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ABSTRACT

- Simulations run on sample circuits show that extremely high detection of bridging faults is
possible using modifications of psuedo-exhaustive test sets. Real chips often contain bridging
faults, and this research shows that stuck-at test sets are not sufficient for detecting such faults. The
modified pseudo-exhaustive test sets are easy to generate and require little, or no, fault simulation. r
Criteria have been found for identifying bridging faults unlikely to be detected by test sets. r ,
Techniques for increasing the bridging fault coverage of test sets without consuming excessive
computer time are suggested.
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INTRODUCTION

As the density of devices on VLSI chips has increased, bridging faults have become a

research area of great interest [Bhattacharya 85], [Xu 82], [Malaiya 86], [Acken 83]. Recently,

work has been done on determining algorithms to generate tests for detecting bridging faults

[Karpovsky 80], [Abramovici 83]. However, in a typical VLSI circuit, the number of bridging

faults is so large that the task of deriving a test for each one is not economical. This paper describes

a method that provides high detection of bridging faults without requiring extensive fault

simulation.

A bridging fault, (xy), occurs when two or more leads are unintentionally shorted together

value of x in the fault free circuit. To detect a bridging fault, the fault must be activated and the

* •result of the'fault must be propagated to an output. In the past, it was thought that the leads

involved in the bridging fault had to have different logical values in order to activate the bridging

fault, [Karpovsky 80]. This investigation found that this restriction is not necessary for feedback

bridging faults since they create "memory" in an otherwise combinational circuit.

In this paper, feedback faults that cause oscillation upon the application of a vector are not

considered to be detected by that vector. This limitation is imposed for two reasons based on the

sampling period of the tester being used. The sampling period is the amount of time after the

application of a vector that the tester samples the data on the output pins of the chip. First, if the

oscillation period is longer than the sampling period, the fault may not propagate to the output

* before the next change of inputs. Second, if the oscillation period is shorter than the sampling

period, the tester may receive an indeterminate signal that is not guaranteed to indicate a failure.

The wired logic model for bridging faults is still applicable to current technology. A CMOS

circuit with a bridging fault and the corresponding electrical model are shown in Fig. I

[Freeman 86], [Malaiya 861. Simulations done on CMOS circuits show that bridging faults usually

resulted in voltages significantly far from logic thresholds. Intermediate values that could not be

Scorrectly interpreted as a zero or a one were rare. This is due to the high noise immunity typically

found in CMOS. This provides evidence that bridging faults cause wired logic on the involved
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Figure 1. (a) A CMOS bridging fault. (b) The corresponding electrical model.

nodes. It was also found that the wired logic performed depended on the gates driving the bridged

leads. As a result, the present work makes no assumptions as to the logic performed: both AND

and OR bridging faults were simulated for every pair of leads in each circuit.

It must be noted that not all possible bridging faults need be considered. It has been shown

that the detection of one bridging fault can guarantee the detection of another bridging fault, and that

the detection of a stuck-at fault can guarantee the detection of one, or more, bridging faults,

[Mei 74], lAbramovici 83]. In addition, it was shown that bridging faults on the inputs of an

elementary gate are detected by single stuck-at test sets, [Mel 74]. As a result,, the methods of fault

dominance used to reduce the number of stuck-at faults before pattern generation can be used to

reduce the number of bridging faults.

In addition, once a layout of the circuit has been obtained, the list of possible bridging faults

can be significantly reduced.. This results since only those tines that are adjacent or overlapping are

likely to bridge unless all lines in between are also involved. The number of bridging faults left to

consider can be reduced from n2 to 8n, where n is the number of nodes in the circuit [Acken 881.

Since layouts of the circuits studied for this research were not available, bridging faults between all

posble pairs of nodes were considered.

Single stuck-at fault test sets, which can be generated by many efficient algorithms, have

been proposed for use in detecting bridging faults in two ways. The first method is to take an

existing stuck-at test set and deter-mine, through simulation, which bridging faults it detects.I vl 1 P P< '
A S. &



The test vectors are then reordered and/or additional tests are added so that all detectable bridging

faults are found [Mei 741. This method requires extensive computer time since fault simulation

% imust be done for each bridging fault. In addition, each time the test set is reordered, the fault

simulation must be repeated to ensure that a feedback bridging fault does not introduce memory that

prevents it from being detected. The second method is to alter the stuck-at test pattern generator so

that it meets constraints due to the bridging fault problem [Abramovici 83]. These constraints not

only slow down the pattern generator, but several vectors may be generated for the same stuck-at

fault in order to detect bridging faults associated with that node. In addition, since the modified

pattern generator merely follows rules to determine if a bridging fault has been detected by a

stuck-at test, it will not be able to efficiently derive tests for bridging faults after all of the stuck-it

faults have been detected. Thus, neither of the above methods is efficient for VLSI circuits.

0• This paper provides a new, economically feasible method for using stuck-at test sets for the

detection of bridging faults. Bridging faults that tend to be resistant to the stuck-at test sets can be

--" identified by examining the circuit topology and the stuck-at fault simulation results. Therefore,

improved bridging-fault coverage can be attained at a cost only slightly above that of stuck-at test

generation alone.

THE BRIDGING FAULT SIMULATION MODEL

The simulations were done at the gate level between all possible pairs of nodes in each

circuit, where the nodes consisted of all primary inputs and all gate outputs. Figure 2 illustrates the

bridging fault model used for a nonfeedback AND bridging fault. Note that all fanout branches of

V. both leads involved are affected. Since a bridging fault between a stem and a branch is equivalent to.- the bridging fault between the corresponding stems, only faults between stems were considered.

The model of a feedback AND bridging fault is shown in Fig. 3. (Fanout is treated as above,

but is omitted for clarity in the following discussion.) A flip-flop was placed in the feedback loopI: since circuits with feedback loops unbroken by latches or flip-flops required the use of a slow

simulator. To create the impression of a loop without a flip-flop, each test vector was applied three

times in succession. If the value in the flip-flop remained stable for the second and third

% %
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"" Figure 2. (a) An AND nonfeedback bridging fault. (b) The corresponding logical model.
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Figure 3. (a) An AND feedback bridging fault. (b) The corresponding logical model.

applications of the vector, then oscillation could not have occurred in the actual circuit. If the value

in the flip-flop was not stable, the fault was not considered to be detected.

