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Abstract

The purpose of this thesis is to investigate and
analyze bandpass sampling techniques. Bandpass sampling
theory is shown to be an extension of the Shannon low-pass
sampling theory. Five bandpass sampling techniques are
investigated: direct sampling (also called first-order
sampling), pth-order sampling (in particular second-order
sampling where p=2), conventional quadrature sampling,
quadrature sampling, and complex sampling (also called
Hilbert transform sampling).

Direct sampling is a single channel approach to
bandpass sampling while the other approaches require two
channels. The two channel techniques offer a sampling rate
reduction of up to one half over direct sampling, but there
are trade-offs to consider when choosing a two channel
technique. It is shown that the effects of random phase
error can render the conventional quadrature sampling
approach useless. Timing is critical with quadrature
sampling. Reconstruction error, due to hardware timing
errors, is shown to be directly proportional to the center
frequency and is a function of the bandwidth of the signal.
Plots were developed to show the effect of timing on a given

bandpass signal when the center freguency and the bandwidth

are known.
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I. JINTRODUCTION

Problem
The purpose of this thesis is to investigate and

analyze various bandpass sampling techniques.

j
p Scope
U
:, This thesis considers direct sampling (also called
) first-order sampling), 2nd-order sampling, quadrature
sampling, and complex sampling (sampling using Hilbert
N Transforms). There are various implementations of
i each technique and at times these categories overlap. The
f details will be presented in Chapter II.
N
= Background
" 4 In a digital processing receiver the received signal 1is
- sampled, quantized, and processed by a digital processor.
o
The signal may be sampled at any point in the RF or IF
- portions of the receiver. A block diagram of a digital
L)
X processing receiver is shown in Figure 1.
‘ .
L
. Antenna
- ]
Y +
L Bandpass Mixer IF A/D Processor D/7A
! Filter Filter
" Local
[ Oscillator
d
..
N Figure 1. Digital Processing Receiver
N
; 1
i, <
y fl
e LR S A A A N e e o S T S T e T St Lol
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e For this thesis, uniform sampling is assumed to occur j;
‘::}l\‘ ':.‘I
‘ in the IF stage. The resulting sampled spectrum may either éi
»
be a real bandpass spectrum or a complex low-pass spectrum Y
f',‘i
depending upon the sampling technique employed. gﬁ
“
I1f a band-1imited waveform is sampled at a uniform and ag
sufficiently high rate, the original waveform can be &:
w
A
reconstructed from the sampled values by appropriate 42
s
interpolating functions. Shannon showed that the minimum 5&
)
sampling rate is equal to twice the highest frequency ~
component of the waveform (9:519). However, for bandpass ii
waveforms like the one shown in Figure 2, it is ;i
»
P theoretically possible to sample at a rate of o/n samples/s, 2
: or twice the bandwidth of the bandpass waveform. Thus, &t
ei; depending upon the bandpass sampling technique used, the ;E
/
»
sampling rate for a bandpass signal can be much lower than -
d
' twice the highest frequency.
b
b _
W
L
' X(w) =
S
M
—o — '
-wg +wg ;ﬁ
) -l':
‘
o3
) \ Figure 2. Typlcal Bandpass Waveform (13:907) )
YK L
) ’ O
-
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3
]
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Direct sampling, as shown in Flgure 3, involves
multiplying the bandpass waveform with a train of uniformly

spaced pulses. The spacing of the pulses (or the sampling

rate) is governed by the bandwidth of the bandpass waveform.
Special consideration needs to be given to the sampling rate
to avoid the problem of allasing. It will be shown that for
direct sampling of the bandpass waveform the minimum

sampling rate, f; samples/s, ranges from twice the bandwidth
to four times the bandwidth and is a function of the

relationship between the center frequency and the bandwidth.

This will be examined further in Chapter II.

x(t) ? — xg(t)

O(t-nTs)

ke
(ad
]
SMe

Figure 3. Direct Sampling (10:16)

Pth-order sampling is an extension of direct sampling.
Where direct sampling involves a single train of uniformly
separated samples of the bandpass waveform, pth-order
sampling involves p trains of samples as shown in Figure 4
for the speclal case of p=2. The trains are slightly
displaced in time but occur at the same frequency (10:40).
The sampling rate for each of the p channels is fg5/p

samples/s for an average rate of fg samples/s,.
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qﬁ& x(t) ~/;\ —e Xg(t)
Ve
—T ®
p(t) = £ 6(t-nTg)
n=-o
e /1\ (t-v)
—e X -Y
Deiay 4_\3/ s

Figure 4. Second-Order Sampling (13:905)

Two implementations of quadrature sampling will be
discussed. The first, from this point on to be referred to

as conventional quadrature sampling, is sketched in Figure 5.

