
-AI90 368 ADA (TRADE NiAME) COMPILER VALIDATION SUMMNARY REPORT!
DOC INTERNATIONAL DD (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER Id-P AFB OH ADA VALI 31 OCT 8

I UNCLASSIFIED F/G t2/5 U

L. 112.0

II1I~ 1 1.8
1.25"'j~ 1.4 Bl .

M CROCO~py RESOLUTION TEST CHAR'

!Elul ;ntered)

i PAGE READ :.NS-R'. CTIONS

T_ A 190 360 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 31 Oct.'86 to 31 Oct.'87
DDC International. DDC Ada Compiler Stystem, Version
4.1, VAX-l1/785, VAX-1l/750, MicroVAX I, VAX 8200, VAX 6. PERFORMING ORG. REPORT NUMBER

8650
7 __AUTHOP sL.P er -AF 8. CONTRACT OR GRANT NUMBER(s)Wright-P~atterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Wright -Patterson AFB, OH 45433066503 AREA & WORK UNIT NUMBERS

L1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 31 Oct.'86
United Stptes Department of Defense !3. .NUBE 8r PASE
Washington, DC 20301-3081ASD/SIOL 51

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson AFB UNCLASSIFIED

15a. AS FICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

. DISTRIBUTION STATEMENT (of the abstract entered in Block20. If different from Report)

UNCLASSIFIED ,LECTE
JANO0 6 198

18. SUPPLEMENTARY NOTES
c V

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testi-ng, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD ,u" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of: validation testing performed on the DDC Ada Compiler Systur, Version
4.f, using Version 1.8 of the Ada® Compiler Validation Capability (ACVC).
The DDC Ada Compiler System was tested on the following five
configurations:

" VAX-11/785punder VMS, Release 4.3
" VAX-11/750 under VMS, Release 4.3
" MicroVAX II under MicroVMS, Release 4 . 4
• VAX 8200 under VMS, Release 4.4
" VAX 8650 under VMS, Release 4.4

On-site testing was performed-27 October 1986 through 31 October 1986 at
DDC International in Lyngby, Denmark under the direction of the Ada
Validation Facility (AVF),, according to Ada Validation Organization (AVO)
policies and procedures. 'The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler., The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. -After the 2210 tests
were processed, results for Class A, C, D, or E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic emv, . Ccapilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 31 of the processed tests determined to be inapplicable. The
remaining 2179 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12,4w,1

Passed 99 253 332 247 161 97 136 261 128 32 217 216 2179

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 17 72 88 0 0 0 3 1 2 0 1 17 201

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

- -.

AVF Control Number: AV F-V SR-1"). 0587
86-09-04-DDC

Ada® COMP~ILER
VALIDATION SUMMARY REPORT:

DDC International
DDC Ada Compiler System, Vertion 4.1
VAX-11/785, VAX-11/750, MicroVAX II,

VAX 8200, VAX 8650

Completion of On-Site Testing:
31 October 1986 jx

.....

Prepared By:

Ada Validation Facility I .

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®3Ada is a registered trademark of the United States GovernmentI (Ada Joint Program Office).

87 12 14 160

wl or~V ~ 1 U~~~.. '

+ place NTIS form here +

................. ..

A.za -- 2ompiler Validation Summary Report:

2xap'er Name: DD) Ada Compiler System, Version 4.1

Hosts and Targets:

. VAX-11/785 under VMS, Release 4.3
" VAX-11/750 under VMS, Release 4.3
. MicroVAX 1i under MicroVMS, Release 4.4
. VAX 8200 under VMS, Release 4.4

. VAX 8650 under VMS, Release 4.4

Testing Completed 31 October 1986 Using ACVC 1.8

This report has been reviewed and is approved.

' Ada Validition Facility
Georgeanne Chitwood

SASD/SCOL

Wright-Patterson AFB OH 45433-6503

da Validat on Organization
Dr. John F. Kramer
Institute for Defense Analyses

Alexandria VA

Ada J~nt Program Office
Virginia L. Castor

Director
Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

3

EX.CUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the DDC Ada Compiler System, Version
4.1, using Version 1.8 of the Ada® Compiler Validation Capability (ACVC).
The DDC Ada Compiler System was tested on the following five

configurations:

VAX-11/785 under VMS, Release 4.3
. VAX-11/750 under VMS, Release 4.3
* MicroVAX ii under MicroVMS, Release 4.4
. VAX 8200 under VMS, Release 4.4
. VAX 8650 under VMS, Release 4.4

.te testing was performed 27 October 1986 through 31 October 1986 at

DDC International in Lyngby, Denmark under the direction of the Ada

A' Validation Facility (AVF), according to Ada Validation Orgar-ization (AVO)
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC

". Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable cests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, or E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 31 of the processed tests determined to be inapplicable. The
remaining 2179 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 99 253 332 247 161 97 136 261 128 32 217 216 2179

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

.11

SInapplicable 1 7 72 88 0 0 0 3 1 2 0 1 17 201

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 23990.

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

4. TABE OF CONTENTS

CHAPTER i INTRODUCTTON

PURPOSE OF THTS VALTDATTON SUMMARY REPORT . . . -
1.2 USE OF THIS VALIDATION SUMMARY REPORT- 2
.3 REFERENCES "-3

,1.4 DEFINITION OF TERMS- 3
1.5 ACVC TEST CL.ASSES -4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-i

2.2 TMPLEMENTATION CHARACTERISTICS 2-

CHAPTER 3 TEST INFORMATION
.4

3.11 TEST RESULTS 3-
3.2 SUMMARY OF TEST RESULTS BY CL.ASS 3-
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 SPLIT TESTS3-3
3.7 ADDITIONAL TESTING INFORMATION3-4
3.7•1 Prevalidation3-4
3.7.2 Test Method3-4
3.7.3 Test Site3-5

* APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

ilal
6,l

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly

reports the results of testing this compiler using the Ada Compiler

Validation Capability (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any Implementation-dependent features

must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that is

not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.

The Ada Standard permits some implementation dependencies--for example, the

maximum length of identifiers or the maximum values of integer types.

Other differences between compilers result from characteristics of

particular operating systems, hardware, or implementation strategies. All

of the dependencies observed during the process of testing this compiler
are given in this report.

The information In this report is derived from the test results produced

during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and

evaluating the results. The purpose of validating is to ensure conformity

of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects

illegal language constructs. The testing also identifies behavior that is

implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

I

:1

TNT RODU CT ON

1 .1 PURPOSE OF THIS VALIDATION SUMLVa.RY REPOPT

This VSR documents the results of the validation testing perf ormed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-sIte testing was conducted from
27 October 1986 through 31 October 1986 at DDC international in Lyngby,
Denmark.

