#1591 028 A WIXED-INTEGER LINEAR PROGRAWNING PROGLEN WHICH IS
[7h0-n131 EFFICIENTLY SOLVABLE.. U> WASSACHUSETTS INST OF ms:u in '
UNCLASSIFIED C LEISERSON ET AL. OCT 87 WIT/LCS/TN-343 F/G 12/4

A RO TN
¥
N

';‘:".? .:.":‘f':q“:‘“bﬂ‘?&‘.“?&‘(’)ﬁ‘!‘:‘!’:“.'v“"'_-"..'..‘:h‘:o"i‘u‘fﬁ‘.lc.t'l‘;"‘.'l'.‘l'-'l NN R I SO O I REA
) -
\

o
TErFERE
i
w
N
¢

frr
H
rr

l.1 :
= g | ‘.)-,;..-
s, 2y

HE2s s pes o2

. |

L L

X

"“.
ARG
"..'

4 &~

PR

[@ o L
¢ A A T O P SO PR PR, Lo
N AN M TR LA N R R, R NS
'-f' " \fﬁ.ﬁsésﬁﬁ. 5 ~$~ Shat oy Ot xa
ot ta A AR
.'l:o'": N AN ARG an N
‘:0".0""“.0".0, X |'.~... A "‘..l., WS T W0 B8 90,50 5,

L J
R T

-

o

B33 A 23 0 B BB e B0 20 A Bt het It At a2 0.0 B 00 08t B8 TS fad.] 4. ey e %0080 0°8 8'0 0% 178 4% 0% 4 470 a% ¢ 4V, = ~a¥e "oy >
) e - t\./q)'

. N

. . Nt

. 08
L Qe
_ . &

tov Be® }.

LABORATORY FOR @% MASSACHUSETTS 2
COMPUTER SCIENCE 15 TECHNOLOGY e

ﬁ— - — - ﬁ .:‘::::E::'i'.‘n'
divtie
.’C'.'l'.'l.p

MIT/LCS/TM-343

Tt

A MIXED-INTEGER e
LINEAR PROGRAMMING S
PROBLEM WHICH IS R
EFFICIENTLY SOLVABLE G

AD-A181 028

Charles E. Leiserson N
j James B. Saxe PR
LS G

DTIC AR

R ELECTE o
MAR O 7 1988 N
A

- ,\ ,:‘)z
H R

October 1987

.('-"u
S &

‘:‘
LA

‘"
oY,

-~

..
Sy
-'..’

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

Cels

7.
Fs

FPLLLT,
Ly

" DISTRIELTION STATEMENT ’A”"

et o 88 03 1199

R S AR e S g S S S e R N

8c. ADDRESS (City, State, and 2IP Code)

1400 Wilson Blwvd.
Arlington, VA 22217

| 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO

TASK
NO

WORK UNIT
ACCESSION NO.

11. TITLE (include Security Classification)

A MIXED-INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLF

—

12. PERSONAL AUTHOR(S)
Leiserson, Charles, and Saxe, James B,

13a. TYPE OF REPORT 13b TIME COVERED

14. DATE OF REPORT {Year, Month, Day)

. 1S PAGE COUNT
Technical FROM T0 1987 October 11

'16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Algorithms, linear programming, mathematical programming,

graph theory, shortest paths, combinatorial optimization

equalitv is in the form x4-xj £ 840
linear programning variant of the groblem.

knowns are required to be integers,
sentation of the constraint system and runs

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
Efficient algocithms are known for the simple linear programming problem where each in-

Furthermore, these techniques extend to the integer

mixed-integer !inear programming variant where some, but not necessarily all, of the un-
The algorithm we developzis based on a graph repre-

applications including optimal retiming of synchronous circuitry, VLSI layout compaction
in the nresence of power and ground buses, and PERT scheduling with periodic constraints.

This paper gives an efficient solution to the

in O(}VE[+ |V|° 1g)V]) time. It has several

20 OiSTRIBUTION/ AVAILABILITY OF ABSTRA(T

(3 uncassiFieo/uNUMITED [SAME AS RPT [J DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

222 NAME O° RESPONSIBLE INDIVIDUAL
| Judy Little

22b TELEPHONE (include Area Code)

22¢ OFFICE SYMBOL
(617) 253-5894

A Mixed-Integer lLinear Programming Problem
Which Is Efficiently Solvable

Charles 15, Leiserson
Laboratory for Computer Seienee
Massachusetts lustitute of Technology
Cambridee, Massachusetts 02139

James B Saxe
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract Bllicient algorithms are known for the simple linear programming problem where
cach inequality is of the form x; — 1, < ay;. Furthermore, these teehniques extend to the integer
linear programming variant of the problem. This paper gives an elficient solulion to the mixed-
integer lirear programming variant where some, but not neeessarily all, of the unknowns are
required to be integers. The algorithm we develop is based on a graph representation of the
constraint system and runs in O(|V[|E} + [V [1z [V]) time. Tt has several applications including
optimal rctiming of synchronous circuitry, VLSI layout compaction in the presence of power and
ground buses, and PERT scheduling with periodic constraints.

Keywords: Algorithms, linear programming, mathematical programming, graph theory,
shortest paths, combinatorial optimization.

WKWW"U‘L"I}'LY‘)Q}H_‘(Y
« *W ¥

\..

