
-Atio 62 PROGRAMMING ENVIONMENTS FOR SYSTOLIC ARRAYS(U) /
IdA5IINGTON UNIV SEATTLE DEPT OF COMPUTER SCIENCE

UNCLASSIFE L SNYDER FES 86 TB 36 82-82 N88814-85-K-8328 / t25 U

i IImII

1.8

"'0

1.25~ 111.4

4
MICROCOPY RESOLUTION TEST CHAR'

04~MOS 0~ _ 0 ST0 S S.

ECUW.'TV CL&S iFICATION OF TH~IS PAGE ("on Date Enerd

0REPORT DOCUMENTATION PAGE -"INSTRUjCTIONS

IV REOTNME 2. GOVT ACCESSION No V , EZ4j~j A 2M:-uk"_

4 TILE lnd Slitile) TYPE 09 REPCRT & PERIOD COVEREO

0)Programming Environments for Systolic Arrays Technical Report
6. PERFORMING ORG. REPORT NUMBER

7. AuTm.OR(s) 5. CONTRACT OR GRANT NUMBER(*)

Lawrence Snyder N1014-85-K-0328

9. PERFORMING ORGANIZATi9N NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASl

University of Washington AREA A WORK(UNIT 'NUMBERS

Department of Computer Science, FR-35
Seattle, Washington 98195

1I1. CONTROLLING OFFICE NAME AND) ADDRESS 12. REPORT DATE

Office of Naval Research February 1986
Information Systems Program 13. NUMBER OF PAGES

Arlington, VA 22217 22
14. MONITORING AGENCY NAME II AODRESS(I! ditterent from Contro~ling Office) IS. SECURITY CLASS. tot this report)

Unclassi fied

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repor!)

Distribution of this report is unlimited.

17. D IS I BU T IO N S T A T E M E N T (of th e aba stract en tered in B lo'~k 20 , t differen t fro mt R ep ort) -S A P2

18. SUPPLEMENTARY NOTES-

19 KEY *ORDS (Continue orn res'erse side it necessary and Identify by block number)

parallel programming, systolic arrays, Poker Programming Environment, parallel
algorithms, parallel programming environments

2 0 ABSTRACT (Conflnue on roes*a aide it necesaary and identify by block number)

Although a systolic array is often thought of as a "hard wired" device, there
are many reasons to want to program systolic algorithms. In this paper the
problem of providing an efficacious progiramming environment is addressed.
The difficulties of programming complex parallel algorithms are shown to be
reduced by using anew concept of a parallel "program" which maximizes the use
of graphical abstractions and minimizes the need for symbolic text. This
concep is ijlustra~ted by the Pokter Parjll el Plocjrammj o Environment whi ch,
although designe for a broader class of a q ritlqms, ilustrates the mainI

DD j ,4 1Z 1473 I4Ic AtOP94)., S OSOLETE

SCCURI'Y CL ASSIFICATIOIN Or 1.o I',%CIE '" e t~

eV 1? 4. -r--1- e

Programming Environments for Systolic Arrays
Law rence Snyder

Department of Computer Science, FR-35
University of Washington
Seattle, Washington 98195

TR 86-02-02

This document has been funded in part by the Office of Naval Research Contract No.
N00014-85-K-0328 and the National Science Foundation Grant No. DCR-8416878.

Acce ;ioi,. For

NTIS CRA
DTIC fAG [j

F,. Y

0:,8

S8 ~i 12 17

Programming Environments for Systolic Arrays
Lawrence Snyder

Department of Computer Science, FR-35
University of Washington
Seattle, Washington 98195

Abtract

Although a systolic array is often thought of as a hard wired" device, there are many
reasons to want to program systolic algorithms. In this paper the problem of providing
an efficacious programming environment is addressed. The difficulties of programming
complex parallel algorithms are shown to be reduced by using a new concept of a parallel
-'program' 'Which maximizes the use of graphical abstractions and minimizes the need for
symbolic text. This concept is illustrated by the Poker Parallel Programming Environment
which, although designed for a broader class of algorithms, illustrates the main features
that a programming environment specialized to systolic computation should have.

