
N IWSTINTION INTO THE USE O TEXTURING FOR REML-TINE 1/2
COMUTER ANIMRTION(U) NAVAL POSTGRADURTE SCHOOL
N ONTEREY CR T N EIER DEC 7

wC SIFI
F/G 12/5

el/m/mmmhhmmui
BBhmmhhhhhhmmu

hhhmhhmhhmmmhl

Ilk

IIM 1.0 LE281j6

IIode mlJN lill +++ .,

j

•I . " 1 '0

Id

'":-';:"'."+

,,", +""-.' ,'.''¢,+"- +..,,0"%"".,",'+" :.-,' . "'- . . '-""..+'- "-." ';" " '+' '+ +''+ "e-+ . . ". a

0

NAVAL POSTGRAOUATE SCHOOL
Monterey, California

IDTIC

ELECTEITHESIS SMA 24 i88

INVESTIGATION INTO THE USE OF TEXTURING
FOR REAL-TIMEF

COMPUTER ANIMATION

b

Timothy W. Meier

December 1987

Thesis Advisor: M ichael J. :yda

Approved for public release; distribution is unlimited.

P MoUE All NIICON

10;13wiDeber I 19 b 87ak

* 88 3 22 040

UNCLASSIFIED
SECURITY CLASS;F CA ON 0F - S DaGE

REPORT DOCUMENTATION PAGE
Ia REPORT SECURITY CLASSiFCATON Ib RESTRICTIVE MARKINGS

Unclassified
2a SECURITY C ASSiFICATiON ALTHORITY 3 DiSTRIBUTION ,'AVAILABILITY OF REPORT

2b DEC.ASStF:CAT1ON DOWNGRADING SCHEDULE Approved for public release;
Distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME 0 -
PERFORM'NG ORCANIZAON 1 6o OFF,CE SYMBOL 7 a NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School ICode 52 Naval Postgraduate School

6c. ADDRESS Oty, State. and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

.Ionterey, California 93943-5000 Mlonterey, California 93943-5000

Ba NAME 0 . ;,j;ND,NG SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN1ZA rON (If applicable)

8c. ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

!I TITLE (Include Security Classification)

INVESTIGATION INTO THE USE OF TEXTURING FOR REAL-TIME COMPUTER ANIMATION (u)

'2 PERSONAL AuTHOR(S)

Neier, Timothy W.
1 3a TYPE OF REPORT 1 3b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT
Master's Thesis - :Oi TO 1987 December 118

'6 SUPPLEMENTARY NOTAThON

'7 COSAT CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

P ELD GROUP S-B-GROLP Texturing, patterning, real-time texturing,

animation, graphics,
texture patterns

"9 ABSTRACT (Continue on reverse if necessary and identify by block number)

-Wt present in this study an investigation into the use of texturing on the
Silicon Graphics, Inc. IRIS for real-time computer animation. Using a tool
designed specifically for the IRIS for defining texture patterns, two
apprnaches to the design and implementation of software functions to fill
objects with multi-color texture patterns are discussed. The first approach
makes use of the IRIS patterning hardware to fill objects with multi-color
texture patterns. Realizing the limitations of the first approach, the
second approach uses an algorithm to partition a polygon defined in three
space into a number of smaller polygons, with each polygon representing a
texture point.

20 DS'R'BT ON AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
E -C.ASSEJUD 'NLMJ'ED 0 SAME AS RPT Q DTIC USERS Unclassified

22a NAME O - QESPONSB.E N.DVIUAL 22b TELEPHONE (Include Area Code) c OFFICE SYMBOL
Prof. %,Michael J. =yda (408) 646- 2305 Code 52k

DO FORM 1473,94 vA 83 APR ed t o "ay e used until exhausted SECuRI
T
Y CLASSIFICATION OF HIS PAGE

Ail vrther editions are obsolete UN C L S - O ..' . 966-04-24.1

Approved for public release; distribution is unlimited.

INVESTIGATION INTO THE USE OF TEXTURING
FOR REAL-TIME

COMPUTER ANIMATION

by

Timothy W. Meier
Lieutenant, United States Navy
B.S., U.S. Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1987

Author: .. __, ' ' ' z..
Timothy W. Meier

Approved by:
Michae J. ,,Theis' Advisor

Robert B. McGhee, Second Reader -

Departn t quu, Chairman

Dcpart fn-t pwter Science .

Ja S M. Fremg n, I
ng Dean Info nan Policy Sciences

2

we e S

ABSTRACT

We present in this study an investigation into the use of texturing on the Silicon

Graphics, Inc. IRIS for real-time computer animation. Using a tool designed specifically

for the IRIS for defining texture patterns, two approaches to the design and

implementation of software functions to fill objects with multi-color texture patterns are

discussed. The first approach makes use of the IRIS patterning hardware to fill objects

with multi-color texture patterns. Realizing the limitations of the first approach, the

second approach uses an algorithm to partition a polygon defined in three space into a

number of smaller polygons, with each polygon representing a texture point.

Accession For

* NTrS GRA&I
DTIC TAB
Unannounced l1 .
Justifioatio

By

Distribution/

Availability Codes e

Avaa 5-iandlor 0
Dist Special

; .c~: Ail DTIC roproduct-
i..s will be ir bLack arl

a, S

a,,

3

TABLE OF CONTENTS

I. INTRO DU CTIO N .. 6
A. TEXTURE DEFINITION 6
& BACKGROUND 7
C. MOTIVATION................8
D . O V ER V IEW .. 9

II. TEXTED - A COLOR TEXTURE PAT1TERN EDITOR 0
A . O V ERV IEW .. 10
B . PA LETT E .. 10
C . C A N V A S .. 11
D . BRUSH STRO KE ... 12
E . O PT IO N ... 12
F. O PER A TIO N ... 13

III. TWO DIMENSIONAL TEXTURING ... 16
A. IRIS TEXTURE PATTERN FUNCTIONS 16
B. TEXTURE PATTERNS AS OVERLAYS ... 19

C. U SE OF TE XTED ... 20
D. MULTI-COLOR TEXTURE PATTERN FUNCTIONS 20
E. EX A M PLE .. 22
F. LIM ITATIO N S .. 27

IV. THREE-DIMENSIONAL TEXTURING .. 29
A. GENERAL DESCRIPTION ... 29
B. MAPPING A POLYGON TO THE X-Y PLANE 30

1. Norm al to a Polygon .. 30
2. Rotation Angles About the Axes ... 31
3. Transform ation .. . 33

C. TEXTURE PATTERN POSITIONING ... 36
D. CALCULATION OF TEXTURE POINT POLYGONS 39
E. MULTI-COLOR TEXTURE PATTERN FUNCTIONS 41
F. EX A M PLE 46

V. EVALUATION AND PERFORMANCE ... 51

A. REAL-TIME TEXTURING ... 51
B. CHOICE OF METHODS .. 51
C. FACTORS AFFECTING PERFORMANCE 52
D. QUANTITATIVE DATA ... 52

V I. C O N C LU SIO N S .. 55
A. A COLOR TEXTURE PATTERN EDITOR 55

4

.4'

• • ' " " ' " .W " " " " ,i '" " ." ", " " "p " '.' ' '",, € ",''d' ,..,. - ,- 444'

B. REAL-TIM E TEXTURING ... 55 h

C. FUTURE W O RK .. 56
APPENDIX A - COLOR TEXTURE PATTERN FUNCTIONS 58
APPEND IX B - EXAM PLE I .. 69
APPENDIX C - EXAM PLE 2 .. 72
APPENDIX D - SOURCE CODE FOR COLOR TEXTURE

PATTERN FUNCTIONS: 2D .. 75
APPENDIX E - SOURCE CODE FOR COLOR TEXTURE

PATTERN FUNCTIONS: 3D 87
LIST OF REFERENCES 116
INITIAL DISTRIBUTION LIST ... 117

",I.

-- '

.- °

I. INTRODUCTION

A. TEXTURE DEFINITION

Texture is the surface detail or outward appearance of an object. In computer

graphics, texturing is adding that surface detail to the component parts of a scene for the

purpose of achieving greater realism. Texturing can be divided into two areas: color

detail and surface roughness. Each area has been under considerable investigation [1-8].

For this study, we further divide texturing through color detail into two areas: random

texture and texture patterns, with the more common being random texture. The color

detail we see in a painting can be referred to as random texture as opposed to a texture

pattern, since there is no smaller division of the object which characterizes the whole. In

other words, there is no small pattern of colors that when repeated generates the whole

picture. An example of a texture pattern might be the pattern created by a brick wall. A

small pattern consisting of a section of brick when repeated both horizontally and

vertically creates the whole wall. But if we look at the smallest detail in a brick, there are

no two bricks that look alike and therefore no texture pattern exists. There are probably

no true texture patterns that exist in nature. However, this does not prevent their use in

computer graphics. Both random textures and texture patterns contribute towards the

production of realistic computer generated images.

Texturing through color detail only results in a smooth surface still lacking in

realism. The example commonly used is that of the imitation wood grain used on many

6

desks. The wood grain appears painted on the surface. The additional realism needed is

achieved by adding surface roughness [6,71.

B. BACKGROUND

Adding color detail to a smooth surface is basically a mapping function. Mapping

from a two dimensional texture space to three dimensional object space is a simple

process, but difficulties arise in the transformation from object space to image space.

With a polygon occupying a small area on a screen, many texture points are mapped to

the same pixel on the screen. Textures are also very susceptible to aliasing.

The fact that adding texture to a smooth surface is a mapping function was first

suggested by Catmull in 1974 [1]. Assuming a rasterized device, Catmull's algorithm

involves subdividing a surface patch until a subpatch covers a single pixel center. At the

same time, the texture space is subdivided similarily to arrive at a subpatch that defines

an average intensity. This average intensity is a weighted average of the intensities

within the texture subpatch. Blinn and Newell improved on Catmull's algorithm by using

a different weighting function for calculating texture point intensities [2]. Crow

introduced the use of pre-computed summed-area tables which reduced the

computational expense of filtering [3].

Other approaches have also been tried. Schweitzer introduced a method of artificial

texturing, making use of visual cues to approximate texture changes [4]. The goal was

not to create realistic textured surfaces but to make use of texture gradients in surface

visualization. Rather than project a texture on an object defined in three space, Samek,

Slean and Weghorst introduced an algorithm to unfold a three-dimensional object in

order to project the texture on a two-dimensional surface [5].

7

To add surface roughness to a textured object, Blinn introduced a method of

perturbing the surface normal before intensity calculations [6]. The use of fractal

surfaces to add surface roughness was originally applied by Carpenter Fournier and

Fussel. This technique subdivides a polygon, and then perturbs the locations of the

midpoint of the polygon and the midpoints of its sides to produce a rough polygon

surface [7].

Research in the area of real time texturing has also been conducted. Using a

specially designed multi-processor system, Oka, Tsutsui, Ohba, Kurauchi and Tago have

introduced real-time manipulation of texture mapped surfaces [8]. Using multi-

processors, systems will no doubt be developed that can texture objects at a speed

approaching real-time.

C. MOTIVATION

The motivation behind our research was to examine the potential for real-time

texturing on a currently available graphics workstation, the Silicon Graphics IRIS-3120.

The IRIS-3120 has some capabilities for real-time pattern fill of polygons. Our original

thought was that we wanted to be able to use that real-time texturing capability to fill

three-dimensional polygons with patterns appropriate to the scene at hand. In particular,

we wanted to texture polygons in terrain scenes with appropriate textures such as grass,

crops and others.

'
,8 u

,..

, j, s..'~pVN~N' 'N N. - ~ ~%'N' *%../.~ ~ ,. '.:

N -, S. l

D. OVERVIEW

We began our look at real-time texturing with a focus on color detail texturing. The

area chosen to investigate in color detail was that of adding texture patterns through the

polygon fill operation. This choice was dictated by the capabilities existing on the IRIS.

If texture patterns were to be used, a tool had to be developed to easily produce those

texture patterns. Texted, a color texture pattern editor, was developed to produce the

desired texture patterns. The design of the editor was based on the fact that the IRIS had

capabilities for pattern filling of polygons using patterns that are 16x16, 32x32, and

64x64 pixels in size. It was envisioned that the texture pattern editor could give the user

the capability to design his own texture patterns or take texture patterns from digitized

photographs. These texture patterns could then be used to fill polygons, and hence lead to

more realistic images.

Once we had a texture editor, we had to develop functions to fill polygons with the

defined texture patterns. Functions were developed to fill circles, arcs, rectangles and

polygons with the multi-color texture patterns using the IRIS patterning hardware.

Realizing the limitations of this method, functions were designed to fill arbitrary

polygons defined in three space by using a polygon to represent each texture point. In this

way, the IRIS Geometry Engines would handle the transformation of object space

coordinates to image space and then to screen coordinates. A part of this design had to

include a means of positioning the texture pattern on the polygonal surface. The design
a'

was limited to the use of polygonal surfaces, since for the most part, only polygons are

used to define objects in real-time, three-dimensional animation on the IRIS.

9

I,

*a S a'- S . 4=

S, S.4* C *
2

t"~~~A 4 .
o

, - . - .' ." .- .%p." .4% 4- "4- . " . % % %,

H. TEXTED - A COLOR TEXTURE PATTERN EDITOR

A. OVERVIEW

Texted is a tool for the IRIS that produces 16x16, 3232, or 64x64 multi-color

texture patterns and stores them in the form of files. The original goal of the design was .

to provide the user a canvas on which he could paint a texture pattern, and then be able to

save that pattern. Additional capabilities were added as their need or desireability became

apparent. The capabilities of texted can best be described by the menus presented upon ',

running the editor (Figs. 2.1, 2.2). There are five menus: the Canvas, Palette, Brush "-

Stroke and Option menus.

B. PALETTE

When texted is executed, the Palette menu presents a grid of 300 different colors .

from which the user can choose. A selection labeled "T" is available should the user

desire no color or transparency. As with most choices in texted, the user chooses a color

by positioning the cursor over the desired color and depressing the right mouse button. ,

The RGB values of the selected color are then displayed by the red, green and blue bars "

below the provided colors. Just below the provided colors and just above the red, green

and blue bars is the selected color box, which always displays the current color.

The user also has the capability of defining his own colors by adjusting the red,

green and blue bars. This is done by positioning the cursor in any of the bars and

depressing RIGHTMOUSE. As long as RIGHTMOUSE remains depressed, the red,

green or blue bar in which the cursor is positioned can be moved. The color defined is '5

10

L

S * N -w -- i n i u nna m n a

displayed in the selected color box. This color is however, not fixed until

RIGHTMOUSE is depressed with the cursor in the selected color box. Any square

painted on the canvas with a color that is not fixed, changes color as any of the red,

green, or blue bars is repositioned. A defined color can also be fixed if the user chooses a

color from the provided 300 colors. This is to say that any square painted with the

defined color, remains the same after a provided color is selected.

An additional capability in texted is to match any color displayed on the canvas,

whether it be from a previously saved texture pattern or taken from a picture. The

"match" mode is entered by positioning the cursor over the MATCH toggle at the bottom

of the Palette menu. As long as the match toggle is on, a color can be matched from the

canvas by positioning the cursor over the color and depressing RIGHTMOUSE. The

color is displayed in the selected color box and its RGB values are reflected in the

position of the red, green and blue bars. The current color cannot be used until the cursor

is positioned over the MATCH toggle and RIGHTMOUSE is depressed to leave the

match mode.

C. CANVAS

The Canvas menu is displayed on the left side of the screen, giving the user the

options of a 16x16, 32x32, or 64x64 texture pattern. Initially a 16x16 texture pattern is

displayed. A canvas size (referring to a texture pattern size) can be selected by

positioning the cursor over the appropriate choice and depressing RIGHTMOUSE. The

corresponding canvas is displayed. Any pattern displayed is lost by any new canvas

selection unless the pattern is saved through the Option menu.

11

D. BRUSH STROKE

The Brush Stroke menu options are: BLOCK, HORIZONTAL, VERTICAL, RIGHT

DIAGONAL, and LEFT DIAGONAL brush strokes. Brushes paint when the right mouse

is depressed. Using the BLOCK brush stroke, the block in which the cursor is positioned

is painted with the current color. As long as RIGHTMOUSE remains depressed, blocks
,'p

are painted as the cursor is moved, giving the user a drawing capability. Using the

HORIZONTAL brush stroke, every block is painted that is in the same row as the block

in which the cursor is positioned. The VERTICAL brush stroke behaves the same, except

that every block is painted that is in the same column as the block in which the cursor is

positioned. Both RIGHT DIAGONAL and LEFT DIAGONAL paint every block that is

in the same diagonal as the block in which the cursor is positioned. With all brush

strokes, as long as RIGHTMOUSE remains depressed, and the cursor remains within the

canvas, the canvas is painted using the current brush stroke and the current color.

