . . o
- each point were set to those at the next upstream point (zero'th order extrapolation) 5
. . . . ‘s R
: throughout the calculation. Along the bottom of the computational boundary eithLer \
B a plane of symmetry or wall surface was present. Reflective boundary conditions were ]
- used at points ahead plate leading edge namely, v, ;1 = u,». On the plate surfaceu, ; = -
<. —u, 2. Also. along the entire bottom boundary v, =—v,2. po1 = p,2 and €, = €, ha
- with e denoting specific internal energy. This last condition being applied along the =
g plate surface since the case being treated 1s an adiabatic wall, The time step size was \
» determined from the following. )
- RS
+ .
N
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N -
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CNAC

ot; = = (175)
¢ Agmin+%¢3;

19¢] rmaz

ot = [Até, Atg‘]

min

For results presented herein the courant number CN was held fixed at 2.5. No
attempt was made to replace A€ .;, or A(,,;, With the actual respective values at the
points of maximum eigenvalue. The flowfield was initialized in two steps. First. the
exact euler shock structure ( incident and reflected ) including post shock zones was put
in. Figure 2 shows the initial shock system. This system is overlayed on the constant
grid lines plot to show the relative grid resolution over the entire shock system in Figure
3. The second step was to put in a boundary layer field using a blasius velocity profile
and the Crocco relation to obtain the density profile at constant pressure at each point
along the plate surface. The pseudospectral code used to obtain the present results was
run on the NRL CRAY XMP/12. The code takes 0.75 cpu second per iteration at a grid
resolution of 64 by 64. The solution converged in 25,000 iterations or a little over five
cpu hours. No optimization of any kind was employed since the purpose of this work
was to determine if pseudospectral techniques could successfully solve the compressible
Navier-Stokes equations. Pressure contours of the entire computational field are shown
in Figure 4. There are no oscillations in the field. The incident shock is slightly smeared
for several reasons. First, the grid system is not shock alligned. Second, the x-direction
grid resolution is only moderate. Finally, at a courant number of 2.5 the magnitude
of the artificial viscosity coefficients required for stability is relatively large to that
required to keep the shock waves stable. This last condition is primarily responsible fro
the shock smearing. With a courant number of 0.7 the thickness of the shock is only
one third of that shown in the figures herein inciuded. However, the penalty that one
imcurs for the reduction of shock smearing is an increase on CPU time. For the courant
numbers thus mentioned, the CPU time would be increased by alinost a factor of four.
It was deemed more important for the present work to obtain a converged solution
while ininimizing the CPU time. An alternative would be to run at maximum courant
nuimber untill convergence is almost reached and then reduce the courant number and
dissipation constants to have the best of both worlds. The reflected shock wave has
split into two compression fans. One is well above the separation zone, while the second
is the re-compression fan at the point of re-attachment of the separated shear layer on
the plate surface. A blowup of the wall region pressure contours (0 < y < 0.08foot) is
shown in Figure 5. Corresponding velocity vector and mass flow per unit area contours
are shown in Figures 6 and 7. The separation zone is clearly evident. Comparison
of the numerical and experimental surface pressure distributions can be made from
Figure 8. The starting location of the separation zone is in good agreement with

A R N L L R SR N ) A A A I W O T P L S o N TR R N
s ‘,"J'NI‘\(..I.‘ . _.'\." _,_.\._'.-. Pl Lo W ._-\, YRR N \. ! o\ L .' o

4

" Y % P WV R_W . .
\... < .l;("’f‘?\

27

-

Ly ey

SIS
",.I.‘ll

5 5w Voo
.ﬁz{%‘-{- ® ATy

-M‘(

-

R R AR
s AdS
02 RAAAR

'y

s v Y W oa
Celae e
's{-.'.ﬁp

2

T
;A 5"'\')

-
>

3

w
L ]

AT T T s
. .-A f".{\’ P

2T B3
1

.~
s‘»‘:'.

-

.
A ]

-’."-
-~

L'
[

P

o)

S



TSN T e I e it At AR 7 T st JASA A IS T a St we Ra e S RaRe NS
) .
L] -
' .
) .
I A
‘ A
p the data. The experimentally measured plateau pressure non-dimensionalized by pre- N
. - . B B -
i impingement free stream pressure is 1.25. The numerical value 1s about 1.29 or a little ,
D . . . . PO
more than three per cent higher. The re-compression point location is in very good
: agreement. The numerical solution value is 0.155 foot from the plate leading edge
y while the experimental value is 0.165 foot. The length of the separation zone from
the present work is 0.09 foot or 1.08 inch. The actual length is about one inch as X
: determined from a schlieren photograph. The height of the separation zone is about “
“ the same as the experimental value. (This 1s all that can be said since the schlieren
" photograph in reference § is too small to measure the separation height.) The numerical
‘ pressure distribution through the recompression point is more rounded than the sharp &
Y . .. . . . . .o A
' discontinuity of the experimentally obtained distribution. The sharpness is in part due
4 . . . . .
) to the larger spacing of the experimental data points compared to the numerical grid .
2l . . . . .. . s
point spacing. Thereafter. the numerical solution is in excellent agrecment with the
i experimental data, falling right on top of the experimental data points.
X Vertical profile plots of density. u-velocity. energy and, mass flow per unit area N
are shown in Figures 9 through 12 for the full computational domain as well as for the .
: wall region. The vertical extent is 0.30 and 0.01 foot respectively. while the horizontal N
¥ . . . . . N
range of the plots covers each of the x locations. The horizontal spacing of the lines is ‘
5 proportional to the grid spacing in the x-direction and is not equal to it. The change in L.
NS horizontal location of any curve from its surface position is representative of the change s
N in the magnitude of the flow variable being plotted from the surface value. There are :*
A . . . . . .
X no numerical oscillations present at the wall. The separation zone is clearly shown in N
» «

' Figure 10. t
in! ‘:
. h)
» el A \ ~
I, CONCLUSIONS Ny
, e

e present work has shown that pseudospectral computational techniques are
Th t k has sl that lospectral putat | techniq
y indeed able to accurately solve the compressible Navier-Stokes equations for flows si-
. . . - . . . L
o multaneously including separation zones and shock waves. No numerical oscillations -
.’ are present in the solution. It still remains to incorporate existing acecleration tech- o
J . . - -.
4 niques as well as to develop new ones to reduce the large computer time required to B,
e obtain a converged solution to a more practical level. Work is currently proceeding =
z along these lines. 5
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