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ABSTRACT e,

. " W

—  Simulations run on sample circuits show that extremely high detection of bridging faults is r
possible using modifications of psuedo-exhaustive test sets. Real chips often contain bridging " .'o:
faults, and this research shows that stuck-at test sets are not sufficient for detecting such faults. The \ :.:0
modified pseudo-exhaustive test sets are easy to generate and require little, or no, fault simulation. - — 0:::.:-{
Criteria have been found for identifying bridging faults unlikely to be detected by test sets. __’?.’.; Wl
Techniques for increasing the bridging fault coverage of test sets without consuming excessive LA § -
computer time are suggested. FTJ BRG
chomay
Keywords: bridging faults, stuck-at faults, pseudo-exhaustive test, fault modeling. S oy "'
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X INTRODUCTION
hY : . o
.:: As the density of devices on VLSI chips has increased, bridging faults have become a

rescarch area of great interest [Bhattacharya 85), [Xu 82], [Malaiya 86], [Acken 83]. Recently,

work has been done on determining algonthms to generate tests for detecting bridging faults

N

o

L

[Karpovsky 80], [Abramovici 83]). However, in a typical VLSI circuit, the number of bridging
faults is so large that the task of deriving a test for each one is not economical. This paper describes
a method that provides high detection of bridging faults without requiring extensive fault
simulation.

A bridging fault, (x,y), occurs when two or more leads are unintentionally shorted together
resulting in wired logic. Feedback bridging faults occur when the value of y can depend on the
value of x in the fault free circuit. To detect a bridging fault, the fault must be activated and the
result of the'fault must be propagated to an output. In the past, it was thought that the leads
involved in the bridging fault had to have different logical values in order to activate the bridging
fault, [Karpovsky 80]. This investigation found that this restriction is not necessary for feedback
bridging faults since they create "memory” in an otherwise combinational circuit.

In this paper, feedback faults that cause oscillation upon the application of a vector are not
considered to be detected by that vector. This limitation is imposed for two reasons based on the
sampling period of the tester being used. The sampling period is the amount of time after the

application of a vector that the tester samples the data on the output pins of the chip. First, if the

oscillation period is longer than the sampling period, the fault may not propagate to the output |

"
[ DL S

before the next change of inputs. Second, if the oscillation period is shorter than the sampling
period, the tester may receive an indeterminate signal that is not guaranteed to indicate a failure.
The wired logic model for bridging faults is still applicable to current technology. A CMOS

circuit with a bridging fault and the corresponding electrical model are shown in Fig. 1

[Freeman 86], (Malaiya 86]. Simulations done on CMOS circuits show that bridging faults usually

AN

AN

resulted in voltages significantly far from logic thresholds. Intermediate values that could not be

. AR ..ﬂ'l'" wi, I.‘l“‘

6 correctly interpreted as a zero or a one were rare. This is due to the high noise immunity typically
', found in CMOS. This provides evidence that bridging faults cause wired logic on the involved
-"
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Figure 1. (a) A CMOS bridging fault. (b) The corresponding electrical model.

nodes. It was also found that the wired logic performed depended on the gates driving the bridged
leads. As a result, the present work makes no assumptions as to the logic performed: both AND
and OR bridging faults were simulated for every pair of leads in each circuit.

It must be noted that not all possible bridging faults need be considered. It has been shown
that the detection of one bridging fault can guarantee the detection of another bridging fault, and that
the detection of a stuck-at fault can guarantee the detection of one, or more, bridging faults,

[Mei 74), [Abramovici 83). In addition, it was shown that bridging faults on the inputs of an
elementary gate are detected by single stuck-at test sets, [Mei 74]. As a result, the methods of fault

dominance used to reduce the number of stuck-at faults before pattern generation can be used to

reduce the number of bridging faults.
In addition, once a layout of the circuit has been obtained, the list of possible bridging faults
can be significantly reduced. This results since only those lines that are adjacent or overlapping are

likely to bridge unless all lines in between are also involved. The number of bridging faults left to

consider can be reduced from n? to 8n, where n is the number of nodes in the circuit [Acken 88].
s Since layouts of the circuits studied for this research were not available, bridging faults between all
. possible pairs of nodes were considered.

: Single stuck-at fault test sets, which can be generated by many efficient algornithms, have
been proposed for use in detecting bridging faults in two ways. The first method is to take an

existing stuck-at test set and determine, through simulation, which bridging faults it detects.
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The test vectors are then reordered and/or additonal tests are added so that all detectable brndging
faults are found [Mei 74]. This method requires extensive computer time since fault simulation
must be done for each bridging fault. In addition, each time the test set is reordered, the fault

simulation must be repeated to ensure that a feedback bridging fault does not introduce memory that

CXRARAA RENER
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prevents it from being detected. The second method is to alter the stuck-at test pattern generator so

-

that it meets constraints due to the bridging fault problem [Abramovici 83]. These constraints not

-
"l *

only slow down the pattern generator, but several vectors may be generated for the same stuck-at

. f . . r
Cata et
LA ‘.".l'

fault in order to detect bridging faults associated with that node. In addition, since the modified
pattern generator merely follows rules to determine if a bridging fault has been detected by a
stuck-at test, it will not be able to efficiently derive tests for bridging faults after all of the stuck-at
faults have been detected. Thus, neither of the above methods is efficient for VLSI circuits.

This paper provides a new, economically feasible method for using stuck-at test sets for the
detection of bridging faults. Bridging faults that tend to be resistant to the stuck-at test sets can be
identified by examining the circuit topology and the stuck-at fault simulation results. Therefore,
improved bridging-fault coverage can be attained at a cost only slightly above that of stuck-at test

generation alone.

THE BRIDGING FAULT SIMULATION MODEL

The simulations were done at the gate level between all possible pairs of nodes in each
circuit, where the nodes consisted of all primary inputs and all gate outputs. Figure 2 illustrates the
bridging fault model used for a nonfeedback AND bridging fault. Note that all fanout branches of
both leads involved are affected. Since a bridging fault between a stem and a branch is equivalent to
the bridging fault between the corresponding stems, only faults between stems were considered.

