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SOLUTION TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
OF MOTION BY CHEBYSHEV POLYNOMIALS FOR

LAMINAR SHOCK-BOUNDARY LAYER FLOW

1. INTRODUCTION

Gottlieb et. al. (reference 1) applied pseudospectral methods to the solution of the
one dimensional propagating shock wave problem. They utilized a low pass spectral
filter which they developed together with a Shuman filter, applied to the flow on either
side of the shock wave but not across the shock front itself. The shock location was
determined by examination of the spectral coefficients. Since then, the present author
has developed new techniques for use with pseudospectral methods which have greatly
increased their utility in solving inviscid flows with single or multiple discontinuities.
Pseudospectral methods have been used by the author to solve many classes of com-
plicated time dependent compressible flows using the full Euler equations of motion
(references 2 through 6). Results have shown that flow discontinuities such as shock
waves or contact surfaces are properly resolved as sharp discontinuities. Solutions for
transonic airfoil flows at subcritical and'supercritical conditions (reference 6) were ob-
tained more recently and proved that full pseudospectral computational methods could
also successfully treat compressible inviscid flows about non-planar geometries. With
the completion of the airfoil work, the author has shown that pseodospectral compu-
tational methods are fully suitable for solving any class of inviscid. time dependent,
compressible flow using the Euler equations of motion.

The next logical step is to turn to the full viscous equations of motion namely, the
Navier-Stokes equations. Orszag is the most notable in the field when one considers 11.%
stability and transition analyses of incompressible hydrodynamic boundary layer and
channel flows (reference 7 for example). He was the first to apply pseudospectral
methods, treating flow stability problems for laminar hydrodynamic boundary layers.
However, no work has as yet been done for compressible flows. Even when one considers
the solution to compressible external flows, pseudospectral methods have not been used
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at all due to difficulties in resolving discontinuities. The present work remedies this
difficulty and shows that when techniques developed by the author are implemented, full
pseudospectral computational methods can successfully solve viscous. time dependent
compressible flows with multiple discontinuities and flow separation.

2. GOVERNING EQUATIONS

The full two-dimensional. time dependent, compressible Navier-Stokes equations
of motion cast in conservation law form are shown below.
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where ax ,cr are the normal stresses,r-, and ry are the shear stresses, A and /t are
viscosity coefficients (Sutherland's relation is used since the present work deals with
laminar flow) and K is the coefficient of thermal conductivity. The pressure is obtained
from the following

%
+ ! 1P(U2 + V'), (2e)

( 1-) 2

The physical flow variables are non-dimensionalized in the following manner.

Pp

P
T ~g
T= 

(3)

U
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The normal and shear stress terms are non-dimensionalized by the free stream -
pressure head, (plU2) . Subscript one denotes free stream properties upstream of the
incident shock wave. With respect to non-dimensional flow variables, equation one
becomes:
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with the Prandtl number Pr defined by,

Pr - (4c)
K -

This completes the non-dimensionalization of the physical flow variables and the
conversion of the Navier Stokes equations to non-dimensional physical flow variables.
However. it still remains to transform these equations into a suitable computational
space. This is discussed below. Several coordinate transformations are applied to
generate an appropriate distribution of points in the flow field. Appropriate here means
many p)oints in regions of large gradients and simultaneously few points in regions of
sn1all gradients. The final computational coordinates are obtained using a sequence of
four coordinate transformations. Namely. e
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The terms CI, C3 , A1 ,A, and , a are transformation clustering constants which
affect the distribution of points in the computational and physical domains. The final I
form of the Navier Stokes equations becomes,
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where

= -i£~lh

All spatial derivatives appearing in equation 8 are calculated by pseudospectral
means- In the present work this involves the use of chebyshev polynomials. The time
derivative Ut appearing in equation 8 is evaluated using finite differences. Specifically,
the Adams Bashforth algorithm is used. The resultant difference form of equation 8 is
given by,

3. 9E t1_ aEt- 3 at F t1 aF tt 6ttP

t= 0+ - l[- + -- F + D,, (9)
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The term Di.j is an artificial viscosity. In the present work a fourth order artifi-

cial viscosity is utilized and is computed using finite differences. The finite difference

representation is shown below.

D, s= + py (10)

were t.

,l= -D,[ta.j+2 + U',,_ - 4(U,. 3 +, + t,._, + 6,,] .

