
M-Afl K? TUTORIAL ON 8AiS (GEIERALIZED RLGE IC NOOILIn 1/1
SYSTEM): A NODELING LMUU FOR OPTINIZRTION(U) NAVAL
POSTORISTE SCHOOL MONTEREY CA R E ROSENTHAL JAN n

UNCLASSIFIED E SSNSOS F/O 12S ML t

EEEEEEEEEEEEEEEEEEEEEEEEEEE

1.88

i~e oUz, %rr 1.1 LM " Wk 2.0LnR

NPS55-88-001

00 4-NAVAL POSTGRADUATE SCHOOL
Monterey, California

OTI

D3TIC

TUTORIAL ON GAMS: A MODELING
LANGUAGE FOR OPTIMIZATION

RICHARD 1. ROSENTHAL

JANUARY I98,1
Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School
Monterey, CA 93943-5000

8 ;.I 4 u,5.5....,

,' p ** \ S - . -

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral R. C. Austin K. T. Marshall
Superintendent Acting Provost .d

.J.
'.

Reproduction of all or part of this report is authorized.

This report was prepared by:

" ICHARD E. ROSENTHAL % '

Associate Professor of
Operations Research ..

,'I

Reviewed by: Released by: .

p..

PETERURIC ARD .FROEMNTA

Professor and Chairman A i a f Inormato and

Department of ~Operations Research ySens

. A.

__ (2 ___

,,', *% # m". , "." " " " """PETER -" """" " "* PU D E-A S' T. FREM" " "" "" ," ""." '- ° * "4."" " - "" "

SEUITYCLS P (A'A. -)r~~~ ~~ . ~ ~ ~ J~' v.~~

REPORT DOCUMENTATION PAGE
la REO TSC -v(aSS C,% Q! S TR (E VA~R

UNCLASSIFIED_________________________

2bSECT ALTSYF C N "0' V C q-) - Approved for public elease distribution is 0
4a PER1"Y% C RA% PEC)N A. V ("RNS

6a NAVE OP PERFOPV NO -i;2'. N R-3- Cn "'C , AE c". C0 '.C O 'CAN ZA O1.

Naval Postgraduate School CodeC~

6(ADD-4ESS City Stare and 2 P Coe _n A ,Cty State and ZIP Code)

Monterey, CA 93943-5000

Ba NAVE OF N?%D %G)';OSOP 8Cn'~C CE SIVN32. 9 '<PNEV, A' NV % E- AO V 9~ R

Bt ADDRESS (Cty State~ anI iP Ce) 0 SO C E 0D %? N % R

PROGRAM P 0 EFC A S.AOQ % NT

*TITLE (include Securtq CU i astaon

TUTORIAL ON GAM~S: A MODELING LANGUAGE F)OR OPTIMIZATION

1_' PERS0%A_ A -,-Q

Rosenthal, Richard E.
'3a T~'P > ~ *.;.1 DAE D REPORT 'Year Month, Day) T

Technical' Report 1988 Jan 39
* 6 SUPPENV'N'A . _.-

i7h) C C 4 E Covlinue on reverse if neceSSary and idenlof bi blnUk numbtr)

Brooke et al ., i s a language for expressing mathematical models in a form that is both
easily understandable to a modeler and processible by a compute'r. For practitioners and
researc'~ers , i t can greatly reduce the time requi red for formulating, documenting, solving
and analyzing lirg-, complex linear, nonlinear and integer programs. For teachers and
students, it is a valuable tool for learning advanced modelinq. This paper is a tutorial
for the beginring 7 ,S use,-.

Cc~ JNCLASSIFIED

Pichard E. Rolenthajl 49)6-19iCoe5R

DDOFORM 1473, A A-',,

-a 0 2O~41

2. _. I

TABLE OF CONTENTS

Introduction . 1

1. Structure of a GAMS Model.....................4

2. Sets...............................6

3. Data................................8
3.1 Data Entry by Lists......................
3.2 Data Entry by Tables...................10
3.3 Data Entry by Direct Assignment 10

4. Variables.............................12

5. Equations...............................13
5.1 Equation*Declaration....................13

a5.2 GAMS Summation (and Product) Notation 13
5.3 Equation Definition....................15

6. Objective Function........................16

7. MODEL and SOLVE Statements...................16

8. DISPLAY Statements........................17

9. The " LO, .L, ULP, .M "Database. 18
9.1 Assignment of Variable Bounds and/or Initial Values . . 18i
9.2 Transformation and Display of Optimal Values 19

10. GAMS Output...........................21
10.1 Echo Print........................21
10.2 Reference Maps.......................23
10.3 Error Messages.......................24
10.4 Equation Listings.....................28
10.5 Model Statistics......................29
10.6 Status Reports.......................29
10.7 Solution Reports......................30

Conclusions..............................32

References..............................34

Nvi ' W4I

p

I .'
A GAM4S TUTORIAL

Introduction

This book1 begins with a simple example of the use of GAMS
for formulating, solving and analyzing an optimization problem. The
example is an instance of the transportation problem of linear
programming, which has historically served as a "laboratory animal" in
the development of optimization technology. It is a good choice for
illustrating the power of algebraic modeling languages like GAMS,
because the transportation problem, no matter how large the instance at
hand, possesses a simple, exploitable algebraic structure. You will
see that almost all of the statements in the GAMS input file we are
about to present would remain unchanged if a much larger
transportation problem were considered.

In the familiar transportation problem, we are given the
supplies at several plants and the demands at several markets for a |
single commodity, and we are given the unit costs of shipping the
commodity from plants to markets. The economic question is: how much
shipment should there be between each plant and each market so as to
minimize total transport cost?

The algebraic representation of this problem is usually
presented in a format similar to the following.

Indices:
i = plants
j = markets

Given Data:
ai = supply of commodity at plant i (in cases)
bj = demand for commodity at market j (cases)
cij = cost per unit shipment between plant i and

matket j ($/case)

Decision Variables:
xij amount of commodity to ship from plant i to

market j (cases), where xij 0, for all i,j

1 This paper will appear as a chapter in the forthcoming book,
GAMS: A User's Guide, by Anthony Brooke, David Kendrick and Alexander
Meeraus, to be published in 1988 by The Scientific Press. The tutorial
refers to other chapters of the forthcoming book as a source of
additional information, but is otherwise self-contained.)

%1

2 /Introduction]

Constraints:
observe supply limit at plant i:

Ej Xij 5 aj, for all i (cases)

Satisfy demand at market j:
Ei Xij ! bj, for all j (cases)

Objective Function: -

minimize Ei~j cijxij (K S

We remark here that this simple example reveals some modeling
practices which we regard as good habits in general and which are
consistent with GAMS's design. First, all the entities of the model
are identified (and grouped) by type. Second, the ordering of
entities is chosen so that no symbol is referred to before it is
defined. Third, the units of all entities are specified, and, fourth,
the units are chosen to a scale such that the numerical values to be
encountered by the optimizer have relatively small absolute orders of
magnitude. (The symbol SK here means thousands of dollars.)

The names of the types of entities may differ among modelers.
* For example, economists use the terms "exogenous variable" and
* "endogenous variable" for "given data" and "decision variable,"

respectively. In GAMS, the terminology adopted is as follows: indices
are called SETS, given data are called PARAMETERS, decision variables
are called VARIABLES, and constraints and the objective function are
called EQUATIONS.

The GAMS representation of the transportation problem cl,3sely
resembles the algebraic representation above. The most important
difference, however, is that the GAMS formi can be read and processed
by a computer.

As an instance of the transportation problem, suppose there
are two canning plants and three markets, with the given data as
follows [Ref. Dantzig).

Markets
New York Chicago Topeka

Plants Shipping Distances Supplies

Seattle 2.5 1.7 1.8 350
San Diego 2.5 1.8 1.4 600

Demands 325 300 275 7

A GAMS TUTORIAL / 3

Shipping distances are in thousands of miles and shipping costs are
assumed to be $90.00 per case per thousand miles.

