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Abstract

A general purpose multiprocessor should be scalable, i.e., show higher performance when more
hardware resources are added to the machine. Architects of such multiprocessors must address the loss in
processor efficiency due to two fundamental issues: long memory latencics and waits due to
synchronization events. It is argued that a well designed processor can overcome these losses provided
there is sufficient parallelism in the program being executed. The detrimental effect of long latency can
be reduced by instruction pipelining, however, the restriction of a single thread of computation in von
Neumann processors severely limits their ability to have more than a few instructions in the pipeline.
Furthermore, techniques to reduce the memory latency tend to increase the cost of task switching. The
cost of synchronization events in von Neumann machines makes decomposing a program into very smiall
tasks counter-productive. Dataflow machines, on the other hand, treat each instruction as a task, and by
paying a small synchronization cost for each instruction executed, offer the ultimate flexibility i

scheduling instructions to reduce processor idle time.
i Key words and phrases: caches, cache coherence, datallow architectures, hazard resolution, instruction

Spipelining, LOAD/STORE architectures, memory latency, multiprocessors, multi-thread architectures,
semaphores, synchronization, von Neumann architecture.
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T oFundamental Issues in Multiprocessing

1. Imnportance of Processor Architecture
Parlle mchies avno up to several do/-i processors arc commcrcilff available nov:. Most ofI th:

dc ~igns are based onl von Neumann processor,, operating out of' a shared memory. Thie dii fereniwes in the
architectures of- these machines in terms of' processor speed. inerior-\ orciani/aiw-n and con) muric at ~1.,;

sstns re sig~nificantl but they all use relativel v conventional \iont Ncum arm procvs, ors Thcso
machines represent the 1crieral belief' that processor architcture is of little in portanor ;n cinc
parallel machines. WVe will shoA the 1'llaCy Of this assumption On th: bNJ Is of ',\o j ISInC':: oi~lmor%

lenyand xvnchronization. Our areument is based onl the follknwing obseRva-6tls:

IMost von Neumann processor., atec likely to "idle dluring lorig mem ory refereaces, !rid SukIh
references are unavoidable in parallel machines.

2Waits for synchronization events often require task switching, whitch is e ;ncnsivc_ <-
Neumann machines. Therefore. only certain types oif pmrfleh .~r :-ai r xpo:t:
efficiently.

0 We believe the effect of these issues onl performance to be fUbidamntal, ~nA:o a laroe degree.
orthogonal to the effect of circuit tcechnolog .\V We% ill argue that by '2 " 'ling thle procek-scrpI-rl the
jtrimnentai effeCt eol inemor 'v latenic ' iflo perfi rmalic c can he retlucc., pr ided there i Y l) :ral!cIstr in the
proi'ramn. However, techniques for reducino the effect Or' latecy1 tenld to UncrCaw thC s-. ich oJ/Al 011

cost.

h i the rest of this, section, weQ articulate our assumptions vcgardiltg generaml pu PoTe par ICtomputers..
We [hen discuss the often neglected issue of quantifyin the amount of prle~ nveas
Section 2 develops a framewkork for defining the issues of latency and ss nchroiit oI,. Section 3
eamines the met-hods to reduce the effect of memory latency in von Neumann compute:rs and discusses

thcIr limitations. Section 4 similarly examines synchronization methods and theilr cost. 'it Section 5. we-
discuss multi-threaded computers like FIEP and the MIT Tagged Token Datatlowk machiine, and show
how, these machines can tolerate latency and synchroni/jtion Costs roic(1there is sullvnt paralllism

inporams Th atscin~man/es our conclusions.

1.1. Scalable NMutlt iprocessors

We are primarily interested in gern'ral purpose parallel compiaerr, e ,m C,)lPutfrs thlat Canl e'Xploit
S narallelism. when present, in anyv program. Further, we want multiprocessors to be wcal/a/c in such a

manner that adding hardware resources results in higher pcr1'oni ance 7 i cit co ring cagsin
app caionprograms. The focus of the paper is not onl aritrrl large machines, but mn chines which

~anc n i/e ro tn o touand processor,.. We expect the processrs, to be, at least as powerful as the

current microprocessors and possi bI ' as powecrfil as the C11'' sOf the current sape~rciputers,. In
*particular, the context of the discu.ssion1 is1 P() machines with millions of one bit AlA *s, de(,/cns of Which

may fit On one chip. T'he design of such MachinfeS Will LCriainl v involve fundamnrtal issuc' iti addition to
tSe peetdhr.Msparallel machines that are available today or likely to be availablc in the next

few years fall Within the scope of this paper (e.g.-, the BBN Butterfly [361, ALICE 1.11 and now
ILAGSI IP, the Cosmic Cube 135 and lntel',, iPSC, IMsRil 1 311, All iant and CEIDAR 1261. and

J, ~ ;RIPII 1)

If the programnming model ofI a parallel machine reflects, the mnachine cu nign Iration, t,~ nunmber of

0L-A "
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Figure 1: The Effect of Scalin on Sotlt,.vir

processors and interconnection topology, the machine is not ,cdahlc in a pracucal ,cnse ('innrng he
machine configuration should not require changes in applcation prolrams or s\ stc'm solix are: up,3lating
tables in the resource management system to reflect the ncw c ,ni.'urationl should be sulficient, v~cvcr.
lew multiprocessor designs have taken this stance %ith regard to -,caling In fact, it is not uncommon: to
1 ind that source code (and in some cases, algorithms) must be modified in order it run on an alhered
machine configuration. Figure 1 depicts the range of cflccts of scaling on ihe soft arc. Oh,iouLI,\. we
consider rchitectures that support the scenario at the right hand end of the scale to be far more dcsirable
than those at the left. It should be noted that if a parallel machine is not scalahle, then it will probably not

. be fault-tolerant; one failed prxessor would make the whole machine unusable. It is eas\ to dcsign
hardware in which failed components, e.g., processors., Ma' be ma0.ke,1 oat. lio ,eVer. if the application
code must be rewritten, our guess is that most users would wait or the original machine configuration to

L be restored.

1.2. Quantifying Parallelism in Programs
I ,ea!y, a parallel machine should speed up the Cxecution 0I a wrgram in proportion lo the naie:r ol

" processor;s in the machine. Suppose tn) is the time to execute a pto ramn on an n-processor inachine,
*- lhe specd-up as a function of n may be defined as lolloks:'-.

atn)
J .ou- up Is clearly dependent upon the program or pro'_ram,, oe, two the mcasurcment Iur,

., ,,,.ftm ×lios not have "sufficient parallelism, no paralcl :iichinc c an be expected to denl(mnN.trat
,.". , ,r p, ,pdup Thus, it order to evaluate a parallel machine proper1%. "c need to characten,,c e1

4 nhci1 (r Ixltential parallelism of a program. This prc,,it,, a difficult problem because the anioui!t oI
_r im in the source program that is exposed to the arc)tectu r, may depend upon th. qua! ty of th.

o,r or programmer annotations. Furthermore. there is no iW lson to a'x.rrme thai the source procrnan
,, ih ,haoged, lndouhtedly. d:fferen ,t gorilhni, 1-i Iti roen t ,i\e dilte;cnr ,mrl 01
-1 .,. aM the parallelim of an algorithm can be 1-k LUi,. (I:: The probiemi 11 &,r UUh

C ' 1 ihi mnot programmirw linguages do not Ih.1\" ,-I, i :h , 'pressl'\c p"k ci to ',ho" .11 !he

.i.

'St.

,f I , T ..
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Figure 2: Parallelism Profile of SIMPLE on a 20 x 20 Array

possible parallelism of an algorithm in a program. In spite of all these difficulties, we think it is possible
to make some useful estimates of the potential parallelism of an algorithm.