'.-

I
+ +i

'a~**,- ~=6



-. '... V.' .wi? ~ ~ ~ XJJ V X ' ~~~~.~- .-

The terms D, and D. are smoothing constants.

3. PSEUDOSPECTRAL METHODS

Pseudospectral solution techniques involve the use of series of functions to represent
the global properties of a flow field and its spatial derivatives. In the present work
Chebyshev polynomials are used. They are represented by T,(x) where

T (x) =cos [n arccos (x)] ( 11 )

or

T,,(O) = cos [nO] (12a)

where

0 = arccos (x) (12b)

A function of a single spatial variable and time such as F(x,t) may be represented
as

N

F(x, t)= ZA.(t)T.(x) (13)
n-0

The time dependence is represented entirely in the spectral coefficients .4, (t) while,
the spatial dependence is represented in the Chebyshev polynoimials T,,(.r). The Cheby-
shev polynomials are evaluated at discrete points .rj where

=1CO (14)

where N, is the total number of modes used to represent the spatial variation of%
the function F'x,t). The spatial derivative of the furiction F(x,t) is represented as :
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The An's are determined from equation thirteen. Inverse FFT's are used to obtain %
the An's from the known functional values F(x,t) at the known collocation points xj.
The spectral coefficients of the spatial derivative , A,, ( ' ) , are determined from the
recurrence relation equation 15b. Direct FFT's are used to evaluate the sum in equation .
thirteen to obtain the functional values at t+bt. The low pass spectral filter developed
by Gottlieb at ICASE is used to damp spectral oscillations. It is shown below.
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where K is the spectral waveiiixner and Ka,,x is the iaxiu m av WaVellunl)er

corresponding to the total numler of collocation points.
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4. RESULTS

The following free stream conditions were selected to match one of the wind tunnel
experiments reported in reference S. An experimentally measured surface pressure
distribution is included in the above reference so that a direct comparison can be made
between the experimental and numerical distributions. The free streani mach and
unit Reynolds numbers are 2.05 and 693,000 per foot respectively. The free stream

Prandtl number is 0.71. The incident shock wave was generated by a six (legree wedge.
The physical extent of the computational domain is 0 < t/ < 0.3 foot and -0.2 <
X < +0.2. No attempt was made to select an optimum shape for the computational
boundary . such as alligning constant coordinate lines vith the incident and reflected
shock wave system, since the purpose of the present work is to determine whether
pseudospectral computational techniques can actually solve the flill time dependent.
compressible Navier-Stokes equations of motion with discontinuities. The flat plate
surface lies in the range -. 14 < x < +0.2 so that several grid points lie ahead of the
plate leading edge. Sixty four modes each were used to represent the flow field in the
x and v directions. The physical space computational boundary is >iown in Figure
1 along with constant coordinate lines showing the degree of clistering, in both the
x and y directions. As can be seen, points are highly clustered in tle v (direction at
the surface. This was done to properly resolve the flow separation zone and attendent
shock structure which arises very close to the plate surface. Points are only mildly
clustered along the x-direction since an airfoil coordinate transformation which clusters
points about the leading and trailing edges was used with the clustering parameters
detuned. The inflow boundary conditions were to keep all flow variables fixed because
of supersonic inflow. Along the upper boundary flow variables were held fixed at e.
post incident shock conditions since for the flow considered the reflect( shock does
not extend to the upper boundary location. At the outflow boundary conditions at -.
each point were set to those at the next upstream point ( zero'th orde ext rapolatioi)
throughout the calculation. Along the bottom of the coliutati(nal ( iinmlarv either
a plane of symmetry or wall surface was present. Reflective ounldvry c((ldit ions were
used at points ahead plate leading edge namely, ,.1 = I,.i. Oil the plate surface. ?,.1
-.. Also. along the entire bottom boundary v,., =- r .2. pl., = ,_, and , C, I
Xwith ( denoting specific internal eniergy. This last condition ] 1ei in£ aplid' alodng the
plate surface since the case being treated is an adiabatic w ll. The tinl a te size. was
deterillilled fromi the following.
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C NA ,nmin2  P
= 2 (17b)

-r" Re,

6t = [At , At !]J.i, (17c)