coswyt
p(t) p(nTg)
Low-pass */;\ -> L‘
Filter ’\1/f o
@ o
—_— £ 8(t-nTg) Rt
x(t) E e [
q(t) */l\ q(nTg)
Low-pass X >
Filter N
-sinwgt
. Figure 5. Conventional Quadrature Sampling (10:37)
TEoF
4
T N NN N N LN L e A S e e e
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) ) Here, the bandpass signal is preprocessed by employing
quadrature demodulation prior to sampling. 1In one channel
x(t) is modulated by coswot and low-pass filtered to
remove the sum frequency term to obtain the in-phase
‘ component, p(t). Similarly, the quadrature component,
g(t), is obtained from the sine channel. Because of the
preprocessing of x(t), the components p(t) and q(t) can be
sampled according to the low-pass sampling theorem. The
) original waveform, x(t), can be reconstructed from samples
I of the low-pass components.
The second implementation of quadrature sampling,

) from here on referred to as simply quadrature sampling, was
S introduced by 0.D. Grace and S.P. Pitt, and is an

{:, application of second-order sampling (pth-order sampling

°

where p=2). Quadrature sampling, plictured in Figure 6,

requires uniform sampling of both the bandpass signal and

[ AR R W

its quarter wavelength (based on nominal freguency wg)
" translation, each at a common sampling rate depending upon

- the exact relationship between w, and ¢ (the bandwidth).

) x(t)

*‘/? - Xg (t)

[ ]
p(t) = £ 6(t-nTg)
n=-o

" x(t-n/2wq)

- Delay X -~ Xg (t-n/2w,)
I
..
‘ 7
v o Figure 6. Quadrature Sampling
r.
; 5
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When the intersample spacing is properly chosen, the
bandpass signal can be reconstructed in {ts entirety from
knowledge of the sample values; moreover, with quadrature
sampling, the (low-pass) in-phase and quadrature components
of the bandpass signal have a simple explicit representation
in terms of samples of the original bandpass signal without
the preprocessing required in conventional quadrature
sampling. It will be shown that the minimum sampling rate
for gquadrature sampling can be as low as o/n (average)
samples/s (2:1659,1662).

Another possibility for malintaining the (average)
sampling rate equal to its minimum value o/n samples/s is
to sample both the bandpass waveform, x(t), and its Hilbert
transform, xy(t), at a rate of o¢/2rn samples/s. This

approach, pictured in Figure 7, is called complex sampling

(10:37-38).
x(t) ‘/;\ —x(nTg)
[ ]
p(t) = € 6(t-nTg)
n=-o
xy(t)
—ef Hilbert X - Xy (nTg)

Transform

N --\\‘,* I A AR

Figure 7. Complex Sampling (13:905).
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Approach

The approach to this thesis was basic: analyze the

bandpass sampling technigques from a theoretical standpoint

and draw conclusions from the analysis.

In chapter 11, a theoretical analysis of each bandpass
sampling technigue will be presented.

Results of the analysis will be presented in Chapter

III.

Finally, in chapter 1V, conclusions are drawn based upon the

theoretical analysis presented in Chapter 11 and the results

detalled in Chapter I1I.
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i Introduction

.
-

The conversion of signals from analog to digital

CCL A A

representation involves two operations: sampling and

]

quantization. With regard to sampling, one of the principle

§ requirements 1s that it be sufficlently fast to represent
;; the waveform adequately (4:91). But how do you determine
9; what 1s "sufficiently fast?"™ For low-pass signals the
'3 question Is easily answered with the Shannon sampling

. theorem (15:43). For bandpass signals, sampling is a little

more complicated. A direct application of the Shannon

theorem will work, but there are several techniques

24 avalilable that allow us to sample bandpass signals at rates
‘: ‘e much lower than twice the highest frequency component in the .
'S signal. The purpose of this thesis is to investigate and i
-~ analyze bandpass sampling theory and to examine the é
2 various techniques that can be used to implement bandpass i
i sampling. This chapter is devoted to the development ;
:: of the bandpass sampling techniques from a theoretical %
ﬁ standpoint.
lﬁ The best approach to the toplc of bandpass sampling lis
; to begin with a review of the Shannon sampling theorem. As
.: mentioned, this theorem primarily concerns low-pass signals, F
;ﬁ but its results easily extend to the bandpass case. 1In )
- addition, by reviewing low-pass sampling theory, sampling &

[}
t

a

b -
)
',
.
3
LY

e A A
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issues such as allasing and fold-down (to be discussed later ﬁ
in this chapter - and again in Chapter 11I) can be addressed
<
early, before examining the individual bandpass sampling :
techniques. It will be shown that the aliasing and fold- t
down issues are basically handled the same whether talking
about low-pass sampling or bandpass sampling. i
The approach in this chapter will be to consider the f
A
low-pass sampling theorem first. That result will be '
o extended to the bandpass case. Ther the individual bandpass .
2 "
" sampling techniques, mentioned brlefly in chapter one, will -]
F &
- >,
be discussed.
> r
Y
- Shannon's Low-Fass Sampling Theorem. Shannon's theorem 3
‘-'S ‘=
?? states that a signal whose Fourier Transform is zero outside -
VR
t. the interval |¥] > B as in Figure 8, can be uniguely
Ca .
y represented by a set of samples of the waveform taken at '8
. intervals of n/B seconds; l.e., the original waveform can K
’ be completely reconstructed from its samples. The sampling i
¢ .
ﬁ frequency, f£g = B/n , is twice the highest frequency N
< s
‘{ present in the waveform and 1s usually referred to as the -
| .,J, .
Nygquist frequency (4:91). v
A ;
-, -
v K
Cal .
- X(w) -
T 0 hd
O .
. w -
| -' - B + B :
i " :
®
v e - .
" Flgure 8. Typical Low-Pass Sign.' (,:32} .
~ -
N X
N 9 5
= .
"~ .
~ .
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Since this sampling theorem is so significant to the

2

understanding of bandpass sampling theory, two different
proofs will be presented here (15:43,46). However, the

proofs are not mathematically rigorous, and for our

purpose, only the key concepts as they apply to bandpass
sampling will be reviewed here.