L

Accession For

_ NTIS GRAI

DTIC TAB 0
: Unannounced O
o . Justiticatton . |
"Q ‘,-, .
e Ct
) |
~ Distr 1bution[_~7 o
w . Avatlability Codes

iAvau and/or
Dist | Special

A
K

This rescarch was sopported in part by the Defense Advane d Hesearch Projects Ageney under Contract NOOG14-
RO C-0622 and by the Olee of Naval Researelr nnder Conirvr NOOOTA 76-C-0370.

mﬁ“ﬂﬁm{&“&m& W) ‘ . . ‘ $. 1,09, 95,0.9, ‘ u‘ N '\. ¥ \\-\"‘\‘ N) ! n’

(%3 %y’
Pd -
ﬂ
. A
40

U
tht

'Jn:' v

7.
P4
-
o

3% S

}
LY
AP

"

LR PG At o Nl NOM M3 MM R RO IO X et L MU S AN R T R A A A A NN TN v BN “Boe g% AVavaka'sbatal ¥al Y, A 8.0 08006 1R €' 4 2% ‘2*0°a?s %] T >

l'-,'
LN
‘G:f' !
’.’Ji “ ‘\7 \ _“
. i - R o .
e .)
:::,‘ - 1. Introduction cot
Q) N
;:::1 “OMuch research has centered on the problem of finding shortest paths in graphs, It is well
LR o © . . N ,
Wty kvown th:t there i a direel correspondence between the single-source shortesi-paths problem
" and the fo lowing simple linear programming problem? /
- : ' o -
',::; Let S be a sgt of linear inequalities of the form ry — ry % a5, where the 1y are unknowns
“of, . . .
e and the a;/are given real conslants. Delermine a set of values for the z¢ such that the
* . e . . N . . :
e tnequalities in S are salisfied, or determine that no such values erist.
4
e This paper considers the mized-integer linear programming variant of this problem in which some
7 (but not wecessarily all) of the r, are required Lo be integers. The problem arises in the context
X of synchrenous cireuit '.)ptimi/.;xtimr{(.!b.] but it has applications to PERT scheduling and VLSI
3 I; ¢ aetion ns well, oiuwarid 0 a aar oS, Copeg o Y0 yp!t ¢ =
o ayout corrpaction as well. "Jeswrid oa ’ . ‘ : :
;:.l Before formally defining the mixed-inleger programming problem, we restate the linear pro-
"o . \ .
R gramming problem above in another Torm.
" Prob em L. Let (¢ = (V, [a) be an cdge-weighted, directed graph, where V = {1,2,...,
4G [V[} i1 the vertex set, the set I) of edges is a subset of V X V', and for each edge (i, 1) € 15 the
' \ edge vieight a,; s a real number. Find a vector x = (zy,xy,..., 1y) satisfying the constraint
that
4 , ;
e ry =¥ < agj
o or al (i,7) € I, or determine thal no feasible vector ezists.
by)
. [. - . M Al
':o. The grapl G is called a constraint graph for the linear programming problem. There are
O . .) ; . .
::. three advintages in adopting a graph representation of the problem. First, an adjacency-list
. . . . ' .
'.:'.'n representazion [, p. 200] of the constraint graph ¢ is more cconomical than, for example, a
E o B
"y linear programming tableau or, when the graph has relatively few edges, a matrix of the ay;.
S Sccond, Problem 1 frequently arises in situations that are naturally deseribed by a geaph. Finally,
3‘*’ the graph-theoretic formulation helps in understanding the algorithms that solve this kind of
v"."' problcm.
4 . . . , 3
Y t A method for solving Problem L was discovered in the late 1950°s by Ford and Bellman |8, p.
o 74]. Yen [13] gave some improvements to the Bellman-Ford algorithm as well as a cogent analysis
o showing that its running time is G(IV|*). "This bound is casily improved to O(|V1|E]) by using
& :; an adjacency-list representation for the constraint graph.
ol The Be Iman-T'ord algoriithm can alse be used to solve the integer lincar programming variant
4 g g I g
::, of Problen L, in which all the z; are required to be integers. I the edge weights aq; all happen to
s . be integers, the Bellman-Ford algorithm will produce integer values for the r,. If the a,; are not
5 integers, however, bat the r, are required to be integers, cach edge weight a,; may be replaced
Mo . P, . . . e
A by lai;] w thout aflecting the satisfiablity of the inequalities.
f: ’ The locus of this paper is the mired-intcger variant of Problem L.
s Probem MI. et (; = (V,V,,IX,a) be a cdge-weighted, directed graph, where V =
R {1,2,..,]V|} @3 the vertexr set, the sct Vi is a subset of V, the sel I of edges 13 a subset
of V.V, and for each edge (7.7} € IV the cdge weight a,; is a real number. Find a vector
e S :
> T = (2, Zq,..., Iy} salisfying the constraints that
e
»
A Iy —r S Ay y
:
Jor ali{i, j) € 10 and tha! 1, € Z for clli €V}, or determine that no feasible vector ezists.
=
D
e 1
\
&
8
l:|:
Yo
o

e S Y ST e S SN B e N I S A A g T A

o>

o A

4
b
The vector £ = (£, F2,..., Iv) is called a solution to graph G, and if graph i has a solution,
we say that (0 is satisfiable. When il is clear from context, we use the same terminology for
Problem L.
In addition, we shall refer to the vertices in V) as the integer vertices of ¢ and the vertices in
] Ve = V =V} as the real vertices of (G. We also partition the set of edges into two sets depending
] -
on whether the vertex at the head ol the edge is integer or real:
Ey={(sj)€L|jEVi},
Er={(i,5)€ 1| € VR}.
3
Y This paper presents two algorithis Lo solve Problem ML The first, which runsin O(JV ||V,]| F])
time, is a straightforward extension of the Bellman-Ford algorithm. The second is more sophis-
; ticated and has a running time of O(V)[IL+ [V [|Vilig [V]). We conjecture that the O(|V]|1))
running time achieved by the Bellman-Ford algorithm lor the pure linear programming and pure
integer programming versions of the problem is not achievable in general for sparse instances of
’roblem ML