For results presented herein the courant number CN was held fixed at 2.5. No ,
attempt was made to replace A~in or A,nin with the actual respective values at the
points of maximum eigenvalue. The flowfield was initialized in two steps. First, the
exact euler shock structure ( incident and reflected ) including post shock zones was put
in. Figure 2 shows the initial shock system. This system is overlayed on the constant
grid lines plot to show the relative grid resolution over the entire shock system in Figure
3. The second step was to put in a boundary layer field using a blasius velocity profile
and the Crocco relation to obtain the density profile at constant pressure at each point
along the plate surface. The pseudospectral code used to obtain the present, results was
run on the NRL CRAY XMP/12. The code takes 0.75 cpu second per iteration at a grid
resolution of 64 by 64. The solution converged in 25,000 iterations or a little over five
cpu hours. No optimization of any kind was employed since the purpose of this work
was to determine if pseudospectral techniques could successfully solve the compressible
Navier-Stokes equations. Pressure contours of the entire computational field are shown
in Figure 4. There are no oscillations in the field. The incident shock is slightly smeared
for several reasons. First, the grid system is not shock alligned. Second, the x-direction
grid resolution is only moderate. Finally, at a courant number of 2.5 the magnitude
of the artificial viscosity coefficients required for stability is relatively large to that
required to keep the shock waves stable. This last condition is primarily responsible fro
the shock smearing. With a courant number of 0.7 the thickness of the shock is only
one third of that shown in the figures herein included. However, the penalty that one
incurs for the reduction of shock smearing is an increase on CPU time. For the courant
numbers thus mentioned, the CPU time would be increased by almost a factor of four.
It was deemed more important for the present work to obtain a converged solution
while minimizing the CPU time. An alternative would be to run at maximum courant
number untill convergence is almost. reached and then reduce the courant number and
dissipation constants to have the best of both worlds. The reflected shock wave has
split into two compression fans. One is well above the separation zone, while the second
is the re-couipression faii at the point of re-attachment of the separated shear layer on
the, plate surface. A bl(wup of the wall region pressure contours (0 < y - 0.0S foo) is
shown in Figure 5. Corresponding velocity vector and mass flow per unit area contours
are shiovn in Figures 6 and 7. The separation zone is clearly evident. Comparison
of Hie numerical and experimental surface pressure distributions can be made fr-om
Figure S. The starting location of the separation zone is in good agreement with

10



the data. The experimentally measured plateau pressure non-dimensionalized by pre-

impingement free stream pressure is 1.25. The numerical vaile is about 1.29 or a little
more than three per cent higher. The re-compression point locatim is inl very good
agreement. The numerical solution value is 0.155 foot from the plate leading edge
while the experimental value is 0.165 foot. The length of the separation zone from
the present work is 0.09 foot or 1.08 inch. The actual length is about me inch as
determined from a schlieren photograph. The height of the separation zone is about
the same as the experimental value. (This is all that can be said since the schlieren
photograph in reference 8 is too small to measure the separation height. ) The numerical
pressure distribution through the recompression loint is more rouided than the sharp
discontinuity of the experimentally obtained distribution. The sharpness is in part due
to the larger spacing of the experimental data points compared to the numerical grid
point spacing. Thereafter, the numerical solution is in excellent agreeiment with the
experimental data, falling right on top of the experimental data poiits.

Vertical profile plots of density, u-velocity. energy and, xiass flow per unit area
are shown in Figures 9 through 12 for the full computational doimail as well as for the
wall region. The vertical extent is 0.30 and 0.01 foot respectively, while the horizontal
range of the plots covers each of the x locations. The horizontal spacinE, of the lines is
proportional to the grid spacing in the x-direction and is not equal to it. The change in
horizontal location of any curve from its surface position is representative of the change
in the magnitude of the flow variable being plotted from the surface value. There are
no numerical oscillations present at the wall. The separation zone is clearly shown in
Figure 10.

5. CONCLUSIONS

The present work has shown that pseuldospectral coiimjuiltatioial tclmmiiques are %

indeed able to accurately solve the compressible Navier-Stokes equiations for flows si-
multaneously including separation zones and shock waves. No iiuimerical oscillations .

are present in the solution. It still remains to incorl)orate existing acceleration tech-
"4 niques as well as to develop new ones to redulce the large ',)liter til"ie required to

obtain a converged solution to a more practical level. \W'ork i ,'urreitly pwoceeding
along these lines.
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