It is possible for us to code algorithms in Id [301, a high-level dataflow language, and compile Id
* programs into dataflow graphs, where the nodes of the graph represent simple operations such as fixed

and floating point arithmetic, logicals, equality tests, and memory loads and stores, and where the edges
represent only the essential data dependencies between the operations. A graph thus generated can be
executed on an interpreter (known as GITA) to produce results and the parallelism profile, pp(t), i.e., the
number of concurrently executable operators as a function of time on an idealiled machine. The ideali7ed
machine has unbounded processors and memories, and instantaneous communication. It is further
assumed that aP operators (instructions) take unit time, and operators are executed as soon as possible.
The parallelism profile of a program gives a good estimate of its "inherent parallelism" because it is
drawn assuming the execution of two operators is sequentialized if and only if there is a data dependency
between them. Figure 2 shows the parallelism profile of the SIMPLE code for a representative set of

Sinput data. SIMPLE 1121, a hydrodynamics and heat flow code kernel, has been extensively studied both
analytically 1l1 and by experimentation.

The solid curve in Figure 2 represents a single outer-loop iteration of SIMPLE on a 20 x 20 mesh, while
a typical simulation run performs 1W0,000 iterations on 100 x 100 mesh. Since there is no significant
parallelism between the outer-loop iterations of SIMPLE, the parallelism profile for N iterations can be

. obtained by repeating the profile in the tigure N times. Approximately 75% of the instructions executed
..volve the usual arithmetic, logical and memory operators the rest are miscellaneus overhead

0%

,,~~~~~~. . ... .... , . -. ,. - .-. ' '. ..,- .- v , .- .?. ., ). ," - "

, , .' , -. ' p., * 2 , *,'_ ,'r''.d ' -
"
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Figure 3: Speed Up and litili/ation fo 20 SIMPLE

,.,,,e of them peculiar to dataflow. One can sly dedace the parallelism profile of an\ set of

,,.?e rr from the raw data that was used to generate the profile in the figure: ho'.ever, classi F'.,
opciator as overhead is not easy in all cases.

The reader may visualize the execution on n proce-,or, by drawing a horizontal line at n on the
a.-,eli m profile and then "pushing" all the instructions which ar, above the line to the nriht and helov.
,e line Tie dashed curve in Figure 2 shows this for SIMPLE on 0OO processors and was generated h\

iL; i'fi,- graph interpreter by executing the program again wilh le constraint that no more thal N
-,,r , were to be performed at any step. Howev,,r. , o d e.iate for t(n) can be m \I. -,,

: !,C-,Cnsively, from the ideal parallelism profile as follows. Fo;r any . f, f <n, we perforim aV pp,(z
."rtiens in time step T. However, if pp(')>n, then we assume it ,ili take the least iteor greater than

-N steps to perform pp(tr) operations. Hence.

S rrn) YPP"tI1

,1 ,,,x is the number of steps in the ideal parale ,, pr, le ()uLr of (n conscr at, e
... the data dependencies in the program ma., pNmritm ;c c\c,:uti(,n of some frn.lrustromF. , ic last time step in v, hivh instructions from Pt,1 kT a;e C\Ck cd

In ur Jataflow graphs the number of instructions J c'oicd Aoeis not :haogne vhen the pro,, ,m i,
S..... .on a lifterent number of processors, ence. r I i , J:i : undcr h eIlk l

nh ClI-n '10 rz(V)C,-jw1t(l )I t and u'i-ao' e. 011" 'n II\VJP

I . rt.' t ilatl,)nftw is thml a. prm :rani has n paralLt' I v :.., 10,' y! J lz tr t}[a ";; !I'
' ?7 l ' d : r i: on(

. ;, -C agu.d that (his prol c n do os Il a ha c c i oy,, h ', I II.I I k& . ] 1(4 ) ,e-0,'., . t1

K•



uiid.(!)n the Other hand, if' we cannot keep 10 processors fully utilized, %Ae cannfot blame the lack of
parallelism in the program. Generally. under-utili/ation of- the machine in thle preserve of massive
paralleliSm 'Stems f'rom aspects of' thle internal architecure o; thle process;ors whiich precl ude exploitation
of'certain types of parallelism. Nbachine, are seldom designed to cx ploit inner-loop0, ouIter-loop, a> wcll as
Iinst ruc tionl-leve l parallelism sirnuhaneousl\.