-. 1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. in the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada information Clearinghouse
Ada Joint Program Office
OUS DRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFE REN CES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
inc., SEP 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

SCompiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3
6

WW IR -V x IRIM1, 7W .T TTW ..w : ~ . ._, -, i .. rr_

1,NTRODU CTION

inappllcable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. :n the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be Incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
- test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce campilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is campiled and the
resulting compilation listing is exmined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
Illegal construct that it contains Is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test -1 self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

0%

, ,;,,-, o q" - , ,.,

perieItted in a compilation or the number of units in a library--a compiler
may refuse to compIle a Class D test and still be a conforming compiler.
The ref ore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classfied as Inapplicable. f a lass D
test compiles successfully, it is self-checking and produces a PASSED or
FA7.ED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link tIme--that is, an attempt

' to execute the main program must generate an error message before any
*declarations in the main program or any units referenced by the main

program are elaborated.

1! Two library units, the package REPORT and the procedure CHECK FTLE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results, it also provides a set of identity functions used
to defeat some compiler optlmizatlons allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modif cation. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small n:meric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values-for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.
A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an Illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests

withdrawn at the time of validation are given in Appendix D.

1-5

-k Nr - ' - -

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configurations:

Compiler: DDC Ada Compiler System, Version 4.1

ACVC Version: 1.8

Certificate Expiration Date: 17 December 1987

Host and Target Computers:

Machine Operating System Memory Size

VAX-11/785 VMS, Release 4.3 12 megabytes

VAX-11/750 VMS, Release 4.3 4 megabytes
MicroVAX II MicroVMS, Release 4.4 4 megabytes

VAX 8200 VMS, Release 4.4 12 megabytes

VAX 8650 VMS, Release 4.4 12 megabytes

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation

differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

2-1

I

CONFTGURATTIN INFJRi4ATTON

q Capacities.

The compiler correctly processes tests containing loop statements

nested to 65 levels, block statements nested to 65 levels, and

recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX TNT. This
implementation rejects such calculations. (See tests D'4A002B and
D4AO04B.)

Predefined types.

This implementation supports the additional predefined types

SHORT INTEGER, LONG INTEGER, and LONG FLOAT in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a oased literal with a

value exceeding SYSTEM.MAX TNT during compilation, or it may raise
NUMERTC ERROR or CONSTRAINT ERROR during execution. This

implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

Array types.

An implementation is allowed to raise NUMERTC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.TNTEGER'LAST and/or SYSTEM.MAXTNT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array objects are sliced. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than TNTEGER'LAST
O components raises NUMERIC ERROR when the array type is declared.

(See test C52104Y.)

A null array with one dimension of length greater than
TNTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either

when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERTCERROR when

2-2

0!

CONFTURATTDN TFh'RT N

the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with dlscrlmlnants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRATNT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Fuctions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

* 2-3
i..

I

CONFTGURATION TNFORAIATTON

Representation clauses.

Thp Ada Standard dops not require an implementation to support

representation clauses. If a representation clause is not
supported, then the implementation must roject it. While the

operation of representation clauses is not checked by Version i.3

of the ACVC, they are used in testing other language features.
Tnis implementation accepts 'STORAGE SIZE for collections; it

rejects 'SIZE and 'SMA.T clauses. Enumeration representation

clauses, including those that specify noncontiguous values, appear
to be supported. (See tests C55B16A, C87B62A, C87B62B, C87B62C,
and BC1002A.)

Pragmas.

The pragma TNLTNE is supported for procedures and for functions.

(See tests CA3004E and CA3004F.)

SInput/output.

The package SEQUENTIAL TO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 1O can be Instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests

AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened and created in OUT FILE mode
and cannot be created in INFILE mode. (See test EE3107C.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5

tests).)

*' More than one internal file can be associated with each external
file for both sequential I/O and direct 1/O for reading only.

(See tests CE2107A..F (6 tests).)

An external file associated with more than one Internal file
cannot be deleted. (See test CE211OH.)

Temporary sequential and direct files are not given a name. (See
tests CE2108A and CE2108C.)

. Generics.

A generic specification and body cannot be compiled in separate

compilation files if the body does not come before "he
Instantiation of the generic unit. (See tests CA2009C, CA2009F,

and BC3205D.)

2-4

46% 1 s

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
DDC Ada Compiler System was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 201 tests were inapplicable to this implementation, and
that the 2179 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_ _A B C D E L

Passed 69 865 1171 15 13 46 2179

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 197 2 0 0 201

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

:.

3-1

O.

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3~ 4 5 6 _7 8 910 11 12 14 -

Passed 99 253 332 247 161 97 136 261 128 32 217 216 2179

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

' Inapplicable 17 72 88 0 0 0 3 1 2 0 1 17 201

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B BC3204C
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
*i that a compiler is not required by the Ada Standard to support. Others may

depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 201 tests were inapplicable for
the reasons indicated:

• C24113I..K (3 tests) are inapplicable because they have line
lengths that exceed this implementation's maximum line length.

" C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

. D4AO02B and D4AO04B are inapplicable because this implementation
does not support 64-bit integer calculations.

3-2

0e,,

TEST !NFORMIAr:N

" B86001D requires a predefined numeric type other than those
defined by the Ada language in pacgage STANDARD. There is no such

type for this implementation.

" C87B62A and C87B62C check an implementations's support of 'SIZE
and 'SMALL clauses. This implementation only accepts a length
clause that spezifies tne number of storage units to be reserved
for a collection.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

" CA2009C, CA2009F, and BC3205D compile the body and subunits of a
generic unit in separate compilation files. Separate compilation
of a generic specification and body is not supported by this
compiler when the body comes after the instantiation of the
generic unit.

" CE2102D, CE2102I and CE2111H raise USEERROR when an attempt is
made to create a file of mode INFILE.

" CE2107B..E (4 tests), CE2110B, CE2111D, CE3111B..E (4 tests), and
CE3114B are inapplicable because multiple internal files can be
associated with the same external file for reading only. The
proper exception is raised when multiple access is attempted.

CE2108A, CE2108C, and CE3112A are inapplicable because temporary
files do not have a name.

" The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35708L..Y (14 tests) C45421L..Y (14 tests)
C35705L..Y (14 tests) C35802L..Y (14 tests) C45424L..Y (14 tests)
C35706L..Y (14 tests) C45241L..Y (14 tests) C45521L..Z (15 tests)
C35707L..Y (14 tests) C45321L..Y (14 tests) C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
* because of compiler error recovery, then the test is split into a set of

smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

3-3

Mm TEST INFORMATION

Splits were required fcr seven Class B tests.

