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1. Introduction

-)M"tMlh research tins centered on ih proiblein of fiting sjort.ot.t ptlhs iii graphs. It is well
koown tr 1, there i a direct correspondene between lhe single-source shortest-paths -problem
aid the o lowinig iinple linear progr:atnniiicg probler_/

Let S. be a sit of linear inequalities of the form T - rj I ai, where the xz are uinknowns
and tne ui1 /are given real constants. Determine a set of values for the xf such that the
inequalities in S are satisfied, or determine that no such values exist.

This paper considers the mixed-integer linear pr(gra nicting aeri:nt. or this problem in which sorue
(but not it 'cv;sarilv all) o Ilie .r, :nri' rvjcird to h(, i1.,g'r.. Th-( protblerm arises in tIhe context.
or synch i( iious circuit. tit iiz /,,ct-j ''i i but it hs ;lpplicatioiis to I'i';I'l' si'hi('uling and VLSI
layoul, (oil ac tiotl as well. , . + ' , .

ilrore ornially' uhehing t.h<e iiuiXe-iitign,(r pirogromiiining problin, we restate the linear pro-
gratitiinig pr(iberli ah)ove itl aimot her 'orni.

Prob ern L. Let G = (k', ".0 be an ulge-weighted, directed graph, where V =- {1,2,...,
IV' ii the vertex set, the set /' of edges is a subset of V X t', and for each edge (ij) E E the
edge tweight a,, it, a real number. Find a vector x - (xI, xz,..., .ry ) satisfying the constraint
that

X3 - Xi < ai
for al (ij) E f, or determine that no feasible vector exists.

'rie grapt G is called a constraint graph for the lirie:r Iprogratnciing problem. There are
three adv:,ritages in adoptinrg a graphc represeinLatio or the probleim. First., an adjacency-list
representa ionl [I, p. 200] or the contraint graph G is more econoiiical than, for example, a
Jinrar pro, ramninrg tableau or, when the graph has relatlively lew edges, a rilt rix of the aij.
Secondui, I c)blotn I, frequently arises in situ ations that are naturally described by a graph. Finally,
the graph-tlheoretic fornitilatiuin helps in tunderstanding the algorilmis that solve this kind of
problcn.

A unetlhod for solving Problem 1, was discovered ili the late 1950's by Ford and IBellman 18, p.
74]. YenI [I 3] gaVe snu SITI oprovenienilts to th e I tell rican--I'o rd algo ri tbin as Well as a cogent analysis
showing t at,. its 'iiting tinc is ( V :). This bound is easily iunproved to o(INII FL) by using
an ad(jaciry-li,, represent alien for the constraint, graph.

The I, h)enani- l'ord a gorih c :ina also be used to solve the integer linear programtriing variant
or Proble) I., In which all th x, atre required to be integers. If ti(, edge weights a,, all happen to
be initegern., the Itellinan-l ord :itgo ri thin will produce integer vatties for the .r,. If the a,. are not
integers, Ih)wever li, but. the x, arce r'quired to Ito integers, each edge weight a,, may be replaced
by kli.. W t, houl, ;ulhj('li)g liev' Su.lri.ciblilV or , ie t s

h'lce ro( us of this paper is !ite mixed-integer vztriant or Problem L.

Probem MI. Let ( (V,f 'CIFa) be a (dge-weighted, directed graph, where V
{I, 2,. .. , V 1} is ltc vertex set, the qct V' is a subset of V, the set h" of edges is a subset
of V V, and for each edge (i,J) C F th( edge weight a, is a real number. Find a vector
x r(,12,..., xv) satisfying the constraints that

X? - r, < ai

for ali (i,j) C ' and that r, e- Z for elI i C Vt, or determine that no feasible vector exists.

N 3 V N *.'*V .~w~ V'~' ~*-,~.-. ' ~ *~ . N



lhe vector x =XI, 72, XivI) is ca1lld a1 Solution to graph G, arid i1' graph C has a1 solurtion,
we say thiat C is Satisfiable. When it. is clear Iroiri conrtext., we use, the( sairie terin inology for

IVroblern L
Ini addlitionr, we shallI rerer to the vertices in V, as the( integer vertI(' es or G and Ihle ve'rtice(s i I]

VR = V - V1 as the real vertices or G. We also parti tioni the set of' edges inrto two sets depenrdiing
on whether Lte vertex at tire tread or tire edige is integer or real:

El= {(i, j) E E I i E Vi})

{ = (i, j) E E' I i E 11R}

This paper presents two algorithiris to solve I roblein Mi. The first, which rnrs in O(IV 111 111EII)
tuin', is a straight torward extension of' thre B ellnian- lord algorithmn. The second is inore sophis-
Itn'd;itfad haLs a r-uning timle of' 0(I1,"1l1114- V1VII ig JVI). We c'onjecturre that tire, O(IV IEfl
rmiig tine acirived by th lie lnmari-I'ord algorit himr For tite I~jr linar programmiiing and pure

nlo(ger prongramn rg versions or the problem is not ac'hievable in genieral for sparse inistancves of'
P rolem(r Mi.