The GAMS representation of this problem is as follows:

SETS
I canning plants / SEATTLE, SAN-DIEGO /
J markets / NEW-YORK, CHICAGO, TOPEKA /

PARAMETERS

A(I) capacity of plant i in cases
/ SEATTLE 350

SAN-DIEGO 600 /

B(J) demand at market j in cases
NEW-YORK 325
CHICAGO 300
TOPEKA 275 /

TABLE D(I,J) distance in thousands of miles
NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8
SAN-DIEGO 2.5 1.8 1.4 ;

SCALAR F freight in dollars per case per thousand miles /90/

PARAMETER C(I,J) transport cost in thousands of dollars per case

C(IJ) = F * D(I,J) / 1000

VARIABLES
X(I,J) shipment quantities in cases
Z total transportation costs in thousands of dollars ;

POSITIVE VARIABLE X ;

EQUATIONS
COST define objective function
SUPPLY(I) observe supply limit at plant i
DEMAND(J) satisfy demand at market j

COST.. Z =E= SUM((I,J), C(I,J)*X(I,J))

SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;

DEMAND(J) SUM(I, X(I,J)) =G= B(J) ;

MODEL TRANSPORT /ALL/

SOLVE TRANSPORT USING LP MINIMIZING Z

- °

4 / Introduction

DISP AY X. X. .;

If yu tfl: a f e :,)ta.irinj the statements above as input
to the GAMS; progra, --he tr pr-c icn model will be formulated and
solved. Append i, A i e,,:. '-,trict ~ or:s on how to invoke GAMS
on several . C , 7, t'- Elmplest ("no frills") way to
call GAMS is to &:t'i ,C ed by the input file's name 2 .

If all Io -- w, 1 . ,., .pw u :. Ot pUt from GAMS, at the
bottom c(- ,hftch . .', ipn,:<s displayed as follows.

- '- ICi i TOPEKA .4

S EATT! E 2 ,. <.: ,
S AN -E 1 E](' :. .000 "

C ., . ;c ., , ,v - the marginal costs (simplex
multipliezs) L;-:, -. ,

S,. T *.t'+WA

SF1-*S'FAF L.F: :"'

SAA%-D i FT-

.: xaple., that it is optimal to
send nCtir; :-i. -. ;r. f ,, sist on sending one
ca:se it u.. *L t h optimal cost. (Can you

- prove th i '' -, ,tt m i Ihipments and the given
data? 3)

-

V -".h. , ,oa w"I e will. discuss the basic
component: AC. . t) the example above. The 4"

basic r:c,r,

2 :h ; . , r t. the file's type or

extension, -a: choices. For example,
on DOS1- e, , :npi f s ' extension must be
".GMS," . i qng system, the input
file's

,.,c ~poi, t.hen, to maintain

supply, dcae- from San Diego to
Topka,. ,, :- t w k, and one less case
from L;i< 1. , ' , , shipping distance is
+1800 ". , '' I' ,-o"; $36 at the given
sh ipp~n i -....n'

V

- . .- *. 49

A GAMS TUTORIAL / 5

Inputs

Dec Ia rat ion
Assitqnment of members

Data (PARAMETERS, TABLES, SCALARS)
Dec larat ion
'%.ssignment of values

VARIABI ES
Decl sraticn
Assignrment of type
"Ct lonal) assignment of bounds and/or initial

va I !ies
LQ<TA1 IONS

Dec1. au at in "
St i tic, n

MO , , <S-)IE statements
(opt on-'- JSPLA statements

Outplsts

Fchc Print .-
Referenc Maps
Equation Listings
Statu. Pep" rts .4,

Res l] t .

There are optional input components such as edit checks for
bad data, and requests for customized reports of results. Other
optional advanced features inc!.-ude saving and restoring old models, and
creating multiple mode's in a single run, but this tutorial will
discuss only the basic components.

Before treatic; the individual components, we give a few
general remarks.

1. A GAMS vcoc]s a collection of statements in the GAMS
language. The only iu'- , ,E'nnq the ordering of statements is that
an entity of the mzai c,,,nt be referenced before it is declared to
exist.

2. GAMS st t'r'cots may b! aid out typographically in almost
any style that i appcaiinq tr, the user. Multiple lines per
statement, embedded blak lines, and multiple statements per line are
allowed. You will qpe a cood idea of what is allowed from the
examples of the tutorial, p:cise rules of the road are given in
Chapter ##.

3. When you i-' beg,!ninq GAMS user, you should terminate
every statement with a a. in our examples. The rules for
relaxed punctuation are , in chipter ##.

.-*> ' < : , * . m e -49fS *** .4 - - .4 . .*. -,- ". - '. -. \ .- '.-.'-. - -

- ~ ~ ~ ~ ~ V~ - V. 7~ 07. IT ~W.~J .

6 /GANS Model Structure

4. The GAMS compiler does not distinguish between upper and
lower case letters, so you are free to use either. The style adopted
and recommended here is to always use upper case for any word or
symbol which is part of the GAMS language or is an entity declared to
exist in a particular GAMS model. We recommend reserving lower case
for words that appear in the GAMS input for documentation only.

5. Documentation is crucial to the usefulness of mathematical
models. It is all the more useful (and most likely to be accurate) if
it is embedded within the model itself rather than written up
separately. There are at least two ways to insert documentation within
a GAMS model. First, any line that starts with an asterisk in column
1 is disregarded as a comment line by the GAMS compiler. Second,
perhaps more importantly, documentary text can be inserted within
specific GAMS statements. All the lower case words in the
transportation model are examples of the second form of documentation.

6. As you can see from the list of input components above,
the creation of GAMS entities involves two steps: a declaration, and

* an assignment or definition. "Declaration" means declaring the.4
existence and giving a name to something. "Assignment" or
"definition" means giving specific value or form to something. In the
case of EQUATIONS, you must make the declaration and definition in
separate GAMS statements. However, for all other GAMS entities you
have the option of making declarations and assignments in the same
statement or separately.

7. The names given to the entities of the model must start
with a letter and can be followed by up to nine more letters or
digits.

*2. Sets

Sets are the basic building blocks of a GAMS model,
14 corresponding exactly to the indices in the algebraic representations

of models. The transportation example above contains just one SET
statement.

p SETS
I canning plants / SEATTLE, SAN-DIEGO/
J markets / NEW-YORK, CHICAGO, TOPEKA/

The effects of this statement are probably self-evident. We
declared two sets and gave them the names I and J. We also assigned
members to the sets as follows:

I =(Seattle, San Diego

A GAMS TUTORIAL/ 7

J = (New York, Chicago, Topeka).

You should note the typographical differences between the
GAMS format and the usual mathematical format for listing the elements
of a set. GAMS uses slashes rather than curly braces to delineate the
set, simply because not all computer keyboards have keys for curly
braces. Note also that multi-word names like "New York" are not
allowed, so hyphens are inserted.

The lower case words in the SETS statement above are called
"text." Text is optional. It is there only for internal
documentation, serving no formal purpose in the model. The GAMS
compiler makes no attempt to interpret the text, but it saves the text
and "parrots" it back to you at various times for your convenience.

4

It was not necessary to combine the creation of sets I and J
in one statement. We could have put them into separate statements as
fol. lows:

SET I canning plants / SEATTLE, SAN-DIEGO /v

SET J markets / NEW-YORK, CHICAGO, TOPEKA /

The placement of blank spaces and lines (as well as the
choice of upper or lower case) is up to you. Each GAMS user tends to
develop individual stylistic conventions. (The use of the singular SET

or the plural SETS is also up to you. Using SET in a statement that
makes a single declaration and SETS in one that makes several is good
English, but GAMS treats the singular and plural synonymously.)

A convenient feature to use sometimes when you are assigning
members to a set is the asterisk. It applies to cases when the
elements follow a sequence. For example, the following are valid SET
statements in GAMS.

SET T time periods / 1991 * 2000 /

SET M machines / MACHI * MACH24 /

Here the effect is to assign

T = (1991, 1992, 1993, ... , 2000 N.