The model of a feedback AND bridging fault is shown in Fig. 3. (Fanout is treated as above,
but is omitted for clarity in the following discussion.) A flip-flop was placed in the feedback loop
since circuits with feedback loops unbroken by latches or flip-flops required the use of a slow
simulator. To create the impression of a loop without a flip-flop, each test vector was applied threc

times in succession. If the value in the flip-flop remained stable for the second and third
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Figure 2. (a) An AND nonfeedback bridging fault. (b) The corresponding logical model.
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Figure 3. (a) An AND feedback bridging fault. (b) The corresponding logical model.

applications of the vector, then oscillation could not have occurred in the actual circuit. If the value
in the flip-flop was not stable, the fault was not considered to be detected.
To show that this model describes the behavior of an actual circuit, consider the AND

feedback bridging fault shown in Fig. 3. (The OR feedback bridging fault has a corresponding

proof.) It must be noted that regardless of the state of the circuit when the vector is applied, the
values on lines a{,...,a will be stable and unaffected by the bridging fault. In addition, if the input

x is 0, the output z will become 0 the first time the flip-flop is clocked. It will then remain O until
the input vector changes. This is true for the actual circuit even if it is oscillating before the
application of the vector. Hence, only the cases where x = 1 need be considered. First, the circuit
is assumed to be stable (the output is either O or 1) before the application of the vector. The cases

where the circuit is oscillating before the application of the vector will be considered next.
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For convenience, define A = (ajy,...,ay). There are four cases to examine: (

“yTy e e
1'._.‘ '

(i) F(0,A) = 0, and F(1,A) = 0. |

=X

The output will go to 0 since both F(0,AY = 0 and F(1,A) = 0. The first condition is required 1

oy

since the previous vector may have set z = 0. The output will remain stable since F(0,A) = 0. Only 1

* )..;’J s A

o

one application of the vector is required for the model to match the actual circuit. |
(11) F(0,A) =1,and F(1,A) = 1.

If the previous output was 0, then, since F(0,A) = 1, the output will become 1. If the
previous output was 1, then the output will remain 1 since F(1,A) = 1. In both cases, the output
will then remain stable at 1 since F(1,A) = .  Only one application of the vector is required for the
model to match the actual circuit.

(11) F(0,A) =0, and F(1,A) = 1.

If the previous output was 0, the output will remain 0 since F(0,A) = 0. If the previous
output was 1, the output will remain 1 since F(1,A) = 1. Again, only one application of the vects:
is required for the model to match the actual circuit.

(iv) F(0,A) =1, and F(1,A) = 0.

If the previous output was 0, then the output will become 1 since F(0,A) = 1. However,
since F(1,A) = O the output will now become 0. Hence, the output will oscillate independent of the
initial condition of the circuit. Three clockings of the flip-flop are required for the model to oscillatc
from O to 1 and back to 0 (or from 1 to 0 to 1). The first cycle sets up the vector and causes the first
; change in value. The second and third cause the output to change twice more. Oscillation is
oN detected if the outputs after the second and third cycles do not match.

: If the single fault in the circuit is a feedback bridging fault, it is possible that the circuit will
oscillate when some, if not all, of the test vectors are applied. When such oscillations occur, the
circuit and model will respond to the next vector as follows:

(1)and (ii) Since the output is not a function of the x input, the oscillation will stop and the new
output will not be a function of the previous output.

(1) There is no guarantee that the oscillation will stop in the actual circuit. However, the
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oscillation is not self-regenerative since there is no net inversion from x to the output. Hence, given
enough time, the output will tend to settle to either O or 1. For the purposes of this paper, it is
assumed that the amount of time required for the output to stabilize is less than the clock cycle time
for the circuit. Without this simplification, the model would have been far too complex to be
useful. Since the final value of the output cannot be predicted, when oscillation does occur the
value remaining in the flip-flop after the third cycle is used as the initial value for the next vector.
(iv ) The oscillations will continue as in case (iv ) above.
In cases (i), (i), and (iii), the bridging fault was detected if the final, stable output of the faulty
circuit was different than that of the fault free circuit.

Since dividing all of the possible bridging faults into feedback and nonfeedback groups was a
tedious task, even by computer, all faults were simulated using the feedback model. Although this
meant that the nonfeedback faults took longer to simulate, time was saved overall since only one

model was used and all faults could easily be simulated with one command.

RESULTS

Simulations were run on a 16-function ALU (74L.S181), an 8-bit parity tree of two input
XOR gates, and four implementations of a 4-to-1 multiplexer. The test sets used for the
simulations, all of which detect 100% of detectable stuck-at faults, are listed in Appendix A. The
undetected faults for each test set are listed in Appendix B along with the list of undetectable faults.

Table 1 shows the results for the 16-function ALU shown in Fig. 4. The table shows that
the variety of test generation methods for stuck-at faults achieved consistent results in detecting
bridging faults. Undetectable bridging faults (such as an OR bridging fault on the input leads of an
OR or NOR gate) were not included in the totals. The shorter test sets did not detect as many
bridging faults as did the longer test sets. Analysis of the circuit's response to the test sets found
that this was due to the shorter test sets failing to propagate the effect of the bridging faults to a
primary output. It was also found that bridging faults on the outputs of similar gates, which

perform the same logic function, that have common inputs were difficult to detect.
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: T Broart Bovaon Goel Hughes  Krnish McCq4 Miczo2
‘l . SIRUTNETEE 14 12 35 135 12 124 17
v,

- Sewnhen o esed ANTr A 2 4 0 33 0 46
s Nt et mussed OF fauirs o 44 S 0 66 1 18

Converave  CAND tauhs 1 990K Y 94 K6 100.00 98 .87 100.00 98.43
Coverape of OR tachs (90 Ga 79 Y8 4K 9983 10000 97.72 99.97 99.38

Torad number o each tvpe o taule 2920

Tuhle 2 Resuls of pantty circunt stmulations.

KRS OIS SR

o Testsens Bossen Bossen? Millman Mourad
F". Number of test vectorn 4 4 13 7
Number of missed AND taults 22 22 0 0
Number of missed OR faults 26 22 0 0 )
Coverage of AND faulns (%) 79.05 79.05 100.00 100.00
Coverage of OR faults (%) 75.24 79.05 100.00 100.00

Total number of each type of fault: 105

An example 1s a bndge between the outputs of a pair of n input AND gates that share n-1 inputs.
Even the pscudo-exhaustive test sets, such as McC4, had trouble detecting these faults if the gates
were not in the same segment. The only fault that McC4 missed was between nodes that were in
“distant” segments. The location of the nodes in distant segments implies that they are not likely to
be physically adjacent on an actual chip. Since itis unlikely that a bndging fault between such
nodes could occur, the test set detected 100% of all detectable probable bridging faults.