E. OPTION

The options available in this menu are: VIEW, SAVE, RECALL, PICTURE and

EXIT. All choices again are made by positioning the cursor over the selection and

depressing RIGHTMOUSE. All prompts for file names are displayed below the canvas.

The VIEW option enables the user to view the texture pattern painted on the canvas

by clearing the entire screen with the defined texture pattern. Each block of the texture

pattern becomes a pixel, and the pattern is repeated until the screen is filled. The user

returns again to texted by depressing RIGHTMOUSE. The screen then returns to the

state it was in before making this selection.

1

%,,

The PICTURE option enables the user to select a texture pattern from a dithered

picture file. The user is prompted for the file name, and the picture is displayed. If a

dithered picture file does not exist or cannot be opened, texted returns to its previous

state. Once the picture is displayed, the cursor takes on the form of a box to enable the

user to select a 16x16, 32x32, or 64x64 pixel pattern. The cursor box size is changed by

depressing MIDDLEMOUSE. A selection is made when RIGHTMOUSE is depressed.

The pixel pattern within the cursor box becomes the current texture pattern when the

main menu of texted is again displayed (Fig. 2.3).

The SAVE option allows the user to save the current texture pattern in a file and the

RECALL option allows the user to recall any previously saved texture pattern. Again the

user is prompted for a filename. If the file does not exist in the case of RECALL, or for

some reason cannot be opened, the editor returns to its previous state. Texted is exited by

the EXIT option.

F. OPERATION

Texted is run by entering "texted" at the keyboard. The initial state of the editor is a

16xI6 pattern canvas, current brush stroke of BLOCK, MATCH toggle off, and a current

color of WHITE. The upper left comer of the screen has an area labeled PATTERN

which displays the current texture pattern as a 16x 16, 32x32, or 64x64 pixel pattern. It is

initially all white.

13

F 2.1 Main menu with wood texture patternm

Figure urMinmnu wiweave texture pattern.

14-

Figure 2.3 Texture pattern from dithered image.

44

Figure 2.4 VIEW option with ditheed image pattern.

is

In. TWO-DIMENSIONAL TEXTURING

A. IRIS TEXTURE PATTERN FUNCTIONS

The IRIS has hardware capabilities for drawing a filled object with a defined texture

pattern. A texture pattern is defined by a call to the system function

defpattern(n,size,mask)
short n,size;
short *mask,

which takes as input an index to a system table of patterns, a texture pattern size, and an

array of short integers. A texture pattern can be a 16x16, 32x32 or 64x64 square pixel

pattern and is specified by "size' taking on the value 16, 32 or 64. The texture pattern is

an array of short integers that is a bit mask. The array of short integers controls which

pixels are colored when a filled object is drawn. One row of a 16x16 texture pattern is

specified by a short integer (Fig.3.1). One row of a 32x32 texture pattern is specified by

two short integers, and one row of a 64x64 texture pattern is specified by four short

integers. The bottom row starting with the left comer is specified first. The patterns are

always aligned to the lower left comer of the screen so that two polygons filled with the

same texture pattern and sharing a common edge appear continuous. The value of "n"

specifies the index in the system table of patterns for the bit mask. The default pattern,

which is a solid pattern, always has the index value of zero.

When a filled object is drawn with the IRIS, it is filled using the current texture
K-

pattern, color and writemask. A texture pattern defined with defpattem is made the "

'.

16

8,
.,..-. ., .',.Lr. -, -, -Z. _ ; ..' € -'q ,, .,-.,,,. 3 ,. .. -. €' .- ,-',-" .-:. - ..--.,'\,. • , .., .., .",,- ,- .8-.

checkered=(Ox5555, OxAAAA , OxS5, OXAAAA,

0x5555,OxAAAA,0x5555,OxAAAA,
0xS555,OxAAAA,0x5555,OxAAAA,
0X5555, OxAAAA , x5555 ,OxAAAA}

Figure 3.1 16x 16 Texture Pattern.

current texture pattern with the function

seipatrern(index)
short index;

which requires as input the index of the pattern in the system table of patterns. The

system default texture pattern results in a solid filled object with the current color.

17

An example program using the IRIS texture pattern functions is shown in Figure 3.2.

After some initialization calls, the pattern is defined with the system call

defpattern(l ,1 6,checkered).

This results in the 16x16 bit mask "checkered" being saved with index 1 in the system

table of patterns. The index 0 was not used since it is reserved for the default solid

pattern. For this example the background color is made white with

color(WIITE);
clearo.

The texture pattern "checkered" becomes the current texture pattern with the system call
:%

mainO

ginito; /* Initialize IRIS. */

defpattem(l,16,checkered); /* Define texture pattern. */

color(WHITE); /* Clear screen to white. */
clearo;

setpattem(l); /* Set texture pattern. /
color(RED);
rectf(10.0,10.0,20.0,20.0); /* Rectangle drawing primitive. */

gexito;

Figure 3.2 Example program for IRIS texture pattern functions. ,

18

•S

setpattem(1);

and finally the rectangle is drawn by

color(RED);
rectf(10.0.10.0,20.0,20.0).

The bit mask "checkered" determines which pixels are colored red when the rectangle is

filled. Those pixels not colored red, remain the background color of white.

B. TEXTURE PATTERNS AS OVERLAYS

With the standard IRIS texture support, one can write a program that fills objects

with a single-color bit mask. We had a desire for filling objects with multiple color bit

masks that could be defined by texted. Using the IRIS's hardware facilities for texture

patterns, we developed a method for filling objects with multi-color texture patterns.

As described earlier, a texture pattern can be represented as an array of short integers

that control which pixels are colored when a rectangle, circle, arc or polygon is filled. A

multi-color texture pattern can easily be achieved by repeating the drawing primitive as

many times as there are colors in the multi-color texture pattern, with a different system

defined texture pattern used for each color.

As an example, suppose there are three colors desired in a 16x16 multi-color texture

pattern. Three different system texture patterns or bit masks would have to be defined,

one for each color in the multi-color texture pattern. Each bit in the multi-color texture

pattern would be set only once by one of the bit masks. The drawing primitive has to be

repeated three times, each time using a different system defined texture pattern and a

different color.

19

C. USE OF TEXTED

The texture patterns defined by texted are saved as a file consisting of the pattern

size, the number of colors used in the multi-color texture pattern, ar._ the RGB values of

the colors used along with an array of integers that describe the bit mask for that

particular color (Fig. 3.3). The file name is used when defining the multi-color texture

pattern.

D. MULTI-COLOR TEXTURE PATTERN FUNCTIONS

Functions were developed to parallel the IRIS texture pattern functions and drawing

primitives that make use of the system defined texture patterns. A comparison of the

IRIS functions and the new functions is shown in Table 3.1.

16
3
2550 0
aaaa 5555 aaaa 5555 aaaa 5555 aaaa 5555
aaaa 5555 aaaa 5555 aaaa 5555 aaaa 5555

1092180
5555 2222 5555 8888 5555 2222 5555 8888
5555 2222 5555 8888 5555 2222 5555 8888

000
0 88880 22220 88880 2222
0 88880 22220 88880 2222

Figure 3.3 Texted output file.

2'0

20

* wi - - 3- - 6 I 7 7 - S -IS

To define a multi-color texture pattern, the function
I.

defcolorpattern(first-patternfirst-colorfilename)
short first_pattern;
Colorindex firstcolor;
char filename;

is used as opposed to the IRIS defpattern function. The user must provide as input to the i
II

function the first index in the system table of patterns to use, the beginning index in the

color map to use, and finally the name of the file containing the multi-color texture

pattern (Fig. 3.3). For every color used in the multi-color texture pattern, there exists a

corresponding system table of patterns index as well as a color map index. The function ."'

defcolorpattern calls the IRIS function defpattern and makes a color map entry for each

color used in the multi-color texture pattern. The implementation of defcolorpattern is

shown in Figure 3.4. The number of colors used in the multi-color texture pattern is

returned by the function defcolorpatern. This value can be used to determine the next

available index in the system table of patterns and in the color map.

Table 3.1 Comparison of IRIS texture functions and new functions.

L'

IRIS NEW 0
defpattern defcolorpattern
setpattern
rectf rectcolorf
polf polcolorf
arcf arccolorf
circf circcolorf
clear colorclear

The functions that draw filled objects with the defined multi-color texture patterns

require as input the beginning index in the system table of patterns, the begira~ing index
%'

in the color map, the number of colors used in the texture pattern and finally the drawing ,,,%'

21 V

V.

~.~ %S.S~%* **.

parameters. The implementation of each function is demonstrated with the new function

rectcolorf shown in Figure 3.5. The function repeats the loop as many times as there are

colors in the texture pattern. With each loop, the drawing primitive is repeated with a

new system defined texture pattern and a new color. Specifications for all multi-color

texture pattern functions can be found in Appendix A.

E. EXAMPLE

In Figure 3.6, a program fragment is shown that demonstrates the use of the new

multi-color texture pattern functions. The complete program can be found in Appendix

B. The program fills a rectangle, circle, arc and polygon with multi-color texture patterns

stored in the files "brick.pat", "wood.pat", "weave.pat" and "mod.pat". Each file was

produced by the color texture pattern editor texted.

After some IRIS initialization and variable definitions, four different multi-color

texture patterns are defined with the new function defcolorpattern. Since the IRIS's

default solid texture pattern uses the index 0 in the system table of patterns, the first

index in the system table of patterns to be used by the first texture pattern is 1. The first

color map index to be used is 8 since the first eight indices (0-7) are system default

colors. The numbers 1 and 8 are therefore the first two inputs followed by the file name

"brick.pat" in the function call

n=defcolorpattern(1,8,"brick.pat").

The number of colors used in the multi-color texture pattern saved in "brick.pat", which

also corresponds to the number of indices used in the system table of patterns to define

that multi-color texture pattern, is returned by the function and assigned to the variable

22

*5J
.9 . . a .°.

~ ~ ~ 4 ~ U . J,\j ~ I"': ~ .- ' ~ -.. ,. . ..

LNVL X- ~ V azw W . 17,77 V'~ '-V-. -

defcolorpattern(first-patern,firstsColor,filename)
short first-patern;
Colorindex first_color;
char filename[];

short number-of-colors, next-pattern, patternsize, bitword;
short red value, green_value, blue~value, ik;
short rnask[2561;
Colorindex next color,
FILE *fp,*fbpenO;
fp=fopen(filename,"r");

/* Read pattern size and number of colors used from file. *
fscanf(fp,"%hd%hd' ,&pattem size,&nuxnber-of~colors);

next-pattern=first-pattern;
next-color--first-color

/* Repeat for each color used in the multi-color texture pattern. ~
for (k=l1; k<--number _of-colors; k++){

rJa Read the RGB values defining the color and place in color map. ~
fscanf(fp, "%hd%hd%hd,&red-value.&green-value,&blue-value); -

mapcolor(nextcolor.red.yvalue,green-value,blue value);

next-color+=l; /* Advance color map index. *

/* Read bit mask. ~
for (i=O;, i<(patternsize*(pattern size/16)); i++)(
fscanf(fp."%hx",&bitword);
masktill=bitword-,

f* Define the bit mask in the system table of patterns. ~
defpatter(next-patte m~pattemnsizemask); ,

next patem+=1; /* Advance system table of patterns index. *

fcose(fp);
return(nurnber_of~colors);

Figure 3.4 Function to define multi-color texture pattern.

23

lop

rectcolorf(firstpatten, first-color,nuinber-of-colors~x l~yl ,x2.y2)
short firstpattern;
Colorindex first color
short number -of -colors;
Coord xl,yl,x2,y2;

short i;
short next-pattern;
Colorindex next-color;

pushattributesO;
next-pattem=first-pattern;
next-color--first_color;

/* Repeat for each color used in multi-color texture pattern.
for (O=l1; i<=number-of-colors; i++) (
setpattern(next-pattem); /* Set current texture pattern. ~
next-pattern+= 1; /* Advance system table of patterns index. ~
color(next -color); /* Set current color. */
next-color+= 1; /* Advance color map index. *

/* Draw rectangle using current color and current texture pattern.
rectf(x l,y l,x2,y2);

popattributesO;

Figure 3.5 Function to fill a rectangle with multi-color texture pattern.

'n The value assigned to "n" is then used to calculate the next available system table of

patterns index and the next available color map index when the multi-color texture

pattern saved in "wood.pat' is defined with

m=defcolorpatten(1 +n,8+n,"wood.pat').

This defcolorpattern call returns to the variable "rn" the number of colors used by the

texture pattern saved in 'wood.pat'. which is then used when defining the multi-color

24

I

texture pattern saved in "weave.pat":

p=defcolorpattern(1 +n+m,8 +n+m, "weave.pat").

Finally, the value assigned to "p" is used to define the multi-color texture pattern saved in
"J.

"mod.pat" by the function call

q=defcolorpattern(1 +n+m+p,8+n+m+p,"mod.pat").

After the four multi-color texture patterns are defined, the screen is cleared to

white using the system default ,oid texture pattern and hjn the four filled obi~c.s are

drawn. Since the rectangle drawn uses the texture pattern saved in file "brick.pat", it must

take as inputs, the first index in the system table of patterns which defines that pattern, I,

the first index in the color map used by that pattern, and the number of colors in the

texture pattern. The first two inputs correspond to the same inputs used when defining

the texture pattern. The third input was returned by the defcolorpattern function taking

the file "brick.pat" as an input. The function call to fill a rectangle with the texture pattern

saved in "brick.pat" is A

rectcolorfi(1,8,n,75,500,425,700).

The remaining arguments are the drawing parameters normally used with the system

function call rectf. The function call
I

circcolorfi(l+n,8+n,m,250,250, 100);

fills a circle with center at (250,250) and radius equal to 100, with the texture pattern

saved in "wood.pat" since the first two arguments match the first two arguments in the I,

defcolorpattern call that defined that multi-color texture pattern. The value of "m" was

assigned by the same function call. An arc is filled with the multi-color texture pattern

25

%P I

" ',: ", "..,-.:,'.'..' '.'o'." ,' ," -','.. ., .,. ".' ,'.-%:, ,. % -"-: ,"-2 ' "-¢",.','"."---' -"-.",'-.q.'-".¢-"- -"."%-:p.

rnain0

ginito;, 1* Initialize the IRIS. *

/* Define multi-color texture patterns. *
n=defcolorpattern(1I,8," brick. pat");
m=defcolorpatten(l l+n,8+n,'"wood. pat");
p=defcolorpattem(l1+n+m,8+n+m," weave.pat");
q=defcolorpattem(l1+n+m+p,8+n+m+p,'mod.pat");

color(WHITE); /* Clear screen to white. *
clearQ.

rectcolorfi(1,8,n,7S,500,425,700); /* Draw a rectangle. ~
circcolorfi(1+n,8+n,m,250,250,l00); /* Draw a circle. */
arccolorfi(l+n+m,8+n+m,p,550,500,200,300,900); 1* Draw an arc. ~
polcolorf2i(1 +n+m+p,8+n+m+p,q,6,a); /* Draw a polygon. ~

gexito;

Figure 3.6 Example program using multi-color texture pattern functions.

it saved in "weave.pat" by

arccolorfi(1 +n+m,8+n+m,p,550,500,200).

The arc has a center point at (550,500) and a radius of 200. The polygon is filled with the

multi-color tetxure pattern saved in "mod.pat" by

polcolorf2i(I +n+m+p,8+n+m+p,q,6,a).

26

I

The array "a" defines the polygon and has 6 points. Figure 3.7 is the display generated by

this example program.

F. LIMITATIONS

The use of this method for drawing objects with multi-color texture patterns is

very limited. Though described as 2D texturing in this chapter, the IRIS hardware
'.

facilities for filling objects with texture patterns can also be used to fill 3D objects.

Unfortunately, texture patterns are fixed to the screen mask. When an object is rotated or

translated, the same pixel remains the same color as long as it remains within the object

in screen coordinates. As our filled object is rotated or translated, this gives the

appearance that the texture pattern does not translate or rotate with the object.

The algorithm for filling objects with multi-color texture patterns repeats the

drawing primitive as many times as there are colors in the multi-color texture pattern.

Thus the performance of the algorithm is at least as many times slower as there are colors

in the texture pattern.
S.

Another problem encountered is the amount of memory available to store the

system defined texture patterns. An option was added to texted to take texture patterns

from dithered images. After only defining a few multi-color texture patterns taken from

dithered images, the available memory for the system table of patterns was exceeded.

%.

Ir or

1*4

'I.

vVNA

P "AnFigure 3.6 Panaen used in demol.c

p0 .

Figure 3.7 Result of program demol.c.