Th le remrai nder or thris paper is organiz'ed as follows. Sectiori 2 re'views the I Rel linian- Ford
a! go ri thmi. Sect ion 3 p resenits a siminple relaxation algori thin for sol vinrg IProblemn MIl. Section '1
discursses three tech niqures IDij kstra's algori thi, rewei gh tin g, and1( ['i bonacci licairs which are
used ini See tion 5 t~o construect an asymiiptotical ly efficient. algori th in for P roblemt Mi. We (isc uss
app! ic~ition s and present somne concludinrg rernarks ini Section 6.

2. Shortest, paths and the Bellman-Ford algorithm%

I This section reviews how thc Bellman-Ford algorithm solves l'roblvem 1. Although the results
of' this sectioii are welf k nownr arid can be rounrd in most text books on conliialorial optimization

(sii', Ior euaiple, [8, 1). 7-11), we repeat tire material here for the readler 's convenience.
There is a niaturaf correspondence b~etween P~roblem 1, and .tre grafph-theoretic single-source

sh orfes.t- paths problem. Let G ~ V ,a) be an inst anne of 1Problemi L. Suippose t hat for each
vr 'x ?9-V, I lieo is a pat I to i from vertex 1, arid le't (1, be thie weight of shortest (feast-weight)

p rn i n vn'rt ex I to vertevx i. (At, the end of the section, we shall discuss tire case in wich somne
,crl 1( 4 i.re riot re'achlable fromn vertex 1.) T'hen for any edge (i, 1 ,h, we have d, - di :K aij
>in1ce Itie edge (ij) can be appended t~o a shortest path f'rom ve!rt('x 1 to vertex i to produce a

patit rronn vertex I to vertex j of weight di + a,j. Tirnis t ire short est -pathi weights d are a slto

V, liw ver G is satisfiable, there are inin nite nlumiber of soluiitions. For exam ple, ir I is a solution
Ihi 11tijiorrily adding any constant k t.o eac'h x, y ields ariot her soluitioni y, where y, = x, +k

k o I L1 K . 'I'li a.si grinmen t r,4- d, gives vachI x, its lartest. possible vaflie siubjec t to the
ro iiw I fat r 0. To se'( tis, cnnsider airy path 1) of weight (1, 'rorin vertex I to vertex i'.

1'It, Ii 1ieqiralities associated with the edlges of p are sut ritied, thre rink nowiis associated with the
MI( rmediate verties cannel aid( tire result is the irequimfit~y X, - xr < d'1.

\Vhtcnivvn'r thIe graphl G con tainms somne cycle c w honse weight is negative, the shortest path
'eigh !iii vvurt x I to any vertex ion cycle' r is undefined because ti' weight of' airy path 1

0o ri cx air bie diminishred by aippenidinrg a trave'rsal oif r. lIn this case the graphi G is not
sal slicib'. It' the inequalities associated with the edges oif r are suniiiie(, all the unknowns x,

;0Cait. :111(1 trllt' resulting ineqiuality asserts that. 0 is ln'ss thari or entiral to (flie weight of c, which
is false.
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'l'he lM,,lhmaii-lord algorilhin, fhiich is gi.'i below, solves lProblemii I. by finding the weight
of tl, shortist, ptlh t.o acth reflex from vertex I. Should Ili gra)h contain :i iegaLivc-weight
ycle, tlir :.oritln rports Il h. til girfrf is liiisatisfiable by calling the proc(dure Fail, whose

scnrdic.a , h,:ve unspecified.

Algorithin BF (tBellman- Ford algorithm).

IIFI. z1 , 0;

1,1'2. for i - 2 to IV I do x, - oo;
Iw':i. for ind - I to IVI -- I do
l1.. foreach (i,j) E do11"5. z:,- ti,,(Y'3  ., i- a ;!

1l1F6. foreach (i.j) / do
Ii F7. if r) > X + (, then Fail; N"

For ('at h v(,rlx j V I li lhIll, :i-lord algorithrn iteratively ud)(at's lhe weight r, of a

erikttivve >:iortest p:lth f'r1 f roen (rex I I.o (,rt(,x J. After initializl ion,, the algorit hrn nmakes IV - I
p)ass('s Ihrough th, edges ir /" 311t rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j).