To show that this model describes the behavior of an actual circuit, consider the AND

feedback bridging fault shown in Fig. 3. (The OR feedback bridging fault has a corresponding

proof.) It must be noted that regardless of the state of the circuit when the vector is applied, the
-J

values on lines al,...,an will be stable and unaffected by the bridging fault. In addition, if the input

* x is 0, the output z will become 0 the first time the flip-flop is clocked. It will then remain 0 until

. the input vector changes. This is true for the actual circuit even if it is oscillating before the

. application of the vector. Hence, only the cases where x = 1 need be considered. First, the circuit

, is assumed to be stable (the output is either 0 or 1) before the application of the vector. The cases

where the circuit is oscillating before the application of the vector will be considered next.

0



For convenience, define A = (a l,...,an). There are four cases to examine:

, ..,' (i ) F(0,A) = 0, and F(1,A) = 0.

The output will go to0 since both F(0,A.- 0 and F(1,A) = 0. The first condition is required

since the previous vector may have set z = 0. The output will remain stable since F(O,A) = 0. Only

one application of the vector is required for the model to match the actual circuit.

(ii ) F(O,A) = 1, and F(1,A) = 1.

'. If the previous output was 0, then, since F(O,A) = 1, the output will become 1. If the

previous output was 1, then the output will remain 1 since F(I,A) = 1. In both cases, the output

will then remain stable at 1 since F(1,A) = i Only one application of the vector is required for the

model to match the actual circuit.

P(iii ) F(0,A) = 0, and F(1,A) = 1.

0If the previous output was 0, the output will remain 0 since F(O,A) = 0. If the previous

output was I, the output will remain I since F(1,A) = 1. Again, only one application of the vect.:

is required for the model to match the actual circuit.

(iv ) F(O,A) = 1, and F(1,A) = 0.

If the previous output was 0, then the output will become 1 since F(0,A) = 1. However,

since F(1,A) = 0 the output will now become 0. Hence, the output will oscillate independent of the

initial condition of the circuit Three clockings of the flip-flop are required for the model to oscillate

from 0 to l and back to 0 (or from I to 0 to 1). The first cycle sets up the vector and causes the first

change in value. The second and third cause the output to change twice more. Oscillation is

'I. detected if the outputs after the second and third cycles do not match.

If the single fault in the circuit is a feedback bridging fault, it is possible that the circuit will

oscillate when some, if not all, of the test vectors are applied. When such oscillations occur, the

circuit and model will respond to the next vector as follows:

(i ) and ( ii ) Since the output is not a function of the x input, the oscillation will stop and the new

's output will not be a function of the previous output.

S(iii ) There is no guarantee that the oscillation will stop in the actual circuit. However, the



r oscillation is not self-regenerative since there is no net inversion from x to the output. Hence, given

*- enough time, the output will tend to settle to either 0 or 1. For the purposes of this paper, it is

assumed that the amount of time required for the output to stabilize is less than the clock cycle time

for the circuit. Without this simplification, the model would have been far too complex to be

useful. Since the final value of the output cannot be predicted, when oscillation does occur the

value remaining in the flip-flop after the third cycle is used as the initial value for the next vector.

*(iv ) The oscillations will continue as in case ( iv ) above.

In cases (i), (ii), and (iii), the bridging fault was detected if the final, stable output of the faulty

circuit was different than that of the fault free circuit.

Since dividing all of the possible bridging faults into feedback and nonfeedback groups was a

tedious task, even by computer, all faults were simulated using the feedback model. Although this
I

meant that the nonfeedback faults took longer to simulate, time was saved overall since only one

model was used and all faults could easily be simulated with one command.

RESULTS

Simulations were run on a 16-function ALU (74LS181) , an 8-bit parity tree of two input

XOR gates, and four implementations of a 4-to- I multiplexer. The test sets used for the

simulations, all of which detect 100% of detectable stuck-at faults, are listed in Appendix A. The

undetected faults for each test set are listed in Appendix B along with the list of undetectable faults.

Table 1 shows the results for the 16-function ALU shown in Fig. 4. The table shows that

the variety of test generation methods for stuck-at faults achieved consistent results in detecting

bridging faults. Undetectable bridging faults (such as an OR bridging fault on the input leads of an

OR or NOR gate) were not included in the totals. The shorter test sets did not detect as many

! bridging faults as did the longer test sets. Analysis of the circuit's response to the test sets found

that this was due to the shorter test sets failing to propagate the effect of the bridging faults to a

primary output. It was also found that bridging faults on the outputs of similar gates, which

*perform the same logic function, that have common inputs were difficult to detect.

'%
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Numhcr,, rni i'scd ANI) fault, 22 22 0 0

NuTIIcr , Imfscd ()R tault's 26 1) 0 0

Coverage of AND faulu, (%-) 79.05 79.05 100.00 100.00

Coverage offOR faults (%) 75.24 79.05 100.00 100.00

Total number of each type of fault: 105

An example is a bridge between the outputs of a pair of n input AND gates that share n-I inputs.

Even the pseudo-exhaustive test sets, such as McC4, had trouble detecting these faults if the gates

were not in the same segment. The only fault that McC4 missed was between nodes that were in

"distant" segments. The location of the nodes in distant segments implies that they are not likely to

be physically adjacent on an actual chip. Since it is unlikely that a bridging fault between such

nodes could occur, the test set detected 100% of all detectable probable bridging faults.

Table 2 shows the results for the panity circuit shown in Fig. 5. The Millman test set is

pseudo -exhaustive IMcCluskey 861. The Mourad IMourad 86) test set was designed to detect all

single and double stuck-at faults. The Bossen (Bossen 701 test set consists of four vectors that

exhaustively test every XOR gate in the circuit detecting 100% of the single stuck-at faults. This

test cause,, cach line to take on one of three po)ssible pattern sets. As a result, for 30 pairs of nodes
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in the circuit, the two nodes always have equal values. Since the Bossen test resulted in the output

sequence 0011, the Bossen2 sequence was created so that the output sequence became 0101. This

ordering was desired since it was expected that feedback bridging fault coverage would be higher if

the outputs of the circuit changed more than once during the test set. This expectation, which

proved true, is due to the feedback fault causing the circuit to remain in a specific state no matter

how the inputs changed. If the outputs of the circuit in the fault free case don't change, then the

fault will not be detected.

0X

x2 =I

,,." x3

"- x4

x5. ... x6 =

Figure 5. The parity tree.