A programming environment is an integrated suite of software tools supporting all
activities associated with writing~and running programs. These activities include editing,
compiling, loading, executing and~debugging, as well as file manipulation, library access
and various job control operations.AIn the event that the programming environment is
for systolic arrays, the programs are parallel and thus impose additional demands on the
system such as data formatting, management of multiple process sets, and the specification
of data routings. Providing all of these facilities in a single integrated system requires a new
concept of'parallel program,* which, although it is quite different from FORTRAN and
PASCAL, is nevertheless easier to use for a systolic array than a conventional programming
language. The key to achieving this simplicity is to use graphics so extensively that the
resulting programs appear to be dynamic versions of the diagrams presented in textbooks.
These concepts, demonstrated in the Poker Parallel Programming Environment [1, will
be described fully in this paper.

The Need for a Programming Environment

To many, a systolic array is a special purpose parallel computer that implements a
*single systolic algorithm in hardware. One might reasonably ask, therefore, what is there

I6D

_"V.''
1wi 5 .

to program, why is a programming environment needed for systolic arrays? There are a
variety reasons for wanting to program systolic algorithms.

If the intent is to build a systolic array in hardware, then one might begin by pro-
gramming it to make sure that the design is functionally correct. This not only can be
done easily in a programming environment such as Poker, but the environment can serve
as a design tool to support the more detailed levels of the design. To begin, the algorithm
is defined with the processor elements (PEs) executing simple arithmetic operations such as

c :=c + ab

on full word data. Once this program is debugged and tested on various data sets, the
program can be refined. Specifically, the arithmetic expressions can be replaced by equiv-
alent functions expressed in more primitive operations, say by a register transfer level
specification. The programming environment doesn't actually have special register trans-
fer instructions; one simply programs them in the high level language. Structures like
registers are implemented with Boolean vectors. Proceeding in this manner one moves to
more and more detailed levels, for example, the logic level. The benefit - the usual benefit
with stepwise refinement - is that local changes to a working program produce a working
program that must match its predecessor(s) on the test data.'

The other users motivated to employ programming environments capable of supporting
systolic computation are more obvious: users of programmable systolic arrays [3, 4], users
of general purpose parallel computers choosing to use a systolic algorithm, or researchers

*, designing new systolic algorithms. These groups, distinguished largely by the characteris-
tics of the target machine, will be more interested in such operations as systolic algorithm
composition than the stepwise refinement operation mentioned above.

Background

The Poker Parallel Programming Environment is a general programming environment
for nonshared memory parallel computers, and thus is not specifically designed for systolic
arrays. Poker is presented here as a system exhibiting many of the characteristics that one
would expect of a programming environment specially built for systolic computation. The
only potential harm is that Poker may be somewhat more general than is necessary for pro-
gramming situations limited strictly to systolic algorithms. The only true instance of this

'This idea ha been proposed as a basis of a full VLSI design system.121

2

% P-5

problem is synchronization: Poker takes asynchronous communication as the default, while
systolic arrays are synchronous. A Poker-like system specialized to systolic computation
would be synchronous and might limit the generality of Poker in other ways. Surprisingly,
there will be occasion in the paper to use most of the features of Poker, suggesting that
systolic algorithms exhibit much of the diversity of general parallel algorithms.

Originally designed as a research tool for algorithm development for the Configurable
Highly Parallel (CHiP) Computer [5], and for program development for the CHiP Com-

*puter's prototype, the Pringle Parallel Computer [6), Poker is presently being ported to
the Cosmic Cube [7). Design work on Poker was begun (at Purdue University) in January,
1982. The rudiments of the unstable system were exhibited in October 1982. The system,
dramatically extended and enhanced, was completed for distribution (at the University
of Washington) in October, 1985. Poker is written in C, runs on such machines as the
VAXTM 11/780 and cross compiles for, or emulates parallel machines. Thus, Poker is a
sequential program and does not assume specific (or any) parallel hardware.

The Form of a Poker Program
5j

Because the Poker environment has several nonstandard features, it is best to begin
the presentation with a specific example. We choose the Kung-Leiserson band-matrix
multiplication algorithm [8]. Recall that the algorithm accepts two band matrices, A and
B of band-width ul and u2 and produces a band matrix C of width w = u1 + U2 - 1 which
is their product. We seek a direct translation.