% It is noteworthy Lhat thle potentialI parallIelIismi va ries tremcndouL\ d uring cxcntion. at hA,. It% i or I iich in
* ~~~our experienice is t\ pica! 0of even L1he most higly parallel program s. W e Ccta ~~lrcp~eca

that run.s for a long time must have su flicient parallelismn to keep) hundred, of piew> r w'i ied: several
app! ications- that wev have studied support ,his belief'. I lowever. tpa)rallel mntw a h ie1 ts !(N h, ft' e:c
purpose and programminable for thle User to be able to c xprce, eVenl if II:~ a . '"iet'r

ctlatin -b~d ~mu!at onprograms represented b% SIVtF\ 1.1

2. Latency and Sx'nchronization

W\e now di CLoSs theI issues or' latenc\ and ,vnchtronizatwon. We. bed(\ n- s ad t - rond a
function of' thle phv.,ical decomposition of a niultiprceN . wi \cretaL w.-n
functionf Of 11h',k programis are logca 1v dotip d.

2.1. Latencv: The First Fundamental Issue

Ary ulprocessor organization canl be tlou ehlt Of aIs anf in)terconP. 111112k i : oc types oi
module, (see Fioure 4,:

*Processing elements (PE)1: Mlodules wAhich perfotrni -atithmectic anmd logical operaid onT) .t
dlaa. Eachi processing elemnit has a in:communication port throin~lh which a!t data
va1lues are rceived Processing elements iaitcract with other processing I elements '0y

,cnl~ 11c,;ags, inlerrupts orsnigadreceivino svacltron i-bo Lvignazls through
,!iamcd memorN% PI7: 'ntract with mncmiory elements by issuini- LOAtD anid SFOrRL
jiii w> c n>nd ihcd As, nccess ar\ with titoiflicitv constraints. Processing clem'tits are
Ji,,atcri/ed h.w the rite at Ms ic:h the\ cani process tnstnictions. As mention-c. s assume
the )nstrnk tons a impe ~'fxd and floating point scalar arli hrnctkL. More complex
1u1-mic:tIOon,-il 1-knh counted ain mul tiple ins tructions for measurng, insttuction rile.

2 \L-11101Nt clemirent s (M) \lodu les ss hi ch Store data1:. Fach mnemoryN element has a sineleC
on:ioi. t nfxrI Ln r\ eet respond to rccLjues ts 1I sLued b' Thle prucessing

cce t h\ re rii .t *''I'1 the :0111111u1nIctIon pr.and are chaira1cteri./'ed -v thleir
;!.''. 2: rai .c :1: T c 'v:nild to :lr'c r~iet-

nniihi~tia 1,~ei o i at three comnnication ports, (iornmunicatioti ecemntsi,
neier itc liki 1eeC;,. m. l~n,'.''~a~ l-~~n.o ata:I ritbr, thle\

'teni los 2 ce : ii OtC Of 111C Coninlun11ia J101 p)orts to onec or
a-if. '.'' icr, en i.111011 porns (Tn nIton elemients ire chairacteri/ced hv the

j!,' per ransa.,sipn. and the constraints impovsed b\ one
o in1 11 .;''AIT I;' 11 lI1,I1[he nIntt am11ount of data that nma\ be Lcwxeed

.2'..~I. ''c li ft,1 11 capse. octII ~cnna IC rejUest ant recci inp [the associated response,, The

I 1 71 ur I, e T, 17\ Irsse Ic ~I TI Io' VetV I h 'TI ihc' N I C C 1 1!I1rlr is\C

P i ' i I, T, dcii t ri ' 1 , I _jir i\:r ~ hn'~ic~r.'n a.~
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Figure 4: Structural Model ot a %iu1Iyjrokcssor

.Aho\ e niodel implies that a PE in a multiprocessorste !~'U'( lzv-er larttfl( v in mc'Pifrv rc/'eren. s i t
n az wz':proc('.%str system because of the transit time in !he communication ncl~kork betweecn PL :s and t11c
iocnorlcv, The actual interconnection of module-s may differ .4reatlv from machine to machine. I or

* \eplc.in the BBN Butterfly machine all memory elements ate at an equal distance from all protcssors.
khile in IBMI's RP3, each processor is closely coupled "itli a miemoryN element. However, Ac assumec

itet the average latency in a well designed n-PE machinc should hc O(logn). In a von Neumiann
r r,,css or. memory latency deter-mines tie time to execute memnory reterence instructions. Usuallv, the4 ee r~ccMemory latency also determiries the maximunm inslninion processing speed. When latency
-an! ~t tbe hiddenci via overlapped operations, a tangible pcirfoninance [xenalty is incurred. WVe call the cost

.'e ;'dkith latency as the total inducL'dprocessor idle fidn' attributable to the latency.

* 2.2. S% nchroniization: The Second Fundamental Issue

'A' " i1 call the basic units of computation into which ipro-:-anc- ire deccomposed for pc rallef execuimon
* ~ iaru~i1tasks or simply tasks.. A general model ()I 1Feral ci programmins! must assume thlat task

* .rc ~rea-d dynamically during a computation arid die after having produced and consune da.
s~..likms in parallel programming which require task S. nchroriidtjoni include the tfolowing basic

1. P-odu(cr-Coflsimcr: A task produtces a (Llt 'f'eti r it i, read b anothecr teik, If
PTrOd1uCer and consume tass arc executed in pare! lcl, nclirniainsneddtavdte
rcal-before-write race.

2, A -rk and Joinsv: T'he join operation forces a C\cmnst to -Tl et in1dicat1ing that two tasks
which had been started earlier by some forkim' oper-ation lie' c in fact completed.

1 iiril Vlclus ion: Non deterministic events " lich ni i : N, processe-d one at at time. e, v
,nali,'ation in the use of' a resource.

i~ iinimal support for synchroni/.ation Can IV pro0\ ded 'L III i In nstruct ion,. such as io!oniic
r.i I \N1) SF-T that operate on variables, shared by syn hrmiiiii !asks 1 lowever. to clarify the truc cost

:1,j lrCjj, necessary. ati)nik suct~r .Jh vs 1\I fl r : ',,,' ha. l, !1 AhO, .' hue

n ~ '.:~ (t~c~tifls SeCC Sctiin 41..
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Figure 5: Ope rational Model o I a MvIulIti processor

ot' such instructions, we will use thle OperttonzaI Mfodl presented in Figure 3 . A.k: inl the operational
model have resources, such as registers and tmemory, associated \A.ith them and constitwt theo smallest unit
of indepeOndently schedulable work onl the machine. A task is in one of the three states; rt adv-to-executc.

cvctin osusperided. Tasks ready for execution may N- quudgclo loballN. When s-lected, a1
task occupies a processor until either it completes or is suspended waiting for a ,vnchroni/ation signal. A

Sask changes from suspendlet to ready-to-execute when another task cau ses the relevant s~ nchronization
event. Generally, a sus pended task must he set aside to avoid deadlocks"- The Cost as soeicted with such
j s\Ttehronization i,, f the fixd time to execute the svnihroniz-ation in, truetion plus the, tiie taken to S.itch
t,~ (1PHhcr task. 'Uhe cost of task switching can be high because it usually involves saving the processor
:,cc, that i ,. the fontes t associated withi tite task.

t~~drthe ca-se of a single proce, sor systemi which ii. ist execute n coopetitlng tasks

I%



The ,re are several subtle issues4 in accounting for sN neti );,/atic- . %it'.r event toi cii,: w~r i{.ca
t As ncd,: a niame, such as that of a register or a m.-rlj,r c~n and! ('s nchoni,: ilion c("I'1.11.1
also neiludc the instruction- that generate, match aid reuse dc-J1'crs sAhich namie s~ nchwm/,nio'~n
clvents It mnay not he easy to identify the instructions c-o-ute~ ! or this purpose. NCctes such
rsi1ri_.Itions represent overhoad because they wold not no prose iti I: t:,,e program vkcre wntlen t10 ect

On a si.'gle sequential processor. The hardware design UsUafik dt t he number of names, available lor
%vncaironi.ation as well as the cost of their use.

The otheri subtle issue has to do with the accouniting !or tnr .' a.v \n, hrimnizaion. Asv'sJlsen
jection 3, most high performance computers overlap trio execution i:rucn-Lons h(2lon,_ing to on,: ,ask,

The techniques used for synchronization of ins tructions in such a stuLanut c . instructio, lisr: .ind
_i, Victsioni are often quite different from techniques for inter-task svcrnao.It is usuitl\ saltt wnd

Jcaper not to put aside the instruction waiting for at sviiwhroii,.ation evNent. hut rather to idle (or,
;~t9 to xecute No oil instructions while waiting). 'I his usuall\ done under tioe assun!)ption

.tIa u'e dle time will be on the order of a few instruction c~ckN,. \% c delrnc tlie synchronization cost il

.ec~ ~Ionsto be the indue ed processor idle time attnhbutale t W~ %aIT_ titr tThe s~nrchroni.ation ct..em.

* 3. Processor Architectures to Tolerate Latency
I:n this section, we describe those changes in I tn Nuriu, rhtcue hthv iccl eue h

I cCt of' memnory latency on performance. Increasing the processor state and instruction pipelIning1 are
(liet~vomosteffective techniques for reducing the latencycot sngCa-I(vhptebstifiid

- .Awed1-sgnm to idte), we will illustrate that it is difficuit to keep miore than 4 or 5 instructions in the
c.~ ~ -.,e:t umn prcso.I ilb hw htecrN chanlge in theC processor architecture
lid hs permitted overlapped execution of' instructions has necessitated introduction of' a cheap

,, ntchronlzation mechanism. Often these synchronization mechanisms are hidden from the user and not
',,,% tr itr-task synchronization. This discussion will fur-ther i'llustrate that reducing latency frequently

* ne:rcases synchronization costs.

*Bkfore: decricbing these evolutionary changes to hide latenicy, wAe should point out that the miemors
* systcri i' I multiprocessor setting creates niore problemns than jist Increased latencv. Let us assume that

:iall memory modules in a multiprocessor form one global addr ess space and that any processor can read
nvxolin the global address space This immediately brirties ul, the I ollowing proiblemns:

I he time to fetch an operand may not be constant because somec memories may be "closer"
than others in the physical organization of the machine

*No useful bound on the worst case time to fetch at, nrupe d iiia\ be possbea ahn

design time because of the scalahility assumption This i,. at odds 'Aith RISC designs which
I treat memory access time as bounded and fixed.

pi-), essor were to issue several (pipelined) i:cnot. rcqkLtkc: to different remote memory
ndcthe responses could arrive out of order.

A .1; ot theseL issues are discussed and illustrated In the tf'llo~xing sctions. A general solution lor
ace imemory responses out of order requires a ,Nnchroni/ai ion mechanism to match responses Nkith

AIe det lnation registers (names in the task's context and hic intietcions \.kaiting on that value. T'he
Tmcri eneor HEP 125! is one of- the very few archoP':c1turvs 'A th ha.s provided such mechamnismis in

* ft '.: oirne ann framework. However, the architecture oi i I, HT' is, tqilficient] v different from von
