-A190 368

UNCLRSSIFIED

ADA (TRADE NANME) CWILEQ VALIDATION SUNMARY REPORT
DDC INTERNATIONAL DD <U) llFORNRTlON SVSTEHS auo
ECHNOLOGY CENTER M-P RFB OH RDAR VAL F/G 12/5

¥
[
o

i

3 4

m
m

i | = "
25

(ELE

MICROCOPY RESOLUTION TEST CHART
NAT CNAL BURE AL OF SYANORRES = 1963~

L £

FIEEEE

=
ﬂw
o

Irrr

r
rr

o4 © o ® e @ [L J ® ® ® o .
..I,“‘ : ‘: ...".1.-:";1 ::rv": 0.'. ..“‘: \; '::.:-:‘ .‘.:'c‘.\"' \. m !'..:' T "
"‘ Ky ‘."‘u’t 0 "u' AR KRN :‘* Ol ' .\, "‘. W "
I.lq..\y,!‘i -lo‘l I.'I .‘:“‘“"' “ 'l .'l
()

0NN

.....................

T

™

l
£
i

e du ‘ntered)

i PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

— AD-A190 36

j2. GOVY ACCESSION NO.

3. RECIPIENT’S (CATALOG NUMBER

4. TITLE (and Subtitle) _
Ada Compiler Validation Summary Report:

DDC International. DDC Ada Compiler Stystem, Version
4.1, VAX-11/785, VAX-11/750, MicroVax 1I, VAX 8200, VAX
8650

5. TYPE OF REPORT & PERIOD COVERED
31 Oct.'86 to 31 Oct.'87

6. PERFORMING ORG. REPORT NUMBER

7 . AUTHOR(:

Wrig t-Patterson AFB

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS
Wright -Patterson AFB, OH 45433066503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROLLING QFFICE NAME AND ADDRESS

Ada Joint Program Office

United St»tes Degartment of Defense
Washington, DC 20301-3081ASD/SIOL

12. REPORT DATE
31 Oct.'86

-3 —NOMBERBF—PASES———————————
51

14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office)
Wright-Patterson AFB

15, SECURITY CLASS (of thusreport)
UNCLASSIFIED

15a. gEﬁkeﬁEéFlCATION/DO\'INGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17, DISTRIBUTIQON STATEMENT (of the abstract entered in Block 20. If different from Report)

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

W) “TUKRM
1 JAN 73

1473 ceo1tion OF 1 NOV 65 IS OBSOLETE

S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

o o \%\&\% \%"E"Exa

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of : validation testing performed on the DDC Ada Compiler Systemr, Version
4.7, using Version 1.8 of the Ada® Campiler Validation Capability (ACVC).
The DDC Ada Campiler System was tested on the following filve
configurations:) .

. VAX-11/785,under VMS, Release 4.3

. VAX-11/750 under VMS, Release 4.3

. MicroVaX II under MicroVMS, Release 4.4

. VAX 8200 under VMS, Release 4.4

. VAX B650 under VMS, Release 4.4

On-site testing was performed 27 October 1986 through 31 October 1986 at

¢+ DDC International 1in Lyngby, Demmark under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policlies and procedures., -The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the campiler.-~ The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. .After the 2210 tests
were processed, results for Class A, C, D, or E tests were examined for
correct execution. Campilation 1listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Campilation and 1link
results of Class L tests were analyzed for correct detection of errors.
There were 31 of the processed tests determined to be inapplicable. The
renaining 2179 tests were passed. -~

The results of validation are sumarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 _7_8_9 10 11 12k

Passed 99 253 332 247 161 97 136 261 128 32 217 216 2179

Failed o 0 0 0 0 0 0 0 0 0 0 O 0

Inapplicable 17 72 8 o0 o0 o0 3 1 2 0 1 17 a0
Lthdrawn o 5 5 0 0 1 1 2 4 o 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®da is a registered trademark of the United States Government
(Ada Joint Program Office).

i.‘l‘

IR Y L
LR
BONIG y

AVF Control Number:

AVF-VSR-45, 0587
86-09-04-DDC

Ada® COMPILER
VALIDATION SUMMARY REPORT:
DDC International
DDC Ada Compiler System, Version 4.1
VAX-11/785, VAX-11/750, MicrovAX II,
VAX 8200, VAX 8650

Campletion of On-Site Testing:
31 October 1986

Prepared By:
Ada Validation Facility
ASD/scoL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

87 12 14 180

1
|
|

T

. “T—-“__‘_-T-’
. RERNE A o S)
o vy

L
§

.
[,

®pda 13 a reglistered trademark of the United States Government
(Ada Joint Program Office).

-

x5

- a4
o B W 4

P e R R A Sk s
+ +
+ Place NTIS form here +

+

e

+
R Rt &

'1

A Ay Ay

P 2 2

b

‘.“; VOOV NG » ;
LS AT ,‘,‘.l.‘.", ROA M) gt OO0 ; w .
ity ey g B8 AR AR RIS SONCA ’ TR AN AT A
T T LI WOt |

P

3

)

&

&

e ,

NG ida” Campiler Validation Summary Report:
¥

K Captier Name: O5NDC Ada Compller System, Version 4.1
5

:) dosts and Targets:

')-:

M . VAX-11/785 under VMS, Release 4.3

' . VAX-11/750 under VMS, Release 4.3

b « MicroVAX II under MicroVMS, Release 4.4
ko . VAX 8200 under VMS, Release 4.4

N . VAX 8650 under VMS, Release 4,4

I

h

B Testing Conpleted 31 October 1986 Using ACVC 1.8
)

!

This report has been reviewed and 1s approved.

-:.JJ.P Ca

-7 1@l

Ada Validdtion Facility

:: Georgeanne Chitwood

¥ . ASD/SCOL

[Wright-Patterson AFB OH 45433-6503

<]

b4

%« /

7 /4da Validatfon Organization

. Dr. John F. Kramer

" Institute for Defense Analyses

™ Alexandria VA

X

kR

I.

e

)

K Ada Jefnt Program Office

" Virginia L. Castor

“ Director

i Department of Defense
Washington DC

)l.

: v

u‘

g

IR

L's

::o ®pda is a reglstered trademark of the United States Government

", (Ada Joint Program Office).

3

h-.

‘I.

‘0

P'"' -

. ‘h‘\-,’l'f' SRS ISR VLI AT ‘-"f‘v“i‘"v‘ J. ./‘ f\
W Y - 4, . » R
‘n :‘ﬁ N c'l..'l o, co'l n'! 0 :‘l 0.’0 3 g " \ L \ 0 ‘l. 3 \ \ ‘.' ~ o N .

elaeait hioaltataalital - hal e Ata el o TR WAV "y

4;.'0 -

A
i

K
:‘;

;:}

o+

7 EXECUTIVE SUMMARY

\.':
;.‘" This Validatfion Summary Report (VSR) sumnarizes the results and conclusions
NG of wvalidation testing performed on the DDC Ada Cavpiler System, Version
:é 4.1, using Version 1.8 of the Ada® Campiler Validation Capability (ACVC).
o The DDC Ada Compiler System was tested on the following five
:;L configurations:

v
) . VAX-11/785 under VMS, Release 4.3
49 . VAX-11/750 under VMS, Release 4.3
:;. . MlicroVAX II under MicroVMS, Release 4.4
o . VAX 8200 under VMS, Release Uu.l4
N . VAX 8650 under VMS, Release 4,4
] . ite testing was performed 27 October 1986 through 31 October 1986 at
": DDC International in Lyngby, Denmark under the direction of the Ada
:_‘-.- Validation Facility (AVF), according to Ada Valldation Organization (AVO)
,.::f policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
RN Version 1.8 to be processed during on-site testing of the caupiler. The 19
tests withdrawn at the ime of validation testing, as well as the 170

N executable :cests that make use of floating-point precision exceeding that
:- supported by the implementation, were not processed. After the 2210 tests
N were processed, results for Class A, C, D, or E tests were examined for
‘;: correct execution. Campilation 1istings for Class B tests were analyzed
o, for correct dlagnosis of syntax and semantic errors. Compilation and 1link
i results of Class L tests were analyzed for correct detection of errors.

A There were 31 of the processed tests determined to be inapplicable. The
\,,' remaining 2179 tests were passed.

.i'
i The results of validation are summarized in the following table:

o’

)| RESULT CHAPTER TOTAL

' 2 3 y 5 6 7 8 9 10 11 12 4
i

o Passed 99 253 332 247 161 97 136 261 128 32 217 216 2179

"\

5

v Failed o 0 0 0 0 O 0O 0 0 0O 0 0 0
gl Inapplicable 17 72 88 o 0 0 3 1 2 0 1 17 201

o
o
:.,':; Withdrawn o 5 5 0 O 1 1 2 i o 1 0 19
o
o TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

@.
W
" The AVF concludes that these results demonstrate acceptable conformity to
".r ANSI/MIL-STD-1815A Ada.
'*-:
0"'
;:;n ®rda is a reglstered trademark of the United States Government
u,:‘. (Ada Joint Program Office).
4
.'..'
W
v...
o i

[B

iy L P U S TR SV S S S O S T Y e T P e SR N Y R AT A e S N N W TS WO P W A
AN, .N.l,c.', X . ettt et . s ! “"' o foierpladoy . o iy .‘.\':.:':?.]

vﬂ

:;E

l‘.

7

o TABIL.LE OF CONTENTS

CHAPTER 13 INTRODUCTTON

c;'.
Ay T4 PURPOSE OF THTS VALTDATTON SUMMARY REPORT -7
5¢ 1.2 USE OF THIS VALTDATION SUMMARY REPORT 1=2
A 1.3 REFERENCES v v v o & o o o o o ¢ o o o o o o o o« o =3
o 1.4 DEFINTTION OF TERMS v & v « o« o o « o o o« o o o o 1=3
\ 1.5 ACVC TEST CLASSES v v v v o o v o o o o o o o o o 1=44
ks

I

5 CHAPTER 2 CONFTGURATTON TNFORMATTON

1

N 2.1 CONFTGURATTON TESTED « « v v o o o o o o o o o o« & 2=1

2.2 TMPLEMENTATION CHARACTERTSTICS v v v ¢ v o o o o o 2-1%

K
"

t CHAPTER 3 TEST INFORMATION

,\J
et 3.1 TEST RESULTS &« « & « o o o o o o o s « o o o o » o« 3=1
1 ¢ 3.2 SUMMARY OF TEST RESULTS BY CIAASS v v « ¢ ¢ « « « . 3=1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER « « « « « « . . 3=2

[3.4 WITHDRAWN TESTS & & v o o o s o o o o o o o o « & 3=2
Y 3.5 INAPPLICABLE TESTS v « & ¢ o « o o o o o o o o o o 3=2
:v) 306 SPI..TT TESTS] 3 3-3
o 3.7 ADDTTTONAL TESTING INFORMATTON . « & & & o o o« o o 3-4
’ 3.7.1 Prevalidation .« « o « o « o « o ¢ s o o o o o » 3=4
N 3.7.2 Test Method . « v ¢ ¢ v o o o o o o o« o o « o « 3-4
'™ 3.7.3 TeSt SILe v v v v 4 & 4 4 e e e e e e e e e .. 35
P

l

e APPENDIX A COMPL.TANCE STATEMENT

.‘,f

;:: APPENDTX B APPENDIX F OF THE Ada STANDARD

"

Y APPENDTX C TEST PARAMETERS

o

g APPENDIX D WITHDRAWN TESTS

Yo

‘D

A

W

Ii

0

1)

I

0.:

>

o

A

e

\)
‘I

womm N Ao Q > ' PP o T AR P T P L P o T T e TR R T A
R A R A A R T A R,

'Y'YW'H'\"'JW

0

¥

)

o

"

:0

1

'l

;

9

X CHAPTER 1
K)

o INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada campiler conforms to the Ada Standard, ANSI/MIL-STD-18154A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compller using the Ada Canpiler
\ Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in 1ts entirety, and nothing can be implemented that is
not in the Standard.