A sirnI)le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works. The

weight r, 1'oivrges to tOihi weight d, of' a shortest pat h I'roni vertex I to vertex j ir the edges on

Ite path are relaxt'i iII order :long the pat h. The seiuiencie ol edges relaxed by the Ilehlman-Ford
algorit hri consists of IVI - I copies of sonic ordering of P', arnd therel'ore contains every vertex-
disjoint pati as a subseqrenuice. If there ire no negativ-wei ;it cycles in (1, then every shortest
patth is vertex uisjoint., so each .r, 'onverg s to the shortest,-patt1i weight di. On the other hand,

if' there is a rwgati e-wrighl. cycle ii lie graph, thw algorith n detects this condition by iterating
once more tlhrough :ll cIgPes to see wht ier a;y ol the, inequalities remain unsatisfied.

The Ihellran-Ford ;lgorithi :i, given aiove (eterriines the weight of the shortest path fron
vertex I t,( each vertex, anI therel'ore solves IProblemn 1 whenever all vertices of G are reachable
rrom vertex 1. 'lr(, co(e can he ad:ptel(, to solve IProblem 1, o arbitrary graphs by simply

changing tihe inialization step (line, IHI 1112). III particular, if each x, is assigned a finite
initial vai, U,, the relaxation in lines It"3 11"5 sets acth x, to its nlaximuin value subject to the
conistraint, that X) -_ X1 < a,, ror r:ich ( ge (i,j) E h" and that x, < u, for each vertex i E V.
Notice that whenver ie conist raint, graph G is s:itisliable. it is satisfrable subject to tire additional
const raint,, < u,. Slhoiht tlie illequ:dit I's he inconsistent because there is a negative-weight
cycles in II e graph, tir, relaxation will riot converge to a solution, and the inconsistency will be

detcted r the t!st ill fil's I"lFt! BF7.

3. Simple relaxation algorithms for Problem MI

As was mert iond inI tle, iutrodit on, I'rI(len MI can be solved directly by the Bellman-
lord ;algor h liii ;,elr l rikrii,, its atr. -r'il 1)rohern L,) aIi(] when all unknowns are integer.

Tle corlt)ibi:ti itt (I1 iiti ,r :ini r,;rl unk nov.r, h1owever, seenrs to make th prolem harder.
In lhis .s('('iorl, w, g:jiii SfulIlI iiiiiiiti(.i :bout lie stric re of JProbllmr Ml by introducing two
algoritthins that sk it inO ( Vj:V; j K) tllric mt1ch tie sarm( way as tihe lellhnan-lord algorithm
s(vvs l'rrolerm I. 'The at, i ptot.irally ellicinit, algori, im in Svction 4 is derived frot the second e

of ttris, altr oritir ntis.
A natirrt ;L approLI'll to solving Ii roblhm MI is to see wholher thlie I'Mlhlli-Ford relaxation

appr:ch (i I I;Lrle tO work. Sin( , hav hoth integer arid real vertices in the graph,
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Figure 1. An irritiuac(, or I'robhem Mil. Integer vertices (V { I. 4}) are
shown as squares and real vertices L4 circles.

however, we) riistt mo(iry Ihe relaxation step F5 in the IhIiman-lor(I :ilgoritlrlii o Ioro(liii,' an

integer value vhenever J is an integer \(rtex (line I6). This appro:lch diois iii rat work, but.

it. re(ioires ilore iterations 1.h:11 the simrple lr'llianr-lord algorirhim. The nxt tlg ritlhmi solves

'robl('im MI. lrhe miinihier or iterations in inn line R2 will Ie d(eterrlnin( in Ihe aralysis followirg

tire algorithm.

Algorithm R (Relaxation).

RIl. foreach i E V do z, +- 0;
R 2. for ind - I to n do N.

13. foreach (i,j) E E do
R4. begin
1?5. z3 +- r11in(X,, Xj + a,);
1?6. if j E Vi then xj, - [IjJ;
R7. end;
1?8. foreach (i,j) E E do
fi9. if z., > X, + a,, then Fail;

In ,)rdr,.r tio (letermin( a value of n such that Alg orithm It works, we itro(lhice the notion of
a rducinzg path. I,et p he a path starting at somrie v(,rt(x k, and siippose that r is itniitiy ,et to

0t :m that all the remaining r, arc inritialized to oo. Suppose the etdges in path p are travrrsed
in 0r(dir st:irlir g fro/n k, arid earh edge (i,j) along the path is rel.xed as iii stalerents ?6 116.

11 rah relaxation of' ai (ige (i,.J) reduces the valuie x,, the path p is, callhd a reducing path.

