-A191 829

UNCLASSIFIED

=i =l :

I

Tt

J4

SUILLY

—_—
—_—
MILROCOPY Rt

'
]
[
]
.
[
L]
'
TSN _-...I.... WSl T e AT e \..ll\
. el g st Sl gy VUV
-.\....-\ a's . .\. s-..- “a n.‘.. TN .WN- Sl ‘.f.ln
- - - o, - L

‘ OTIC FiLk CORY

LABORATORY FOR 1@% N PE TS
COMPUTER SCIENCE IS TECHNOLOGY

» 4 & .
‘r'.‘v'r‘v"- S % '

MIT/LCS/TM-330

BN S 55 “:
S

X 3
x'.r'.-‘.i'ln'!"
LN ARN,

!

.". ..7.

-.".\'.~" K -I‘ W

TWO FUNDAMENTAL ISSUES
IN MULTIPROCESSING

g A'\‘\.

PN

AD-A181 023

Arvind

Robert A. Iannucci

"‘l 7,
AHTTYSS

Py)

ey o) N N
}.‘.‘l. 'l.)l'v .'i O

i
4

&
-

T

Tl :; E N 5 § e : .
CMAR Q7B
hY v

- -
L 1 -

::‘l,‘l\.l\;\."&"} [} :‘5

AR g

-

. 3
"‘I‘.'-

SN

o October 1987
./,:.-:
2
oy
®.,
=5
s 545 TECHNOLOGY SQUARE. CAMBRIDGE., MASSACHUSETTS 02139
D ‘_-:.
o TDISTRIBUTION STATEMNT A
-*Q:. ——— et e e+ 2 e Amenb b e e e < s« oot e Ty
@ Az, pae

.-"'

% ‘ S ghe o Uh g gt » bl ¥ ol MR e va . w R -

U_classified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
U'nclassified /9 0

2a SECURITY CLASSIF:CATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT

Approved for puilic rolease; distribution

2b DECLASSIFICATION ' DOWNGRADING SCHEDULE X
is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TM=330 NOUO14-83-K-0125 and NOOO14-84~-K-0099
- 6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
e ;117 batrater v obonputer (1f apphcable) 07 fice of waval Research/Deparument ot loiv
‘ SO lence
: - 6¢. ADDRESS (Gity, State, and ZIP Code) 7o ADDRESS (City. State, and 2IP Code)
-: 545 Technelosy Square Information sSvstems Progran
o Carbridee, MA 021739 Avlin.ton, VA 22217
A ;
S
‘.l
8a NAME O FUNDING - SPONSORNG 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENT!FICATION NUMBER B
! ORGANIZATION (It applicable) ¥
DARPA, DOD
. ‘;‘, B ADDRESS (City, State, and ZIP Code) 10 SOURCE OFf *UNDING NUMBERS
b 1400 Wilson Slud. PROGRAM PROJECT TASK WORK UMIT
g Arlingrton, VA 22217 ELEMENT NO NO NO ACCESSION 1O
-."- . oy
! +L"
® 11 TiTLE (include Secunty Classttication) —
= TWO FUNDAMENTAL ISSUES 1N MULTIPROCESSING
v
o 12 PERSONAL AUTHOR(S)
o Arvind, and lannucci,, Robert A.
m 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year Month Day) |15 PAGE COUNT
. ccinical FROM __ T0 _ 1987 October 14

16 SUYPLEVENTARY NOTATION

«
[T S T
. v

Voo)
. Hdt
’

o 17 cosat CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
-ﬁ FELD GROUP SUB-GROUP caches, cache coherence, datatflow architectures, hazard
resolution, instruction pipelining, LOAD/STORE architec-

:ﬁ tures, memorv latency, multiprocessors, multi-thread

j-‘ 19 ABSTRAUT fContinue on reverse if necessary and identify by biock number)
':;_ Sowveneral purpose multiprocessor should be scalable, i.e., show higher performance

v when morve hardware rescurces are added to the machine. Architects of such multiprocessors
'6 address the loss in processor efficiency due to twoe fundamental issues: long menory

X Titencies and waits due to syvnehronization events., [t is argued that a well designed

:- woserocan cvercome these losses provided there (s sufficient parallelism in the program
"::' being erecuted. The detrimental etffect of long latency can be reduced by instruction

:-_: nipelining, however, the restriction of a single tread of computation in von Neumann
j;u orovessiors severelv limits their ability to have more than a few instructions in the pipe-
® Pine. Furtheriore, techniques te reduce the memory latency tend to increase the cost of
- cakoswitendng, The cost or synchrenization events in von Meumann machines makes decom-

;:' posine a4 program into verv small tasks counter-productive. Dataf low machines, on the other
-, nand, treat each instruction as a task, and by paving a small svnehronization cost for .
o 26 DSTRBLTON - AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

® Aomcasseenuntmiten [same as ReT [J oTic uSERS Unclassified
‘: Jla NAME O RESBONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) | 22¢ OFFICE SYMBOL
"i g Littte, Publications Coordinator (617) 253-5894

DD FORM 1473, 34 var 83 APR edition May be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

Afl ather editions are ubsolete

s
L@

#US. Gowerrvnant Printing Office: 1988-807-047

I'nclassified

-
.

18. architectures, semaphores, synchronization, von Neumann architecture

19, each instruction executed, offer the ultimate flexibility in scheduiing
instructions to reduce processor idle time.

. e T e T e e e T e e e
> r n
RN \a\) \.-\:-\.r,_w‘. s

W T Y Y T Y Iy TV TV v e TV T I W "N ?1

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

~ A

MIT/LCS/TM-330
Replaces MIT/LCS/TM-241

Two Fundamental Issues in Multiprocessing

Arvind

Robert A. Iannucci

To appcar in the Proceedings of
DFVLR - Conference 1987

on
“"Parallel Processing in Science and Enginecring”
Junc 25-26, 1987
Bonn-Bad Godesberg

This rcport describes rescarch done at the Laboratory for Computer Scicnce of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in part by
the Advanced Rescarch Projects Agency of the Department of Defense under Office of
Naval Rescarch contracts f\'()()()l -83-K-0125 and N00O14-84-K-0099. The second

author is employed by the International Business Machines Corporation.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

e e SARANN AN T a S

B RS e “$5a" 2 ue Rin S0e Rin Ate B h e AR Bre SRS e g oa b Bl Bl (AR Rl A Sak Bl el el ot i St gt o) S _Rab et et e ARt AR ie iR ol AN AR P SV Al Il Sl Sl &

Abstract

A general purpose multiprocessor should be scalable, ie.. show higher performance when more
hardware resources are added to the machine. Architects of such multiprocessors must address the loss in
processor efficiency due to two fundamental issues: long memory latencics and waits due 10
synchronization events. It is argued that a well designed processor can overcome these losses provided
there is sufficient parallelism in the program being executed. The detrimental effect of long latency can
be reduced by instruction pipelining, however, the restriction of a single thread of computation in von
Neumann processors severely limits their ability to have more than a few instructions in the pipeline.
Furthermore, techniques to reduce the memory latency tend to increase the cost of task switching. The
cost of synchronization events in von Neumann machines makes decomposing a program :nto very small
tasks counter-productive. Dataflow machines, on the other hand, treat each instruction as a task, and by
paying a small synchronization cost for each instruction executed, offer the ultimate flexibility in
scheduling instructions to reduce processor idle time.

NINALS ™ LYARALAL Y, PN ‘f-".»”?.-i

]
.

o
»

r'

Key words and phrases: caches, cache coherence, dataflow architcclures, hazard resolution, instruction
pipelining, LOAD/STORE architectures, memory latency, multiprocessors, multi-thread architectures,
semaphores, synchronization, von Neumann architecture.

This paper is a revision of our previous work on the subject:

Version Tide

CSG Memo 226-1 A Critique of Multiprocessing von Neumann Style
Presented at the 10t International Symposium on Computer Architecture,
Stockholm, Sweden, June 14-17, 1983

CSG Memo 226-2 Two Fundamental Issues in Multiprocessing: the Dataflow Solution
Reprinted as MIT/LCS/TM 241. Scptember, 1983.

CSG Mcmo 226-3 Two Fundamental Issues in Multiprocessing: the Dataflow Solution
August, 1985

t:', CSG Memo 226-4 Two Fundamental Issueys in Multiprocessing

- February, 1986

-

- CSG Mcmo 226-5 Two Fundamental Issues in Multiprocessing

¢ July, 1986

.

}-;

r-

&
£roe S Far W{

i

- - D T
= A T A B e
'y

U R VT
P il Carlalan {a

7 i g Phadl
s p s e

[

.‘l " ’l ;l. .l. '.l

[N

¥
1

ALY B LA R Tl AR

-

AT]
VULV A el

PNrn s
RN NS AA N

A

I\I.}

.uc._-r {‘.}’L{._ﬁ.(..m

Table of Contents

1. Importance of Processor Architecture
1.1. Scalable Multiprocessors
1.2. Quantifying Parallelism in Programs
2. Latency and Synchronization
2.1. Latency: The First Fundamental Issue
2.2. Synchronization: The Second Fundamental Issue
3. Processor Architectures to Tolerate Latency
3.1. Increasing the Processor State
3.2. Instruction Prefetching
3.3. Instruction Buffers, Operand Caches and Pipelined Execution
3.4. Load/Store Architectures
4. Synchronization Methods for Multiprocessing
4.1. Global Scheduling on Synchronous machines
4.2. Interrupts and Low-level Context Switching
4.3. Semaphores and the Ultracomputer
4.4. Cache Coherence Mechanisms
5. Multi-Threaded Architectures
5.1. The Denelcor HEP: A Step Beyond von Neumann Architectures
5.2. Dataflow Architectures
6. Conclusions

N o r Tl .r .f N I*"{' """ A .'z_;.» L e
'C;.'f;"{.:f; Lo tC:{.'t DN A r J". ﬁ' e i! NN NI

S

-

. -
Ca)
" .
w

o
R

TN NS LN U kD

: Figure 1:
2 Figure 2:
L Figure 3:
Figurce 4:
- Figure §:
. Figure 6:
- Figure 7:
A Figure 8:
\ Figure 9:
.. Figure 10:
(.
(-

[

3 v
' M
At T

3
L

e s

..........
..................

« N TN)
Y DO TV IS NP ST T S e S Y T A LN SRR N g0 g

List of Figures

The Effect of Scaling on Software

Parallelism Profile of SIMPLE on a 20 < 20 Array

Speed Up and Utilization for 20 < 20 SIMPLE

Structural Model of a Multiprocessor

Operational Model of a Multiprocessor

The von Neumann Processor (from Gajski and Peir [20))

Variable Operand Fetch Time

Hazard Avoidance at the Instruction Decode Stage

Latency Toleration and Synchronization in the HEP
The MIT Tagged-Token Dataflow Machine

2
3
4
6
7
10
11

I8
19

'@

DL
P S SPAE S A
I T e I I]

‘e

AR

L
LAY
.