Table 2 shows the results for the parity circuit shown in Fig. 5. The Millman test set is
pscudo-exhaustive [McCluskey 86]. The Mourad [Mourad 86] test set was designed to detect all
single and double stuck-at faults. The Bossen [Bossen 70] test set consists of four vectors that

exhaustively test every XOR gate in the circuit detecting 100% of the single stuck-at faults. This

test causes cach line to take on one of three possible pattern sets. As a result, for 30 pairs of nodes
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"~ in the circuit, the two nodes always have equal values. Since the Bossen test resulted in the output
t"\ sequence 0011, the Bossen2 sequence was created so that the output sequence became 0101. This
' ordering was desired since it was expected that feedback bridging fault coverage would be higher if

X the outputs of the circuit changed more than once during the test set. This expectation, which
y proved true, is due to the feedback fault causing the circuit to remain in a specific state no matter
how the inputs changed. If the outputs of the circuit in the fault free case don't change, then the
b4
;“_tj fault will not be detected.
O
t‘,‘-n
e x0 -1
' - /]
. x1 =1
o 2
S X =1 I

o

o x3 =1

o~ x4 ~1 | ‘

2 - |

x5 =1
,:.;:: x6 =1 o
\'-::: x7
Figure 5. The parity tree.

: For example, Fig. 6 shows an OR gate with an OR feedback bridging fault. An exhaustive

test of the OR gate can be applied in 24 different orders, two of which are shown. For the first

ordering, the fault will not be detected since the output in the presence of the fault is identical to the

, fault-free output. Here, the output value changes only once. The second ordering causes the
¢ _:.-

7 fault-free output to change twice, thereby detecting the bridging fault when it latches the output to 1.

\ While the Bossen test detected all of the bridging faults between leads whose logical values

\l
v differed at least once, it missed most of the faults between leads whose values never differed. This
W

. included all 22 nonfeedback faults of each type between such nodes. The Bossen? test set detected
% all of the feedback faults but missed all 22 nonfeedback faults between nodes that never differed.
o

:j This demonstrates that ultra-short test sets may not do well in detecting nonfeedback bridging faults

>

since activation of the faults is not as likely to occur as in longer test sets. Feedback faults tend to

be detected when the nodes of the circuit toggle several times during the application of the test set.
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output
x y | fault free | in presence of fault
00 0 0
01 1 1
X= . 10 1 1
z 11 1 1
Y 01| 1 1
00 0 1
10 1 1
11 1 1

Figure 6. An OR feedback bridging fault for which the order of tests is important.

Tables 3 and 4 list the results of the simulations for the two- and four-level multiplexer
circuits, respectively. The four implementations of the multiplexer are shown in Fig. 7. The mux1
test set is the standard, minimum length, walking zero, walking one multiplexer test set [Makar 87].
Mux2 consists of the same vectors reordered so that the output alternates between zero and one in
order to improve feedback coverage. Two pseudo-exhaustive test sets were created following the

guidelines discussed below. Mux3 was used for the two level multiplexers and mux4 for the

four-level circuit.

Table 3. Simulation results for the two-level multiplexers.

AND/OR NAND
Test sets mux]l mux2 mux3 muxl mux2 mux3
Number of test vectors 8 8 12 8 8 12
Number of missed AND faults 0 0 0 0 0 0
Number of missed OR faults 4 0 0 0 0 0

Coverage of AND faults (%) 100.00 100.00 100.00 100.00 100.00 100.00
Coverage of OR faults (%) 94.44 100.00 100.00 100.00 100.00 100.00

Total number of each type of fault: 78
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FFor both two-level implementations and the four-level AND/OR circuit, mux2 caught 100%
of the detectable faults. Mux1 failed to catch four OR feedback faults in both AND/OR
implementations since the output changed only once. The four-level NAND circuit provided

problems for both mux1 and mux2. The number of possible vectors that could detect the

Table 4. Simulation results for the four-level multiplexers.

AND/OR NAND
Test sets mux]l mux2 mux4 mux! mux2 mux4
Number of test vectors 8 8 16 8 8 16
Number of missed AND faults 0 0 0 12 12 0
Number of missed OR faults 4 0 0 4 4 0

Coverage of AND faults (%) 100.00 100.00 100.00 90.91 90.91 100.00
Coverage of OR faults (%) 96.92 100.00 100.00 97.04 97.04 100.00

Total number of each type of fault: 136

undetected nonfeedback bridging faults was typically 8 or 12. Since the test sets had only 8 of the
64 possible vectors, the probability was high that none of the detecting vectors were contained in
the test sets. This leads to two conclusions. Minimum length test sets achieved excellent coverage
of feedback faults, but, as shown above, their coverage of nonfeedback faults is poor. Second, the

idea of "functional testing", shown to be inadequate for stuck-at faults in [Sakov 87], is also

inadequate for detecting bridging faults. In contrast, the pseudo-exhaustive test sets caught all

detectable brnidging faults.
Bridging faults unlikely to be detected by a stuck-at test set can be identified as follows.

Nonfeedback bridging faults between leads whose logical values rarely, if ever, differ are difficult

to detect. Feedback faults are less likely to be detected if leads seldom change value during the

application of the test set. These leads can be identified during fault-free simulation of the stuck-at

test set. By counting how many times a lead toggles, and whether it always, or nearly always,

toggles at the same time as any other leads will allow these bridging faults to be identified without

doing fault simulations. Simulators that perform toggle counting are currently used to estimate fault
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(a) The two-level AND/OR multiplexer.
sl 1 :>]
a0 & b
al & b
=& ,
a2 & D——l—
e
a3 & b
s0 I: 1 p—

(b) The two-level NAND multiplexer.

Figure 7. The four multiplexer implementations.

coverage and could be adapted to identify bridging faults that are difficult to detect. Bridging faults
between outputs of similar gates that share inputs are a subset of the bridging faults between leads
:ﬁ whose values rarely differ since such outputs will tend to be the same. However, these faults are

casily identified by examining a logic diagram of the circuit.
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(d) The four-level NAND multiplexer
Figure 7. (Continued)

A NEW PSEUDO-EXHAUSTIVE APPROACH FOR BRIDGING FAULTS
The experience gained from simulating the above circuits has shown that pseudo-exhaustive
test sets that detect most, if not all, bridging faults can be generated easily. Since pseudo-
exhaustive tests will detect any fault within a segment that does not introduce state, all nonfeedback
faults within each segment will be detected. If the segments are well chosen, there will be few

" nonfeedback faults between segments that need attention. Hence, the majority of bridging faults

that are of concern are feedback faults. Since fault simulation is unnecessary for the stuck-at faults
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when using pseudo-exhaustive testing, fault simulation need only be done for those feedback

LS o

bridging faulis that may be difficult to detect.