4 The text must fit on one line and cannot exceed 80 characters in
length. It should not start with one of GAMS's reserved words or
contain any of the following special characters: equal sign, comma,
semicolon or slash (= , ; /)

.1.?

8/Sets

M =(MACH1, MACH2, .. ,MACH24

V Note that set elements are stored as character strings, so the elements
of T are not numbers.

Another convenient feature is the ALIAS statement which is
used to give another name to a previously declared set. In the
following example,

ALIAS (T,TP)

the name TP is like a T-prime in mathematical notation. It is useful
in models that are concerned with the interactions of elements within
the same set.

The sets I, J, T and M in the statements above are examples
of static sets, i.e., they are assigned their members directly by the
user and do not change. GAMS has several capabilities for creating
dynamic sets, which acquire their members through the execution of
set-theoretic and logical operations. Dynamic sets are discussed in
Chapter #. Another valuable advanced feature is multi-dimensional
sets which are discussed in Chapter ##.

3. Data

of he The GAMS model of the transportation problem demonstrates all

oftethree fundamentally dfent orasthat are allowable for
* entering data in GAMS. The three formats are:5

1. lists,
2. tables, and
3. direct assignments.

3.1 Data Entry byLists]

staemntThe first format is illu4strated by the first PARAMETERS
statrentof the example, which is repeated below.

PARAMETERS

A(I) capacity of plant i in cases
/SEATTLE 350
SAN-DIEGO 600/

A GANS TUTORIAL / 9 $

B(J) demand at market j in cases
/ NEW-YORK 325 "

CHICAGO 300
TOPEKA 275/

This statement has several effects. Again, they may be self-
evident, but it is worthwhile to analyze them in detail. The statement
declares the existence of two parameters, gives them the names A and
B, and declares their "domains" to be I and J, respectively. (A
domain is the set (or tuple of sets) over which a GAMS parameter,
variable or equation is defined.) The statement also gives documentary
text for each parameter and assigns values of A(I) and B(J) for each
element of I and J. It would have been perfectly acceptable to break
this one statement into two, if you prefer, as follows.

PARAMETER A(I) capacity of plant i in cases
/ SEATTLE 350

SAN-DIEGO 600 /

PARAMETER B(J) demand at market j in cases
/ NEW-YORK 325

CHICAGO 300
TOPEKA 275 / ;

Here are some points to remember when using the list format.

1. The list of domain elements and their respective parameter '*

values can be laid out typographically in almost any manner you like.
The only rules are that the entire list must be enclosed in slashes, ,
and that the element-value pairs must be separated by commas or entered
on separate lines.

2. There is no semicolon separating the element-value list
from the name, domain, and text which precede it. That's because the
same statement is being used for declaration and assignment when you
use the list format. (An element-value list all by itself, is not
interpretable by GAMS and will result in an error message.)

3. The GAMS compiler has an unusual feature called "domain
checking," which verifies that each domain element in the list is in
fact a member of the appropriate set. For example, if you were to
spell Seattle correctly in the statement declaring SET I but misspell
it as Seatle in a subsequent element-value list, the GAMS compiler
would give you an error message that the element Seatle does not
belong to the set I.

4. Zero is the default value for all parameters. Therefore,
you only need to include the nonzero entries in the element-value
list, and these can be entered in any order.

10 /Data

5. A scalar is regarded as a parameter that has no domain.
It can be declared and assigned with a SCALAR statement containing a
"degenerate" list of only one value, as in the following statement
from the transportation model.

SCALAR F freight in dollars per case per thousand miles /90/;

If a parameter's domain has two or more dimensions, then it
can still have its values entered by the list format. This is very
useful for entering arrays that are sparse (having few nonzeros) and
supersparse (having few distinct nonzeros) . This is discussed in

d Chapter ##.

* 3.2 Data Entry by Tables

it has been noticed for a long time among optimization
* practitioners that much of the input data for a large model is derived

from relatively small tables of numbers. Thus, it is very useful to
have the table format for data entry. An example of a two-dimensional
table (or matrix) is provided in the transportation model:

TABLE D(I,J) distances in thousands of miles
NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8
SAN-DIEGO 2.5 1.8 1.4

The effect of this statement is to declare the parameter D
and to specify its domain as the set of ordered pairs in the Cartesian
product of I and J. The values of D are also given in this statement,
under the appropriate heading. If there are blank entries in a table
they are interpreted as zeroes.

As in the list format, GAMS will perform domain checking to
make sure that the row and column names of the table are members of
the appropriate sets. Formats for entering tables with more columns
than you can fit on one line and for entering tables with more than
two dimensions are given in Chapter ##.

3.3 Data Entry by Direct Assignment1

The direct assignment method of data entry differs from the
list and table methods in that it divides the tasks of parameter
declaration and parameter assignment between separate statements. The
transportation model contains the following example of this method.

A GAMS TUTORIAL / 11

PARAMETER C(I,J) transportation cost in dollars per case
C(I,J) = F * D(I,J)

It is important to emphasize the presence of the semicolon at
the end of the first line. Without it, the GAMS compiler would attempt
to interpret both lines as parts of the same statement. (GAMS would
fail to discern a valid interpretation, so it would send you a terse
but helpful error message.)

The effects of the first statement above are to declare the
parameter C, to specify the domain (I,J), and to provide some
documentary text. The second statement assigns to C(I,J) the product
of the values of the parameters F and D(I,J). Quite naturally, this is
legal in GAMS only if you have already assigned values to F and D(I,J)
in previous statements.

The direct assignment above applies to all (I,J) pairs in the
domain of C. If you wish to make assignments for specific elements in
the domain, you enclose the element names in quotes. For example,

C("SEATTLE","NEW-YORK") = 0.40

is a valid GAMS assignment statement.

The same parameter can be assigned value mgre than once.
Each assignment statement takes effect immediately and overrides any
previous values. (In contrast, the same parameter may not be declared
more than once. This is a GAMS error check to keep you from
accidentally using the same name for two different things.)

The right-hand-side of an assignment statement can contain a
great variety of mathematical expressions and built-in functions. If
you are familiar with a scientific programming language such as
FORTRAN, for example, you will have no trouble becoming immediately
comfortable writing assignment statements in GAMS. (Notice, however,
that GAMS has some efficiencies not shared by FORTRAN. For example, we
were able to assign C(I,J) values for all (I,J) pairs without
constructing "do loops.")

The GAMS standard operations and supplied functions are given
in Table ##. Here are some examples of valid assignments. In all
cases, assume that in previous statements the left-hand-side parameter
has already been declared and the right-hand-side parameters have
already been assigned values.

CSQUARED = SQR(C)

E = M * CSQUARED

W = L /LAMDA;

EOQ(I) = SQRT(2 * DEMAND(I) * ORDCOST(I) / HOLDCOST(I)

.4 , -- . .- - -, .- - - - - . .- . . -- - -- - .' ' - . - . . - . %- . - . - - . -

12/ Data

T(I) MIN(P(I), Q(I)/R(I), LOG(S(I)))

EUCLIDEAN(I,J) = SQRT(SQR(XI(I) - Xl(J)) + SQR(X2(I) - X2(J))) ;

PRESENT(J) = FUTURE(J) * EXP(- INTEREST * TIME(J)) ;

The summation and product operator to be introduced later can
also be used in direct assignments. .1

4. Variables

The decision variables (or endogenous variables) of a GAMS-
expressed model must be declared with a VARIABLES statement. Each
variable is given a name, a domain if appropriate, and, optionally,
text. The transportation model contains the following example of a
VARIABLES statement.

VARIABLES
X(I,J) shipment quantities in cases
Z total transportation costs in thousands of dollars

This statement results in the declaration of a shipment
variable for each i,j pair. (You will see in Chapter ## how GAMS can
handle the typical real-world situation in which only a subset of the
i,j pairs are allowable for shipment.)

The Z variable is declared without a domain, because it is a
scalar quantity. Every GAMS optimization model must contain one suchvariable to serve as the quantity to be minimized or maximized.

Once declared, every variable must be assigned a type. The .d

permissible types are give below.