A
L@

T L 3 . N
. (' (l Il '.L. !“'I_I

AT e

z
Y

e

Two Fundamental Issues in Multiprocessing

1. Importance of Processor Architecture

Parallel machines having up to several dozen processors are comniercially available nove. Most of the
designs are based on von Neumann processors operating out of a shared memory. The ditferences in the
architectures of these machines in terms of processor speed, memory organizatinn and commurication
svstemys, are significant. but they all use relatively conventional von Neumann processors, These
machines represent the general belief that processor architecture is of litde importance in Jesigning
parallel machines. We will show the fallacy of this assumption on the basis of (W0 issucs: wmemoery
latency and svachronization. Qur argument is based on the follewing obsernvations:

1. Most von Neumann processors are likely 1o "idle” dunng losg memory refercaces, end such
references are unavoidable in parallel machines.

2. Waits for synchronization cvents often require task switching, wluch is expensive or von
Neumann machines. Therefore. only certatn types of paraticlian can oc oxplonted
cfficiently.

We believe the etfect of these issues on performance to be fundamenial, =na (o a large degree.
onthogonal to the effect of circuit technelogy . We will argue that by “2agning the processer properly . the
detrimenta! effect of memory latency on performance can be reduceda provided there 1y perallelism in the
program. However, techniques for reducing the cffect of larency tend to increase the s onchronyation
COSL,

[n the rest of this section, we anticulate our assumptions regarding general purpose paraile! compuiers.
We then discuss the often neglected issuc of quantitfying the amount of parallclism in programs.
Section 2 develops a framework for defining the issucs of latency and synchronization. Scction 3
cxamings the methods 10 reduce the effect of memory latency in von Neumann computers and discusses
their limitations. Section 4 similarly examines synchronization methods and their cost. In Scction 5, we
discuss multi-threaded computers like HEP and the MIT Tagged Token Datatiow muchitie, and show
liow these machines can tolerate latency and synchronization costs provided there 16 suiticisnt paraliclism
in programs. The last section summarizes our conclusions.

1.1. Scalable Multiprocessors

We are primanly interested in general purpose parallel computers, i e, computers that can oxplon
narallclism, when present, in any program. Further, we want multiprocessors 10 be scalablic in such a
manner that adding hardware resources results in higher performance withent reqguning changes n
application programs. The focus of the paper is not on arbitranily large machines, but machines which
wange in size from ten o a thousand processors. We expect the processors 1o be at least as powerful ax the
current microprocessors and possibly as powerful as the CPU's of the curtent supercomputers. In
particular, the context of the discussion s ot machines with millions of one bit ALU's, desens of which
may fit on one chip. The design of such machines will certainly involve fundamental issues m addition to
those presented here. Most parallel machines that are available today or hikely to be wvailable in the next
few years fall within the scope of this paper (e.g., the BBN Butterfly [36], ALICE 13} and now
FLAGSHIP. the Cosmic Cube [3%] and Intei’ s 1PSC, IBM'S RPY {33} Alhant and CEDAR [26]. and
GRIP {11,

It the programming model of a parallel machine refiects the machine configuration, ¢ ¢ . number of

1

3

ok

T »
e 4

L2

RN

.

»
g

of T e
. [

)
P R

(]
LA

0
>

.
et

N TTT T RN TE TETUT T ATy T TA N E LT LWL T e e
o
Redesign Rewrite Rewrite Recompile Reinitialize
the the the the the
ALGORITHM PRG GRAM COMPILER 'ROGOCIAM RESOURCE MANAGERS
Preserves a'gorithos
>
Preserves acirce oode
—— »
Prescrves ¢ mpiler
Preserves Dject -'i‘:’

Figure 1: The Effect of Scaling on Software

processors and tnterconnection opology, the machine s not sculable v a pracucal sense Chanang the
machine configuration should not require changes in applicalion progranis or system sottware: updating
tables 1n the resource management system 10 retlect the new configuration should be sutficient. However,
few multiprocessor designs have taken this stance with regard 0 sealing. In fact, 1t is not uncommon 1o
find that source code (and in some cases, algonthms) must be moditied in order 10 run on an wiered
muchine configuration. Figure 1 depicts the range of ctfects of scaling on the software. Obviousiy, we
consider wrchitectures that support the scenario at the nght hand end of the scaic 10 be far more desiruble
than those at the left. Tt should be noted that if a parallel machine is not scatable, then it will probably not
be fault-tolerant; one failed processor would make the whole machine unusable. 1t is casy to design
hardware in which failed components, e.g.. processors, may be masked oat. However, if ithe application
code must be rewritten, our guess is that most users would wait for the onginal machine configuration to
be restored.

1.2. Quantifying Parallclism in Programs

tdeally, a parallel machine should specd up the exccution of o program in proportor o the nuiber of
processors in the machine. Suppose #(n) is the time 0 excoule g Program on an a-processor machine.
The speed-up as a function of 1 may be defined as follows:'

8]
tn)

Speed-up s clearty dependent upon the program or programs choseri tor the measurement Naturul'y i
1 pregram does not have "sufficient” paraliclism, no puarallel machine ¢an be expecied 10 demonstrate
drarcenc speedup Thus, m order to evaluate a parallel machine properly, we need 1o charactense the
:Hhcwn' or potential parallelism of a program. This presciis a difficult problem because the amounit of

naratiehsmoan the source program that is cxposcd 1o the arctutecture may depend upon the quality of the

wreror programmer annotations. Furthermore. there 15 no reason (o assume that the source program

pecd-upin=

wowt e changed. Undoubtedly, different elgorithms o a0 problem have dificient amcunis ol
“ar o and the parallehsm of an algonthm can be checuicd o coding . The problem s comnounded
SOt that most programming languages do not have croagh expressive poser [0 show ol the

[PESEE STSE CANN AR S VS 4 S R R4 T “hat 1 s ;m\wf‘h' [ER A VMR I AW 1 TALEERIPIN PAN ATE TN I T I A S NS ITS Iora

PR A N

. A . K R] .'.".’-'~..-FJ‘ « . w Y
AR ot R SN AN Y R AC T \-I :C é'e."; :d:i Y 5 _.{'.r..' s .r!‘(:-':;.'ﬁ
O e .-‘.r_'f.. o .r-.{.r r‘xdh‘-hmm-c.gcm.ﬁmm A5

s a4

A
a

,’.\‘1' ..-.q‘l,-l,.
‘, IR

.
PR
PR Y

",:'(:.'.-_ ._‘l. .

.~ '.I “l

7
|

N

'@
4

£ 4

\‘.'x‘:‘\‘)*"

AR

X
s
B

e
LS

Lo
ettt)

-
v,
P

..' ._'
R TR T i - , Al e
LI Y WL P W SV T Sy¥ Sy® e S S GNP PO VRTINS Y R Y

Concurrently
Euabled

Activities

8020 _A

Unbounded Processors

2000

\ ,’ ', Finite Processors
Ay (1000)
' A
\k “
. \
T T T T T T 1 T - ¥ Time
230 400 600 800 1000 1200 1400 1600

Figure 2: Parallelism Profile of SIMPLE on a 20 x 20 Array

possible parallelism of an algorithm in a program. In spite of all these difficulties, we think it is possible
to make some useful estimates of the potential parallelism of an algorithm,

It 1s possible for us 10 code algorithms in Id [30], a high-level dataflow language, and compile Id
programs into dataflow graphs, where the nodes of the graph represent simple operations such as fixed
and floating point arithmetic, logicals, cquality tests, and memory loads and stores, and where the edges
represent only the essential data dependencics between the operations. A graph thus generated can be
cxecuted on an interpreter (known as GITA) to produce results and the parallelism profile, pp(t). i.e., the
numbcr of concurrently exccutable operators as a function of time on an idcalized machine. The idealized
machine has unbounded processors and memories, and instantancous communication. It is further
assumed that al! operators (instructions) take unit time, and operators arc cxccuted as soon as possiblc.
The parallelism profile of a program gives a good estimate of its “inherent parallelism” because it is
drawn assuming the execution of two operators is sequentialized if and only if there is a data dependency
between them. Figure 2 shows the parallclism profile of the SIMPLE code for a representative sct of
input data. SIMPLE [12], a hvdrodynamics and heat flow code kernel. has been extensively studied both
analytically { 1] and by expernimentation.

The solid curve in Figure 2 represents a single outer-loop iteration of SIMPLE on a 20 x 20 mesh, while
a typical simulation run performs 100,000 iterations on 100 x 100 mesh. Since there is no significant
parallclism between the outer-loop iterations of SIMPLE, the parallclism profile for N itcrations can be
obtained by repeating the profile in the ligure N times. Approximately 75% of the instructions exccuted
mmvolve the usual arithmetic, logical and mcemory operators; the rest are miscellancous overhead

I I L. P ML N
-

[0t 0k 28 S0 0 Salk gud Sol Al Sut San e Savullas et gl alh ot aSi ICR S AN Laria s 'Gad Sad o0 Sall Gakt Vel Sk, Yk "R VLA S A b SN Tl IR EC S e T S T
-

l\-‘

I..l

-

o

Y 4-

L

oh AN PR
o W <
" Utilization - l
7 t,_ e
[N &, j' ’] //
h - l
e o . - g e &0 - - .
:‘ Speed Up 830 ~ g /// !‘ S Utilizarion
- Ideal - ST |

p ;
B Speed up - l _,// T~ . '
g 4 — ~ ey

7~

o ! |
{ = Actual L 60
i / Speed up T

Pa® ' ;
l,'(_:. i - — -1 T T oY T T -
:‘,‘ 50 120 1R0 240 300 v 429 450

‘ Maximum Permissible Operaticns per Thue Step

n
@ : , o .

Figure 3: Speed Up and Utilizabon for 70 < 200 SIMPLE

o s, some of them pecuhar to dataflow. One can cesily deduce the parallclism profile of any set of

operators from the raw data that was used to gencrate the profile in the figure: however, classifving
operators as overhead 1s not casy in all cases.

The reader may visualize the cxccution on n processors by drawing a horizontal line at n on the
rarariclism profile and then "pushing” all the instructions which are above the line 1o the night and helow
ime The dashed curve in Figure 2 shows this for SIMPLE or 1000 processors and was generated by

Lot flow garaph interpreter by executing the program again with the constraint that no more than »

aoters were to be performed at any step. However, o cond estimate for «on) can he muads ven
sexpensively, from the ideal parallelism profile as follows. Fer any toif pp(ty<a, we perform all pper)
operitiens in time step T. However, if pp(0)>n, then we assume it wili take the least intezer greater than
2T steps o perform pp(T) operations. Hence,

e

VA

!