B33301A B67001A BA1101B
B37302A B67001C
B55A01A B67001D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the DDC Ada Compiler System was submitted to the AVF by the applicant for

" review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the DDC Ada Compiler System using ACVC Version 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of

* a VAX-11/785 operating under VMS, Release 4.3. The following four
configurations were also tested using a subset of the ACVC:

• VAX-11/750 under VMS, Release 4.3
" MicroVAX II under MicroVMS, Release 4.4
" VAX 8200 under VMS, Release 4.4
. VAX 8650 under VMS, Release 4.4

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the VAX-11/785.
After the test files were loaded to disk, the full set of tests was
compiled on the VAX-11/785, and all executable tests were linked and run.
Results were printed from the VAX-11/785. The tests were reviewed by the
validation team and showed acceptable results.

A subset of the ACVC, Version 1.8, was run on a VAX-11/750, a MicroVAX II,
a VAX 8200, and a VAX 8650. The subset of sixty tests consisted of five
tests selected at random from all classes of tests within each chapter.
The tests were compiled, linked, and executed as appropriate. The test

3-4

I - . • .

results were tne same as those reviewed for the VAX-11/785 on which fail
testing was performed.

The compiler was tested on both computers using command scripts provided by
DDC International and reviewed by the validation team. The following
options were in effect for testing:

Option Effect

/LIST List file is created during compilation.

Test output, compilation listings, job logs, and the compiler and
environment were written to magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at DDC International in Lyngby, Denmark on 27
October 1986, and departed after testing was completed on 31 October 1986.

3-5
0O.

APPENDTX A

COMPLTANCE STATEMENT

DDC International has submitted the following

compliance statement concerning the DDC Ada Compiler

System.

~A-I

0

COMPLIANCE STATEMENT

Compliance Statement

Configuration:

Compiler: DDC AdasCompiler System, Version 4.1

Test Suite: Ada Compiler Validation Capability, Version 1.

Host and Target Computers:

Machine: VAX 11/785
Operating System: VMS, Release 4.3

Machine: VAX_11/750
Operating System: VMS, Release 4.3

Machine: VAX 8650
Operating System: VMS, Release 4.4

Machine: MicroVAX II
Operating System: VMS, Release 4.4

Machine: VAX 8200
Operating System: VMS, Release 4.4

DDC International has made no deliberate extensions to the Ada
language standard.

DDC International agrees to the public disclosure of this
report.

0DDC International agrees to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office.

/.,Date: : _
DDC International
Carsten Bjernaa
Project Manager

FAda is a registered trademark of the United States Government

(Ada Joint Program Office).

A-2

3%

APPENDIX B

VAPPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of

* the DDC Ada Compiler System, Version 4.1, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is
.

type INTEGER is range -32768 .. 32767;

type SHORT INTEGER is range -128 .. 127;

type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -16#7.FFFF C#E31 .. 16#7.FFFF C#E31;
type LONGFLOAT is digits 15 range -16#7.FFFFFFFFFFFF#E255

16#7.FFFFFFFFFFFF#E255;

type DURATION is delta 2#1.0#E-14 range -131072.0 .. 131071.0;

-- DURATION'SMALL 2#1.0#E-14.

end STANDARD;

O.'

..

B-I

." 0

F. Appendix F of the Ada Reference Manual

F.0 Introduction

This appendix describes the implementation-dependent
characteristics of the DDC VAX/VMS Ada Compiler, as required in
the Appendix F frame of the Ada Reference Manual (ANSI/MIL-STD-
1815A).

F.1 Implementation-Dependent Pragmas

No implementation-dependent pragmas are defined for the VAX/VMS
version.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined for the
VAX/VMS version.

. F.3 Package SYSTEM

-." The specification of the package SYSTEM:

package SYSTEM is

type ADDRESS is access INTEGER;
subtype PRIORITY is INTEGER range 0..15;

I type NAME is (VAXll,CR80,M40,MPSl0,DPS6);
SYSTEM NAME: constant NAME := VAXll;
STORAGE UNIT: constant := 16;
MEMORY SIZE: constant := 2048 * 1024;
MIN INT: constant :- -2 147 483 647-1;
MAXINT: constant := 2 147 483_647;
MAXDIGITS: constant := 15;
MAXMANTISSA: constant := 31;

* FINE DELTA: constant := 2.0 / MAX INT;
TICK: constant 0.000_0017

end SYSTEM;

0. F.4 Representative Clauses

In general, no representation clauses may be given for a
derived type. The representation clauses that are accepted for
non-derived types are described in the following:

B-2

W % -

Length Clause

'The compiler accepts only a length clause that specifies the

number of storage units to be reserved for a collection.

Enumeration Representation Clause

Enumeration representation clauses may specify representations
only in the range of the predefined type INTEGER.

Record Representation Clause

A component clause is allowed if and only if

- the component type is a discrete type different from
LONGINTEGER

- the component type is an array type with a discrete
element type different from LONGINTEGER.

No component clause is allowed if the component type is not
covered by the above two inclusions. If the record type
contains components not covered by a component clause, they are
allocated consecutively after the component with the value.
Allocation of a record component without a component clause is
always aligned on a storage unit boundary. Holes created
because of component clauses are not otherwise utilized by the

V' compiler.

4.'

F.5 Implementation-Dependent Names for Implementation -

Dependent Components

None defined by the compiler.

* F.6 Address Clauses

Not supported by the compiler.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between values of the same
- "size". In this context the "size" of an array is qual to

that of two access values and the "size" of a packed array is
equal to two access values and an integer. This is the only
restriction imposed on unchecked conversion.

'.4 B-3

.4 ,2!

F.8 Input-Output Packages

The implementation supports all requirements of the Ada
language. It is an effective interface to the VAX/VMS file
system, and in case of text input-output also an effective
interface to the VAX/VMS terminal driver.

This section describes the functional aspects of the interface
to the VAX/VMS file system and terminal driver. Certain
portions of this section is of special interest to the system
programmer who needs to control VAX/VMS specific Input-Output
characteristics via Ada programs.

The section is organised as follows.

Subsection numbers refer to the equivalent subsections in
Chapter 14 of the ARM. Only subsections of interest to this
section are included.

The Ada Input-Output concept as defined in Chapter 14 of the
ARM does not constitute a complete functional specifications of
the Input-Output packages. Some aspects are not discussed at

* all, while others are deliberately left open to an implementa-
* tion.

These gaps are filled in the appropriate subsections andtsummarized in subsection F.8.a.

The reader should be familiar with

[DoD 83] - The Ada language definition

and certain sections require that the reader is familiar with

[DEC 84a] - Guide to VAX/VMS File Applications

[DEC 84b] - Record Management Services

[DEC 85] - VAX/VMS I/O Users Reference Manual

F.8.1 Enternal Files and File Objects

An external file is either any VAX/VMS file residing on a file-
structured device (disk, tape), a record structured device
(terminal, lineprinter), or a virtual software device
(mailbox). ARM 14.1(1).