. Proof 1. Assume X(w) is only non-zero along the
finite Interval -B < w < B , and expand it in a Fourler

Series as

«
X(w) = € cpexp{int,w} (1)
n=-o
. where,
to = 2n/2B (2)
&
B
\ cn = (1/2B)I X(w)exp{-int widw (3)
) -B

Also, the Fourler inversion formula tells us that

B
(I/ZR)I X(w)exp{Jjwtidw (4)
-B

x(t)

Comparing Eq (3) with Eq (4) we find that

€nh = (v/B)x(-nt,) = (nw/B)x[-nn/B) (5)

: This says that the c, are known once x(t) 1s known at the

; points t = nn/B . Plugging these values of c, into the
\35 series expansion for X(w), Eq (1), we find that
10
R N N B S S R T N » e
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TN X(w) = (n/B)L  x(-nun/B)exp{jwnn/B} (6)
We n=-e

Eq (6) is essentially a mathematical statement of the

sampling theorem. It states that X(w) is completely known
and determined by the sample values, x(-nn/B). These are

the values of x(t) at equally spaced points iIn time. We can

O MR T

plug this X(w), glven by Eq (6), into the inverse Fourier

iy

integral, Eq (4), to find x(t) iIn terms of its samples. &*

This will yield the following result: ﬁ;

"-.

B t

b ® Lt
: x(t) = (1/2m)C (n/B)I x(-nn/Bl)exp{inwn/Blexp{Jiwtidw :*
n=-o _B [ ]

(7) o

.

or, after simplifying O\

o ;.:.

< . '
x(t) = £ x(-nn/B)[sin(Bt+nn)/(Bt+nn)] (8) e,

n=--o '\'

2

The original signal, x(t), may be exactly reconstructed by
interpolating samples spaced t = nn/B apart. 1In other 'ﬂ
y words, if we have a signal x(t) with no spectral energy

beyond limit B, all information about the signal is

contalned in a sequence of samples taken at a uniform rate

greater than B/n samples/s. Note Eq (8) has

the form
[ ]
x(t) =€ X(kTg)h(t-kTg) (9)
k=-o

i &

w
'-.'

11
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where To 1s the perlod between samples taken periodically at

L ?a{fff1'

times KkTg , x(kTg) are the samples, and h(t) is the

7

low-pass filter, or the sampling (interpolation) function

0
T

IEAPRAR |
G 4y 7, 0y £y o
(A4

X

L g

7’

h(t) = (sinBt)/Bt (10)

Notlce that h(t) has the form sinx/x , whose transform is

a spectral window centered about zero. (The importance of

%!

this spectral window will be more obvious after Proof 2.)

(R 2] \;?':.i\;ﬂ'

A
4

Pils

Eq (9) will be referenced throughout this chapter.

'l.!:

S“H '
sy

Although this proof was straightforward and it gives us

.'.

F A
vy
v _4

x(t) in terms of its samples, it provides little insight

a
X

into the sampling process. A more intuitive approach is

L

WP

l: 'l’ .'
2l

consldered in Proof 2, which follows.

3
f"' 5‘

Proof 2. Assume once again that x(t) has the

tranaform X{w) which {= band limited to the interval

-B < w <B as in Fiqure 8. Next consider the product of

x(t) with a periodic train of delta functions, p(t), where

2
AN
-
~
2
.
<
2"
]

v
o e

2

p(t) = 6(t-nTg)

P
LY
)

[4

i

PRI

~I.

The sifting property of the impulse function tells us that

]

P ™

@ [
L x(t)d(t-nTs) = [ x(nTs)d(t—nTs)

n=-e n=-o

-'..n'.'l] w ‘_"’

A&
E/

At

Using this property, we find that the sampled verslion of

P4
LN

x(t), xg(t), is given by
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Xg(t) x(t)p(t) (13)

xg(t)

"
y]

x(t)6(t-nTg) (14)

xs(t)

I
™M

x(nTg)8(t-nTg) (15)
n=-o
Figure 9 illustrates the relationship of x(t) and xg(t);
i.e., xg(t) 1ls x(t) sampled at intervals of Tg.
To show that x(t) can be recovered from xg(t), we can

use the frequency convolution theorem to get

Xg(t) = x(t)p(t) <----> (1/2n)X(W)*P(w) = Xg(w) (16)

where

* denotes convolutlion

@®
P(w) = (2n/Tg)C 6 (w-nwg) (17)
n=-o
and
wg = 2un/Tg (18)