The remainder of this paper is organized as follows. Section 2 reviews the Bellman-Ford
algorithm. Section 3 presents a simple relaxation algorithin for solving Problem Ml. Section 4
discusses three techniques Dijkstra’s algorithm, reweighting, and I'ibonacei heaps which are
used in Scetion 5 Lo construet an asymplotically eflicient algorithm for Problem Ml We discuss
applieations and present some concluding remarks in Section 6.

2. Shortest paths and the Bellman-Ford algorithm

This section reviews how the Bellman-Ford algorithm solves Problen L. Although the results
of this seetion are well known and ean be found in most textbooks on combinatorial optimization
(see, Tor example, [8, p. 71]), we repeat the material here for the reader’s convenience.

There is a natural correspondence between Problem b and the graph-theoretic single-source
shorteat-paths problem. Let ¢ = (I, V,a) be an instance of Problem L. Suppose that for cach

. F B Fo" o w e VW % B

LA gl oin gut o of

vertex 1€V, thereis a path o 7 from vertex 1, and let dy be the weight of shortest (least-weight)
path from vertex | to vertex 1. (At the end of the seetion, we shall discuss the case in which some
vertices are not reachable from vertex 1.) Then for any edge (7,7) € IY, we have d; — d; < ayy
since the edge (4, 7) ean be appended to a shortest, path from vertex 1 to vertex ¢ to produce a
path fram vertex 1 to vertex 3 of weight dy + a,;. Thus the shortest-path weights d arc a solution
to (.

Whenever G is satisfiable, there are inlinite number of solutions. For example, if r is a solution

b i A i i e

vo o thien aniformly adding any constant k to cach x, yiclds another solution y, where yy = r,+k
roeact o Vo The assignment 1, = d,y gives each o, its fargest possible value subject to the
cortraint that 1y = 0. To see this, consider any path p of weight o, from vertex | to vertex 1.
I the inequalities associated with the edges of p are sutimed, the unknowns associated with the
inte rmediate vertices eancel and the result is the inequality »y — 2y < d,.

LR 4 i g

Whenever the graph (7 contains some cyele ¢ whose weight is negative, the shortest path
woeipht from vertex 1 Lo any vertex ¢ on cyele ¢ is undefined because the weight of any path
to vertex 1 ocan be diminished by appending a traversal of ¢ In this case the graph G is not
«atishiable, If the inequalities associated with the edpes of ¢ are summed, all the unknowns z,
cancel, and the resulting inequality asserts that 0 is less than or equal to the weight of ¢, which

is Talse.

A LA VNN

The Bellman-Ford algorithin, which is piven below, solves Problem L by finding the weight
of the shortest path to cach vertex from vertex f. Should the graph contain a negalive-weight
eyele, the algorithim reports that the praphois unsatisfiable by calling the procedure Fatl, whose
semanlics we leave unspeeified.

Algorithm BF (Bellman-Ford algorithm).

BEL 1y~ 0;
BI'2. fori1« 2to |[V|do r, « oo;
B3, for ind — 1 to |[V]|--1 do

13179, foreach (7,7) € I do

BIs, Ty min(r,, 1,k ay);
BI'G. foreach (i.7) € IV do

BI°7. if r, > 1, + «,, then Iail;

For cach vertex j € V', the Bellman-Ford algorithmn iteratively updates the weight z; of a
tentative saortest path from vertex 1 Lo vertex J. After initialization, the algorithm makes [V |- 1
passes through the edges in I5 and relazes each edge (7, 7) by computing z, « min(z,, z; + a,;).

A simple analysis due to Yen [13} indicates why the Belliman-Ford algorithm works. The
weight r) converges to the weight o, of a shortest path from vertex | to vertex 7 if the edges on
the path are relaxed in order along the path. The sequence of edges relaxed by the Bellinan-Ford
algorithm consists of [V | ~ 1 copies of some ordering of I, and therelore contains every vertex-
disjoint path as a subsequence. I there are no negative-weight cyeles in G, then cvery shortest
path is vertex disjoint, so cach r, converges to the shortest-path weight d;. On the other hand,
il there is a negative-weight eyele in the graph, the algorithm detects this condition by iterating
once more through all edges to see whether any ol the inequalities remain unsatisfied.

The Bellman-Ford algorithm as given above determines the weight of the shortest path from
verbex 1 to each vertex, and therefore solves Problem I whenever all verlices of G arce reachable
from vertex 1. The code can be adapted 1o solve Problem 1, on arbitrary graphs by simply
changing the initialization step (lines BET BE2). n particular, if cach z, is assigned a linite
initial value u,, the relaxation in lines BE3 BI'S sets each z; to its maximum value subject to the
constraints that r, — r. < a,, for each edge (7,7) € I and that z; < u, for each vertex 1 € V.
Notice that whenever the constraint graph s satisliable, it is satisfiable subject to the additional
constraints r, < u,. Shonld the incqualities be inconsistent because there is a negative-weight
eveles in the graph, the relaxation will not converge to a solution, and the inconsistency will be
deteeted by the test in dines BIf¢ BIF7.