currti arcitectures as to warrant a separate discussion seec Scctlotl



3.1. Increasing the Processor State

F -iwr t) dcpici h le miodern LJ3N IC'A ff 111 \("I "I '~,I I 1pnr[' ' wc "t 110t In the eailiest
coi pte s.-uias F DSA('. thil~Se O so Ii e Is ' ace ilitor qu .ticnt register,

arnd a program c-ounter. \lcrrorics %kcre rolativek slowcnp.ALm aC Si n is h iet
lct ich ani In:;truction and its opcrands corln plecc\ doniinued ilhe insirt!i Cot 1 2 ~Agu h

- Arithmetic I. 'nit %kas of little usc [iie'tie nlernoi\ tesi me ccuid tc rc x, cc,

The appc.nrance of miul tiplc a ccumuitlators' reduced the number of operacd I I'iY'a store.,, and
ndcx rc :itcr%; I rim .tticai rc(:uccd the nun; her of' inlstrcitors cWIU1, i'cA In n tilc

ndorsk tno~ n eceSi .e oh inciory' tratlic was draslc2\ C \ .p.cesKcudrei

1,1 cr Iha l!r I Io \\ c-, th eli ; 1 n- d processo 1 statl ! Ce c I ~ T. L! hr1j
rc ItcrI- I ,c t*, I I 'I U CrtI r I i tio H oM rOW ih . 10 J11 iivCrya rc.tac 1.jer 'ic Ai.
lllproked cenF ith :I,,I. "')%Q In circuit "pc.:d

3.2. Instruction Prefetching

Thie timei take-n V > int on ectchl '1md pcrhiaps part of' in,,tri-.01 Me) dvi Crrc i'

if pre fe'.ba i\ &doac , d 11,c Cxtecutio)n phase of' the pr-evious i,,tr u '* i-iniIdt r
kept ill sepaate i noles, is k ossible to overlap instruction p1o'!'c':n all,: opcr i I. f1'i a!0
(The IBM STRET"1 1 anld Univac: LARC 167 represent two of the c, ie't alt',n-r at im i.! ii itn

o this idea.) Prefietchline can reduce the cycle time of the machine by ,Pty to h,7 peric e ~cI-Lkki11g
upo te montoftime taken by thL first two steps of' tile instrcr ''vi t ) the complete

cycle. I [owever. the eff"ctive throughput of thle machinecanrri'".ppoonl 1 bcus
overlapped execution is not possible with all instructions.

Instruction prefetching wAorks well when the execution of instruction ni does rtot 7,tdve af\ ff on
either the c-hoice of instructions to) fetch (as is the ease in a RRANCID or the coritent olf the1 fetjhed
instruction (self-modifxing code) For instructions n+I. ni+2, ..., rk Mhe latter case is usally hand led by

siinlv u~tairr it.Howver.effctie o,,erlapped execution in tle presence ki' RkANC If vircio a
reinemd a problem. Techniques such as prefetching both HBRANCH targets hmve shown little
pcrlorntanee/cost benefits. Lately, thle concept of dvlayved BRANCHI intlrictionis from mircroprogramrming
has been incorporated, with success, in t.OAD/.STORF architectums (see Section 3.4). Thei ide-a is to delay
the ef'fct of a BRANCH by one instruction. Thus, the instruction at el± I following it BRANCH instruction at
n sal!sex 2td regardless of' \vhich wav the BRANC1H at n Loes. 011e can al\\ a\% s follow a BRANCH
instruction witli a N-Oinstruction to get thle old effect. Hioweve,-r, experientce hiis shc-. n that seventy
perent of the time at useful instruction ch e put in that position.

* 3.3. Instruiction Buffers, Operand Caches and Pipelined Execution

The timec ia fetch instructions can be further reduced by prOV'(fing a Fast interr.E'In machines
suhas thc C'DC 60WX j-10) and the- Craly-I 137], the instruction buiffer is auni~nalrc.Jli loaded with n

instruction', in thie neighborhood of' the referenced instruction (relying on spati:tl 1o al ity in code
references), w hene,.%(r the re fernced ins tivction is% found to be- ri sI-iing. To take ad%. antace of' instruction

*buffers, it is also ne.cessary to %;peed uip the operand fetch and( execute phases. 'Ihr Iii us uall v done by
providing pncrarl.d caches or huffe rx, and overl appmgo the operand fetch and cxecution phases5 Of
course, balancing the pipeline under these conditions miay require further pipeliniig of the ALU. If
succe'SsfLI these techniques cart redluce the machine cycle timeL to one-fourthl or one-lfllh tho cycle time of

air ui itp d pe ain i. I towever, oveil appcd execution of four to five ins tnictions in thle von Neum ann

A ck -.ki[0 in Section 1At, .i~sin ai rnuw iproceqs.. r inrg create spec-i l-o~shcm

% %'
0%
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franiework presents some serious conceptual difficulties, as discusscd netI.

Designing a well-balanced pipeline requires that the time taken b, various pipeline stages be more or
less equal, and that the "things", i e., instructions, entenng the pipe be independent of each other.
Obviously, instructions of a program cannot be totally indcecnd,nt except in some special trivial cases.
Instructions in a pipe are usually related in one of txo was. Instruction n produces data needed by
instruction n+k, or only the complete execution of instruction n determines the next instruction to be
executed (the aforementioned BRANCH problem).

Limitations on hardware resources can also cause instructions to interfere with one another. Consider
!he case when both instructions n and n+1 require an adder, but therc is only one of these in the machine.
Obviously, one of the instructions must be deferred until the other is complete. A pipelined machine must
b e temporarily able to prevent a new instruction from entering the pipeline when there possibility of
interference with the instructions already in the pipe. Detecting and quickly resolving these hazard( is
xcr, difficult with ordinary instruction sets, e g, IBM .70. VAX II or Motorola 6X(M), due to their
complexity.

N maior complication in pipelining complex instrucion, is the variahie anmount of time taken in each
- , stage of instruction processing (refer to Figure 7). Operand kltch in the VAX is one such example:

determining the addressing mode for each operand requires a Lair amount of decoding, and actual fctchine.
:an involve 0 to 2 memory references per operand. ('onsilering all pos,,Nible addressing mode

,Cnmbinations, an instruction may involve 0 to 6 rnemor\ referenices in addition to the instruction tich
itsclf A pipeline design that can effectively tolerate such vanaiois i, close to impossible.

3.4. Load/Store Architectures
Seymour Cray, in the sixties, pioneered instruction sets ( I)(" M t. ('ra I i hich scparate instruct iN

into two disjoint classes. In one class arc instruction, hi' me" i.rt,i '; 'eI bet l , s e C , e knl\
h' eh speed registers. In the other class are instructions hich opcraic on dat i the I rgicsters Init lclioll

- -

• % c%
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o the ,,cold Cass cannot access the memor, This ngid di.,tanlion . \:i ,,'.n r .. 'eu!ine

For each irstruction. it is trivial to see it a memorN rclcrcet ! N, P,' ' , k" r , e,-v r, the
.memor, s~stem and the All may be vie. e is paiallel, norrtcr-, c.r M, In'trutrn

dispatches exactly one unit of work to either one pipe or the oit I'r. iH ;ic\ n ,
Such architectures have come to be known as tIAD ( S)R. ar-Chl:C'1Lurc,:, aki 11cl144 M0c h', uilt

-- Reduced Instruction Set Computer (RISC) enthusiasts (the 11 N I1 NOI 4, Po-,tke', v's R 1, I , and
Stanford MIPS 1221 are prime examples). t.O,\I)STORE ,architectUres u;e th" ttmc hs,'..,n instruction
decoding and instruction dispatching for hazard detection and rtsoluiion (ce [igunR ). The dc, ign of the

- instruction pipeline is based on the principle that if an tntructior 1ctv Past P 'NI c i,, p p1 - .saC. it
, should be ale to run to completion without incurring any previousl unault. I,,ted ard I

-i.)AD/STORE architectures are much better at tolerating latcncie-. ini t,., aIl cce,",': t1:1 other von
Neumann architectures. In order to explain this point, c will tir,,t 11,,Li ss a simp' lied nidel which
detects and avoids hazards in a LOAD/SrrORE architecture sinmilar toi the Crav- Isume iere is a bit
associated with every reister to indicate that the contents f the rcgster arc ndi-rg.-ng ichiange. The bit
corresponding to register R is set the moment we dispatch an instn!:t on tatx, *ants to update
R. Following this, instructions are allowed to enter the pipelin, only it O:ev do",,' need to reference or
modify register R or other registers reserved in a similar way Whencvc: a valu: is stored in R. the

* reservation on R is removed, and if an instruction is waiting on R, it is altiw -d to proc-cd. This simple
scheme works only if we assume that registers \Ahose values are needed by an imnwtion are read before
the next instruction is dispatched, and that the ALU or the multiple functional uwit, within the ALU are
pipelined to accept inputs as fast as the decode stage can suppl\ tleO. '[he dispatching ot an irstruction

can also x- held up because it may require a bus for storing results in a clock ccle vhen the bus is
needed hy another instruction in the pipeline. Whenever BRANC(' mstructions are: eci ountered. the

* pipeline is effectively held up until the branch taret has bcen decided.

Notice what w ill happen when an instruction to load the contents of some memory locatio;n M into some
register R is executed. Suppose that it takes k cycles to fetch sonlething from the mcnorv. It % ill he

"In, ecd, in the Crav-.1, functional tnits can accept an input every clock cycle and regislers are alkax s read ri one clock cycle
fter an mi-.ru'tion is di,;patched from the !)cceder.

.'1 '''' .2 ""+ -- "' ."""' -" " ' "' . € ,' ."' -"' , ."" .'"" . 0"" .
' ' '  

+ - '"'' - "'"" "-> 2 ." -+- - _' ' -

0,"- - , " " % " "% " ", " " " - % '" % ' % ' " % " " " ,' " " "" . " -
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*i:to cK cute several instrucltion during thc,,c K i, 'maco of thcri- rlfer to rc 'iqcr
1' . Ir.Li ausituation is hardly' diffecret from the ('ic if)i < p, lo N, loaded f-am sonic IMInut iiat

- ii;l. kc the Ficating Point multiplier. takes sevcrW c ',raluce thuli rcsuIl T hcsc gaps in the
;pciic .o .:! he I urher reducod it' the compiler reorder,, -i ftrc ' h that instruict ions COnn1iTO

! :tV. aic- put a,, far as possible from instruchions pro(1ula i~i,!iW (l1_12.I Thoi, %ke notice thai machincs
ho'idtr high pipclining of' instructions can hide dm2rv'ur i itt ncie\ provided thirc i, Ioci

* :Y.~flamorli!- instructions'.
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instruction', thaIn imachines wkith nliore C0ompl)cx r'T'tti LI T ' IIr ;.r. - ~ re a,,

* s\nchroiizitlon cost llovw'r. this N L.\:1T''acl T r~~'v.7 'i.o . 'wdrA