Figures 1-5 show the constituent parts of the Poker program for the algorithm: commu-
nication structure definition, process definition, process assignment, port name assignment,

'4'4 and stream name assignment. Notice that of the five constituent parts, one is textual, one
,'4 is tabular and three are graphical. Each component will be discussed in turn.

Communication Structure. The communication structure specifies the channels to be
used by the processor elements (shown as boxes in Figure 1) for interprocessor communica-
tion. (Circles [1] should be ignored here.) If the programming environment is supporting
a particular physical machine with a specific communication structure, then the graph
describing this structure is programmed into the system once and is the basis of all pro-
grams. If the environment is used for a research tool or for a configurable general purpose
computer [5] then the programmer will draw the interconnection structure by connecting
the boxes with lines.

The lines are bidirectional data paths across which values can be transmitted. The
squares at the ends of the perimeter edges are called I/0 pads and represent places where

3

N N,

Figure 1. Communication structure

trace a9119c;
porto AIR, gin, COn,

Acut, Wit, Caut;

real a,b,c;

c :2 6.6;

while TW do

Alou <- a;
lout <- b;
Caut <- C;
a <- Aln;
b <- sin;
c <- Clii;
c :a c + a~b;
end.

Figure 2. Process definition

4
-~ ~ i I Ali-,I *

i 1nner Inner I nner I tnner

Inne Inner innerIne

I mwrInr w ne

Figure 3. Process assignment mapping

ginGingingi

I n Awt LIn Awut I n Awut InAu
C:in Cln , :n Otn

lout aout 6out awot

Ct ut Cout ut
I n Aout kin Acut Ain Acu "--"cu

Cin cIn Cin Otn
a ___ not __wt-. sou...

ut t ut ot
--In AMu kIn Acut I n Acut -- in Aout "

Cin Otn Cin Cin

Ow t eit tut But

g:in gin Bin gin
t lot t t

Figure 4. Port name assignment

STE DESTUMTIOU

IM MW et. I OR Iro ZO JM111
rowl 1m1MO PIN_____

I. UO~lo q

TOWINl Al_ _wiI

raq WI'M -. M

data streams will enter the array. Notice that except for a 45* counter clockwise rotation,
this diagram is an undirected version of the diagram used by Kung and Leiserson [8].

Process Definition. Each processor element of the array executes an inner product step
for the matrix multiplication algorithm. (See Figure 2.) This is specified in a PASCAL-like

language called XX (Dos Equis). The process repeatedly computes the inner product op-

eration on scalar floating point values. Notice that the preamble of the program specifies

the process name, inner, a set of variables to be traced and six ports. Ports are simply

the names of the data paths connected to a processor element. Of special interest are the

statements of the form

variable <- portname
portname <- variable

The former is an input command requesting that data be read from port portname and as-

signed to the variable. The second statement is an output command. The I/O is performed
in a data driven fashion: Write statements transmit immediately unless doing so would

overflow the recipients buffer; read statements execute immediately unless doing so would

read an empty buffer; in both cases the processors block until the inhibiting condition is

cleared. Issues of synchronization are discussed below.

Process Assignment. Although one often thinks of systolic arrays as SIMD architec-

tures, that is, all processors execute the same instruction stream, it is not always the case

[8]. So, to permit different processors to be assigned different operations, the process as-

signment specification is provided. As it happens each processor, in this example, executes
the same code, (See Figure 3). Later, modification of the program will cause some pro-

cesses to execute different codes. In addition, each process can be assigned a small set of

parameters which permits further particularization. Notice that the graphic display shows

the interconnections given in the communication structure definition; this is also true for
the port naming display.

Port Name Assignment. The port naming facilities permit the port names used in the

program specification to be associated with specific data paths. (See Figure 4.) Although

II it is typical for array type systolic algorithms to have a consistent port labelling that would

permit one to label just a single generic cell rather than the whole array, systolic algorithms

based on other graphs such as trees are not so easily labeled [5].