' 28

IV. THREE-DIMENSIONAL TEXTURING

To fill 3D polygons with texture patterns that are not fixed to the screen mask, a

system was implemented that partitions a polygon into a number of smaller polygons

(texture point polygons), each of which represents a point in our texture pattern. With

each texture point represented as a polygon, all the IRIS capabilities for the

transformation and filling of polygons are utilized. This includes the IRIS's

implementation of backface polygon removal for hidden surface elimination. Whereas

the IRIS texture pattern facilities define a 16x16, 32x32 or 64x64 bit mask, the system

implemented fills a polygon with a 16x16, 32x32 or 64x64 texture pattern where the size

of each texture point polygon is set by the user. What was a pixel in a texture pattern -

before, now becomes a polygon.

A. GENERAL DESCRIPTION

The system was designed so that the same files produced by texted could also be

used by our 3D polygon fill functions. The system was also designed so that a texture

pattern could be placed on a polygon defined in three space, in any orientation desired by

the user. This gives the user a sort of wallpapering capability with the polygon defined in

three space. The user must insure that the texture pattern edges match where polygon

edges meet. Finally, realizing that real-time texturing of polygons becomes unrealistic as

texture point polygons become smaller, a feature was implemented to enable the user to

define the size of each texture point polygon.

29

+.J." . u. " . - ' V..% .-\ ". * , , ? • " -", ,, 4.C'',.W,% ,,%.' %*, q. ' P- %'

~I
°W

The implementation of this system can be explained by the major functions it SW

must perform. To facilitate placement of the texture pattern on the polygon defined in

three space, the polygon is first mapped to the x-y plane. A counterclockwise ordering of

the polygon's coordinates specifies the face of the polygon on which the texture pattern is

to be placed. The positioning of the texture pattern on the polygon is achieved partly by

this mapping, and also by the reference point of the texture pattern set by the user. The

texture point polygons are calculated by using an algorithm for clipping an area with a -

line. The texture point polygons are finally mapped individually back to their proper

relative position in three space before being drawn.

B. MAPPING A POLYGON TO THE X-Y PLANE

The first step in the texturing of a polygon defined in three space is to map the

object space coordinates of the polygon to the x-y plane. This mapping is performed by

calculating transformation matrices for translating the first point of the polygon to the

origin, and for rotating the polygon about the x, y, and z axes. At the same time, the

inverse is calculated for each transformation matrix to be used in mapping each texture "

point polygon to its proper relative position in three space. "-'

1. Normal to a Polypon
,1

To calculate the rotations necessary for positioning an arbitrary polygon in

the x-y plane, the equation of the plane and the normal to that plane are calculated. Three

non-colinear points or vertices of the r- to be mapped are selected to define the

equation of the plane for the 3D polyg and the normal to that plane.

AX I y +Cz =D;

30

S!

*.p *,p v ~ 'S~UP~P%*U ~ ~ ., % %S ,W *. . - .

SM=A4:B ;+C

The coefficients for the equation of the plane and the normal to the plane can be

calculated using the following equations:

A =(YO-Y 1)(z 2-z)-(Y2-Y l)(z 0-z 1);
B =(z0-z l)(X 2-X)-(,2 -Z I)(X 0-X 1);

C =(xo-X1)(Y 2-Y)-(X 2-X)'o-Y);

D can be determined using the coefficients A, B, and C along with one point of the

polygon. The direction of the normal to the polygon is determined by the ordering of the

vertices in the array that defines the polygon in three space.

2. Rotation Angles About the Axes ,

With the equation of the plane determined, all vertices of the polygon are

checked to insure the polygon is planar. If the polygon is planar, the angles necessary to

rotate the polygon into the x-y plane are calculated.

The counterclockwise ordering of the polygon points not only determines
.

the direction of the normal to the plane, but it also determines on which face of the

polygon the texture pattern is to be placed. The counterclockwise ordering of the polygon

vertices must be maintained as it is positioned in the x-y plane.

To calculate the rotations about the axes necessary to bring the polygon

into the x-y plane, the angles between the normal and the axes must be calculated. These

angles are calculated using the following equations and are shown in Figure 4.1.

ACOS(t= IA +B + C

31

'

, ".,' "," " ." ." ., % *" " •- , %-.j -% -%,-%- % .• .• %- •-%' %, - - , . -. % ' .. , '%- . .• -. -. . . %"° • .. •. • %

16.

y4

'N.

x

z

y-

N9

*49

x9

z.'

Figue 4. Roatio anles boutx ad y xes

32-

B 'A

N =A+ B +C z

cos13 - 2 B2 C
C

COr A 2+B Z+C 2

For the polygon to lie in the x-y plane with the coordinates ordered in a counter

clockwise fashion, the angle between the normal and the z axis must be 180 degrees.

To calculate the necessary angles of rotation, first the dot product of the

projected and the z axis is divided by the product of the magnitude of the two vectors,

yielding the cosine of the angle 0 about the y axis. •

coso-= 7 -

If the angle a is less than 90 degrees, the angle of rotation necessary about the y axis is

180-0. If the angle a is greater than 90 degrees, the angle of rotation necessary about the

y axis is 0- 180.

A second projection of the normal onto the y-z plane is made and the '4

angle 0 about the x axis is calculated in a similar manner. This time, if the angle 13 is less
than 90 degrees, the angle of rotation necessary about the x axis is 0-180. If the angle

is greater than 90 degrees, the angle of rotatiin necessary about the x axis is 180-0.

3. Transformation

Once the angles of rotation necessary about the x and y axes are

calculated, transformation matrices are used to map the vertices of the polygon to the x-y

plane. The inverse transformation matrix in each case is calculated for mapping the

texture point polygons to their proper relative position in three space. We translate the

polygon to the origin by adding the negative x, y, and z value of the first vertex. Letting 1,

3'.

33 a

OFto

m, and n represent the x, y, and z values respectively, the following transformation

matrix along with its inverse is developed:

0 1 0 0

-1 -m -n 1

0 1 0 0*

0 0 1 0
IT m n 1,

Using the rotation angle 0 about the y axis, the following transformation matrix along

with its inverse is developed:

coso 0 -sino 0

sinO 0 cosO 0
0 0 1

cosO 0 sinO 0.

2 -smo 0 coso 0

Using the rotation angle 0 about the x axis, the following transformation matrix along

with its inverse is developed:

34 4

25

.f.. ,

1 0 0 0
0 cose sine 0

T3= 0 -sine cose 0

10 00

0 cose -sine 0
3- sine cose 0

0 0 01

To aid in positioning the texture pattern on the face of the polygon, a third angle of

rotation about the z axis is used, with zero degrees positioning the first two points of the

polygon on the x axis. This angle of rotation is explained further in the next section on

texture pattern positioning. It is set by the user. Using the rotation angle 4f about the z

axis, the following transformation matrix along with its inverse is developed:

cos1 sinvj 0 0
-sinwl cos4 0 0

T4= 0 0 10

0 0 01

cosW -sinyi 0 0 .

/sin cosW 0 0
0 0 10
0 00 1

The overall transformation matrix for mapping the polygon defined in three space to the

x-y plane is achieved with the following expression:

T=TIT 2T3T4

35

' ,'-'% . - " ' ' " -"

The new polygon P' in the x-y plane, is achieved by applying the overall transformation

T to the old polygon P defined in three space.

P' =PT

Since each texture point polygon must be mapped back to its proper

relative position in object space, an overall inverse transformation matrix is calculated

using the inverse matrices of each translation and rotation.

A reverse mapping can be achieved as follows:

P =P'T- 1.

C. TEXTURE PATIERN POSITIONING

Positioning of a multi-color texture pattern on a polygon defined in three space is

achieved by a combination of actions. It begins with the mapping of the original polygon

to the x-y plane. This mapping to the x-y plane puts the polygon defined in three space in

a reference which is easily visualized by the user and makes the calculation of texture

point polygon coordinates simpler.

A texture pattern displayed as a matrix of colors in texted can be thought of as a

grid of clipping lines which is repeated to partition a polygon into texture point polygons.

The lower left comer of the texture pattern is called the reference point and is the point

from which the clipping lines are repeated. Four clipping lines along with a color define

a filled texture point polygon. The texture point polygon size specified by the user

determines the spacing of the clipping lines. Positioning a texture pattern on a polygon

involves superimposing this grid of clipping lines over the polygon in the x-y plane. It

36

'. ' , ,- , -", ", " ', , " -.- . _.'e " -" -", M-, " -.-'"., .. ', , ". , , -.",€. 2 , ., -' -"'7-' '5 ,7 , ' '5 .' I' --

S.%

,

can easily be seen how the specification of the reference point and the orientation of the

polygon in the x-y plane affect the partitioning of that polygon into texture point

polygons (Fig. 4.2).

A counterclockwise ordering of the polygon coordinates in three space specifies ,%,

the face of the polygon on which the texture pattern is to be placed. This is the first

means by which the user controls the texture pattern positioning.
5%

The polygon defined in three space is always mapped to the x-y plane with the

first point at the origin and the position of the second point determined by the rotation

angle V about the z axis specified by the user. A rotation angle of zero degrees places the

second point of the polygon on the x axis. The angle V is measured from the x axis and

positive angles describe counterclockwise rotations. The user can control the orientation

of the polygon in the x-y plane by the angle y and the specification of the first point of

the polygon. This is the second means by which the user controls texture pattern

positioning (Fig.4.3).

The final means by which the user controls positioning of the texture pattern is

the specification of the pattern reference point. After the original polygon is positioned in

the x-y plane, the system developed determines the upper and lower limits of the texture "

pattern. The lower limit of the texture pattern is the minimum x and y value of all

polygon coordinates, and the upper limit is the maximum x and y values of all polygon

coordinates. The reference point of the texture pattern, if not changed by the user, is the

lower limit. The user has the ability to shift the reference point, which has the affect of

shifting the texture pattern right or left, up or down. This is important when trying to

37

make pattern edges match where polygon edges meet. Positioning a texture pattern on a

polygon is demonstrated in Figure 4.4.

D. CALCULATION OF TEXTURE POINT POLYGONS

The calculation of texture point polygon coordinates is done by using an

algorithm for clipping an area with a line [9]. This algorithm takes the coordinates of a

polygon and the equation of a line and finds the points of intersection. All points to one

side of the line are visible, while all others are clipped. The points of intersection along

with the polygon coordinates that are visible become the coordinates of a new polygon.

U,1

Starting with the lower limit of the texture pattern and the increment size
*r

specified by the user, two vertical clipping boundaries and two horizontal clipping

boundaries, both an "increment" apart are calculated.

vertical clipping boundaries:

•%t

X =-Xloerlj g;

" ~~x -'X owjrim a +increment; '

horizontal clipping boundaries: .

Sl.

Y --Y/owrlimi ; -

The clipping boundaries, a color index from the array that defines the texture pattern and J%

the overall polygon coordinates determine the coordinates and the color of the first ",

texture point polygon. The resulting polygon after application of the clipping boundaries,

is a polygon that is visible within the box formed by the four clipping boundaries. If this

box is completely within the overall polygon, the texture point polygon becomes a square

38

% % % * Nj %. - .

6 5

1 2
reference point

Figure 4.2 Partitioning of a polygon by a texture pattern.

Y

3A

x

Figure 4.3 Rotation angle about z axis.

39

ZS

i

3 3

I \

1 2 1 2

(a) Initial pattern positioning.

__ 3
p.

.5()2
1 2

(b) Change ordering of coordinates.

22

1 1

(c) Rotation about z axis.

Figure 4.4 Texture pattern positioning.

'p 40

A:q

J.A

polygon. If the box formed is only partially within the overall polygon, the texture point

polygon becomes a polygon defined by the edges within the box and the box corners that

are within the overall polygon (Fig. 4.5).

The array of color indices that define the texture pattern provide the color index

when filling a texture point polygon. By changing the beginning indices to reference the

texture pattern array, the appearance of shifting the reference point is achieved. The
.S

coordinates for the texture point polygons are calculated in the x-y plane. The overall

inverse transformation matrix calculated when positioning the polygon in the x-y plane is S

used to map the coordinates of the texture point polygon to its proper relative position in

object space before it is filled.

E. MULTI-COLOR TEXTURE PATTERN FUNCTIONS

Functions were developed to parallel the IRIS texture pattern function defpattern %

and the drawing primitive polf for filling a polygon in three space. To define a multi-

color texture pattern to be used in three space, the function

defcolorpattern3(firstcolorpatternfilename)
Colorindex]irst color;
Colorindex pattern[64][641,
char filename[],

is used as opposed to the IRIS defpattern function. The user must provide as input to the

function the first index in the color map to be used, a 64x64 array of type Colorindex to

hold the multi-color texture pattern and the name of the file containing the multi-color

texture pattern produced by texted. The implementation of defcolorpattern3 is shown in

Figure 4.6. The pattern size and the number of colors used in the multi-color texture 5* g

pattern are read from the file "filename". The function then repeats a loop as many times

41

a,'

5-..

!

IL -L

lier

increment

increment

A!

I i

(a) Outside polygon

ji

---- -------
I I

t 'a

(b) Intersection -.

- - -- - - - - - - - -

% .I V

I I

(c) Contained within i

Figure 4.5 Calculation of texture point polygons. ;

IO

,~A~~s.V ~ :. 5 ~-~/~,f ~~* ~aU U~~. ~ ~ (. WX

defcolorpattem3(first-color.pattem,filename)
Colorindex flrstrcolor;
Colorindex pattern[641 [641;
char filename(];

short bitword, pattemnsize, number-of-colors;
Colorindex next-color,
short red-value,green value,blue-value;
short ij,k,m;
FILE *fp,*fopenO;
fp,=fopen(filename,"r");

/* Read from file pattern size and number of colors used. *
fscanf(fp,"%hd%hd" ,&patternsize,&number-of-colors):

next-color-first-color,

/* Repeat for each color used in the multi-color texture pattern. * tf

for (k=l1; k<=number _of~colors; k++){

/* Read the RGB values defining the color and place in color map. *
fscanf(f,"%hd%hd%hd" ,&red-value,&green value,&blue-value);
mapcolor(next-color,red-value,green-value,blue-value);

1* Determine indices of 'pattern" to hold color map index. *
for (i=O; ikpattem -size; i++){(
for 0j=0; j<pattern size/1 6; j++) Z

/* Save color map index in array "pattern". *
fscanf(fp," %hx" ,&bitword);
for (m=O; m< 16; m++){(
if ((bitword&0x8000)>O)
patternti]lI6+m 1=nextscolor,

bitword=bitword«< 1;

next-color+=l; /* Advance color map index. *

fcosefp).
return(number of colors); '

Figure 4.6 Function to define multi-color texture pattern (3D).

431

K
:. -

as there are colors in the texture pattern. For each color used in the multi-color texture .

pattern, the RGB values are read and placed in the color map. The words which before

defined a bit mask to be stored in the system table of patterns are now read to determine

the indices of the 64x64 array "pattern" that will hold the color map index of the color

just defined. A 16x16 or 32x32 multi-color texture pattern only uses the lower indices of

the 64x64 array. At the completion of defcolorpattern3, the multi-color texture pattern

saved in "filename" is defined by a two dimensional array of color map indices. The

p
number of colors used by the multi-color texture pattern is returned so the next available

color map index can be determined.
P

The function

polcolorj3(pattern-size,rotate,horz,vert,incr,panern,n,parray)
short patternsize;
Angle rotate;
int horz,vert;
Coord incr;
Colorindex patern[64][641;
long n;
Coord parray[][3];

fills a polygon defined in three space with the multi-color texture pattern defined by

defcolorpattern3. It requires as input a pattern size (16, 32 or 64), a rotation angle "a

"rotate" about the z axis, arguments "horz" and "vert" used to position the texture pattern

reference point, the texture point polygon size "incr", and the 64x64 array that defines the

multi-color texture pattern, the number of points in the polygon and the polygon .5-

coordinates. The implementation of polcolorf3 is shown in Figure 4.7. The function -p.

begins by mapping the polygon defined in three space to the x-y plane. The function
.

map to the xy_plane takes as inputs the rotation angle "rotate" about the z axis, the "

44

r

4

polcolorf3(pattem-size,rotatehorzvert,incr~pattem.n,pafray)
short pattem-size:
Angle rotate;
int horz,vert;
Coord incr;
Colonindex pattern[641[641;
long n;
Coord parray[1[31,

Coord xmin~ymin.xmax,ymax,xincr,yincr.
register int i,
int i-begmnj-begin; -

Matrix trans;

pushantributreso;

rnap-to-xyv..lneans.rotaten.parray);

texture-patternlimits(n~parray,&xmin,&yrnin.&xmax,&ymax)

i-begin=(pattem-size-vert)%pattem size;
j-begin=(patten-size-horz)%pattem size;
i=i-begin, j=j-begin;
yincr=O.O;
while ((ymin+yincr)<=yrnax) { /* Repeat until polygon partitioned. *

xincr=-O.O;
while ((xmin+xincr)<=xmax)(
/* A value of 0 in the array 'pattern" indicates transparent. *
if (pattem[i]I=0)

chp-andlll(trans,pattem[i]],xmin+xincr.ymin+yincr,
xmin+xincr+incr,ymin4-yincr+incr,n,parray);

xincr+=incr,
if (j==pattem size) j=O; /* Check to repeat columns of pattern. *

j=j-begin;.

if (i=--pattern size) i=0; /* Check to repeat rows of pattern. ~
yincr4-=incr,

popattributeso;

Figure 4.7 Function to fill a polygon with multi-color texture pattern.