AT I's
am=Y (PP

M oon

o 2%

o WhoT T;,:\x 1s the number of steps i the ideal paraiicisit profic. Our oxUMate O 1) 18 COnsen ative
-::: mecause the data dependencics in the program may permitt e exccution of some instructions trom
::-j ~oire 0, e dast time step in whidh instructions from ppcti are exceuied
~ in our dataflow graphs the number of instructions oxecuted Joex not shange when the proormy s
' . ~aevuted ona ditferent number of processors. Heneeo b i piy b area under the parallelop eaile
o W can now nlop speed—unin=d 100 and weilizattone: o s s 0 e SINIPTE Gy shoen i b 3
. : Soarpleoan the case of 240 processors, speed—np v oS o glicanon s X100 One w0
wtenstind rdizationtny as that a program has aoparallel eperatiens tor oply slizaroniny fractoen of s
] Soetal oy duration
-’ " cahoow argued that ihis problem does not have enough pardicism o keop, say. TOOO processors taily

R . P Lt C . . R R B

T B SRR ST WL RN S U U S I IO O SR O TP I T S W B R I Ak

o

t
.

AN S

’

utilized. On the other hand, if we cannot keep 10 processors fully utilized, we cannot biame the tack of
parallchism in the program. Generally, under-utilization of the machine in the presence of massive
parallelism stems from aspects of the internal architecture oi the processors which preclude exploitation
of certain types of parallelism. Machines are setdom designed 10 exploit inner-loop, outer-loop, as well as
nstruction-leve! parallelism simultancousty.

It 15 noteworthy that the potential paralletism varies tremiendously during execution. a bebavior which in
our cxpericnee is typical of even the most highly parallel progriums. We belicve that any large program
that runs tor a long time must have suiticient paraliclism to keep hundreds of processers wiilized: several
applications that we have studied support this beliet: However, a paratle! machine has to be fairty venery)
purpose and programmable for the user o be able to cxpress cven ihe chass oi pomd e orenta!
cquation-huised simulation programs represented by SIMPLE

2. Latency and Synchronization

We now discuss the issues ol fatenicy and synchronization. We belicve Tutencs s st cronghy a
function of the physical decomposition of a multiprocessor. while syrchromzdaion 1oonoss strongly
function of how programs are logically decompaosed.

2.1. Latency: The First Fundamental Issue

Any mulitprocessor organization can be thought of as an interconn-caon o the ialiowsing 4
maodules (see Figure 4

tiree 1Ypes of

1. Processing elements (PE): Modules which perform arthmetic and logical operations on
data. Each processing clement has a sing's communication port through which ali data
values are received. Processing elements iateract with other processing clements Dy
sending messages, issuing mterrupts or sending and recciving svachronizing signals tirough
<hared memony. PES miteract with memory elements by issuing LOAD and STORLE
mmsiactions modilied as necessary with atomicity constraints. Processing clements are
characienzed by the rate at which they can process instructions. A< mentionad, we assumie
the mnstructions are simpic. ¢ ¢ . fixed and floating point scalar arithmetic. More complex
mstuctions Cun be counted as multiple instructions for measuring instruction rage.

2 Memory elements (V) Modules which store data. Each memory element has a single

communicdtien port - Sennony clements respond 1o requests issued by the processing
Cromieniis by rs-wr'mxg data iirerch the cormumicanon poit, dnd are characterized ny their
Lot capacits g the rate gt wh 1;?: tiey respond 1o these uqu\.\(\

Communication clements (O AMadabey which ransport data, Lach nintmvial
Commitinicdben cienient s at least three communication ports. Communication ¢.cments
nepdior corade ner recee sanchromens signads, aestnctions, o Jdatas rather, they
retrarsoct o omtormanen wHer tecenad onoone of the communicanon ports (0 one or
rrore o the other commium aton ports . Commumication elements are characterized by the
rate ot tiansiission e e oken per ransiiission, gand the constraints imposed by ong
ran s o athers ey hlockmge The maxamum amount of data that may be cenvesved
SeeNpnEn Ao Dors pCr Gt e s biad

foron s the e wbich elapse s between making arequest and recerving the associated response. The

o s e e ens, he memonyT subssters can beosnuply modeled by one ot these M ocleme s Taterieaved
v i e eled as o o o MU ad O Memory subastems winch incoriorate proc ssang capahiiing
e skl b WS PRGN D O Seorn i Vdesonhes one sichoase

SRS

Crorr e s

\
L3R

v

BOch ¢
e [y

Figure 4: Structural Modcl ot a Muliiprocessor

above model implies that @ PE in a multiprocessor sysiem fuces Larger latencey i memory referenceys inin
n a wnprocessor svstem because of the transit time 1n the communication network between PE'S and the
niemornies, The actual interconnecuon of modules may differ greatly from machine to machine. For
cwvample, in the BBN Butterfly machine all memory clements are al an equai distance from all processors,
while in IBM's RP3, each processor is closely coupled with a memory clement. However, we assume
that the average latency in a well designed n-PE machine should be Otlogen)). In a von Neumuann
rrocessor, memory latency determines the time to execule memory reference instructions. Usually, the
average memory latency also determines the maximum instrucnon processing speed. When tatency
cannat be hidden via overlapped operations, a tangible performmance penalty is incurred. We call the cost
assoctaicd wath latency as the wotal induced processor idle time atinbutable to the latency.

2.2. Synchronization: The Second Fundamental Issue

W wiil call the basic units of computation into which program: are decompaosed for purilict execution

cmpaatienal tasks or simply tasks. A gencral model of paraliel programming must assume that tasks
are created dynamically during a computation and die after having produced and consumed data
sceaenions in parallel programming which require tass synehromization include the following basic
P Fanons:
1. 7’roducer-Consumer: A task produces a data ~iructure that s read by another task, If
nroducer and consumer tasks are executed in paraltel. <ynchrontzation s needed 10 avoid the
read-before-write race.

2 Faorks and Joins: The join operation forces a synchromzation event mdicating that two tasks
which had been started carlicr by some forking operation have in tact completed.

Mutual Fxclusion: Non-deterministic cvents which muost be processed one at a time, ¢ ¢
semalization in the use of a resource.

Lo nommal support tor synchronization can be provided beonciading instructions. such as atomic
Li~T AND SET, that operate on variables shared by synchronizing iasks® However. 1o clarify the true cost

A not trictly necessary, atommic operations sach as s AN s b e ot s

o senvenient base upen which o build
n hronrsation operations, See Section 4.3,

Ll T

. RIS CAR I < - . A T IR A I)
hd .-' . PR .'- et .t * -t '-. ‘“» - » - -/ - . 0 . - - . '.‘ Ab. P \.‘ ‘L‘.’
A A A A A A A A AL A PO PRV TR PRPEY LPE LSV, T PL IR PR U, W S "

[l ~fafAAalk-Aal Aol _Sal _Ret_ A At e Sat AR\ Aav ae- SSFalh JBar oA sl S0 ath S'G AFG AT Sud Aol Ref el Sulb Ak Aok Al S ‘-",‘E"T

.7-

Requests and Reopanaes

!
' r‘i Suspended Tasks _\
|

N < |
. N
)
- t
\ PROC |
. Responses ’
_,. and Ready-to-Execute Tasks :
S — '
Requests .
'_ y , B fauka K
H Comm Newly Created Tasks - p
" plus
"_; i Memory
< Requests and Responscs
d — ~~-~-~—ﬂ
[~ Suspended Tt]
*:' g — —_—
N
.y
N
PROC
. Responses
- and Ready-to-Execute Tasks
-' Requests
;- __ Newly Created Tasks /
)
X Figure 5 Operational Model of a Multiprocessor
" ot such mstructions, we will use the Operational Model presented in Figure 3. Tasks in the operational
model have resources, such as registers and memory, associated with them and constitute the smallest unit
- ot independently schedulable work on the machine. A task 1510 one ot the three saates: ready-to-execute,
.. executing or suspended. Tasks ready for execution may be queued locally or globally. When selected. a
3 task occupies a processor until cither it completes or is suspended waiting for a synekronizaion signal. A
e task changes from suspended 10 readv-to-execute when another task causes the relevant synchronization
o covent. Generally, a suspended task must be set aside to avord deadlocks®. The cost associated with such
- & vnchronization is the fived time to execute the synchronization instruction plus the time taken to switch
1o another task. The cost of task switching can be high because 1t usually involves saving the processor

Lare, thatis, the context associated with the task.

“Conader the case of a single processor system which n. 1st execute n cooperating tasks

Bl Gl Al A A O8 QL AL AL L SLLL L BL LA GA Gl Rl 5

r)

- W
s

-
P
x
'

"f"". 7 b

There are several subtle issues in accounting for synch vrzaue . coott Anevent o e 2L or depaich
tusk needs a name, such as that of a register or a memory locaton, and thus, synchroniz vion cost should
aso nclude the instructions that generale, match and reuse sderntitiers which name synehrenizaion
events Tt may not he easy to identify the instructions executed tor this purpose. Nevertheress, such
Lnanctions represent overhead because they would not be prosent 1 e program were wrilicn o execule
an a single sequential processor. The hardware design usuatly dictates the number of names available for
syncaronization as well as the cost of their use.

P

R e

The other subtle 1ssue has 10 do with the accounting for wrrre rask svachronization. As we shall see
section 3, most high performance computers overlap the exccution «f instructions helonging to one task.
The techniques used for synchronization of instructions in such a situation “e g, instructior dispaich and
~uspension) are often quite different from techriques for inter-task syuchronizauon. Ui usuaiiy sater and
cheaper not 10 put aside the instruction waiting for a synchronizauon event, but rather 10 idle or.
soeivalently, 10 execute NO-OP instructions while watung). Thus i usually done under the assamption
gt e dle time wall be on the order of a few instruction cycles, W detine the synchromzaton cost in

LS IERE2Y

Lot sivnttony 10 be the induced processor idle time atinbutable ¢ waruny tor the synchrontzation event.

3. Processor Architectures to Tolerate Latency

In thiv section, we describe those changes in von Neumann arctutectures that bave directly reduced the
Jtect of memory latency on performance. Increasing the processor state and instruction pipelining are
the two most effective techniques for reducing the latency cost. U'sing Cray-1 (perhaps the best pipelined
nLohine dasign te date), we will illusirate that it is difficult 1o keep more than 4 or 5 instructions 1n the
Seahine of 2 vas Neumann processor. It will be shown that every change in the processor architecture
+.ch has permitted overlapped execution of instructions has necessitated introduction of a cheap
syachronization mechanism. Often these synchronization mechanisms are hidden from the user and not
asod tor mer-1ask synchronization. This discussion will further iltusirate that reducing latency frequently
nereases svnchronization costs.

Bofore desenbing these evolutionary changes to hide latency, we <hould point out that the memon
svstem it 1 multiprocessor setting creates more problems than just increased latency. Let us assume that
all memory maodules in a multiprocessor form one global address space and that any processor can read
inv wandin the global address space This immediately bringes up the toliowing problems:

« I'he ime to fetch an operand may not he constant because some memorics may be “closer”
than others n the physical organization of the machine

+ No usctul bound on the worst case time to fetch an operand may be possible at machine
design time because of the scalability assumption This is at odds with RISC designs which
treat Memory access time as bounded and fixed.