P W)

L ¥

’ Even though all validated Ada complilers conform to the Ada Standard, it
must be understood that same differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximun length of identifiers or the maximum values of integer types.
[Other differences between compilers result from characteristics of
19 particular operating systems, hardware, or implementation strategles. All
of the dependencies observed during the process of testing this compiler
are glven in this report.

The information in thlis report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler aund
: evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Staandard by testing that the compllier properly
implements legal language constructs and that it identifies and rejects
*1llegal language constructs. The testing also identifies behavior that Is
implementation dependent but permitted by the Ada Standard. ix classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

J
3 - - - L - ™ [T AN IR Y -

N . - ..- A .' - - - --*- - n = ‘)'.'f‘(‘-f‘{.‘)’ - A TS $-}"_- m '-* "o b
-"f«'vf-‘-.. :\.o"f:‘ﬁfa lf:'i.t" NN Y ':o Kl t".i?‘n.t :'t:!\t X) AR . \ \i h"lts‘.\ O ‘- Mo -.o s.:'\.- :‘

‘Cﬂl;JJ}f

.

?L?L?.'

2

DRARRRN P4 L L LEX

F s B 4

d ey

INTRODUCTION

1.1 PURPOSE OF THIS VALTDATION SUMMARY REPORT

This VSR documents tne resuits of the validation testing performed on an
Ada ccmpliler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiier that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

. To determine that the Implementation-dependent behavior Is alliowed
by the Ada Standard

Testing of thlis compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policles and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
27 October 1986 through 31 October 1986 at DDC International in Lyngby,
Denmark.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation appiy only to the computers,
operating systems, and campiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and compliete, or that the subject compliler has no nonconformities
to the Ada Standard other than those presented. Coples of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUS DRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

oy

&

‘h.‘ '~q~<~ L AR 4 R T T, T R ' M R A T A R N -
R A S A R S S e R R R R R PN N R N

2

TWTRIOGCT T o

P B G e
. -

<. Questions regarding this report or the validation test resuits should tbe
directed to the AVF listed above or to:

Ada Validation Organization

W Institute for Defense Analyses
-, 1801 North Beauregard Street
iy Alexandria VA 22311

1.3 REFERENCES

S
* 1. Reference Manual for the Ada Programming Language,
- ANSI/MIL-STD-18154, FEB 1933.
N
P 2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
e Program Office, 1 JAN 1987.
b
M 3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
' Tnc., SEP 1986.
*:
X"
1.
o
,:5 1.4 DEFINITION OF TERMS
x'..
b ACVC The Ada Campiler Validation Capability. A set of programs
s that evaluates the conformity of a compller to the Ada
‘M language specification, ANSI/MIL-STD-18154.
“
Ada Standard ANSI/MIL-STD-18154, February 1983.
~“ Applicant The agency requesting validationm.
.,-\
:. AVF The Ada Valldation Facility. In the context of this report,
the AVF 1s responsible for conducting compller validations
. according to established policies and procedures.
)
8
::: AVO The Ada Vaildatlon Organization, In the context of this
-- report, the AVO is responsible for setting procedures for
::'. compiler validations.
.. Canpiler A processor for the Ada language. In the context of this
o report, a camnpller is any language processor, including
; ¢ross-compllers, translators, and interpreters.
ﬁ' Falled test A test for which the campiler generates a result that
i demonstrates nonconformity to the Ada Standard.
W
o Host The camputer on which the compiler resides.
3
%:
" 1-3

1
’ INTRODUCTION
)
'S
)
o Inapplicable A test that uses features of the language that a compiier s
"\‘ test not required to support or may legitimately support in a way
otner than the one expected by the test.
«.-.
'p Passed test A test for wnlch a compiler generates the expected resuit.
?
»
3' Target The computer for which a compiler generates code.
]
b
L0 Test A program that checks a campiler's conformity regarding a
" particular feature or features to the Ada Standard. In the
2? context of this report, the term is wused to designate a
:; single test, which may comprise one or more files.
N
W
}.' Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification., A test may be Incorrect
- because 1t has an invalid test objective, fails to meet its
o}ﬁ test objective, or contains illegal or erroneous use of the
.5: language.
e
Mo
e
e
1€ 1.5 ACVC TEST CLASSES
'
ﬁx Conformity to the Ada Standard 1s measured using the ACVC. The ACVC
:x contains both legal and illegal Ada programs structured into six test
kgﬁ classes: A, B, C, D, E, and L. The first letter of a test name *dent’fies
¢ the class to which it belongs. Class A, C, D, and E tests are executable,
'*ﬁ and speclal program units are used to report thelr results during
I execution, Class B tests are expected to produce canpilation errors.
'$\ Class L tests are expected to produce link errors.
o~
ﬁ? lass A tests check that legal Ada programs can be successfully canpiled
) and executed. However, no checks are performed during execution to see if
oY the test objective has been met. For example, a Class A test checks that
oo reserved words of another language (other than those already reserved in
Pt the Ada language) are not treated as reserved words by an Ada campiler. A
;5& Class A ‘test is passed 1f no errors are detected at compile time and the
3 i program executes to produce a PASSED message.
Py
R Ciass B tests check that a compller detects fllegal language usage. Class
4% B tests are not executable. Each test in this class is compiled and the
o resulting compilation listing 1s examined to verify that every syntax or
" semantic error in the test is detected. A Class B test Is passed if every
“. p
{0 illegal construct that it contains is detected by the compiler.
9.
9 Ciass C tests check that legal Ada programs can be correctly campiled and
:Q executed. Each Class C test is self-checking and produces a PASSED,
K

FATLED, or NOT APPLICABLE message indicating the result when it 1is
:}9 executed.

Class D tests check the compilation and execution capacities of a compiler.
PP Since there are no capacity requirements placed on a campiler by the Ada
‘ Standard for some parameters--for example, the number of identiflers

5N 1-4

WO N W S, A J‘ﬁv‘ r.f‘ s A e o P """”'\‘_jr\. "v-" MNEIR TR S Y
\ ‘ 5000 I PL ,,,4{. Ve s ‘ ¥ W0 v‘-J‘ d
A a2 o) A l’v‘-‘o "QD\Q_. . N m \ |‘~.- o .~o o ¢ » “l Kl lA."

< 4 S

%

»

AT

5' x" A“)‘.)“ .

-~ [p——
RN

A A A B 2

2y

AY

~ ,&‘.L{ ‘t“' v

[3
L GO

N

-
-
p s dur Spb 8

L] N

rr"
PR

- -
'1. ST

-

PEITETY:
PR

<@

a

I €

2

R PN -

permitted in a campilation or the number of units in a library--a campiler
may refuse to compile a Class D tert and still be a conforming complier.
Therefore, if a Class D test falls to campile because the capacity of the
compiler is exceeded, the test 1s classified as inapplicable. If a Tlass D
test camplles successfully, it is self-checking and produces a PASSED or
FATLLED message during execution.

Each Clagss E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when 1t 1s caopiled and executed. However, the Ada
Standard permits an Implementation to reject programs containing some
features addressed by Class E tests during campilation. Therefore, a Class
E test is passed by a compiler if it is complled successfully and executes
to produce a PASSED message, or if it is rejected by the campiler for an
allowable reason.

Class L tests check that 2incomplete or 1ilegal Ada programs involving
multiple, separately campiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution Is attempted.
A Class L test passes if it 1s rejected at link time--that is, an attempt
to execute the maln program must generate an error message before any
declarations 1n the main program or any units referenced by the mailn
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests, The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of ldentity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text flles written by same of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units 1is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation Is not attempted.

The text of the tests in the ACVC follow conventlions that are intended to
ensure that the tests are reasonably portable without modificatlon. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests, However, some tests contaln values that require the test to be
customi zed according to Implementation-specific values—-for example, an
Illegal file name. A 1ist of the values used for this validation Is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite ard
demonstrate conformity to the Ada Standard by elther meeting tne pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an Iilegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 13 not wused in testing a canpller. The tests
withdrawn at the time of vaiidation are given in Appendix D.

Y L
N

d
e

Lo

‘.l

~I

[t

A

'

l

&

‘ J

CHAPTER 2

'3,

N

. CONFIGURATION INFORMATION

L

2.1 CONFIGURATION TESTED

5

.: The candidate compilation system for this validation was tested under the
a following configurations:

)

(: Compiler: DDC Ada Compiler System, Version 4.1

)

L)

3 ACVC Version: 1.8

",

-~ Certificate Expiration Date: 17 December 1987

i Host and Target Computers:

i: Machine Operating System Memory Size

Le

- VAX-11/785 VMS, Release 4.3 12 megabytes

‘- VAX-11/750 VMS, Release 4.3 4 megabytes

’ MicroVAX II MicroVMS, Release 4.4 4 megabytes

3 VAX 8200 VMS, Release 4.4 12 megabytes

o VAX 8650 VMS, Release 4.4 12 megabytes

Y

P

2.2 IMPLEMENTATION CHARACTERISTICS

K

\

$ One of the purposes of validating compilers is to determine the behavior of
:b a compiler in those areas of the Ada Standard that permit implementations
" to differ. Class D and E tests specifically check for such implementation
K differences. However, tests in other classes also characterize an
[implementation. This compiler is characterized by the following
R) interpretations of the Ada Standard:

M)

]

)

)
¢

P

"

4 2-1

L)

AL *w‘a‘v a‘ Y P A A J‘r‘ *f o, NN U A S, Ny
Lo) .‘0,.“. “‘c L) .~..‘ s .0.! .0.0. U8 X M X .v‘i‘

KoAL .
Ky !.e‘,"' I "\."h o' ‘o‘ ‘l"‘ RO - PO

ata e o &

a

[_{.;{I;'I'

FER— ‘,
¥ "
fald s
“"J M 'j v-' ‘-‘

A
':.l _\ ’_S _ll._.! _l' -

PN
l%l‘ \ g

‘;
By

T
m

. e

s

L -

- o ‘
l-‘-“ ‘.}.J‘.'y ..

1]
a4

[y
l'..

CONFTGURATTON INrORMATTON

Capacities,

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested ¢2 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels, Tt correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A034..H (8
tests), D5600°B, DH6UOOSE..G (3 tests), and D29002K.)

Universal integer calculations.

An Implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX TNT. This
implementation rejects such calculations. (See tests DYAOOPB and
D4AOOQUB.)

Predefined types.

This Zimplementation supports the additional predefined types
SHORT_TNTEGER, LLONG_INTEGER, and LONG _FLOAT 4in the package
STANDARD. (See tests B8600iC and B86007D.)

Based literals.

An implementation is allowed to reject a bpased 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERTC_ERROR or COVSTRAINT ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E2471074A.)