Name of Variable Type Allowed Range of Variable

FREE (default type) -0 to +00
POSITIVE 0 to +00
NEGATIVE -c to 0
BINARY 0 or 1
INTEGER 0,1, ..., 100

The variable which serves as the quantity to be optimized
MUST be a scalar and MUST be of the FREE type. In our transportation
example, Z is kept free by default, but X(I,J) is constrained to
nonnegativity by the following statement. .

POSITIVE VARIABLE X;

% %-.

A GAMS TUTORIAL / 13

Note that the domain of X should not bo repeated in the type
assignment. All entries in the domain automatically have the same
variable type.

The method of assignment of lower bounds, upper bounds and S

initial values to variables is given in Section 9.1.

5. Equations

The power of algebraic modeling languages like GAMS is most
apparent in the creation of the equpations and inequalities which
comprise the model under construction. This is because whenever a
group of equations or inequalities has the same algebraic structure,
all the members of the group are created simultaneously, not
individually.

.

5.1 Equation Declaration 7
.J -

Equations must be declared and defined in separate
statements. The format of the declaration is the same as for other
GAMS entities. First comes the keyword, EQUATIONS in this case,
followed by the name, domain and text of one or more groups of
equations or inequalities being declared. Our transportation example
contains the following equation declaration:

EQUATIONS
COST define objective function
SUPPLY(I) observe supply limit at plant i
DEMAND(J) satisfy demand at market j

Keep in mind that the word "EQUATION" has a broad meaning in
GAMS. It encompasses both equality and inequality rulationships, and
with a single name it can refer to one or several of these
relationships. For example, COST has no domain so it is a single
equation, but SUPPLY reters to a set of inequalities defined over the
domain I.

[5.2 CAMS Summition kdl rodt)Ntaiio

Before goi.-4 into equation. definition we describe GAMS's
notation tor summations. Remembet that GAMS is designed for standard V
keyboards and Iine-b--line input readers, so it is not possible (nor
would it be ccnvenient fori the user) to employ the standard
mathematical notation f-r sumtions.

-I! IL-a%

i,. .. 4'[., ~W"X ~ sI I q

.

14 / Equations

GAMS's summation notation can be used for simple and complex
expressions. Its format is based on the idea of always thinking of a
summation as an operator with two arguments:

SUM(index of summation, summand

The two arguments are separated by a comma, and if the first
argument requires a comma then it should be in parentheses. The second
argument can be any mathematical expression including another
summation.

As a simple example, the transportation problem contains the
expression

SUM(J, X(I,J)

which is equivalent to zj xij. -

A slightly more complex summation is used in the following
example:

SUM((I,J), C(I,J)*X(I,J)

which is equivalent to Ei Ej cijxij

The last expression could also have been written as a nested

summation as follows:

SUM(I, SUM(' C(I,J)*X(I,J)

In Chapter ##, we describe how to use the "dollar" operator
to impos, restrictions on the summation operator so that only the
elements of I and J whic.h satisfy specified conditions are included in
the summation.

Products are defined in GAMS using the exact same format as
summations, replacinq "SUM" by "PROD". For example,

is equivilent to irj xI)

r

Summafltion and iprodThct operators may be used in direct
e assignment statements fri para-meters. For example,

SCALAR TOTSUPi'L total supply over all plants

TOTSUPPI[;1M(I, B(I)) ;

L.4

4.%.*q ~ *

J~.;,,.i ,.l_ . . . ,,,,.. ,--i~ " ,,. ". " ,' .?,,5,..:.i ,,,, ,- % % ,.' ." 4' - .- . • .,' , " .' . " .., '- " - ." .- " - - -

0

A GAMS TUTORIAL / 15

i0

5.3 Equation Definition

Equation definitions are the most complex statements in GAMS '
in terms of the amount of variety that is possible. The components of
an equation definition are, in order:

1. the name of the equation being defined
2. the domain
3. (optional) domain restriction condition
4. the symbol " .

5. left-hand-side expression
6. relational operator: =L=, =E=, or =G=
7. right-hand-side expression.

The transportation example contains three of these
statements.

COST .. Z =E= SUM((I,J), C(I,J)*X(I,J)) ;

SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;

DEMAND(J) .. SUM(I, X(I,J)) =G= B(J) ; •0

Here are some points to remember.

1. The power to create multiple equations with a single GAMS
statement is controlled by the domain. For example, the DEMAND
definition will result in the creation of one constraint for each
element of the domain J, as shown in the following excerpt from the •
GAMS output.

DEMAND(NEW-YORK).. X(SEATTLE,NEW-YORK) + X(SAN-DIEGO,NEW-YORK) =G= 325

DEMAND(CHICAGO).. X(SEATTLE,CHICAGO) + X(SAN-DIEGO,CHICAGO) =G= 300

DEMAND(TOPEKA).. X(SEATTLETOPEKA) + X(SAN-DIEGO,TOPEKA) =G= 275

The key idea here is that the definition of the demand
constraints is exactly the same whether we are solving the toy-sized
example above or a 20,000-node real-world problem. In either case, the
user enters just one generic equation algebraically, and GAMS creates •
the specific equations that are appropriate for the model instance at
hand. (Using some other optimization packages, something like the
extract above would be part of the input, not the output.)

2. In many real-world problems, some of the members of an
EQUATION's domain need to be omitted or altered from the pattern of r:,

the others due to an exception of some kind. GAMS can readily ...'

accommodate this loss of structure using a powerful feature known as

16 / Equations

the "dollar" or "such-that" operator, which is not illustrated here but
is discussed in Chapter ##. The domain restriction feature can be
absolutely essential for keeping the size of a real-world model down in
the range of solvability.

2. The relational operators have the following meanings:
=L= less than or equal to
=G= greater than or equal to
=E= equal to

It is important to understand the difference between the
symbols "=" and "=E=". The "-=" symbol is used only in direct
assignments and the "=E-1' symbol is used only in equation definitions. -

These two contexts are very different. A direct assignment gives a
desired value to a parameter before the solver is called. An equation
definitior also describes a desired relationship, but it cannot be
satisfied until after the solver is called. It follows that equation
definitions must contain variables and direct assignments must not.

4. Variables can appear on the left- or right-hand-side of an
equation or both. The same variable can appear in an equation more
than once. The GAMS processor will automatically convert the equation
to its equivalent standard form (variables on the left, no duplicate
appearances) before calling the solver.

5. An equation definition can appear anywhere in the GAMS
input provided the equation and all variables and parameters it refers
to are previously declared. (Note, it is permissible for a parameter
appearing in the equation to be assigned or reassigned a value after
the definition. This is isr:ful when doing multiple model runs with d,
one GAMS input.) The o.quations need not be defined in the same order
in which they are declared.

6. Objective Function

This is iust a re;ninder that CAMS has no explicit entity
called the "objective ftrncticon. " In' speci fv the function to be
optimized, you must create a variable, which is free (unconstrained in
sign) and scalar-valued (has nu domain) , and which appears in an
equation definition thLt eqiate; it to your objective function.

7 MODEL and SOlVE Stat-.en ";

The word "M(,DEI," in ,CAMS has a very precise meaning. It is
simply a collection of [QIATOnN;. TLike other GAMS entities, it must be
given a name in a derlairaticn. 'ihe tormat of the declaration is the

) '-C.

A GANlS TUTORIAL /17

keyword MODEL followed by the model's name, followed by a list of
equation names enclosed in slashes. If all previously defined
equations are to be included, you can enter /iLL/ in place of the
explicit list. In our example, there is one MODEL statement:

MODEL TRANSPORT /ALL/ A

This statement may seem superfluous to you, but it is useful
to advanced users who may create several models in one GAMS run. if
we weire to use the explicit list rather than the shortcut /ALL/, the
statcment would be written as

MODEL TRANSPORT / COST, SUPPLY, DEMAND/ p

The domains are omitted from the list since they are not part
of the equation name. The list option is used when only a subset of
the existing equations comprise a specific model (or submodel) being
generated.