2 170 processor were 1o issue several (pipelined) micimor, requests to different remote memory
madaies, the responscs could armive out of arder.

Al ot these issues are discussed and illustrated in the tollowing sections. A general solution for
Jocephing meniory responses oul of order requires a synchronization mechanism to match responses with
the destination registers (names in the 1ask’s contexty and the instructions waiting on that value. The
dictaed Deneleor HEP (28] i< one of the very few archircotures which has provided such mechanisme in
e s on Nearnann framework. However, the architecture o o HER s <utficient)y difterent from von
Seurnann architectures as o warrant a scparate discussion (see Section 3.

Tl

'
et

£ ¢t 1"
LI Y

s
‘.'-'-'1".

DY

o e
.

\lV e
PR

P
»
s "t

“a-

AR

- DhiCh
"""",“‘ ’
PR A Y

.
N .,
‘e

) -

P x".',‘ A
Gt
Gt .

.

l- A |
N * '
Sl s

.
v e e

At

a
i\'
-

»
"

MR ARRN]
P

1.1. Increasing the Processor State

Fraure & depicts the modern day view of the von Noamann computer 194 (e 105 In the ecarliest
computers, such as EDSAC, the processor swate consisted selely ¢ anaccumulator. @ quatient register,
and a program counter. Memories were relatively sfow comparod toine processors, and thus, the time o
feteh an instruction and its operands completely dominated the instricton eaele e, Specding up the
Arithmetic Logic Unit was of Httle use unless the memory access bme coudd oo b redeee

The appearance of multiple "accumulators” reduced the number of operaind toichion and stores, and
ndex registers dramsticaily reduced the number of instructions execuicd by esseniis’ls Oimiaatmg the
need for selmedifving codes Sivoe the memory trattic was drastice™ deser, pr

L

covecuiad much

faster than before. However, the enbarged processor state did pos redars the e oo Jurds - ey
references dnd, consequent!y, did noteeniribuic 1o an overa' redaceon oyl Lmen Ue posic ovdl i

improved crily withimprovaments i crcunt speads

2. Instruction Prefetching

The time taken by instruction fetch rand perhaps part of instruction decodirg tme) cns ™ gl aidden

if prefeiching is done during the exceution phase of the previous instruction. B opatrg s o~ g dan are
kept in separate momories, it is possihle o overlap instruction prefeiching and operint fetehang also,
(The IBM STRETCH [7] and Univac LARC [16] represent two of the ¢ rhiest attemet al implenenting
this idea)) Prefetching cap reduce the cycle time of the machine by taenty 1o :histy percent depending
upon the amount of time taken by the first two steps of the instructios cvele wi b reepont 15 the complete
cyvele. However, the effective throughput of the machine cannct increase propornionately because
overlapped execution is not possible with all instructions.

Instruction prefetching works well when the exccution of instruction n does net ave any effct on
cither the choice of instructions to fetch fas is the case in a RRANCHD or the content of the {etched
instruction {self-modifving code) for instructions n+17, n+2, ... n+k. The lutter case is uvaditv hinndled by
simply outlawing it. However, effective overlapped execution in the presence ¢f BRANCH s rucoons has
remained @ probiem. Techniques such as prefetching hoth BRANCH (argets have shown little
performance/cost benefits. Lately, the concept of delaved BRANCH instructions from microprogramming
has been incorporated, with success, in LOAD/STORE architectures (sce Section 3.4). The tdea is o delay
the effect of @ BRANCH by onc instruction. Thus, the instruction at a+/ {ollowing « BRANCH nistruction at
n1s always exceuted regardless of which way the BRANCH at n coes. One can alwayvs follow a BRANCH
instruction with a 56-0P instruction 10 get the old effect. However, experience hus shown that seventy
pereent of the time a useful instruction can he put in that position.

3.3. Instruction Buffers, Operand Caches and Pipelined Execution

The time tc¢ fetch instructions can be further reduced by providing a fast in<teection ~Lffe 0 Tn machines
such as the CDC 6600 {10} and the Cray-1137], the instruction buffer is avwomaticadiy loaded with n
instructicivs in the ncighborhood of the refercnced mstruction relying on spatiat locality in code
references), wheneser the referenced instrection is found 1o be missing. To take advantage of instruction
buffers, 1t 1s also necessary to speed up the ~perand feich and exccate phases. This is usually done by
providing anerand caches or buffers, and overlapping the operand fetch and exccution phascss. of
course, balancing the pipeiine under these conditions may require further pipelining of the ALU. If
successtui. these techniques can reduce the machine cycle time to one-fourth or one-fifth the cycle time of
anunpipetned machine. However, overlapped execution of four te five instructions in the von Neumann

SACwe wii <how in Section 403, Caciies in a multiprocessor setting create special problems

Y

R YA RALRCA . W "\-‘\. AT A RO A N
RO """) "\" \' ‘\."\."'-] "‘\' - "

=
.

Pl AL
PR
e Y

e

{

2 a2t
PP
PR

FATERN

-10-
Memory
Memory Side
Processor Side
ST A VARt |
| i
| | | |
L 1 ' i t : i
oca .
:1- Processor Registers : i
(Memory ! { !
|, / | - - 4
L _‘_‘I/!
| |
|
| !
t Cache g
| | !
| Ve

Figure 6: The von Neumann Processor (from Gajski and Peir [20])

framework presents some serious conceptual difficulties, as discussed next.

Designing a well-balanced pipeline requires that the time taken by vanous pipeline stages be more or
fess equal, and that the "things”, ie., instructions, entenng the pipe be independent of cach other.
Obviously, instructions of a program cannot be totalty independent exeept in some special trivial cases.
Instructions in a pipe are usually related in one of two ways: Instruction n produces data needed by
instruction n+k, or only the complete execution of instruction n determines the next instruction to be
cxccuted (the aforementioned BRANCH problen),

Limitations on hardware rcsources can also cause instructions to interfere with one another. Consider
the case when both instructions n and n+/ require an addcr, but there 18 onlv one of these in the machine.
Obviously, onc of the instructions must be deferred unul the other 1s complete. A pipelined machine must
be temporanly able to prevent a new instruction from entering the pipeline when there possibility of
interference with the instructions already in the pipe. Detecting and quickly resolving these hazards is
very difficult with ordinary instruction scts, e g, IBM 370, VAX 11 or Motorola 68000, due to their
complexity.

A major complication in pipelining complex instructions is the variabie amount of time taken in cach
stage ot instruction processing (refer to Figure 7). Operand fetch in the VAX is one such example:
determining the addressing mode for cach operand requires a fair amount of decoding. and actual feiching
can involve 0 to 2 memory references per operand. Considering all possible addressing mode
combinations, an instruction may involve O to 6 memony references in addution to the instruction fotch
tselt A pipeline design that can effectively tolerate such vanations is close to impossihle.

3.4. L.oad/Store Architectures

Scymour Cray, in the sixties, pioncered instruction sets (€ DC 6600, Cray - 1) which separate mstructions
nto two disjoint classes. Inonc class are instructions whick mes ¢ duta wncasged belween memon o
hieh speed registers. In the other class are instructions which operate on datain the registers Instructions

hafl sl Saft Aol Saf Aaly NS LR S e 2% B Bt AEA N Bl Bab_flatl Rt int B S T T R T A

. a8 A o \ b ~ v v v W Clial v » :"."'-*E'\'_T‘-"kv"-"\'*i"'i‘-"-‘\".'h'h')'_i‘

s 8
.
.

L}
FA NS

L]

,l

AR

..\ Feteh Instruction [n] L“ 1] F‘ f 2J [“ +3 } L“_'.‘V‘_I
! Decode l n I n+1 n+?2 l n+s J| &—1—} ‘
Fetch Operands r“ —‘ ‘
. 1 s
v Ll 1

- Execute * Store Lo I Don J L 0]

¥

+ b
)

PR
.

r Ny

> T ;
Figure 7: Vanable Operand Feteh Time ‘
r. - |

- |
—_ — — i
, ol the second class cannot access the memory. This ngid distinction suaphifios ot cnon <scheduling

“. For cach instruction, it 1s tnivial to see it a memory relerence wiit be neces ooy o o Vioreover, the

o memory system and the ALU may be viewed as paralicl, nonmter:c e mipebees A istrucnon

o dispatches exactly one unit of work to cither one pipe or the other, puaey s boeh

Such architectures have come to be known as LOAD STORE archizectures and inchiud. the - achnmes built

by Reduced Instruction Set Computer (RISC) enthusiasts (the 1RA 8O 0340 Boerkelov's RISC 21 and
Stanford MIPS {22] are prime examples). LOAD/STORE architectures u<e the time between instruction
Sy decoding and instruction dispatching for hazard detection and resolutien tsee fgure 5y The design of the
instruction pipeline is based on the principle that of an mstruction gets past e i Fprpe s(age, 1

should be avle to run to completion without incurring any previousty unanticipated hazards

i LOAD/STORE architectures are much better at tolerating laiencics i nocmery geeesses taey other von
Neumann architectures. Tn order to explain this point, we will first discuss a simpthicd madel which
detects and avoids hazards in a LOAD/STORE architecture similar to the Crav-1 Assume there is a bit
associated with every register to indicate that the contents of the register are undorgemyg o change. The bit
corresponding to register R 1s set the moment we dispatch an instrnectson that wants to update
R. Following this, instructions are allowed to enter the pipeline onlv it they dan™ need o reference or
modify register R or other registers reserved in a similar way Wheneve: o vaiue i< stored in R, the

LR N

MM

R
e,

. s

° reservation on R is removed, and if an instruction is waiting on R, 1t is altywed to procecd. This simple
scheme works only tf we assume that registers whose values are needed by anansimiction are read before
o the next instruction is dispatched, and that the ALU or the multiple functional urits within the ALU are
f:: pipelined to accept inputs as fast as the decode stage can supply them® The dispatching of an instruction
- can also be held up because it may require a bus for storing results in a clock cycle when the bus is
oy necded by another instruction in the pipelinc. Whenever BRANCH instructions are encouniered. the

, . pipeline is effectively held up until the branch target has been decided.

i '.'f: Notice what will happen when an instruction to load the contents of some menory location M into some
o register R 15 exccuted. Suppose that 1t takes & cveles 1o fetch somiething from the memory. It will be
o

": “Indeed, in the Cray-1, functional units can accept an input every clock cycle and registers are alwavs read 1 one clock cvele

a after aninstruction is dispatched from the Decoder.

v
°
'l::,

N

S
-~

"g w C i i it i I o N P L e L S
Lgt L e Bl &40 A fbe 4-a SAe AN A4n un A te Yieramb i dal tall Nad el Sl Uall Gl At AL AR AN .. L - - -

Lol

LG

LR

|
I __| Bank i \\L o Memory
b2

Bank 0 Bank 1 ' .

Tantra!