45

-~r -J r - g ar m

VV
number of polygon points and the coordinates of the polygon defined in three space. The

new polygon defined in the x-y plane is returned with the inverse transformation matrix

"trans" to be used in reverse mapping of texture point polygons. The texture pattern

limits are determined with the function texturepatternlimits. The lower limit and the

arguments "horz" and "vert" are used to calculate the beginning indices to reference the

texture pattern array. The upper and lower limit ensure the polygon in the x-y plane is ,.

completely partitioned into texture point polygons. The function clipandfill calculates

each texture point polygon and maps it to its proper relative position in three space with

the transformation matrix "trans" before filling. Each time the routine clipandjill is

called a new color map index is calculated, as well as new clipping lines. The function

clipandJill takes as inputs the inverse mapping matrix "trans", the color map index -

from the array "pattern", the clipping lines, the number of points of the polygon and the

coordinates of the polygon in the x-y plane.

F. EXAMPLE

A partial example is shown in Figure 4.8 that demonstrates the use of the new 3D

multi-color texture pattern functions. The complete program can be found in Appendix

C. The program draws a brick pyramid rotating on a checkered plain surface. Each object

is filled with a texture pattern produced by texted. U

After some IRIS initialization and variable definitions, the first multi-color texture ,.

pattern is defined with

n=defcolorpattern(1,8,"bkgrnd.pat").

This defines a multi-color texture pattern starting with the index 1 in the system table of

4

46.°
u - ". ", ", " ", ,'-', " ,-,' -' €,• .,.""d ," -" ' ,1. " %2 ','J,- -' -' '' -'-- ,'-," '%,',-"d" ,.",",'" "€ ."'.%="'".",""-'," -" "-'.,', ". ".2

"
' '.

maino

ginit; /*Initaliz theIRIS

/* Deine extu paterns

ginirobjpy /* IMa iake th e IRIS.id.

npdecolorpanern(I ,,.0kmd-an-y');e~ord)
mpdecolorpartem3(8+n0,.0a-array,"py.aeV);d)
podecolorpatteni3(8+n0 .array,'fcexcpard);

pyri=genobjO.

makeobj(pyri) f* Make the pyraid. sufae
polcolorf3(16,O,-,,2.O,aarray,.faeincoords); '

closeobjo;

makobj(plain); f* Mrakewh plain surface. *

callobj(pyai); /* Draw plaiduf.

gexi.
-

Figue 4. Exmpledemnstrtin texurepattrn unctons

caloj~yr, * ra praid7*

% % % %

patterns and the color map index of 8. The file "bkgrnd.pat" is the multi-color texture

pattern that is used for the background. The variable "n" is assigned the value equal to the

number of colors used in the multi-color texture pattern.

The function call

m=defcolorpattern3(8 +n,aarray, "pyr.pat")

defines the multi-color texture pattern for filling each pyramidal face. It uses the value of

" n" to calculate the starting color map index and places the texture pattern of "pyr.pat" in

the array a-array. The variable "m" again takes on the value of the number of colors

used.

The plain surface texture pattern is defined with

p=defcolorpattern3(8+n+m,barray,"chex.pat").

The first available color map index is passed in as 8+n+m and the multi-color texture

pattern of file "chex.pat" is saved in the array b-array. -,

The pyramid is made into an object named "pyr" and calls polcolor3 for each

face of the pyramid to demonstrate the ability of the system to fill a polygon defined

anywhere in three space. The first pyramid face is drawn with the function call

polcolorf3(64,0,-5,0,2.0,a-array,3,face lcoords).

The texture pattern saved in a array (read from pyr.pat) is a 64x64 texture pattern. The

rotation angle about the z axis used for positioning of the texture pattern is zero. The

texture pattern is shifted to the left -5 to make texture pattern edges match where pyramid

faces meet. The texture point polygon size in this case is 4 pixels (2.0x2.0) and there are

three points in the array "face lcoords" which define the pyramid face.

I48

o%

0I

,,'

The plain surface is also made into an object named "plain" and is drawn with

polcolorf3(16,0,0,0,25.0,b-array,4,plaincoords).

The texture pattern in barray (read from chex.pat) is a 16xl6 texture pattern and the

texture pattern is not shifted. The texture point polygon size in this case is 625 pixels

(25.0x25.0) and there are four points in the array "plaincoords" which define the plain

surface.

- With the multi.-color texture patterns defined and the objects built, the screen is

cleared by

colorclear(1,8,n).

This texture pattern function makes use of IRIS texture pattern hardware as discussed in

Chapter III. The plain surface and the pyramid are then drawn with

callobj(plain);

and

callobj(pyr).

Figure 4.10 is the generated display of this example program.

49

*Ole

-S,,

p- .' 5
i I d [.... . . .

*1.
' ' ' ' , + i . + ' . + . - . +

-+ ' - . -, + ', h , ,
'

" , .- + + . ,. - . . , . , + +.. , ._ , .,+ ,.

Figur 4.9 Panem use in demo2.c.

- ft

p..'

fit-f.0ttsl o rormdc 2¢

ft. - . , +m " , + • . +- - + - i + P " ," . ," + i . . m i . - - • m • + . +,

-p. •% . % " , • . % % " + . . % ., " . " . " .
+

% ",% ,. % - • ' . "

VP. - P ', , +- ',.. . .. " ++ " + +, + ''

V. EVALUATION AND PERFORMANCE

A. REAL-TIME TEXTURING

Past research has produced methods to calculate individual pixel intensities based
on a mapping from texture space to object space and finally to screen coordinates [1-7].

These same type of methods are used in rendering programs to aid in generating a two-

dimensional array of pixel intensities based on a three-dimensional description of a

scene [101. Texturing becomes a part of an overall program to render a realistic image. If

this rendering is done on a single processor system, turnaround time is usually measured

in hours.

Real-time computer animation implies that we are going to update and display

our three-dimensional objects at a rate of approximately 15 updates per second. We

accomplish this movement by changing the view position and view direction and then

redisplaying our three-dimensional objects. With textures or texture patterns, this

implies that individual texture points also change relative to the view position. Individual

texture points become larger as objects move closer to the view position and become

smaller as objects move away.

B. CHOICE OF METHODS

To approach real-time texturing of objects, our goal had to be to use as much

available hardware on the IRIS as possible. After realizing the limitations of the IRIS

hardware for texture patterns, the use of polygons to represent each point of a texture

pattern seemed natural.

51

..h.

-n_. W: _..-

The capabilities of the IRIS are due to the use of a custom VLSI chip called the

Geometry Engine. The IRIS makes use of a pipeline of twelve Geometry Engines that

accept polygons in user-defined coordinates with rotations, scaling and clipping

performed by that pipeline. By using polygons to represent each point of a texture

pattern, the Geometry Engines perform the transformation of the object space coordinates

of the texture point polygons to screen coordinates. With the Geometry Engines

performing transformations, individual texture points become larger as the objects move

closer to the view point and smaller as they move away. Hidden surface elimination is

achieved by using the IRIS' backface removal hardware. This breaks down for single
,1'

pixel polygons. In that case, z-buffering is then required for proper textured surface

display.

C. FACTORS AFFECTING PERFORMANCE

The performance of the three-dimensional texture pattern functions depends on

the number of points required to define the polygon filled with the texture pattern, and the
-.5

size of the texture point polygons. Increasing the number of points in the polygon results

in more comparisons to be made to calculate texture point polygons. Decreasing the

texture point polygon size results in increasing the number of coordinates calculated and

the number of polygons to fill.

D. QUANTITATIVE DATA

Measurements were taken to calculate the total number of polygons and the I

amouni of CPU time required to generate the display of the example program in

Appendix C. There are a total of 19,289 polygons in the display with each pyramidal face

52

, ,*.v

- -5 "5 -P ""

* partitioned into 4484 polygons (See Fig. 4.9). It takes approximately 150.35 seconds of

CPU time to generate the entire display. This includes the time to build the objects and

then display them. Total time to generate the display is reduced by generating only one

pyramidal face and using the IRIS rotation capabilities to generate the other three

pyramidal faces. Figure 5.1 demonstrates building the pyramid using only one pyramidal

face. Using the objects of Figure 5.1, the entire display is generated using approximately

44.57 seconds of CPU time. Additional data was taken varying the texture point polygon

size and measuring the time to build the pyramidal object of Figure 5.1 (Table 5.1).

/* Make one pyramidal face to generate pyramid. */
face=genobjO;
makeobj(face);
polcolorf3(64,0,-5,0,2.0,aarray,3,a);

closeobjO;

/* Make the pyramid object. *1
pyr=-genobO;
makeobj(pyr);
callobj(face); /* face I */
pushmatrixO
rotate(900,'Y');
callobj(face); /* face 2 */
popmatrixO;
pushmauix0;
rotate(1800,'Y');
callobj(face); /* face 3 */
popmatrix0;
pushmatrixo;
rotate(-900, 'Y');
callobj(face); /* face 4 */
popmatrixo;

closeobjO;

Figure 5.1 Pyramid object built with one face.

53
,"

r

By using the IRIS capability to build objects, the overhead associated with

calculating texture point polygons can be limited to object construction time. The speed

at which an object is updated and displayed with a change in point of view depends

solely on the IRIS' capability to transform and fill the polygons that make up the object.

Data was taken varying the texture point polygon size and measuring the time to display

the pyramid object after the object had already been built (Table 5.2).

Table 5.1 CPU time to build pyramidal object.

increment #polygons CPU time(secs.) polys./sec.
1.0 70,632 121.66667 580
2.0 17,936 30.65000 585
3.0 8092 13.58333 595
4.0 4616 7.85000 588
5.0 3008 5.16667 582
6.0 2116 3.61667 585
7.0 1572 2.68333 585
8.0 1224 2.05000 597 r
9.0 984 1.66667 590
10.0 808 1.46667 551 L

Table 5.2 Update time for pyramidal object.

increment #Polygons Update time(secs.) polys./sec.
1.0 70,632 4.41667 15,992
2.0 17,936 1.05000 17,082 N

3.0 8092 0.50000 16,184
4.0 4616 0.30000 15,387 p

5.0 3008 0.21667 13,883
6.0 2116 0.13333 15,870
7.0 1572 0.11667 13,474
8.0 1224 0.08333 12,240
9.0 984 0.06667 14,760
10.0 808 0.06667 12,119

.%,I

*1, ,

L -U v-.VV Lm~A VTV .P-w J

VI. CONCLUSIONS

A. A COLOR TEXTURE PATTERN EDITOR

TTexted proved to be a very valuable tool in designing multi-color texture patterns.

The fact that multi-color texture patterns are defined by a number of short integers

becomes transparent to the user. The ability to choose or define any color, as well as a

selection for transparency, enables the user to design a texture pattern that is limited only

by the creativity of the user.

A shortcoming of the editor is the limit of a 64x64 texture pattern as the largest

pattern selection. This design decision was based on the fact that the largest texture

pattern that can be defined by the IRIS patterning hardware is a 64x64 pixel pattern.

Using our 3D texturing technique, there is no reason we should be limited by a 64x64

texture pattern. This limit placed on our editor design made the picture option of little

use. Textures such as grass or rocks which might be taken from a photograph do not

usually exhibit a repeating pattern. A nice feature would be the ability to select a texture

as large as the polygon we wished to fill.

B. REAL-TIME TEXTURING

We pointed out above that texturing using the IRIS' patterning hardware has its

limitations. Though the hardware is unable to translate or rotate the developed texture

patterns, it can still be very useful in real-time animation. One application has been the

use of a grass texture pattern in a road rally simulator. Translation of the grass texture

pattern is achieved by using four different grass texture patterns with the translation

551
iL

-,""-" -' . %*', ",-"' N ."'V%- '.% " - '' ' ': ' '" ,"-'' :' ":, :" " '. "" .. , ""'

occurring from one texture pattern to the other. Though not completely accurate, it is

enough to create the illusion to the user who is concentrating on the road anyway.

As can be seen from the data of Chapter V, our software technique for texturing

falls short of the 15 updates per second until the texture point polygon increment is 9.0.

With an increment of 9.0, each pyramidal face is partitioned into 246 polygons.

However, this is not the detail sought when we normally speak of texturing. It is

desireable to achieve real-time animation speed updates with a texture point polygon size

of 2.0 (17,936 polygons/pyramid) or even 1.0 (70,632 polygons/pyramid). The algorithm

for partitioning polygons into texture point polygons is extremely slow, as can be seen

from the data. The IRIS as of now still lacks the speed to transform and display the

number of polygons required for realistic texturing.

C. FUTURE WORK

With the ability to take texture patterns of any size from photographs, we

envision the development of a texture pattern library. Any user developing a computer

generated scene would have at his disposal a large number of textures which might

include rocks, sand, fields, brick and others. Users could take advantage of the creative

abilities of others whose texture patterns could also be saved in this library.

Our functions were developed to be as efficient as possible and yet preserve

understandability. There are always new and innovative ways to improve performance.

Access to low-level graphics system routines could prove to be a way to improve

performance.

We have not even considered the addition of surface roughness or shading, both

of which are necessary to achieve a realistic image. Our technique partitioned a polygon

56

kL '%7''%." .;./ i...'... '.:t". €.€ .. %ed."2 ;c .€;,€ '. ',.3 ,.. ,.L.".',L "' , L' ,..'.7'', ' . , -. ' , : V' ,

into flat shaded texture point polygons. With faster processors or even multi-processors,

our functions could be modified to partition polygons into Gouraud shaded texture point

polygons, making even more realistic im-ages. We believe with systems like the IRIS, the

ability to use realistic textured objects in real-time computer animation using the

technique described is attainable in the near future.

57)

APPENDIX A - COLOR TEXTURE PATTERN FUNCTIONS

defcolorpattern defcolorpattern

NAME

defcolorpattern - defines a multi-color texture pattern.

SPECIFICATION

C long defcolorpattem(first-pattern,first color,filename)
short first-pattern;
Colorindex first-color;
char filename[];

DESCRIPTION

defcolorpanern defines an arbitrary multi-color texture pattern made up of an ar-
bitrary number of texture patterns saved in the system table of patterns. The first
argument specifies the beginning index in the system table of patterns where the
multi-color texture pattern will be stored. The next argument is the beginning in-
dex of the color map where the colors of the multi-color texture pattern will be
stored. Finally, the last argument is the filename of the texture pattern created
through texted. The function returns the number of colors used in the texture pat-
tern, which corresponds to the number of indices used in the system table of pat-
terns as well as the number of color map entries.

NOTE

This command can be used only in immediate mode.

5'

..

:,....

rectcolorf rectcolorf

NAME

rectcolorf - fills a rectangular area with a multi-color texture
pattern defined by defcolorpattern.

SPECIFICATION

C rectcolorf(fist_pattern,firstcolor,number-ofcolors,x 1,y I,x2,y2)
short first-pattern;
Colorindex first-color;
short number of colors;
Coord xl,yl,x2,y2;

rectcolorfi(first.pattern,first-color,number of.colors,x l,yl ,x2,y2)
short first-pattern;
Colorindex first-color;
short number of colors;
Icoord xl,yI,x2,y2;

rectcolorfs(first-pattern,firstcolornumberof colors,x l,y 1,x2,y2)
short first-pattern;
Colorindex first-color;
short numberof colors;
Scoord xl ,yl ,x2,y2;

DESCRIPTION

rectcolorf produces a filled rectangular region, using the multi-color texture pat-
tern defined by defcolorpattern. The first argument is the first index in the system
table of patterns which the multi-color texture pattern uses. The second argument
is the starting color map index of the colors used in the multi-color texture pat-
tern. The third argument is the number of colors used in the multi-color texture
pattern, which also corresponds to the number of indices used in the system table
of patterns. Since a rectangle is a two-dimensional shape, rectcolorf takes only
2D arguments, and sets the z coordinates to zero. The points (xl,yl) and (x2,y2)
are the opposite corners of the rectangle. The current graphics position is set to
(xl,yl) after the region is drawn.

59

-C- • s r • w " -, = w r . P . 4 " " . " "P " J o 4 4 . j .- h- . .- o .

polcolorf polcolorf

NAME

polcolorf - draws a filled polygon with a multi-color texture
pattern defined by defcolorpattern.