- ~~~possible hr simrier controln'?'rlin.

4I. Srichron ization. Methodls for \upoesn

- 4.1. Globalu Sched ii rig on Synchciorous imichi. ow"

1-I07 a Iittlly sx nclir'',noiis rnlultlIr'TKN tT'0C '1C !1 ,h)'N'. I .W K 1' 1011 J Ili *.I11': K ' I A . [

opela:irrols 'or e_-.cr\ cycle, on ever\, proces sor. All atlalIll\ _. 11 hcn" d ma etA Te ! I ~ Tf ~
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111e in:R('iTlr- Wle TT2 LIciioIAl unit 'r prt-ccssinlg lemenr ''i 1 St111 'V I h kcv ni Iia\ini/ing

ile rh-c (ii reces,:, aiM TK'sI4I\ini jpotemi~Ll run -Illic' conflicts iii tile use of rc~KoirI-IN it compfle tie

rI'IecrL:iK(Nv and control transfers are ncrtc asin kISCahictre hut W4.1K. niultiplC'

'Ii' 41011 irc:'r oi'IrlpI t:' av hc'ing schiedulci inlstead~ of k'rilly olIC (;,, ';I tdie pvsSiity of
K'I 11I1ead r;111:1iig 1-111%al insructions inI parallel. such arcLhitectures, an' liighk appealing when one

rcatl/es tI lc fil tIt nrach inc's, avarlahhic now still essecntially decode l( nd H-patc'h iilstflk t ons one at a
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~'C Lilai this techinique I" !tlctinr hi. LCto'

a ~ onl a small number A to! :: tp.. No\ ;ieA1C1i heSOII this iLeVCl.
),,Cc r. tx. ornes intramcta It is un clear hov~*v~ t.h e iarn ic irage allocationi or

rctu r !ondewrninistuc and real-time constraints "il ii!,I\ no u , i eu

-i. 2 . Pintrupts and C~~I~e ontext Switchfmit.

.. \on NeCutlialn ma' hilie' are iabic (i i. i_: ierap-Nt>m~~til

- ' -'OF\ h'ied On such ma11,1h11Ne peCTili tt,. _.:rr 17M,-7_111711[ a,, Iteat> lol-

Ce.flotec, iir-upis a'e ra iter cki S 'r.:; ! .Q~rstate ik d

,I Pifie state-saJ\ irte nla\ fxe lorce! lh\ :11h 'at, o> -ii'h C aioi h
0cUr_, Or It nmay )cc:ur expitetik. !. C. unldc! tu [ .. ;e :neuuncr. S !a ,it Ll;' Ner\

-t.cinor a suite of lc,,, coirple x Locs". l de; !0( o .:c state lw no napnsfh
- '' a n to niote is that each interrupt "Wlo P&KII d inwuiv ni ti oI tiattic acros;s the

I iror\ interlace.

'L..OuIS discussion, "c concluded that L,1"ioe prOVQc'1 'KtC , 10 ' caus it provided a man
:i"oeor latenc\ cost. In tr\ ing to solvc pwta n , to 1,'\h I svnc!r;,'ai cav

in aroos an interaction \A hich. we believe, is mor( ill i:. coiricihntl. Speci!Ica,1l\ IT! %\CE

*~~ ~ -n'' .mann processors, the 'ohs jous" synchro nization n1K' Cl-ia~n~liw'i n' ill: ot-iN \.sork ss cl
ii xw ol infriiurit s\rnehroi iaton eCilts1 or s .i 1t1C flw:( 'o.1 statc A11iih must

(r \fljj Sidaiother As a. reduc,.ine- the o,,t ol fLi*,\onL makigntrut
!CIITr111N entail increasing the Cost of memory01 LIMIcs.

is s4uch Xs the Xerox Al\ to 42, the Xerox lTr~it, J2 nillCt Symbtol ics' 3bW 11 1
:_d te~hnique \klaLh masi\ be called mi, (,o;r, Y-v . ' Wtthing to al Io\v shifntz o0

'oxebs he /O dvie aapters. This is ac:comtpi 1' hV5 dtpliieating programimer-s nbl

~ier Aords, the proceessr ,tate. Thus in1n 011 I'llrctx I h prcce'zsor Car, tbe swilched,
k.it hout causinrg an.% memory re terc.es, t a 1 eso sta[eO. TVhis dram iatical N

-t 0t proCcSing ceriain t\ pes of'C ents, the ase r~'ll Iinterrupts. As Far as \5ke kioskk
I 1tedL the Idea of keepirnimultiple coritt :~ a a 'htipr ees',or setting twAith the possible

M 1to be d iscussCd in Section 4)L~ui iL . CJC :rdueSVnchron'/' u iti o,,i over

,h :call hold onI\r a 111ogle c\nkext. It W1a1 'Y 'V- Ci '7 Witi about adopting0 ihi> scheme to
01 0!. ~I a tiortlot-il mecniory rceo'':i ,,, I

othis approach irm, 'iu Ii .. ra'osfi fv ha.c It a millI
_in stq n~rie tr.;rh .iate te I.11tx jod. 1.i'A !Isel task

necesans tke cr t he Ill m. ,..ts tiihoi on ca ll tonl% have
l.ItidepeIndentl coI1text>' V, 11t1Lou Colll' C; tIII Oin 'ot \l L17 unrssa

wciis and tIhe I It racompu)Itc'r

.. es.the niost conimo.lv 'LI;potlI . i . . . .i c1d,1 ' 'W 01

n IalC of a memiors, leat iiin A proce. h\ 1:":.c'i.~ ~ .~rtt o i 0
.the other processor kec~sredurt tO set>. ' 'X :, Ltoct.teoe c1s ti

* a ~~~:. ~~. 'mi uimh ,mnchro'i i/alioi %ki S h .'i.i 2et(O. ' ik
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all I is ps ofl yc hronh/atloll paradigmis mntino' ed c Arlier. Howevrcr. the s~ nchironi iation cost of using
such i Instruction can hesk verv high Fssernial I the processor that eseccutcs it g(os into a busv-wait

:1 o il does the processor g!et hiockcd. it eeeac xi~ T veflioiN references at cXCI)- iiistrflCtiofl
1C~i until tire T~s ANt) St r insirac:tion is executed successfulk. I rflc;WI,ieiatOn ,)I i F.',i AND-Shi that

l\'rrit nion-bus\ %k aiti ng ip1xcontext \I, itchin1g inl the proc,,or xd ihil 3n' arc n: N. earik i c hep
* ithc:r

It is possihlce to improve uponi the FENI-AND- SFF instruction in a1 11n u.1 iPrO CSs Or J n s ,ugg, xtld b\
- te \t lr~-conputcr group 1-71. Their technique can be, ilL;Ntrated h\ the armc(1 ' %) <iP

1instruLction (all C oILuti in of' the RFPLA(T At)ti instruction). The institiction- 1re0lTrrs 11 -. Jre"''; e1d
\AILR'. And "sOrk, Ni asol los. supploixe 1I,,0 processor,., I i ad j iCniKe5 , s,cnte ii M ,!;

* itsi~acti il~ trfl arncnt.0 (As I ndAJI respcti vely. After onentic-ic
ill bcome A v y

1  
Processors i and j %Ai I I rece ive,. respctIve ,r e ite I It c r (n A\ i -1.(i

(A) a' results. lndctermina~cs- is a dircct consequence of the race to updXate 11enlois' ''c'!