L | AN A

i."l.- O
Bus !

Bus 2

.
— fede
«—Jete

Bus m-!

‘._4

Prefetch

’
{
|
|
v
. L? Buffers
—

‘ e Decoders

/] Serialization
z . Hazard
N

Avoidance

/,’/\
r‘ \4’ Functional Uit

':' v 1 Dispatch

Figure 8: Hazard Avoidance at the Instmicton Decode Stage

poseanic o exeeute several mstructions during these a1 cvchos s o as nene of them refer o reviser
oGt this situation is hardly different trom the one i wie 0 Ko 1o be loaded from some functional
“iiadies ke the Fioating Point multiphier, takes severa! cacies 1o prisduce the result. These gaps in the
pipehine can be urther reduced it the compiler reorders instiructmns <uch that istructions consuming a

Aatene are put as far as possible from instructions producing itia datern Thas we notice that machines

dosnened for high pipelining of instructions can hide Jarge riemors baencies provided there s Togal
sretelian among nstructions

- AT o w, Walaaey coni has reen i S dnelaing 4 Lhcap svidaroit e aion
7 G TOSCTL Attt Dils O PrOCOSSOr registers iiowever oo namiher ol names avarlahle Jor
-~
" AP bl reardeT IWo nSrucions usuaay means that these iastraa oo 0 fe el
» .

g
A
a
o

,A
-
re
A -

o A I e e P T I AL ORI

S % L .f\‘-'. AR RPN AT Ay

I AN N RNV S A SR SN ST RN

- -~ ha S ot 4 M "B y T H T W T T W W WS Y B
ot S T S S e S A A g i B Sanr B Bl S Bl Al Selh Al An i infulini ‘el e teia AR et AN AN A I A Pl A et e A S LA AR AR
e
.
<
\,

“
~

i

I'd

lam

ssnchion anion. o the stze of the Lask s processer bound coniont, s preciscin the number ol registers,
and s restnicis the amount of exprettable parid e wcbolerabie foenoy Inoordor o meierstand this
il Pottci, conntder the o wse wWhICT e comapast Tocidls e e i i ond a0 b erent caiues ad

PO diterent mstrvions sy e Thes wedrequire ¢ s 0 e e gie o whitie nio

1

W, suchoorder may e been nepied by e sonrce covte Shdaee 0 T Leen s eered o dedd

: with thus cliss of problems i fact, shadew rogieters e an cey i, S R] A AW

N enginecriy probien The real issue s iy Vhie reasan di wtoo n 0 T AN PP BN TN

. mpreses e sitgtien denves trom the adden o rexplhict ar b e e o NATENS TR FANT

vy Henee. oo Srpertuithy orioierataig latenics

ﬁ. Sorie Lons ok archigedtures Bave e onmaied the s oo res i ‘

L compiies rospois bic tor scheduling anstructions, such e e ot o s " - '

;-: Jomprler o pertaim hazard resotution only i the tme or cachoperat < \ . Sl

. AT NO P structions wherever necessary. Becaase the insima ol execite e oo ST ‘

e part o ihe obecc codes any change o the machinge ~ suactiore csoans sl e |

! TeinIe chinges o the compiler and recenerationcof the code Thes s obv sy oo i

g cenerecin,and nders the portabrility oF <o are o one geromiion o g o oo |

:::: Current LOADSTORE architectures caume that mennory references (o SN SRS R !

.:"', e cvate nomost RISC machinesy or that they take G vanable Pat prodiongdn s s e, oo the

X Crav-10 In S SCmachine ., shis e s de rwcd on b basis of g o R Toee BT SR B 'Y ‘
4 missier fiem the cache, the pipehne stops. Equivalently, one cen ovik of thie o L alion v o & !

clock oyl s erer-hed 1o the ume required. This sotuton werk b Cote 00 maoen o o e
there can be either one or a very smali number of memaory refercnce incmgress oo woven e bor
example, m othe Crayv-1, no more than four idependent addresses ¢ e cenerac d du-ee o0 e
cyele. It the generated address causes a hank coniiict, the pipeline v stoppe, tiowesor e e et s
resoived mat most three cyeles.

LOAD/STORE architectures, because of their simtpler anstructions often excoar 139 0 5077 moie
mstructions than machines with more complex maructions T3 Ty moroas . 00 oganded as
synchromization cost However. this s cavilv compensated by oimproverents in Toor eed made
possible by simpicr control mechanisms,

4. Synchronization Methods for Multipracessing

- 4.1. Globual Scheduaiing on Synchronous inachiiies

s

'; For a totally ssnchronous mulliproces<sei o v possthhe oo ison o nister che a hoaxecities
OPCrations for cvery evele on every processor. AN anadlowy con b made between noocraeng sech g

v

multinrocersor and coding a honzontally micioprogramir.d machme Fecos o oo compihiny

P

PR have made such code generation feastble and sncouraged rescercher (o propose anc binld several
. difterent svachronos s nadtiprocessors, Cydrome wond Mulufiow computers which are based on propoals
- L3S and TG respestin oy, e exampies of such modnines Ve me e e coaene iy reteired to
| as vory loncanstre e onoword, or YEEW machines, because cach instructon aotu iy onitins muluple

statler insiructions fone per tuncional untt or processing elementy. The strateay s based onmanimizing
. the use of resources and resolving potential run-tome contlicts i the use of resources at compife tme
Memory reierences and control transfers are “anticipated” as in RISC architectures. but ere, multiple
- concarrent threass of computatton are heing: scheduled ainstead of only ones Given the possibality of
) decodivgy and antudimg many instructions i parallel. such architectures are tughty appealing when one

¢ reabizes tha the fastest machimes avartable now stll essentially decode and dispateh mstructrons one at a
- e

LI

-

q-‘ » " "' -
-r ot ,r -, o
'_A'F &.ls..n.*.n} .l}.l

Lo T S TE T B e T
P T O P T T O W e O o P W VL it R R .

Yy
e

!

¢

haxlt arCian e
@

MO A
Rl
v

e S S0 3
l.'
[_NTRRN

RV

&
LN e

\:0"

*

14
W iahaove What this echmgue s etfective o oo o cLodo context o onr s hased
Soiputatons on a small number 14w Xy ot processors g or paratielism beyond thins devel,

however, becomes ntractable. s unclear how propicis wimch iy oo dvnamic = crage allocation or
require nondeterminisuc and real-time constramis wall pray out or ol archtectures

4.2 Intercupts and Low-level Context Switching

Srest alt von Neumann madhines are capable of woooy o oot g r s nkerrupiss Mot sumnsingly,
P occossars based onosuch machines pemut the L o0 o procevsor HEmupls as o meanis for
e sovents Howeverantermupts dare radher oxpe s a7 S0 el e processor state needs

Crcsavad The state-saving miay be foreed by .h< o fware e st consequence of allovang the
.rs:‘: (o oveur, ot may occur exphicitly. ce o under the cone o e Prodranimer. vix a o sirgle ven
SO ey straction or a suite of less complex ones. ladependont of won the state saving happens, the
et g 1o onote s that cach interrupt wall oo nerate a vigercant amoeunt ol tratfic across the
JTeUv W T omemory ntertace.

Binc orevioas discussion, we concluded that larger provessor stife o~ good because 1t provided a means
cfraduding emory lateney cost. Intnving o solve e prodeem o ’.n»\ cont synchronizatnon, we have
Lo conit dOross dn nteraction which, we believe, s more the, g comardentad . Specitically. in ven
“astoon Newmann processors, the "obvious” synchronization mechapisn anterrupis) wili oniy work well

S case obanfrequent synchron:Zation evenls of wic Hie SMeunt o 2rocessor state winch must
Soosaed s wery vmall, Said another way, reducing the cost of ssoohitonization by making interrupis
cnecend senerally entail inereasing the cost of maemony Lawney.,

sor ooy such s the Xerox Alto (4210 the Xerox Dorage 270 and the Svmbolics 2600 famih
waad o techmgue which may be called mecrocode-le el conrews switching 1o allow <harmg ot
i wumee by the /O device adapters. This s accompiished by duplicating programmer-visihic
~~. i citer words, the processor state. Thus ineene micremstruetian i processor can he switched
“4 skowathoul causing any memory relerenees 10 i the crocessor state®. This dramatically
Sagwre esb ol processing certain (ypes of events thad cause troguent mierrupts, A fur as we know,
T Cascboted the adea of keeping multiple conte - g mnlnprecessor seiting (with the possible
e HEP 1o be discussed i Section Sy aithough i should reduce synehronizotion cost over
achcan bold only g single context. Tomay oo worh thicnking about adopting this scheme 1o

al o costob g nonfocdl menmory relerciices as w

‘ caons ot this approach are obvious Hoch sortormoace processors miay have a0 small
Coudbie state (number o reosiersy bur a0 T s o siaie Goachesy Lowedove! lask
. N 9]
st necessaniy tahe care of the overbend s s caches T Further, one can only have
enoondependent contexts without compei o v orstadowang the cost of AT L hardw are,
4 5 apnores and the Vltracomputer
S Tcrapts, the most commoaly supported oty bet s i T Al AN W Y dtoridc oPO GHONR O

e vadue of @ memory Tocation. A processeT Carsenat e e prosossor by wrihing o g
Shothe other processor keeps reading to sense o iane buoen thoush s theorenically)t as

s

o e i such o synchrorizaton with ndovar. 0 L0 G e ony aneralions. 1Ne sk s
arpler win anyatomie TENT AND ST T anstruchion 7 s st s powertc ! enough o amiplement
wORISET e of provadimg tepcter wandow s’ to speedt e S ver i 1o e e et e s

AN ST AS T e b s and s hoonie s e Vv B S O RIS B PR TS LA PR TO FUICHE P

s e aLatnng ootteged o othe s G e e hanoeg AEER T B B

- . . - . R Y.t .t I- h - l N - - h -
A .. .' e \./_ S Y \ \- % ., N -\-
Sl "o et et A -_\A{L A AU A {LM(&;JM&‘MM

%
PN

oy

\Rthrd
-

T MR ARE A% ANV P T Sl Gl A A A A A A i . e o S R M S

di types ot synchronization paradigms mentioned carher. However, the synchronization cost of using
suchan nstrucnon can he very high Eesentally, the processor that executes it poes into a busv-wair
wales Notonly does the processor get biocked, it generates exirg memory references at every mstruction
cydle unulb the TEST AND SET instruction is exccuted suecesstulls . Implemeniations o TEST AND-SET that
permut nen-busy watting imply context swatching i the processor and thus are oot nocessarthy cheap
cither

ILIs possible to improve upon the TEST-AND-SET ISIuction in a multiprocessor seuing, as suggested by
the NY U Ultracomputer group [17]. Their technique can be iltustrated by the atomic FETOE aND <O
matruction tan cvolution of the REPLACE ADD nstruction). The instraction requures an o dress and
value, wnd works as Tolows, suppose (wo processors, 1 and Jo simultancoasty oxecute o8 1CH AN ADD
HNirucons Wit arguments CAN) and (A respectvely. After one mstruction cyvele B enients o A
will become (Ar+v +v - Processors tand | will receive, respectively, cither (A, and cA=y o1 oA ey oand
tAY as resuits, Indeterminacy 1s a direct consequence of the race 1o update memory celt A