After choosing the segments for the circuit under test, the following procedure should be
used to create a pseudo-exhaustive test set. First, generate the test patterns for each segment.
Second, whether the segments are to be tested serially or in parallel, do not allow inputs to the
circuit to always have the same values. The reason for this is shown in Fig. 8 where a bridging
fault between w and y will go undetected even though both segments are exhaustively tested.
Hence, the circuit and segment inputs should go through all possible combinations, as often as

possible, whether they drive the same segment or not. It is shown below that w = y' is not

s
v
.-
i
"

sufficient to guarantee good coverage. Finally, the vectors should be ordered so that all the nodes
change value as often as possible, with preference given to the segment outputs. This can be
achieved since the test set does not need to test one segment, then a second segment, then a third,
etc. Once they have been created, the vectors can be applied in any order. Hence, a random
ordering of the vectors, with adjustments following a fault-free simulation of the circuit, can result

in a good test set for bridging faults.

segment 1
w 1100
&1 F(w,x)
[
x 1010 —L
* = Gy
Yy 1100 —
segment 2

Figure 8. Two segments with inputs that always have the same value (w and y).

)

For example, in the McC4 test set for the ALU, the first 108 vectors test the right half of the
circuit while the final sixteen test the left half. For the final sixteen patterns, it would be possible to

set all of the A inputs to the same value and still detect 100% of all stuck-at faults. However, the
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coverage of bndging faults would be low since all of the bridges between these inputs would have
gone undetected. In addition, this causes the outputs of second level gates in different segments to
take on the same values thereby preventing bridging faults between those outputs from being
detected. The original pseudo-exhaustive test set, McC1, which had the A inputs as well as the B
inputs tied together for the final sixteen vectors, achieved lower results than McC4.

Even when segments are being tested in parallel, the inputs of the separate segments should
differ often, and should not be related. When McC3 was created from McC1 by removing the
resaiction on the A and B inputs, it was found that several easily detected bridging faults were still
missed. Two reasons were found that caused this reduction in coverage from the ideal: First, two
segments in the right half of the circuit shared many, but not all, inputs. Two of the unshared
inputs were always the logical complement of each other during the first 108 vectors. As a result,
several faults between the segments between the outputs of similar gates with many shared inputs
went undetected. By changing the order of the inputs to one of the segments - a relatively easy ta ¥
- the problem was solved. The second reason found was that not all of the inputs to separate
segments were going through all possible combinations as in the example in Fig. 8. Again,

changing the order of the tests for some of the segments solved the problem.

Table 5. Comparison of pseudo-exhaustive test for the ALU.

Test sets McCl1 McC3 McC4
Number of test vectors 124 124 124
Number of missed AND faults 25 3 0
Number of missed OR faults 16 7 1

Coverage of AND faults (%) 99.15 99.90 100.00

Coverage of OR faults (%) 99 45 99.76 99.97
Total number of each type of fault: 2926
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oy McC4, the result of these changes to McC3, performed extremely well. It missed only one
o
» . Sy . .y

v brideing fault: an OR feedback bndging fault between distant gates in different segments.

ging gng g &

< A comparison of the results for the three pseudo-exhaustive tests is shown in Table 5. This
}.\.' . . . - .
N technique was also used in creating the test sets for the multiplexers. As seen in Tables 3 and 4,
o .

. these test sets were quite successful.

>
M
N

CONCLUSIONS

;;l
L S
[ I

This research has shown that stuck-at test sets can provide over 98% coverage of both AND

and OR bridging faults in typical circuits. The results may be lower for extremely regular circuits or

ultra-short test sets. However, these results are not adequate for today's VLSI circuits. Pseudo-
L— exhaustive test techniques are well suited for detecting bridging faults since they result in extremely
r,‘. high coverage of those faults while guaranteeing 100% detection of stuck-at faults. Bridging fault

" coverage can be increased by doing fault simulation and test generation for bridging faults that are
-

identified as hard to detect. These bridging faults occur between nodes that rarely, if ever, differ, or
that seldom change value. In addition, if the nodes in the fault-free circuit toggle often, feedback
faults are easier to detect. This is true even if the nodes involved always have equal values.
Methods for identifying such nodes have been presented. These methods use results available from
fault-free simulations. A simple solution is to randomly reorder the test vectors to increase toggling
and therefore increase bridging fault coverage. As a result, computer time for test generation will be

only slightly greater than the time required for stuck-at fault generation alone.

”,
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design: multiplexer
test set: muxl
author: S. Makar ([Makar 87)
method: functional test

Sssaaaa

103210
1: 001110
2: 011101
3: 101011
4: 110111
S: 000001
6: 010010
7: 100100
8: 111000

design: multiplexer

test set: mux2

author: S. Makar [Makar 87]
method: functional test

ssaaaa

103210
001110
000001
011101
010010
101011
100100
110111
111000

O~ W H
e e

design: multiplexer

test set: mux3

author: S. Millman and S. Makar
method: pseudo-exhaustive

2

2 N —
N ssaaaa
'@ 103210
s TTmEmmmmmmT
-, 1: 000000
i 2: 010000
A 3: 100000
- 4: 110000
v 5: 001110
6: 000001
7: 011101
8: 010010
9: 101011
10: 100100
11: 110111
12: 111000
9.
"™
&g

design: multiplexer
test set: mux4d
author: S.D. Millman
method: pseudo-exhaustive
ssaaaa
103210
000000
000001
001110
001111
010000
011101
010010
011111
100000
101011
100100
12: 101111
110000
14: 111000
15: 110111
16: 111111
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design: parity

test set: Bossen

author: D.C. Bossen [Bossen 70}

method: exhaustive test of
each gate

HAXKXX XX
76543210
1: 00000000
2: 01110111
3: 10011101
4: 11101010

design: parity
test set: Bossen2
author: D.C. Bossen [Bossen 70]
method: exhaustive test of
each gate
XXXXXXXX
76543210
1: 00000000
2: 01010111
3: 10111101
4: 11101010
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design: parity
test set: Millman
author: S. Millman

Fa ol P% ¢
P

>
ﬂ
&

¥
PR £ 4 3

Sy

ssssbbbbaaaa ¢

” method: pseudo-exhaustive 32103210321 0mn
-i* _________________________________________________
?ﬁ* XXXXXXXX 10: 01001111111110
ﬁii 76543210 11: 01001000111111
;J;¢ ——————————— 12: 11101011100011
ut 1: 00000000 13: 10010110100011
2: 00000001 14: 11011000100110
Lot 3: 00000010
o 4: 00000011
e 5: 00000100 e -
N 6: 00001000 design: ALU
- 7: 00001100 test set: Bryanté
& 8: 00010000 author: R. Bryant (Hughes 85]
9: 00100000 method: test pattern generation
10: 00110000 program