\% hiever a sequence or edges contain. :ill reducing paths as sirluse(jieies, the relaxation of

each c(',, irn the seqelnuce inl order yields a solution. (The proof is analogous to Yen's analysis
d' i I h I( linai-l'or(I algorithm.) Tie I ellman-I"ori ;dlgoritlhni solves IProhlem I. because in a

a h cr:pih with (ily real vertices, each vertex ociirs at moMt once on any single re(dlucing
;,:it . ( \mrd i;, a'nct, every shortest path is a reducing path.)

W hr n somue inknowns are intteger and some are real, however, it is possi he for a reducing

atl h i) visit, thre same vertex more than once, even if th(' graph is sat islia)hle. For example, in the
nrajrhi shwni iii F-igure I, the re(ducing path p = 3 - 2 -- I -- 2 -+ 3 --* 4 - 3 - 2 visit. vertices

2 arid 3 three titres cacth. If all the x, are initially set, to 0. the (dges ot p ruist be relaxed in
dih ir ord( r along the path to achieve convergence. Moreover, relaxing the c(,tire e(!ge set in some

ar)irr:ary ord(er only 3 = IV - I tirnes might not achieve conivergenice. Since the valhe of n in

lit- 1'2 rmst, he at least the rraxinriun riunirer of edges ili airy re(ducing lath, the value IVI - 1,

which wa, .otd in, Algoritnm I1.', will riot sinhice.

4
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Fort unately, reducing paths are never very long in satisfiable graphs because of the 'ollowing r
Iilllima.

Lemma 1. Suppose G (V, t,, E', a) is satisfiable. If p is a reducing path in G, then
I. p visits no integ(r vertex more than once, and

2. p never visits the same real vertex twice without visiting some integer vertex in

between.

Proof. I" either condition is violated, then the reducing path p can be extend'd indelinitcly by
repeating the cycle that cnuses violhaion. I

ILrum:t I allows is to delermine a vnlue for n ill line R2 of Algorithm 1R such that the x
coiverges Lo a solution wheriwvr ( 1i satisliable. Any reducing path contains each integer vertex
at itiost. or:ce and each real vertcx al riiost I11/11 + I tines. Since Ow inumber of edges in a path is
one less than thie number of vertices, any rcducing path for a satisli:aflc graph can have no more
1han IV11 + (It'll + I )IV14 - I = I'JIIVR[ + 1'V - I edges. Thus the limit n of the outer loop in
Aloorithin I{ should be set. Lo ; l V1tl V - V - I. The overall running lime of Algorit-hIi I{ is thus
(V II VtII 1I).

This alnalysis sulggestis Ohw Followin, algorithm which is slightly more eflicient than Algorithm
it, ;and which Forms the basis of the asymptotically ellicient algorithm presented in the next

section.

Algorithn M (Modified relaxation).

Mi. foreach i E V do x, 4 0;
M2. for ind 4 I to IVRI do
M3. foreach (i, j) E ER do
M4. X 4- min(x 2 , ri + aij);
M5. for ind2 - Ito IV I do
M6. begin
M7. foreach (i,j) E /',' do
MS. X3- ,nin(z,, [xi + a 2J]);
M9. for ind I to IVR! do
M 10. foreach (i, j) ER do
MI I. + rin(7,, x, -aj);
N 12. end;
M13. foreich (i,j) E do
M 14. if x- > , + -4,1 then Fail;
The onfly diflerenc betwcen this algorithin and( Algorit hm I? is that it treats the edges in El

spara tI from the edgeIs in h j?. Inn liivcs N17 M8 of Algorithm M, each edge in 1'j is relaxed once.
There :ar !Vii surh passes over I-'I %vhic :h are precedf ed, followe(I, and separated by exhaustive
relaxations of t e dge., in I'[j (lincs N12 M,1 and %rMl(I II). In cach exhaustive relaxation of ER,
edges are rhtaxcd uril no rurthcr rlna:ris in the vatues or x. are possible for J E VR. (Actually,
the rlaxatons ili linis 12 N1 I :rfi Mq N11 I are only guaranteed to be exhaustive ir there are
no neg;div,-v.eighi cvcl, , ii I'. If' th re are cycles of negative weight, however, this condition
is dlected at ilie end by the convergetnce test, in lines M13 MI4.)

5



4. Dijkstra's algorithin and reweighting

Section 5 gives a rnort vllicieitalgorit.rini to solve IProblero \1l thtan eitlt('r A Igoritlin I? or
MIorirlir Ni. Three inipiortallt techniques are usedI i) tOe algoritliri. Thoe first is lDijkstra's
algiirit hin ii6c wlintiIids shortest pathis inl a graph Irorin a single soiir('( in te case' When ll tI lie ed(ge
weights are 11011negative. Thie secondI is revieighting, which is a tecl)niq~ue t ie to 1-:1 nrionids anLid

Karp 131 a1rid usedi by Johnson)1 171 in his Oliviient algori thi n for solving the all- pair3 ,hor test -paths
problem. Thie thirdl is the Fibonacci heap dIata struceturte die to l'redinan aiid Tairjan 11J, whichI 5~~~i an i nirove(l p~riorit~y qnietie that, mankes Dij ksira's algorihmn run in tinec ((Ik +4 IVj Ig IVtI).