For example, Fig. 6 shows an OR gate with an OR feedback bridging fault. An exhaustive

test of the OR gate can be applied in 24 different orders, two of which are shown. For the first

ordering, the fault will not be detected since the output in the presence of the fault is identical to the

fault-free output. Here, the output value changes only once. The second ordering causes the

.- fault-free output to change twice, thereby detecting the bridging fault when it latches the output to 1.

• While the Bossen test detected all of the bridging faults between leads whose logical values

differed at least once, it missed most of the faults between leads whose values never differed. This

included all 22 nonfeedback faults of each type between such nodes. The Bossen2 test set detected

all of the feedback faults but missed all 22 nonfeedback faults between nodes that never differed.

This demonstrates that ultra-short test sets may not do well in detecting nonfeedback bridging faults

since activation of the faults is not as likely to occur as in longer test sets. Feedback faults tend to

be detected when the nodes of the circuit toggle several times during the application of the test set.

0.
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Figure 6. An OR feedback bridging fault for which the order of tests is important

Tables 3 and 4 list the results of the simulations for the two- and four-level multiplexer

circuits, respectively. The four implementations of the multiplexer are shown in Fig. 7. The mux 1

test set is the standard, minimum length, walking zero, walking one multiplexer test set [Makar 87].

Mux2 consists of the same vectors reordered so that the output alternates between zero and one in

order to improve feedback coverage. Two pseudo-exhaustive test sets were created following the

guidelines discussed below. Mux3 was used for the two level multiplexers and mux4 for the

four-level circuit.

Table 3. Simulation results for the two-level multiplexers.

AND/OR NAND

, Test sets mux I mux2 mux3 mux I mux2 mux3

Number of test vectors 8 8 12 8 8 12
Number of missed AND faults 0 0 0 0 0 0

Number of missed OR faults 4 0 0 0 0 0

Coverage of AND faults (%) 100.00 100.00 100.00 100.00 100.00 100.00

Coverage of OR faults (%) 94.44 100.00 100.00 100.00 100.00 100.00

Total number of each type of fault: 78

,!
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For both two-level implementations and the four-level AND/OR circuit, mux2 caught 100%

of the detectable faults. Muxl failed to catch four OR feedback faults in both AND/OR

implementations since the output changed only once. The four-level NAND circuit provided

problems for both mux I and mux2. The number of possible vectors that could detect the

Table 4. Simulation results for the four-level multiplexers.

AND/OR NAND
Test sets mux I mux2 mux4 mux I mux2 mux4

Number of test vectors 8 8 16 8 8 16

Number of missed AND faults 0 0 0 12 12 0

Number of missed OR faults 4 0 0 4 4 0

Coverage of AND faults (%) 100.00 100.00 100.00 90.91 90.91 100.00

* Coverage of OR faults (%) 96.92 100.00 100.00 97.04 97.04 100.00

Total number of each type of fault: 136

undetected nonfeedback bridging faults was typically 8 or 12. Since the test sets had only 8 of the

64 possible vectors, the probability was high that none of the detecting vectors were contained in

the test sets. This leads to two conclusions. Minimum length test sets achieved excellent coverage

of feedback faults, but, as shown above, their coverage of nonfeedback faults is poor. Second, the

idea of "functional testing", shown to be inadequate for stuck-at faults in [Sakov 871, is also

inadequate for detecting bridging faults. In contrast, the pseudo-exhaustive test sets caught all

detectable bridging faults.

Bridging faults unlikely to be detected by a stuck-at test set can be identified as follows.

Nonfeedback bridging faults between leads whose logical values rarely, if ever, differ are difficult

to detect. Feedback faults are less likely to be detected if leads seldom change value during the

application of the test set. These leads can be identified during fault-free simulation of the stuck-at

test set. By counting how many times a lead toggles, and whether it always, or nearly always,

o-toggles at the same time as any other leads will allow these bridging faults to be identified without

doing fault simulations. Simulators that perform toggle counting are currently used to estimate fault

~r Pr
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(a) The two-level AND/OR multiplexer.
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(b) The two-level NAND multiplexer.

* Figure 7. The four multiplexer implementations.

coverage and could be adapted to identify bridging faults that are difficult to detect. Bridging faults

between outputs of similar gates that share inputs are a subset of the bridging faults between leads

whose values rarely differ since such outputs will tend to be the same. However, these faults are

easily identified by examining a logic diagram of the circuit.
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"' (d) The four-level NAND multiplexerFigure 7. (Continued)

.-

" A NEW PSEUDO-EXHAUSTIVE APPROACH FOR BRIDGING FAULTS

The experience gained from simulating the above cicishas sonthat pseudo-exhaustive

.', test sets that detect most, if not all, bridging faults can be generated easily. Since pseudo-

~exhaustive tests will detect any fault within a segment that does not introduce state, all nonfeedback

.

', faults within each segment will be detected. If the segments are well chosen, there will be few

' , nonfeedback faults between segments that need attention. Hence, the majority of bridging faults

that are of concern are feedback faults. Since fault simulation is unneessary for the stuck-at faults
A.

PL.).5.A k.
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when using pseudo-exhaustive testing, fault simulation need only be done for those feedback

* bridging fault s that may be difficult to detect.

usdAfter choosing the segments for the circuit under test, the following procedure should be

use to create a pseudo-exhaustive test set. First, generate the test patterns for each segmentL

Second, whether the segments are to be tested serially or in parallel, do not allow inputs to the

circuit to always have the same values. The reason for this is shown in Fig. 8 where a bridging

fault between w and y will go undetected even though both segments are exhaustively tested.

Hence, the circuit and segment inputs should go through all possible combinations, as often as

possible, whether they drive the same segment or not. It is shown below that w = y' is not

* sufficient to guarantee good coverage. Finally, the vectors should be ordered so that all the nodes

* change value as often as possible, with preference given to the segment outputs. This can be

achieved since the test set does not need to test one segment, then a second segment, then a third,

etc. Once they have been created, the vectors can be applied in any order. Hence, a random

ordering of the vectors, with adjustments following a fault-free simulation of the circuit, can result

in a good test set for bridging faults.

segment 1

segment 2

Figure 8. Two segments with inputs that always have the same value (w and y).