11: 01000000
12: 10000000

ssssbbbbaaaa c¢

13: 11000000 321032103210mn
1: 10100111110001
——————————————————————————————— 2: 11100011001001
design: parity 3: 01001110111000
test set: Mourad 4: 01010000001100
author: S. Mourad [Mourad 86] 5: 10011011010101
method: augmentation of Bossen 6: 11100101100011
——————————————————————————————— 7: 01111101100100
KXHXKKKX 8: 10010000110100
76543210 9: 10100100001001
——————————— 10: 01111111010001
1: 11101010 11: 01101011010110
2: 01111101 12: 10011000110011
3: 10010111
4: 00000000
S: 01001011 et Sttt
6: 11100101 design: ALU
7: 11001110 test set: Goel

author: P. Goel [Hughes 85)
method: test pattern generation
——————————————————————————————— program
design: ALU
test set: Bryant2

ssssbbbbaaaa ¢

author: R. Bryant {Hughes 85] 321032103210mn

method: test pattern generation -

program 1: 10011000010010

——————————————————————————————— 2: 00100001000001

ssssbbbbaaaa c¢ 3: 00000001001010

321032103210mn 4: 11001111100000

————————————————— 5: 00011101011001

' 1: 00101000000001 6: 01110000100011

N 2: 00101000100001 7: 11100001000111

®. 3: 10100111110001 8: 00010110000001

-7 4: 10100110001101 9: 10010111001000

';' 5: 01100011101000 10: 11110100110001

o 6: 10011001011101 11: 11111000100001

- 7: 01011101100100 12: 10210100010011

*:' 8: 01011100111001 13: 10110000001111

s g: 11010111000000 14: 01101101000110
e..
::
e
\ L]
n e
o
o
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test set: Goel (cont.) test set: Hughes (cont.)

ssssbbbbaaaa ¢ ssssbbbbaaaa ¢
321032103210mn 321032103220mn

15: 01100000000110 24: 01111101101000
16: 10101001101101 25: 00111101110100
17: 11100010000011 26: 00011110110110
18: 01001011001000 27: 00001110111011
h 19: 01000000001000 28: 11000111111111
20: 01110000010011 29: 10100111011001
21: 01111100010000 30: 10010011011010
22: 11010010001000 31: 01001011001101
23: 10100000101000 32: 11100001101000
24: 01101011100001 33: 01110101000100
25: 10100110011001 34: 00111000010110
26: 10101110110000 35: 00011010100011
27: 11101010101001 36: 11001100101111
28: 10101001100000 37: 10100101110101
29: 10101011101001 38: 10010110010000
30: 10001101110000 39: 01001010011000
31: 10101010100000 40: 00100011101000
32: 01100101001111 41: 00010101001100
33: 10100110010100 42: 00001001010110
34: 10100101010000 43: 0006506G10100111
35: 10100011001011 44: 11000100001101

45: 10100001010100
46: 01010010000110
——————————————————————————————— 47: 00101000001011

design: ALU 48: 11010001100111

test set: Hughes 49: 10101100000001

author: J. Hughes [Hughes 85] 50: 10010000110110

method: pseudo-random 51: 01001110000011
——————————————————————————————— $2: 11100000111111
ssssbbbbaaaa c 53: 10110111000101

321032103210mn 54: 10011000011000

————————————————— 55: 01001011100000

1: 111112111111111 56: 00100100101100

2: 10111111111001 57: 00010101010010

3: 10011111111010 58: 00001010010101

4: 01001111111101 59: 11000010101100

$5: 11100111111000 60: 01100101001010

6: 01110111011100 61: 00110001010101

7: 00111011011110 62: 11011010000000

8: 00011011101111 63: 01101000101000

9: 11001101101001 64: 00110101100000

10: 10100101110010 65: 00011100010100

11: 01010110010101 66: 00001010110010

X 12: 11101010011100 67: 00000110101001

. 13: 01110011101010 68: 11000101011110

. 14: 00111101001101 69: 01100011010111
. 15: 11011001110000 70: 11110010001001

’ 16: 01101110100100 71: 10111001001110
Q. 17: 00110100111010 72: 01011001100111
g 18: 00011111010001 73: 11101100100001
e 19: 11001010111010 74: 10110100110110
I~ 20: 01100111101001 75: 01011110010011
:;b 21: 11110101011010 76: 11101010111111
A 22: 01111011010101 77: 10110111101101
. 23: 11111010101000 78: 10011101011000
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ssssbbbbaaaa c
3210322103210mn

01001011110100
00100110101110
00010101011011
11001011010011
10100010101011
10010101001111
10001001010001
10000010100010
01000100001001
1100001010110
01110010000111
11111000001101
10111001100100
01011100100110
00101100110011
11010110110111
10101110011101
10010011111100
01001111001110
00100001111111
11010121000001
10101000011010
01010011100001
11101100001010
01110001110001
11111110000010
01111000111001
11111111100110
011111060111111
11111111110101
10111110111000
01011111111000
00101111111100
00010111111110
00001111011111
11000011111001
10100111001010
01010001011101
11101011000000
01110000101100
00111101000010
00011000110101
11001110100100
01100100111010
00110111010001
11011010011010
01101011101001
11110101101010
01111101010101
11111010110000
01111110101000
00111101111000
00011111110100
00001110111110
00000111111011

test set: Hughes (cont.)
ssssbbbbaaaa ¢
321032103210mn
134: 11000111011011
135: 10100011011011