SPECIFICATION

C polcolorf(flst-pattern,flrstscolor,number of-colors,n,parray)
short flrst-pattern;
Colorindex first -color;
short number-of colors;
long n;
Coord parray[1[31;

polcolorfl(frst-pattem,flrst-color,number of-colors,n,parray)
short flrst-pattern;
Colorindex first - olor;
short number-ofscolors;
long n;
Icoord parray[I3]

polcolorfs(flst-pattern,flrstscolor,number -ofcolors,n,parray)
short flrst-pattern;
Colorindex fi rst Color;
short number _of colors;
long n;
Scoord. parray[1[1;

polcolorf2(flrst-pattern,flrstscolor,number of-colors,n,parray)
short flrst-pattern;
Colorindex first color;
short number-ofscolors;
long n;
Coord parray[][21;

polcolorf2i(flrst..patter,frst-color,number-of-colors,n,parray)
short flrst-pattern;
Colorindex first -color;
short number-of~solors;
long n;
Icoord parray[][21;

60

polcolorf2s(first-pattern,first-color,numberof-colors,n,parray)

short first-paterm;
Colorindex first-color;
short number of colors;
long n;
Scoord parray[][21;

DESCRIPTION

polcolorf fills polygonal areas, using the multi-color texture pattern defined by
defcolorpattem. The first argument is the first index in the system table of pat-
terns which the multi-color texture pattern uses. The second argument is the
starting color map index of the colors used in the multi-color texture pattern.
The third argument is the number of colors used in the multi-color texture pat-
tern, which also corresponds to the number of indices used in the system table of
patterns. The final two arguments are the number of points in the polygon and

,'I the array of points which define the polygon. The points can be expressed as in-
tegers, shorts, or floating point, in 2D or 3D space. Two-dimensional polygons
are drawn with z=O. After the polygon is filled, the current graphics position is
set to the first point in the array.

The results are undefined if the polygon is not convex.

61

J*". " "" ' i , 1 , ". % ". ", ". -, ' ". ' , . , . % . % % " , " , , " " ", ". " . ",." "

--

circcolorf circcolorf,.

NAME

circcolorf - draws a filled circle with a multi-color texture

pattern defined by defcolorpattern.

SPECIFICATION

C circcolorf(firstpattern,first color,number-of_colors,x,yradius)
short firstpattern;
Colorindex first-color;
short number_ofcolors;
Coord x,y,radius;

circcolorfi(first-patternmfirstscolornumber of'-olorsxyradius)
short flrst-pattern;
Colorindex first-color;
short number_oLcolors;
Icoord x,yradius;

circcolorfs(first-pattern,first_color,number-of_colors,x,y,radius)
short first-pattern;
Colorindex firstcolor; i
short number-of colors; .
Scoord x,yradius; -Z

a'.

DESCRIPTION

circcolorf fills a circle, using the multi-color texture pattern defined by defcolor-

pattern. The first argument is the first index in the system table of patterns which
the multi-color texture pattern uses. The second argument is the starting color
map index of the colors used in the multi-color texture pattern. The third argu-
ment is the number of colors used in the multi-color texture pattern, which also
corresponds to the number of indices used in the system table of patterns. The
circle has its center at (x,y) and a radius radius, both specified in world coordi-
nates. Since a circle is a two-dimensional shape, these commands have only 2D
forms. The circle is drawn in the x-y plane, with z=O.

62

I

~ a' *.- --

arccolorf arccolorf

NAME

arccolorf - fills a circular arc with a multi-color texture pattern ,S
defined by defcolorpattern.

SPECIFICATION

C arccolorf(first-pattern,first_colornumberofcolors,x,y,radius,
startang,endang)

short first pattern;
Colorindex first-color;
short number of colors;
Coord x,y,radius;
Angle startang,endang;

arccolorfi(first-pattern,first_color, number of colors,x,y,radi us,
startang,endang)

short first pattern;
Colorindex first-color;
short number of colors; 0
Icoord x,y,radius;
Angle startang,endang;

arccolorfs(first pattern,first_color,numberof_colors,x,y,radius,
startang,endang) .

short first pattern;
Colorindex first-color;
short number of colors;
Scoord x,y,radius;
Angle startang,endang;

DESCRIPTION

arccolorf draws a filled circular arc, using the multi-color texture pattern defined
by defcolorpattem. The first argument is the first index in the system table of pat-
terns which the multi-color texture pattern uses. The second argument is the
starting color map index of the colors used in the multi-color texture pattern. The
third argument is the number of colors used in the multi-color texture pattern.
which also corresponds to the number of indices used in the system table of pat-
terns. The arc is specified as a center point, a starting angle, an ending angle, and
a radius. The angle is measured from the x-axis and specified in integral tenths of
degrees. Positive angles describe counterclockwise ro ttions. Since an arc is a
two-dimensional shape, these commands have only 2D forms. The arc is in the

63

A

A M5

x-y plane with z=0. Arcs are drawn counterclockwise from startang to endang, so
the arc from 10 degrees to 5 degrees is a nearly complete circle.

i .

'

",
'%

p.I
64 -,

N- %.I TCW.V fLV1I

colorclear colorclear

NAME
.*

colorclear - clears the viewport with a multi-color texture .

pattern defined by defcolorpattern.

SPECIFICATION

C colorclear(first-patternfirst-colornumberof colors)
short first-Pattern;
Colorindex first color;
short number-of colors;

DESCRIPTION

colorclear clears the screen area within the current viewport, using the multi- '

color texture pattern defined by defcolorpattern. The first argument is the first in-
dex in the system table of patterns which the multi-color pattern uses. The
second argument is the starting color map index of the colors used in the multi-
color texture pattern. The third argument is the number of colors used in the
multi-color texture pattern, which also corresponds to the number of indices used
in the system table of patterns.

,' .6

,,,,.

I,'

.S

-J 4"

defcolorpattern3 defcolorpattern3

NAME

defcolorpattern3 - defines a multi-color texture pattern and
stores it in the form of an array.

4.

SPECIFICATION

C long defcolorpattern3(first-color,pattern,filename)
Colorindex first color;
Colorindex pattern[64][641;
char filename[];

DESCRIPTION

defcolorpattern3 defines an arbitrary multi-color texture pattern and saves it in 'p

the form of a 64x64 array. The first argument specifies the beginning index in the
color map where the colors of the multi-color texture pattern will be stored. The
second argument is the 64x64 array that will hold the multi-color texture pattern
after defcolorpattern3 is called. Finally, the last argument is the filename of the
texture pattern created through texted. The function returns the number of colors
used in the multi-color texture pattern, which corresponds to the number of color
map entries made.

NOTE

This command can be used only in immediate mode. .4

'6

.

66 "

."

I.*

- .-'-'- ,*.* *, . "--j+'-' - . l..j'Sj' • ." # f-t-' -*-,- - ' W -€'-#' ~,.-'--F.'.4" ' tt. 'W'~' =C.. , €

polcolorf3 polcolorf3

NAME

polcolorf3 - draws a filled polygon with a multi-color texture
pattern defined by defcolorpattem3.

SPECIFICATION

C polcolorf3 (pattemsize,rotate,horz,vert,incr,pattem,n,parray)
short pattemsize;
Angle rotate;
int horz,vert;
Coord incr;
Colorindex pattem[64][64];
long n;
Coord parray[][3];

polcolorf3i(pattem-size,rotate,horz,vert,incr,pattem,n,parray)
short pattern-size;
Angle rotate;
int horz,vert;
Icoord incr;
Colorindex pattem[64][64];
long n;
Icoord parray[64][64];

polcolorf3s (pattemrsizerotate,horz,vert,incr,pattem,n,parray)
short pattern size;
Angle rotate;
int horz,vert;
Scoord incr;
Colorindex pattern;
long n:
Scoord parray(641[641;

DESCRIPTION

polcolorf3 fills polygonal areas, using the multi-color texture pattern defined by
defcolorpattem3. The first argument is the texture pattern size which can take on
values of 16(16x16), 32(32x32), or 64(64x64). The next three arguments of "ro-
tate", "horz", and "vert" are used to position the multi-color texture pattern on the
polygon surface. The polygon is filled with the texture pattern by first bringing it
into the x-y plane and then rotating the polygon about the z axis with the first
point of the polygon at the origin, and the second point initially on the x axis.

67

I'.,,

if, " " " " ""- ,,,. 1. . " '"-. " "- . . -- " ' "" '' - . - . - ' "' .• .' ". ' - --. ".'.''"".5. .'". -' ,".:" . .:".:"..'.,

The angle "rotate" is measured from the x axis and specified in integral tenths of
degrees. Positive angles describe counterclockwise rotations. The arguments of
"horz" and "vert" shift the texture pattern right or left, up or down. With "horz"
and "vert" having values of zero, the reference point is the point defined by the
smallest x and y values of all the array points, after the polygon has been posi-
tioned in the x-y plane. The argument "incr" specifies the rectangular polygon
size which will represent each texture point. The argument "pattern" is the array
formed upon an earlier call on defcolorpattern3. The final two arguments are the
number of points in the polygon and the array of points which define the po-
lygon. The points can be expressed as integers, shorts, or floating point numbers.

68,

f.

f.

',S

t.,

ft.

68!

%t

iPJ

-'t

APPENDIX B - EXAMPLE 1

demol.c is a program which demonstrates the use of the color texture
pattern functions which make use of the files produced by texted.
These particular functions make use of the IRIS hardware to produce
multi-color texture filled objects.

#include "gl.h"
#include "device.h"

mainO

Colorindex wmask;
short n,mp,q;
Icoord a[6][21;

/0 Coordinates for a 6 sided polygon./
a(01[0=550; a(01(l1]=50;
a(l](01--450; a([1[11=150;
a(2][01=550, a[2](11=250;
a[3][01=650; a[3](11=250;
a[41[01=750; a(41[I 1= 150;
a[510]=650; a[5] [1=50;

/* Initialize the IRIS */
ginitO;

/* Configure IRIS for single buffer /
singlebuffero;
gconfigO;

/'* Use all bit planes/
wmask=((1 <<getplanesO)- 1);
writemask(wmask);

/* Use full screen 0/
viewpon(0, 1023,0,767);
ortho2(0.0, 1023.0,0.0,767.0);

cursoffo;

/' The color texture pattern saved in "brick.out" is stored in the
system table of patterns starting at index 1, and in the color
map starting at index 8. "n" will equal the number of colors
used in the color texture pattern, which also corresponds to the
number of indices used in the system table of patterns. */

n=defcolorpattem(1,8,"brick.pat");

4'

69 "S

.,
d'lim lt'..l ,.~a.',. m d dt. ',. ' , d' ,,''w' a,' - ,' ,N, .o

,
% %" " % "..',.'' " • . , . . .4 . . . -#./, ,. %.-% ...- %.- ,'- 'I.a

j The color texture pattern saved in "wood-pat" is stored in the
system table of patterns starting at index l+n, and in the color
map starting at index 8+n. "m" will equal the number of colors
used in the color texture pattern, which also corresponds to the
number of indices used in the system table of patterns. *I

m--defcolorpattern(l n,8+n,"wood.pat");

/" The color texture pattern saved in "weave.pat" is stored in the
system table of patterns starting at index I+n+m, and in the color
map starting at index 8+n+m. "p" will equal the number of colors
used in the color texture pattern, which also corresponds to the
number of indices used in the system table of patterns. *I

p=defcolorpattem(l+n+m,8+n+m,"weave.pat");

/* The color texture pattern saved in "mod.pat" is stored in the
system table of patterns starting at index l+n+m+p, and in the color
map starting at index 8+m+n+p. "q" will equal the number of colors
used in the color texture pattern, which also corresponds to the
number of indices used in the system table of patterns. */

q=defcolorpattern(1+m+n+p,8+m+n+p,"mod.pat");

/* Background of white */

color(WHITE);
clearO;

/0 Fill a rectangle with the texture patterns that start at index I
in the system table of patterns, index 8 in the color map, and
uses a total of "n" indices. /

rectcolorfi(1,8,n,75,500,425,700);

/* Fill a circle with the texture patterns that start at index 1+n
in the system table of patterns, index 8+n in the color map,
and uses a total of "m" indices. */

circcolorfi(1+n,8+n,m,250,250, 100);

f* Fill an arc with the texture patterns that start at index l +n+m %
in the system table of pattterns, index 8+n+m in the color map,
and uses a total of "p" indices. */

arccolofi(l +n+m,8+n+m,p,550,500,200,300,900); .

/* Fill a polygon with the texture patterns that start at index
I +n+m+p in the system table of patterns, 8+n+m+p in the color map,
and uses a total of "q" indices. /

polcolorf2i(I +n+m+p,8+n+m+p,q,6,a);

70

'.,.
ts

-. ~-r.rJ-J m viF W. -. r~ J -Y TX Y . ---Y -) - -

V1.WMW KVVw'-Y' 17

/0 Depress RJGHTMOUSE to exit program *
while(TRUE) (

if (getbutton(MOUSEI1)==1)
break;

/' Restore IRIS *
color(BLACK);
clearo;
cursono;
gexito;

A 7

APPENDIX C - E XAMPLE 2

demo2.c is a program which demonstrates the use of the color texture
pattern functions that use the files produced by texted. The functions
which make use of the IRIS hardware as well as those that give the user
the capability to manipulate those texture patterns in three space are
demonstrated.

#inclJude "gl.h'
#inclJude "device.h"

mainO

Colorindex wmask; a

Coord face Icoords[31[3]face2coords[31[31;
Coord face3coords[31 [3bface4coords[31 [31 .plaincoords[41 [3];
register ij,num;
Colorindex a -array[64][64];
Colorindex b-array[64][64];
Object pyr~plain;
short rot=0;
int nrm,p;

/* Coordinates of the four faces of the pyramid. *
*face 1 coords(0] [0]= 100.0; face Icoords[0] [11=0.0; facelIcoords [0] [21= 100.0;

face lcoords[I1I [01= 100.0; facelcoords[1] [1]=0.0; face lcoords[1][21=(- 100.0);
face lcoords[2] [01=0.0; face lcoords[2][1]= 142.2; face lcoords[21 [2]=0.0;

face2coords[0][0]= 100.0. face2coords[0][1]=O.0; face2coords[0][2)=(- 100.0);
face2coords 1] [0]=(- 100.0); face2coords[l]1111=.0; face2coords(1] [2]=(- 100.0);
face2coords[2] [01=0.0; face2coords[2]1 1]=142.2; face2coords(2] [21=0.0;

face3coords[0] [0]=(- 100.0); face3coordsO] (11=0.0; face3coords[0] (21=100.0;
face3coords[11(01= 100.0; face3coords[1] [11=0.0; face3coords(1] [2]= 100.0;
face3coords[21 [01=-0.0; face3coords[2] [11=142.2; face3coords[2] [21=0.0;

face4coords[0] [0]=(- 100.0); face4coords(0] (11=-0.0; face4coords(0] [2]=(- 100.0);
face4coords[1] (0]=(- 100.0); face4coords(l 1110.0; face4coords[11(21=100.0;
face4coords[2] [01=-0.0; face4coords[21 [11=142.2; face4coords[2] [2])410;

/* Coordinates of the plain surface. ~
plaincoords(0] [0]-500.0); plaincoords[0] [11=0.0;, plaincoords01 [21=0.0;
plaincoords(11(01=500.0; plaincoords[11(11=0.0;, plaincoords~(2]=0.0;,
plaincoords(2] [01=500.0; plaincoords[2) [11=0.0; plancoords[2] [2]=(-800.0);,
plaincoords(3] [0]=(-500O); plaincoords[3] [11=0.0; plaincoords[31 [2]=(-800.0);

/* Initialize IRIS
ginito;

/* Configure for double buffer ~
doublebuffero;
gconfigO;

72

* e,

/* Use backface polygon removal for hidden surface elimination. */
backface(TRUE);

/* Use all bit planes */
wmask=((l <<getplanesO)- I);
writemask(wmask);

/* Use full screen */
viewport(0, 1023,0,767);
perspective(550,1.0,0.0, 1000.0);
lookat(O.0, 100.0,-5.0,0.0,0.0,-900.0,0);

cursoffO;

/* The color texture pattern saved in "bkgrnd.pat" is stored in the
system table of patterns starting at index 1, and in the color
map starting at index 8. "n" will equal the number of colors
used in the color texture pattern, which also corresponds to the
number of indices used in the system table of patterns. */

n=defcolorpattem(1,8,"bkgrnd.pat");

/* The color texture pattern saved in "pyr.pat" is stored in the %

color map starting at index 8+n, and in a-array as an array of
color map indices. */

m=defcolorpattem3(8+na_array,"pyr.pat");

/* The color texture pattern saved in "chex.pat" is stored in the
color map starting at index 8+n+m, and in b-array as an array of
color map indices. */

p=defcolorpattern3(8+n+m,b-array,"chex.pat");

/* Build the pyramid object. Each face of the pyramid uses a 64x64
color texture pattern saved in a._array. The color texture pattern
reference point for each face is shifted left 5. There is no
positioning of the color texture pattern reference point vertically,
or rotation about the first point of the polygon. The size chosen
for a texture point is 2.0. */

pyr=genobjO;
makeobj(pyr);

polcolorf3(64,0,-5,0,2.0,a array,3,face I coords);
polcolorf3(64,0,-5,0,2.0,a array,3 ,face2coords);
polcolorf3(64,0,-5,0,2.0,a array,3,face3coords);
polcolorf3(64,0,-5,0,2.0,a..array,3,face4coords);

closeobjO;

73

-5

:.>,,:

,.
F.X

/* Build the plain object. The plain object uses a 16x16 color texture
pattem saved in b..array. There is no positioning of the color
tex re pattern and the size chosen for a texture point is 25.0. */

plain=genobjo;
makeobj(plain);
polcolorf3(16,0,0,0,25.0,barray,4,plaincoords);

closoobjO;

while(TRUE){("a

/* Clear screen to the texture patterns that start at index 1 in
the system table of patterns, index 8 in the color map, and
uses a total of "n" indices. */

colorclear(l,8,n);

/* Draw the plain surface. */
callobj(plain); V"

/* After pyramid has rotated 360 degrees, initialize rotation
angle to 0*/

if (rot=3600)
rot=0;

/* Translate and rotate the pyramid. */
pushmamxO;
translate(0.0,0.0,-500.0);
rotame(rot,'Y');
callobj(pyr);
popmatrixO;
swapbufferso;

/* Increment the rotation angle 10 degrees. */
rot+= 100;
if (getbutLon(MOUSE1)==1)

break;

/* Restore IRIS / "
color(BLACK);
clearO;
cursonO;
gexitO;

7I
7/4

• i - I-..*IWII % I *I I I n

* rTl - - - - -- -- - .