Anarchioct mest choose between a wide vaneiy of implementation. tor 10y v o One
possibiity s that the processor may interpret the INNMIUCHOn Willl aseric s o mrg prie S o racs olis
While posable, such a ~olution does net find much favor because it wi Zaese oosadaaabie memorny
traffic. A second scheme implements FETCOH AND <OP> in the memory contre: e i € v o e le native
chosen by the CEDAR project [281 This typically results i a signiiicant reduction o cwtwork (raffic
hecause wtomictty of memaor; transactions from the memory's contio’ v cappens b Ie” 0 The soeme
suggested oy the NYU Uliracomputer group implements the instracoen in e awicairs nonden of the
netwerk,

This impiementation calls tor a combining packet communication network which cornecs » pracessors
toan noport memory. If two packots collide. say FFTCH AND ADDUA V) and FFTCH AND ADIX A the
switch extracts the values v and v forms a new packet (FETCH AND ADDIAN +v o, forsaras it 1o the
memory. and stores the value ot v iemporarily. When the memory reteimis the old valuc of location A,
the switch returns two values oAy and tAev) The mam imprevement s thar some wnchmonization
sttuations which would have taken O time can be done in Otdogn) time. T should e note, however,
that one memory reference may mvolve ax many as logyn additions, and mplics substantial hardware
complenity - Further, the issue of processor dle ume duce to latency has not been addressed atall. In the
worst vase. the complexity of hardwire may actually increase Uic latency of going dhrough the switch and
thus completely overshadow the advantire of “combmng” over other simpicr m:plementations

The simulation resalis reported by NYUV {17] show guasi-linear speedup on the Uliracomputer (a shared
memon machine with ordinary von Neumann processors, employing FETCH AND ADD sviichronization)
for a laree vanety of scieotiic appheations. We are not sure how 1o rrerpret these results without
knowing many more detatls of their aimulation model. Two possible interpretotons are the fallowing:

1. Paralie]l branches ot a computation hardlv share any data. thuy, the costy murual = cclusion
synchromization 1s rarely neceded inreal applications.
2. The synchronization cost of using shared data can be acceptabiy brought down by judicious
use of cachable/non cachable annotations 1n the source progran:,
The second point nway become crearer alier reading the next sectien,

4.4. Cache Coherence Mechanisms

While highly successtul for reducing memory latency in uniprocessors, caches in a multiprocessor
setung introduce a serious synchronization problem called cacke coherence. Censier and Feautrier
1107 detine the problem as follows: “"A memory scheme iy coherent if the value returned on a LOAD
instruction (s abways the value given by the latest STORE instruction with the same address . 1UIs casy to
see that this may be difficult to achieve in multiprocessing.

R, |

L i e’ stV i A Sadl i il Sk Ml A T
A aBE - - a0 nan ave SN0 SR MNL G o R osl GN pi o e - R A i A A A A i AR PRt P
e St i it et et el N . - - e« T T e

SOUTUS a0 VS d TWO-PROCessOr system tightly oo e [N v bFach
ATOCSsed fas s 0w Gache 10 which it has exciusive oo S oo e bt s gre running,
one on each processor, and we know that the tasks aic cosipoed i communicate threus!: one ¢rf mor
siared memory cells. In the absence of caches, this scheme canvhe rade o work, Howoser, it happens
that the shared address 15 present in both caches, the ridiv o e pooccaer canread an o wmie the wddress
dncogever see any changes caused by the other processor. iy o store-through desipn instead of a
store-1n design does not solve the problem either. What is ionecatly reaured s @ mechanisnn whach, upen
the oecurrence of & STORE to locaton x, invalidates copies o5 tocation 1 caches of athier proces-ors, and
vuarantees that subsequent LOADS will get the most recen, o body vidwe Tins can mcut stemiicant
wvothead in termas of decreased memory bandwidth.

AT <olutiens 1o the cache coherence problem center arosd o0 e cont A deteenng rather than
avording the possibility of cache incoherence. Generally, saaro nivniation mdicaui wneter the cached
data s private or shared, read-only or read-write, €tc.. is avsociater A th cacivache eniay. However, this
-iae ~somehow has to be updated after each memory reicience boncientations of this sdea are generalls
mtraciahlz except possibly in the domain of bus-oriented .ultinrocessons, The so-called snoops by
so'ntion uses the broadcasting capability of buses and purges sy v trom all caches when a processor
aierepts a STORE to x. Inosuch a system. at most one STORE ooeration ¢an go on at 4 ume in the whole
sy and, therefore, system performance is going to be a swreny function of the sncopy bus” ability 0
aandle the coherence-maintaining traffic.

[t i~ passible to improve upon the above solution il sone ad nuenal state information s kept with cach
cache entry. Suppose entries are marked "shared” or "non-shared”. A processor can freely read shared
entries, but an attempt to STORE into a shared entry immediately cagex that address 1o appear on the

o bus. That entry is then deleted from all the other cachey el v marked "non-<hared” i the
~roncxsor that had attempted the STORE. Similar action takes place when the word 1o be writien 1s
mitwny from the cache. Of course, the main memory must be updated before purging the private copy
reeoamy cache. When the word to be read is missing from the cachie. the snoopy bus may have to 1t
“octiim the copy pnvately held by some other cache befvic giving it e tie requesting cache. The status of
<t an entmy will be marked as shared in both caches. Thie advantage of keeping shared/non-shared
miemiie o with every cache entry is that the snoopy bus comes o action only on cache misses and
st shared locations, as opposed 1o all LOADS and sTOREs Even if these solutions work

cstacterily, bus-oriented multiprocessors are not of much mnterest 10 us because of iheir obvioys
Cuasodinealing.

My A~ tar ax we can tell, there are no known solutions 10 cache coherence for non-bussed machines. It
: weedeem reasonable that one needs to make cache: partially sisible te the programnict by allowing
A ~roomark data (actually addresses) as shared or not sharea. 0 wddinon, instructions to flush an entry or
F:\ o ok of entries from a cache have to be provided. Cache managoment on such machines is possible
Nr.{_ ¢+t concept of shared data is well integrated in the high level fanguage or the programming model.

. a4
’
’

bl g
ol B
S
3

[.-
LN "

v remes e also been proposed explicitly to interlock o locaiion for writing or 1o bypass the cache tand
©os b necessary) on a STORE; 1 either case, the performance goes down rapidly as the machine s
oo trenically, inosolving the latency problem via muliipie caches. we have introduced the

“ienization problem of keeping caches coherent.

[J worth poting that, while not obvious, a direct trade oft often cxasis between decreasing the
LA] .

E-_ ©asmoand inereasing the cachable or non-shared data

b

SAS

o

o

2

a & - NN .
.(.'.5." 4 . ” l-. l. ".

. G A A .
Ir","-‘-‘.

PR S ot

5. Multi-Threaded Architectures

In order (o reduce memory lateney costo it s oxsentig 1o pros s be coprble st vy multple.
overlapped memory requests. The processor midst view e miciiae < mume i sw s vsiers as

logical pipeline. As latency increases, heepmy the pipehine tuth piopiios G s e eterenees will
have to bean the pipeline. We note that memory sysiems of curreni voir Neun i ac e s ave very
lttle capability for pipelimng. with the exception of Grray refereness 0 e e e B s e e i

Hehind thix himutation are fundamental:

Fov i Neumann progessons Must OPserve IRNIrUction sogueticrsge sty g

2o memory referenees can get out of order i che pipeline Ljaree b
Gl IEUISD Memon resporses must be provided

One way to overcome the fimst deficieney s to interleave many haeads of socenn oo 0 v

we saw in the very long instruction word archifectures of Sectiony 18 The el aeiis gy Y
overcome By providing @ farge register set wiih spttable reservornion b Bt i e .
requitemien's are somewhat in conflive, The situation is furthos oo s e 0 D i e R
communicete with each other. Support for cheap synchronizanon ¢ for b oo o Dy s b b
quickly and to hav o a non-empty queuce of tasks which are ready o rap O o - oo i o e
by interleaving multiple threads of computation and providing somwe micls o voaon L0
avoid busv-wuits. Machires supporting mulipic threads and Loy scheds™ o NN

processes ook less and less like von Neumann machines as the purmher o threae

In this section. we first discuss the erstwhile Denclcor Bliir (50 59! The TR v Loodnd
commercially available multi-threaded computer. After that we Hriefly discv s daiTor v Chines which
may be regarded as an extreme example of machines witn mulnple threads macianes o w5 eaen
instruction constitutes an inaependent thread and only non-suspended threads are ~cicduicd w0 be
cxecuted.

5.1. The Denelcor HEP: A Step Beyond von Neumann Architectures

The basic structure of the HEP processor is shown in Figure 9. The proce «or's date path 1 dult as an
eight step pipeline. In parallel with the data path is a control loop which irculates precess stais words
(PSW's) of the processes whose threads are to be interleaved for exerution. The detay iovnd the control
loop varics with the queue size, but s never shorter than eight pipe stens Thic mpram value is
intentional to allow the PSW at the head of the queue o imtiate an wmstruction Fai net retarn again to the
head of the queue until the instructien has comupleted. M oat teast cight FSW's, representing cight
processes, can be kept in the queue. the processor’s pipeline will reraain 2l This scheme s much hike
traditional pipelining ov instructions, but with on mponan! Jifference. The 'rer-instrection dependenaies
are likely 1o be weaker here because adjacent instructions in the pipe are alwavs trom different procesves

There are 2048 registers in cach processor: cach process has an isdex ofict mic the register array.
Inter-precess, e, nter-thread, communication is possible via those registers by osverlapping regisier
allocations. The HEP provides FULLIMPTY RESEF VED bits on cach register and T 0 EMPTY bits on cach
word in the data memory, Anoanstuchion cncounienng EMPTY or RESERVED registars bohaves ke a
NO OGP nstruction; the program counter ot the process, e PSW. which iitiated the instruction s not
incremented. The process effectively Husv-waees but without blocking the processor. Whaen a process
issues a LOAD or STORE instauction, 1t is removed from the controd loop and s queucd separatehy an the
Scheduler Functron Unit +SEU) which alsoissues the memory request. Reguests which are not satisfied
hecause of improper FULEAEMUTY status result i recircutation of the PSWowithio the SEU S Toop and also
moraissgance of the cequest. The SEU shaches up memory responses weih queuncd PSWISO updates
registers as necessary and remsernts the FSWOCin the control loop

AR amh ave Sve oS i a Gah Gof Sed Rad ARt "ad Aehie e Ane ANe S AR I e it Al SR AL AN NP T S e T e e S 1

.-"
J g

&

s

> v s v
P
.
.
>

Q-

.