Stream Name Asignment. The data entering the array is assumed to be streams, which

are arranged into files. The user specifies symbolic names and indexes for all of the I/O

7

pads at the periphery of the array. (See Figure 5.) The A array, composed of four streams
named Aarray.1 through Aarray.4, enters from the west, the B array from the north and
the C array from the southeast. Later the programmer will bind file names to the stream
names to run the program.

This is the complete Poker program implementing the Kung-Leiserson algorithm, three
pictures, one table and a piece of text. It is easy to read, and as we shall see later, it is easy
to write. What makes the presentation clear and convenient is that the abstraction that we
use when we communicate systolic algorithms between people, for example in textbooks,
are very similar to the abstractions provided in the programming environment. This
makes programming easy and convenient, thus fulfilling the objectives of the programming
environment.

The translation of the original algorithm has been so complete as to be rather unreal-
istic, since the processes never halt. Though the program will run if we present the data
files, wait briefly for the last good values to "drain" out, "kill" the program, and keep the
output file, which may have some trailing zeros, it would be better to revise the program to
terminate cleanly when the input data is exhausted. This will be done in the next section.
To complete this section, the matter of synchronization must be addressed.

As was mentioned before Poker was designed to support a larger class of parallel al-
gorithms than the systolic algorithms and so asynchronous communication was provided
rather than synchronous communication. This does not affect the functionality of systolic
programs because the basic data driven communication protocol, which blocks reads where
data has not yet arrived at a processor assures that the systolic semantics are preserved,
the right data gets combined. The main visible difference is that when one watches an
asynchronous systolic array, the processors transmit data at apparently random times.
But there is no real functional limitation to the facilities provided by Poker.

-' If one runs systolic algorithms on machines with asynchronous communication proto-
4cols, they will work, but there is a performance penalty because the protocol's "hand-

shaking" incurs more overhead than does synchronous communication. It is possible to
automatically restore a systolic program written with the asynchronous semantics of XX,
to be synchronous again. This is accomplished by applying a program optimization tech-
nique called coordination [9]. In essence, a program's input and output statements are
rearranged and idles are inserted, if needed, so that corresponding sends and receives be-
tween two processors are done at the same time based on a global clock. Though software
is available for coordinating XX programs [101, it is not presently installed in Poker; thus
all programs run asynchronously.

4

8

%

I
V S

Improving the Poker Progm

Having implemented a direct translation of a textbook algorithm, it will be useful to

perform some minor changes to the program to make it more realistic and to illustrate
additional language features. The modifications to be performed are (1) to remove the
need to read in the C array, since it can be generated internally, (2) to avoid writing out
A and B, and (3) to terminate the program when the input ends.

To begin, the I/O pads on the east and south sides of the array can be removed. This
change is implemented by deleting the edges shown in the communication structure as
shown in Figure 6; all other forms of the graph, for example the interconnections shown
in the process assignment display and the port name assignment display, are derived or
inherited from the general communication graph, and thus are changed automatically. The
removal of the pads has the additional side effect of reducing the number of streams that
must be defined. (See Figure 7.) This results in a somewhat more natural program in that

*O all that remains are the two inputs and the one output band matrix.

Although the diagrams and the stream definitions are modified as a result of the change
to the communication structure, other changes are not automatically made. For example,
the port names around the east and south perimeter remain, and the inner process still
writes to these ports. These changes must be done by the programmer.

There are two ways to change the processing definition. One is to modify the inner
process so that when it is assigned to a processor on the east or south edge of the hex-mesh,
that is, to a processor whose i or j index is maximal, then the process does not read a
C value, nor does it write an A or B value (as appropriate, depending on which index is
maximal). The required inner process would have an if statement before each of the three
statements

Sc <- Cin
Aout <- a
Bout <- b

testing to see whether the PE executing the code is a processor element with a maximal
index and if so, bypassing the latter two statements and initializing to zero in the first
case. Notice that because all processors are assigned the inner process with this solution,
the process assignment of Figure 3 is unchanged.

The second way to change the process definitibn is to create different types of processes
for the PEs boardering the east and south. This solution logically implies three types of

9
,

n

' , p '- % - . , ..- ,,- ,, ,, - . - ,- , ,.~ - - ., . .-. • -. - . - -.. . ,. %- , ,., "., .'