Identification of an external file by a string (the NAME
parameter) is described in subsection F.8.2.1.

I
*0 System-dependent characteristics (the FORM parameter) is

described in subsection F.8.2.1

B-4

4

,- An external file created on a file-structured device will exist
after program termination, and may be accessed later from an
Ada program, except if the file is a temporary file created by
using an empty name parameter. If files corresponding to the
external file have not been closed, the external file will also
exist upon program completion, and the contents will be the
same as if the files had been closed prior to program
completion. See further F.8.3. ARM 14.1(7).

Input-Output of access types will cause input-output of the
access value [Dod 83] 14.1(7).

Sharing of an external file is, when using the default system-
dependent characteristics, handled as described in the
following.

When a file is associated with an external file using the
* Record Management Services (RMS), and the file is opened with

mode IN_FILE, the implementation will. allow the current process
*. and other processes to open files associated with the same

external file (e.g. as INFILE in an Ada program).

When a file is opened with mode INOUT FILE or OUTFILE no file
sharing is allowed when using RMS. In particular, trying to

-. gain write access to an external file shared by other files, by
OPEN or RESET to mode INOUTFILE or OUTFILE will raise
USEERROR.

When a text file is associated with a terminal device, using
.-9 the Queue I/O System Services (QIO), there are no restrictions

on file sharing.

F.8.2 Sequential and Direct Files

When dealing with sequential and direct input-output only RMS
files are used.

In this section, a description of the basic file-mapping is
given.

Basic file-mapping concerns the relation between Ada files and
(formats of) external RMS files, and the strategy for accessing
the external files. When creating new files (with the CREATE

O, procedure), there is a unique mapping onto a RMS file format,
the preferred file format. When opening an existing external
file (with the OPEN procedure), the mapping is not unique; i.e.
several external file formats other than preferred for CREATE
may be acceptable. In subsection F.8.2.1 the preferred and

*. acceptable formats are described for sequential and direct
input-output. In subsection F.8.3.1 the preferred and
acceptable formats are described for text input-output.

-B-5

S"~ W

V % '~ ~'~ ~ . VQ~-~' V.* %

F.8.2.1 File Management

This subsection contains information regarding file management:

- Description of preferred and acceptable formats for
sequential and direct input-output.

.- The NAME parameter.

- The FORM parameter.

- File access.

Preferred and Acceptable Formats

The preferred and acceptable formats for sequential and direct
input-output, are described using RMS notation and
abbreviations [DEC 84b]. ES is used to denote the element
size, i.e. the number of bytes occupied by the element type,
or, in case of a varying size type, the maximum size (which
must be determinable at the point of instantiation from the
value of the SIZE attribute for the element type).

It should be noted that the latter means a type definition
like:

type large_type is array(integer <>) of integer;

would be mapped onto an element size greater than the maximum
* allowed size (32 k byte).

SEQUENTIALIO:

An element is mapped into a single record of the external file,
or if block-io is used, a number of consecutive virtual blocks
of 512 bytes. ES must not be greater than 32767, otherwise
USEERROR is raised.

0CREATE - preferred file format

- OPG-SEQ, PFM=FIX, MRS-EZ
(note: read and write operations will be done by BLOCK 10
if element size is a multiple of 512 bytes)

0
OPEN - acceptable formats

'.4 - ORG=REL, RFM=FIX, MRS-ES

- ORG-SEQ, RFM=FIX, MRS-ES

B-6

- ORG=SEQ, RFM=VAR

-ORG=SEQ, RFM=UDF
(note: BLOCK 10 will be used)

(note: a RESET operation to OUT FILE mode will give a
USEERROR exception, as it is not possible to empty a
file of this format).

The detailed setting of the control blocks for sequential IO is
given below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or
CREATE.

Also note that, when an Ada program contains tasks,
asynchronous I/O will be used (ROP - <ASY>).

The following shows the initial setting for OPEN and CREATE
(unspecified fields in the control blocks will be cleared to
zero).

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for block-io, IN FILE: <BRO,GET>

for block-io, OUT FILE: <BRO,PUT,UPD,DEL,TRN>
otherwise, IN FILE: <GET>
otherwise, OUT FILE: <PUT,UPD,DEL,TRN>

FNM = name parameter
FOP = non-empty name parameter: <MXV,SQO>

empty name parameter to CREATE: <MXV,SQO,TMP>
MRS = element size (in bytes)
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = FIX
SHR = for IN FILE: <GET>

for OUT FILE: <NIL>
XAB - address of XABFHC block

RAE:
FAB = address of FAB block

* KBF = address of internal longword
NitKSZ = 4
v RAC = SEQ

ROP - for block-io: <BIO>
otherwise: <UIF>

NAM:RSA address of internal 255 byte buffer

RSS = 255

B-7

% 'W

XABFHC:
NXT = 0

DIRECTIO:

An element is mapped into a single record of the external file,
or if block io is used, the smallest possible number of
consecutive virtual blocks of 512 bytes. ES must not be greater
than 32767, otherwise USEERROR will be raised.

CREATE - preferred file format

- if element size is not a multiple of 512:
ORG=REL, RFM=FIX, MRS=ES

- if element size is a multiple of 512: ORG=SEQ, REM=FIX,
MRS=ES
(note: read and write operations will be done by BLOCK
10)

OPEN - acceptable formats

- ORG=REL, RFM=FIX, MRS=ES

- ORG=SEQ, RFM=FIX, MRS=ES
(note: if element size is a multiple of 512, BLOCK 10
will be used)

- ORG=SEQ, RFM=tUDF
(note: BLOCK 10 will be used)

The detailed setting of the control blocks for direct 10 is
given below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or
CREATE.

Also note that, when an Ada program contains tasks,
asynchronous I/O will be used (ROP = <ASY>).

The initial setting for OPEN and CREATE (unspecified fields in
the control blocks will be cleared to zero) follows:

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for IN FILE: <GET>

for OUTFILE: <GET,PUT,UPD,DEL,TRN>
FNM = name parameter

B-8

F,~ W- -~ W .4 4A ~

FOP = non-empty name parameter: <MXV,SQO>
empty name parameter to CREATE: <MXV,SQO,TMP>

MRS = 512
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = VAR
SHR = for IN FILE: <GET>

for OUT FILE: <NIL>
XAB = address of XABFHC block

RAB:
FAB - address of FAB block
KBF = address of internal longword
KSZ = 4
RAC = SEQ
ROP = <>
UBF - address of internal 512 byte buffer
USZ = 512

NAM:
RSA = address of internal 255 byte buffer
RSS = 255

XABFHC:
NXT = 0

Name Parameter

The name parameter, when non null, must be a valid VAX/VMS file
* specification referring to a file-structured device; a file

with that name will then be created.