PRI S 8

e

FI3W Queue ce T —
!
{
)
3

e
' o e

5
-

" 7 V P - '\.i.“"}I\‘.‘(‘,\'
1
i
{
’

|
: i
|
[
e oA e e
¢
{
)
i
i

! N - TUTTETm T Y
' ! bii-\s ‘ - t
Opcode 1 - E"* Kosiio s ‘
: | Lol e
and !
[i) - B e Y ‘
Operands | "f - C > . l
/ - ot .) v,
, { ~i J ST ata
" e
) i ‘
Figure 9: Latency Tulermton we: e ol
e HEP as capable up o g point of using dacin . : EEIIAN Bede memer and
~oaton latency. At the same tme it provides it - SN oo sten medhan s

Lot of presence-bits in registers and main memorns Fiowevc e HEDR approach does not go tor
e iwcause there is a limit of one outstanding © 0oy maes per process, and the cou ot
creation through shared reyisters can be hion o0 L. S L LA S SR T 531 O U
ces s A senous impediment o te software doverapnen s e 2w e the ot el 61 PNV L
“1oLossors Though only 8 PSW's may be regoo e o - S et ey
needed 10 name all concurrent tasks of a program

L o usntatlow Architectures

couteioaarchitectures [2, 18, 20, 230 represent ot s Co cone NOLIARD L ohtectares
vty use dataflow graphs as therr machme toe a0 o o SRR TR NN STAlS SNTTS

v cenaboamachine languages. spectfy only a part o ; O S AT S S TG A TSIA IR SR BRI
pponuintes for parallel and pipehined execon 8o ot e g naacnons o

camipe the dataflow graph for the expression g*b o+ 7 o v nes s both msplican s i
< d before the additon, however, the muluphcaton. 0 o we med oy an, order or oven

semabel The advantage of this flexibility becomes appor vt C0 e s T the order o wich
aind dowill hecome available may not be known o PO e compatabier s or
oot asand hmay take longer than computations te, : Noocher oo ity it
toeth different operands nuy vary due o 0 oo b Chonactenstios of the

acsn bataflow graphs do not foree unnecessary weg ‘ feneflow processors sehedule

rof s according to the avartabihity of the operara

Juctivm execution mechanismy of g datallow o S trer o o b oty

e e L Lt T e e e T T et et e e
L e e e R et e e e e e e AR g Rt
TR R T T U I o Vo S SIS ST P 7 RSPV IF P I I D8 I IS SN . T {nilats

LR it ChaiC) T T A8 il Ae a6 0¢8 o n ans oAl si nh st aib AL AN A SRR IS PR SN SRS S T i L

nxn Routing Network

PE] [PE] |PE

. 00 })E
a PE
l] R

g
IR v B
LLocal Path 4 ! H—J i

Waitin g - }
Matcehing i

| Sl e /
4 47 £ A [T_,CE—L

/// . -
L
-\ T
N

L]

- ram
[-Structure Instruction oy Memory
' iy o4

Storage L Fetch | T

¥ v
Fompte
N

-7—_4
YV
Form
Token

v

Figure 10: The MIT Tagged-Token Datalflow Machuine

von Neumann processor. We will briefly illustrate this using the MIT Tagged-Token architecture (see
Frgure 10y, Rather than following a Program Counter for the next instruction to be exccuted and then

s fetching operands for that instruction, a dataflow machine provides a low-level synchronization
mechanism in the form of Waiting-Matching section which dispatches only those instructions for which
tf{: data arc alrcady available. This mechanism relies on tagging cach datum with the address of the
b mstruction to which it belongs and the context in which the instruction ts being executed. One can think
T“-.‘ ot the instruction address as replacing the program counter, and the context identifier replacing the frame
XN basc register in traditional von Neumann architecture. It is the machine’s job to match up data with the
b~ <ame tag and then o execute the denoted instruction. In so doing, new data will be produced, with 4 new
o
3
"

°

TP AT

o et IR
- B T T AR
- . LT LR LA T L R S S O A R AN SRR,
NV P AL PP PN x':'n“(.n" sad el ar {.!Ttx'._-fL-f.A‘:A-{-Aha”u'('-u(".\-A(L(LK'.(JL-(‘.J‘_(.XJ

et el e g s - e~ -
- P T R N L . LY LT e W -
e e T e », LIS S

- e
LI
at .Y ata

- FH T LT R upgeTp wye el e wmL e W R W WY uY, ¥ - , W, - W
I T W T e T TR ey WS T RNTENEN hall” Sl Wi~ S L Bl ol Rt Al L B N UT

coonvhicating the successor outriciionts). s, aci sy Deration,
~oi.anat the number of synchroacaiion t o toe T o N e v abrhe s Wi b oo n sy be made
i ohLarger than the size ot the register amray in a von Neumann meashine Note S da e processor
wowenie 1w non-blocking: given that the operands fr an 2v7uoinn afn dvaeaok e cocosponding
cargcton can be executed without further synchromzztion,

soditon te the waiting-matching section which v use b cnncanty dor dvnenn s scheduling ol
voroLrviane the MIT Tagged-Token machine pmv;dc. oot sardivoiazatioa e anisme called

N i Storage. Each word of [-siructiore steidage fias Bt oo dod veth e B whether the

ety full or has pending read oquee ”’“i‘ St s o rlenped ovevation ol g
micducer of a data structure with the conser:ar of llm ot NI e TR e e e aieag the
o oo level 1o manipulate I-structure storage. These arc allnum (Y 200Cdle o empt worss of starage,
Lo to dondhthie contents of the 1R word of chowrn Wl s o o cvadal ., catied word,
S 11,. soltware concemns dictate that a wodd e wiiten ;mo Iy vl Lol e deatieczied. The

2Ta processor treats all l-siructure operalinas o spi Wear . e CAdedpice v ihe ,\('[t’(‘[
an i evecuted, @ packet containing the tag of the desivrarar ipsie 2ion of the -Ce siinstruction is

v eded o the proper address, possibly inoa distant <ot stes e modules e actian memory
weoan may crequire waiting if the duts s not proemt grd thee dhe result may be retumed many
~uon times dater, The key 1s that e instructon pipcbing Gesd o be suspendco datng dis ume,
riather, processing of other instructions may conunuc mnmediawls ailer (nttation o1 e operation.
4 taflg of memory responses with waiting instructions is done via tags 1n the waiting-matching section.

One advantage of tagging each darum is that data from different contexts can be mixed freely in the
invimction execution pipeline. Thus instruction-level paaltalnem of {~ “(\'.x. craphs con effectively
- <the corrmauication latency and nminimize the tossen due o svnet oo s gt W hape ol is
S+ om the prior discussion that even the most highly pipcd —ed v or Noumann processor cannot natch
' ~arility of a dataflow processor in this regard. A more complete discussion of datafllow machinges is
ke weape of this paper. Ap averview ol exccr tne pragrasvo o o MIET Pagped 7 0en Datatiow
Hine cnn be found in {6]. A decper understanding 0 dataitoys soaciunes can beogoiten from |2
ddiimn;ﬂ, albeit slightly dated, details of the machiiiv utd i sstruction sei are given i {31 and (5],

e O

©T nkions

W » presented the loss of performance due to acrcased Taiency and wart yr wvrchronization
T ‘.“(* two fundamental issues in the design o el coldih e T ©oro o a large
© - independent of the technology differenices booe oo vomrw el aachine o Bvdn though we

fane nop presented it as such, these issues are also indopendent of the hxg.»lcwl programm. g model used

“liprocessor. If a multiprocessoric bult o of cogventoramacrop o ssors, then deypradation in
o e die to latency and syachronization will o up ccpardions b wheiior o aica-memony,
Sige passing. reduction or dataflow programming model is empio.ed.

i~ t passible to modify @ von Neumann processor 10 make it more suitahle o+ a building block for a
peratic! machine? In our opinion the answer is a quahitied "vod™ The two st impen:nt characte Astes
P Jdaatlow processor are split-phase memory operations d the gl e put acde computations
< nTegesses, anstryctions, or whaitever the scheriu"n‘g St e wothagp bl b e rhe neaeeccor W

ceoonchromzetion bits in the <trage are essestT et the siesr eoncamer pyne ol
hiem However, the more concurrently active threads of commatatioan o we e the srearer s the

e pacement for hardware-supported synchronization nanees Lanprcct 120 and othes T8 are activels
cooteains hased on these 1de e Ordo ame !ttt T e e e ! Vo N0 N

ITYANN OMCeSSOrs

ol el

2

.

[S S i g g
1] R 1
P e
P
A

RSN

&
SESLS]

The biggest appeal of von Neumann processors 1s that they are widely availuble and familiar. There is a
tendeney o extrapolate these facts into g belief that von Neumann processors are "simple” and efficient.
A lechnivadly sound case can be made that well desipned von Neumann processors are indeed very
cHficient 1 executing sequential codes and require less memory pandwidih than datatlow processors.
However, the efficieney of sequential threads disappears tast il there arc o0 many interruptions or if

¢

whnyg ot the processor due 1o latency or data-dependent hazards increases. Pupacopoulns {314 is
investigating dataflow architectures which will improve the cificieney of 1the MIT Tagged-Token
architecture on sequential codes without sacnficing any of s dataflow advaniiges. We can assute the
reader that none of these changes are tantamount to introducing 4 program counwe: it the Jaiaflow
archiedrare

For lack of space we have not discussed the effect of multi-threaded architeciuies on the compiiing and
fanguage issues, It s important to reahize that compiling o primitive dataflow operators is a muen
simpler task than compiling into cooperating sequential threads. Since the cost of inter-process
communication 1 @ von Neumann sctting s much greater than the cost of comniunication within g
process, there is a preferred process or "grain” size on a4 given architecture. Furthermore, placen. nt of
synchronization instructions in a sequential code requires careful planning because an instrucuon o wait
for a sanchronization event may expenience very different waiting periods in differcnt lecations in the
program. Thus cven for a given grain size, it is difficult to decompose ¥ progcam eramull, . Dataflow
graphs, on the other hand, provide a uniform view of inter- and intra-procedural synchromzation and
communication, and as noted earlicr. only specify a partial order to enforce date depender. 108 umong the
instructions of a program. Though it is very difficult to otfer a uantitative measure, we believe that an Id
Nouveau compiler to generate code for a multi-threaded von Neumann compuier wiil be significantly
more complex than the current compiler [41] which generates fine grain dataflow graphs for the MIT
Tagged-Token dataflow machine. Thus dataflow computers, in addition o pioviding solutions 10 the
fundamental hardware issues raised in this paper, also have comptiler technology to explon their full
potential.