%

APPENDIX D - SOURCE CODE FOR COLOR TEXTURE
PATTERN FUNCTIONS: 2D

texture.c contains all the necessary functions to create multi-color
texture filled objects using the IRIS hardware texture pattern
capabilities.

#include "gl.h"
#include "device.h"
#include <stdio.h>

ROUTINE: defcolorpattern

The function defcolorpattem allows the user to define a multi-color
texture pattern through use of a file produced by texted. The multi-color I
texture pattern is stored as a number of texture patterns in the system
table of patterns starting with "first_pattern", and as a number of indices %
in the color map starting with "first_color". The function returns the
number of colors used in the multi-color texture pattern, which also
corresponds to the number of indices used in the system table of patterns.

defcolorpattern(firstpattern,first color,filename)
short firstpattern; /* System table of patterns index of first pattern*/
Colorindex firstcolor; /* Color map index of first color used.*/ %
char filename(]; /* Filename of saved texture pattern.*/

short numberofcolors;.
short next pattern;

Colorindex next color;
short pattemsize; "
short red value,green-value,blue-value;
short bitword;
short mask[256];
short ik,
FILE *fp,*fopeno;

/1 Open the file and read the pattern size and the number of colors used.*/
fp=fopen(filename,"r");
fscanf(fp,"%hd%hd",&pattern0size,&numberof_colors);

next-pattern=first-pattern;
nextcolor= firstcolor; %

/" For each color used in the multi-color texture pattern. */
for (k=1; k<=numberofcolors; k++){

1' Read the RGB values and place in color map. */
fscanf(fp,"%hd%hd%hd" ,&red-value,&green-value,&bluevalue);
mapcolor(next color,red-value,green-value,blue-value);

.5

75

"%A % N,

T - 77-r- .77-

/* Advance to next index in color map./
nextcolor+= 1;

/0 Read the words thai define the texture pattern./
for (i=-O; i<(pazternsize*(pattemnsize/16)); i++)(

fscanf(fp,"%hx",&bitword);
maskfi]=bitword;

/* Save the texture pattern in the system table of patterns. *
defpattern(next-pattern,pattemsize~mask);

t* Advance to next index in system table of patterns. *
next-pattern+= 1;

fclose(fp);
return(number of colors),

*676

%h

ROUTINES: -rectcolorfi, rectcolorfs, rectcolorfo

The functions rectcolorfi, rectcolorfs, and rectcolorf will fill a
rectangle with the texture patterns starting with "first-pattern" in
the system table of patterns and using colors starting with color map
index "first -color". The argument "number-of~colors" should take on
the value returned by defcolorpattern.

rectcolorfi(firstpatern,first color number_of-colors,x l,yl ~x2,y2)
short first-patern;
Colorindex first-color;
short number of colors;
Icoord xlI,ylIx2,y2;

short i;
short nextpattemn;
Colorindex next~color;,
pushattributeso;
next-pattern=first-pattemn;
next -color--fistcolor;
for (0=l I-,=number-of-colors; i++i){
setpattern(nextcpattern);
next-pattern+= 1;
color(next Color);
next-color+= 1;
rectfl(x l~yl x2,y2);

popattributeso;

rectcolorfs(fitpanem,firstcolor number-of colors,x l~yl ,x2,y2)
short first-pattern;
Colorindex first-color;
short number-of-colors;
Scoord xl,yl,x2,y2;

short i;
short next-pattern;
Colorindex next-Color,
pushattributeso;
next-pattern=first-pattem;
next color--flrst-color,~p
for 0i=1; ik=number-of-colors; i++)(
setpauern(next-pattern); p

nextpatten+=- 1; p
color(, iext-color);
next color+= I;
rectfs(x lyl ,x2,y2);

popattributeso;

77 p

N~fI Y P
&iZZT&L

rectwolorf(fLrstpattem,flstcolor,nwmber-ofcolors,x l,yl ,x2,y2)
short first-par;
Colonindex. firstcolor;
short number_of~colors;
Coord xl,yl ,x2,y2;

short i;
short next-pattern;
Colorindex next-Color,
pushattributeso;
next4,attern=flrst.panem;,
next-color--frstscolor;
for (i= 1; i<=number-of-colors; i++)(
setpattern(nexLpattern);
next-pattem+= 1;
color(nextcolor);
next-color+= 1;
rectf(x l,yl ,x2,y2);

popauributeso;

78~

ROUTINES: polcolorf2i, polcolorf2s, polcolorf2,
polcolorfi, polcolorfs, polcolorf

The functions polcolorf2i, polcolorf2s, polcolorf2, polcolorfi. polcolorfs, a

and polcolorf will fill a polygon with the texture patterns starting with a

"firstpattern" in the system table of patterns and using colors starting
with color map index 'first-color'. The argument 'number-of~colors' should
take on the value returned by defcolorpattem.

polcolor2i(firstpatter,firstcolornumber-ofsolors,n,parray)
short first-patlem;,
Colorindex first-color;
short number_of~colors;
long n;
Icoord parray[] [2];

short i;
short nextpattern;,
Colorindex nextcolor;,
pushattributeso;
next.Jpatern=first-pattern;
nextcolor--first~color;
for (i=l1; i<=numbero~colors. i++)(

setpattern(next..pattern);
next-pattern+= 1;
coior(next-color);
next-color+= 1;
polf2i(n~parray);

popattributeso;

polcolor2s(firstpattwm,first-color,number-ofsolors,nparray)
short first-pautem;
Colorindex firstcolor;
short number-of~colors;
long n;
Scoord parray[] [2];

* short i;
short next-pattern;
Colorindex next-color;7
pushattuibuteso;

* next..pattern=first-pattern,
next color--flrsLcolor,
for (i=l1; k=number -of~colors; i+-s)(

setpattern(nextpattern);
next -pattern+= 1;

* color(next color);
next color+= 1;
polf2s(n.parray)*;

79 %.

popattibutesO;-

polcolorfi(firs-patern,frstcolor,nwnberofcolors,n,parray)
short flrst4pattern;
Colorindex. first-color,
short number-of~colors;
long n;
Icoord parrayU1(3];

short i;
short next-pattenl;
Colorindex next color
pushattributeso;
next-pattem=first-pattern;
next_color--first-color
for (6=1; i<=number-of-colors; i++){
setpatter(next-pattern);
next-pattern+= 1;
color(nextcolor);
next-Color+= 1;
polfi(n,parray);

popattuibuteso;

polcolorfs(flrstpattem,first color number-of Colors,n,parray)
short first-pattern,
Colorindex first-color;,
short number-of-colors,
long n;
Scoord parray[1;

short i;
short next-pattern;
Colorindex next-Color,
pushattributeso;
next-panem=first-patter;
next -colormfirst -color,
for (i=l1; i<=number of~colors; i...)(

setpattem(riext-pattern); -

next-pattern+= 1;
colar(next color);
nextcolor+= 1;
polfs(n~pamy);

popauributeso;

804

IIII R 1 0. I r *

-A -A A A A~aV

polcolort2(fist-patern,first-color,number-of-colors~n,parray)
short firstpatten;'
Colorindex first color;
short number-ofsolors;
long n;
Coord parrayfl[2];

short i;
short next...pattern:
Colorindex next-color;
pushattributeso;
next-patttern=flrst-pattern;
next color--first color;

4 for (i=l1; i<=number-of-colors; i++){
setpattern(nexLpattern);
nextpattern+= 1;
color(next -color);
next-color+=1;
polf2(n,parray);

popattrbuteso;

polcolorf(first-pattem,flrst-color,nmber-of-cOlors,n,parray)
% ~short firstpatter;

Colorindex flrst-solor;
N short number of colors;

long n;
Coord parray[l[3];

-~ short i;
short next pattern;
Colorindex next-Color;
pushattributeso;
next-pauter=firstpattern;
next -color--firsLcolor;
for 0i=1; i<=number-of-colors; i++)(

setpattern(next,4,atern);
next-pattern+= 1;
color(next color);
next-color+=1;
polf(n~parray),

popattibuteso;

19 81

ROUTINES: -circcolorfi, circcolorfs, circcolorf

The functions circcolorfi. circcolorfsand circcolorf will fill a circle
with the texture patterns starting with "first..pattern' in the system
table of patterns and using colors starting with color map index
"first~color". The argument "number_of~colors" should take on the value
returned by defcolorpatern.

circcolorfi(firstpattem,firstcolor,number...ofsolors,x,y,radius)
short first-pattemn;
Colorindex first-color;
short number ofcolors;
Icoord x,yradius;

short i;
short next-patern;
Colorindex. next-color;
pushattributeso;
next-pattern=first-pattern;
nexi color--first-color,
for (i= 1; ic=number- ofcolors; i++,)
setpattern(nextcpattern);
next-pattern+= 1;
color(next color);
nextcolor+= 1;
circfi(x,y,radius);

popattributeso;

c irccolorfs(first.pater,firstsolor~number ofsolors,x,yradius)
short firstpattern;
Colorindex firsLcolor;
short number-of-colors;
Scoord x,yiradius;

short i;
short next~pattern;
Colorindex next-color,
pushattributeso;
next-pattern=firstpattern;
next color--firs color.
for (i= 1; i<=nuznber of~colors; i++~)
setpattern(nextpattern);
nextpattern+-- 1;
color(next-color);
nextculor+= 1;
circfs(x,yjradius);

popattibuteso,

82

circcolorf(first-pauer,firstcolor,numberofcolors,x,y,radius)
short fLrsz..patzen;
Coloonndex first-color,
short number -of~colors;
Coord x,yxradius;

short i;
short next-pattern;
Colorindex next-color;
pushattributesO;
next-pattem=fintcpattern;
next color--first.color,
for (i--l1 i<=num ber_of -colors; i++)(

setpattern(nex~pattern);
nexLpattern+= 1;
color(next-color);
next color+= 1;
circf(x,y,radius);

popattributesO;

0'

83A

ROUTINES: - arccolorfi, arccolorfs, arccolorf

The functions arccolorfi, arccolorfs, and arccolorf will fill
an arc with the texture patterns starting with "firstpattern"
in the system table of patterns and using colors starting with
color map index "firsLcolor". The argument "number -of -colors"
should take on the value returned by defcolorpattern.

arccolorfi(fLrst-pattern,flrstscolor,numberofcolors,x,y,radius,strang,endang)
short flrst-pattern;
Colorindex first-color;
short number-of~colors;
Icoord. x,yradius;
Angle startang,endang;

short i;
short next-pattern;
Colorindex next color;,
pushattributeso;
nextpattern=firstpattern;
next -color--flrst-color,
for (i= 1; i<=number-of-colors; i++)
setpattern(next-pattern);%
next-pattern+= 1;
color(nextcolor);
next-color+= 1;
arcfi(x,yxradusstartang,endang);

popattributesO;

arccolorfs(first-pattern,first color number-of colors,x,y,radius,startang,endang)
short flrst-patern;
Colorindex first-color,X
short number of colors;
Scoord x,yradius;
Angle startang.endang;

short i;
short next4,attern; V

Colorindex next-Color,
pushattrbuteso;
flext-pattern-flrst-patern;,
next_color~flrst color
for (im 1; ,<=number-of-colors; i-+)(
setpattern(nextpattern);
nextpalern+= 1;
color(next-color);
next color+= 1,
arc fs(x,yradiusstartang,endang); 6

84

0

popatiributesO;

arccolorf(first-patter,firstcolor,number-ofcolorsx,yadius,stag,endang)
short firstpattern
Colorindex first-Color;
short number-of~colors;
Coord x,yradius;
Angle startang,endang;

short i;
short nextpattern;
Colorindex next-color;
pushattributeso;
next-pattem=irstpattem;
next~color--first-color,
for (i= I-, i=nurnber -ofcolors; i++)
setpattem(nextcpatter);
nextpauter+= 1;
color(next-color);,
next color+= 1;
arcf(x,y,radius~startang,endang);

popattributesO;

85a

ROUTINE: -colorcicar

The function colorcicar will fill the entire screen with the texture
patterns starting with "first-pattern" in the system table of patterns
and using colors starting with color map index "firt color". The
argument "number-of-colors" should take on the value returned by
defcolorpattuern.

colorclear(first-pattern,first-color,number-ofsolors)
short first-patern;
Colorindex firsLcolor
short numberofscolors;

short i;
short next-pattern,
Colorindex next-color;
pushattributeso;
next-pattern=first-pattern;,
next color--firsLcolor;
for (i= 1; i<=number...oLcolors; i++)(

setpattern(next-pattern);
next-patiern+= 1;
color(next-color);
nexcolor+= 1;
clearo;

popatiributesO;

86 *%

W* d, 9.

77..1, -_71

APPENDIX E - SOURCE CODE FOR COLOR TEXTURE
PAlTERN FUNCTrIONS: 3D

texture3.c contains all the functions necessary to create multi-color
texture filled polygons that can be manipulated in three space. This is
achieved by filling polygons with polygons that represent each texture
point of a multi-color texture pattern.

#include "gl.h"
#include <math.h>
#include <stdio.h>

#defineNILO0

/* Data structure to hold coordinates of a texture point polygon. *
struct linked-list(

Coord xvertex;
Coord yvertex;
Coord zvertex;
struct linked-list *next;

typedef struct linked-list vertices;
typedef vertices *link;

ROUTINE: defcolorpatern3

The function defcolorpattern3 allows the user to define a multi-color
texture pattern through use of a file produced by texted. The multi-color
texture pattern is stored as an array of color map indices which define

.r the pattern. The function returns the number of colors used in the
multi-color texture pattern.

defcolorpatter3(firs~color,pate,filename)
Colorindex firstcolor; /* Color map index of first color used. *
Colorindex pattern [64](641; 1* Array to hold texture pattern ~
char filename[]; /* File name of texture pattern ~

short bitword;
Colorindex. next color
short number of colors;
short red-value,green-value blue_value;
short ikm;
FILE 5fp,*fopeno;
short pattern size;

next-color--first color;

fp=fopen(filenarne,"r');

87

-it -.-IF% law F% -- %F.. . . .

/1 Read size of the texture pattern and number of colors used./
fscanf(fp,"%hd%hd",&pauterisize,&number-of~colors);

f* Repeat for each color in the multi-color textLure pattern.
for (k= 1; k<=number -ofcolors; k++) (

/* Read the rgb values and place in color map. *
fscanf(fp,"%hd%hd%hd,&redvalue,&greenvalue,&blue-value);
mapcolor(next-color,red-valuejgren..yalue,bluevalue);

/* Save the color map index in the 64x64 array "pattern". *
for (i=-O; i<pattern.size; i+-*)(
for (j=O; j<pattemn.size/16; j++)(

fscanf(fp,"%hx",&bitword);
for (m=O; m< 16; m++) (

if ((bitword&0x8000)>O)(
pautem(i] U* 16+m]=nextscolor,

bitword=bitword< 1;

/* Advance to next index in color map *
next color+= 1;

fclose(fp);

retum(numberofsolors);

88 .