\‘

Sy

K

3. Simple relaxation algorithms for Problem MI

SR
{Aff

As was mentioned in the introduction, Problem Ml ean be solved directly by the Bellman-
Ford algor thin when Al unknowns are real (’roblem L) and when all unknowns are integer.

r 7

The combinstion of integer and real unknovons, however, scems to make the problem harder.
In this seetion, we gain some intaiticon about the structure of Problem Ml by introducing two
algorithms that solve iCin OV VHIED time much the same way as the Bellman-Ford algorithm
solves Problem L. The asymptotically ellicient algorithm in Section 4 is derived {rom the second
ol these alyorithms,

A natural approach to selving 1’roblems M is to see whether the Bellman-Ford relaxation
approach can be made to work. Since we have both integer and real vertices in the graph,

3

(3% ey R A N PN A R 2 N T AT R A S N N A R N NG AN A GARN
[mmmmémmm:h-ww-~~--~~=~x WATAIATAURIAEATIES X

Figure 1. An instance of Problem ML Integer vertices (Vy =2 {1.4}) are
shown as squares and real vertices as cireles.

however, we must modily the refaxation step BES in the Bellman-Ford algorithm to produce an
integer vadue whenever 7 is an integer verlex (line R6). This approach does in fact work, but
it reauires more iterations than the simple Belhman-Ford algorithm. The next algorithin solves
Problem MI. The number of iterations nin line R2 will be determined in the analysis following

the algorithm.
Algorithm R (Relazation).

R1. foreachi €V do z, + 0;
R2. for ind+~ 1 ton do

iR3. foreach (1,7) € £ do

R4. begin

R5. z, «— min(z;, i + a);
6. if j € V; then z; « |z;];
R7. end;

R8. foreach (1,7) € ¥ do

k9. if z; > z, + a,; then Fail;

In order to determine a value of 7 such that Algorithin R works, we introduce the notion of
a reducting path. Let p be a path starting at some vertex k, and suppose that zy is initially set to
0 and that all the remaining , are inilialized to co. Suppose the edges in path p are traversed
in order starting from k, and each edge (4,) along the path is relaxed as in stalements RS R6.
I cach relaxation of an edge (2, 5) reduces the value z,, the path pis called a reducing path.

Whenever asequence of edges contains all reducing paths as subsequences, the relaxation of
cach edee in the sequence in order yiclds a sotution. (The proof is analogous to Yen's analysis
13 of the Bcllman-Ford algorithm.) The Bellman-Ford alporithm solves Problem 1, because in a
satistinble graph with only real vertices, cach vertex occurs at most onee on any single reducing
cath. {And in aet, every shortest path is a reducing path.)

When some unknowns are integer and some are real, however, it is possible for a reducing
path 1o visit the same vertex more than oncee, even if the graph is satisfiable. For example, in the
craph shown in Figure 1, the reducing path p = 3 =42 —+1—-2—-3 54532 visits verlices
2 and 3 three times each, If all the z, are initially set (o 0, the edges of p must be relaxed in
their order along the path Lo achicve convergence. Morcover, relaxing the entire edge set in some
arbitrary order only 3 = V| = 1 times might not achieve convergence. Since the value of nin
line R2 must be at least the maximum number of edges in any reducing path, the value [V]| =1,
which was used i Algorithm BE, will not sulfice.

4

LGOSt dat A 8 4Vt 4.0 S a AL ERSR L0 e o P A% 20 a0 B0, RO RS Sl Sl Sy V.“-'_:‘;

22" 2t

%
L

Y

4

CoLaN Lot 01 ol S it i S e AR e e)
W
o,
»
=
Fortunately, reducing paths are never very long in satisfiable graphs beeause of the following ::
lemma. o8
Lemiuna 1. Suppose (0 == (V|V}, [2,a) 13 satisfiable. If p 13 a reducing path in (J, then
1. p vsits no integer vertex more than once, and
2. p never wsils the same real verter lwice without visiting some inleger vertez in Y,
between. O
Proof. II cither condition is violated, then the reducing path p can be extended indefinitely by p
repeating Lhe eyele that causes violation. § _‘::
Lemma 1 allows us to determine a value for noin line R2 of Algorithm R such that the = ~
converges Lo a solution whenever ¢ s satisliable. Any reducing path contains each integer vertex :'\:
al. most orzee and cach real vertex at most [V + 1 times. Sinee the number of edges in a path is .:)
one less than the number of vertices, any reducing path for a satisliable graph can have no more ;:
than [Vi[-F (Vi + 1)[Ve| =t == [Vi{[Va] + V] =1 edges. Thus the limit n of the outer loop in (o
Algorithm R should be set to V7 [|Vel 4 V| = 1. The overall running time of Algorithim R is thus »
OV IVl). 7
This analysis suggests the following algorithm which is slightly more efficient than Algorithm O
R, and which Torms the basis of the asymptotically eflicient algorithm presented in the next \‘_
section. e
Algorithm M (Modified relazation). -
MlI. foreach i € V do z; « 0; ::.;
M2. for ind — | to |Vg| do :\' .
Ma3. foreach (i, j) € Fp do Y
M1, z; « min(z;, ; + ag;); ")
M5, for ind2 « | to |V/| do ,-.
M6. begin .
M7. foreach (¢,j) € /] do)
M8. ry; — min(z,, |z + ay)); |=3
M9. for ind — 1 to |Vg| do o
Mto. foreach (7,7) € I'p do !
MIil. 7, — min(z;, 7; + ai;); f_:
M12, end; ::-
MI3. foreach (i,7) € I do o
Mi14. if 7, > 1, + ay, then Fail; g
The only difference between this algorithm and Algorithm R is that it (reats the edges in Ej 5‘
separately from the edges in Iog. In lines M7 M8 of Algorithin M, cach edge in 17} is relaxed once. :;
There are V| such passes over Ly which are preeeded, followed, and separated by ezhaustive @:
relazations of the edges in g (lines M2 M4 and M9 M11). In cach exhaustive relaxation of Kpg, ‘:::'_
edges are relaxed until no further changes in the values ol z; are possible for 7 € V. (Actually, e
the relaxations in lines M2 M1 and M9 M1 are only guaranteed to be exhaustive if there are =
no negative-weight eveles in £ I there are eyeles of negative weight, however, this condition ::
is detected at the end by the convergenee test in lines M3 M14.) o
3
D
[} '
5 ol
N
(]
[]
~
-