Once a model has been declared and assigned equations, we are
ready to call the solver. This is done with a SOLVE statement, which
in our example is written as

SOLVE TRANSPORT USING LP MINIMIZING Z

The format of the SOLVE statement is as follows:

1. the keyword "SOLVE"
2. the name of the model to be solved
3. the keyword "USING"
4. an available solution procedure, such as

"1LP"1 for linear programming
"1NLP"1 for nonlinear programming
"1MIP"1 for mixed integer programming, or
"1RMIP"1 for relaxed mixed integer programming

5. the keyword "MINIMIZING" or "MAXIMIZING"
6. the name of the variable to be optimized.

8. DISPLAY Statements

The SOLVE statement will cause several things to happen when
it is executed. The specific instance of interest of the model will be
generated, the appropriate data structures for inputting this problem
to the solver will be created, the solver will be invoked, and the
solver's output will be printed to a file. To get the optimal values
of the primal and/or dual variables we can look at the solver's output,
or, if we desire, we can request a display of these results from GAMS.
our example contains the following statement

°.

18 / The GANS Database

DISPLAY X.L, X.M

which calls for a printout of the final levels, X.L, and marginals (or
reduced costs), X.M, of the shipment variables X(I,J). GAMS will
automatically format this printout in two-dimensional tables with
appropriate headings. -

9. The " .LO, .L, .IJP, .M " Database

GAMS was designed with a small database system in which
records are maintained for the variables and equations. There are four
fields in each record:

.LO = lower bound

.L = level or primal value

.UP = upper bound

.M = marginal or dual value

The format for referencing these quantities is: the variable
or equation's name, followed by the field's name, followed (if
necessary) by the domain (or an element of the domain).

GAMS allows the user complete read- and write-access to the
database. This may not seem remarkable to you now but it can become a
greatly appreciated feature in advanced use. Some examples of use of
the database follow.

9.1 Assignment of Variable Bounds and/or Initial Values5'. As inmnado ..

The lower and upper bounds of a variable are set
automatically according to the variable's type (FREE, POSITIVE,

NEGATIVE, BINARY or INTEGER), but these bounds can be overwritten by
the GAMS user. Some examples follow.

X.UP(I,J) = CAPACITY(I,J)
X.LO(I,J) = 10.0
X.UP("SEATTLE","NEW-YORK") = 1.2 * CAPACITY("SEATTLE","NEW-YORK")

.

It is assumed in the first and third examples that
CAPACITY(I,J) is a parameter that was previously declared and assigned
value. These statements must appear after the variable declaration and
before the SOLVE statement. All the mathematical expressions available
for direct assignments are usable on the right-hand-side.

In nonlinear programming, it is very important for the
modeler to help the solver by specifying as narrow a range as possible
between lower and upper bounds. It is also very helpful to specify an

5[.' ,

5. - '2" .< '' ..." ' '. : ''' '-': ' ."•' - ' "•" '" - .' ""', " ''. "" - " , .' ? ." . .'-k ". ..? ,": . .2

A GA14S TUTORIAL / 19

initial solution from which the solver can start searching for the
optirum. For example, in a constrained inventory model, the variables
are QUANTITY(I), and it is known that the optimal solution to the
unconstrained version of the problem is a parameter called EOQ(I). As
a guess for the optimum of the constrained problem we enter

QUANTITY.L(I) = 0.5 * EOQ(I)

(The default initial level is the lower bound (.LO) if finite,
otherwise it is zero.)

It is important to understand that the .LO and .UP fields are
entirely under the control of the GAMS user. The .L and .M fields, in
contrast, can be initialized by the user but are then controlled by the
solver.

9.2 Transformation and Display of Optimal Values

(This section can be skipped on first reading if desired.)

After the optimizer is called via the SOLVE statement, the
values it computes for the primal and dual variables are placed in the
database in the .L and .M fields. We can then read these results and
transform and display them with GAMS statements.

For example, in the transportation problem, suppose we wish -
to know the percentage of each market's demand that is filled by each
plant. After the SOLVE statement, we would enter

PARAMETER PCTX(I,J) per cent of market j's demand filled by plant i

PCTX(I,J) = 100.0 * X.L(I,J) / B(J)

DISPLAY PCTX

Appending these commands to the original transportation
problem input results in the following output:

PER CENT OF MARKET J'S DEMAND FILLED BY PLANT I

NEW-YORK CHICAGO TOPEKA

SEATTLE 15.385 100.000
SAN-DIEGO 84.615 100.000

For an example involving marginals, we briefly consider the
"ratio constraints" that commonly appear in blending and refining
problems. These linear programming models are concerned with
determining the optimal amount of each of several available raw
materials to put into each of several desired finished products. Let

"--* "".. 54"Z . ""'- -' "- ."- - ' z " -- " '--"- - "-""

20 / The GAMS Database

Y(I,J) be the variable for the number of tons of raw material i put
into finished product j. Let Q(J) be the variable for the number of
tons of product j produced. Suppose the "ratio constraint" is that no
product can consist of more than 25% of one ingredient, that is,

Y(I,J) / Q(J) =L= .25

for all i,j. To keep the model linear, the constraint is written as:

RATIO(I,J).. Y(I,J) - .25 * Q(J) =L= 0.0

rather than explicitly as a ratio.

The problem here is that RATIO.M(I,J), the marginal value
associated with the linear form of the constraint, has no intrinsic
meaning. At optimality, it tells us by at most how much we can
benefit from relaxing the linear constraint to

Y(I,J) - .25 * Q(J) =L= 1.0

Unfortunately, this relaxed constraint has no realistic
significance. The constraint we are interested in relaxing (or
tightening) is the nonlinear form of the ratio constraint. For
example, we would like to know the marginal benefit arising from
changing the ratio constraint to

Y(I,J) / Q(J) =L= .26 ;

We can, in fact, obtain the desired marginals by entering the
following transformation on the undesired marginals:

PARAMETER AMR(I,J) appropriate marginal for ratio constraint ;

AMR(I,J) = RATIO.M(I,J) * 0.01 * Q.L(J)

DISPLAY AMR

Notice that the assignment statement for AMR accesses both .M
and .L records from the database. The idea behind the transformation
is to notice that

Y(I,J) / Q(J) =L-= .26

is equivalent to

Y(I,J) - .25 * Q(J) =L-= 0.01 * Q(J)

.. o

J-.'

A GA4STTOIA 1

.4 ~ ~ ~ GM AOutpTTOIAu/2

The default output of a GAMS run is extensive and
informative. For a complete discussion see Chapter #.This tutorial
discusses output partially as follows:

Outputs

Echo Print
Reference Maps
Error Messages

or

Echo Print
Reference Maps
Equation Listings
Model Statistics
Status Reports
Solution Reports

A great deal of unnecessary anxiety has been caused by
textbooks and users' manuals that give the reader the unfair impression
that flawless use of advanced software is supposed to be easy for
anyone with a positive pulse rate. GAMS is designed with the
understanding that even the most experienced users have the capacity to
make errors. GAMS attempts to catch the errors as soon as possible and
to minimize their consequences.

1. Echo Print .

Whether or not errors prevent your optimization problem from
being solved, the first section of output from a GAMS run is an echo,
or copy, of your input file. For the sake of future reference, GAMS
puts line numbers on the left-hand-side of the echo. For our
transportation example, which luckily contained no errors, the echo

* print is as follows:

3 .