Recall that convolution with a delta function simply shifts

the original function. Therefore,

[
b X(w)*8(w-nwg) = L X(w-nwg) (19)
n

== nN=-o

13

.
A

XA

IR RO

Ol

o

| TN

TN A

Y

Loy

o




BN I AN Y S T N A QIR N SN

x(t)

p(t)

xg(t)

a)

e)

X(w)
b)
,
-B B
P(w)
d)
N ) Az—ﬂ L )
P I=
-28B 2B
Xg (W)
£)

L . Y
-2B 28
Figure 9. Low-Pass Sampling Operation (15:46)
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xs(w) = (1/2x)X(W)*(2n/Tg)L 6 (w-nwg) (20)
n=-o
L} [ J
" Xg(w) = (1/Tg)E X(w-nwg) (21)
n=-o
This Xg(w) is sketched in Figure 9. From the sketch of
L Xg(w) it is clear that X(w) can be identified. 1In
' practice, we need only filter X (w) with the ldeal low-
o pass filter, H(w), shown in Figure 10, to recover X(w).
h This is the spectral window referred to in Proof 1. The
b window function passes all frequency components in the
w
) interval -B < w < B and rejects all others.
6?& In Figure 9f the assumption was made that the "humps"
’
. in the figure do not overlap. The sampling rate 1s set at
- twice the bandwidth, or f5 = B/n samples/s. Flgure 11 is a
sketch of Xg(w) with fg > o/n samples/s and fg < o/m
“ samples/s. To prevent overlapping spectra the point labeled
| "wg - B" must fall to the right of that labeled "B." 1If
this were not true as in Figure 11lc, the result would be
. undersampling, or aliasing. When aliasing occurs,
H(w)
%
:."
w DN
) -B +B :.:r
y {.
-
Y Figure 10. 1Ideal Low-Pass Filter (9:518)
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Qﬁk it i1s impossible to uniguely recover X(w) by 1deal filtering i~
» >,
L
or any other means. This restriction can be rewritten as
o,
follows o8
:J'
-
wg-B > B (----- > wg > 2B (22) A
o~
Since %{
"
Vs = 2n/Tg (23) S
3
this restriction becomes g#
"
]
R
:1
L

Ts < n/B (24)

¢ & e . .
LT

In other words the samples cannot be spaced any further
apart than n/B samples.

‘Fy Simply stated, the Shannon sampling theorem requires
that x(t) be sampled at a rate greater than twice the
highest frequency component in x(t) in order to be able to
recover the original signal from the sampled data form.

This process is summarized in Figure 12.
Allasing. Aliasing plays an important role in bandpass

sampling just as 1n low-pass sampling. To be able to

recover the original signal from the sampled data, none of o
the shifted spectral components can overlap. This makes E
bandpass sampling theory a bit more complicated because now N
two spectral bands are involved in the bandpass case (one at
+Wwo and one at -w, as In Figure 2) as opposed to only one in N
the low-pass case (from -B to +B as in Flgure 8). ;
17
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Allasing can occur {f elther the signal i{s not
bandlimited or if the sampling rate is too low. Theoretic-
ally, i1f a signal is not bandlimited, there is no way to
avoid the aliasing problem with the basic scheme Jjust
discussed. However, the spectra of most realizable signals
may be assumed to be bandlimited. Furthermore, a common
practlice is to fillter the continuous time signal before
sampling to ensure that it does meet the band-limited
criterion. These antli-allasing filters are also important
in preventing the possibility of nolse or interference
folding into the spectrum occupled by our signal (16:47).

The use of antialiasing filters is best illustrated
with an example. Assume the speech signal in Fligure 13 is
confined to the frequency interval between 0.3 and 3.0kHz.
Additionally, there is interference at 6kHz. Our concern is
what happens to the 6kHz sine wave as a result of sampling?
If the composite signal is sampled at 8kHz (a standard in
telecommunications), the 6kHz noise will be folded to (or

replicated about) the 2kHz position as In Flgure 14. The

Power
Spectrum Intexrference

/////”—h\\\ ‘/// £ (kHz)

0.3 3.0 6.0

Figure 13. Speech Signal With Interference (12:63)
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Flgure 14. Example of Nolse Folding Down (12:64)

interfering signal cannot be removed without loss of a
portion of the original speech signal. The noise could,
however, be removed prior to sampling by filtering the
speech signal (12:63-64). This antiallasing process serves
two important functions: it artificially bandlimits the
signal being sampled; and, it filters out noise which could
otherwise fold down and make signal recovery impossible
(14:52). More will be said about antialiasing in Chapter
III.

This background material lays the necessary foundation
for discussing the individual bandpass sampling techniques.
References will be made throughout the rest of this chapter
to this material: in particular, Eq (9) will be referenced
with the development of each bandpass sampling technique.

Bandpass sampling involves the uniform sampling of the
bandpass signal by one or more train of impulses. 1In each
case, equations for the bandpass signal will be developed In

terms of its uniform samples. The minimum possible sampling

20
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rates and the conditions for the minimum sampling rates
will also be developed.

The purpose of this chapter is to develop these
bandpass sampling technigques. Techniques are compared in

Chapter III.