For a null name parameter, the process' current directory and
device must designate a directory on a disk device; a
temporary, unnamed file marked for deletion will then be
created in that directory. The file will be deleted after
closing it, or, if not closed when the program terminates. ARM
14.2.1(3).

Form Parameter

The FORM string parameter that can be supplied to any OPEN or
CREATE procedure is for controlling the external file
properties, such as physical organization, allocation etc. In
the present implementation this has been achieved by accepting
form parameters that specify setting of fields in the RMS
control blocks FAB and RAB, used for all open files. This
scheme is rather general in that it accepts all settings of the

*" FAB and RAB fields. It opens for modifications of the behaviour
required by the Arm, such as being able to open a file for

B-9

IW1

appending data to it. Furthermore, a form parameter for

accessing mailboxes is provided.

The following fields can currently not be set explicitly:

FAB:
FNA, FNS (are set by the NAME parameter of OPEN or

CREATE)
DNA, DNS (can be set by DNM=/.../)

The syntax of the form parameter is as follows:

form_parameter ::= [param (, param)]

param ::= number_param
string param
quotation param
mask_param

numberparam ::= keyword - number
number "1= digit (digit)
digit :0 1 ... 19

- string_param ::= keyword = string
string ::= / (any character other than slash) /

quotationparam::= keyword = specifier

mask_param ::f clear bitsset bits

definewholefield

clear bits ::= keyword - mask
set bits ::= keyword + mask
define whole field

:: keyword = mask
mask ":- < [specifier (specifier)] >

* keyword ::= letter letter letter
specifier ::= letter letter letter [letter letter]

letter ::A B Z I ... I a Ib I I

Notes:

. all space characters are ignored.

. string parameters are converted to uppercase.

. all keywords and specifiers are 3- or 5-letter words,
like the RMS assembly level interface symbolic names.
The only exceptions are the RAT=<CR> specifier, which in
this implementation must be specified as CAR rather than
CR, and the RAB CTX field keyword, which must be

B-10

- - - - - -r - - - - -, - - . . o , < - - r -

specified as CON. There are only 2 5-letter words: the
specifiers STMCR and STMLF.

The semantics of the form parameter is (except for the mailbox
parameter) to modify the specified FAB and RAB fields just
prior to actually calling RMS to open or create a file, i.e.
the form parameter overrides the default conventions provided
by this implementation (ARM section F.5.4). The form parameter
is interpreted left to right, and it is legal to respecify

• fields; in particular a mask field may be manipulated in
several turns.

Note that there is no way of modifying fields after an RMS open
or create service, in particular it is not possible to set RAB
fields on a per record operation basis.

The modifications made are those to be expected from the
textually corresponding RMS macro specifications. However, the
clear_bits and setbits are particular to this implementation:
They serve to either clear individual mask specifiers set by
the implementation default, or to set mask specifiers in
addition to those specified by the implementation default,
respectively.
The mailbox parameter can be either

MBX-TMP
or

"U MBX=PRM

It applies to CREATE only, and causes either a temporary or a
permanent mailbox to be created. The NAME parameter will be
used to establish a logical name for the mailbox, unless an
empty string is specified (in this case, no logical name will
be established).

Note that the implementation does in no way check that the form
parameter supplied is at all reasonable. The attitude is "you
asked for it, you got it". It is discouraged, if other

* procedures than OPEN, CREATE, and CLOSE will be called, to set
ORG, RAC, MRS, NAM, FOP-<NAM>. It is generally discouraged to
set XAB.

.

- f

O.

B-I

0.

Examples:

-- create a text file
create(file, outfile, "DATA.TXT");

-- create a temporary text file which will be deleted
after completion of the main program

A. create(file, out-file);

-- create an empty stream format text file
create(file,out file,"DATA.DAT","ORG=SEQ,RFM=STMLF");

P -- create a very big file:
create(file,out_file,"DATA.DAT","ALQ=2048,DEQ=256");

-- create a temporary mailbox:
create(file,outfile,"HELLO","MBX=TMP");

- -- open a mailbox; at reading, do not wait for
messages:

open(file,infile,"HELLO","ROP+<TMO>,TMO=O");

File Access

The OPEN and CREATE procedures utilize the normal RMS
defaulting mechanism to determine the exact file to open or
create.

-. Device and directory (when not specified) defaults to the
process' current device (SYS$DISK) and directory.

The version number (when not specified), defaults for OPEN to
highest existing, or for CREATE, one higher than the highest
existing, or 1 when no version exists.

The implementation provides .DAT as the default file type.

* External files, which are not to be accessed via block-io (as
described in formats), will be accessed via standard RMS access
methods. For SEQUENTIAL_IO, sequential record access mode will
be used. For DIRECT_IO, random access by record number will be
used.

*" Creation of a file with mode INFILE will raise USEERROR, when
referring to an RMS file.

For sequential and direct io, files created by SEQUENTIAL 10
for a given type T, may be opened (and processed) by DIRECT 10
for the same type and vice-versa. In the latter case, however,
the function END OF FILE (14.2.2(8)) may fail to produce TRUE
in case where the file has been written at random, leaving
"holes" in the file. See ARM 14.2.1(7).

B-12

V

For a sequential or text file associated with an RMS file, a
RESET operation to OUT_ FILE mode will cause deletion of any
elements in the file, i.e. the file is emptied. Likewise, a
sequential file or text file opened (by OPEN) with mode
OUT FILE, will be emptied. For any other RESET operation, the
contents of the file is not affected.

For a text file, any RESET operation will cause USE ERROR to be
raised, when QIO services are used.

F.8.2.2 Sequential Input-Output

The implementation omits type checking for DATA ERROR, in case
the element type is of an unconstrained type, ARM 14.2.2(4),
i.e.:

... f : FILETYPE
type et is f..100;
type eat is array(et range <>) of integer;

X : eat(l..2)"
Y : eat(1..4

-- write X, Y:

* write(f, X); write(f, Y); reset(f, INFILE);

-- read X into Y and Y into X:

read(f, Y); read(f, X);

This should have given DATA ERROR, but will instead give
undefined values in the last 2 elements of Y.