For example, in the McC4 test set for the ALU, the farst 108 vectors test the right half of the

circuit while the final sixteen test the left half. For the final sixteen patterns, it would be possible to

set all of the A inputs to the same value and still detect 100% of all stuck-at faults. H-owever, thc
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coverage of bridging faults would be low since all of the bridges between these inputs would have

gone undetected. In addition, this causes the outputs of second level gates in different segments to

-' take on the same values thereby preventing bridging faults between those outputs from being

detected. The original pseudo-exhaustive test set, McCI, which had the A inputs as well as the B

inputs tied together for the final sixteen vectors, achieved lower results than McC4.

Even when segments are being tested in parallel, the inputs of the separate segments should

differ often, and should not be related. When McC3 was created from McC1 by removing the

restriction on the A and B inputs, it was found that several easily detected bridging faults were still

missed. Two reasons were found that caused this reduction in coverage from the ideal: First, txo

segments in the right half of the circuit shared many, but not all, inputs. Two of the unshared

inputs were always the logical complement of each other during the first 108 vectors. As a result.

several faults between the segments between the outputs of similar gates with many shared input%

went undetected. By changing the order of the inputs to one of the segments - a relatively easy t:. '.

- the problem was solved. The second reason found was that not all of the inputs to separate

segments were going through all possible combinations as in the example in Fig. 8. Again,

changing the order of the tests for some of the segments solved the problem.

Table 5. Comparison of pseudo-exhaustive test for the ALU.

Test sets McCl McC3 McC4

Number of test vectors 124 124 124

Number of missed AND faults 25 3 0

Number of missed OR faults 16 7 1

Coverage of AND faults (%) 99.15 99.90 100.00

Coverage of OR faults (%) 99.45 99.76 99.97

Total number of each type of fault: 2926

*0

,- lpI 
•

' %
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McC4, the result of these changes to McC3, performed extremely well. It missed only one

bridging fault: an OR feedback bridging fault between distant gates in different segments.U: A comparison of the results for the three pseudo-exhaustive tests is shown in Table 5. This

technique was also used in creating the test sets for the multiplexers. As seen in Tables 3 and 4,

these test sets were quite successful.

CONCLUSIONS

This research has shown that stuck-at test sets can provide over 98% coverage of both AND

and OR bridging faults in typical circuits. The results may be lower for extremely regular circuits or

ultra-short test sets. However, these results are not adequate for today's VLSI circuits. Pseudo-

exhaustive test techniques are well suited for detecting bridging faults since they result in extremely

high coverage of those faults while guaranteeing 100% detection of stuck-at faults. Bridging fault

coverage can be increased by doing fault simulation and test generation for bridging faults that are

identified as hard to detect. These bridging faults occur between nodes that rarely, if ever, differ, or

that seldom change value. In addition, if the nodes in the fault-free circuit toggle often, feedback

faults are easier to detect- This is true even if the nodes involved always have equal values.

Methods for identifying such nodes have been presented. These methods use results available from

fault-free simulations. A simple solution is to randomly reorder the test vectors to increase toggling

and therefore increase bridging fault coverage. As a result, computer time for test generation will be

only slightly greater than the time required for stuck-at fault generation alone.
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Appendix A: The Test Sets

design: multiplexer design: multiplexer
test set: muxl test set: mux4
author: S. Makar (Makar 87] author: S.D. Millman
method: functional test method: pseudo-exhaustive

ssaaaa ssaaaa
103210 103210

1: 001110 1: 000000
, 2: 011101 2: 000001

3: 101011 3: 001110
4: 110111 4: 001111
5: 000001 5: 010000
6: 010010 6: 011101
7: 100100 7: 010010
8: 111000 8: 011111

9: 100000
10: 101011

-11: 100100
design: multiplexer 12: 101111
test set: mux2 13: 110000
author: S. Makar [Makar 87] 14: 111000
method: functional test 15: 110111

------------------------------- 16: 111111
ssaaaa
103210

1: 001110 design: parity
2: 000001 test set: Bossen
3: 011101 author: D.C. Bossen [Bossen 701
4: 010010 method: exhaustive test of
5: 101011 each gate
6: 100100

%7: 110111 XXXXXXXx
8: 111000 76543210

1: 00000000
-- 2: 01110111
design: multiplexer 3: 10011101
test set: mux3 4: 11101010
author: S. Millman and S. Makar
method: pseudo-exhaustive

ssaaaa design: parity
* 103210 test set: Bossen2

,- - author: D.C. Bossen [Bossen 70]
1: 000000 method: exhaustive test of

* - 2: 010000 each gate

3: 100000
4: 110000 xxxxxxxx
5: 001110 76543210
6: 000001
7: 011101 1: 00000000
8: 010010 2: 01010111
9: 101011 3: 10111101

10: 100100 4: 11101010
11: 110111
12: 111000

0
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design: parity test set: Bryant2 (cont.)
test set: Millman
author: S. Millman ssssbbbbaaaa c
method: pseudo-exhaustive 321032103210mn

. xxxxxxxx 10: 01001111111110
76543210 11: 01001000111111

-- - - - 12: 11101011100011
1: 00000000 13: 10010110100011
2: 00000001 14: 11011000100110
3: 00000010
4: 00000011

,, -5: 00000100-- - - - - - - - - - - - - - -

V6:0000100 design: ALU
7: 00001100 test set: Bryant6
8: 00010000 author: R. Bryant (Hughes 85]
9: 00100000 method: test pattern generation

10: 00110000 program
11: 01000000
12: 10000000 ssssbbbbaaaa c
13: 11000000 321032103210mn

1: 10100111110001
-2: 11100011001001

* design: parity 3: 01001110111000
test set: Mourad 4: 01010000001100
author: S. Mourad [Mourad 86] 5: 10011011010101
method: augmentation of Bossen 6: 11100101100011

7: 01111101100100
xxxxxxxx 8: 10010000110100
76543210 9: 10100100001001

10: 01111111010001
1: 11101010 11: 01101011010110
2: 01111101 12: 10011000110011
3: 10010111

_.- 4: 00000000
5: 01001011
6: 11100101 design: ALU
7: 11001110 test set: Goel

author: P. Goel [Hughes 85]
method: test pattern generation

"- -- program
design: ALU
test set: Bryant2 ssssbbbbaaaa c
author: R. Bryant [Hughes 85] 321032103210mn
method: test pattern generation

program 1: 10011000010010
-- 2: 00100001000001

ssssbbbbaaaa c 3: 00000001001010
321032103210mn 4: 11001111100000

- - --" 5: 00011101011001
1: 00101000000001 6: 01110000100011
2: 00101000100001 7: 11100001000111
3: 10100111110001 8: 00010110000001
4: 10100110001101 9: 10010111001000
5: 01100011101000 10: 11110100110001
6: 10011001011101 11: 11111000100001
7: 01011101100100 12: 100100010011
8: 01011100111001 13: 10110000001111
9: 11010111000000 14: 01101101000110

H.
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Z. - .--test set : Goel (Cont.) test set: Hughes (cont.)

ssssbbbbaaaa c ssssbbbbaaaa c
321032103210mn 321032103210mn

'"15: 01100000000110 24: 01111101101000
"-"16: 10101001101101 25: 00111101110100
"[""17: 11100010000011 26: 00011110110110

.