Civen a graph G = (V, E, a) siich that all edIge weights %a re nowwmniegive, Nijkstras
algoritlin contiputes For e.teh vertex i, t lie, \t'igll. (1, il' the shortest path from n rcx 1. B ecatise
e:ieh edige is reIlxed( exactly once, this algorit 1111 is laster than tlw I ellinan- FordI algoritri11in Wich'1
solves tue sanie problein rr arbitrary etIge, weights. IDijkst ra'salgorithmn dleri's its illicienicy fromn
the observat ion that, along anty shortest, path fromn verte(x 1, the shortest,- hat Ii weights (1, forrii a
iiorohecreasing sequence if' all the ed(ge, weights are nonnegative. Tlhus, a $t'(pii'IC Ciiiisisting of' all

ihgs(?', J1) E l' ini ronidee reasi rig ordler of the dlistances d, con tainus as stibsi'quences shiortest paths
fromn vertex I to all vertices in V. Furthermiore, such a sequence of edIges (-an lie coniputedi on
Ihe fly usinrg a priority queuec. (The textbook [1] gives ai proof of correct niess for this algorithmi.)

Algorithm D ('Dijkstra's algorithm).

1) 1. X, -0;
D)2. fo r i -2to IV Ido x,4-00;

D)3. Q - V
D)1. while Q 34 0 do

I~h. begin
D)6. Choose i E Q such that x, mirlEQ xj;
D)7. Q 4- Q - fib;
D)8. foreach j E VR such that (ij) E ER do
D)9. xj r nin(xi, xi + aij);
1)10. end;

It' 1he set Q ini the algorithmn is irniplerneritell as a staindardi priority queue, each extraction
lhin, D6 D)7) aiidi updlate (line D)9) Costs 0(lg QI) = (lg V I) thnc. Tlhius the total running

1i; l' ijkIst a lgori thlr 'is F ~l ) 'red roan auth Tarjan 1]) dlescribe a dlata structure
C:1a1led1 Fhoriacci hevaps thatr su pports arbitrary idetion in 0(lg n) amnortizedi timne andi all other
S!Jn(wiard priority (iieuie operations (incliuding updlatec) in constant aiortimed tirrie. Ily rising a

* H lion;wcu ivhap in 1 ij kstra's hlgorithni, they show that. the performance can be iniiproveti to

neMr D ijkst ra's algorithn is equivalent to thre Hlellrnari-FordI algorithmu on graphs with non-
Tiegat ye edge weights, it Canl be used t~o solve Problemn 1, on such graphs. This is not, very
rit crestigil in itself, since any graph C =(V , 'a) in which all ed(ge, weights are non negative
(;0 Ic lri ~ia)ly satislied hy settinrg x, to 0 for each i E 1. Our initerest in Dlik st ra's algorithm

COmrie- f'riori a si roriger property of the solutions it find(s. Suppose the iniiti~izat on step (linesI

D)1I 1)'-)is c hangedc( so that cacti variable xi is initialized to a lirite value ii, Theinr I lie relaxation
* hrociliri, in linecs I)M D)1( will set, each x, to its largest. possible value conisistent wkith the con-

frLillf ts that~k r) - r, < (z for each edlge (IJ) C- E aid( that T, < u, for each '. rtex i' E V. In
(ittir "or(Is, lirm; 1)3 1)10 of lDijkstra's algorithm are functionally equiivalent to linecs 14l'3 H F5

6



ofr t He li l l ait-l.'rd alg r~lii i provilel t,1,1 :11 thl. ('Ii g<' .V('igh ,s ai,, are In i(,galivi,. Since a
grapih with only nonnegative cdge weighils caii uitver (olilaili a legative- weighl cycle, no Lest ror
corvivrgenc(' is necessary ii I his cast'.

The (efiiei+ algorithini we shall Firesonlt to solve I'roblern MI is a rro'(lilir'lio of Algorithm
M. Not ic that. liues N19 \1111 of Algorithin M exhaustively relax the edges ii 1I'R in a mianner
siiiilar to lines IV3 If'5 (11' (he lella-l'ord algiorithrn. If) Algorithin M, howver, this code is
(xeint jL(' r tl;Illy Liii(',s. *Ill, 'lirivcu xgorithin Io solve I)roliiii . 1i uses .L Irick to replace this
(.ode with code based oi iwre more (,'licicit. relaxation procedure in lines I)3-1)I0 or Dijkstra's
afgorithii This trick is the t'riliue of' rew.'ghting (il( to l<.dnuioind(s arid Karp (31.