Direct Sampling

Introduction. Direct sampling will be developed from

two points of view: the conventional approach, referred to
simply as direct sampling, is developed using an intuitive
approach to give a "feel" for bandpass sampling theory,; the
second approach, called first-order sampling, 1is
mathematically developed and reduces the sampling problem to
an application of the low-pass sampling theorem.

Conventional Direct Sampling. The first bandpass

sampling technigue, direct sampling, can be viewed as the
result of the product of a signal, x(t), and a periodic
pulse train, p(t), just as in the case of low-pass sampling.
The bandpass signal and the sampling process are
demonstrated in Figure 15. Recall, when sampling bandpass
waveforms we no longer have just one spectrum which is
periodically replicated; instead, referring back to Figure
15b, there is a positive and a negative spectrum which get
replicated. The sampled spectrum of the negative frequency
portion of X(w), X_(w), is sketched in Flgure 154, and
corresponds to a periodic shift every 2nfg rad/s.

Similarly, the sampled spectrum of the positive frequency
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portion of X(w), X ,(w), 138 sketched in Figure 15e. Flgure

15f shows the combined result of the positive and negatlive
spectrums being replicated. Reconstruction of X(w) will be
obtained by ideal bandpass filtering of Xg(w) over the
original bandwidth of X(w) as long as the sampling rate is
such that none of the spectral replicas overlap in the
original bandpass region.

Analysis. A closer examlnation of the sampled
spectrum provides insight in determining the minimum
sampling rate possible. It will be shown that the Nyqulist
sampling rate for a bandpass waveform of twice the
bandwidth, or o¢/n samples/s, can be realized only when the
signal is positioned in such a way that the upper cutoff
frequency (wy, + 0/2) is an integer multiple of 0. Otherwise
the required sampling rate will be a value between o/n and
20/n  samples/s. To determine the minimum sampling rate for
these two cases we'll consider each separately.

First, consider Case 1 in Figure 16 where wgy + 0/2 = ko
(k = integer). Just as we reconstructed the low-pass
waveform in our earlier examples, we wish to be able to
reconstruct our sampled waveform over the original bandpass
spectrum. Notice In the Case 1, where w, + 0/2 = ko and
fs = o/n samples/s, none of the replicated spectrums
overlap the orlginal bandpass spectrum. Ideal bandpass
filtering will recover our original bandpass waveform. This

is not true in Case 2 of Figure 16. Here, the upper cutoff

23
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3 3
AE} frequency 1s not an integer multiple of o and If fg = o/n -
o © -
d .
samples/s as in Case 1, the shifted spectrums overlap y
3 within the original bandpass spectrum and there is aliasing. :
-~
y Ideal bandpass filtering will not recover our original i
" &
' signal. A higher sampling rate is needed to "adjust" the >
¥
spectra until there i{s no overlapplng spectra as in Case ’
'& 3 for o/m < fg < 20/n samples/s. "
As stated before, the sampling freguency needed to ;
: prevent this aliasing will be somewhere between o/n and

o 20/n  samples/s. But how do you determine the actual f
) .

sampling rate required? Refer to Figure 17, assume that the
. negative frequency spectrum of X(w) Is shifted just to the ﬂ:
o4 v 8
i left of the positive frequency spectrum for some integer m, o
L . g
a t:, the (m+1) integer shift must move it completely to the right >
-} to avoid overlap. In other words, we requlre that o
s :
- (-wg + 0/2) + m2nfg < wy - 0/2 (25) .
: mwg < 2wg-0 (2€6) ':
o,
wg < (2wy-0)/m (27) <
al >
N and N
- \..
$
‘N (-wg + 0/2) + (m+l)2nfs > Wy + 0/2 (28) N
- (m+l)wg > 2w, (29) 3
~ '?
- Ws > (2wg)/(m+1) (30) -

®

S )
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X(w)
— l * w
xs(w)
2nfq -v°+2nmfs

~wo+2x(m+l) fq

—— [ . ® — ————
— -1 ,1=1 .
~Wo “o
2nmf, ————]

2rn(m+l)fg

Figure 17. Determining fgq(pmjn) (6:237-238)

or

(2wn)/(m+1) < wg < (2wy-0)/m (31)
From thils, wg(min) €an be determined and wg can be plotted.
Let

M= [(w, - 0/2)/0] (32)

0

where [ ] denotes the greatest integer function. From

Eq (31)
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T W

» w_ = (2w0 - 0)/M (33) Y

Vg (2wg-0) /[ (wg-0/2) /0] (34)

L

)

o
Equation (34) is plotted in Figure 18 as a function of (wgy + ﬁq

[,
0/2)/0 . Notice that when (wg + 0/2})/0 = integer , the ..
sampling rate is always twice the bandwidth, or o/n

samples/s. When (w, + 0/2)/0 does not equal an integer, wg

must be determined from Eqg (34) or interpolated from

[
»

ol

Figure 18.