-r._f._A’f.,f~f~:}r._ri:§r,‘f L e L e L e At

9)

4. Dijkstra’s algorithm and rewcighting

Secetion & gives a more eflicient. algorithim to solve Problem M1 than cither Algorithm R or
Algorithin M. Three important technigques are used in the algorithm. The first is Dijkstra's
algorithm which finds shortest paths in a graph from asingle sourec in the ease when all the edge
weights are nonnegative. The second is reweighting, which is a technique due to Bdmonds and
Karp {3} and used by Johnson 7] in his eflicient algorithm for solving the all-pairs shortest-paths
problem. The third is the Fibonacet heap data structure due to Fredman and Tarjan 1], which
T+ Vg V)

Given a graph G = (V, I4,a) such that all edge weights a,, are nonnegative, Dijkstra’s

is an improved priority quene that makes Dijkstra’s algorithi run in time Of

algorithm computes for each vertex 7, the weight d, of the shortest path from vertex 1. Beeause
cach edge is relaxed exactly onee, this algorithm is nster than the Bellman-Ford algorithm which
solves Lhie saune problem for arbitrary edge weights. Dijkstra's algorithin derives its elliciency from
the observation that along any shorfest path from vertex |, the shortest-path weights d, form a
nondecreasing sequence il all the edge weights are nonnegative. Thus, a sequence consisting of all
edges (1,) € I in nondecreasing order of the distances d; contains as subsequences shortest paths
from vertex | Lo all vertices in V. Furthermore, such a sequence of edges can be computed on
the fly using a priority queue. (The textbook [1] gives a proof of correctness for this algorithm.)

Algorithm D (Dikstra’s algorithm).
D1. Ty +— 0;
D2, for i« 2to|V|doz « o0
h3. Q—V;
D1, while @ # 0 do

D5. begin

D6. Choose 1 €) such that z; = min,cq T,;
n7. Q « Q- {i};

DS. foreach j € Vg such that (1,5) € Eg do
N9, z; «— min{z,, z, + ag);

n1o. end;

W the set @ in the algorithm is implemented as a standard priority queue, each extraction
{lines D6 D7) and update (line D9) costs O(lg|Q]) = O(lg|V]) time. Thus the total running
time of Dijkstra’s algorithm is O(|1

g [V]). Frediman and Tarjan {4] deseribe a data structure
called Fibonacei heaps that supports arbitrary deletion in O(lgn) amortized time and all other
standard priority queue operations (including update) in constant amortized time. By using a
Fiboraeei heap in Dijkstra’s 2igorithm, they show that the performance can be improved to
vl Vg v

Sinee Dijkstra’s algorithm is equivalent to the Bellman-Ford algorithm on graphs with non-
negative edge weights, it can be used to solve Problem L on such graphs. This is not very
interesting in itsell, since any graph G = (V, 15, a) in which all edge weights are nonnegative
can be trivially satislied by setting z, to 0 for cach £ € V. Our interest in Dijkstra's algorithm
come= from a stronger property of the solutions it finds. Suppose the initialization step (lines
D1 D2} is changed so that cach variable z; is initialized to a linite value u,. Then the relaxation
procedure in lines D3 D0 will set cach ; to its largest possible value consistent with the con-
straints that) — ry < a,, for cach edge (1,7) € I and that 7, < u, for cach vertex 1 € V. In
other words, lines D3 D10 of Dijkstra’s algorithm are Tunctionally equivalent o lines BE3 BIS

6

SRSl esakd

v 1
PR

<

.'.f.! ry

IR A AR R I NIRRT T » .y Y e a ot .