F.8.2.3 Specification of the Package Sequential 10

with BASICIOTYPES;
I

with IOEXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIALIO is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

B-13

%

U-Z . % - ll" N- 6 16. 7 Q-% ---- -V %71 - -. . VIN -r

File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE := OUT FILE;
NAME : in STRING :=
FORM : in STRING off#

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

. function MODE (FILE : in FILETYPE) return FILEMODE;

function NAME (FILE : in FILE TYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

* function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
- ITEM : in ELEMENTTYPE);

function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;I
-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODEERROR;
NAME ERROR : exception renames IO EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO EXCEPTIONS.END ERROR;
DATA_ERROR : exception renames IOEXCEPTIONS.DATAERROR;

private

type FILETYPE is new BASIC_10_TYPES.FILETYPE;

end SEQUENTIALIO;

B-14

N

F.8.2.4 Direct Input-Output

The implementation omits type checking for DATAERROR, in case
the element type is of an unconstrained type, [Dod 83]

*14.2.4(4), see F.8.2.2.

F.8.2.5 Specification of the Package Direct 10

with BASIC 10 TYPES;
with 10EXCEPTIONS;

Z. generic

type ELEMENTTYPE is private;

package DIRECTIO is

type FILETYPE is limited private;

type FILE MODE is (IN FILE, INOUT FILE, OUT FILE);

type COUNT is range 0..LONG INTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1 .COUNT'LAST;

File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE := INOUTFILE;
NAME : in STRING
FORM : in STRING := "");

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;

* FORM : in STRING :=

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
- MODE : in FILE-MODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;

function NAME (FILE : in FILETYPE) return STRING;

B-15

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE;
FROM : in POSITIVE COUNT);

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE;
TO : in POSITIVE COUNT);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILE TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILETYPE) return POSITIVECOUNT;

function SIZE (FILE : in FILE TYPE) return COUNT;

function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;

-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODEERROR : exception renames IsEXCEPTIONS.MODEERROR;
NAME ERROR : exception renames 10 EXCEPTIONS.NAME ERROR;

AUSE -ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IOEXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO EXCEPTIONS.END ERROR;
DATAERROR : exception renames IO-EXCEPTIONS.DATK ERROR;

private

- type FILE-TYPE is new BASICIOTYPES.FILETYPE;

end DIRECTIO;

F.8.3 Text Input-Output

*When utilizing text input-output, RMS is used when an external
* file is residing on a file-structured device, or is a virtual

software device. When an external file that is a terminal
device is opened or created, tts queue I/O services (QIO) are
used by default.

B-16

p " ' ' - ' 9 , S. ,, -.- *.- , *,',., .. . 5 , ,.. -% - - - -55 "

If a text file of mode OUT FILE corresponds to an external RMS
file, the external file will also exist upon program
completion, and a pending linebuffer will be flushed before the
text file is closed.

F.8.3.1 File management

This subsection contains information regarding file management,
where it differs from the file management described in F.8.2.1.

- Description of preferred and acceptable formats for text

input-output.

- The FORM parameter.

- File access.

Preferred and Acceptable Formats

Lines of text are mapped into records of external files.

For output, the following rules apply.

The Ada line terminators and file terminators are never
explicitly stored (hc-wever, for stream format files, RMS forces

*i line terminators to trail each record). Page terminators,
except the last, are mapped into a form feed character trailing
the last line of the page. (In particular, an empty page
(except the last) is mapped into a single record containing

only a form feed character). The last page terminator in a
file is never represented in the external file. It is not
possible to write records containing more than 512 characters.
That is, the maximum line length is 511 or 512, depending on
whether a page terminator (form feed character) must be written
or not. If output is more than 512 characters, USEERROR will

I be raised.

On input, a FF trailing a record ind!cates that the record
contains the last line of a page and that at least one more
page exists. The physical end of file indicates the end of the
last page.I

CREATE - preferred file format

- ORG=SEQ, RFM=VAR, MRS=512

IB

~B-17

I

-C,

OPEN - acceptable file formats

- all formats except
- ORG=IDX
- RFM=UDF

(Note: for stream files (RFM=STM...) any sequence of
the LF, CR, and VT control characters at the end of
a line will be stripped off at input. At output,
line terminators will be provided by RMS defaults).
(Note: input of any record containing more than 512
characters will raise a USEERROR exception).

The detailed setting of the control blocks for TEXT 10 is given
below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or
CREATE.

,

Also note that, when an Ada program contains tasks,
asynchronous I/O will be used. When RMS files ROP = <ASY>, or
asynchronous QIO when terminal devices.

The following shows the initial setting for OPEN and CREATE
(unspecified fields in the control blocks will be cleared to
zero):

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for IN FILE: <GET>

for OUT FILE: <GET,PUT,UPD,DEL,TRN>
FNM = name parameter
FOP = non-empty name parameter <MXV,SQO>

empty name parameter to CREATE: <MXV,SQO,TMP>
MRS = 512
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = VAR
SHR = for IN FILE: <GET>

for OUTFILE: <NIL>
XAB - address of XABFHC block

* RAB:
FAB = address of FAB block
KBF = address of internal longword
KSZ 4
RAC = SEQ
ROP <>
UBF = address of internal 512 byte buffer
USZ = 512

B-18

MI

NAM:
RSA = address of internal 255 byte buffe:
USZ = 255

XABFHC:
NXT = 0

Form parameter

If any form parameter, except for the empty string or a string
containing only blanks, is supplied to OPEN or CREATE, RMS
services will always be used. In this case, the file
operations on external files as terminal-devices will use
buffered input- output.

File access

External RMS files are accessed via sequential record access
methods.

Files associated with terminal devices, using QIO services, do
not contain page terminators. This means that calling
SKIP PAGE will raise USE ERROR. Furthermore, trying to RESET a

*4 file in this category wifl cause USEERROR.

Files associated with the same external file, using UIO
services, share the standard values (page-, line, and column-
number), e.g. standard values for STANDARD OUTPUT are
implicitly updated after reading from STANDARDINPUT.

F.8.3.10 Specification of the Package Text 10

with BASIC 10 TYPES;
with 10 EXCEPTIONS;
package TEXTI0 is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

type COUNT is range 0 .. LONGINTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBERBASE is INTEGER range 2 .. 16;

*i type TYPESET is (LOWER_CASE, UPPER_CASE);

B-19

. ..