Array types,

An izplementation is allowed to raise NUMERTC_ERROR or
CONSTRAINT _ERROR for an array having a 'LENGTH tnat exceeds
STANDARD.INTEGER'L.AST and/or SYSTEM.MAX TNT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'ILAST
raises NUMERTC _ERROR when the array objects are sliced. (See test
C52103X.,)

A packed two-dimensional BODLEAN array with more than TNTEGER'LAST
components raises NUMERIC_ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'ILAST wmay raise NUMERTC ERROR or CONSTRAINT_ERROR elitner
when declared or assigned. Alternatively, an 1mp19mentation Day
accept the declaration. However, lengths must match in array
slice assignments. Thls implementation raises NUMERIC_ERROR when

2-2

\‘1 J’l’-

o ,
:tﬁxhﬂ%ﬁ%’hfﬂﬁo.‘.. :¥33333!‘5h$558§b§555§8§1;;;2x Qf‘dbdbﬁﬂﬁu *“tx{‘JE&JGth;;flﬁxﬁkhZL*

A
"mn

L
-~
[

a2
F 2

.l'l.

-
-

AN R

PR S W

- - - ~ - . - - - "
e TR iCH

CONETGURATTON THECara™TOoN

the array type is declared., (3See test E52703Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether tne expression's subtype is Ebmpatible with
the target's subtype. In assigning two-dimensional array types,
tne expression does not appear to be evaluated 3in 1its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C5207i3A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This dimplementation accepts such subtype indications., (See test
E381044.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests CU4320TA and CU3207B.)

In the evaluation of an aggregate containing subaggregates, all
cholces are not evaluated before being checked for identical
bounds. (See test EU3212B.)

All choices are evaluated pefore CONSTRATNT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Furctions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

2-3

. AT W e
. \ \ !
e Ot X 4 UL ho\ﬂ.l o "" o,y

LA AN

T

CONFTGURATTON TNFORMATION

Representation clauses.

The Ada Standard does not require an iImplementation <¢o support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
Tnis implementation accepts 'STORAGE SIZE for collections; it
rejects 'STZE and ‘'SMALIL clauses, Enumeration representation
clauses, including those that specify noncontiguous values, appear
t> be supported. (See tests C55B16A, C87B62A, C87B62B, C87B62C,
and BC10024.)

Pragmas.

The pragma TNLTNE is supported for procedures and for functions.
(See tests CA3COUE and CA3004F.)

Tnput/output.

The package SEQUENTTAI._TO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT_IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2U401D.)

An existing text file can be opened and created in OUT_FILE mode
and cannot be created in IN FTLE mode. (See test EE3102C.)

More than one internal file can be associated with each external
file for text I/0O for reading only. (See tests CE3711A..E (5
tests).)

More than one internal file can be associated with each external
file for both sequential I/0 and direct I/0 for reading only.
(See tests CE270T7TA..F (6 tests).)

An external file associated with more than one internal file
cannot be deleted. (See test CE2110B.)

Temporary sequential and direct files are not given a name. (See
tests CE2108A and CE2108C.)

Generics.

A generic specification and body cannot be compiled in separate
compilation files if the body does not come before *he
instantiation of the generic unit. (See tests CA2009C, CA20Q9F,
and BC3205D.)

2-4

B Ank g Bl §

\Zees

]

i

.-----
Pl

T -
-

o e
[- o % &
o T X

CHAPTER 3

WA

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

u: DDC Ada Compiler System was performed, 19 tests had been withdrawn. The
b” remaining 2380 tests were potentially applicable to this validation. The
W AVF determined that 201 tests were inapplicable to this implementation, and
‘ that the 2179 applicable tests were passed by the implementation.

v]
::- The AVF concludes that the testing results demonstrate acceptable
’»3 conformity to the Ada Standard.
®
™ 3.2 SUMMARY OF TEST RESULTS BY CLASS
-
B
f RESULT TEST CLASS TOTAL

) A B c D E L
N Passed 69 865 1171 15 13 46 2179
J'\"

b Failed 0 0 0 0 0 0 0

N

Inapplicable 0 2 197 2 0 0 201
;g Withdrawn o] 7 12 o] 0 0 19

..:‘.

}; TOTAL 69 874 1380 17 13 46 2399
|".

'\"

57

e,
& '-

W,
~’0
-

L

~
o
o 3-1

~

4
@

o -
]

L
“ j

M
TEST INFORMATION

a.l
4 Yl
: ; 3.3 SUMMARY OF TEST RESULTS BY CHAPTER
¢
R
ol RESULT CHAPTER TOTAL

x 2 3 _4 5 _6 _1_8_9 10 11 12 14

:‘ Passed 99 253 332 247 161 97 136 261 128 32 217 216 2179

“.v

' Failed o 0 o o O O 0 o0 O 0 0 0O 0
1 Inapplicable 17 72 8 0 0 0 3 1 2 0 1 17 201
o Withdrawn o 5 5 0 0 1 1t 2 4 0o 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

-}
B
3

\i
:%, 3.4 WITHDRAWN TESTS
{ The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
" this validation:

o

b C32114a CU140UA BT4101B BC3204C
N B33203C B45116A C87B50A

C34018a c48008a C92005A

’ C359044 B49006A CYUOACA

- B374014 B4AO10C CA3005A..D (4 tests)

"l

ﬁ See Appendix D for the reason that each of these tests was withdrawn.

:

)
ﬂv 3.5 INAPPLICABLE TESTS
¢
LN
L Some tests do not apply to all compilers because they make use of features
s\ that a compiler is not required by the Ada Standard to support. Others may
"y depend on the result of another test that 4is either inapplicable or

withdrawn. For thnis validation attempt, 201 tests were inapplicable for
oy the reasons indicated:

S . C24113I..K (3 tests) are inapplicable because they have line
:¢0 lengths that exceed this implementation's maximum line length.
.
, . C3U4007F and C35702A use SHORT FLOAT which is not supported by this
;o} compiler.
o
::: . DUAOOZ2B and DUAOOYB are inapplicable because this implementation
o does not support 6U4-bit integer calculations.
ol
fﬁ\
t
e 3-2
N,
®

q—.--

LI

ﬁl:I',“q" -f

A S N T o Y N O A R .y NN AT .

.....

Pl

e
LA

-
-

RESS

vy
v

S
Fal'y

% 55

' -
g s\ Wbl elbib g

T=z3T INFORMATION

. B86001D requires a predefined numeric type other than those
defined by the Ada language in pacKage STANDARD. There is no such
type for this implementation.

. CB7B62A and C87B62C check an implementations's support of ‘'SIZE
and 'SMALL clauses. This implementation only accepts a lengtn
clause that speczifies <he number of storage units to be reserved
for a collection.

. C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

. CA2009C, CA2009F, and BC3205D compile the body and subunits of a
generic unit in separate compilation files. Separate compilation
of a generic specification and body is not supported by this
compiler when the body comes after the instantiation of the
generic unit.

. CE2102D, CE2102I and CE2111H raise USE_ERROR when an attempt is
made to create a file of mode IN_FILE.

. CE2107B..E (4 tests), CE2110B, CE2111D, CE3111B..E (4 tests), and
CE3114B are inapplicable because multiple internal files can be
associated with the same external file for reading only. The
proper exception is raised when multiple access is attempted.

. CE2108A, CE2108C, and CE3112A are inapplicable because temporary
files do not have a name.

. The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35708L..Y (14 tests) CUSU21L..Y (14 tests)
C35705L..Y (14 tests) C35802L..Y (14 tests) CUu45424L..Y (14 tests)
C35706L..Y (14 tests) CU45241L..Y (14 tests) CU45521L..Z (15 tests)
C35707L..Y (14 tests) CU45321L..Y (14 tests) CU45621L..2Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

S A S T A]

? TEST INFCRMATION
) Splits were required fcr~ seven Class B tests.
)
: B333014 B670014A BA1101B
KX B37302A B67001C
B55A01A B67001D
:: 3.7 ADDITIONAL TESTING INFORMATION
[
3.7.1 Prevalidation
[}
4 Prior to validation, a set of test results for ACVC Version 1.8 produced by
- the DDC Ada Compiler System was submitted to the AVF by the applicant for
: review. Analysis of these results demonstrated that the compiler
' successfully passed all applicable tests, and the compiler exhibited the
_ expected behavior on all inapplicable tests.
‘.
"
3.7.2 Test Method
{ Testing of the DDC Ada Compiler System using ACVC Version 1.8 was conducted
L on-site by a validation team from the AVF. The configuration consisted of
ugl a VAX-11/785 operating under VMS, Release 4.3. The following four
» configurations were also tested using a subset of the ACVC:
>
5 . VAX-11/750 under VMS, Release 4.3
. . MicroVAX II under MicroVMS, Release 4.4
X . VAX 8200 under VMS, Release 4.4
;: . VAX 8650 under VMS, Release 4.4
A magnetic tape containing all tests except for withdrawn tests and tests
" requiring unsupported floating-point precisions was taken on-site by the
e validation team for processing. Tests that make use of
: implementation-gpecific values were customized before being written to the
i) magnetic tape. Tests requiring splits during the prevalidation testing

were included in their split form on the magnetic tape.

The contents of the magnetic tape were lcaded directly onto the VAX-11/785,
¥ After the test files were 1loaded to disk, the full set of tests was
'y compiled on the VAX-11/785, and all executable tests were linked and run.
: Results were oprinted from the VAX-11/785. The tests were reviewed by the
validation team and showed acceptable results.

K A subset of the ACVC, Version 1.8, was run on a VAX-11/750, a MicroVAX 1II,
a VAX 8200, and a VAX 8650. The subset of sixty tests consisted of five

f tests selected at random from all classes of tests within each chapter.
The tests were compiled, 1linked, and executed as appropriate. The test

)

"

:

o

q

7

<

o ot A L ATAT '~’s$¢j\;~ v

‘:.u .',l.t,i’b i/ L LN LA T, .h'l O

W‘"mﬂwmer'vﬂ'm‘i'l'h'-'i~-j

>,
*l
TEST INFORMATION
;Gl'
.‘l
R results were the same as those reviewed for the VAX-11/785 on which full
Yy testing was performed.
P
'll
:" The compiler was tested on both computers using command scripts provided by
.'E, DDC Interniational and reviewed by <the validation team. The following
: o options were in effect for testing:
¥
1)
’ !
Vi Option Ef fect
ngl /LIST List file is created during compilation.
2
S
X Test output, compilation listings, job 1logs, and the compiler and
environment were written to magnetic tape and archived at the AVF. The
| Q. listings examined on-site by the validation team were also archived.
15
.I.#
AN
s
)
Fn 3.7.3 Test Site
Y. The validation team arrived at DDC International in Lyngby, Demmark on 27
5@ October 1986, and departed after testing was completed on 31 October 1986.
(MK
)
4
R
«
V‘"
o
w
WY
)
Vg
X
\
Wy
F‘J
.ﬁ
l."
¥
)
s..‘
..:
M
o0
¢
oy

S PP
AW i
W W

S S

) 0.:' O MO R TR AT

A Sl bal tob ‘et hl. Al Bha Ade 7‘1

APPENDTX A

COMPI.TANCE STATEMENT

- DDC International has submitted the following
compliance statement concerning the DDC Ada Compiler
System.

Pl o

ok sS
> &)

Lalbl e o

«
-

~vxl

.