',18: 01001011001000 27: 00001110111011
S19: 01000000001000 28: 11000111111111

20: 01110000010011 29: 10100111011001
''21: 01111100010000 30: 10010011011010
"' 22:i11010010001000 31: 01001011001101
S23: 10100000101000 32: 11100001101000
. 24: 01101011100001 33: 01110101000100
u25: 10100110011001 34: 00111000010110

26: 10101110110000 35: 00011010100011
, 27: 11101010101001 36: 11001100101111
S28: 10101001100000 37:i10100101110101
... 29: 10101011101001 38: 10010110010000
,'30: 10001101110000 39: 01001010011000
:.,31: 10101010100000 40: 00100011101000
,32: 01100101001111 41: 00010101001100

33: 10100110010100 42: 00001001010110
34: 10100101010000 43: 00000010100111

.. 35: 10100011001011 44: 11000100001101
- 5: 0100001010100
... 46: 01010010000110

. "- - - - - - -- 4 7 : 0 0 1 0 1 0 0 0 0 0 1 0 1 1
15design: ALU 48: 11010001100111
16test set: Hughes 49: 00101100000001

author: J. Hughes [Hughes 85 50: 0010000110110
method: pseudo-random 51: 01001110000011

19:- 01000000001000 52: 11100000111111
2:1sss1bbbbaaaa c 53: 10110111000101
2"013210321000n 54: 10011000011000

22:-1101001000100 55: 01001011100000
23: 111 1100011 56: 00100100101100
2: 10111111111001 57: 00010101010010

3: 10011111111010 58: 00010101001011
4: 01001111111101 59: 110000101100
5: 11100111111000 60: 01100101001010

26: 01110111011100 61: 00110001010101

8: 00011011101111 63: 01101000101000
9:11001101101001 4: 00110101101000

30: 10100101110010 65: 00011100010100
33: 01010110010101 66: 00001010110010

- 12: 1011010011100 67: 0000010101001
13: 01110011101010 68: 11000101011110

" 14: 00111101001101 69: 0110001101011115:511011001110000 70: 11110010001001
16:601101110100100 71: 10111001001110
17:400110100111010 72: 01011001100111
18: 00011111010001 73: 01001100001

t 19: H001010111010 74: 10110100110110
eto 20: 01100111101001 75: 01011110010011

ba521: 1111010101010111111
P 22: 01111011010101 77: 10110111101101

23: 1011010101000 78: 10011101011000
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ten: ~tjt: Huges (cant .) test set: Hughes (cont.)

ssssbbbbaaaa c ssssbbbbaaaa c
321032103210mn 3 2 1032103210mn

79: 01001011110100 134: 1:000111011011

80: 00100110101110 135: 10100011011011
81: 00001010011011
82: 11001011010011
83: 10100010101011 method: -[ --ghe--85]
84: 10011010001111 design: ALU
85: 1111001010001 test set: Krish
86: 10000010100010 author: B. Krishnamurthy
87: 01000100001001 [Hughes 85]
88: 0101U001010110 method: test pattern g:neration
89: 01110010000111 program
90: 11111000001101 2:-01011111111100
91: 0111001100100 Ssssbbbbaaaa c
92: 01011100100110 321032103210mn
93: 00101100110011 5:-01010000100011

0 94: 11010110110111 1: 01011111000001
95: 10101110011101 2: 01011111111100
96: 10010011111100 3: 01011110000101
97: 01001111001110 4: 01011100001001
98: 001000011111 1 5: 01010000100011
99: 1010111000001 6: 0101100011110

100: 10101000011010 7: 010100000011001'- 01: 01010011100001 8: 10100001000000

102: 11101100001010 9:10100010110000
103: 01110001110001 10: 10100101001100
104: 11111110000010 1: 10101110111110
105: 01111000111001 12: 10101011001111
106: 0111111111000107: 01111100111111
108: 11111111110101-- - - - - - - - - - - - - - -
109: 10111110111000 design: ALU
11 I0: 01011111111000 test set: McCI
111: 00101111111100 author: E.J. McCluskey
112: 00010111111110 (Hughes 85]
113: 00001111011111 method: pseudo-exhaustive
114: 11000011111001
115: 10100111001010 ssssbbbbaaaa c
116: 01010001011101 32 10 32103210mn
117: 11101011000000
118: 01110000101100 1: 10101000011100
119: 00111101000010 2: 10100000011101
120: 00011000110101 3: 10101000111111

* 121: 11001110100100 4: 10101000111110
122: 01100100111010 5: 10101001011000
123: 00110111010001 6: 10100001011001
124: 11011010011010 7: 10101001111011
125: 01101011101001 8: 10101001111010
126: 11110101101010 9: 10101001011100
127: 01111101010101 10: 10100001011101

• 128: 11111010110000 11: 10101001111111
129: 01111110101000 12: 10101001111110
130: 00111101111000 13: 10101010010100
131: 00011111110100 14: 10100010010101

% 132: 00001110111110 15: 10101010110111
%w, 133: 00000111111011 16: 10101010110110
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MCcI (cont.) test set: McCI (cont.)

sssbbbbaaaa c sssnbbbbaaaa c
321032103 2 10n 3 2 1032103210rrn-- -- - -- - -- - ---- - - - - - -

17: 10101011010000 72: 10101111101110
18: 10100011010001 73: 10101100011100
19: 10101011110011 74: 10100100011101
20: 10101011110010 75: 10101100111111
21: 10101011010100 76: 10101100111110
22: 10100011010101 77: 10101101011000
23: 10101011110111 78: 10100101011001
24: 10101011110110 79: 10101101111011
25: 10101010011100 80: 10101101111010
26: 10101010011101 81: 10101101011100
27: 0101010111111 82: 10100101011101