design: ALU
test set: Krish
author: B. Krishnamurthy
[Hughes 85)
method: test pattern gzneration
program
ssssbbbbaaaa ¢
321032103210mn
01011111000001
01011111111100
01011110000101
01011100001001
01010000100011
01011000010001
01010000001100
10100001000000
10100010110000
10100101001100
10101110111110
101010110011112
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design: ALU
test set: McCl
author: E.J. McCluskey
[Hughes 85]
method: pseudo-exhaustive
ssssbbbbaaaa ¢
321032103210mn
10101000011100
10100000011101
10101000111111
101061000111110
10101001011000
10100001011001
10101001111011
10101001111010
10101001011100
10: 10100001011101
11: 10101001111111
12: 10101001111110
13: 10101010010100
14: 10100010010101
15: 10101010110111
16: 10101010110110
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ssssbbbbaaaa ¢
321032103210mn
10101011010000
10100011010001
10101011110011
10101011110010
10101011010100
10100011010101
10101011110111
10101011110110
10101010011100
101017010011101
10101010111111
10101010111110
10101011011000
10100011011001
10101011111011
10101011111010
10101011011100
101000211011101
10101011111111
10101011111110
10101100001100
10100100001101
10101100101111
10101100101110
10101101001000
10100101001001
10101101101011
10101101101010
10101101001100
10100101001101
10101101101111
10101101101110
10101110000100
10100110000101
10101110100111
10101110100110
10101111000000
10100111000001
10101111100011
10101111100010
10101111000100
10100111000101
10101111100111
10101111100110
10101110001100
10100110001101
10101110101111
10101110101110
10101111001000
10100111001001
10101111101011
10101111101010
10101111001100
10100111001101
10101111101111
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McCl (cont.)
sssabbbbaaaa ¢
321032103210mn

10101111101110
101011000611100
10100100011101
10101100111111
10101100111110
10101101011000
10100101011001
10101101111011
10101101111010
10101101011100
10100101011101
10101101111111
10101101111110
10101110010100
10100110010101
10101110110111
10101110110110
10101111010000
10100111010001
10101111110011
10101111110010
10101111010100
10100111010101
10101111110111
10101111110110
10101110011100
10100110011101
10101110111111
10101110111110
10101111011000
10100111011001
10101111111011
10101111111010
10101111011100
10100111011101 ‘
10101111111111
10101111111110
00000000000010
00000000111110
00001111000010
00001111111110
01010000000010
0101000011111¢
01011111000010
01011111111110
10100000000010
10100000111110
10101111000010
10101111111110
11110000000010
11110000111110
11111111000010
1111111111110
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g design: ALU test set: McC3 (cont.)
- test set: McC3 e
author: E.J. McCluskey ssssbbbbaaaa ¢
o~ method. pseudo-exhaustive 321032103210mn
Vi e s s s e e m e S e e
o ssssbbbbaaaa ¢ 53: 10101111000000
N 321032103210mn 54: 10100111000001
G 55: 10101111100011
baS 1: 10101000011100 56: 10101111100010
2: 10100000011101 57: 10101111000100
3: 10101000111111 58: 10100111000101
4: 10101000111110 59: 10101111100111
5: 10101001011000 60: 10101111100110
6: 10100001011001 61: 10101110001100
7: 10101001111011 62: 10100110001101
8: 10101001111010 63: 10101110101111
9: 101061001011100 64: 10101110101110
" 10: 10100001011101 65: 10101111001000
Esf 11: 10101001111111 66: 10100111001001
} 12: 10101001111110 67: 10101111101011
:{ 13: 10101010010100 68: 10101111101010
N 14: 10100010010101 69: 10101111001100
< 15: 10101010110111 70: 10100111001101
X2 16: 10101010110110 71: 10101111101111
® 17: 10101011010000 72: 10101111101110
AR 18: 10100011010001 73: 10101100011100
) 19: 10101011110011 74: 10100100011101
20: 10101011110010 75: 10101100111111
21: 16101011010100 76: 10101100111110
22: 101060011010101 77: 10101101011000
23: 10101011110111 78: 10100101011001
24: 10101011110110 79: 10101101111011
25: 10101010011100 80: 10101101111010
26: 10100010011101 81: 10101101011100
27: 10101010111111 82: 10100101011101
28: 10101010111110 83: 10101101111111
29: 10101011011000 84: 10101101111110
30: 10100011011001 85: 10101110010100
31: 10101011111011 86: 10100110010101
32: 10101011111010 87: 10101110110111
33: 10101011011100 88: 10101110110110
34: 10100011011101 89: 10101111010000
35: 10101011111111 90: 10100111010001
36: 10101011111110 S1: 10101111110011
37: 139101100001100 92: 10101111110010
38: 10100100001101 93: 10101111010100
39: 10101100101111 94: 10100111010101
40: 10101100101110 95: 10101111110111
41: 10101101001000 96: 10101111110110
42: 10100101001001 97: 10101110011100
43: 10101101101011 98: 10100110011101
44: 10101101101010 99: 10101110111111
45: 10101101001100 100: 10101110111110
46: 10100101001101 101: 10101111011000
47: 10101101101111 102: 10100111011001
48: 10101101101110 103: 10101111111011
49: 10101110000100 104: 10101111111010
50: 10100110000101 105: 10101111011100
51: 10101110100111 106: 10100111011101
52: 10101110100110 107: 10101111111111
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test set: McC3 (cont.) test set: McC4 (cont.)

ssssbbbbaaaa ¢ ssssbbbbaaaa c¢

321032103210mn 321032103210mn
108: 10101111111110 27: 10101010:11101
109: 10001100011010 28: 10101010111110
110: 10000110001110 29: 10101011011000
111: 100000111006110 30: 10100011011011
112: 10001001110010 31: 10101011111001
113: 11101100011010 32: 10101011111010
114: 11100110001110 33: 10101011011100
115: 11100011100110 34: 10100011011111
116: 11101001110010 35: 10101011113101
117: 00111100011010 36: 10101011111110
118: 00110110001110 37: 10101100001100
119: 00110011100110 38: 10100100001111
120: 00111001110010 39: 10101100101101
121: 01011100011010 40: 10101100101110
122: 01010110001110 41: 10101101001000
123: 01010011100110 42: 10100101001011
124: 01011001110010 43: 10101101101001

44: 10101101101010
45: 10101101001100
——————————————————————————————— 46: 10100101001111

design: ALU 47: 10101101101101
test set: McC4 48: 10101101101110
author: E.J. McCluskey and 49: 10101110000100
S.D. Millman 50: 10100110000111
method: pseudo-exhaustive 51: 10101110100101 1
——————————————————————————————— 52: 10101110100110
ssssbbbbaaaa ¢ 53: 10101111000000
321032103210mn 54: 10100111000011
————————————————— $5: 10101111100001 T
1: 10101000011100 56: 10101111100010
2: 10100000011111 57: 10101111000100
3: 10101000111101 58: 10100111000111
4: 10101000111110 59: 10101111100101
S: 10101001011000 60: 10101111100110
6: 10100001011011 61: 101011100012100
7: 10101001111001 62: 10100110001111
: 10101001211010 63: 10101110101101 i
9: 10101001011100 64: 10101110101110 :
10: 10100001011111 65: 10101111001000
11: 10101001111101 66: 10100111001011
12: 10101001111110 67: 10101111101001
13: 10101010010100 68: 10101111101010
14: 10100010010111 69: 10101111001100
15: 10101010110101 70: 10100111001111
16: 10101010110110 71: 10101111101101
17: 10101011010000 72: 10101111101110
18: 10100011010011 73: 10101100011100
19: 10101011110001 74: 10100100011111
20: 10101011110010 75: 10101100111101
21: 10101011010100 76: 10101100111110
22: 10100011010111 77: 10101101011000
23: 10101011110101 78: 10100101011011
24: 10101011110110 79: 10101101111001
25: 10101010011100 80: 10101101111010
26: 10100010011111 81: 10101101011100
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106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122
123:
124 :