WA

g -
- o -

- .-' Oy

FEEEI NG |

kS

"

o A e O AT AN
e e G G T R S S ey R e R A T 22

UVl W W val) Gt S Bl Gav Are ol ate aih-asd aid wih: ot i SRiC ol et i i i)

1% Y
R
i
I
s COMPLIANCE STATEMENT
2%
e
‘ L
il Compliance Statement
XAl
3
Y Configuration:
l'
fﬁ Compiler: DDC Ada®Compiler System, Version 4.1
iﬁs Test Suite: Ada Compiler Validation Capability, Version 1.§
L)
tha Host and Target Computers:
e
e Machine: VAX_11/785
e Operating System: VMS, Release 4.3
a
S Machine: VAX 11/750
;ﬁ Operating System: VMS, Release 4.3
2 Machine: VAX_8650
o Operating System: VMS, Release 4.4
hY
K Machine: MicroVAX 1II
! :S Operating System: VMS, Release 4.4
‘
",
}“ Machine: VAX 8200
K Operating System: VMS, Release 4.4
L .
Ko
s
%f DDC International has made no deliberate extensions to the Ada
)' language standard.
%2: DDC International agrees to the public disclosure of this
e report.
) ‘.A.
"
,3] DDC International agrees to comply with the Ada trademark
LA

policy, as defined by the Ada Joint Program Office,.

s Gk oy

A DDC International
A Carsten Bjernaa
> Project Manager

: 3, =S5

Date

°. 8Ada is a registered trademark of the United States Government
y; (Ada Joint Program Office).

,

......

. P .- ;- e - X . o
\v"-*cr.'r L S R S A A N S N A R e e "l.h' ‘ ‘ - ‘ vl \ﬁ! Ao
OO IR LN AR NARTAE . RIAIAS RGOSR

s

LS

Ao MW WA
LA %% %Y

- A e A S A
"
SN S O Py A T AT S A

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the DDC Ada Compiler System, Version 4.1, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-18154). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type SHORT_INTEGER is range -128 .. 127;
type LONG_INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -16#7.FFFF_C#E31 .. 16#7.FFFF_C#E31;
type LONG_FLOAT is digits 15 range -16#7.FFFF_FFFF_FFFF#E255 ..
16#7.FFFF_FFFF_FFFF#E255;

tvpe DURATION is delta 2#1.0#E-14 range ~131072.0 .. 131071.0;
-- DURATION'SMALL = 2#1,0#E-14,

end STANDARD;

27

L

e

.\‘ \;.s.‘\'.‘.f- 3

-~
-
o

oy d
lv‘: }l

- .".- ’l;’

-
LY {L‘-\. et

25

¢

MR 2

PECEP

e
LR

..r -

RARAL

LAANN

'-- .'"

.‘,‘

F. Appendix F of the Ada Reference Manual

F.O Introduction

This appendix describes the implementation-dependent
characteristics of the DDC VAX/VMS Ada Compiler, as required in
the Appendix F frame of the Ada Reference Manual (ANSI/MIL-STD-
1815A).

F.1 1Implementation-Dependent Pragmas

No implementation-dependent pragmas are defined for the VAX/VMS
version.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined for the
VAX/VMS version.

F.3 Package SYSTEM

The specification of the package SYSTEM:

package SYSTEM is

type ADDRESS 1s access INTEGER;

subtype PRIORITY is INTEGER range 0..15;

type NAME is (VAX1l1l,CR80,M40,MPS10,DPS6);
SYSTEM_NAME: constant NAME := VAX1ll;
STORAGE_UNIT: constant = 16;
MEMORY_SIZE: constant = 2048 * 1024;
MIN_INT: constant t= -2 147_483_617-1;
MAX INT: constant 1= 2_147_483_647:
MAX DIGITS: constant = 15;

MAX MANTISSA: constant := 31;

FINE DELTA: constant := 2.0 / MAX_INT;
TICK: constant := 0.000_001;

end SYSTEM;

F.4 Representative Clauses

In general, no representation clauses may be given for a
derived type. The representation clauses that are accepted for
non-derived types are described in the following:

""" Al Ala S2a 2ta 4t - Al “Aalt el -aal b A “T""V"V"V'T‘

X
> -’:J
A
-fﬁ Length Clause
v
s The compiler accepts only a length clause that specifies the
number of storage units to be reserved for a collection.
:}. |
QK Enumeration Representation Clause
T
.
) ; Enumeration representation clauses may specify representations
s only in the range of the predefined type INTEGER.
o
e
::; Record Representation Clause
) e
- A component clause is allowed if and only if
;:f - the component type is a discrete type different from
e LONG INTEGER
. _
o~ .
o - the component type is an array type with a discrete
'6 element type different from LONG_INTEGER.
<
’\ﬁ No component clause 1s allowed if the component type is not
o covered by the above two inclusions. If the record type
hT contains components not covered by a component clause, they are
o allocated consecutively after the component with the value.
! Allocation of a record component without a component clause is
o5 always aligned on a storage unit boundary. Holes creatad
.wi because of component clauses are not otherwise utilized by the
o compiler.
b
o
- F.5 Implementation-Dependent Names for Implementation -
o Dependent Components
':\’
‘&3 None defined by the compiler.
‘E-:
° F.6 Address Clauses
s
N Not supported by the compiler.
KN

S

F.7 Unchecked Conversion

-

)é\ Unchecked conversion is only allowed between values of the same
‘o "size". In this context the "size" of an array is qual to
X that of two access values and the "size" of a packed array is
ﬁv* equal to two access values and an integer. This is the only
A restriction imposed on unchecked conversion.
9.
LY
’
oo
\:\‘
o B-3
L
@4
"
\I
2
A % A A AT AT S A et et AT A T A A A LA T L e AT e e e e At At et e A
~ 4 1-. LT L T Pl Y g. -, ~ '. \ - -. LI A S Pl P \-\- LIRS .. ”\‘\-‘ - .\'..\.\q ~ \. HN-
'\"' UL e . --s.\-_’ f -.-&.J\f.‘.r (./- J‘ -r_.r_‘a- AT 4-\,, ,,_‘: R \v‘\-'\- AT '

v V“""‘L‘E"‘I"T

F.8 Input-Output Packages

The implementation supports all requirements of the Ada
language. It is an effective interface to the VAX/VMS file
system, and in case of text input-output also an effective
interface to the VAX/VMS terminal driver.

Lo Tl

This section describes the functional aspects of the interface
to the VAX/VMS file system and terminal driver. Certain
portions of this section is of special interest to the system
programmer who needs to control VAX/VMS specific Input-Output
') characteristics via Ada programs.

PR

The section is organised as follows.

Subsection numbers refer to the equivalent subsections in
. Chapter 14 of the ARM. Only subsections of interest to this
Ky section are included.
»

The Ada Input-Output concept as defined in Chapter 14 of the
: ARM does not constitute a complete functional specifications of
the Input-Output packages. Some aspects are not discussed at
‘a all, while others are deliberately left open to an implementa-
tion.

e These gaps are filled in the appropriate subsections and
summarized in subsection F.8.a.

' The reader should be familiar with
» [DoD 83] - - The Ada language definition

and certain sections require that the reader is familiar with

) [DEC 84a] - Guide to VAX/VMS File Applications
N

f [DEC 84b] - Record Management Services

¢,

P [DEC 85] - VAX/VMS 1/0 Users Reference Manual

W F.8.1 uwterr.al Files and File Otjects

An external file is either any VAX/VMS file residing on a file-
structured device (disk, tape), a record structured device
(terminal, lineprinter), or a virtual software device
{mailbox). ARM 14.1(1).

- e - o gl
--..‘

Identification of an external file by a string (the NAME
parameter) is described in subsection F.8.2.1.

y System-dependent characteristics (the FORM parameter) is
p described in subsection F.8.2.1

B-4

..............
..'--"".\'w"""\”‘"'*\"\ e
-~ L

L N “
- “.v. .r 7 LGNS 3
S A PO

........

........

LRk Sl Sk Sl &0 Bl Al Sl Sa 8 Aa A 4 8 h A b B Al ofl 0°h atd o e sas oAb ol

An external file created on a file-structured device will exist
after program termination, and may be accessed later from an
Ada program, except if the file is a temporary file created by
using an empty name parameter. If files corresponding to the
externzl file have not been closed, the external file will also
exist upon program completion, and the contents will be the
same as if the files had been closed prior to program

' completion. See further F.B8.3. ARM 14.1(7).

. Input-Output of access types will cause input-output of the
vy access value [Dod 83] 14.1(7).

Sharing of an external file is, when using the default system-
dependent characteristics, handled as described in the
following.

~ When a file is associated with an external file using the

‘a3 Record Management Services (RMS), and the file is opened with
~ mode IN_FILE, the implementation will allow the current process
. and other processes to open files associated with the same

| ¢ external file (e.g. as IN_FILE in an Ada program).

P

oy o

When a file is opened with mode INOUT_FILE or OUT_FILE no file
sharing is allowed when using RMS. 1In particular, trying to
gain write access to an external file shared by other files, by
OPEN or RESET to mode INOUT FILE or OUT_FILE will raise
USE_ERROR.

-y
R
LI RV W

When a text file is associated with a terminal device, using
the Queue 1/0 System Services (QIO), there are no restrictions
on file sharing.

[)
U LA A

F.8.2 Sequential and Direct Files

a

B g o
LR A AL

When dealing with sequential and direct input-output only RMS
files are used.

In this section, a description of the basic file-mapping is
'Ry given.

W Basic file-mapping concerns the relation between Ada files and

30 (formats of) external RMS files, and the strategy for accessing
the external files. When creating new files (with the CREATE

,:' procedure), there is a unique mapping onto a RMS file format,

,$; the preferred file format. When opening an existing external

:?, file (with the OPEN procedure), the mapping is not unique; i.e.

0 several external file formats other than preferred for CREATE

N may be acceptable. In subsection F.8.2.1 the preferred and

® acceptable formats are described for sequential and direct

v, input-output. 1In subsection F.8.3.1 the preferred and

:ﬁ acceptable formats are described for text input-output.

N

>

s B-5

24 @ vy

v o

ﬂ\

T N S PRI R RN
A Yyl YN

LY N A e PAT AT p N AT AT AL
.‘ g .' "\"\"s' v OO Y -‘F,.h\‘\.&w\ \ \‘”,\ oo ‘\ \

‘;"‘_) v

- e
F

- F.8.2.1 File Management

This subsection contains information regarding file management:

» - Description of preferred and acceptable formats for
sequential and direct input-output.

- The NAME parameter.

vou - The FORM parameter.

Ve

>, - File access.

>

i Preferred and Acceptable Formats

“# The preferred and acceptable formats for sequential and direct

- input-output, are described using RMS notation and
\: abbreviations [DEC 84b]. ES is used to denote the element

N size, i.e. the number of bytes occupied by the element type,

by or, in case of a varying size type, the maximum size (which

X must be determinable at the point of instantiation from the

v value of the SIZE attribute for the element type).

-,
Fi It should be noted that the latter means a type definition
e like:
p type large_type is array(integer <>) of integer;

-

-~ would be mapped onto an element size greater than the maximum
A+ allowed size (32 k byte).

<

i SEQUENTIAL_IO:

" An element is mapped into a single record of the external file,

2 or if block-io is used, a number of consecutive virtual blocks

e of 512 bytes. ES must not be greater than 32767, otherwise

. USE_ERKOR 1s raised.

;: CREATE - preferred file format
ks - ORG=SEQ, PFM=FIX, MRS=ES
. (note: read and write operations will be done by BLOCK IO
ol if element size is a multiple of 512 bytes)

®

r OPEN - acceptable formats

:3 - ORG=REL, RFM=FIX, MRS=ES

X

¢

}j - ORG=SEQ, RFM=FIX, MRS=ES

[]

ol

Y

N

.‘

B-6

»

L)

N !
0 |
! LI AR) I PR PRI, ~ . A N L L LS LSS ey O (e ‘
:f't'\o‘&d'\f.:i":f',\"’;I‘.:J',;-f‘..-'\- PP NN AT A - N A NN NACACACAC R ON _r,..:_..-__.'_,_-:\ﬁ*,,’e\‘ -

LA A g A A ¥ ! A

[
o - ORG=SEQ, RFM=VAR
P
- - ORG=SEQ, RFM=UDF
" (note: BLOCK IO will be used)
W
> (note: a RESET operation to OUT_FILE mode will give a

.