A S I |
OIRAASAS

S

»
ESS A
')

3
+
ATt -
LS
4 e Py A 4

W
Q
LN

¥s(min)

e

¥
Q
ﬂfﬁﬁﬁfr'

~- ,-{

e

(woto/2)/0

RN
("l_l"l

P d o a4

Figure 18. wg(pin) a3 a Function of w, and ¢

L
‘ -"“-'v‘-{'-{‘ul

1r
’

. .' [ !
BINA0

D

27

2l

R — NN e N NN e
) t. R I AT A AN .r e e et e T e e e e e T T T et e e e T -
Pl )hl‘r_.}:.l'_.hﬁ_"\' e m '-_‘...JLLL.\ ‘L_ALL\A-_&A‘._A_thLLm&;\._ALA__-L‘_-AAAuuL_‘A.A NGRS SRV SN,



Recall from our review of low-pass sampling that we
found x(t) in terms of its samples in Eq (9). That equation

has the form
(-]
x(t) = £ x(kTg)h(t-kTg) (9)
k=-o

where Tg 1s the perlod between samples, x(kTg) are the
samples, and h(t) is the low-pass reconstruction filter, or
the "interpolating function."

It is possible to extend Eq (9) to the case of a direct
sampled bandpass signal. Since we want to reconstruct our
sampleéd signal by ideal bandpass filtering over our original
bandpass spectrum, we can use the transfer pair in Figure 19

and show that our bandpass filter h(t) is
h(t) = (oTg/n)Sa(ot/4n)cosw,t {35)

where Sa(x) = sinx/x , and x(t), in terms of {its uniform
samples, becomes

®

x(t) = (0Tg/w)C x(kTg)Salo(t-kTg)/4nlcos{wy(t-kTg)] (36)

k=-o

This bandpass sampling theorem is constrained to the
sampling rate in Figure 18 and Eq (34).

Note, from Figure 18, for narrowband systems where

-
L8
.
)
N
-
®

rFeever
AN Y

O << W, =W

o = Wo +(0/2) (37)

1t is possible to sample at the Nyquist rate and still

o FEE
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5::2}‘, recover the bandpass waveform. E:}’
The subject of dlrect bandpass sampling followed very ;f

i closely the theory involved in low-pass sampling. Our E:
: bandlimited bandpass signal is sampled by multiplying it E;

l with a pulse train. For recovery, a window function (an f.
) ideal bandpass reconstruction filter) is applied to our Eé

: properly sampled (fg5 chosen to prevent aliasing) signal. ;i
' First-Order Sampling. An alternative approach to F
E direct sampling, also called first-order sampling, was éz
: examined by John L. Brown (3:613-615). He showed that the EE

i first-order sampling of a bandpass signal is reduced to an F'
3 application of the low-pass sampling theorem when the upper é
E cutoff frequency is an integer multiple of the bandwidth. ﬁs

| ?: He uses a simple band-embedding technique to restore the =
. positioning constraint when the upper cutoff frequency is ?
: not egual to an integer multiple of the bandwidth. i

This proof uses only the standard guadrature
representation of the bandpass signal and the classical
sampling theorem for low-pass signals. For real numbers

Wo, 0 satisfying wg 2 0/2 > 0 we define B(wy,0) to consist

of all complex valued bandpass signals x which can be

represented in the form s

x(t) = (1/2n) I X (w)exp(Iwt)dw for all t  (38) o

Ih, Iy oo

. where g
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A 4

I, = Il(wo,o) z (wo—o/2,wo+0/2) (39)
12 = -Il = ('WO—O'/2, —wo+0/2) (40)
and
2
J |X(w)| dw ¢ @ (41)
I1.12

thues x possesses finite energy and all its derivatives are
contlnuous. If wg+0/2 = ko for some positive integer Kk,
then x{t) can be represented by samples taken at an average

rate of o/n samples/s. If (wg+0/2)/0 is not an integer

(the general case), then the bandwidth o I3 increased to

o' , where (wgyto/2)/0' = [(wg+0/2)/0] , and [ ] denotes
the greatest integer function. For the general case, an
average sampling rate between o/n and 20/n samples/s is
needed.

Analysis. Let x(t) be a bandpass signal having
all its spectral components in the band wg-(0/2) < |w|
wot(0o/2) so that (wg,,0) characterlzes the positlon of the
band. Also, let X £ B{(wgy,0)

Under these assumptions x(t) may be represented as
x(t) = p(tlcoswgt - g(t)sinwgt (42)

for all t, where p(t) and g(t) are low-pass functions

31
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bandlimited to |w| € 0/2. Each of these signals, p(t) and

e

"

ot
&
o

'3

g(t), may be sampled at a rate of o¢/2n samples/s.