ROUTINES: polcolorf3i, polcolorf3s, polcolorf3

The functions polcolorf3i, polcolorf3s, and polcolorf3 will fin
an arbitrary convex polygon with the texture pattern stored in
"pattern". The argument "rotate", is the angle the polygon will
be rotated about the z axis during mapping of the polygon to the
x-y plane. The arguments of "horz" and "vert" position the reference
point of the texture pattern. The argument "incr" specifies the polygon
size for each texture point.

polcolorf3i(pattem-sizerotate,horz,vertincrpattem,n,parray)
short pattern-size; /* 16 (16x16),32 (32x32),64 (64x64) */
Angle rotate; /* Angle of rotation about z axis */
int horz; /* Horizontal positioning of reference point*/
int vert; /* Vertical positioning of reference point /
Icoord incr; /* Size of texture point polygon */
Colorindex pattern[64][64]; /* Array of color indices */
long n; /* Number of points in polygon */
Icoord parray[][3]; f* Array of polygon points /

register Coord xincr,yincr;
Coord xmin,ymin.xmax,ymax;
Coord fparray[301[3];
register int ij;
int i-beginj-begin;
Matrix trans;

/* Save attributes before redefining linestye, linewdth,etc. */
pushattributesO;
set upO;

/* Convert long integer array points to floating point. */
for (i=O; i<n; i++) (

fparrayfi] [0]=(Coord)(parray[i] [0]);
fparray[i][I]=(Coord)(parray[i][l]);
fparray[i][2]=(Coord)(parrayti][21);

/0 Map polygon points to x-y plane and rotate about z axis.
Return the transformation matrix "trans" to map each texture
point polygon to object space. */

map-to-xy plane(trans,rotate,nfparray);

/* Determine xmin, ymin. :max and ymax of the polygon after
it has been placed in the x-y plane to define upper
and lower limits of texture pattern. /

texture.panzernjimits(nfparray&xmin,&ymin,&xmax,&ymax);

89

tUsing the argument "incr", clipping lines parallel to x and y
axis are calculated for each texture point to be used by
clip-and-fill to fill texture point polygons. The next texture
pattern color index is also calculated and passed on to

i-begin--paternsize-vert)%patten..size;
j-begin=(tte..size-horz)%patten..size;
1=1_ -begin; j=j..begin;
yincr=-O.O;

while ((ymin+yincr)<=ymax)
xincr=-O.O;
while ((xmin+xincr)<=xmax)(

/* Calculate texture point polygon coordinates, apply transformation
matrix "trans", and then fill the polygon. A value of 0 in the array
"pattern" indicates transparent.*/

if (pattern[i1U]!=O)
dlip..an&fill(ans,patuem~i] U],xmin+xincr.ymin+yincr,

xmin+xincr+incr,ymin+yincr+incr,n,fparray);

xincr+=incr,

1* If last column of texture pattern reached, repeat1
if (j=pattern.size) j=O;

j=j-begin;

f* If last row of texture pattern reached, repeat ~
if (i==pattern size) i=0-
yincr+=incr,

1* Restore attributes *
popattributeso;

90

N5

polcolorf3s(ptter sizerotate,horz,vertincr,pattern,n,parray)

short patemsize; /* 16 (16x16),32 (32x32),64 (64x64) */
Angle rotate; /* Angle of rotation about z axis */
int horz; /* Horizontal positining of reference point */
int vert; /* Vertical positioning of reference point */
Scoord mc, /* Size of texture point polygon */
Colorindex pattern(64][64]; /* Array of color indices */
long n; /* Number of points in polygon */
Scoord parray[][3); /* Array of polygon points */

register Coord xincr,yincr;
Coord xmin,ymin,xmax,ymax;
Coord fparray[30][3];
register int ij;
int i-beginLbegin;
Matrix trans;

/* Save attributes before redefining linestyle, linewidth,etc. */
pushattributeso;
setupo;

/* Convert short integer array points to floating point */
for (i=O; i<n; i++){
fparray [i] [0]=(Coord)(parray [i] [01);
fparray[i][1]=(Coord)(parray[i][1]);
fparray[i][21=(Coord)(parray[i][2);

/* Map polygon points to x-y plane and rotate about z axis.
Return the transformation matrix "trans" to map each texture
point polygon to object space. */

map-to-xy-plane(transrotate,nfparray);

/* Determine xmin, ymin, xmax and ymax of the polygon to define upper
and lower limits of the texture pattern. */

texturepattemlimits(n,fparray,&xmin,&ymin,&xmax,&ymax);

/* Using the argument "incr", clipping lines parallel to x and y axis
are calculated for each texture point to be used by cip and fill
to fill texture point polygons. The next texture pattern color
index is also calculated and passed on to clip.and.fill. /

i_begin=(paern-size-vert)%patternsize;
j-begin=(pattern.size-horz)%patterm-size;
i=ibegin; j=jbegin;
yincrO.0;

91

I.

-' - 'w u - ~w w -. -- u w- 1/U~. - ~ U 'Wjd ~ * '~ '.pj'

PWV- - -VS I -zrr N7 ~ N.*- AaAV-

while ((ymin+yincr)<=ymax)
xincr=O.O; ,
while ((xmin+xincr)<=xmax) I

f* Calculate texture point polygon coordinates, apply transformation
matri "trans", and then fill the polygon. A value of 0 in dhe array
"pattern" indicates transparent.L

if (pattern[i][!=O)
cip-and~fil(tans,patenfi]U,xminxincr,ymin+yincr,

xmin+xincr+incr,ymin+yincr+incr,n,fparray);

xincr+=incr,

/* If last column of texture pattern reached, repeat ~
if (j~patterntsize) j=0;

j=L-begin;
i+= 1;

1* If last row of texture pattern reached, repeat *
if (i==patternsize) i--&
yincr+=incr;

f* Restore attributes/
popattributeso;

Ir

92p

- .- V -%J~~rITJ nXW KW.v7k?.

polcolorf3(patternsize,rotate,horz,vertncr,pattern,n,parray)
short paemt.msize; /* 16 (16x16),32 (32x32),64 (64x64) */
Angle rotate; * Angle of rotation about z axis */
int horz; /* Horizontal positioning of referennce point */
int vert; /* Vertical positioning of reference point */
Coord incr, /* Size of texture point polygon */
Colorindex pattern[64)[64]; /* Array of color indices*/
long n; /* Number of points in polygon */
Coord parray[][3]; /* Array of polygon points */

register Coord xincr,yincr,
Coord xmin.yminxmaxymax;
registr int ij;
int i-beginj-begin;
Matrix trans;

/* Save attributes before redefining linestyle,linewidth,etc. */
pushatuributeso;
set-upO;

/* Map polygon points to x-y plane and rotate about z axis.
Return the transformation matrix "trans" to map each texture
point polygon to object space. *1

map-to_xy-plane(ans,rotate,n,parray);

/4 Determine xmin, ymin, xmax and ymax of polygon to define upper
and lower limits of texture pattern. */

texture-pattemrimits(n,parray,&xmin,&ymin,&xmax,&ymax);

/4 Using the argument "incr", clipping lines parallel to x and y
axis are calculated for each texture point to be used by
clip-and fill to fill texture point polygons. The next texture
pattern color index is also calculated and passed on to
clip-and.fill. */

ibegin=(pattem size-vert)%pattem size; %
j-begin=(pattern-size-horz)%patternsize; ,,
i=i-begin; j=j-begin; IN
yincr=O.O;

while ((ymin+yincr)<=ymax)(
xincr=O.O;
while ((xmin+xincr)<=xmax) (

/ Calculate texture point polygon coordinates, apply transformation ,
matrix "trans", and then fill the polygon. A value of 0 in the array
"pattern" indicates transparent. a"

if (pattern[i]0]! =0)
cipand fi(ts,pattem(i] [] ,xmin+xincr.ymin+yincr,

xmin+xincr+incr,ymin+yincr+incrn,parray);

93

o%

'"S
,] x '';:,, t,,,, - ., , . ., ,,.=. .. ,: .,.;. ,.. .. ,,.,.- , ,,

a j+=l;

xincr+=incrv

/* If last column of texture pattern reached, repeat *I
if (j =panernsize) j=O;

j-j_begin;i+=l;

/* If last row of texture pattern reached, repeat /
if (i==patternsize) i=O;
yincr+=incr;

/* Restore attributes */
popattributesO;

'

a.
.

94y

.5.

"V%-

ROUTIE: se - u

ROt NE seuup

linewidth(I);
sedinestyle(O);
lsrepeat(l);
lsbackup(O);

ROUTINE: texturejpatem-limits

The function texture-pattwrnjimits determines the upper and lower limits
of a polygon in the xy plane. The lower limit is the smallest x and y values
of all polygon coordinates and the upper limit is the largest x and y values
of all polygon coordinates.

texure-pattemlimis(n.parray.xmnyminxmaxymax)
long n.
Coord parray t (31.
Coord xmin.*ymin.*xmax.ymax.

long i.
xmax=parray4O1lO1. *yrax=parrayjljj 1).
*mln=i Oxnax): *ymifl=(*vmax).

if (parray~[[O>(*Xmax))
*,tmax=parra y (i I 0 .

if iparra~. i 11j>i ymax)
N 'max=parrayjflj~lj1

if (ivmini>parrayfil[ljl
*Vmin=parrayjiaf 11.

it ((%rin >parray(i1I~jl

95y

RDRigi " VS TIOTION INTO THE USE OF TEXTURING FOR REML-TINE 2/2

COMUTER RNMATIOU(U) NitPOSTDUTE SCOO
MONTEREY CR T N MEIER DEC 97

UNSIF X E DF/OI 12n L

Ehhh.hhE

A

_ 136

11111 '*' LKAo I~III~
111111.25

till,iini~ - A: -
p.p..p. ,j.
~p *gp~A~~~PS

DIII- '4 L6~
pp.- ~A

.~.. ~

'p... ~
(N,,;..>

-.. , p.' -
* .. '~3%

S

A- R~

A ~

I-. -

* ,~,% -A"

.A ~

* 0

'N
-

~ -'

ROUIVE: cipand_fifl

The function clip~and.fill,used in polcolorf3,polcolorf3sand polcolorl3i,
creates and then fills the polygons representing each point in the texture
pattern. Using the coordinates of the overall polygon and clipping
boundaries of "xmin","ymin","xmax",and "ymax", the coordinates of a texture
point polygon are calculated and then the polygon filled using the color
with color map index "index". The transformation matrix "t" is passed in to
map texture point polygons to their proper position in object space.

clip_andfill(t.index,xminymin.xmaxymax.nmparray)
Matrix t; /P Reverse transformation matrix for texture polygons*/
Colorindex index. /* Color of next texture point polygon/
Coord xminyminxmaxymax; P Clipping boundaries */
long n; /* Number of points in overall polygon /
Coord parray[][3]; / Array of overall polygon points*/

Coord boundaries(4];
link head=NML,p,q,
long ij;
Coord yintxint;
long number..ofpoints;
link intrArstintJastint;
short firstdir,dir,
Coord x.y,z;
vertices points[50];
int count=O;

/* Boundaries used to clip polygon. */

boundaries[O]=xmin; boundaries(1]=ymin;
boundaries[2]=xmax; boundaries[3]=ymax;

/* Put polygon points into circular linked list. */
head=(&oints[O]);
head->xvertex=parray[O]tO];
head->yvertex=parray(O][1];
head->next=NIL;
p=head;
for (i=l; i<n; i++){

count+=1;
p->next=(&pointstcount]);
p=p->next;
p->xvertex=parray[i][O];
p->yvertex=parray[i] [1];
p->next-NL;

p->next=head;

/* Clip the polygon. /
number of-points=n;

96

IeeU0.

DIq

/Repeat for each clipping boundary
for (j-; s 4 .j+'*) (

firstinta'NIL; lastint=NEL;
n--number.j-oints;
q--head;

/* Repeat for number of points in polygon
for (i=-O; i<n; i++)

p=q;
if (number -of-j~oints>l1)

q--p->next;

/* Reduce number...ofpoints by one if both points p and
q are not visible. */

if (not visibleoj,boundariesU],p.q))
number-of..points.=1;

/* Find intersection if one of the points is visible. *
else if (pariially..isibleoj~boundarieso],pq))(

find -intersectionoj,boundariesU],p,q,&xint,&yint);
count+=1;
r=-(&points(count]);
r->xvertex=xint;
r->yvertex=yint;

/' p is the point that is visible/
if (p-inside(j,boundariesU] 'p))(

dir=-O;

/* p is the intersection ~
if (r->yvertex.=p->yvertex&&r->xvertex=-p->xvertex)

intr-p;

/* Insert intersection into linked list, increment
number-of-points.1

else(
intr-r,
p->next-r,
numnber -of wipots+= 1;

f* q is the point that is visible/
else(

* dir-- ;

/0 q is the intersection, decrement number-o..points *
if (r->yvertex=mq->yverex&&r->xvertex==q->xvertex)(

4 intr=q;
number ofWints-= 1;

97

/* Insert intersection into linked list 0/
elsel

intrur,
r->next=q;

/* Save direction of polygon with first intersection ~
if (flrstint=-NIL)(

flrsuint=intr; flrstdir-dir;

else
lastint=intr,

I* Determine head pointer to new polygon. *
if (flrstint!=NIL&&lastint!=NlL)(
if (firstdii--=O) {

firstint->next--lastint;
head=flrstint;

else(
lastint->next=firstint;
head=lastint;

else if (flrstint!=NIL&&lastint=-NIL)
head=firstint;

p=head,

/* Draw the new filled polygon that represents a texmir point. *
if (number _of oints>O) (
color(index);
x=p->xvertex; y--p->yvertex; z=parray[O][2];
p->xvertex=x*t[O][O]+y*t(l][O]+parrayO] (2]t[21[1+t3]O];
p->yvertex=xt[O][1]+y*t[l1 (1]+parray[O] [2]*t[2][1]+t[3] (1];
p->zverex=x*tO][21+y*t[1112]+parmy[1[21*[2[2]+313[21;
pmv(p->xvertex,p->yvertex,p->zvertex);
jp.p>next;
for (i= 1; i<nurnber _of..points; i++)f
x=p->xvertex; y=p->yvertx; z=parray[01[1;
p->xvertexx* qO] []+yt[I1](O]+parray[O] [21 *t[21 [0]+t[3] [O;

p->zvertex=x*t[OJ([2J+y*tfl I(2J+parry(OI (2*t212]+t31[21;
pdr(p->xvertex,p->yvertex,p->zvertex);
p-p->next;

PClOSQ;

98

%F 70

ROUTINE: not-Visible

The function notvisible. used in the function cfipand~fill
determines the visibility of a line segment after application
of a clipping boundary.

not~visible(boundary,limit,p..pt~cpt)
long boundary;
Coord limit;
link p..pt;
link q-pt;

switch(boundary)

case 0:
rewrn(p-pt->xvertex<Iimit&&q-pl->xvertex<limit);
break;

case 1:
return(p..pt->yvertexdlimit&&q-p->yvertex<limit);
break;

case 2:
return(ppt->xverex>limit&&q-p->xvertex>limit);
break;

case 3:
return Jpcp->yvertex>limit&&qjfl->yvertex>limit);
break;

P

ROUTINE: Vartially~visible

The function partially..visible, used in cip-.and-fill,
determines the partial visibility of a line segment after
application of a clipping boundary.

partially..visible(boundaryjlimitppt,cufl)
long boundary;
Coord limnit;
link ppt;,
link q-n;

switch(boundary)

case 0:
retum((pjt->xvertex>=linmit&&q..pt>xvertex>=lIimit)0=);
break; 5~

case 1:
return((p...pt->yventex>--fimit&&c-.Pt.>yvertex>=limit)==O);
break;

case 2:
retun(ppt->xvetex<-hmi&&qpt->xveex<=imit)==O);
break.

case 3:
retum((p...pt->yvertex<=limit&&q..pt->yvertex<=limit)=uO); I

break;

AA

ROUTINE: find intersection

The function find intersection will find the intersection of
a line segment and a clipping boundary.

find-intersection(boundary,limit,p-ptr,q4,tr,xint~yint)P
long boundary;
Coord limit;
link p-ptr,
link q..ptr,
Coord *xjnt;
Coord *yint;

if (boundary=-Ollboundary==2)
*xint--limit;

(pt->xvertex-q-pr->xvertex);

else
*yint..limit;

(jppr->yvertex-qjxr->yvertex);

ILL

101

ROUTINE: p-inside

The function p-inside, used in the function cip-and_fil. determines
if the first point in the line segment of a polygon is visible after
application of a clipping boundary.

p-inside(boundary,limit,p-pt)
long boundary;
Coord limit;
link p.pt;

switch(boundary)

case 0:
return(p-pt->xvertex>=limi);
break;

case 1:
reMm(ppt->yvenex>=limit);
break;

case 2:
return(ppt->xvertex<=limit);
break;

case 3:
return(p-pt'>yvertex<=imit);
break,

102

,.- " "