Anmc:~c ust ch(,osc beitss ccu a wide variety Of inilenIenCFtati0e !k- P 1! 0 - One
po)ssibihtv iN th:,t the processor ni J il icnrpret the instructUin ssi .1 a cri( P-- i'k : -~n,

- \Vhi -ePT').be. such it "olut ionl does nect i nd much favor ee it' ,i __L-, 6c '.ahIe 11CnIeors
- ~ ~ ~~~ Ir!Ic. c\scond! sc:heme implements tilt II ANtD Kt)P> in the nwmnr-t ia i :. * a -1 li~ve
* hsnh% the CEDAR project I5 -j !'his t ~picall) results in a Nigniiic. iat redu Th;oj .' Aorks trafficl

-~~ bXcause a 'it111cs ol nliernur- ,tr,isactiouis from tI tc Tlcmnor,,'>, c: or.1tl ns- - TC s
4 ~~~suggested - sthe V ~IA - I.lraconi jc r Lroup iiiplcenLs the instr, - i in i,- ic u t ei.'. i

This trnp~cnmntation calls f'or a coininoi,i packet communication iie"twlr(,. Cs I -)ci s r pr;o),ssOr\s
* ~ 1 to1 ar1i polt memiorx - If two packcN collide, sa\ FF1 (11 AND) AIi) AA and I--!t iIf .ND) ,0)( A,X-, the
*NXX tch e xtnacts the Xvalues v, and s -ornits a tec" packet [IEli H ANt) A lit)iA,X '-v , ,r trcis i: wi the

ntemiorX . and Ntores, the value of v - teporarily. When the mC11ors rduni the olk 'alne ol' location A.
the NXS itch returns tss o values A and (A \ XV he min m i~prosemniti :N thati sorrte i- ncb rnization
Ni tuatlions whlich would Ita~e taken () i nie cain he done in 0()g-,'r tim-e. It should hK- noted-. frowes-e.r,
thait one esr c ncilNrce nic ria\ i soly s manyv asN 1o92n additions,. and implies Nuistntial hardware

*complhcxit% furtheri. the iss,.ue of processor idle time due to !ateccv lIxan ot been adiressed at all. In the
.kor\st ease, the comiplexity of hardssare nras actually increase tiic I :ienc:\ ol going .brouo-i The sI. itch and

thusN :orniple tely overshadowk the, a IX-ant ij;,e of 'cornh nrg o\e r otlw r sin pit.rin leInrntat irns-

Thic simujlation, rc !ills re"porled hv >NYI 17 j show quasi-linear speedup onl the L" [r Acomputer (a shared
-mernors\ machine \A ithi ordinry~r von \cumann processors\, employing FETCH AND Alt) ss'nchro~nizationl

for a lar-c \ ariets of Ncicitilic applications \\ c are not sure how to 1,1:Tpret these rasulo; without
- ~kriossi ng rnian\ more Oetails o! theirsimiulaion model. - T Ikpossible inrterprer ''ons arc [the following.

I . Parallel branches of a computation hardlyv share any, data. thus,, the costlyX mn nual '- ai fusior
ssnchroni,'ation is rarels needed in rea! aPplications.

2 The synchrotliiation cost ot using shared data can be aceptabl\% brouight downAr~ b)N nt~iCious
tuse of cachabhloc/ion cachathle aninotations iii the soturce rf H:

6The seconld Point ii: a 1)cCM tict- arer a! cr reading the next sectionH.

4.4. Cac-he Coherence Mechanisnis

Whil hih-SticceSSI'lJ for reducing memory lafenc y in uniproce.ssors caches in a multiprocessor
* setting itroduce a serious sy'nchroni/ation problem called cache ioherence. (ensier and [-cautner

110 (eiC ric the problem as follows: "A 'nernorY scheme is coherent if the value rrurned on a LOAD
nstruction ,. always the vailiu. given by the latest STORE instruction wvith the same addre sv It is easy to

* see that this may be difficult to achieve in multi process ing.

%
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c~..r~~ca !txo-proc:essor system tighti ;A I a\rch
' .5',, S , J ,1, o'VI .3che to which It hII Ph.,> SI u~ it
one on each processor, and we know that the tasks aleC Lct '11 ' l .- niuniat-_hen:m mr
siuftid moemory cells. In thle absence of caches, this :,Atetu., c~~ *n~':Idt, ~r.H ~' c,; t 1 pn

LUthe stlared address is present in both caches. the 1hlI k. L"-' .11 read _,11I 'k ieft ii

j,: erseally changes caused by the other proces-,, I '~eh;uh&I~poe'r~

'Uf1LaIlCes that subsequent LOAL~s %A ill get the most rte1, ii" F lWS cdrt IFICU' tI 1 1
*'ccdin terrv~mscof decrecased memior bandwidth.

\1 Xola'wrls to the cache coheence problcm center c:'0 r ' r(,,. os',Ifllon ~dhr lhoril
soL 1,! tim Oe p-ossi bi lity of cache incoherence. Gcrc rhll I N.s: ,*n , 1 ~,i id icaut Ic IjhICoI theC Cac1hed

is~t[, private or shared, read-only or read-write, etc., is ai\iu i ~c cm n i'. o~e\ er, thi1s
:,l!e sonihotk has to be updated after cacni memory ,.ece ric'ijj -eitotit d"i's.'d',' arc gcerruih

rrhLexcept possibly in the domain of bus-orienited ."ftrroe o. lh so-ciled tnflpfl ha
s:onuses the broadcasting capability of buses and nu c-;Ifr r trn all caches viten a processor

airpts a STORE to x. In such a system. at most one ' o~ ) ;'rolncngonatatminheso

- .'A 'I nd, therefore, system performance is going to [be a str,[j, tuoction of the sneopy bus' atbmlit\ to
!anfle the coherence-maintaining traffic.

I possible to improve upon the above solution it sonle ., Ihoni, state int'orrnation ts kept Ai Ohitl
hentry. Suppose entries are marked "shared" or "not)srie A processor can freel\ read sha,,red

btne ut an attempt to STORE into a shared entry imdelvcocsthaIt a~ddresS ito ippear oni thle
hi' htentry' is then deleted from all the oiher COi( ' nrli eld "non-h-ared' in the

-or that had attempted the STOqfE. Similar action ,akes pfajc ,11cri the word to be N riticii is
o'm the cache. Of course, the main memory must be Updatd before purging the private copN

_n\ ,:,:c. When the word to be read is missing from the 0 a)he 11ri snoopy bus May basec to first
c'n1'' p% privately held by some other cache it~t ~;m ic iete requesting cache. ]'he status ol

an; nt will be marked as shared in both caches. I-he adtix doe ol- keeping shared/non -shared
%,kith every cache entry is that the snoop' i'u.., comes into ac~tion only on cache misses aind

aiuhrcd locations, as opposed to all LOADS and SP1)RF~s Even if' these solutions work
-i'., bus-oriented multiprocessors are not of muchiitee to us because o' their obvlis

IIir a., we can tell, there are no known solutions to ca -he coherenice f-or non-bussed machines. It
ckni reasonable that one needs to make cache.- ;iartall% ie.ilel t: the programnier by allowingy

F! Ark data (actually addresses) as shared or not sharco. !; . h~llton. instructions to flush an entry or
(Ar entries from a cache have to be provided. ('ac~nicnn onl such machines is possible

* tin:cept of shared data is well integrated in thc high- level iJLLanuag or the programming miodel.
h~e~o alkr) been proposed explicitly to interloA I loaikon fo)r writing or to by paste ah and

i iwfccssiT\'v) on a STORE, in either case, the perfomriatice goes down rapidly as thle machine is
- ' I nieally, inl solving the latency problem \]a mnultig I cachecs, we have introduced the

- -- rii/ation problem of keeping caches coherent.