ssssbbbbaaaa ¢
321032103210mn
10100101011111
10101101111101
10101101111110
10101110010100
10100110010111
10101110110101
10101110110110
10101111010000
10100111010011
10101111110001
10101111110010
10101111010100
10100111010111
10201111110101
101013111110110
10101110011100
10100110011111
10101110111101
10101110111110
10101111011000
10100111011011
10101111111001
10101111111010
10101111011100
10100111011111
10101111111101
10101111111110
00000000000010
11111111111110
11100010110010
11101001001010
11100100000110
10011001101010
10011100010110
10010110101010
10010011010110
00111010010110
00110101101010
01000111100110
01001101011010
01001010111110
01110000000010
00101111111110

design: ALU

test set: miczo2

author: A. Miczo [Hughes 85])
method: compressed random

ssssbbbbaaaa c¢
321032103210mn

10010110011001
10011100110001
10011000100000
10010100110001
10010010111001
100100011211101
100100011110C0
10010000111101
10011110000000
01101010100100
01100101011001
01101111001101
01001100000011
01100000110001
10010001110101
10010001101100
10011000111101
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Appendix B: Missed and Undetectable Faults
o The circuits used for the simulations are repeated below with all of the nodes used for

o bridging faults labeled. The lists of undetected and undetectable faults follow.

p sl xS 1 pox7

0 x0 & | x8

g x1
" al & x9

L=
‘.:..:: 0 x2 & OI
1

i x1
n’\‘
: x3

x1

o s0 X2 1 p1x6

(a) The two-level AND/OR multiplexer.

=, x5
L sl 1 bax7

A5 xO X8

\‘) a0

‘ D—— 2

x10
“ x3

v

)’t ﬁl

e s0 x4 1 pJx6 '

o (b) The two-level NAND multiplexer.

Figure 9. The four implementations of the multiplexer.




P4

a0

al

sO

a0

al

sO

-------

] TR T ETRNETN TN N ENERENE R YT WRLERNLVE

x 0
x8
& [ 1|
<1 + x12
1 |
& — )&14
X2 X9 [ ] x_1_62
& XIOL_ & i
3 + | x15
& — X13
x11
x4 1 D__x6 o1 x5 1 D_x7
(c) The four-level AND/OR multiplexer.
x0
& x8
O—
x1 Ep—x2
& M D"M
x2 x9 — x16
D— 2
& x10
x3 & y—t x135
&b x13
x11
x4 x6 x5 x7
1 b sl 1 b
(d) The four-level NAND multiplexer.
Figure 9. (Continued)
x0 -1| x8
1|
x1 =1 x12
x2
=1 (l—
x3 x9 1 =1| x14
x5 ] =1
6
X -1 — x13
x7 x11

Figure 10. The parity tree.
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- Rosse: Bossen
" missed missed
ANDs ORs
x0 x2 x0 x2
x0 x4 x0 x4
x0 x11 x0 x11
x1l x5 x1l x5
x1l x6 x1l x6
xl x9 xl x9
xl x13 x1l x13
x2 x4 x2 x4
x2 x11 x2 x11
x3 x7 x3 x7
x3 x8 x3 x8
x3 x10 x3 x10
x4 x11 x3 x14
x4 x12 x4 x11
x5 x6 x4 x12
x5 x9 x5 x6
X6 x9 x5 %9
x7 x8 x6 x9
x7 x10 x7 x8
x8 x10 x7 x10
x9 x13 x7 x14
x11 x12 x8 x10
x8 x14
x9 x13
x10 x14
x11 x12

> -
S PLIA SN TR L

X YN

YA SS

missed
ORs

x0
x0
x0
x1
x1
x1
x2
x2
x3
x3
x3
x3
x4
x4
xS
x5
x6
x6
x7
x8
x9
x11

Bos
mis

x2
x4
x11
x6
x9
x10
x4
x11
x5
x7
x8
x13
x11
x12
x7
x8
x9
x10
x8
x13
x10
x12

sen2
sed

ANDs

x0
x0
x0
x1
x1
x1
x2
x2
x3
x3
x3
x3
x4
x4
x5
x5
x6
x6
x7
x8
x9
x11

x2
x4
x11
x6
x9
x10
x4
xl1
x5
x7
x8
x13
x11
x12
x7
x8
x9
x10
x8
x13
x10
x12

muxl
two-level
AND/OR
missed ORs

x8 x12
x9 x12
x10 x12
x11 x12

muxl
four-level
AND/OR
missed ORs

———

x8 x12
x9 x12
x14 x16
x15 x16

muxl]
four-level
NAND
missed ORs

x0 x10
x1 x11
x2 x8
x3 x9

muxl
four-level
NAND
missed ANDs

x0 x10
x0 %11
x1l x10
x1l x11
x2 x8
x2 x9
x3 x8
x3 x9
x8 x13
x9 x13
x10 x12
x1ll x12