USE_ERROR exception, as it is not possible to empty a
file of this format).

The detailed setting of the control blocks for sequential IO is
given below. Note that the user-provided form parameter will

! override the default specified settings, when used with OPEN or
1y CREATE.

Also note that, when an Ada program contains tasks,
asynchronous I/0 will be used (ROP = <ASY>).

o>,
-? The following shows the initial setting for OPEN and CREATE
o ({unspecified fields in the control blocks will be cleared to
o zero).
o FAB:
”} ALQ = 12

N DEQ = 6

N DNM = <.DAT>
i FAC = for block-~io, IN FILE: <BRO, GET>
vau for block~io, OUT_FIL%: <BRO, PUT, UPD, DEL, TRN>
b otherwise, IN_FILE: <GET>
:?f otherwise, OUT_FILE: <PUT,UPD,DEL, TRN>
= FNM = name parameter
- FOP = non-empty name parameter: <MXV, SQO0>

empty name parameter to CREATE: <MXV, SQO,TMP>

By MRS = element size (in bytes)
R NAM = address of name-block
s ORG = SEQ
’I RAT = <CR>
B RFM = FIX

SHR = for IN_FILE: <GET>

) for OUT_FILE: <NIL>
zh XAB = address of XABFHC block

e RAB:

» FAB = address of FAB block

L] KBF = address of internal longword
e KSZ = 4
o RAC = SEQ
o ROP = for block-io: <BIO>
K- otherwise: <UIF>
. NAM:
9 RSA = address of internal 255 byte buffer
y RSS = 255
)
"
b B-7 :
o

N

|
0 P N ;v | .
L Y o
(e 20 ’|~‘.|‘l. .l"!!! L »0 L

R
P, .. - -
O R N N T
SN
':"'1 ity ! .

WU I e T % W W % T W e
A AT W L d
Sttt et b T SO ’ .l, >, W 3 't‘“ y

1 K 2000 M A UGN

XABFHC:
NXT = O

DIRECT

_10:

An element is mapped into a single record of the external file,
or if block 1o is used, the smallest possible number of
consecutive virtual blocks of 512 bytes. ES must not be greater
than 32767, otherwise USE_ERROR will be raised.

CREATE - preferred file format

OPEN

if element size is not a multiple of 512:
ORG=REL, RFM=FIX, MRS=ES

if element size is a multiple of 512: ORG=SEQ, REM=FIX,
MRS=ES

(note: read and write operations will be done by BLOCK
I0)

- acceptable formats

ORG=REL, RFM=FIX, MRS=ES

ORG=SEQ, RFM=FIX, MRS=ES

(note: 1f element size is a multiple of 512, BLOCK IO
will be used)

ORG=SEQ, RFM=UDF
(note: BLOCK IO will be used)

The detailed setting of the control blocks for direct_IO is
given below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or

CREATE.

Also note that, when an Ada program contains tasks,
asynchronous I/0 will be used (ROP = <ASY>).

The initial setting for OPEN and CREATE (unspecified fields in
the control blocks will he clezred to zero) follows:

FAB:
ALQ
DEQ
DNM
FAC

FNM

12

6

<.DAT>

for IN_FILE: <GET>

for OUT_FILE: <GET,PUT,UPD,DEL, TRN>
name parameter

?” >

v
>

bl
i)
l.
| FOP = non-empty name parameter: <MXV, SQO0>
3& empty name parameter to CREATE: <MXV, SQO, TMP>
3 MRS = 512
s NAM = address of name-block
N ORG = SEQ
: RAT = <CR>
RFM = VAR
b SHR = for IN _FILE: <GET>
, for OUT_FILE: <NIL>
Y XAB = address of XABFHC block
K.
; RAB:
L) FAB = address of FAB block
Ny KBF = address of internal longword
KSZ = 4
: RAC = SEQ
N ROP = <>
K\ UBF = address of internal 512 byte buffer
N Usz = 512
Y
¢ NAM:
. RSA = address of internal 255 byte buffer
..: RSS = 255
K> XABFHC:
' NXT = O
i Name Parameter

: The name parameter, when non null, must be a valid VAX/VMS file
' specification referring to a file-structured device; a file
with that name will then be created.

N For a null name parameter, the process' current directory and
% device must designate a directory on a disk device; a

‘s temporary, unnamed file marked for deletion will then be
; created in that directory. The file will be deleted after
closing it, or, 1f not closed when the program terminates. ARM

> 14.2.1(3).
R
>
Q Form Parameter
Oy
q The FORM string parameter that can be supplied to any OPEN or
X CREATE procedure is for controlling the external file
% properties, such as physical organization, allocation etc. In
o the present implementation this has been achieved by accepting
‘: form parameters that specify setting of fields in the RMS
o control blocks FAB and RAB, used for all open files. This

scheme is rather general in that it accepts all settings of the
o FAB and RAB fields. It opens for modifications of the behaviour
b required by the Arm, such as being able to open a file for
-

B-9

q
4

%

Nl S O TR oI ENTAL

.......... Rttt N R O

N

XY,
(‘ ‘v

15

f; appending data to it. Furthermore, a form parameter for
y, accessing mailboxes is provided.
; The following fields can currently not be set explicitly:
As

N FAB:

o FNA, FNS (are set by the NAME parameter of OPEN or

" CREATE)

?— DNA, DNS (can be set by DNM=/.../)

L) \‘

‘:: The syntax of the form parameter is as follows:

"

; form_parameter ::= [param { , param }]

: param ::= number_ param

X string_param

! quotation_param

o mask_param

L

s number param ::= keyword = number

- number ::= digit { digit }

o digit =0 | 1| ... |9

:t string param ::= keyword = string
O string ::= / {any character other than slash} /
b
Rt quotation_ param::= keyword = specifier
;iﬁ mask_ param ::= clear_bits
R set_bits
A define_whole_field

4!

“) clear_bits ::= keyword -~ mask

- set_bits ::= keyword + mask

) define_whole_field

o ::= keyword = mask
,*: mask s:= < [specifier { , specifier }] >

“ keyword t:= letter letter letter
s specifier ::= letter letter letter [letter letter]
ot
f: letter :t=A | B| ... |Z]|a|b]| ... | z

0!

) Notes:

:\ . all space characters are ignored.
'$? . string parameters are converted to uppercase.

‘ . all keywords and specifiers are 3- or S5-letter words,

like the RMS assembly level interface symbolic names.

I The only exceptions are the RAT=<CR> specifier, which in
5 this implementation must be specified as CAR rather than
™ CR, and the RAB CTX field keyword, which must be

v

; B-10

]

» X e
‘._‘ '\f\-"\x\ :\':\\‘n\-‘.\'-}

‘.. S a e el A ala 48 Bom s 4 a2l s a4 ek ar -2l oM. -au - . B P v - v TUY e WYY~ we

specified as CON. There are only 2 5-letter words: the

‘L? specifiers STMCR and STMLF.

o The semantics of the form parameter is (except for the mailbox
o parameter) to modify the specified FAB and RAB fields just

I prior to actually calling RMS to open or create a file, i.e.
N the form parameter overrides the default conventions provided
A by this implementation (ARM section F.5.4). The form parameter
V) is interpreted left to right, and it is legal to respecify

o fields; in particular a mask field may be manipulated in

- several turns.

"y

':ﬁ Note that there is no way of modifying fields after an RMS open

e{ or create service, in particular it is not possible to set RAB
fields on a per record operation basis.

f@ The modifications made are those to be expected from the
o textually corresponding RMS macro specifications. However, the
ﬁd clear_bits and set_bits are particular to this implementation:

L)
gb They serve to either clear individual mask specifiers set by
p the implementation default, or to set mask specifiers in

7 addition to those specified by the implementation default,
- respectively.
o The mailbox parameter can be either
o MBX=TMP
{ or
R MBX=PRM
LS ":
’i& It applies to CREATE only, and causes either a temporary or a
K2 permanent mailbox to be created. The NAME parameter will be
P used to establish a logical name for the mailbox, unless an
) empty string is specified (in this case, no logical name will
’?5 be established).
\
M Note that the implementation does in no way check that the form
~$ parameter supplied is at all reasonable. The attitude is "you
N asked for it, you got it". It is discouraged, if other
® procedures than OPEN, CREATE, and CLOSE will be called, to set
0 ORG, RAC, MRS, NAM, FOP=<NAM>, It is generally discouraged to
u set XAB.
%
0.
7
o
>
0.
’

4

s

N
L

-

-

.’: M) .s:l:(;. &

<
x

2%

A‘J‘J <

B

BEUEA® R

¥

N

&
IO

)

A wTa"a

¥
"1 L "

\\ 5 R N R .\\\'\.
-":vl"'\'h“a s Uﬁ oy AR :\"-"\" "'\"\' '(\(: -.I\! ﬂ

Examples:

-- create a text file
create(file, out_file, "DATA.TXT"):

-- create a temporary text file which will be deleted
after completion of the main program
create(file, out_file);

-~ create an empty stream format text file
create(file,out_file, "DATA.DAT", "ORG=SEQ, RFM=STMLF");

-- create a very big file:
create(file,out_file, "DATA.DAT", "ALQ=2048,DEQ=256");

-- create a temporary mailbox:
create(file,out_£file, "HELLO", "MBX=TMP");

-- open a mailbox; at reading, do not wait for

messages:
open(file,in file, "HELLO", "ROP+<TMO>, TMO=0");

File Access

The OPEN and CREATE procedures utilize the normal RMS
defaulting mechanism to determine the exact file to open or
create.

Device and directory (when not specified) defaults to the
process' current device (SYSSDISK) and directory.

The version number (when not specified), defaults for OPEN to
highest existing, or for CREATE, one higher than the highest
existing, or 1 when no version exists.

The implementation provides .DAT as the default file type.

External files, which are not to be accessed via block-io (as
described in formats), will be accessed via standard RMS access
methods. For SEQUENTIAL_IO, sequential record access mode will
be used. For DIRECT_IO, random access by record number will be
used.

Creation of a file with mode IN_FILE will raise USE_ERROR, when
referring to an RMS file.

For sequential and direct io, files created by SEQUENTIAL IO
for a given type T, may be opened (and processed) by DIRECT IO
for the same type and vice-versa. In the latter case, however,
the function END_OF FILE (14.2.2(8)) may fail to produce TRUE
in case where the file has been written at random, leaving
"holes" in the file. See ARM 14.2.1(7).

-y
LI R

LR

-

[&

Pl

{
’
¢

For a sequential or text file associated with an RMS file, a
RESET operation to OUT_FILE mode will cause deletion of any
elements in the file, i.e. the file is emptied. Likewise, a
sequential file or text file opened (by OPEN) with mode

OUT FILE, will be emptied. For any other RESET operation, the
contents of the file is not affected.

For a text file, any RESET operation will cause USE_ERROR to be
raised, when QIO services are used.

F.8.2.2 Seguential Input-Output

The implementation omits type checking for DATA_ERROR, in case
the element type is of an unconstrained type, ARM 14.2.2(4),
i.e.:

... £ ¢ FILE_TYPE
type et 1is 1..100;
type eat is array(et range <>) of integer:

X ¢ eat(1..2)
Y : eat(1..4)

-- write X, Y:

.
4
.
’

write(£, X); write(£, Y); reset(£, IN_FILE);

-- read X into Y and Y into X:

read(£, Y); read(£, X);

This should have given DATA_ERROR, but will instead give

undefined values in the last 2 elements of Y.