0. -,nrc tie. tb at, while not obvious, a direIct trade o~ t ol en ex\hetweeni dtCLream 're tb
- or ad increasing the cachable or non-shared daYl~

r9J
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5. 'Multi-Threaded Architectures

In order to, eduICe rnC1riio\ lAteic', Co'\[ It I' eh~l C cC : 1 tk !~hl', ; ' i MLile

ovcrl ippcd imtniorN requests. ii:proce ssor fiaio \ic'.k thr i, rc: .. ~ tnra

h Iav e t o he IIif lII p IIelne. We noc tC hat e m o f N\ ot 0) IoIC U r!i V N aw i _- , - a \

-little caipatbility for ripelining. \kith thc c\cepti0r' 0:Jfla\N rleteren.l eIrrV !1*i a

nci lIN hi'litadtiOn are lundamenICTtal:
err \'uniannprocessor,, It List ohSCrve' inrLFcI ci1T 1-'

-i:1 mcmory rclcrencs can) CLk~ Ot Of Ordcr 11 h, ")c:r.'' J:ra
hCji tiro.rso~sin ust bc pr"i rl ded

One vk i% to overconi' the! lirt lccicv. is to idlav Cri I ~ T i

~saw inP the very loney instruction word archirct lUr!- 01Setionj I ~-~
ovecrcome 1-y ne di ire a large rel ste:- se:t w i h ir'table rese,-,n:a
roquircmon. ar somnewhat in con iffi Th sr tuat ron is 1'u u t!''

corn , m n ct ith each other. Support for chceap Cvcrr~a fP L

quick!\ and to ha'., a non-emptyr qIIuu Of tasks whlich a'lc ready W il (: 1
by i nterlea\ Irig- muti jple threads of comiputationl and prey ine w, e( 'i ra, -

a~void busv-Aiits. Mlachines suppoil rrg multi ple threads and '~
processes 10ok less and less like von Neumann machines, as the rev-1C 0e

In this section. we first discuss the erstwhile iDenelcor H.," _ ' OP ' iK .
com merc ia!lly a ai lable m ulti -threaded computer. After that wc ieflv d-c .s , aee L:,, If> xs hio
may be reg'arde-d as an extreme example of mnachines with :-iultrplc iliia! . c: '- .0
instruction constitutes an inclependent thread and onix norr-Suspenidcl Uirreeds ar,' ci -duicd to rc
executed.

5.1. The Denelcor IIEP: A Step Beyond 'on Neumann Arciteclures
Thebasc srucureof he IEP processor is shown in Figure q. The proccrslteot >~u~ sa

eight step pipeline. In parallel with the data path is a control loop whrchf irilitcs rl-- c= 'tk, xords
PSW's) of the processes whose threads are to be- interleaved for c\ec ution. The de!i J: a Ind tilc control

loop varies with the queue size, hat is never shorter thain eight pipe(- sterps Tlrr' 1-m'riu.m value Is
intentional to allow the PSWA at tire head of the qu-rue to miii 1ate r inst n1S11in 1-ji 0 ci r'r urn acinr to thle
head of the queue until the instruction has co-npleted. If at 4ca&'1eieht Y'W s.rpro.senting eight
processes, can be kept Inl Ohe qIIueu. the processor'\ pipelinte wil e; jai l this schlTIe -Is miiuch like
traditional pipel ining or iristructioris. hut w ith Pr inipori an:, Ii flk'renc. '-I te r!,-r- inst, La mtori!nriec

0 a~~rc I ikel v to be v caker hecre because adlaceri inst nlctions in the pij[ in are ~ I liih r-c- jrr t'.m m

- Thcrt, arc 21 -I5 registers inl cach procesor, each process has an ii Ic s WtPi.. th, acr Tcr atra

Ii 1cr-r -c~s. i e , inrcr-tli irad, communication ispossible '. a ti tc e -'i 'tcls h, o' c rl .lpp n register
* alloc~ions he lIFP pro~ ides FITIttMPTY REFt 12 VH) hits onl eac reis, 1n ',il tti~t hits oit eaich

- ss oid in the data mcmor\. ',n instictiort 1ri,'Oiichlo, FIVT' Or RES ~i, i u IstN 1'( Iue' like a1
No ) tP intrction ihe, programt counter of' if. )t-nccss, i t. PS W, %khich initi itthe fist ruct lol is niot
incrcm~Ctcdi: PTe process c feCtively b u,. -wat but w~ithout blocking the proccssor. W len a process

*issues a tL \D) or 1;S')tOR inst ~uction, it is remioved fronm thle control loop and IS queued sc, -aratl\ in) the
Scedle- urictioi ('it 1SHY) v~ Iich also is~ ut-s the memirorN request. eqet lchaentsati sfied

b~ecas oIls01 i1 ilprolv).r t11, Ii., 1 1 t' sixrils resulIt ini rc,_I L,icIail 0 1 the PS W AI ith in the, StI s loop and also
*ill rc\uiC of the :squ'> ire SF11 ;irjneles Up mniniorv rC1rmoIIs(es WiIi queue'kld FSW'. updateCs

rcgi~tcs as tr 11s1r i wi nriis the F-''s !I Ie c iritril loop)[

%



Control Loop

Opcode

Operands

Figure ): I aten, ol:ai 1  a

IiLP is capable up to a [vint of'u.n ~.
i rii latency. At the same time it prnuY dk\ 1t ML i a

1:7 4 ,),ecence-bi~s in registers and main nlemor\ i :, ITi~ .pprnich i'he\ lb1, t,
Tk.ca use there is a limit of one ouistdnim c. Id\ ih -roe. nf

'ilifl through Thared wrecisterN, can toc f~o~. '

*~ ~ w.... \snous impediment to thie soitv~arc J, 01C> 1K ,t! .11 fx " '"

I ~.r Though only X PSW', may bere;'
wolIc to name all concurrent !asks of a n

I Ditalow Architectures

Aarchitctures [2, 15. 2 J. 23 rcprsent i . .

0 <. use dataflow graph,, as their inadoiiv ca h
iiil miachine languagc\. .pccikf onI\ a pnlW~1i;

I'~ruuiie~for parallel and pipelined ce.'
Ja:inaflow. graph for the expression j*bh ' . a'i' p4. ;

* . .~-. he fore the addition. hov~ o% er. the multi pt: w~n it i- . "'; Ir or c, an im

4 he advantage of this flexibilits hecornme ap, in t,1~ de A i

i,.' , Ail heccomi- a, ailahle ma-, not bek knm~i )LkI2 : \Or

i uiiO h)a may take longer than ca-niputatii'il Ix I! I:~ N
t, tLt h diffecrent operands ntt \,arN du' * nt~Of hec
0 ai flow graphs do not forcc unnecessir\ ,'AN.r ~lauI

1.0) iCCOrijing to the avaflahilitx of the pri

0 i 2 ii r xci. Ut o nw ehanisni (it a dali 'A0 'k''i

Ar0- -



nxn Routing Network

a P E

/ " i

'Local Path

SW aiti ."- _ j

2:: I, l~ , ",.o, I

ucture ogra;;
I-Structure Instruction Or', 1 r N

Storage L Fetch

- o

I ' ,I+ t

€.- !-'~~i gu re 10: The NI IT Taged-TokenI Dat a f1low '.a:lhi;•

'ALU

.,..(Mo Neurmann processor. We will hrnelly illustrate this using the il] Tlagged-Token arc hitecture /see
t [ ure 1). Rather than following a Proe'ralm (,Funteur for the next instruction to Ie executed and then

etching operands for that instruction, a dataflow machine provides a low-level synchroniiation
mechanism in the form of 1 4aiting-Matching section which dispatches only those instructions for which
data are already available. This mechanism relies on tagging each datum with the address of the
instruction to which it belongs and the context in which the instruction is being executed. One can think
')I the instruction address as replacing the program counter, and the context identifier replacing the frame
base recister in traditional von Neumann architecture. It is the machine's job to match up data with the
sanie tag and1 then to execute the denotedi instruction. In so doing, new data will be Produced, \k ith a nc\.