ROUTINE: mpjto-xyplane

The function map-to-xyplane takes the coordinates of the polygon to be filled
with the texture patern, and maps them to the x-y plane to facilitate
placement of the texture pattern. At the same time, an inverse transformation
matrix,"mapmatrix", is built so that each texture point polygon can be
mapped back to its proper position.

map-toxyplane(mapmatrix,ro,tota-pts,pts)
Matrix map-matrix; /* Inverse transformation matrix */
Angle rot; /* Rotation angle about z axis */
long total-pts; /* Total points in polygon */
Coord ptS[][3]; /* Polygon coordinates *

int pt 1,1X2,pt3;

float A,B,C.D;
float anglex,angleyanglez;
Matrix transformInsform2,transform3,ransform4;
Matrix new matrix;

f* Get 3 noncolinear vertices from the polygon to be used for
calculating the normal to the polygon. */

get_3_pts(totalptspts,&pt 1,&pt2,&pt3);

/* Calculate the coefficients for the equations to the plane
of the polygon and the normal to that plane. */

calcscoeffs(total_pts,pts,ptl ,pt2,pt3,&A,&B,&C,&D);

/* Check to ensure all vertices of the polygon lie in the same
plane. If so, then calculate the necessary angles of rotation. */

if (planarj olygon(total_pts,ptsA,B,CD))f

/* Calculate the rotation about the y axis necessary to bring
the normal into the y-z plane. */

angles(A,B ,C,'y',&anglex,&angley);

S~/* Create the transformation matrix necessary to multiply with
the array of vertices to generate the rotation as well as its
inverse. */

Y. buildtrans_matrix(umsform 1 .transform2,angley,' y ',ps,pt 1);

/* Perform the matrix multiplication with the array of
vertices to form the new veruces. */

J. map._points(toalpts,pts,transform I);

f* Now extrt three non colinear vertices from the new array
of vertices. */

getL3_pts(total pts,pts,&ptl ,&pt2,.&pt3);

103

/* Calculate the coefficients for the equations to the plane
of the polygon and normal to that plane again. */

calc-coeffs(topalpts,ptl,pt2,pt3,&A,&B,&C,&D);

/ Calculate the rotation about the x axis. 0/
angles(AB,C,'x',&anglex,&angley);

/* Create the transformation matrix as well as its inverse. /
buildransmatrix(transform 1 ,transform3,anglex,'x',pts,ptl);

/* Perform the matrix multiplication. */
map__points(totallxs,pts,transform 1);
/* Calculate the rotation about the z axis. */

rotateabout_z(rotpts,&anglez);

/* Create the transformation matrix as well as its inverse. */
buildjtrans-matrix(transform 1 ,transform4,anglez,'z',pts,ptl);

/0 Perform the matrix multiplication.*/
mappoints(total-pts,pts,transform 1);

/* Using the inverse transformations calculated, create the transformation
matrix to map each texture point polygon to object space. */

multmatrix(newmatrixtans form3,transform2)
multmatrix(mapmatrixtransform4,new matrix);

104

.9

.9.

-I

it AA -ijr 7 . -j:bYXn r1r ~ - - - - 1

ROUTINE: get L 3Js

The function get_3_pts searches the array of vertices to find
three points which do not lie on the same line and returns the indices
of those points.

get_3_pts(total-pts,pts,ptl ,pt2,pt3)
long total-pts;
Coord pts[] [31;
int *ptl,*pt2,*pt3;

long count;
int finished;
*ptl=o; *pt2.0; *pt3--O;

count=o; finished=O;

/* The first vertex in the array (index=O) is selected for the first
point. */

while (count<total_pts&&! finished)(

/* Search the rest of the array of vertices to locate two more. */
count+=I;
if (*pt2--O)f

/* If the second point has not been selected yet, then we check
to see if the coordinates of the vertex currently under exam
are different. */

if (pts[*pt1][0]!=pts[count][0]Il
pts[*ptlll 1]!=ps[count][1]Il
pts[*pt1][2]!=pts[count][2])

/* If so, then the vertex becomes the second point. /
*pt2=count;

else if (*pt3==O)

/* If the third point has not been selected yet, then we check
to see if the coordinates of the vertex currently under exam
are different from both the first and second point. */

if ((pts[*ptl 1 [0] !=pts[count] [011
pts[*ptl][l]!=ptsfcount][I III
pts[*ptl 1[2]!=pts[countl[2])&&
(pts[*pt2][0]!=pts[countl[0j1l
pts[*pt2][1 !=pts(countI[I II
pts[*pt2I[2]!=pts[count][2]))

/* If so, then the vertex becomes the third point. */
*pt3=count:

105

le -F M

AA .4--.A

.- . -J.

else
finishedf I

return,

.10

.N.

ROUTINE: planarpolygon

The function planar-polygon takes each vertex of the polygon and uses
it to solve the equation for the plane as calculated earlier. If every
vertex lies in the plane, then a value of I is returned.

planar-polygon(tota-ps,pts,AB,CD)
long total-pts;
Coord ptsf][3];
float AB,CD;

long count;
.. int planar,

count=0; planar= ;
while (count<total pts&&planar)(

/* The equation for the plane is setup to equal zero if the coordinates
of the vertex lies in the plane. A range of .02 on either side of
zero is allowed to handle round off error. This test is done for
each vertex of the polygon. If any vertex fails the test then the
function returns 0 for non-planar. *!

if ((A*(pts[count] [0])+B* (pts[count][[])+C*(pts[count] [2])-D)>.0211
(A*(pts(countl [0])+B*(pts[count][1])+C*(pts[count] [2])-D)<-.02)

planar=O;
count+=1;

return(planar);

,.

a107

-a%

ROUTINE: -caic..coeffs

The function calc coeffs uses the three vertices selected from the
polygon to calculate the coefficients that will be used in both the equation
of the plane the polygon lies in and the normal to that plane.

caic-coeffs(totaljns,pts,ptl .pt2,pc3,A,B,C,D)
long totaU-pts;
Coord pts[1[3];
int pt l,pt2,pt3;
float *A,*B,*C,*D;

float xO~x lIx2,yO,y l,y2,zO~z Iz2;
xO=pESptJ[O];

zO=pts~ptll[2];

x I=pts [pt2 [0];
y l=pts[pt2J [I];
zl=pts[pt2][2];

x2=-pts[pL3][O];
y2--pts[pt3lll;
z2=-pts~pt3] [2];

" A=(yO-y 1)*(z2-z1I)-(y2-y I)*(zO-z 1);
" B=(zO-z 1)*(x2-x l)-(z2-z 1*)(xO-x 1);

return;

108

M

ROUTINE: angles

The function angles utilizes the coefficients determined from the normal
to the polygon to determine the angles of rotation necessary about the x
and y axes. These rotations are necessary to bring the polygon into the
x-y plane to facilitate placement of the texture pattern. This routine is ft

called the first time to calculate the rotation about the y axis. The
second time it is called is to determine the x axis rotation. The parameter
"axis" is used to pass which angle is to be calculated.

angles(A,BC.axis,anglex aigley) f'

float A,B.C;
char axis;
float *anglex,*angley;

float pi,deg,dCgyde~gL,

pi=3.1415926536;

degx=acos(A/sqrt(A* A+B* B+C*C))* 360/(2pi);
degy=acos(B/sqrt(A*A+B*B+C*C))0360/(2*pi);
degz=acos(C/sqn(*A+B* B+C*C))*360/(2*pi);

if (A--O&&B==O){ ,
-S

/0 Rotate polygon 180 degrees about y axis. */
if(C>0) .5.

*angley=(- 180.0);

/* No rotation necessary. */
else

"angley=0.0;
*anglex=0.0;

else if (A==0&&C=--O)("

/0 Rotate polygon 90 degrees about x axis. 0/
if (B<0)

*anglex=90.:

else
*anglex=(-90.0);

*angley=0.0;

else if (B--0&&C==O)-

109

It.?

X- K7 X7&w 1%.%l

/* Rotate polygon 90 degrees about y axis./
if (A<0)

*angley-0(..90
else

*angley-90.0;
*anglexinO.O;

else

f* Must calculate amount of rotation about x and y axis. 0/
*anjglex~acs(C/sqr(B*B+C*C))* 360/(2*pi);
*angley=acos(C/sqrt(A*A+C*C))*360/(2*pi);
if (axis=y') (

if (degx<90.0)
* angley= 180.-(*angley);

else
* angley=(*angley)- 180.0;

else(
if (degy<90.O)

*anglex=(*anglex)- 180.0;
else

*anglex= 180.0-(*anglex);

* return;

1 4 &

ROUTINE: rotareabout_z

The function rotateabout-z takes the first two vertices of the new
polygon in the x-y plane,as well as the input to xyplane of "rot" to
calculate the rotation about the z axis. This again is to facilitate the
placement of the texture pattern by the user onto the polygon.

rotateabout z(rot,pts,anglez)
Angle rot;
Coord pts[][3];
float *anglez;

float pi,deg;
pi=3.1415926536;

deg=acos(pts[1] [O]/sqrt(pts[] [0]*pts(1] [0] +pts[1] [1]*pts[I]))~*360/(2*pi);

if (pts[1][l]>O.O)
*anglez=(-deg)+(rot/10);

else if (pts(1][1]<-0.0)
*anglez=deg+(rot/l0);

return;
4-

411

N,,

ROUTINE: -build_trns _matnix

The function build_trans_ matrix creates the matkices to map the polygon
to the x-y plane as well as rotate it about the z axis. For each matrix
created, its inverse is also passed out.

build -trans -martrix(tl,t2,angleaxis~pts,ptl)
Matrix l;
Matrix a2;
float angle;
char axis;
Coord ptsfl[3];
int pt I;

float pi,deg;
pi=3. 1415926536;

deg=angle*((2*pi)/360.0);

if ((axis=='x')I(axis=-&X')){

/* Transformation matrix for rotation about x axis. ~
tl[O][0]=1.O; MO[Ml] 0.0; tl(0112]=O.0; tl(O](3]=0.0;
tl[1](0]=O0.O; tl[llh1l=cos(deg); tl(1][2]=sin(deg); tl[l][3]=-O.0;
ti [2] [01=0.0; tI [2][1]=(-sin(deg)); ti [2] [2]*os(deg); ti [2113]=0.O;.
tl[3110]=(-pts[ptl][OD;-

ti [31[2]=(-pts(ptl][])*sin(deg)-pts[ptl](2]*cos(deg); -

ti [3] [33=1.0;

1* Its inverse.*/
t2[01[01=1.0; a2[01[1]=0O.o; a2[0][21]0.0; C[01[3]=4.0;
t2[1101=0.0; t1] [1]=cos(deg); t2(1 21=(-sin(deg));. t 1(31=0.0;
t2[2] (01=0O.0; t2[2 [1]=sin(deg); t2[2][2]=cos(deg); t2[2][31=0.0;%
a2[3[0=pts[ptll[0]; a2[3111=ptsptl](1]; a[(3][2]=pts(ptl][2]; i
t2[3)[3]=1.0;

else if ((axis='y')II(axis=-'Y'))(

/* Transformation matrix for rotation about y axis. *
i [0] [0]=cos(deg); ti [01(11=0.0; tl[0][2]=(-sin(deg)); ti (01(31=0.0;,
tl[1][0J=0.0; tl[l](1]=1.0; tl(l][21=0.0; tl[1][3]=0.0; .

tI [2][0]=sin(deg); ti (21(11=0.0; ti [2] [21=cos(deg): tI [21 [31=0.0;,

tIi (3] [1I]=(-pts[ptlI][11);

tl[31[3]=l.0:

112

a% 'wLrw C

(Its inverse. ~
t2([O 01cos(deg). t2[0] [11=0.0; L2(O][2]=sin(deg); t2[01 [31=0.0;,
t2[l][0]=0.0; t2(l][]=1.O; t2[I][2]=O.0; t2[l][31]=O.O;
t2[21 [0]=(-sin(deg)); t2[2][11=0.0; t2(2] [2]=cos(deg); t2[2][31=0.0;.
t2(3][Oj=pts(ptl][0I; L2[3][1]=pts[ptl][1]; L2[3][2]=pts(phl](2];
t2[3] [3]= 1.0;

else if ((axis='z')I(axis:=='Z'))(

/* Transformation matrix for rotation about z axis./
tI [0] [01=cos(deg); ci [0] [1]=sin(deg); c [0] [2]=0.0; t [0] [3]=0O.0:
cl[1][0]=(-sin(deg)); tl[l[Ih]=cos(deg); t1[l][2]=-O.0; Lc1[3]=0.0;
ci [2][0]=0O.0; ci [21[][J=.0; c [2][21= 1.0; ci [2][31]0.0;
tl[3][0]=(.pcs~ptl][0D)*cos(deg)+pts[ptl][1]sin(deg);

ci [3](2]=(-pts[ptlj[21);
ci [3] [31=1.0;

/* Its inverse. ~
t2[01][01=sn(deg); 2[][](os(deg)); 2(0112.0; L2[01 [310.0;

t2[2][01=0.0; t2[2][l] =0.0; L2[21[21= 1.0; E2[21(3]--O.0;
t2[3][0]=pcs~ptI][0]; t2[31[1]=pts[pul][l]; r2[3[2]=pts[ptll[2j;
t2[3][3]= 1.0;

return;

113

ROUTINE: map-points

The function map-points will map the polygon vertices to their new
coordinates using one of the transformation matrices created in
build-trans-matrix.

mapN.pints(toalps,pts,tl)
long total-pts;
Coord ptsfl [3];
Matrix tlI;

int i;

Coord x,y,z;

for (i=O; i<toWa..pts; i++)
x=pts~i]lO]; y=ptsti][1]; z=pts[i][2J;

pts(i][l]=x'tl [O][Il+y*tl (1][l]+z~tl(2](l]+tl [31(1];

return;

111

/IO*0 * ****0*00 * * 00000 e* * 000 *** * * * * ** ** 00000000**00*00* 0000000000* 000 000* *

ROUTINE: multmatrix

The function mult matnx will multiply two matrices together to form a
new transformation matrix, used to create the inverse transformation
necessary to map each texture point polygon to its proper position.

muir hmatrix(matrix lmatrix2,matrix3)
Matrix matrix 1;
Matrix matnx2;
Matrix matrx3;

int ij,
for (j=O; j<4; j+)(

for (i=O; i<4; i++)(
matrix I [i] 0]=mauix2[i] [O]*marix3[O [j]+matrix2[i][I]*matrix3[I] +

matnx2[ij[2*mamnx3[2][j+mamrx2[il[3j*marix3[3jU];

.11

,115

-U.

" p OJ .'- p.*

L'ST OF REFERENCES

[1] Catmull, E., "A Subdivision Algorithm for Computer Display of Curved

Surfaces," Doctoral Dissertation, University of Utah, Salt Lake City, 1974.

[2] Blinn, J. F. and Newell, M. E., "Texture and Reflection in Computer Generated

Images," Communications of the ACM Vol. 19, No. 10, (October 1976).

13] Crow, F., "Summed-Area Tables for Texture Mapping," Computer Graphics

(Proc. SIGGRAPH 77) Vol. 18, No. 3, (July 1984).

[41 Schweitzer, D., "Artificial Texturing: An Aid to Surface Visualization,"

Computer Graphics (Proc. SIGGRAPH 83) Vol. 17, No. 3, (July 1983).

[51 Samek, M., Slean, C., and Weghorst, H., "Texture Mapping and Distortion in

Digital Graphics," The Visual Computer Vol. 2, No. 5, (1986).

[61 Blinn, J. F., "Simulation of Wrinkled Surfaces," Computer Graphics (Proc.

SIGGRAPH 78) Vol. 12, No. 3, (1978). a

[71 Fournier, A., Fussell, D., and Carpenter, L., "Computer Rendering of Stochastic ,

Models," Communications of the ACM Vol. 25, No. 6, (June 1982).

[8] Oka, M., Tsutsui, K., Ohba, A., Kurauchi, Y., and Tago, T., "Real-Time

Manipulation of Texture Mapped Surfaces," Computer Graphics (Proc. 1

SIGGRAPH 87) Vol. 21, No. 4, (July 1987).

[91 Pavlidis, Theo, in Algorithms for Graphics and Image Processing, (Computer

Science Press, 1972).

[10] Amanatides, J., "Realism in Computer Graphics: A Survey," CG&A Vol. 7, No l,

(1987).

,,-

116

. ". " "" .. e.',

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curriculum Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. Michael J. Zyda, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

6. Dr. Robert B. McGhee, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5 100

7. Lt. Timothy W. Meier
7203 Lois Lane
Lanham, Maryland 20706

117

-. -,-.

U -s

i,:..*"+,

t?&,+ ,

,,...-t+"I {>+

.-.- k

'-""'.
!*5'S

+* ++ kt, lll&Na~larl~lll~l~l,,l~ll~llul~lk~~
o

IUII I I
ma .

IPIII II~d"I ' - + I - I