¥
ag

na
"l

This analysis 1s broken into two phases. 1In the flrst

e

s

Wo 2 0/2 > 0 (arbitrary band positioning).

phase we assume w, + 0/2 = ko , where k is a flxed positive ;:
s
. ‘
integer and in the second phase (the general case) we assume ;}
)

Y

Case 1. Where x(t) is defined by Eq (42) and

x(nT) = p(nT)cos(nwyT) - g(nT)sin(nw,T) (43) »
A
Assume T = n/0 corresponding to a sampling rate of o/=x §$
-
samples/s. So, N
]
I
x(nT) = p(nT)cos(nuwy/0) - q(nT)sin(nnw,/0) (44) o
S
ﬁi: and with wg + 0/2 = ko , where k is fixed positive 33
‘ »
integer {wg/0 = (k-1/2) = [(2k-1)/21]} o~
x(nT) = p(nT)cos[nn(2k-1)/2] ;i
s
»
- g(nT)sin(nn(2k-1)/2] (45) o
Where n Is even, n = 2v , and letting T; = 2T = 2n/0 ;ﬁ;
the sine term goes to zero and ;
I‘.
x(2vT) = x(2vT1/2) = x(vTy) = p(vTy)(-1)" (46) po
)
Where n is odd, n = 2v-1 , the cosine term goes to zero ;\
LS
and ]
N
i
o
X((2v-1)T1 = x[(2v-1)Ty/2] (47) N
-
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R x[(2v-1)T1/2] = x(vT1-T1/2) = (-1)V***1q(vri-11/2) (48)

Notice that the samples ([p(vT;)) determine p(t) by

-
the classical Shannon Theorem and the samples
&
(q(vT1-T1/2)] determine g(t). The low-pass sampling

expansions are

(]

p(t) = E P(VT1)@g(t-VvTy) (49)
V=-®
- J

g(t) = ¢ qQ(VT1-T1/2)®5(t-vT1+T1/2) (50)
vV=-®

‘e where
®s(t) = [sin(ot/2)1/(ot/2) (51)

Plugging in Egs (49) and (50) into Eq (42)

@®
x(t) = £ p(VT1)¢s(t-vT1)coswyt

vV=-o

- L q(VT1-T1/2)@5(t-vT1+T1/2)sinw,t (52)

vVE-®

Let Tl = 2T
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[
QSE x(t) = £=?LZVT)Qo(t-2vT)coswot

[}
= L qQ(2vT-T)&5(t-2vT+T)sinw,t (53)
V=-o
but from Eq (46)
p(2vT) = x(2vT)(-1)V (54)
and from Eq (48)
q(2vT-T) = x((2v-1)T1(-1)"*K (55)

Plugging these into Eq (53)

x(t) = E x(2vT) (-1) @y (t-2vT)coswyt

ﬁ'/ v=-o

- £ oxtav-Del -1V e (t-2vTeT) sinwt (56)

v=-o

Now, letting v = n

@®
x(t) = L x(2nT)(-l)nQG(t-ZnT)coswot
n=-e
- n+k
- £ xl{(2n-1)t}(-1) ¢5(t-2nT+T)sinwyt (57)
n=-e
Since wot = (2k-1)n/2
coswot = coswy(t-2nT) (58)
R9AY
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and since

(—1)n+kslnwot = coswy[-(2n-1)T] {59)

Eq (57) becomes

@

x{(t) = & X(VT)®5(t-vT)coswy(t-vT) (60)
—®
which 1s the desired form of the expression for the case
Wo + 0/2 = ko
Case ii. For the general case, we assume

arbitrary band position and wy 2 0/2 > 0. Define

~
1]

[ (wot0/2) /0] (61)
with

o]
1A

(Wot0/2)/0 < r+l (62)

Holding the upper cutoff frequency, w5 + o/2 ,
constant (Figure 20) and increasing the bandwidth o to
o' such that (wy, + 0/2)/0' =1

Now,

Wo' = (woto/2)-0'/2 (63)
I1(wg',0') > I3(wg,0) (64)
Ia(wy',0') > Ip(w,y,0) (65)

and X € B(wg',0")
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Figure 20. Embedding Technique for First-Order Sampling T

The upper cutoff frequency wgy + 0/2 1is a multiple of

o' and 0, T, and w, are replaced in Eq (60) by o' ,

T' = n/0' , and wy' respectively.

LRSI X i
f 'Il".'r".h'

We now have

o

Qg?

X(t) = x(nT')oa.(t-nT‘)coswo'(t-nT') (66)

’1 ,",‘
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S0 a representation of x(t) 1Is possible with uniform samples !

.
<
had

4

at a rate of Y

=oa Nl

By o
o fs = 1/T' = o'/n = ao/laln (67) L
:

samples/s where a = (w, + 0/2)/0
‘ Summary. Uniform sampling of a bandpass signal at an
v average rate of o/n samples/s will suffice to determine e
the signal for all values of time only when the upper cutoff !

frequency is an integer multiple of the bandwidth. For the

case where the upper cutoff frequency is not an integer N

multiple of the bandwidth, an average rate between o/n and

LA

20/n samples/s is required. For direct sampling, this rate

can be determined from Eq (34) or from Figure 18. For

first-order sampling, Brown demonstrated a simple band

embedding technique which can be used to determine the e
minimum sampling rate for the signal. Brown's approach used A
only the quadrature representation of the bandpass signal

and the classical Shannon sampling theorem in his proofs.

L

The sampling rate, f5, for the general case is given by

N
I

Eq {(67).

3
%
S
. Y
Y
'_.-1
o)

pth-order Sampling

Introduction. Kchlenberg extended the idea of first-

order sampling to pth-order sampling (8:1432-1436). Unlike
first-order sampling which involves a single train of
uniformly separated samples of the bandpass waveform, pth-

order sampling involves p tralns of samples. The tralns are

37
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slightly displaced in time but occur at the same frequency
(10:40).