4 SETS
5 1 canning plants /SEATTLE, SAN-DIEGO/
6 J markets /NEW-YORK, CHICAGO, TOPEKA/;

* 7
8 PARAMETERS
9 -

10 A(I) capacity of plant iin cases
.511 1 SEAITLE 350

12 SAN-DIEGO 600/

22 / Output

13
14 B(J) demand at market j in cases
15 / NEW-YORK 325
16 CHICAGO 300
17 TOPEKA 275 / ;
18
19 TABLE D(I,J) distance in thousands of miles
20 NEW-YORK CHICAGO TOPEKA
21 SEATTLE 2.5 1.7 1.8
22 SAN-DIEGO 2.5 1.8 1.4 ;
23
24 SCALAR F freight in dollars per case per thousand miles /90/ ;
25
26 PARAMETER C(I,J) transport cost in thousands of dollars per case ; K
27
28 C(I,J) F * D(I,J) / 1000 ;
29
30 VARIABLES
31 X(I,J) shipment quantities in cases
32 Z total transportation costs in thousands of dollars ;
33
34 POSITIVE VARIABLE X
35
36 EQUATIONS
37 COST define objective function
38 SUPPLY(I) observe supply limit at plant i
39 DEMAND(J) satisfy demand at market j
40
41 COST .. Z =f= SUM((I,J%), C(I,J)*X(I,J))
42
43 SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;
44
45 DEMAND(J) .. SUM(1, X(I,J)) =G= B(J) ;
46
47 MODEL TRANSPORT /ALL/
48
49 SOLVE TRANSPORT USING LP MINIMIZING Z
50
51 DISPLAY X.L, X.M

The reason why this echo print starts with line number 3
rather than line number 1 is because the input file contains two
"dollar-print-control" statements. This type of instruction controls
the output printing, but since it has nothing to do with defining the
optimization model, it is omitted from the echo. The dollar print
controls must start in column 1. The two used in our example are as
follows.

$TITLE A TRANSPORTATION MODEL,
$OFFUPPER

% ~. o'

A GAMS TUTORIAL / 23

The $TITLE statement causes the subsequent text to be printed
at the top of each page of output. The $OFFUPPER statement is needed
in order for the echo to contain mixed upper and lower case. Other
available instructions are given in Chapter ##.

10.2 Reference Maps

The second section of output, whether the run terminates with
errors or not, is a pair of "reference maps" which contain summaries
and analyses of the input file for the purposes of debugging and
documentation.

The first reference map is a "cross-reference map" such as
one finds in most modern compilers. It is an alphabetical, cross-
referenced list of all the entities (sets, parameters, variables and
equations) of the model. The list shows the type of each entity and a
coded reference for each ippearance of the entity in the input. The
cross-reference map for our transportation example is as follows.

SYMBOL TYPE REFER ENCES
A PARAM DECLARED 10 DEFINED 11 REF 4
B PARAM DECLARED 14 DEFINED 15 REF 4
C PARAM DECLARED 26 ASSIGNED 28 REF 4
COST EQU DECLARED 37 DEFINED 41 IMPL-ASN 4

REF 47
D PARAM DECLARED 19 DEFINED 19 REF 2
DEMAND EQU DECLARED 39 DEFINED 45 IMPL-ASN 4

REF 47
F PARAM DECLARED 24 DEFINED 24 REF 2
I SET DECLARED 5 DEFINED 5 REF 1

19 26 28 31 38 2*4
2*43 45 CONTROL 28 41 4
45

J SET DECLARED 6 DEFINED 6 REF I
19 26 28 31 39 2*4
43 2*45 CONTROL 28 41 4
45

SUPPLY EQU DECLARED 38 DEFINED 43 IMPL-ASN 4
REF 47

TRANSPORT MODEL DECLARED 47 DEFINED 47 REF 4
X VAR DECLARED 31 IMPL-ASN 49 REF 3

41 43 45 2*51
Z VAR DECLARED 32 IMPL-ASN 49 REF 4

49

For example, the cross-reference list tells us that the
symrbol A is a parameter that was declared in line 10, defined
(assigned value) in line 11, and referenced in line 43. The symbol I

has a more complicated entry in the cross-reference list. It is shown

- -- -~ * W*~W~N WWNp rw h V w ~ ~ v~)P~ . P~- j-~j~*V.. b:. n- -. v.-.~

24/Output

to be a set that was declared and defined in line 5. It is referenced
once in lines 10, 19, 26, 28, 31, 38 and 45 and referenced twice in
lines 41 and 43. Set I is also used as a controlling index in a
summation, equation definition or direct parameter assignment in lines
28, 41, 43 and 45.

For the GAMS novice, the detailed analysis of the cross-
reference list may not be important. Perhaps the most likely benefit
he or she will get from the reference maps will be the discovery of an

unwanted entity that mistakenly entered the model due to a punctuation

or syntax error. [l
The second part of the reference map is a list of model

entities grouped by type and listed with their associated documentary
text. For our example, this list is as follows.

SETS
I CANNING PLANTS

J MARKETS

PARAMETERS
A CAPACITY OF' PLANT I IN CASES
B DEMAND AT MARKET J IN CASES
C TRANSPORT COST IN THOUSANDS OF DOLLARS PER CASE
D DISTANCE IN THOUSANDS OF MILES
F FREIGHT IN DOLLARS PER CASE PER THOUSAND MILES

VARIABLES
X SHIPMENT QUANTITIES IN CASES
Z TOTAL TRANSPORTATION COSTS IN THOUSANDS OF DOLLARS

EQUATIONS
COST DEFINE OBJECTIVE FUNCTION

*DEMAND SATISFY DEMAND AT MARKET J
SUPPLY OBSERVE SUPPLY LIMIT AT PLANT I

MODELIS
TRANSPORT

10.3 Error Messages1

When the GAMiS compiler encounters an error in the input file,
it inserts a coded error message inside the echo print on the line

Aimmediately following the scene of the offense. These messages always
start with "1**"*1 and contain a 11$" directly below the point at which
the compiler thinks the error occurs. The $ is followed by a numerical
error code which is explained after the echo print. Several examples
follow.

'C.

% .

A GAMS TUTORIAL / 25

Example 1: Entering the statement

SET Q quarterly time periods / SPRING, SUM, FALL, WTR /

results in the echo

1 SET Q QUARTERLY TIME PERIODS /SPRING, SUM, FALL, WTR/;

$160

In this case, the CAMS compiler indicates that something is
wrong with the set element "SUM" At the bottom of the echo print, we
see the interpretation of error code 160:

ERROR MESSAGES
160 UNIQUE ELEMENT EXPECTED

The problem is that "SUM" is a reserved word meaning
"summation," so our set element must have a unique name like "SUMMER."
This is a common beginner error. The complete list of reserved words
is as follows.

SReserved Words and Symbols

ABORT EQUATION MODEL PARAMETERS SUM
ACRONYM EQUATIONS MODELS POSITIVE SYSTEM
ACRONYMS FREE NA PROD TABLE
ALIAS GE NE SCALAR USING
ALL GT NEGATIVE SCALARS VARIABLE
AND INF NO SET VARIABLES
ASSIGN INTEGER NOT SETS XOR .
BINARY LE OPTION SMAX YES
CARD LOOP OPTIONS SMIN
DISPLAY LT OR SOLVE
EPS MAXIMIZING ORD SOS.
EQ MINIMIZING PARAMETER 3OS2

Example 2: Another common error is the omission of a
semicolon preceding a direct assignment or equation definition. In
our transportation example, suppose we omit the semicolon prior to the
assignment of C(I,J), as follows.

PARAMETER C(I,J) transport cost in thousands of dollars per case
C(I,J) - F * D(I,J) / 1000

Here is the resulting output.

2 :, , ., -.. '- - - - " . " ° ' . .-'---.. -. -

* 26/ Output '

16 PARAMETER C(I,J) transport cost in thousands of dollars per case
17 C(I,J) =F * D(I,J) / 1000 ;

$97 $195S96S194$l

ERROR MESSAGES
1 REAL NUMBER EXPECTED

96 BLANK NEEDED BETWEEN IDENTIFIER AND TEXT
(-OR- ILLEGAL CHARACTER IN IDENTIFIER)
(-OR- CHECK FOR MISSING 1;' ON PREVIOUS LINE)

97 EXPLANATORY TEXT CAN NOT START WITH ','-,or '.

(-OR- CHECK FOR MISSING ';1 ON PREVIOUS LINE)
194 SYMBOL REDEFINED
195 SYMBOL REDEFINED WITH A DIFFERENT TYPE

It is not uncommon for one little offense like our missing
semicolon to generate five intimidating error messages. The lesson
here is: concentrate on fixing the first error and ignore the others!
The first error, code 97, indicates that GAMS thinks the symbols in
line 17 are a continuation of the documentary text at the end of line
16, rather than a direct assignment as we intended. The error message
also appropriately advises us to check the preceding line for a missing
semicolon.