128: 0101010111110 83: 10101101111111

30: 10101010110010 85: 1010111001010029: 10101011011000 84: 1010110111111030: 10100011011001 5: i0101110010100

31: 10101011111011 86: i0100110010101
32: 10101011111010 87: i0101110110111

. 33: 10101011011100 88: 10101110110110
' 34: 10100011011101 89: 10101111010000

35: 10101011111111 90: 10100111010001
, 36: 10101011111110 91: 10101111110011

37: 10101100001100 92: 10101111110010
38: 10100100001101 93: 10101111010100
39: 10101100101111 94: 10100111010101
40: 10101100101110 95: 10101111110111
41: 10101101001000 96: 10101111110110
42: 10100101001001 97: 10101110011100
43: 10101101101011 98: 10100110011101
44: 10101101101010 99: 10101110111111
45: 10101101001100 100: 10101110111110
46: 10100101001101 101: 10101111011000
47: 10101101101111 102: 10100111011001
48: 10101101101110 103: 10101111111011
49: 10101110000100 104: 10101111111010
50: 10100110000101 105: 10101111011100
51: 10101110100111 106: 10100111011101
52: 10101110100110 107: 10101111111111
53: 10101111000000 108: 10101111111110
54: 10100111000001 109: 00000000000010
55: 10101111100011 110: 00000000111110
56: 10101111100010 111: 00001111000010
57: 10101111000100 112: 00001111111110

0 58: 10100111000101 113: 01010000000010
59: 10101111100111 114: 0101000011111C
60: 10101111100110 115: 01011111000010
61: 10101110001100 116: 01011111111110
62: 10100110001101 117: 10100000000010
63: 10101110101111 118: 10100000111110
64: 10101110101110 119: 10101111000010
65: 10101111001000 120: 10101111111110
66: 10100111001001 121: 11110000000010
67: 10101111101011 122: 11110000111110
68: 10101111101010 123: 11111111000010

[ 69: 10101111001100 124: 1111111111111070: 0100111001101

71: 10101111101111

ev
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design: ALU test set: McC3 (cont.)
test set: McC3
author: E.J. McCluskey ssssbbbbaaaa c
method. pseudo-exhaustive 321032103210mn

ssssbbbbaaaa c 53: 10101111000000
321032103210mn 54: 10100111000001

- - -- 55: 10101111100011
1: 10101000011100 56: 10101111100010
2: 10100000011101 57: 10101111000100
3: 10101000111111 58: 10100111000101
4: 10101000111110 59: 10101111100111
5: 10101001011000 60: 10101111100110
6: 10100001011001 61: 10101.110001100
7: 10101001111011 62: 10100110001101
8: 10101001111010 63: 10101110101111
9: 10101001011100 64: 10101110101110

10: 10100001011101 65: 10101111001000
11: 10101001111111 66: 10100111001001
12: 10101001111110 67: 10101111101011
13: 10101010010100 68: 10101111101010
14: 10100010010101 69: 10101111001100

% 15: 10101010110111 70: 10100111001101
16: 10101010110110 71: 10101111101111

_ 17: 10101011010000 72: 10101111101110
18: 10100011010001 73: 10101100011100
19: 10101011110011 74: 10100100011101
20: 10101011110010 75: 10101100111111
21: 10101011010100 76: 10101100111110
22: 10100011010101 77: 10101101011000
23: 10101011110111 78: 10100101011001
24: 10101011110110 79: 10101101111011
25: 10101010011100 80: 10101101111010
26: 10100010011101 81: 10101101011100

N 27: 10101010111111 82: 10100101011101
28: 10101010111110 83: 10101101111111
29: 10101011011000 84: 10101101111110

ir 30: 10100011011001 85: 1010111001010031: 10101011111011 
86: 10100110010101

32: 10101011111010 87: 10101110110111
p 33: 10101011011100 88: 10101110110110
. 34: 10100011011101 89: 10101111010000

35: 10101011111111 90: 10100111010001
36: 10101011111110 91: 10101111110011
37: 19101100001100 92: 10101111110010
38: 10100100001101 93: 10101111010100
39: 10101100101111 94: 10100111010101
40: 10101100101110 95: 10101111110111
41: 10101101001000 96: 10101111110110
42: 10100101001001 97: 10101110011100
43: 10101101101011 98: 10100110011101
44: 10101101101010 99: 10101110111111

LOA 45: 10101101001100 100: 10101110111110
46: 10100101001101 101: 10101111011000
47: 10101101101111 102: 10100111011001
48: 10101101101110 103: 10101111111011
49: 10101110000100 104: 10101111111010
50: 10100110000101 105: 10101111011100
51: 10101110100111 106: 10100111011101
52: 10101110100110 107: 10101111111111

VP"'



test set: McC3 (cont.) test set: McC4 (cont.)

ssssbbbbaaaa c ssssbbbbaaaa c
3 2 1032103210mn 3 21032103210mn

108: 10101111111110 27: 1010101011101
109: 10001100011010 28: 10101010111110
110: 10000110001110 29: 10101011011000
111: 10000011100110 30: 10100011011011
112: 10001001110010 31: 10101011111001
113: 11101100011010 32: 10101011111010
114: 11100110001110 33: 10101011011100
115: 11100011100110 34: 10100011011111
116: 11101001110010 35: 10101011111101
117: 00111100011010 36: 10101011111110
118: 00110110001110 37: 10101100001100
119: 00110011100110 38: 10100100001111
120: 00111001110010 39: 10101100101101
121: 01011100011010 40: 10101100101110
122: 01010110001110 41: 10101101001000
123: 01010011100110 42: 10100101001011
124: 01011001110010 43: 10101101101001

44: 10101101101010
45: 10101101001100

-- 46: 10100101001111
design: ALU 47: 10101101101101
test set: McC4 48: 10101101101110
author: E.J. McCluskey and 49: 10101110000100

S.D. Millman 50: 10100110000111
method: pseudo-exhaustive 51: 10101110100101
-- 52: 10101110100110

ssssbbbbaaaa c 53: 101111000000
32 1032103210mn 54: 10100111000011

- -- 55: 10101111100001
1: 10101000011100 56: 10101111100010
2: 10100000011111 57: 10101111000100
3: 10101000111101 58: 10100111000111
4: 10101000111110 59: 10101111100101
5: 10101001011000 60: 10101111100110
6: 10100001011011 61: 10101110001100
7: 10101001111001 62: 10100110001111
8: 10101001111010 63: 10101110101101
9: 10101001011100 64: 10101110101110