Lemma 2. Let G =- V, I", .) be art (dge-werghted graph, for each i C V let r, be a real
number, and let II = It V",b) where b, = (1, + r, -- r3 for each edge (i,j) E P. For each
verte. i E V let x, be a real number and let y1, = r,- r,. Then r, - r, < a% for all (i,j) E h
if and only if y3 -- 1y- for all (i, J) ' (that is, x is a solution to C if and only if y is
a soltion to II.)

Proof. Trivial. I

We call the vector r = (r I, r 2, .... rv) a reweighting or the graph G.

5. An asymptotically efficient algorithm for solving Problem MI

This S(vtio n shows how )ij kstra's :lgo rithn aid reweightin- ('an )e, incor porated into Algo-
rithin NI to yield a raster algorithrn for sol virg I) rob evi MI. (iven a graph G = (V, V1, E, a), the ,
idea is to !in(h a rewetighting r such that the rcweiglited graph II = (V , V,, E, b) has edge weights
b, = a,, -- r, - rj > 0 for all edges (ij) E 1R. l,(ernia 2 guarantees that G is santisfialde if and
oily it' II is satisfiable arid also that a solution y to II can be convrtevd into a solution x to C by
setting x, = y, + r, for each i C V. lre advatage gained by trarisrorrning the probfein on G to

a problorn on // is that the relaxation port)ion oh l)ijkstra's algoritlhln (lines )3 1)10) can replace
the 1felrn.i-Vord relaxation (lines NI) MI I), which is the roost expensive part ,)f Algorithm M.

The irst stage or the algorithin is to deterriine lhe reweighting values r, ror all i E V and
the new edge weights b~i = a, + r, - r, for all (i,j) E P. We riust clhoose the values r, such
Ithat bij > 0 for all (i,j) C hIj . Since this is e(quivaleit, to requiring that r, - ri < a for all
(i,j) E lp, values for the r, (':tii he round by applying the fl'llrc an-I'ord algorithin to the graph
(V, /t ,a). The first rew hites of' Lhe algorithn are:

Algorithm T (Eici ent algorithm).

TI. for i C V 'do r, -- 0;

'2. for ind - I to IVrI (10
T3. for (i,j) EI', do
T4. r, +- rniii(r, ri + aij);

T5. for (i, J) E ER do

TG. if r, > ri + aj then Fail
T7. for (ij) E E do
T8. b,1 4-- a, + ri - r.;

Ir the .d!,,oril hir rails in line' T6, then tlhre is a cycle or negtive weight aunorg the edges in
LJ , and h 'nt' ii r; ,}h G is iwnt,iiale even in the, abse'se or integer constraints. Otherwise, the
valu's b,. ip titpied ini line 'TS are oniriwgative' for all ( C,) C ER.

, 7



The next stage of Algorithm T is to solve the mixed-integer problem on Ilie graph II -

V, U,, ', b). "l'h(" algorithm alernatly perlormis si|ngle relax;itioi paSS('S on the edges in [", and

(xhaustlive r(eLxLtiotIs of' the edges in 1,'R, as in Algorithm M. We begin by initializing the valli(s

y, %0hich will converge to a solution to !/ il' !/ is Satisfiable.
'T9. for i E V do y, 4-- 0;

'This iritialization has IIIe auded 'ortune o' subsuming the first exhaustiwy refahiation of I'l? (lines
M2 Mil in Algorithm M). After the execution of lin 'l'9 we have y, - y, 0- 0 < b,. for all

(i.j) G /,u, which means that ilie edges in ]'.* ; are already exhausti lv relaxed.

'he rtxt portion or Algoritlim T parallels lines N5 MI 2 ol' Algorithni M and is where most

of' tlie comipt rig gets done.

T 10. for ind - I tv IVI do
T I. begin

T 12. for (ij) E EI do
Tr13. y,-- nin(yj, [y, + biJ);

T 14. Q -V;
T 15. w1, ile Q , 0 do

116. begin

T17. Choose i E Q such that y, - rninEQ y2;

T18. Q - Q- {i};
T19. for j E VR such that (i,j) E ER do

'[20. y - ruin(yj, y, + bi,);

'[21. end;
T22. end;

Tliis code solve, the problem on graph I1 in almost exactly the samie way th:t A .gorithm M

would. 'hle only difference is te met d110( by which I l(' gu or' /iR are exhatisti'vely relaxed.