'l g B . B . O . . .) s, . - ' | - -’ “ " . L N I‘.Q - I(M’. \‘4 .‘~‘
4]
Y .
i3
. . 3 - Y
1y of the Bellman-Ford algorithm provided that all the edge weights a,, are nonnegalive. Sinee a :
‘t" graph with only nonnegative edge weights can never contain a negative-weight evele, no test for :
I convergenee is neeessary in this ease, .
The efficient algorithm we shall present to solve Problem Ml is a modilication of Algorithm
) M. Notice that lines MY ML of Algorithim M exhaustively relax the edges in £z in a manner '
f similar to lines BI'3 BES of the Belhman-Ford algorithm. In Algorithin M, however, this code is N
b\ exeeubed many times. The cllieient adgorithm to solve Problem Ml uses o trick Lo replace this "
* code with code based on the more ellicient relaxation procedure in lines D3-D10 of Dijkstra's)
algorithm This trick is the teehnigue of rewcighting due to Kdmonds and Karp [3].
Lemma 2. Let (; = IV, K, a) be an cdge-weighted graph, for each 1 € V let v, be a real “
number, and let [l =V, 1,b) where by, = a,, + r, - r, for each edge (1, j) € I2. For each :
vertez 1 € V' let ry be a real number and let y, = ry—r.. Thenr,—r, < ay; for all(i,j) € I 3
“if and only if y; - y. <7 by for all (i, /) € I (that i3, r 18 a solulion to (i if and only if y 13 ‘
a soli:tion to f1.)
Proof. Trivial. §
We call the vector r = (r.,rg,...,rM) a reweighting of the graph G. .
5. An asymptotically eflicient algorithm for solving Problem MI
This scetion shows how Dijkstra’s algorithm and reweighting ean be incorporated into Algo- Y
rithin M to yicld a faster algorithm for solving Problem MI. Given a graph G = (V, V}, K, a), the .
idea is to 'ind a reweighting r such that the reweighted graph 11 = (V, Vi, £, b) has cdge weights ;
by = ay; -, —71; > 0 Tor all edges (4, 7) € Fp. Lemma 2 guarantees that G is satisfiable if and s

only il /1 is satisliable and also that a solulion y to I can be converled into a solution x to G by

selling z; = yy + 7, for each 1 € V., The advantage gained by transforming the problem on G to .

a problem on /1 is that the relaxation portion of Dijkstra’s algorithm (lines D3 D10) can replace .

the Bellm.an-Ford relaxation (lines M9 M11), which is the most expensive part of Algorithm M. &
The first stage of the algorithm is to determine the reweighting values 7y for all 1 € V and

the new edge weights by = a; + 7, — r; for all (7,7) € IY. We must choose the values ry such i

that bg; > 0 for all (4,5} € Isg. Since this is cquivalent to requiring that 7, — 7y < a, for all y
(2,7) € I2p, values for the 7, can be found by applying the Belman-Ford algorithm to the graph ;
(V, Egya). The first few lines of the algorithm are:
Algorithm T (Efficient algorithm).)
TI. fori€V dor « 0 “
T2, for ind — 1 to |Vp| do :
T3. for (1,7) € I'p do -
4. ;= min{r;,ry + a,5); :
T5. for (i.j) € Ik do .
T6. if r, > r; + a;; then Fail
T7. for{i,j) € F do .
"’ TS. by = a,; +ri =155 :
. »
;‘ If the Adeorithin fails in line T6, then there is acyele of negative weight among the edges in "

Egoand honee eraph ¢ ds amsatisfiable even in the absense of integer constraints. Otherwise, the
values by, computed in line T8 are nonnegative for all (1,7) € Kg

7

Y R, NN N TSI SRR
W AT W AR N N A T R A A OO N AN

P> phe Bial BA S W i b e St e R AR A RO RS R i ol Sl b B el e b et Suf SEANE A NI NCAL S Jb G it S AL

.
A}
~

The next stage of Algorithin T is Lo solve the mixed-integer problem on the graph {1/
(V. V), 1), The algorithm alternately performs single relaxation passes on the edges in Iy and
exhaustive relaxations of the edges in 15k, as in Algorithin M. We begin by initializing the values
4. which will converge to a solution to 11 if H is satisfiable.

T9. fori€V doy, + 0

This initialization has the added fortune of subsuming the first exhaustive relaxation of g (lines
M2 M1 in Algorithm M), After the exceution of line T9 we have y, —y; = 0 -0 < by, for all
(1, /) € Iy, which means that the edges in L are already exbaustively relaxed.

The next portion of Algorithin T parallels lines Md MI2 ol Algorithin M and s where most
of the computing gets done.

T10. for ind — | tu |V;| do

T1L. begin

Ti2. for (i,5) € I} do

T13. y, < min(y,, [y + b))

T4, Q0 V;

Tih. wlile Q # 0 do

T16. begin

T17. Choose 1 €) such that y; = min eqQ ¥y;
T18. Q— Q- {1}

T19. for j € Vg such that (i,7) € Iz do
T20. y; < min(y;, ¥ + bij);

T21. end;

T22. end;

This code solves the problem on graph [f in alinost exactly the sime way that Algorithm M
would. ‘The only dillerenee is the method by which the edges of g are exhaustively relaxed.
Whereas lines MO MU of Algorithin M perform the exhaustive relaxation using the Bellman-
Ford algorithm, lines T14 T21 of Algorithm T take advantage of the nonnegativity of the by, for
(7,7) € Iy and use Dijkstra’s algorithm.

The final part of Algorithm T is to check the convergence of the y and to apply Lemma 2 to
produce a satislying assignment z for the original graph G.

T23. for (i,7) € It do

&'.