F.B8.2.3 specification of the Package Seguential IO

with BASIC_IO_TYPES;
with IO_EXCEPTIONS;
generic
type ELEMENT_TYPE is private;
package SEQUENTIAL_ IO is
type FILE _TYPE is limited private;

type FILE MODE is (IN_FILE, OUT_FILE);

-- File management

' procedure CREATE(FILE : in out FILE TYPE;

Y MODE : in FILE_MODE := OUT_FILE;
< NAME : in STRING 1= "

) FORM : in STRING t= ")
[procedure OPEN (FILE : in out FILE_TYPE;

: MODE : in FILE MODE;

NAME : in STRING:

y) FORM : in STRING := "");

o
¥ procedure CLOSE (FILE : in out FILE TYPE);

o>

procedure DELETE(FILE : in out FILE_TYPE);

¥

) procedure RESET (FILE : in out FILE TYPE;

s MODE : in FILE MODE):;
'’ procedure RESET (FILE : in out FILE_TYPE);

g function MODE (FILE : in FILE_TYPE) return FILE MODE;
:- function NAME (FILE : in FILE _TYPE) return STRING;

N function FORM (FILE : in FILE_TYPE) return STRING;
{
| function IS_OPEN(FILE : in FILE _TYPE) return BOOLEAN;

-,

- -- input and output operations

J:

L procedure READ (FILE : in FILE_TYPE;

ITEM : out ELEMENT_TYPE);

L
[

ﬁ procedure WRITE (FILE : in FILE TYPE;

) ITEM : in ELEMENT_TYPE);

5 function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN:;
¢

ko -~- exceptions

<

- STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
b MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR:;
if NAME ERROR : exception renames IO _EXCEPTIONS.NAME ERROR;

USE_ERROR : exception renames 10 EXCEPTIONS.USE_ ERROR;

" DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR:;
_ END_ERROR : exception renames 10 _EXCEPTIONS.END_ERROR;
A DATA _ERROR : exception renames 10 _EXCEPTIONS.DATA ERROR;
g

’ private

jj type FILE_TYPE is new BASIC_IO_ TYPES.FILE_TYPE;

»*

g end SEQUENTIAL_IO;

B-14

q

W

L)

L)

D R R R S s LR S A m;_me;mm_“M;N““”:‘

F.8.2.4 Direct Input-Output

The implementation omits type checking for DATA ERROR,
the element type is of an unconstrained type,

14.2.4(4), see F.8.2.2.

[Dod 83)

F.8.2.5 Specification of the Package Direct IO

with BASIC_IO TYPES;
with IO _EXCEPTIONS;

generic
type ELEMENT_TYPE

package DIRECT_IO is

type FILE_TYPE is

type FILE MODE is

is private:

limited private;

(IN_FILE, INOUT_FILE, OUT_FILE):

type COUNT is range O..LONG_INTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1..COUNT'LAST;

-- File management

procedure CREATE(FILE
MODE
NAME
FORM

(FILE
MODE
NAME
FORM

proczadure OPEN

procedure CLOSE (FILE
procedure DELETE(FILE

RESET (FILE
MODE

procedure

procedure RESET (FILE
function MODE (FILE

function NAME (FILE

in
in
in
in
in
in
in
in
in
in

in
in

in
in

in

out

out

out
out

out

out

FILE_TYPE;
FILE_MODE
STRING
STRING

*Z

3
s e
e

OUT_FILE;

2T T

ee e e
nnn

FILE_TYPE;
FILE_MODE;
STRING;
STRING 1=

")
FILE TYPE);
FILE_TYPE);

FILE_TYPE;
FILE_MODE);

FILE_TYPE);

FILE TYPE) return FILE_MODE;

FILE TYPE) return STRING;

in case

< mas ey age O RN CYP LR WD Y\ e JN . N LW A " A Lo Safl Sl Al 5

function FORM (FILE : in FILE_TYPE) return STRING;

y o g b B Ny

function IS _OPEN(FILE : in FILE_TYPE) return BOOLEAN;

P

-- input and output operations

- procedure READ (FILE : in FILE TYPE;
: ITEM : out ELEMENT TYPE;
l FROM : in POSITIVE COUNT);
procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT TYPE);

P

procedure WRITE (FILE in FILE TYPE;

ITEM : in ELEMENT_TYPE;
' TO : in POSITIVE_COUNT);
procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT_TYPE);

procedure SET_INDEX(FILE
TO

in FILE_TYPE;
in POSITIVE_ COUNT);

e iel e ary

: function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function SIZE (FILE : in FILE_TYPE) return COUNT;

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

T

-- exceptions

STATUS_ERROR exception renames IO_EXCEPTIONS.STATUS_ERROR;

- e e

MODE_ERROR : exception renames I0O_EXCEPTIONS.MODE_ERROR;
NAME ERROR : exception renames IO_EXCEPTIONS.NAME _ERROR;

F. USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;

5 DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;

k. END_ERROR : exception renames IO _EXCEPTIONS.END ERROR;

4§ DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

' private

~ type FILE_TYPE is new BASIC_IO TYPES.FILE_TYPE;

end DIRECT IO;

F.8.3 Text Input-Output

. When utilizing text input-output, RMS is used when an external
. file is residing on a file-structured device, or is a virtual
) software device. When an external file that is a terminal

device is opened or created, tt= queue I/0 services (QIO) are
! used by default.

B-16
.
¥
1 1 Ll Red »~ P R A N B S Ty L N W DR W Wy AT NN T A N. - - "‘-"\' —,\:\w\-
I NN I I N A N 4 -~ NIRRT > NN
, pJ -
S I RN :

v

RN ATAEN

P AET M o

- - e e
P

- -

. _ , A
PO P T o T Sy S T e L ALE LA P

L)

R R S L T S N
-
LSRN N
v (3

If a text file of mode OUT_FILE corresponds to an external RMS
file, the external file will also exist upon program
completion, and a pending linebuffer will be flushed before the
text file is closed.

F.8.3.1 File management

This subsection contains information regarding file management,
where it differs from the file management described in F.8.2.1.

- Description of preferred and acceptable formats for text
input-output.
- The FORM parameter.

- File access.

Preferred and Acceptable Formats

Lines of text are mapped into records of external files.
For output, the following rules apply.

The Ada line terminators and file terminators are never
explicitly stored (hcwever, for stream format files, RMS forces
line terminators to trail each record). Page terminators,
except the last, are mapped into a form feed character trailing
the last line of the page. (In particular, an empty page
(except the last) is mapped into a single record containing
only a form feed character). The last page terminator in a
file is never represented in the external file. It is not
possible to write records containing more than 512 characters.
That is, the maximum line length is 511 or 512, depending on
whether a page terminator (form feed character) must be written
or not. If output is more than 512 characters, USE _ERROR will
be raised.

On input, a FF trailing a record indicates that the record
contains the last line of a page and that at least one more
page exists. The physical end of file indicates the end of the
last page.

CREATE - preferred file format

- ORG=SEQ, RFM=VAR, MRS=512

B-17
DL N N P S e T T O } W LN LT N Y e T TR e LT T e W T e PN
X ‘\‘.I‘_--“-J'Vf"f -"J‘*J'_\'J'.-q"-f W T \(‘.‘-" CAO N »_"".\‘:-\'ﬁ\‘\ ,\n",' s ln T
f\ N e 2 a2 LAY, ! N s A L P L2 A A

LY - '

A L

B

=t

)ﬁ‘l‘l.; ::5 . ‘

A

‘o
OO0 {0 ¢

U OONL) .
"“‘.'J '1“'\'.‘!‘.‘! w .-'l.a"’.‘-"'n'

OPEN - acceptable file formats

- all formats except

- ORG=1IDX

- RFM=UDF
(Note: for stream files (RFM=STM...) any sequence of
the LF, CR, and VT control characters at the end of
a line will be stripped off at input. At output,
line terminators will be provided by RMS defaults).
{Note: 1input of any record containing more than 512
characters will raise a USE_ERROR exception).

The detailed setting of the control blocks for TEXT_IO is given
below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or
CREATE.

Also note that, when an Ada program contains tasks,
asynchronous I1/0 will be used. When RMS files ROP = <ASY>, or
asynchronous QIO when terminal devices.

The following shows the initial setting for OPEN and CREATE
(unspecified fields in the control blocks will be cleared to
zero):

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for IN_FILE: <GET>
for OUT_FILE: <GET, PUT,UPD, DEL, TRN>
FNM = name parameter
FOP = non-empty name parameter <MXV, sQ0>
empty name parameter to CREATE: <{MXV, SQO, TMP>
MRS = 512
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = VAR
SHR = for IN_FILE: <GET>
for OUT_FILE: <NIL>
XAB = azddress of XABFHC block
RAB:
FAB = address of FAB block
KBF = address of internal longword
KSZ = 4
RAC = SEQ
ROP = <>
UBF = address of internal 512 byte buffer
USZ = 512

v R Y

) n?t?. W J"

TSN
SERN VY 2 N W AR

NAM:
RSA = address of internal 255 byte buffex
Usz = 255

XABFHC:
NXT = O

Form parameter

If any form parameter, except for the empty string or a string
containing only blanks, is supplied to OPEN or CREATE, RMS
services will always be used. In this case, the file
operations on external files as terminal-devices will use
buffered input- output.

File access

External RMS files are accessed via sequential record access
methods.

Files associated with terminal devices, using QIO services, do
not contain page terminators. This means that calling
SKIP_PAGE will raise USE_ERROR. Furthermore, trying to RESET a
file in this category will cause USE_ERROR.

Files associated with the same external file, using (IO
services, share the standard values (page-, line, and column-
number), e.g. standard values for STANDARD OUTPUT are
implicitly updated after reading from STANDARD_INPUT.

F.B.3.10 sSpecification of the Package Text IO

with BASIC IO TYPES;

with IO_EXCEPTIONS;

package TEXT_IO is
type FILE_TYPE is limited private:;
type FILE_MODE is (IN_FILE, OUT_FILE);
type COUNT 1is range O .. LONG_INTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= O; -- line and page length
subtype FIELD is INTEGER range 0 .. 35;
subtype NUMBER_BASE is INTEGER range 2 .. 16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

---------------- R Y VL L LV T P T O e] LS T S T . % ™
A N A L e o L SN R T A S A SRR NS R O R
A A AT AU Al ALAL . UnLnils \Y X 3 K 2 : o

v e L_.r.'J'.F:',r.'.')'T

B \.'

N\

i <

L

o

Y

-3

{i -- File Management

-

v procedure CREATE (FILE : in out FILE_TYPE;

o MODE : in FILE_MODE := OUT_FILE;
o NAME : in STRING 1= "7
Y FORM : in STRING i= "
'~\:) .

- !