Whereas lines M9 .0 II of AIg,orithm M perform the mxhaustive relaxation using the IBellroan-

F,'ord :Algorillim, lines TI T21 ol' Algorithm i T Lake advantage of' tl l ornegativity ofthe b,, for

(i,j) E I"j arid use l)ijkstra's algorithm.

The final part, of' Algorithm T is to check the convergence of' tli y and to apply ,erena 2 to

produce a satisl'ying assignment x for the original graph G.

T23. for (i, j) E E1 do

121. if y, > y, + b,, then Fail;
T2 5, for (i,j) E E do

T!'26. T, 4-- y, + rj;

I, i' T23 P21 check lie convergence of' y by t.'st i rg the i nequal it ies associaled \ it Ih t lie edges

;iI1f 'lhw irJqualities resulting From edges in k/. Ticed not Im, chleckd because th fir relaxation

Ili ins ''1 T22 is guaranl.eed to be, (cxiaustive. (1' there wcre nrative-weight cycles in /R , we

v.rtld i e d'le .led this in lines T5 T"6.)

1i(- T25 T2(i convert t 10' solution y to graph It into a solution r tio graph (. l,ernma 2
ri.,ir( , Iihat t lie ine(qualilti's x - 7x, K a. :ire sat ., d. wiet %(, must also dio\N Ilitd ie r, are

mit egrs. for all i - V,. For ('a(h 1 E V[t i(, value y, is anu integvr. howvevr, ard furrthermore, the

valt irs of Ilie r, produced in lines TI '14 are zero for all iC V. i, Tis for all the, itig'er vertices,
Ohr .r, ir. integers.

In sujii;irv, we have proved the following theorem.
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The( rem 3. Algorcthmn 7T w~ccvil Probcc MI.%

i c n Ic rt, I iiilr of ' Ioo 1 tt 11 '1' i ic Q I / ' t I 'I Ir~ I ll* 1i . i*I I, iri f N q utci is iimi[i(e-

6. App'ications, extensions, tnd conclusions

cI ricII r cvN re 11 Ilic~ I ~ itI i cI II 'I iccl\ dl'sc ri lcs I\ oc cctIlc'r c)rc dci istc. citlticiction of
\ I.S (. r( Ii t s i ll I ll(c' c~L t '( oI' ic c \\ r AF i t i round hiis . i I'I 'i ' iiii s cl idi it' i pe irioc

t'ccicsl f:1iici \Oici ('i i h r ndlcc c icc 1 ok I llc~t \11. \\v ;ci-cc ccci-icr :Ili c'\tcti,Icti cl, IPrccicci M l

herticI'i'c Iu iclic ci cc't- ci crc cc, ic lr ic> l r c cc i lls tt imci >;ic I h >i , c I i r \;cci cic'. soi c of' Ilice x,* are
rcil'ciiredi I icbe liiIic'fes. ;Ilci ()iII cr, ico hccci c imciipcles ofi :mi ic c onccisticit C.)

%

Circuiit comipaction - iic it c is ~be

Re('iidai-J tri i;crti nhu. Fcicit ccwdc iii J.,c cc'I gjc' i cc \crjibiic rcpcrntcin(, ;cIc .f-c'ccrdilati,
ancc l ic d sigic rcices aire echc'rc'c c c ontc scci rcctL*' cis tic frtc . x ~ I t iiri cdsrbe

however, !cc :diccw c*at ire, 'ic to c b c IccI '1 1h k-.0 cl ci jcr % icc \(-rsa, icci nct toc aillcw them

1to ccl the since( picccicc. Itc t icii\ 11' cil(.cccc toil% Iiji kic (if transipositioni of

N1 )-'ccici Ii' [0110. Hid Ici ccriii ccl icc'ict (.fl~lolcciitt:r< t crcic' I rciiicsliii of layout
leaci ri's c-:.r be ;il iowed.

Sciiic esigic m(icilIccluogiccc c'iciccri' the iciacctli ccf pcicvr. grici Id, ari cl(cck to iceat reguilar

rnct'vtuls. For c'xamiic, oi1cc Wwitiil pcroccc'ssicg svlstcici1 rccjcilrcc thicit I iisc wires ice repeated
verr 200W "Incd IhaI ic cicdti ol :,ill ceiis i) lice svsLctt c ii ccl ger mucii cs oci ihiis fistance.

liii dcc;igi i'r Is then -one-ciriiic'c tc btiic a niek c-I]i so tlt1c Ii ci t featcrc-, are Lightly packed

tiiccctt H1cit ccc pdb~ %i rc. Ili chI ccc itv( wh ~ ere socii ic\itit ic'lcci e iica\N go oi one( sidec or tine
oticr of' sccili gicclc.c wire iti iicccv cit ccc(ric.t thle cotinpi;wcticcit probicic tal bce firnncilated as

P robclem \IT.