-
Ted. if y; > yi +b,; then Fail; .
5. for (i,7) € K do "
T26. o=y g -:::

Lines T23 T21 check the convergence of y by testing the incqualities associated with the edges '\
in Iy The inequalities resulting from edges in Iy need not be eheeked beeause the relaxation N7
in Jines THT22 is guaranteed to be exhaustive, {If there were negative-weight eyeles in [Fg, we :

would have detected this in lines TH |6) W

Lines 125 T26 convert the solution y to graph 1] into a solution r to graph ;. Lemma 2 -~
ensnrcs that the inequalities 7, — 7, < ay, are satislicd, but we must also show that the r, are ::_
integers for all 7 € V. For cach 7 € Vy the value y, is an integer, however, and furthermore, the :-

values of the r, produced in lines T1 T4 are zero for all 2 € Vi Thus for all the integer vertices, D

the r, e integers. .‘

[n summary, we have proved the following theorem, ~

8

EAANE X Ao

) W Wy " P P B A N T S R sl A e I B e L LA PG A .
W" \Q‘ "' 3 “\'s}\'.l Qo "‘}.a'.'.n:“.r,‘.-,": LR SOPL A i ML AN S AN AV AP L S PRI L P PRI PR 3. s

Thecrem 3. Algorithm T solves Problem MI.

The rinning time of Aoarithc U0 OCVHET « 00 IV s

mented wing a Fibonaeet heap.

VL the priority queue is imple-

6. Applications, extensions, and conclusions

The so vtion to Problem M was demanded by i problem coneerning optimization of sychronous
cireuilry oy retiming (91 This soetion brielly deseribes two other problems compaction of
VEST eirenits in the prosenee of power and around buses and PERT scheduling with periodie
constraints which can he reducea o Prablens N We adso consider an extension o Problem MI
where muliple classes of perisdic consieaints must bhe satisficd. (For example, some of the r, are

required Co be integers, and others to be exact multiples of an ieger constant ¢,)

Circuit compaction

Optind (one-dimensionad) compaetion o VESEeireuit fayvout~ B wnothor application of the
Betlman-Ford alvorithm. Each layout Teature is given a variable representing an r-coordinate,
and the design rules are enloreed using constraints of the forny s r, < a,,. It may be desirable,
however, 1o allow leature ¢ to be 1o the left of Teature j or viee versa, but not to allow them
to occupy the same position. Unfortunately, it one wishes to allow this kind of transposition of
[ayout feasures, cither optimadity or performance must be sacrifiecd heeause the problem becomes
NP-complte [10]. But for cortain compaction problenis arising in practice, transposition of layout
features cin be allowed.

Some cesign methodologics enforee the placement of power. ground, and clock to be at regular
intervals. For example, one signal processing system [H] requires that these wires be repeated
every 20000 and that the width ol all eells in the system be integer multiples of ihis distance.
The desigi er is then constrained to build a new ecll so that the bavout fealures are tightly packed
among the global wires. In this context, where some Ly out features may po on one side or the
other of some giobal wire bt inay not overlap, the compaction problem ean be formulated as
Problem ML

PERT scaieduling

Suppo:e we have a constraint graph with vertices representing milestones in a project, and
cdec-weiph s indie:ding the fimine constraints between milestones, Generally, the Belliman-TFord
algorithm »~an be used to provide an optimal sehedaling of the milestones. I a work day is from
9:00 aom. to 5:00 nan., however, we oy ot wish to sehedule a one-hour job to start at 4:30
p.e Advineing the Job to the next day may eause an carlier job to be advanced as well if the
two Jobs ace canstrained to full near each other. The problem of PERT schedualing with periodie
constraints ean be cast s Problom ML

Intuitively, the mined-integer formalation allows one to inelude Tor cach job (1) a real variable
representitp the starting Ume of the job, and (2} an integer variable representing, say, noon on
the day thejob oceurs, Thus one ean include constraints which say, for example, “This job must
start befors 4:06 pon. on the day it oeeyrs”

Multiple periodic constraints ‘

siuppos s that i the PERT scheduling application mentioned above, we also wish to take into
constderal on eonstraints invelvine weekends. To do this, we would associate with cach job a
third vari: ble representing, say, Sunday noou of the week during which the job occurs. We

9

OGN g

s
- E I UL P ey
T LGS AT 5t L TR, R A4 2 DO, Ph G 6N

¥

1% " ¥

steTn

. _w

LN o]

A R N e N)

g

e

s s
D 7‘.(.

'Qf{r".
N .

h {\,‘i.“i‘.'l ';'j

TN S

O D R e 2 A T R

are then required to solve a variant of Problem M in which there are two classes of periodie
constraints some variables are required 1o be exacl integers and others Lo be exact nudtiples of
7 while the remainder may have arbitrary real values.

The solution 1o Lhis problem is based on the Tollowing algorithm for solving Problem ML {We
assume without loss of generality that G = (V, Vy, I, a) is strongly conneeted).
Algorithm U
Ul. if (V, I, a) contains a negative-weight cycle then Fazl
else foreach (i,7) € V; X V| do
bi; « |the least path weight from 1 to j in (V, I, a}l;
U2, if (Vr, Vi X Vi, b) contains a negative-weight eycle then FFazl
else find an integer assignment x on Vy such that z; —r; < by, for all 7,5 € Vi
U3, Apply the Bellman-Ford algorithm to (V, Ifg, a) using the £, found in Step U2 as
initial values for the integer vertices and infinite initial values for the real vertices;

Step Ul produces a graph 11 = (V;, V; X Vi, b) which is Teasible if and only if ¢ is feasible,
Step U2 solves I i H is feasible, and Step U3 extends the solution from the set Vy of integer
vertices Lo Lhe entire vertex set V. Step Ul can be performed in ()(]Vl"‘) time by the Floyd-
Warshall algorithm [8] or in O(|V ||| + |V |V]1g V) time by Fredman and Tarjan's improved
version [4] of Johnson's algorithm [7]. Step U2 can be performed by the Bellman-Ford algorithm
and takes time ()([V,];‘) beeause 1 is a complete graph. The cost of Step Ul dominates the cost
of Step U3, which takes only O(|V{|I£g]) time.