[-

{ procedure OPEN (FILE : in out FILE TYPE;

e MODE : in FILE_MODE;

v NAME : in STRING:

e FORM : in STRING = "
NN):

0 .J"\

. procedure CLOSE (FILE : in out FILE_TYPE):

A procedure DELETE (FILE : in out FILE_TYPE):;

N procedure RESET (FILE : in out FILE_TYPE;

~ MODE : in FILE MODE);

a3 procedure RESET (FILE : in out FILE_TYPE);

"

function MODE (FILE

in FILE_TYPE) return FILE MODE;
A function NAME (FILE

in FILE_TYPE) return STRING;

;ﬁﬁ function FORM (FILE in FILE TYPE) return STRING:;
ii function IS _OPEN(FILE : in FILE TYPE) return BOOLEAN;
H -- Control of default input and output files

A9

~ procedure SET_INPUT (FILE : in FILE TYPE);

s procedure SET_OUTPUT (FILE : in FILE_TYPE);

B

e

. function STANDARD_INPUT return FILE_TYPE;

») function STANDARD_OUTPUT return FILE_TYPE;

Y

S function CURRENT INPUT return FILE_TYPE;

' function CURRENT OUTPUT return FILE_TYPE;

o

LJ -- specificaticn of line and page lengths

"W procedure SET_LINE_LENGTH (FILE : in FILE_TYPE;

P TO : in COUNT):;

Y procedure SET_LINE_LENGTH (TO : in COUNT);

K

!; procedure SET_ PAGE_LENGTH (FILE : in FILE_TYPE;

K TO : in COUNT);

e procedure SET_PAGE LENGTH (TO : in COUNT);

A

v function LINE_LENGTH (FILE : in FILE_TYPE) return
W COUNT;
9. function LINE_LENGTH return
ey COUNT;
203

ll::’.

M B-20

®

’

::

NN A D e S T N e S WS S e R L N O B " T, N AR L P L T T KR
R Ay S e 2 R I e A S 0 B R R s oy ey e b N

\._

)

1 4
v
g

\'\‘:'
g function PAGE_LENGTH (FILE : in FILE TYPE) return
\' COUNT;
’ function PAGE_LENGTH return
R COUNT;
SN

o
':3 -- Column, Line, and Page Control
1999

"
05 procedure NEW_LINE (FILE : in FILE_TYPE;

V) SPACING : in POSITIVE_COUNT := 1):
I procedure NEW_LINE (SPACING : in POSITIVE COUNT := 1);
..\-

> procedure SKIP LINE (FILE : in FILE TYPE;

- SPACING : in POSITIVE_COUNT := 1);
O procedure SKIP_LINE (SPACING : in POSITIVE COUNT := 1)
> function END_OF_LINE (FILE : in FILE_TYPE) return

- BOOLEAN;
N function END_OF_LINE return
'ﬂ BOOLEAN;
\-l
O procedure NEW_PAGE (FILE : in FILE TYPE):

2 procedure NEW_PAGE ;

f_-n
b procedure SKIP_PAGE (FILE : in FILE TYPE);

o procedure SKIP_PAGE ;

._‘\
{ function END_OF_PAGE (FILE : in FILE_TYPE) return
b BOOLEAN;
L function END_OF_PAGE return

- BOOLEAN;
W function END_OF_FILE (FILE : in FILE_TYPE) return
9 BOOLEAN;
e, function END_OF_FILE return
o BOOLEAN;
D) .\J
[
o procedure SET_COL (FILE : in FILE_TYPE;

[: TO ¢ in POSITIVE_COUNT);

o procedure SET_COL (TO ¢ in POSITIVE_COUNT);
o

Q@ procedure SET_LINE (FILE : in FILE_TYPE;

o TO : in POSITIVE_COUNT);

Nﬁ procedure SET_LINE (TO : in POSITIVE_COUNT);

“QL

\]

e function COL (FILE : in FILE TYPE) return
& POSITIVE_COUNT;
fﬁ\ function COL return
e POSITIVE_COUNT;

'

O

S function LINE (FILE : in FILE _TYPE) return
‘15 POSITIVE_COUNT;

L function LINE return
”oe POSITIVE_COUNT;

' - -

5

i B-21

2N L

P
e

~ ‘ - iy ~
}Q’ '\.‘“\- "- "'-,"'q" RNK ! ey \." "\"\"' ." o "\"\
A' - () . L) L)) L)

ln »

TN

?

Cal

e

G function PAGE (FILE : in FILE TYPE) return
P POSITIVE_COUNT;

v function PAGE return
. POSITIVE COUNT;

.b

- -- Character Input-Output

) procedure GET (FILE : in FILE_TYPE;

! ITEM : out CHARACTER):

ey procedure GET (ITEM : out CHARACTER):

o procedure PUT (FILE : in FILE_TYPE;

L ITEM : in CHARACTER);

;: procedure PUT (ITEM : in CHARACTER);

1)

-- String Input-Output

procedure GET (FILE

ITEM
procedure GET (ITEM
procedure PUT (FILE

in FILE_TYPE;
out STRING);
out STRING);
in FILE_TYPE;

A A A

OO

¢ ITEM in STRING):;

py procedure PUT (ITEM in STRING);

- procedure GET LINE (FILE : in FILE_TYPE;
N ITEM : out STRING;

~ LAST : out NATURAL);
{ procedure GET_LINE (ITEM : out STRING;

a LAST : out NATURAL);
. procedure PUT_LINE (FILE : in FILE TYPE;
:. ITEM : in STRING);
- procedure PUT_LINE (ITEM : in STRING);

-, -- Generic Package for Input-Output of Integer Types
]

o generic

28 type NUM is range <>;

e package INTEGER_IO is

q

8 DEFAULT WIDTH : FIELD := NUM'WIDTH;
! DEFAULT BASE : NUMBER BASE := 10;
4

’ procedure GET (FILE : in FILE_TYPE;
&) ITEM : out NUM;

WIDTH : 4in FIELD := 0);

3 procedure GET (ITEM : out NUM:

o WIDTH : in FIELD := 0);
:

A

)

$

4

)

»

3. B-22

e

W)

l.'

v y K | RS « G 8) [] AL PR L SRS LS G L ALY .\--
:":.l',‘n'!‘:‘._l‘ ' '.' 3% '!'l' | ')‘ A n_'o. ‘\'l’c :n : % N) 1.!'!,. v\’ "".\"\' ’\J‘:“\'P\" >~ 'f " -f ' '.‘ \

P
i i vV 48

W’. a A'-L'.

L Fay o el

-

\
D
D)
1
D

[
iU
\

1 LA “atl

. » » SOl AL
"- 'r‘n'."""’?’ "’“'IJ'
WOATL BT ¥ B0

procedure PUT (FILE in FILE_TYPE:

ITEM in NUM:

WIDTH : in FIELD := DEFAULT_WIDTH;

BASE : in NUMBER_BASE := DEFAULT_BASE);
procedure PUT (ITEM : in NUM;

WIDTH : in FIELD := DEFAULT_WIDTH;

BASE : in NUMBER_BASE := DEFAULT BASE);
procedure GET (FROM : in STRING;

ITEM out NUM;

LAST out POSITIVE);
procedure PUT (TO : out STRING;

ITEM : in NUM;

BASE : in NUMBER_BASE :=

end INTEGER_IO;

-- Generilc Packages for

generic
type NUM i1is digits <>;
package FLOAT_IO is

DEFAULT FORE
DEFAULT_AFT
DEFAULT_EXP

FIELD
FIELD
FIELD

procedure GET (FILE
ITEM .
WIDTH
(ITEM

WIDTH

procedure GET

procedure PUT (FILE
ITEM
FORE
AT
EXP
(ITEM
FORE
AFT
EXP

procedure PUT

oe 00 00 05 o0 s

procedure GET (FROM
ITEM
LAST
(TO
ITEM
AFT

EXP

procedure PUT

end FLOAT_IO;

ATl

DEFAULT BASE);

Input-Output of Real Types

2;

NUM'digits - 1;

3;

in FILE_TYPE;
“out NUM;

in FIELD
out NUM;

FIELD

:= 0);

in := 0);
in FILE TYPE;

in NUM;
in FIELD
in FIELD
in FIELD
in NUM;
in FIELD
in FIELD
in FIELD

DEFAULT_FORE; -
DEFAULT_AFT;
DEFAULT EXP);

DEFAULT FORE;
DEFAULT_AFT;
DEFAULT EXP);

in STRING;
out NUM;
out POSITIVE);
out STRING;

in NUM;

in FIELD := DEFAULT_AFT;

in FIELD := DEFAULT_EXP):;
B-23

A A NI A

ALY \-'; 3: -
AN l-a.~c' .' "' .n~ 10

y I’ .
s
A ‘oﬁh'

}.&ky”

-\.\‘\"

"‘\\‘. '

l‘l
s

LY
AREAN

X
Aol

-
P4
F s

te 0y, .l h

o,

l'

!,.v:,. ..J
f\— 'if) N _'1_4'

o M e
L AP
.I‘l

.
LR P

generic
type NUM is delta <>
package FIXED_IO is

DEFAULT_FORE : FIELD :
DEFAULT_AFT : FIELD
DEFAULT_EXP : FIELD :

procedure GET (FILE
ITEM
WIDTH
procedure GET (ITEM
WIDTH

procedure PUT (FILE
ITEM
FORE
AFT
EXP

procedure PUT (ITEM
FORE
AFT
EXP

procedure GET (FROM
ITEM
LAST

procedure PUT (TO
ITEM
AFT
EXP

end FIXED IO;

-- Generic Package for

generic
type ENUM is (<>);
package ENUMERATION_IO is

e o0 se o8 o0

NUM'FORE;
NUM'AFT;

O:

in FILE

in

out NUM;
FIEL
out NUM;

in FIEL

in
in
in
in
in

in
in
in
in

in

in
in
in

FILE_TYPE
NUM;

FIELD
FIELD
FIELD

e s we
([B]

NUM;

FIELD :=
FIELD :=
FIELD :=

STRIN
out NUM;
out POSIT
out STRIN

NUM;

FIELD

FIELD

TYPE;

D := 0);
D := 0);
DEFAULT FORE;

DEFAULT_AFT;
DEFAULT_EXP);

DEFAULT FORE;
DEFAULT AFT;
DEFAULT_EXP);

G:

IVE);
G:

:= DEFAULT_AFT;
:= DEFAULT_EXP);

Input-Output of Enumeration Types

DEFAULT_WIDTH : FIELD
DEFAULT_SETTING : TYPE_SET
procedure GET (FILE : in
ITEM :
procedure GET (ITEM :
procedure PUT (FILE : in
ITEM : in
WIDTH : in
SET : in

:= O3
:= UPPER

FILE_
out ENUM)
out ENUM)

FILE_TYP
ENUM;
FIELD
TYPE_SET

_CASE;

TYPE;

.
[4

E:;

n
= DEFAULT_WIDTH;
= DEFAULT_SETTING);

% X
e

A-.'
- ’.’

e e et

- 0000 IR
r -
yalaly

PV Py

! "j':%‘l%"l
rP S

o S 2y Ky -
R 2L

-
-

SRR

-
- o . .
AN et

SN X

v

A

R Y

RN . o L?

R T T N
a et

-r.r»

Can \"ﬂ"\.‘\. AN ST SN CL LR S S Vo Sy 0 "_,\J, '.
N iy

procedure PUT (ITEM : in ENUM;

WIDTH : in FIELD := DEFAULT _WIDTH;

SET : in TYPE_SET := DEFAULT_SETTING);
procedure GET (FROM : in STRING:

ITEM : out ENUM;

LAST : out POSITIVE):
procedure PUT (TO : out STRING;

ITEM : in ENUM;

SET : in TYPE_SET := DEFAULT_SETTING);

end ENUMERATION_IO;
-~ Exceptions

STATUS ERROR exception renames IO _EXCEPTIONS.STATUS_ ERROR;

MODE_ERROR : exception renames I0_EXCEPTIONS.MODE_ERROR;
NAME ERROR ¢ exception renames IO_EXCEPTIONS.NAME ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE _ERROR : exception renames 10 _EXCEPTIONS.DEVICE_ERROR;
END_ERROR ¢ exception renames IO_EXCEPTIONS.END_ ERROR;
DATA ERROR : exception renames IO EXCEPTIONS.DATA ERROR;

LAYOUT _ERROR : exception renames IO_EXCEPTIONS.LAYOUT ERROR;
private
type FILE TYPE is new BASIC_IO_TYPES.FILE_ TYPE;

end TEXT_IO;

F.8.6 Low Level Input-Output

The package LOW_LEVEL IO is empty.