File Management
procedure CREATE (FILE : in out FILETYPE;

MODE : in FILE MODE OUT FILE;
NAME : in STRING := "";
FORM : in STRING

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE in out FILE TYPE);
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (FILE : in out FILE TYPE;

MODE : in FILE MODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILE MODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET INPUT (FILE : in FILE TYPE);
procedure SETOUTPUT (FILE : in FILE-TYPE);

function STANDARD INPUT return FILETYPE;
function STANDARD-OUTPUT return FILETYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENTOUTPUT return FILETYPE;

• -- specificaticn of line and page lengths

procedure SETLINELENGTH (FILE : in FILETYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILETYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);-5_

function LINELENGTH (FILE : in FILETYPE) return
COUNT;

function LINELENGTH return
COUNT;

B-20

function PAGE-LENGTH (FILE in FILE-TYPE) return
COUNT;

function PAGELENGTH return
COUNT;

-- Column, Line, and Page Control

procedure NEWLINE (FILE : in FILE TYPE;
SPACING : in POSITIVECOUNT 1);

procedure NEW-LINE (SPACING : in POSITIVECOUNT :);

procedure SKIPLINE (FILE : in FILE-TYPE;

SPACING : in POSITIVE COUNT 1);
procedure SKIPLINE (SPACING : in POSITIVECOUNT 1);

function END OF LINE (FILE : in FILETYPE) return
BOOLEAN;

function END OF LINE return
BOOLEAN;

A-
procedure NEW PAGE (FILE : in FILETYPE);
procedure NEWPAGE

procedure SKIP PAGE (FILE : in FILETYPE);

procedure SKIPPAGE

function ENDOFPAGE (FILE : in FILETYPE) return
'. BOOLEAN;

function END OF PAGE return
BOOLEAN;

function ENDOFFILE (FILE : in FILETYPE) return
BOOLEAN;

function ENDOFFILE return
BOOLEAN;

procedure SETCOL (FILE : in FILE-TYPE;
* TO : in POSITIVE COUNT);

* procedure SETCOL (TO : in POSITIVECOUNT);

procedure SETLINE (FILE : in FILETYPE;
TO : in POSITIVE COUNT);

procedure SETLINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE TYPE) return
POSITIVECOUNT;

function COL return
POSITIVE-COUNT;

function LINE (FILE : in FILE TYPE) return
POSITIVECOUNT;

function LINE return
POSITIVE-COUNT;

B-21

" 0 + - + " ' "+e /++ -e++. +, -."? " ++e+,,

I'

function PAGE (FILE : in FILE TYPE) return
POSITIVECOUNT;

function PAGE return
POSITIVE COUNT;

-- Character Input-Output

procedure GET (FILE : in FILE TYPE;
ITEM : out CHARACTER);

procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE TYPE;

ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE TYPE;
ITEM : out STRING);

procedure GET (ITEM : out STRING);
procedure PUT (FILE : in FILE TYPE;

ITEM : in STRING);
procedure PUT (ITEM : in STRING);

procedure GETLINE (FILE : in FILE TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GETLINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUT LINE (FILE : in FILE TYPE;
ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGERIO is
I

DEFAULT WIDTH : FIELD :- NUM'WIDTH;
DEFAULTBASE : NUMBERBASE := 10;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

B-22

,-

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT WIDTH;
BASE : in NUMBERBASE := DEFAULTBASE);

procedure PUT (ITEM : in NUM;
WIDTH : in FIELD := DEFAULTWIDTH;
BASE : in NUMBERBASE := DEFAULT BASE);

procedure GET (FROM : in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM : in NUM;
BASE : in NUMBER BASE

DEFAULTBASE);

end INTEGERIO;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO is

DEFAULT FORE : FIELD := 2;
DEFAULT-AFT : FIELD := NUM'digits - 1;
DEFAULTEXP : FIELD 3;

procedure GET (FILE in FILETYPE;
ITEM. : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULTFORE;*
AFT : in rIELD DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULTFORE;
AFT : in FIELD -DEFAULT AFT;
EXP : in FIELD :- DEFAULTEXP);

* procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

end FLOATIO;

B-23

fi

generic
type NUM is delta <>;

package FIXEDIO is

DEFAULT FORE : FIELD := NUM'FORE;
DEFAULT AFT : FIELD := NUM'AFT;
DEFAULTEXP : FIELD := 0;

procedure GET (FILE : in FILETYPE;
ITEM out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH • in FIELD 0);

procedure PUT (FILE in FILETYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD := DEFAULT AFT;
EXP in FIELD DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT FORE;
AFT in FIELD := DEFAULT AFT;
EXP : in FIELD := DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULTAFT;
EXP : in FIELD := DEFAULTEXP);

end FIXEDIO;

V, - - Generic Package for Input-Output of Enumeration Types

*_ generic
type ENUM is (<>);

package ENUMERATIONIO is

DEFAULT WIDTH : FIELD := 0;
DEFAULTSETTING : TYPESET :- UPPERCASE;

procedure GET (FILE : in FILE TYPE;
ITEM : out ENUM);

V procedure GET (ITEM : out ENUM);

procedure PUT (FILE : in FILETYPE;

ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT WIDTH;
SET : in TYPESET : DEFAULTSETTING);

B-24

procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD DEFAULT WIDTH;
SET : in TYPESET DEFAULTSETTING);

procedure GET (FROM : in STRING;
V ITEM : out ENM;

LAST : out POSITIVE);
procedure PUT (TO : out STRING;

ITEM : in ENUM;
SET : in TYPESET := DEFAULTSETTING);

end ENUMERATION_10;

-- Exceptions

STATUS ERROR : exception renames IO EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames IOEXCEPTIONS.NAMEERROR;
USE ERROR : exception renames IO EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END _ERROR;
DATA ERROR : exception renames IOEXCEPTIONS.DATA_ERROR;
LAYOUT ERROR : exception renames IOEXCEPTIONS.LAYOUTERROR;

private

type FILETYPE is new BASICIOTYPES.FILETYPE;

end TEXTIO;

F.8.6 Low Level Input-Output

The package LOW_LEVELIO is empty.

F.8.a Clarifications of Ada Input-Output Requirements
Summary

The Ada Input-Output concepts as presented in Chapter 14 of ARM
do not constitute a complete functional specification of the

-; Input-Output packages. Some aspects are not discussed at all,
while others are deliberately left open to an implementa- tion.
These gaps are filled in below, with reference to sections of

* the ARM.

F.8.b Assumptions

14.2.1(15): For a sequential or text file, a RESET operation to
OUT FILE mode deletes any elements in the file,
i.e. the file is emptied. Likewise, a sequential
or text file opened (by OPEN) as an OUTFILE, will

A B-25

'a

be emptied. For any other RESET operation, the
contents of the file is not affected.

14.2.1(7) For sequential and direct io, files created by
SEQUENTIAL_10 for a given type T, may be opened
(and processed) by DIRECT 10 for the same type and
vice-versa. In the latter case, however, the
function END OF FILE (14.2.2(8)) may fail to
produce TRUE in the case where the file has been
written at random, leaving "holes" in the file.

a.

F.8.c Implementation Choices

14.1(1) An external file is either any VAX/VMS file
residing on a file-structured device (disk,tape), a
record structured device (terminal, lineprinter),
or a virtual software device (mailbox).