‘h
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mux2
four-level
NAND
missed ORs

x0 x10
x1l x11
x2 x8
x3 x9

mux2
four-level
NAND
missed ANDs

x0 x10
x0 x11
x1 x10
x1l x11
x2 x8
x2 x9
x3 x8
x3 x9
x8 x13
x9 x13
x10 x12
x11 x12
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Bryanteo Goel Krish McCl McC3 Miczo2

missed missed missed missed missed missed
ANDs ANDs ANDs ANDs ANDs ANDs
t18 tS53 td4 t52 tl t3 tl t3 t54 t59 tl t4
tl8 t60 28 t33 t2 t4 t2 t4 t55 t58 t2 t3
t23 t33 t28 t52 t4 tl4 t3 t52 t56 t68 t4 t55
t23 t38 t31 tS53 t8 t54 tle t17 t4 t58
t26 t52 t8 t59 tle tl8 td t62
t27 t30 t8 t63 tl7 t18 t4 t65
t28 t38 tl4 t23 t21 t26 tlS t17
t31 t36 t20 t25 t21 t31 tl5 t32
t3l t60 t22 t32 t21 t36 tlé t18
t33 t38 t32 t55 t23 t28 tle t37
t36 t60 t32 t58 t23 t33 tl7 t22
t37 t53 t32 t62 t23 t38 tl8 t27
t38 t57 t32 t65 t26 t31 t21 t26
t53 t60 t37 t54 t26 t36 t21 t32
t54 t59 t37 t59 t27 t32 t21 t37
t54 té63 t37 t63 t27 t37 t22 t31
t55 tS58 t38 t57 t28 t33 t22 t32
tS5 t62 t38 tel t28 t38 t23 t28
t55 t65 t38 té64 t31 t36 t23 t33
£t56 t68 £53 t60 t32 t37 t23 t55
t57 te6l t54 t59 t33 t38 t23 t58
t57 t64 t54 t63 t53 te60 t23 t62
£t58 té62 t55 t58 t54 t59 t23 t65
£58 t65 t55 t62 t55 t58 t26 t32
t59 t63 t55 t65 t56 t68 t26 t37
t6l te4d t56 t68 t27 t36
t62 té65 t57 te6l t27 t37
t46 tS51 t57 té4 t28 t33
t58 te62 t28 tS55
t58 t65 t28 t58
t59 t63 t28.t62
t6l te64 t32 t37
£t62 t65 t33 t55
t33 t58
t33 t62
t39 t57 1
t53 t60 i
t54 t59 |
t54 t63 |
t55 tS8
£55 te62 i
t58 te62 f
t58 t65 1
t59 t63 ;
t6l t64 i
t62 t65 :
o N N e A T - \




_‘vrv_'v,-r.'v-.w:v-.r.v-.-.-.---.-.—.~1
I
!l‘. ‘]
lf.‘ '
< Bryant2 Bryaaté Goel Krish Krish McCl McC3 Miczol
}{: migsed missed missed missed missed missed missed missed
WA ORs ORs ORs ORs ORs ORs ORs ORs
———————————————————————————— (cont.) —--e-oo o .
vl te t22 1l tlS  t10 t33 tl t3 tl t3 t6 t23  t) t4
t8 t2 tl £22 23 t27 t2 t4 t53 t58 t2 t4 t8 t28 t6 tle
e tl0 32 t5 t28 t31 £55 t5 t28 t53 59 t21 t26 t11 t33 t13 t80
b;. tl2 t37 t8 t28 t33 t53 t6 t8 t53 t60 t21 t31 tl12 t38 t15 t317
WO t21 158 9 t27 £33 tS4 t6 t22  tS54 t58 t21 t36 55 t58 €16 t18
t22 t65 t9 t28 t6 t23  £54 t59 t23 t28 t55 t59 t16 t23
t22 77 ti12 t37 t6 t46 t54 t60 t23 t33 €55 t60 tle t24
t30 t53 t12 t38 t7 t33 t55 t58 t23 t38 t2l t26
A t30 t55 tl4 t22 t8 t23 t55 t59 t26 t31 t22 t27
Ln £t30 =57 t23 t28 t8 t24 t55 t60 t26 t36 --—-——- tZZ t32
<. t30 t58 t23 t49 t8 t27 t57 t80 t26 tB0 McC4 t22 té6?
- t30 t60 t26 t54 t8 t28 t58 t80 t28 t33 missed t23 t62
t32 t37 t26 tSS t8 t4e6 t28 t38 ORs t23 t63
t32 t57 t28 t33 t9 t37 t31 t36 -—-—-—- t27 t37
“ £32 t58 t28 t38 t9 t38 £31 t8o0 t36 t57
W t32 t59 t31 t36 t10 t32 t33 t38 t31 t55 t36 t6l
oy t32 t60 t31 t55 tl1l0 t33 t36 t80
A t32 t€63 t31 t57 tll t32 t37 t€2
N £32 t76 t31 t58 t12 t33
£33 t52 t33 t37 t1l2 t37
t33 53 t33 t3¢ tl2 t38
t33 t54 t36 t57 t13 t71
t33 t55 t37 tS2 t1s t72
t33 t76 t37 t53 t20 t25
t36 t74 t37 t54 t2l t80
t37 £57 37 t55 t22 t44
t37 t58 t37 t57 t22 t52
€37 t59 t37 tS58 €22 ©54
t37 t60 t37 tS9 t22 t55
t37 t65 t37 t60 t22 t57
t37 t72 t37 t62 t22 t58
t53 t59 t37 té5S t22 t59
t53 t60 t37 t74 t22 t71
t54 t59 t37 t76 t23 t28
t54 t60 t53 t58 t23 t29
t53 t59 t24 t46
.. t53 t60 t27 t53
o t54 t58 t27 t54
L tS4 t59 t27 t55
N t54 t60 t28 t33
gt t55 t58 t32 tS5S2
e t55 t59 t32 t53
Y t55 t60 t32 t54
— t58 t80 t32 t55 !
. t32 t57 :
- t32 t58
. t32 t59
g t32 t60
‘ t32 t76
t33 t38
t33 t39
t35 t52
t35 t53
t37 t51
t38 t51
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Undetectable
OR faults in
the two-level
AND/OR
multiplexer

x8 x9
x8 x10
x8 x11
x9 x10

x10 x11

Undetectable
AND faults in
the two-level
NAND
multiplexer

x8 x9
x8 x10
x8 x11
x9 x10
x9 x11
x10 x11

Undetectable
AND faults in
the four-level
AND/OR
multiplexer

Undetectable
OR faults in
the four-level
AND/OR
multiplexer

x7 x10
x7 x11
x7 x13
x8 x9
x10 x11
x14 %15

L oy W g oy Xy Wy =™
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Undetectable
AND faults in
the four-level
NAND
multiplexer

x7 x12
x8 x9

x10 x11
x14 x15

Undetectable
OR faults in
the four-level
AND/OR
multiplexer
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Undetectable

OR faults in
the ALU

t20 t21
t22 t23
t22 t24
t23 t24
t25 t26
t27 t28
t27 t29
t28 t29
t30 t31
t32 t33
t32 t34
t33 t34
t35 t36
t37 t38
t37 t39
t38 t39
t52 t53
t52 t54
£t52 t55
t53 t54
t53 t55
t54 t55
t57 t58
t57 t5%
£57 te60
t58 t59
t58 t60
t59 te60
t6l t62
t6l t63
t62 t63
t64 te6sS
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