Unfortunately, you cannot always expect the error messages to
be so accurate in their advice. The compiler cannot read your mind.
It will at times fail to comprehend your intentions, so learn to
detect the causes of errors by picking up the clues that abound in the
GAMS output. For example, the missing semicolon could have been
detected by looking up the C entry in the cross-reference list and
noticing that it was never assigned.

SYMBOL TYPE REFERENCES
C PARAM DECLARED 15 REF 17

V4Example 3: Many errors are caused merely by spelling
mistakes and are caught before they can be damaging. For example,
with "Seattle" spelled in the table differently from the way it was
introduced in the set declaration, we get the following error message.

4 SETS
5 I canning plants / SEATTLE, SAN-DIEGO/
6 J markets / NEW-YORK, CHICAGO, TOPEKA/
7
8 TABLE D(I,J) distance in thousands of miles

*9 NEW-YORK CHICAGO TOPEKA
10 SEATLE 2.5 1.7 1.8

$170
11 SAN-DIEGO 2.5 1.8 1.4

ERROR MESSAGES
170 DOMAIN VIOLATION FOR ELEMENT

A GAMS TUTORIAL / 27

Example 4: Similarly, if we mistakenly enter DEM(J) instead
of B(J) as the right-hand-side of the demand constraint, the result
is:

45 DEMAND(J) .. SUM(I, X(I,J)) =G= DEM(J)
$140

ERROR MESSAGES
140 UNKNOWN SYMBOL, ENTERED AS PARAMETER

Example 5: The next example is a mathematical error, which *
is sometimes committed by novice modelers, and which GAMS is adept at
catching. The following is mathematically inconsistent and, hence, is
not an interpretable statement.

For all i, Ei xij = 100.

There are two errors in this equation, both having to do with
the control of indices. Index i is over-controlled and index j is
under-controlled.

You should see that index i is getting conflicting orders.
By appearing in the quantifier, "for all i," it is supposed to remain
fixed for each instance of the equation. Yet, by appearing as an index
of summation, it is supposed to vary. It can't do both. On the other
hand, index j is not controlled in any way, so we have no way of
knowing which of its possible values to use.

If we enter this meaningless equation into GAMS, both errors
are correctly diagnosed. A"

MEANINGLSS(I) .. SUM(I, X(I,J)) =E= 100 ;
$125 $149

ERROR MESSAGES
125 SET IS UNDER CONTROL ALREADY (This refers to set I.]
149 UNCONTROLLED SET ENTERED AS CONSTANT [This refers to set J.)

A great deal more information about error reporting is given '¢.
in Chapter ##. Well designed error messages are a big help in getting *
models implemented quickly and correctly.

I.IF

- 28/ Output

10.4 Equation Listings

Once you succeed in building an input file devoid of
compilation errors, GAMS is able to generate a model. The question
remains, and only you can answer, does GAMS generate the model you
intended?

The equation listing is probably the best device for studying
this extremely important question. A product of the SOLVE command, the
equation listing shows the specific instance of the model that is
created when the current values of the sets and parameters are plugged
into the general algebraic form of the model. For example, the generic
demand constraint given in the input file for the transportation modelis

DEMAND(J) .. SUM(I, X(I,J)) =G= B(J)

while the equation listing of specific constraints is

- DEMAND =G= SATISFY DEMAND AT MARKET J

DEMAND(NEW-YORK).. X(SEATTLE,NEW-YORK) + X(SAN-DIEGO,NEW-YORK) =G= 325

DEMAND(CHICAGO).. X(SEATTLE,CHICAGO) + X(SAN-DIEGO,CHICAGO) =G= 300

DEMAND(TOPEKA).. X(SEATTLE,TOPEKA) + X(SAN-DIEGO,TOPEKA) =G= 275

The default output is three specific equations (if there are
at least that many) for each generic equation. To change the default,
insert an input statement prior to the SOLVE statement:

OPTION LIMROW = r

where r is the desired number.

The default output also contains a section called the column
listing, analogous to the equation listing, which shows the
coefficients of three specific variables for each generic variable.
This listing would be particularly useful for verifying a GAMS model
that was previously implemented in MPS format. To change the default
number of specific column printouts per generic variable, the previous
command can be appended:

OPTION LIMROW = r, LIMCOL c

where c is the desired number of columns. (Setting LIMROW = 0 and
LIMCOL =0 is a good way to save paper after your model is debugged.)

5%'

1''

A GAMS TUTORIAL / 29

In nonlinear models, the GAMS equation listing shows first-
order Taylor approximations of the nonlinear equations. The
approximations are taken at the starting values of the variables.

10.5 Model Statistics
p.,.

The last section of output that GAMS produces before invoking
the solver is statistics about the model's size, as shown below for the
transportation example.

MO[EL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6
BLOCKS OF VARIABLES 2 SINGLE VARIABLES 7
NON ZERO ELEMENTS 19

The "BLOCK" counts refer to the number of generic equations
and variables. The "SINGLE" counts refer to individual rows and
columns in the specific model instance being generated. For nonlinear
models, some other statistics are given to characterize the degree of
nonlinearity in the problem.

10.6 Status Reports

After the solver executes, GAMS prints out a brief "SOLVE
SUMMARY," whose two most important entries are "SOLVER STATUS" and the
"MODEL STATUS." For our transportation problem the solve summary is as
follows:

S O L V E S U M M A R Y

MODEL TRANSPORT OBJECTIVE Z
TYPE LP DIRECTION MINIMIZE
SOLVER BDMLP FROM LINE 49

•*** SOLVER STATUS 1 NORMAL COMPLETION
•*** MODEL STATUS 1 OPTIMAL
•*** OBJECTIVE VALUE 153.6750

RESOURCE USAGE, LIMIT 0.050 1000.000
ITERATION COUNT, LIMIT 4 1000

The status reports are preceded by the same "****" string as
an error message, so you should probably develop the habit of searching
for all occurrences of this string whenever you peruse an output file
for the first time. The desired solver status is "I NORMAL COMPLETION"

N*.

I 30 /Output
but there are five other possibilities, documented in Chapter #,which
relate to various types of errors and mishaps.

There are 11 possible model statuses, including the usual
linear programming termination states ("11 OPTIMAL," "13 UNBOUNDED," "14

* INFEASIBLE"), and others relating to nonlinear and integer programming.
In nonlinear programming, the status to look for is "12 LOCALLY
OPTIMAL." The most the software can guarantee for nonlinear

* programming is a local optimum. The user is responsible for analyzing
the convexity of the problem to determine whether local optimality is
sufficient for global optimality.

In integer programming, the status to look for is "110 INTEGER
SOLUTION." This means that a feasible integer solution has been found.
More detail follows as to whether the solution meets the relative and
absolute optimality tolerances that the user specifies.

10.7 Solution Reports

If the solver status and model status are acceptable, then
you will be interested in examining the results of the optimization.
The results are first presented in a standard mathematical programming

6 - output format, with the added feature that rows and columns are grouped
and labeled according to names that are appropriate for the specific
model just solved. In this format, there is a line of printout for
each row and column giving the lower limit, level, upper limit and
marginal. The row output is grouped by generic equation block and the
column output by generic variable block. Set element names are
embedded in the output for easy reading. In the transportation
example, the solver outputs f or SUPPLY (I) , DEMAND (J) and X (I, J) are as
follows:

EQU SUPPLY OBSERVE SUPPLY LIMIT AT PLANT I
LOWER LEVEL UPPER MARGINAL

SEATTLE -INF 350.000 350.000 EPS
SAN-DIEGO -INF 550.000 600.000

---EQU DEMAND SATISFY DEMAND AT MARKET J
LOWER LEVEL UPPER MARGINAL

NEW-YORK 325.000 325.000 +INF .21
CHICAGO 300.000 300.000 +INF o.153
TOPEKA 275.000 275.000 4INF 0.126

1%

V

OU - Via %, -

".-

A GAMS TUTORIAL /31

VAR X SHIPMENT QUANTITIES IN CASES
LOWER LEVEL UPPER MARGINAL

SEATTLE .NEW-YORK 50.000 +INF
SEATTLE .CHICAGO 300.000 +INF
SEATTLE .TOPEKA +INF 0.036
SAN-DIEGO.NEW-YORK 275.000 +INF
SAN-DIEGO.CHICAGO +INF 0.009
SAN-DIEGO.TOPEKA 275.000 +INF

The single dots "." in the output represent zeroes. The
entry "FPS," which stands for "epsilon," means very small but nonzero.
In this case, EPS indicates degeneracy. (The slack variable for the
Seattle supply constraint is in the basis at zero level. The marginal
is marked with EPS rather than zero to facilitate restarting the
optimizer from the old basis.)