PERT sc ieduling
* ~~~S icic) p.' xvi hcavc Ictist rciii graphi \vit i vertices reicrc>ctc i iicstoncs icc a project, and

cci gc'- we1J gi il iiccic:i tit" Ilic t i ii cc cisimirthiis iccIve wccti lectic'ns. G tccrai iv, the H elli nan-Ford
tIilcriun -acc icc i-'cc to pcrccvidie cIi oci icil siicc'ciiccicg ()I' 11cc' icilcist oric. If ai w~ork diay is from
91:00 acic. tic 5:00l cii. lccir, vwii;ccv tcct weIicc t c' sc'c fied 'k a oric-hlonr ccl to start at 4:30 f

pc.ii1. \iv: lciilic i11 *of) tici I,( ' cccxi (1:c\ ttctiv ':Ici.-i All cci ricr icci to bce acivarcic as we'll if the
twoc *ohs c-c c'cci'c rcci' tc' cc':lil niccr o'cc~i cir. Thlc Icrocici ol i t iiri' scthc'ucing wNith periodic

i-c strtiit (-,Iii icc' (is i , lc' icc! l c Nil.

hitcoti 'civi~c' ic \-cI dc'lcocii t i iio (ctclccivs, oicc' tic itl mu fcr ccciii jocb (1) a real variable
ri-ic rc'sc ci t Ir cc ti c '.t: ir Ii ccg I Ii IcI ' cl icc jcb, titici (')) ;tc itii'i ritihii ri'jcrc'sc'tircg, say, noon on
I Ili d;cV I it jicic cc'crs. HTil oc ci, i iIic( Iitclc' c'cccst a islll sayv, icor cxciii pcic' ''I' his job must
stttLrt icc'cr'' 1:00( pim. cil liii' dacy l icicurs."

Mult-iple periodlic constraints

ccicicccc Ilii ccill !icc H ~CI* slc't'liiii :11 cilcttcc lolIii'iticcidc culccvc, we alsoi wish to ttake into
icciii 'IIci ct ' ccct" il',icv cc' Mc'ck''ccc. TOc icc this. W~' xccccciu ciSScc'iti AtIcI each job a

thr 9;rl 1iesN m~ iot l h fkdrn 6iLi o)ocr.W



are then required to solve a variant oF lrobhlm Mi in which whn, are two classes of' periodic

corstraints soie variables are required Lo be exact integers arid others to be cxact ri lipl's oF

7 while the remainder niay have arbitrary real values.
Thie liisoution to this problhm 'is based or the rollowing algorithm f'or solving l'robfne Mi. (We

assui me without loss of generality that G = (V, V1 , E,a) is strongly contrected).

Algorithm U

Ul. if (V, F, a) contains a negative-weight cycle then Fail
else foreach (i,j) E Vi X VI do

4[the least path weight from i to j in (V, h, a)];

U2. if (VI, V1 X VI. b) contains a negative-weight cycle then Fail

else hind an integer assign ment x on V1 such that xj - xi < b,, For all ij E Vj;
U3. Apply the Belhnan-Ilord algorithm to (V, I~na) using the r, founid in Step U2 as

initial values for the integer vertices and infinite initial v:Lluies For tlie real vertices;

Step Il produces a graph II = (1/1, V1 X V1/,b) which is feasible if' and only if' (; is Feasible,

Step 12 solves II if II is easible, and Step U3 ex tends the solution 'rorn tihe set V of integer
vertices to the entire vertex set. V. Step UI can be perrorrrnd in O(lVl:') ti,,,e by the Floyd-

Warshah algorithmn [81 or in O(IV lEl + I1 V I Ig IVl) time by Predinan arid rarjan's improved
version [4) of' .Johnson's algorithrn 171. Step U2 can be performed by the ldlli ran- Ford algori t.hr n
and takes time O( V1 t ) because II is a complete grap h. The cost, of Step l1 dominates the cost
or Slp U3, which takes only O(IVjlEjlI) time.

Algorithm U extends naturally Lo the case in which there are multiple classes of periodic
constraint.s, provided that each period (e.g., I week) is an exact multiple of tire next smaller
period (e.g., I (lay). First, Step UI is applied (with an appropriate scaling of the edge weights)
to produce an equivalent problem in which the most loosely constrained class of vertices in the
origiral problem is eliminated from consideration. This new problvnn is then solved recursively
(or by direct application of Algorithm T if only two classes or vertices remain). Finally, the
solution is extended to the entire set of vertices, as in Step U3.
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