Algorithm U extends naturally to the case in which there are multiple classes of periodic
constraints, provided that each period (e.g., 1 week) is an exact multiple of the next smaller
period (e.g., 1 day). First, Step Ul is applied (with an appropriale scaling of the edge weights)
to produce an cquivalent problem in which the most loosely constrained class of vertices in the
original problem is eliminated rom consideration. This new probicin is then solved recursively
(or by dircct application of Algorithm T if only two classes of vertices remain). [inally, the
solution is cxtended to the entire set of vertices, as in Step U3.

Acknowledgments

We would like to acknowledge the contributions by IFlavio Rose of MIT when we first studied
this problem. The three of us originally produced Algorithm U, which is more thoroughly
deseribed in Rose's master's thesis [12]. Thanks to Alex Ishii and Ron Rivest of MIT for reading:
drafts of the paper. Thanks also to Don Johnson of Penn State, Dick Karp of Berkeley, Gene
Lawler of Berkeley, and Nimrod Megiddo of CMU for helpful discussions.

References
[1] Aifred V. Ahe, John 5. Hopcroft, and Jeffrey D. Ullman, Data Structures and Algorithms,
Addison- Wesley, Reading, Massahusetts, 1983,

(2] . W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-
matik, Vol. 1, 1959, pp. 269 271.

[3] Jack ldmonds and Richard M. Karp, “Theoretical improvements in algorithmic efficiency

for network flow problems,” Journal of the Association for Computing Machinery, Vol. 19,
No. 2, April 1972, pp. 218 264.

10

r B _"
27y
b TS

- L
h)

LT N Y Y
AN

Y

2

P s 2

W E = e

vy W W

¥V ww I

Y vV ¥R

WYY W O _RORYTE ST Y R

4

ERE I 1% 1" 1/

2%

W\

0
7

(8]

[9]

[10]

(1]

[12]

(13}

Sa0 a g aR Saf Sup deg Ay Sl A 1, 9 00 8.0 0o g i + o' a* 2’y - b, N OO OO OO 'R

Michael L. Fredman and Robert Endre Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithins,” Proceedings of the 25th Annual Symposium on Founda-
tions of Computer Science, 1151515 Compuler Socicty, October, 1984, pp. 338 346.

Min-Yu llsuch, “Symbolic layout and compaction of integrated circuits,” Memorandum No.
UCB/ERL M79/80, University of California, Berkeley, December 1979,

Donald B. Johnson, “Priority qucues with update and finding minimum spanning trees,”
Information Processing Letters, Vol. 4, No. 3, December 1975, pp. 53 -57.

Donald B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” Journal of
the Association for Computing Machinery, Vol. 24, No. 1, pp. 1 13, January 1977.

llugene L. Lawler, Combinatorial Optimization: Networks and Matroids, llolt, Rinchart and
Winston, New York, 1976.

Charles 5. Leiserson, Flavio M. Rose, and James B. Saxe, “Optimizing synchronous circuitry
by retiming,” Third Caltech Conference on Very Large Scale Irtegration, Randal Bryant, ed.,
Computer Science Press, Rockville, Maryland, March {983, pp. 87--116.

Thomas Lengauer, “On the solution of incquality systems relevant to 1C-layout,” Proceedings
of the 8th Conference on Graphthcoretic Concepts in Computer Science, Carl llanser Verlag,
Munich, West Germany, 1982,

Richard F. Lyon, “A bit-serial VLSI architectural methodology for signal processing,” VLSI
‘81, John P. Gray, cd., Academic P'ress, New York, 1981, pp. 131-140.

Flavio M. Rose, Models for VLSI Circuits, Masters Thesis, Department of Electrical En-
gineering and Computer Science, Massachusetts Institute of Technology, March 1982. Also
available as MIT VLSI Memo No. 82-114. _

Jin Y. Yen, “An algorithm for finding shortest routes from all source nodes to a given

destination in general networks,” Quarterly of Applied Mathematics, Vol. 27, No. 4, 1970,
pp. 926--530.

N
e
)
A
e
-

“.‘. L. '"j

§ o g B o8 O A
- - - -

o g e]

YI,eeEL S AT

P'

[SN

v,

e AT

4

P

R T

. . p 2k 2t .
Ra'aY - WL W R 2at et 2t i L igabig 07 0 g L%) h Wu¥ N LWN

OFFICIAL DISTRIBUTION LIST

Director

Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research

800 North Quincy Street
Arlinacton, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
(ffice of Computing Activities
1800 G. Street, N.W,
washinagton, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR
NAVDAC-00H

Department of the Navy
Washington, DC 20374

o T ,‘n.'.v 5 'i;.‘v. L L

oL

BNttt i

2 Copies

2 Copies

6 Copies

12 Copies

2 Copies

1 Copy

1 Copy

BT AN

e

e

I.'u‘ /

T R AT

-

h)

3 YT
b3 b

20 7w

2 NS

oyt
»

LAY

i
Ak S ook

hateh Sl Sus. 9

IR

N

ArA

K,
hC
A
o
by
..
A
bt
s o
o
K3
l\d' .l-”.‘ .‘.‘I L

-

- o p
- -’ ~

St
DRy,

L
oY,

e Ty ..hl-ul-.%

% ! Qr A
2 A A L e et

s

PN @
N S s
& .m_\ua o8 .nm..mﬂ

ek I 2y WY