;7~~~~~~~~~~~.-.-..-..-.. ......... ...............-.-....-...-.-..-.....--. ,.,..-.v."- --,",- -. ?..-2--;-- ----



icwang th uco I-." t rl sJ. 1! tu,.Cci~'c; n

::h .agc han the size 01 the register array in at von e,1) cnat i'h': oe'v d.ik 1 Ceso
is; ton-biclcking: given that die opcrarW d ' a!- j, k. to a.r I i _k _ :sFon(1i11L

T*'.,inr 'ain he executed without further s% nchrornv/:.i'o')

~to tho waiting,-matching section whil Lis n1 'i rd r . h'in 01

o7,the MIT T-Aoe-,red -Token machine pmv ;de A~ii !~i i 1~~l's t1
)t)( ''' g~rrie. Each word of l-s~nucturesac S K.d_' j ,U to \heter the

't.full or has pe-nding read 1~u:2.f I''e 'eo 01 a

~1 crof at data structure with the conx.;:.i -sr of lhaZ Jo a'*-<'I the
-'cl to n.inipulate 1-structre stor-.. ohfs ax 1re' 'o to' rs ~r t raee.

i.JW Jfc contenits of the 1hword ot 1 \A. ' ~ord.
ia, o, twrc concerns dictate that a wucd Wcx .%~ r h it. ..wi Jltok The

p.esartreats all 1-structure L)WranIhJL1 It [li'~.~ .te ll( t
n ieeuted, a packet containing the tag of the o ' 'n o f the -c~ :ristrutiori is

COCO' to he proper address, possibly in a 6is.n w in~c ~ atal memor\
momP eT'A quire waiting if tiv' dc'c, is not n-1--vit 'p - Oi th. he~euli ma~i he rkturned main'

uci,, nL 'iater. The key is that une instruction il ;R Al iU , I. C bcSUS[enC110 1ut. rig dlh timne.
1 .eher, processing of other instructions may continue iimncuia clx aitcr initumton ot WCe operation.

tmemory, responses with waiting Instructions i. uiore via tags in the waiting-matching section-

* One adxantage of tagging each datum is that data from different contexts can be mixed frec'. in the
v)l'. 't i n e Kecution pipeline. ThusiLr1i lee :c! vi V oy~!sc ' fet' l

cv-aLarctinlatency and. -ninimize the 7 Jc o.x .~ a ' oei
"M -i ro isuso ht cxNc Ie most higl, pi)x'.cd cr: processor cannot miatch

ii 1, ' x'illtv of a dataflow processor in this regzard. A more comrplete discussion of dataflow machines :
-. x .I th , cpqx of'this paper. At, overview of 0x: t()r-0m 1',, ~l Kc Dtto~

- I 'nc cani be found in [6]. A deeper undersiar.dir Ja.iuv :;.i~incs c.an he gkutil from 2
~1~tnalbeit slightly dated, details of the ",ciJ i, iii ar1e.oti1 ,cl are gixeri iin il! and [51,

presented the loss of' performance due to ''.ridIai't.- 'v.ind wait'rti iat

V 1, tx~o fundamental issues in Ithe de ijni, a7o.o.' larte
if c petident of the techno!ogy ifrne . 'Iaftc. ~oii .

presented it as such, these issues are also incenct fi, 'i21c c prog r.ti nm r.,- ide) UxCd
o '~~'l''iocsor. If a multiprcvcessor. i : built otl: 7 m.mto i rpt.'os hn~'i toiin

(i;je to latency and synch~ronization ,vi ! .htc .c n ax

-), sIF reduction or dataflow programmingiit 101 I SC1Ila.ci

I IpOSSIhle to modify a von Neumann processor to niake it more witahlc i at building block for a
* - 2,1,I:! iiiachine? In our opinion the answer is a qua! i fic ' teI( tx!o irirxn' I a ch:iric ntic\,

* .... 1 Wprocessor are ,plit-phase memnory oper~itt:-1 '2- Ja 0'I tI'ahift . :.' pitt a;1' (Il Intat onT
'a~:si nstruc'tions. or whaitever tie scheul in'' m 'h o it in r if- nirlr ,o c''

nail/: Onn His in 0i1 '''.i' are e-vc; IN W '' a iuA ''''' xp

h] .) f owever, the rmore 'on,,tirrentlx active !h,,' 0' Of ,',l alxneh.e he T-r-'r i, the
'ten~i for hardware-suppxirtcd svuTcbtoniatiani yilat' '' .;ttlt,-i !.". ifit otliciN 1 ' Ire ,ictix'elx

,!~~,'rl~~ hisi orl! thes 0T' (1'. 11''u v I >y t I' x r j

r)r C, 0i rrl* 5 'r,

% %



'Ile"'cst appc ii of von Neumna-nn plrocessors is thait theN are v41delv available anrd familiar. There is a

1CnJCn)C\ it) extrplate these facts into a belieft, v.J on Neuiao pro,-cs,,ors aire 'simple" and efficient.
A\ tccliio1 all \ Nound case, can be made that well designed o~Ncunin proces sors, ai- indeed very

IIlIcn cin i sequential codes and reqluire less mremiory rundi. : th than datatlow, processors.
th.c~cr.le e Itic ie nI. ot sequential threads disappears fast it ther ir( to( m anx int-rpn or if"

i,!1n,- of the processor dueC 1o laten~cv or .lata-dcpendenit haiard!s increases. 11,1paj Ulr Ir, 31 is
i M C 'I;Zcatin 11 d atatlov, arch itctu res Ix ic wII k impro\ e the c ticinc% Of 1!, Nc ITH raiCced-l Okenl
,;;lhiteCtIr'- on seunilCodes A ithout sacn ticinLe an of its dat il'h :~inaes We can aSu IC the
rc a,! r thai none of' these changes are tantam ount to i ntroducint, a pro cramn :ow iLc: iii the daiallo~k

- ~o Lik of space s c have not discussed the effect of multi -threaded architcciucs oin the csnliiin j
Llnguage Issues. It i', important to realize that compiling ItO primitive dataflow, operatrs is a inuc P
simpler ta~.k than compiling into cooperating sequential thireads. Since t-he cost of inter-process;,
c0I1M1LIniCAtiOP In a von Neumann setting is in uch gtreater th1an the cost of- cni-i.i-tioo- within ai
pro css, ithere is a preferred process or 'tri"size on a given architecture. Furthe-nnrire, phicen lit of

-- s\ nchironi/ition instructions in a sequential code requires careful plannino e iau , n iTR-0nacoo to Wait
*for a s\ nchronii/xion1 event may experience very different waiting periods in, differcra lcati6ons in the
*-proigrami Thu. even for a given, grain si:'.e, it is dif-icult to decompose a prourarn eTj i ml .Dataflow

graphs. on the other hand, provide a uniform view of inter- and intra-proceduralO .Nnch-11,r i1;tion anJ
* communication, and as noted earlier, only specify a partial order to utiforceci dqe-Cndcr- ic'among III,
* -instructions of aprogram. Though it is very difficult to offer aquarititat~ve nudcaycrte , e nelieve that an Id

Nouveau compiler to generate code for a niult-hreaded \von Ncumann compult "ill b significantly
more complex than the current compiler 1411 wihich generates fine gi am dataflow graphs for the MIT
Tagged-Token dataiflow machine. Thtis dataflow computers, in addition to pi-oviding solutions to the
fundamental hardware issues raised in this paper, also have comIpiler- tchnology to eXplOIL their fullU potenitial.
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