F.B.a Clarifications of Ada Input-Output Requirements
Summary

The Ada Input-Output concepts as presented in Chapter 14 of ARM
do not constitute a complete functional specification of the
Input-Output packages. Some aspects are not discussed at all,
while others are deliberately left open to an implementa- tion.
These gaps are filled in below, with reference to sections of
the ARM.

F.B8.b Assumptions

14.2.1(15): For a seqguential or text file, a RESET operation to
OUT_FILE mode deletes any elements in the file,
i.e. the file is emptied. Likewise, a sequential
or text file opened (by OPEN) as an OUT_FILE, will

B-25
W e g P A N I T T B A AT I ey}
\J‘\J‘-r."'\\.r\ld‘fl-r'l‘ 7 v

+ AT T Ty IR R I.FE I R Py T 7 TR T F i i Ve e s ua T e.v i v.vnsv.iwmre

be emptied. For any other RESET operation, the
contents of the file is not affected.

- -
» R

Y5 S LAY

14.2.1(7) : For sequential and direct io, files created by
SEQUENTIAL IO for a given type T, may be opened
(and processed) by DIRECT_IO for the same type and
vice-versa. In the latter case, however, the
function END_OF FILE (14.2.2(8)) may fail to
produce TRUE in the case where the file has been
written at random, leaving "holes" in the file.

X -

P
l’"..l’

x
-

2.

F.8.c Implementation Choices

’ 14.1(1) : An external file is either any VAX/VMS file
residing on a file-structured device (disk,tape), a
record structured device (terminal, lineprinter),
or a virtual software device (mailbox).

LRl OEN AT

14.1(7)

An external file created on a file-structured
device will exist after program termination, and
may later be accessed from an Ada program.

)
A
LI, !

N 14.1(13)

See Section F.8.2.1 File Management.

14.2.1(3) The name parameter, when non-null, must be a valid
VAX/VMS file specification referring to a file-
structured device; a file with that name will then
be created. For a null name parameter, the
process' current directory and device must
designate a directory on a disk device; a
temporary, unnamed file marked for deletion will
then be created in that directory.

- A e
.
.

k= Tale

a5

The form and effect of the form parameter is
discussed in Sections F.8.2.1 and F.8.3.1.

L LA

.o

Creation of a file with mode IN_FILE will raise
USE_ERROR.

14.2.1(13): Deletion cf a file is orly supported fcr files on a
disk device, and requires deletion access right to
the file.

KB T A

14.2.2(4): No check for DATA_ERROR is performed in case the
element type is of an unconstrained type.

)

= WL AN MG

P,
w

)
N
[o)Y

AT N Y I A ™ AT 5 R 7 2L T8 A e AT On e AT S,
R ALY w«fhﬁ\’ﬂp&’pﬁ- g G G o T T W AU

VRV S N R N

PN

-

FEF P EX

P v il S Ay U W

Ay
q
‘l
,.l
..'
X
'l
1y
|
L]
‘

APPENDTX C

TEST PARAMETERS

Certain tests iIn the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in ts file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
vefore the test 1is run. The values used for this validation are given
below.

Name and Meaning Value

$BTG_ID1 (1..925 => 'A', 126 => 'i")
Tdentifier the size of the
maxizum Input line length with
varying last character.

$BIG_TD2 (1..125 => 'A', 126 => '2")
Tdentifier the size of the
maximum Input line length with
varying last character.

$BIG ID3 (1..63 => 'A', 64 => '3,
Tdentifier the size of the 65..126 => 'A')
maximum input line length with
varying middie character.

$BIG_TD4 (1..63 => 'A', 64 => "4,
Identifier the size of the 65..726 => 'A')
zaxinum Input line 1length with
varying middle character.

$BIG_INT_LIT (1..923 => '0', 24,.326 => "298")

An integer 1literal of value 298
with enough leading zeroces so
that it 13 the size of the
maximun line length.

- -] o oL W 3, Wy A
' AL AT AN LONTATIINTAT \f W \ PR, SO NCRERL AR NS
¥ ',.'a‘:‘l‘ WY, ":‘\‘a '3.0‘ V0,58 SN, ‘!‘: Lt X \\r X \'F\"‘."*‘ '{&Aﬁ.{hm.‘; ‘.: J;‘::"C:‘C':ﬁ.

$8T5 REAL LIT (1..020 2> T, Pt LLTP0 2
A4 real literal that can pe "uy.0EL"
either of floating- or rixed-
point type, has value 690.0, and
nas enough leading zeroes to bpe
the size »f the wmaxizum line
length.

2BILLANKS (1..706 => ' ")
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT_LAST 2_]&7_583_547
A universal integer literal
whose value is TEXT TO.COUNT'LAST.

SEXTENDED_ASCIT CHARS "abedefghl jklmnopgrstuvwxyz" &
A string 1literal containing all "1$L28 (N1 ()"
the ASCTT characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FTELD LAST 35
A universal integer literal
whose value is TEXT TO. FTELD'LAST.

3FILE_NAME WITH BAD CHARS X}J1e#s”&~Y
An iTIngal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

SFILLE_NAME_WITH _WILD CARD_CHAR XYZ#*
An external file name that
elther contains a wild card
charazter, or 13 t290 lecrng if nc
wild card character exists.

$GREATER_TH4AN_DURATION 100_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATTON'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_THAN DURATTON BASE I.AST 200_000.0
The universal real value that is
greater than DURATION'BASE'IAST,

if such a value exists.

Pl

> 5

. N L

B N S 2 2

-
P

.
'.

hame and Meaning

STLLEGAL EXTERNAL _FTLE NAMET
An ifiegal external file name,
STLLLEGAL EXTERNAL FTLE NAMEZ
An illegal external file name
that is different from
$Ti.I.EGAI._EXTERNAL_FTLLE NAME:.

S$TNTEGER_FTRST
The universal integer literal
expression whose value is
INTEGER'FTRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST.

$1.ESS THAN DURATION
A universal real value that lies
petween DURATION'BASE'FTRST and
DURATTON'FIRST if any, otherwise

any value in the range of
DURATTON.

$L.2SS_THAN DURATION BASE FIRST
The universal real value that is

less than DURATION'BASE'FTRST,
if such a value exists.

$MAX DIGTTS
The wuniversal 1integer 1literal
whose value 1is the maximum
cigits supported for
floating-point types.

$vnX IN_LEN
The universal integer 1literal
wnose value 1s the maximum
input line length permitted by
the implementation.

$MAX_TNT
The wuniversal 1integer 1literal
wnose value 1s SYSTEM.MAX INT.

CaP o A o o
‘\’ \)\’\’ﬂ*\, 1\ -~ \¢ WpAS

i

c-3

Value

"bad cnaracter#®™"

"nucantoolongnameforafile” %

"muchtoolsngnameforafile"

-32708

32767

-100_000.0

-200_000.0

2747483647

A; O - - 9 ol R , WITWTWLTS W YT TS 'n"‘
&
)
TEST PalaAETzZid
N
- Name and Aeaning Value
o
INAYE long leng integer

’ 4 nazme of a predefined nuueric
o type otner tnan rFLOAT, TNTEGER,
. SHORT FLOAT, SHORT_TNTEGER,
A LLONG_FL.OAT, or .LONG_TNTEGER

if one exists, otherwise any
¢ uncefined naze.
t
j $NEG_BASED_TNT T6#FFFFFFFF#
! A based integer literal whose
D nighest crder nonzero bit
b falls in the sign bit
q position of the representation
, for SYSTEM.MAX INT.
. $NON_ASCTT_CHAR_TYPE (NON_NULLL)
. An enumerated type definition
3 for a character type whose

literals are the identifier
{ NON_NULL and all non-ASCIT
., characters with printable
: graphics,
l
!
‘v
D
s,
s
L)
‘
X
1
;
4
?
!
' C-4
|

sy A, C SRR T T AL ‘ MR ".' ".' '.‘ y = -'-. .n. 4 N S T g " 2T N e “n N

::"! W '.«.‘-'.'."'"{f“:*'f\ N - o 0 ".»-.J-".p* N _’; o - .-Qa;‘..h:'.w_.r 3 \I:J‘; NN ‘ _'_"N}\e__.r“,‘J;"f‘.r.:-'_\eﬁ.f\f_'

APPENDTX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform ¢to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AT-ddddd" is to an Ada Commentary.

C32774A: An unterminated string literal occurs at line 62.

533203C: The reserved word "IS" is misspelled at line 45.

&

C340°8A: The call of function G at line 174 is ambiguous 3in the
presence of implicit conversions,

C35904A: The elaboration of subtype declarations SFX3 and CFX4
may raise NUMERIC ERROR instead of CONSTRAINT ERROR as expected in
the test.

33740%A: The cobject declarations at lines 126 through i35 follow
suoprogram bodies declared in the same declarative part.

CU 4QUA: The values of '!.AST and '[.LENGTH are incorrect in the
statements from line 74 to the end of the test.

K}

E4571°6A: ARRPRIBLY and ARRPRIBI.2 are initialized with a value «or
the wrong type--?RTBOOI._TYPE instead of ARRPRIBOOI. TYPE--at line

-
i

CLBO08BA: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AT-00397.

CAATE AR AN LTI AN W T T e e e
n"\# J'\-P‘.u"__#‘\-. \'J'. J‘\ -

[
AN

..

o™

.'.‘ J"-“‘ll."-"‘"-~. “n \l'- -,‘h* \f "J. ‘ﬁ)f -’
s WO YR ‘\:ﬁﬂnr"\-\'\‘\‘v\
Aﬂ(&lﬂm 8 L{L\{'._l\".x“).y AR'

wITHORA wiv

T e by e
AL

=&, ~ |

A,

-

"’
-

b

e - a

y A

5

b

‘,,.
".‘.. .

e e e
-
-'4’1"‘! '.l

o 3 N

>

PN o Y o 3 b ¥ §

' O T O R O T AR R e
LN :':‘t't"‘:‘t‘:‘:‘.‘!'l‘!“:‘.‘l.:‘o.!.l " l‘.:'lv“‘.ﬂ) :"‘.Q'.-' (SR .I X

~
s

£3TS

B49006A: Object declarations at lines 4% and 50 are termi
incorrectly with colons, and end case; is azissing from line 42,

B4AOIOC: The object declaration in line '8 follows a subpregran
pcdy of the same declarative part.

B7470738: The pegin a% line 9 causes a declarative part to ope
treated as a sequence of statements.

C87B50A: The call of "/=" &t line 31 requires a use clause for
package A.

C92005A: The "/=" for type PACK.BTG_TNT at line 40 1s not visible
without a use clause for the package PACK.

C9UO0ACA: The assumption that allocated task TT1 will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

CA3005A..D (4 tests): No valid elaboration orcer exisis for these
tests.

3C3204C: The body of BC3204CO is missing.

D-2

e « "

) W . e 1
KXot AR AN N SRR MR TR HSAIE I N

AVy”

I sy AN, e h e e - B e, S

¥
FCd

s
e
\
\

-
+
53
o

Y
iy
L)
' 1
)
\
L]
rd
“»
~J'

P L o BT T = e e e e Tl w BT ey S LT L el

t
D
)
b