0

3 40

0

0

000000000
Figure 6. Revised communication structure

E Ira -- _____q

w Ira -lln

Fiawr 7.Reise stea asinmnt

raw Mww10
Id i 1 1140

pi IS I

programs: Those of the eastern edge, except the southeast corner, are like inner except
that they do not read C nor write A; those of the southern edge, except the southeast
corner, are like inner except that they do not read C nor write B; the process of the
southeast corner does not read C, nor write either A or B. These versions, shown in Figure
8, require the modification to the process assignment specification shown in Figure 9.

The first solution is easier to program while the second solution has better performance
because the processor elements are not wasting their time repeatedly testing a predicate
that never changes. The second solution is preferred, of course, though they are equivalent
in the presence of an optimizing compiler that performs constant folding and dead code
elimination.

The processes of Figure 8 also reveal the strategy for terminating the program when the

input is exhausted. The technique uses a special input stream terminator, EOS, mnemonic
for end of stream. Each process in the array will be baited by the arrival of an EOS symbol
although different processes will be halted by different streams: The eastern PEs will be
terminated by the end of the B stream, the southern PEs by the end of the A stream,
the southeastern PEs can be terminated by either stream - stream A has been selected -
and the remainder of the PEs are terminated by EOS on the C stream in order that the
last good values computed drain out of the array. The dataavail predicate tests to be sure
that data has arrived before reading; this is necessary to prevent the read statement from
reading passed the EOS. All processors will halt often passing along the EOS token that
caused them to break out of the loop. The output file will also be terminated by an EOS.

Figure 10 shows a revised version of the port names assignment. This is not strictly
necessary. The port names assignment of Figure 4 could serve because Poker permits port
labels with no corresponding communication paths as long as the port is not written to
or read from. This condition obviously holds for the process definition of Figure 8. We
chose to revise it because the new version has the property that all and only the connected
ports are labelled; this is a property that Poker will test for us, if we wish, as a correctness

* check.

The revised program is not significantly more complex than its predecessor and it is
about as easy to read.

Poker Programmina Environment

A discussion of the main constituents of a Poker program and an explanation of the
effect of various modifications on it are adequate preparation for presenting the structure
and organization of the Poker environment [11].

C, %

N:code Inner; code east;
trace a,b,c; trace abc;
ports Lini, Sin, Ciii, Port$ Ain, Bin,

beiLout, Bout, Caut; beilout, Cant;

*reel a,b,c;relabc
C (- 1.8; Cout C- .4;

bout .8;BOUt 1. 6.;
Lout 1- .1; while -19EOS(Shn) do
while -IsEO%(Chn) do IfI dataavail](8n)

If dataavall(Cin) then
-then beg in
beg in b B- in;

c CCii; a A ini;
b (-Sin; c :m .8;
a ini; c :a c ob;
c :6* ab; Caut(-C;
Cout (-C; Bout (-b
lout (-b; end;
Lout (.a Cout (-EOS;

and; Bout (- OG
*Cant (- LOS end.

code south; coe se;
trace a,b,c; trace a,b,c;
ports Ain, Sin, port$ Aini, Sin, Cout;

Lout, Cant; begin
begin real a,b,c;

reel a,b,c; Cant (- 6.6;
Cant <- 0.6; while a-IsEOS(Ain) do
Lout (- 6.0; it dataavail(Lhn)
while -ISEOS(Lun) do then

* If dataavail(Aln) begin
*then a A-ini;

beg in b B- in;
a <- Aini; c : 6.6;
b (-SGin; c :0c. 40b;
c :V9.; Cant (- C
c :a c + aob; end;
Caut (-C; Cant (- EOS;
Lout (-a end.

end;
Cant (- OS;

Figure 8. Revised process definitions

12

* Figure 9. Revised process assignment

Bi inBn
i

t t

InA t I w InA t II
OnCInO

Bot m w

igur 10Beise potin asg mn

II
Bin Bn Bingi13

It~

.q.
.

Poker is an interactive graphic system using two displays, one of which is a high res-
olution bitmapped display. This terminal, called the primary display, is used for all pro-
gramming activity except the creation of the process definitions which are developed on
the secondary display using a standard editor. Figure 11 shows the format of a typical
primary display. Notice that the information shown in Figures 3-5 is also displayed at the
bottom of the screen in a similar format.