14.1(7) An external file created on a file-structured
Vdevice will exist after program termination, and

may later be accessed from an Ada program.

14.1(13) : See Section F.8.2.1 File Management.

14.2.1(3) : The name parameter, when non-null, must be a valid
VAX/VMS file specification referring to a file-
structured device; a file with that name will then
be created. For a null name parameter, the
process' current directory and device must
designate a directory on a disk device; a
temporary, unnamed file marked for deletion will
then be created in that directory.

The form and effect of the form parameter is
discussed in Sections F.8.2.1 and F.8.3.1.

Creation of a file with mode INFILE will raise
USEERROR.

14.2.1(13): Deletion cf a file is only supported for files on a
disk device, and requires deletion access right to
the file.

14.2.2(4): No check for DATA ERROR is performed in case the
element type is of an unconstrained type.

B-26

% 6 P

L..

APPENDTX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BTG IDI (1.125 => 'A', 126 => 'i')
Tdentifler the size of the
maximum input line length with

varying last character.

$BTG TD2 (1.225 => 'A', 126 => '2')

Identifier the size of the
maximum input line length with
varying last character.

$BTG TD3 (i..63 => 'A', 64 => '3',
Identifier the size of the 65..126 => 'A')

maximum input line length with

varyin; middle character.
$BIG IDN (1-•63 => 'A'. 64 => '4',

ldentifier the size of the 65..126 => 'A')

maximum input line length with
varying middle character.

$BTGTNTLIT (1-123 => '0', 124.126 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the

maximum line length.

~C-I

Name and Meaning Value

REAl. IJ T ,..2Q => '2', 1,T.- 1>
A real literal that can be "1g.0Ei")

either of floating- or fixed-
point type, has value 690.0, and
has enough leading zerops to be
the size of the maximum line

length.

$BLANKS (.106 => ')

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT I.AST 2 147 483_647
A universal integer literal
whose value is TEXTTO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijk.mnopqrstuvwxyz" &
A string literal containing all "'$%?@[\]"{}"
the ASCTI characters with
printable graphics that are not
in the basic 55 Ada character

set.

$ F TELD IAST 35
A universal integer literal
whose value is TEXTTO. FTELD'LAST.

$FILE NAME WITH BAD CHARS X}]!@#$^&-Y
A:n illegal- external file name
that either contains invalid

characters, or is too long if no

invalid characters exist.

$FI.E NAME 'TTHWI.DCARDCHAR XYZ*

An external file name that

either contains a wild card
charater, or 3 too long if no
wild card character exists.

SGREATER THAN DURATION i00 000.0

A universal real value that l1.#s
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise

any value in the range of
DURATION.

$GREATER THAN DURATION BASELAST 200 000.0
The universal real value that is

greater than DURATION'BASE'I.AST,

'if such a value exists.

C-2

-

NamQ and Meaning Value

$TJ-AI. EXTE3NAI. FTE NAMEI "bad cnaracter * ^"
An illegal external file name.

$I IElJAI. EXTLERN :AL FTILENAME2 "muchtoolongnameforafile" &

An illegal external file name "muctoolongnameforafl.e"
that is different from
-" $7LLEGAI, EXTERNAL._FILENAMEI.

8TNTEGER FTRST -327b8

Tne universal integer literal
expression whose value Is

INTEGER'FTRST.

$INTEGER LAST 32767
The universal integer literal
expression whose value is

TNTEGER 'LAST.

$LESS THANDURATION -i00_000.0
A universal real value that lies
between DURATION'BASE'FTRST and
DURATTON'FIRST if any, otherwise

any value in the range of
DURATION.

SLESS THANDURATION BASEFIRST -200 000.0
The universal real value that is

less than DURATION'BASE'FTRST,
if such a value exists.

$MAX DIGITS 15
The universal integer literal

whose value is the maximum
digits supported for
floating-point types.

SSX IN LEN 126
The universal integer literal
whose value is the maximum

input line length permitted by
the implementation.

$!AX TNT 2.47483647
The universal integer literal
whose value is SYSTEM.MAX INT.

9

C-3

%%

4 - &A AA M, A I- R
II ,. ,,% ,,- +'. 4" " . .'m , •-+ ,,, 4' '. " , , .d .• " " W ' ' " " # -" - .*

, Name and Aeanin$ Value

.. long ln integer
A name of a pre-finea numeric
type otier tnan FLOAT, TXTEGER,
SHORT FI.OAT, SHORT INTEGER,
LONG FLOAT, or ILONG INTEGER
if one exists, otherwise any

undefined naze.

$NEG BASED TNT 76#FFFFFFFF#

A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAX INT.

$NONASCTT CHAR TYPE (NONNULL)

An enumerated type definition
for a character type whose

literals are the identifier
I NON NULL and all non-ASCII

characters with printable
graphics.

C-4

% V1 V ~ s v *% , *.

!r
- 1 % . ,

r upl

--- V

-. APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A referencP of the form

"AT-ddddd" is to an Ada Commentary.

*'C321"4A: An unterminated string literal occurs at line 62.

. B33203C: The reserved word "IS" is misspelled at line 45.

* O340,8A: The call of function G at line 14 is ambiguous in the
presence of Lmplicit conversions.

* C35904A: Thp elaboration of subtype declarations SFX3 and CFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

33740!A: The object declarations at lines !26 through 135 follow

suoprogram bodies declared in the same declarative part.

SC4'404A: The values of ':.AST and 'LENGTH are incorrect in the f
statements from line 74 to the end of the test.

E451"6A: ARRPRIBI., and ARRPRIBf2 are initialized with a value of
the wrong type--?RIBOQE._TYPE instead of ARRPRIBOOI._TYPE--at line

4..

A' . C4800SA: The assumption that evaluation of default initial values

occurs when an exception is raised by an allocator is incorrect
according to AT-00397.

D-I

o;TTH1*)A,,, 7-SI

*B49006A: Object declarations at lines 4' and 5:0 are tp~riatpe
incorr-ctly with colons, and end case; is ailssinrg from), liz.e 4P.

* 4AO!OO: The object declaration in line 18 follows a sunprcgram
body of the same declarative part.

*B747-01B: The begin at line 9 causes a declarative part to De
treated as a sequence of statements.

*C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

*C92005A: The "/=' for type PACK.BTGTNT at line 40 is not visible
without a use clause for the package PACK.

*C940ACA: The assumption that allocated task TM~ will run prior to
4 the main program, and thus assign SPYNUMB the value checked for by

the main program, Is erroneous.

*CA3005A. .D (4 tests): No valid elaboration ord~er exists for these
tests.

*BC32014C: The body of BC3204G0 is missing.

D- 2

fifo

w1 w w lp w lU w w