10: 10100001011111 65: 10101111001000
11: 10101001111101 66: 10100111001011
12: 10101001111110 67: 10101111101001

* 13: 10101010010100 68: 10101111101010
14: 10100010010111 69: 10101111001100
15: 10101010110101 70: 10100111001111
16: 10101010110110 71: 10101111101101
17: 10101011010000 72: 10101111101110
18: 10100011010011 73: 10101100011100
19: 10101011110001 74: 10100100011111
20: 10101011110010 75: 10101100111101
21: 10101011010100 76: 10101100111110
22: 10100011010111 77: 10101101011000
23: 10101011110101 78: 10100101011011
24: 10101011110110 79: 10101101111001

, 25: 10101010011100 80: 10101101111010
26: 10100010011111 81: 10101101011100

S *.~-. ''..-.e
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test set: McC4 (cont.) design: ALU

test set: miczo2ssssbbbbaaaa c author: A. Miczo [Hughes 85]3 2 103 210321Omn method: compressed random
- -_-------------------------------------------------

82: 10100101011111 ssssbbbbaaaa c
83: 10101101111101 3 2 103 2 103210mn
84: 10101101111110
85: 10101110010100 1: 10010110011001V 86: 10100110010111 2: 10011100110001
87: 10101110110101 3: 10011000100000
88: 10101110110110 4: 10010100110001
89: 10101111010000 5: 1001001011100190: 10100111010011 6: 10010001111101
91: 10101111110001 7: 1001000111100092: 10101111110010 8: 10010000111101
93: 10101111010100 9: 10011110000000
94: 10100111010111 10: 01101010100100
95: 10101111110101 11: 01100101011001
96: 10101111110110 12: 01101111001101
97: 10101110011100 13: 01001100000011
98: 10100110011111 14: 01100000110001
99: 10101110111101 15: 10010001110101

100: 10101110111110 16: 10010001101100
101: 10101111011000 17: 10011000111101

* 102: 10100111011011
103: 10101111111001
104: 10101111111010
105: 10101111011100
106: 10100111011111
107: 10101111111101
108: 10101111111110
109: 00000000000010
110: 11111111111110
111: 11100010110010
112: 11101001001010
113: 11100100000110
114: 10011001101010
115: 10011100010110
116: 10010110101010
117: 10010011010110
118: 00111010010110
119: 00110101101010
120: 01000111100110
121: 01001101011010
122: 01001010111110

6 123: 01110000000010
124: 00101111111110

,%
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Appendix B: Missed and Undetectable Faults

The circuits used for the simulations are repeated below with all of the nodes used fr

bndging faults labeled. The lists of undetected and undetectable faults follow.

sl x5 x7

aO xO

",.- X 1 ... x9
al 

&

x2
,:.:2 &

* - x3
a3 a3

.... xl6

(a) The two-level AND/OR multiplexer.

'.'sl x5x

aO &

a!

01

a3 &

¢' x4
.PSO x6

-'I,(b) The two-level NAND multiplexer.

Figure 9. The four implementations of the multiplexer.
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+ x12

alx

a3 x 
i 1

(c) The four-level AND/OR multiplexer.

al x14

x2X9& x1
a2 &__ 10&Z

x3__r L 1 S
a3& a x3

(d) The four-level NAND) multiplexer.

Figure 9. (Continued)

a-5

x

Figure 10. The parity tree.
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,,noen2 "muxl mux2
%r mn missed missed two-level four-level

PND3 OR3 ORs AND/OR NAND
... - - missed ORs missed ORs

x0 x4 xO x4 xO x4 x8 x12 x0 xl0x0 x~l x0 xll x0 xll x9 x12 X1 xll

X1 x5 xl x5 X1 x6 x0 x12 x2 x8
xl x6 xl x6 X1 x9 xll x12 x3 x9
xl x9  X1 x9 X1 x10
xl x13 xl x13 x2 x4
x2 x4 x2 x4 x2 xll
x2 xll x2 xll x3 x5 muxl mux2
x3 x7 x3 x7 x3 x7 four-level four-level
x3 x8 x3 x8 x3 x8 AND/OR NAND
x3 xl0 x3 xl0 x3 x13 missed ORs missed ANDs
x4 xll x3 x14 x4 xll
x4 x12 x4 xlI x4 x12
x5 x6 x4 x12 x5 x7 x8 x12 x0 xl0x5 x9 x5 x6 x5 x8 x9 x12 x0 xll
x6 x9 x5 x9 xG x9 x14 x16 x1 xl0x7 x8 x6 x9 x6 xl0 X15 x16 x1 xll
x7 xl0 x7 x8 x7 x8 x2 x8
x8 xl0 x7 xl0 x8 x13 x2 x9_ x9 x13 x7 x14 X9 xl0 x3 x8

" xll X12 X8 xl0 xll x12 muxl x3 x9
x8 x14 four-level x8 x13
x9 x13 NAND x9 x13
xl0 x14 missed ORs x10 x12
xll x12 Bossen2 xll x12

missed
ANDs x0 x10

xi xll
x2 x8

xO x2 x3 x9
xO x4
x0 xil
xl x6
x1 x9 muxl
x1 x10 four-level
x2 x4 NAND
x2 x5i missed ANDs

x3 x7

x3 x8 xO x1O
x3 x13 x0 x11
x4 xll x1 xl0
x4 x12 x1 xll
x5 x7 x2 x8
x5 x8 x2 x9
x6 x9 x3 x8
x6 xl0 x3 x9x7 x8 x8 x13
x8 x13 x9 x13
x9 xl0 xl0 x12
xll x12 xll x12

J

"I
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13'u 2 Bryant6 Goel Krish McCI McC3 Miczo2
missed missed missed missed missed missed missed