The Poker environment stores the program constituents of Figures 1-5 in a database.
The creation and modification of this information is organized around a set of views. A
view generally displays one of the program constituents, for example, the process assign-
ment, and provides interactive commands for graphically editing the program constituent.
The available views are:

.

Switch Setting View. Displays the communication structure; the user performs
such activities as drawing lines between boxes to establish communication chan-
nels, using a mouse or cursor keys.

Code Names View. Displays the process assignment information; the user
moves among the (processor) boxes, entering the name of the process to be
assigned to the processor as well as any parameters it might have.

Port Names View. Displays the port name assignment information; the user
moves among the (processor) boxes labelling any edges connected to it.

I/0 Names View. Displays the stream name assignment information together
with a schematic of the communication structure, see Figure 12; the user enters
symbolic names and indexes for the streams as well as defining whether they

-. are input or output.

Command Request View. Provides the user with the ability to compile, assem-
a-" ble, coordinate [9, 101 link, and load the program information of the database;

the display shows the progress of these transformations.

Trace View. Displays the progress of the program execution; the user initi-
ates execution, "single steps execution", checkpoints execution, etc. as well
as watching the consecutive values of the traced variables as the execution
proceeds; the source of the execution can be either a physical machine or an
emulator.

CHiP Parameters View. Displays the current architecture being programmed;
the user edits the parameters to change the machine description; for example,

tl one can change the number of processors in the processor array.

14
A,

-!N N- d'Z ~ ~* *

Tye Janir' . 14 4:M VIEW: "W Itch, Settfno - nut1El. F..,, -1 J IM : 1 LAT PC 1 , , . .pt: M

E000DEED

51%

."0

Fiuel .Smpeo.atpcl rmryPkr ipa

................... L-Mw

Two Jan 14 1W:IS VIEWS I0 1iF M P -: I LAST P:1 SA SV .RlE4: MW

SMEW

Figure 12. Example of the 1/0 Names View

16

4 iil f.II. Il% II"q li j**l 11II

Each view provides many more facilities than have been suggested here, and describing
them thoroughly would lengthen this paper to a programming manual [il. It should be
noted, however, that in addition to the special operations required for eachi view, there are
screen management commands, library facilities, online help facilities, file transfer facilities,

- etc. so that Poker is a completely self-contained environment.

A Poker Programming Session

Poker is extremely interactive - each keystroke generally causes some immediate action
to take place. Furthermore, because the display changes with each keystroke or so, it is very
dynamic. Finally, except for the text of the process definitions, Poker programs are not
stored in symbolic form; they are stored in a database that has no meaningful printed form.
[The diagrams for Poker papers are produced by capturing the bits from the bitmapped
display.] These characteristics of Poker make* textual description quite unsatisfactory for
capturing the "feel" of the system. Nevertheless, it is instructive to step through the main
activities performed in development of a Poker program.

The session begins with the programmer entering Poker from UNIXTm; it is possible
to remain in Poker until the program is written, debugged and run. If this is a new pro-
gram, the programmer may want to specify, using the CHiP Parameter View, a particular
machine configuration different from the default and more closely matching the problem
at hand. This activity of "changing the architecture" may seem peculiar: If a program-
mer has a particular machine to use, why not use its characteristics in programming the
problem, since they are presumably the default characteristics? One answer is that it is
often much faster to get a problem working on a small array rather than on a large one
because the emulator, a component of Poker, provides fast convenient tracing of small
arrays. Enlarging the solution is usually straight-forward and simple, making this an ef-
fective programming style. (If this is a program that has been previously worked on, the
programmer is presented with the exact state in force at the conclusion of the previous
session. The following discussion presumes a new program.)