If the solver's results contain either infeasibilities or
marginal costs of the wrong sign, then the offending entries are marked
with "INFES" or "NOPT," respectively. If the probler terminates
unbounded, then the rows and columns corresponding to extreme rays are
marked "UNBND.""

At the end of the solver's solution report is a very
important "report summary," which gives a tally of the total number of
nonoptimal, infeasible and unbounded rows and columns. For our
example, the report summary shows all zero tallies as desired.

**** REPORT SUMMARY 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED

After the solver's report is written, control is returned
from the solver back to GAMS. All the levels and marginals obtained
by the solver are entered into the GAMS database in the .L and .M
fields. These values can then be transformed and displayed in any
desired report. As noted earlier, the user merely lists the
quantities to be displayed and GAMS automatically formats and labels
an appropriate array. For example, the input statement

DISPLAY X.L, X.M

results in the following output.

51 VARIABLE X.L SHIPMENT QUANTITIES IN CASES
NEW-YORK CHICAGO TOPEKA

SEATTLE 50.000 300.000
SAN-DIEGO 275.000 275.000

V.-..

32/ Conclusions

51 VARIABLE X.M SHIPMENT QUANTITIES IN CASES

CHICAGO TOPEKA
SEATTLE 0.036

SAN-DIEGO 0.009

As seen in reference maps, equation listings, solution
reports and optional displays, GAMS saves the documentary text and
"parrots" it back throughout the output to help keep the model well
documented.

Conclusions

This tutorial has demonstrated several of the features of
GAMS's design which enable you to build practical optimization models
quickly and effectively. The following discussion summarizes the
advantages of using an algebraic modeling language such as GAMS, versus
a matrix generator or conversational solver 5 .

1. By using an algebra-based notation, you can describe
an optimization model to a computer nearly as easily as you

can describe it to another mathematically trained person.

2. Because an algebraic description of a problem has
d

generality, most of the statements in a GAMS model are -

reusable when new instances of the same or related problems
arise. This is especially important in environments where
models are constantly changinq.

3. You save time and reduce generation errors by
creating whole sets of closely related constraints in one
GAMS statement.

4. You can save time and reduce input errors by
providing formulae for calculating the data, rather than
entering them explicitly.

5. The model is self-documenting. Since the tasks of
model development and model documentation can be done
simultaneously, the modeler is much more likely to be
conscientious about keeping the documentation accurate and up
to date.

6. The output of GAMS is easy to read and use. The
solver's solution report is automatically reformatted by GAMS

5 For information concerning other algebraic modeling languages
that are available or in development, see Fourer [1983], Fourer, Gay
and Kernighan [1987], Geoffrion (19873, Schrage [1987] and Welch [1987).

.~% ~,* *jft . ~*.",. -

A GAMS TUTORIAL / 33

so that related equations and variables are grouped together
and appropriately labeled. Also, the DISPLAY command allows
you to modify and tabulate results very easily.

7. If you are teaching or learning modeling, you can
benefit from the GAMS compiler's insistence that every
equation be mathematically consistent. Even if you are an
experienced modeler, the hundreds of ways in which GAMS
catches error s should greatly reduce development time.

8. By using the "dollar" operatnr and other advanced
;AMS features not covered in this tutorial, you could
efficiently implement large-scale models. Specific

. applications of the dollar operator include the following:

a. It can enforce logical restrictions on the
allowable combinations of indices for the variables
and equations to be included in the model. You can
thereby screen out unnecessary rows and columns and
keep the si::e of the problem down in the range of
solvabi I ity.

b. It can be used to build complex summations
and products, which can then be used in equations
or customized reports.

c. It can be used for issuing warning
messages or for terminating prematurely,
conditioned upon context-specific data edits.

-"

%

%-

4Ah

rh ,rn/

34 / References

References

J. Bisschop and A. Meeraus, %t'!e ted Aspects of a General
Algebraic Mod,,; i vnar-i-;uaiqe," " Optimization Techniques:
Proceedings of the 9th !F P Conference on Optimization
Techniques. F,,rt 2, K. 'rack,, Y. MaIanowski and S.
Walukiewicz -,. , p'-nci-- r-i, Berl in, 223-233, 1980.

J. Bisschop and A. M,,., . o'r];sfu1 Modeling
Applicatins i a "ta:teqiI l, .r cr Environment," in Large
Scale !,inear I'riiqmm',gl'j A iq. M.A.H. Dempster and
M.J. Yal i i ', 15 , tn'erna-, iniI Institute for Applied
Systems An i i ",aixcnbi , Austr'a, 711-745, 1981.

A. Brooke, [. K-ni: i:k, and I. Meeraus, GAMS: A User's Guide, The
Scientific Pr(s, PtIdwor)c -t CA, trthcoming in 1988.

G.B. Dantziq, I ineir Programminq and Extensions, Princeton
University Pi-, c, P r nceton, NJ, 19 .

R. Fourer, "Mr-'o, .arqu s ,:-us Mat r-ix Generators for Linear
Proqrarnm 1 q, A.M Transaction; on Mathematical Software 9, .°. z
14 3--12 , V'' 0

R. Fourer, v.v h. I'A'ni'-., 'A'P': A Mathematical
Frcqrm - ;'7 : :t fn SI ece Technical Report No.
137 A- " Bf,'. " Lc -.tr 's , Murray Hil 1 , NJ, 1987.

A.M. Gc'ftr ". f' "A-:. o SOt -L]ctured Modeling,"
Manaqement Sc, en.: ; .' ., 57

L. Schrage, "Fw,- I N ic,,e ,, ,arquaqe," presented at ORSA/TIMS
Joint Nat iotl Me, ,om:e, MO, 1987.

J.S. Welch, jr.. "WS .r -t t m'wr' Giide tc Modeling,"
Managemnt S, ', ,,..

Si..,"

d%l

% 0

S -.zZ

DISTRIBUTION LIST

NO. OF COPIES

Library (Code 0142) 2

Naval Postgraduate Schocl
Monterey, CA 93943-5000

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Office of Research Administration (Code 012) 1

Naval Postgraduate School
Monterey, CA 93943-5000

Center for Naval Analyses 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Library (Code 55) 1

Naval Postgraduate School
Monterey, CA 93943-5000

Operations Research Center, Rm E40-164 1

Massachusetts Institute of Technology

Attn: R. C. Larson and J. F. Shapiro

Cambridge, MA 02139

Koh Peng Kong 1

OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex RoaJ
SINGAPORE 1024

Arthur P. Hurter, Jr.

Professor and Chairman
Dept of Industrial Engineering

and Management Sciences
Northwestern University
Evanston, IL 60201-9990

Institute for Defense Analysis
1800 North Beauregard
Alexandria, VA 22311

1%4

r.U.

- . .- ..

L ' ._ -" ' i.; " _-'_ . -" "" - - ._.,-:. '-..4. 44 _."_ 4_._] 4_' 4.. . --.- ' '- Z ,.,_ . .. ,L L ' 4J . . -4' u-. ,U"_ ,. w"- g-_ 4,_ _V

W. %

IF

mmmmo0

FILME