ADs As ANDs ANDs ANDs ANDs ANDs

t17 t18 t18 t53 t4 t52 tl t3 tl t3 t54 t59 tl t4
t21 t58 t18 t60 t28 t33 t2 t4 t2 t4 t55 t58 t2 t3
t21 t62 t23 t33 t28 t52 t4 t14 t3 t52 t56 t68 t4 t55
t21 t65 t23 t38 t31 t53 t8 t54 t16 t17 t4 t58
t22 t30 t26 t52 t8 t59 t16 t18 t4 t62
t22 t53 t27 t30 t8 t63 t17 t18 t4 t65
t22 t60 t28 t38 t14 t23 t21 t26 t15 t17
t23 t35 t31 t36 t20 t25 t21 t31 t15 t32
t30 t53 t31 t60 t22 t32 t21 t36 t16 t18
t30 t60 t33 t38 t32 t55 t23 t28 t16 t37
t32 t37 t36 t60 t32 t58 t23 t33 t17 t22
t32 t57 t37 t53 t32 t62 t23 t38 t18 t27
t32 t61 t38 t57 t32 t65 t26 t31 t21 t26
t37 t57 t53 t60 t37 t54 t26 t36 t21 t32
t37 t61 t54 t59 t37 t59 t27 t32 t21 t37
t37 t64 t54 t63 t37 t63 t27 t37 t22 t31
t53 t60 t55 t58 t38 t57 t28 t33 t22 t32
t54 t59 t55 t62 t38 t6l t28 t38 t23 t28
t54 t63 t55 t65 t38 t64 t31 t36 t23 t33
t57 t61 t56 t68 t53 t60 t32 t37 t23 t55
t58 t62 t57 t6l t54 t59 t33 t38 t23 t58
t58 t65 t57 t64 t54 t63 t53 t60 t23 t62
t59 t63 t58 t62 t55 t58 t54 t59 t23 t65
t62 t65 t58 t65 t55 t62 t55 t58 t26 t32

t59 t63 t55 t65 t56 t68 t26 t37
t61 t64 t56 t68 t27 t36
t62 t65 t57 t61 t27 t37
t46 t51 t57 t64 t28 t33

t58 t62 t28 t55
t58 t65 t28 t58
t59 t63 t28.t62
t61 t64 t32 t37
t62 t65 t33 t55

t33 t58
t33 t62
t39 t57
t53 t6O
t54 t59
t54 t63

P t55 t58
t55 t62
t58 t62
t58 t65
t59 t63
t61 t64
t62 t65

%6
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Dynt2 i3ryant 6 Goe 1 Krish Kri3h McCI McC3 Miczo2-., ri missed missed missed missed missed missed mis: dORs ORs ORs ORs ORs ORs ORs ORs--- ----------- (cont. ) -------... .....
[ - t 6 t 2 -1 t t 1 5 t l1 0 t 3 3 t l t 3 t 3 t 2 l t

- t8 t23 tl t22 t23 t27 t2 t4 t53 t58 t2 t4 t6 t28 t6 t16
tlO t32 t5 t28 t31 t55 t5 t28 t53 t59 t21 t26 tll t33 t13 t80t12 t37 t8 t28 t33 t53 t6 t8 t53 t60 t21 t31 t12 t38 t15 t]7t21 t58 t9 t27 t33 t54 t6 t22 t54 t58 t2l t36 t55 t58 t16 t18t22 t65 t9 t28 t6 t23 t54 t59 t23 t28 t55 t59 t16 t23t22 t77 t12 t37 t6 t46 t54 t60 t23 t33 t55 t60 t16 t24t30 t53 t12 t38 t7 t33 t55 t58 t23 t38 t21 t26t30 t55 t14 t22 t8 t23 t55 t59 t26 t31 t22 t27t30 t57 t23 t28 t8 t24 t55 t60 t26 t36 ------- t22 t32t30 t58 t23 t49 t8 t27 t57 t8O t26 t8O McC4 t22 t67t30 t60 t26 t54 t8 t28 t58 tSO t28 t33 missed t23 t62t32 t37 t26 t55 t8 t46 t28 t38 ORs t23 t63t32 t57 t28 t33 t9 t37 t31 t36 ------- t27 t37t32 t58 t28 t38 t9 t38 t31 t8o t36 t57e t32 t59 t31 t36 tlO t32 t33 t38 t31 t55 t36 t61t32 t60 t3l t55 tlO t33 t36 t8Ot32 t63 t31 t57 tll t32 t37 t62t32 t76 t31 t58 t12 t33
t33 t52 t33 t37 t12 t37

* t33 t53 t33 t3e t12 t38
t33 t54 t36 t57 t13 t7l
t33 t55 t37 t52 t15 t72
t33 t76 t37 t53 t20 t25
t36 t74 t37 t54 t21 t80
t37 t57 t37 t55 t22 t44
t37 t58 t37 t57 t22 t52
t37 t59 t37 t58 t22 t54

* t37 t60 t37 t59 t22 t55
" t37 t65 t37 t60 t22 t57- t37 t72 t37 t62 t22 t58
° t53 t59 t37 t65 t22 t59

t53 t6O t37 t74 t22 t71
t54 t59 t37 t76 t23 t28
t54 t60 t53 t58 t23 t29

t53 t59 t24 t46
t53 t60 t27 t53
t54 t58 t27 t54
t54 t59 t27 t55
t54 t60 t28 t33
t55 t58 t32 t52
t55 t59 t32 t53* t55 t60 t32 t54
t5- t80 t32 t55

t32 t57
t32 t58
t32 t59
t32 t60
t32 t76O t33 t38
t33 t39
t35 t52
t35 t53
t37 t51
t38 t51

9%
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-- -------------- ------------

Undetectable Undetectable Undetectable
OR faults in AND faults in OR faults inthe two-level the four-level the ALU
AND/OR NAND
multiplexer multiplexer

t20 t2l
t22 t23x8 x9 x7 x12 t22 t24

x8 xl0 x8 x9 t23 t24
* x8 xll xl0 xll t25 t26

x9 xl0 x14 x15 t27 t28
x9 xll t27 t29
xl0 xl t28 t29

- -- t30 t31
Undetectable t32 t33OR faults in t32 t34

Undetectable the four-level t33 t34AND faults in AND/OR t35 t36
the two-level multiplexer t37 t38
NAND t37 t39
multiplexer t38 t39- - x7 x13 t52 t53

t52 t548 x~x9 t52 t55
Sx8 xl0 t53 t54

x6 xll t53 t55x9 xl0 t54 t55
x9 xll t57 t58
xl0 xll t57 t59

t57 t60
t58 t59
t58 t60Undetectable t59 t60

. AND faults in t61 t62
*." the four-level t61 t63

AND/OR t62 t63

. multiplexer t64 t65

x7 x12

Undetectable
OR faults in

. the four-level
*AND/OR

multiplexer

* x7 x10
x7 xll

* x7 x13
x8 x9
x10 xll
x14 x15

Ie
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