Although one can start programming in almost any view, most programmers begin by
defining the communication structure using the Switch Setting View. The programmer is

q shown an array of circles (which can be ignored here) and boxes and the task is to draw
lines with a mouse or cursor keys to connect the boxes together. These lines establish the
bidirectional datapaths to be used by the processor elements for interprocessor commu-
nication. Like the architectural specification changes mentioned above, this programmer
definition of the interconnection structure seems very peculiar: If a programmer is using
a systolic array or other nonshared memory, nonconfigurable computer, there is only one

17

i- r 'am i/a a-.g lh/ h' l , ,]h idl i i i ° '... . I

physical communication structure. Why isn't it the default communicating structure" It
could be, and as long as it matches the communication structure needed by the algorithm,
it should be. But often the logical communication structure used by the algorithm is dif-
ferent from the physical structure of the machine, and it is then that the programmer is
advised to work initially with the logical structure. The program can be written and tested
(on the simulator) based only on the logical structure. The use of the appropriate logical
structure simplifies the programming and reduces the complications of the debugging it
is a natural abstraction to reduce the complexity of synchronization operations. After the
program is running, it can be revised either by the programmer or by a routine of the
Command Request View, to utilize the physical communication structure directly. The
choice depends on the peculiarities of the target machine and the availability of automatic
mapping software [12).

Having completed the interconnection structure, programmers often move to the sec-
ondary terminal and define one or more processes. This activity uses a standard editor and
amounts to standard sequential programming in an algebraic language such as C, PAS-

'' CAL, or the specialized PASCAL-like language, XX. Poker can be used with just a single
terminal, but the advantage of using two is important: As the programmer develops the
program on the secondary display and thereby creates process names, port names, formal
parameters, etc., it is convenient to assign the information immediately to the appropriate
position in the various Poker views. This can be accomplished without diminishing the
visable information when two displays are in use simply by moving from one to the other.

When the programmer moves to the Code Names View to define the process assignment,
the display shows the collection of empty boxes connected in whatever arrangement was
defined in the Switch Setting View, if any. By using the mouse or cursor keys to move from
box to box and from line to line within a box, the programmer can assign process names
to the processors and actual parameters to the processes. Notice that there is a simple
protocol of perhaps a half dozen keystrokes to store the same information into one or more

4 rows or columns (including all processors). In this way, the regularity so often found in
systolic arrays can be exploited to simplify the programming task without restricting the
flexibility of the system.

The Port Names View is much the same as the Code Names View except that each
process box is divided into eight windows corresponding to the eight compass points.
The programmer uses the cursor motions to move to those windows corresponding to an
edge connecting to the box. As before, computer assistance is available for automatically
assigning information that is consistent from processor to processor.

The I/O Names View shares properties with the preceding views - moving from window

18

a

to window, assigning names to program objects, computer assistance for repetitive entires,
etc. - but it is unique in several respects too. The programmer is shown a listing of all
I/0 pads used in the program (numbered from the northwest cornet), with the processor
and port they connect to and, if defined, the port name of that port and the process name
assigned to that processor. This is not a graphical way to convey or request data. But as
a heuristic to remind the programmer which stream is which, a schematic diagram of the
interconnection graph is given on the bottom of the screen and an arrow points to that
I/O pad to whose entry the cursor presently points. (See Figure 12.)

Typically, the programmer moves between views frequently correcting and revising the
program as changes of one part mandate changes in another. When the program is finished,
the programmer will move to the Command Request View to convert the program to
object form. The various activities can be done selectively or batched in a single keystroke
"make" command. The only remaining task is to bind file names to the stream names so
as to define the data the program is to process. Special commands make the association.
In a production situation where the program is already written and compiled, etc., the
"operator" who is to run the program on many sets of data will operate from the Command
Request View. Successive data sets will be bound to the stream names and the program
will be invoked. If the set of data sets is routinely the same, then the script facilities are
used and the operator need not even be present.

Assuming the programmer wants to watch the program run, and has specified some of
the names of variables to be traced in the preambles of the programs, the Trace View will
begin with the process boxes shown with the names of the assigned process and the initial
values of the traced variables. The programmer has a variety of ways to control the running
of the program. As the progress of the processing causes variables of a process to change
values, the new values are shown on the screen, highlighted together with the current
clock time. Figure 13 shows this display at the moment the first scalar inner product
computation is completed (see highlight) in PE 2,2. The program can be checkpointed,
restarted, single-stepped, executed until a variable changes value, etc. If the program is
faulty in any way, the programmer can return to one of the views to check or change an
entry; otherwise the program can be stored as a unit for future use simply by exiting.