Acknowledgment

The authors wish to thank David Culler for valuable discussions on much of the subiect matter of this
paper, particularly Load/Store architectures and the structure of the Cray machines. Members of the
Computation Structures Group have developed many rools, without which the anaivsis of the Simple code
would have been impossible. In particular, we would like to thank Ken Traub for the 1D Compiler and
David Culler and Dinarte Morais for GITA. This paper has benefited from numerous discussions with
neople both inside and outside MIT. We wish to thank Natalie Tarbet, Ken Traub, Dovid Culler, Vinod
Kathail and Rishiyur Nikhil for suggestions to improve this manuscnpt,

e N L e R T e e e e T L e e I N L e T N e e TR T s
~ '~ - -
SO P AN LSRN

- . e e e N S o S P S e S
F.—vw.xv- LAl W Rl st are n s aAR sl s aAS-EAICJRR' SANCannt et aee dins linte et iunu i St il iyl ARSI S S RO A R

T
P
B
(3]
[]

References

\rvind and R. E. Bryant. Design Considerations for a Purtial Equation Machine. Proceedings of
seieniific Computer Information Exchange Mecting, Lawrence Livermore Laboratory, Livermore, CA,
s’eptember, 1979, pp. 94-102.

3. Arvind and D. E. Culler. "Dataflow Architectures”. Annwal Reviews of Computer Science 1 (1986),
D25.253,

3. Arvind, D. E. Culler, R. A. lannucci, V. Kathail, K. Pingali, and R E Thomas. The Tagged Token
Vatatlow Architecture. Intemal report. (including architectural revisions of October, 1983),

4. Arvind and K. P. Gostelow. "The U-Interpreter”. Computer 15, 2 (February 19829, 42-39.

5. Arvind and R. A. lannucci. Instruction Set Definition for a Tagged-Token Data Flow Machine.
Computation Structures Group Memo 212-3, Laboratory for Computer Science, MIT, Cambridge, Mass.,
Cambridge, MA 02139, December, 1981,

6. Arvind and R. S. Nikhil. Executing & Program on the MIT Tagged-Token Dataflow Architecture.
broc. PARLE, (Parallel Architectures and Languages Zurope;, Eindhoven, The Netherlands, June, 1987,

7. Block, E. The Engineering Design of the STRETCH Computer. Proceedings of the EICC, 1959, pp.
48-59.

8. Buchrer, R. and K. Ekanadham. Dataflow Principles in Multi-processor Systems. ETH, Zurich, and
Rescarch Division, Yorktown Heights, IBM Corporation, July, 1986.

Y. Burks, A, H. H. Goldstine, and J. von Neumann. "Preliminary Discussion of the Logical Design of an
Electronic Instrument, Part 2", Datamation 8, 10 (October 1962), 36-41.

10. Censier, L. M. and P. Feautrier. "A New Solution to the Cohcrence Problems in Multicache
Ssstems”. [EEE Transactions on Computers C-27, 12 (December 1978y, 1112-1118,

11. Clack, C. and Peyton-Jones, S. L. The Four-Stroke Reduction Engine. Proceedings of the 1986
ACM Conference on Lisp and Functional Programming, Association for Computing Machinery, August,
POXGOLpp 220-232,

12, Crewley, WP, C P Hendrickson, und T. E. Rudy. The SIMPLE Code. Intemal Report
© T ETES, Lawrence Livermore Laboratory, Livermore, CA L Februany, 1978,

13, Darhington, J. and M. Reeve. ALICE: A Multi-Proces<or Reduction Machine for the Parallel
Fvaluation of Applicative Languages. Proceedings of the 1981 Conterence on Functional Programming
[anzuages and Computer Architecture, Portsmouth. NHO LIS pp 68 76

14 Dennis, T B Lecture Motes in Computer Science N o7 oope 29 st Version of a Data Flow
Procedure Tanguage. In Programming Sxmposger Py e 7 0l oque ur la Programmation,
B Ronietr, BEd L Spanger-Verlag, 1974 pp 62 37,

15 Denms) B "Data Flow Supercomiputers ¢ oy oo 0 10 November TYRD, I8-SA

I boket)P0 C Chus VB Tomk XMW b Soven v o 08 ST NC TARC Systeme: 1

Procecdimgs of the FJCC 1959 pp S49 nsS
P70 btler oA Gotthich, C F Krusk o kb M - ONE N b Felier &80T Warlson,
s Petrcd e MINID Shuared Moot St Arroach s Proceedings
- Ui s ANDLa Intemational Syerpeaim o0 Boston, Jone, TUSS pp

AR
vl

b]
LA

RN |
~ LA

LI
S

T T P Y T N
R \-\. S Y O A

hPNC AR
S &'. "_- M)

et Tt Jut u ou T vl

23

18. Ellis, J. R.. Bulldog: a Compiler for VLIW Architectures. The MIT Press, 1986.

19. Fisher, J. A, Very Long Instruction Word Architectures and the EL1-512. Proc. of the 10,
International Symposium on Computer Architecture, IEEE Computer Society, June, 1983.

20. Gajski, D. D. & J-K. Peir. "Essential Issucs in Multiprocessor Systems". Computer 18, 6 (June
1685), 9-27.

21. Gurd, J. R, C. C. Kirkham, and 1. Watson. "The Manchester Prototype Dataflow Computer”,
Communications of ACM 28, 1 (January 1985), 34-52.

22. Hennessey, J. L. "VLSI Processor Architecture”. /EEE Transactions on Computers C-33, 12
(December 1984), 1221-1246.

23. Hiraki, K., S. Sekiguchi, and T. Shimada. System Architecture of a Dataflow Supercomputer.
Computer Systems Division, Electrotechnical Laboratory, Japan, 1987.

24. Tannucci, R. A. A Dataflow / von Neuamnn Hybrid Architecture. Ph.D. Th., Dept. of Electrical
Engincering and Computer Science, MIT, Cambridge, Mass., (in preparation) 1987.

25, Jordan, H. F. Performance Measurement on HEP - A Pipelined MIMD Computer. Proceedings of
the 10th Annual International Symposium On Computer Architecture, Stockholm, Sweden, June, 1983,
pp. 207-212.

26. Kuck, D., E. Davidson, D. Lawrie, and A. Sameh. "Paralicl Supercomputing Today ana the Cedar
Approach”. Science Magazine 231 (February 1986), 967-974.

27. Lampson, B. W.and K. A. Pier. A Processor for a High-Performance Personal Computer. Xerox
Palo Alto Research Centcr, January, 1981.

28. Li, Z. and W. Abu-Sufah. A Technique for Reducing Synchronization Overhead in Large Scale
Multiprocessors. Proc. of the 12, International Symposium on Computer Architecture, June, 1985, pp.
284-201.

29. Moon, D. A. Architecture of the Symbolics 3600. Proceedings of the 12th Annual International
Symposium On Computer Architecture, Boston, June, 1985, pp. 76-83.

30. Nikhil, R. S, K. Pingali, and Arvind. 1d Nouveau. Computation Structures Group Memo 265,
L.aboratory for Computer Science, MIT, Cambridge, Mass., Cambridge, MA 02139, July, 1986.

31. Papadopoulos, G. M. Implementation of a General Purpose Dataflow Multiprocessor. Ph.D. Th.,
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, Mass., (in preparation) 1987.

32. Patterson, D. A. "Reduced Instruction Set Computers". Communications of ACM 28. 1 (January
1985), 8-21.

33. Pfister, G. F., W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe,

E. A. Mclton, V. A. Norton, and J. Wciss. The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture. Procecdings of the 1985 Intemnational Confercnce on Parallel Processing,
Institute of Electrical and Electronics Engineers, Piscataway, N. J., 08854, August, 1985, pp. 764-771.

34. Radin, G. The 801 Minicomputer. Proceedings of the Symposium on Architectural Support for
Programming Languages and Operating Systems, ACM, March, 1982,

35. Rau, B, D. Glaeser, and E. Grecnwalt. Architectural Support for the Efficient Generation of Code
for Horizontal Architectures. Proceedings of the Symposium on Architectural Support for Programming
[Languagces and Operating Systems, March, 1982, Same as Computer Architecture News 10,2 and
SIGPLAN Notices 17,4,

T 'F,"""_—'q

B - - “-yTwRT R » " el - .
yopepeyTyyey L Bt S s it by S Al et W TR TN,
e aasea” et AP e, A A
W"'
RN
..
N 24
-
e S]

36. Rettberg, R., C. Wyman, D. Hunt, M. Hoftman, P. Carvey, b. H, .0 W Clark, aod v eCiley
Development of a Voice Funnel Sysiem: Design Report. 4098, Boit bersnck and Newmain Inc., August,

1979.
. 37. Russell, R. M. "The CRAY-1 Computer System”. Communications of ACM 2! 0 (Lapuary 1978),
e 63-72.
I::j}\- 38. Seitz, C. M. "The Cosmic Cube". Communications of ACM 28, ! (January 1985), 22-33.

39. Smith, B. J. A Pipelined, Shared Resource MIMD Computer. Procecdings of the 1978 Irtemational
Conference on Parallel Processing, 1978, pp. 6-8.

40. Thomton, J. E. Parallel Operations in the Contro! Data 5600, Procced:ngs of the “JC7, 1964, pp
33-30.

41. Traub, K. R. A Compiler for the MIT Tagged-Token Dataflow Architecture S.M. Thesis.

Technical Report 370, Laboratory for Computer Science, MIT, Cambrnidge, Mass., Cambridge, MA
02139, AUGUST, 1986.

42. ALTO: A Personal Computer System - Hardware Manual. Xcrox Palo Alto Rescarch Conter, Palo
Alio, California, 94304, 1979.

P b R
AN
Q. L r
',-.n x-“'

3 BN B o

:

P
v x
1

£

N RN

P IRNES

. ll '
R

»

- . T A e N e e e _-._\
L S SRS L
~ St

I I e A
VTR P W AT RE R I LA AP S WS

)

¥y v ex
LA N
P

TS .
S
TR

-

. s “

»

{

\ .I .'l ll ..I .ll \

v ¥y &
AT T

LR -"-'
Sy

T T S
\/'\) \J'\I' \J'_ S

COriiCianl LISTRIBUTION

Inzcrmation Processina Techniques Office
Sotense Advanced Research Projects Agency
200 wWilson Eoulevard

Aviinoton, VA 22209

ice of Naval Research

North Quincy Street

inaton, VA 22217

n: CJr. R. Grafton, Code 432

, Code 2627
:search Labcratory
on, DC 20375

“icral Science Foundation
tr1ce of Computing Activities
803 G. Street, N.W.
ashirzon, DC 20550
“

!
n: rrograr Director

Dr. E.E. Royce, Code 38
tizad, Rescarch Department
Naval wezarons Center

China Lake, CA 93555

’r. G. Hopper, USKR
NAVDAT-005n

cpartment of the Nawvy
wWashincton, DC 20374

e

s

e e N e e e N T T e e % it L tm o e
- . e
Sy .‘c'_ " .".\'-"_J' .-vf.'-f\"_.ﬂ"_\f\f&f\vf\f_\ .

to

fa—

Copies

Copies

Copies

Coples

Cories

Copy

Copy

v

N PUP] RN

A A