Summary
I|

A programming environment for systolic arrays would provide complete facilities to
support all aspects of systolic program development, debugging and execution based on
abstractions that are convenient and perspicuous. Poker, though developed for a more
general class of algorithms, illustrates to a substantial degree, the form these facilities
might take and how the abstractions might be implemented.

19

. ..
-"o-" -" ~~~~~~."..".................................. "-."". "4 r. '. , -. .", -. .

: ,," ,In'- n~ '.nlt'~ tl = lllnl~lll -*5~ =: "~5*~ . 55. N

IIITw L.... 14..JL.J ~ i 11:11 VIEW: Trace Imocmc
RAM IJ LAS PI:II MTCK: 1

it doa (. CI A

c :9 c s ololEDEDCant <(.c
E_ _ _ _ mgvwslp

lo ne Iu g

Figure -910hraeVe

4049
few 0414100111~, '4 ' ~ '

9

Specifically, Poker illustrates comprehensive support for c-erything from drawing pic-
tures of communication graphs to library facilities; the programmer would need no other

" interface to the systolic array with such facilities. The program form used by the system
is nonstandard, being based on three types of diagrams, a table, and segments of text.
Nevertheless, this program form is more convenient to use than text files and more com-
prehensible, because it utilizes graphics more and symbolic presentations less. To support
systolic computation completely one must replace the asynchronous communication style
of Poker with a synchronous execution mode. This modification would only really affect
the programming language(s) used for the processor elements and would not change the
overall approach to parallel programming.

1. Lawrence Snyder
Parallel Programming and the Poker Programming Environment
Computer 17(7):27-36, July 1984.

2. Lawrence Snyder
Configurable, Highly Parallel (CHiP) Approach to Signal Processing Applications
In Proceedings of Technical Symposium East '82, Society of Photo-Optical and In-
strumentation Engineers, pp. 8-16, 1982.

3. Yasunori Dohi, Allan L. Fisher, H. T. Kung and Louis M. Monier
The Programmable Systolic Chip: Project Overview
In L. Snyder, L. H. Jamieson, D. B. Gannon and H. J. Siegel, editors, Algorithmically
Specialized Parallel Computers, Academic Press, 1985.

4. Keith Bi-omley, J. S. Symanski, J. M Speiser and H. J. Whitehouse
Systolic Array Processor Developments
In H. T. Kung, Bob Sproull and Guy Steele, editors, VLSI Systems and Cor puta-
tions, Computer Science Press, pp. 273-284, 1981.

5. Lawrence Snyder
Introduction to the Configurable, Highly Parallel Computer
Computer 15(1):47-56, January 1982.

6. Alejandro Kapauan, J. Timothy Field, Dennis B. Gannon and Lawrence Snyder
The Pringle Parallel Computer

4. In Proceedings of the 11th International Symposium on Computer Architecture pp.
*l 12-20, IEEE, 1984.
-p

21

I

V . i J

7. Charles E. Seitz
Cosmic Cube
CACM28(I):22-33, 1985.

8. Carver Mead and Lynn Conway
Introduction to VLSI Systems
Addison-Wesley, 1980.

9. Janice E. Cuny and Lawrence Snyder
Compilation of Data-driven Programs for Synchronous Execution
In Proceedings of the 10th ACM Symposium on the Principles of Programming Lan-
guages pp. 197-202, 1983.

10. Duane A. Bailey, Janice E. Cuny and Bruce B. MacLeod
Paral.el Code Optimization to Reduce Communication Overhead
Technical Report, COINS Department, University of Massachusetts, 1985.

11. Lawrence Snyder
Poker (3.1): A Programmer's Reference Guide
Technical Report 85-09-03, Department of Computer Science, University of Wash-
ington, 1985.

12. Francine Berman, M. Goodrich, C. Koelbel, W. Robison and K. ShoweU
', Prep-P: A Mapping Preprocessor for CHiP Computers
*: In Proceedings of the 1985 International Conference on Parallel Processing Pheasant

Run, Illinois.

22

N N

ee e.-