The following development discusses pth-order sampling
followed by second-order sampling (the case where p = 2).

To date, only gquadrature sampling, a special case of second-
order sampling, has been shown to be a practical approach to
pth-order bandpass sampling. For that reason, gquadrature
sampling will be covered in greater detalil.

The second-order development will lead to a
representation of x(t) in terms of its uniform samples just
as in the previous developments; however, in this case, x(t)
will be represented by two trains of uniform samples.

pth-Order Sampling Analysis. (8:1442-1443) Kohlenberg

considered the spectra of amplitude modulated sequences of

pulses of the form
[ ]
g(t) = ¢ x(an)s(t-an) (68)
n

where

s(t) gives the shape of the basic pulse, and

x(t) represents the modulating amplitude

Here, the function g(t) represents the first-order sampling.

Kohlenberg defined pth-order sampling as a function

P
g(t) = £ gj(t) (69)
1=1
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o p ®
) I
y T’ g(t) = ¢ {r x(aln+k1)sl(t-aln—k1)} (70)
' izl n=-=
.
. where the ith sampling of gj(t) has step size aj, phase
. kj, and sampling function sj(t).
L
i To £ind the Fourier transform of g(t) consider
]
@
gy(t) = £ x(ajn+ky)sy(t-ajn-ky) (71)
n=-w
o
o
- Using the Dirac, 8, function this becomes
: +o
- ®»
e g;j(t) = ¢ J x(¥)s;(t-¥)8(v-a;n-k;)ady (72)
n=-o J_g
. Interchanging the order of summation and integration
LY
+o
. @®
B gj(t) = l x(¥)s; (t-v){E 8(vy-ajn-kj)}idy (73)
v - n=-o
. This summation in brackets represents a periodic function
f with period aj. Using its Fourier-series expansion
@« @® _1
£ 6(vy-ajn-ky) = £ aj “expi{)2rn(v-ky)/aj} (74)
n=-w n=-w
and rewriting
- +® ®
A gg(t) = I x(Y)si(t—Y)ai—l{: exp{32nn(¥-ky)/aylidy (75)
o - n=-o
o
‘"¢ E
®
e

O

)
"e
g
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E ® +® :

j o - ¥

S %ﬁ‘ gj(t)=aj 1o {J s;(t-¥)x(¥v)exp(J32nny/a;)dyexp(-J2nnk;/a;)} >

> - n=-o -—® ~
(76)

: Taking the Fourler transform (F.T.) of both sides of this X

J -

4 equation and using the fact that .

‘, .

. F. T.{x(¥)exp(j2nny/aj)}l = X(w+2nn/aj) (77 I

y e :

Gy(w) = a3 °C exp(-J2nnkj/ajl5j(w)X(w+2nn/aj) {78) -]

n=-o

y Summing over all "i" yields N

w* .

v -

" .

" . . .

7 G(w) = € a; “sj(wiic X(w+2nn/a;lexp(-j2nnky/aj)l (79) -

- i=1 n=-o -

o :

h"- o This pth-order sampling theorem gives the Fourier transform

o

N of g(t) in terms of the sampled function x{(t) and the

'::: sampling parameters.

”% Second-0Order Sampling Analysis. (13:907) Second-order

> sampling is a speclialized case of pth-order sampling (p=2). i’

i Two equally effective Implementations of second-order B

~

- sampling are pictured in Figure 21. 1In one case the

) bandpass signal is passed through two channels, one channel ,

2

' is delayed in time and both channels are then simultaneously

<,

Ee.

w3 sampled. In the other implementation, the bandpass signal :

-f is once again fed through two channels; however, this time A

i one of the sampie tralns {s delayed (Figure 22). The -

t; samples occur at the same frequency but are delayed In time N

[ ]

YR from each other. :

v :

Cal ‘e
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( x(t) X - x(nTg)

p(t) =

SM™Me

O(t'nTs)
©

ey B &

X(t-a)

Delay - X(nTg-a)

c

x(t) X ~=x(nTg)

Delay

'\f/ = X(nTg-a)

s Figure 21. Second-Order Sampling (13:905)

41

c S
ALY ()

e
(3 )
v s

PN

(P N A

s
s % st Y

PNy
[y D)

4y

A

N S
P

g
[
r

o T

'
LT

-.'

.o 2
v

v’

AN A

/e, £



I T

M 2 ol BR

ht WP S B P ol ae &

E
g

Sampie Tran |

L] ]

=T, 0 o7 AT, o7, 8T !

Sample fran 2

L]

=T, +1r 0 r Tosr Al ~1 ol +1 8T, +7r i

thy

Sampled Signal

- Messge -
- \\\ N e
. ‘1 f fI\ a7 ol "/'}
1 ~ <11
T 0 :T, J__w o ;

Figure 22. Sample Trains For Second-Order Sampling (10:41)

As mentioned, second-order sampling ylelds two sets of

uniformly spaced samples which are interleaved, i.e.,

X (mT) (80)

X3 (mT)

and

x2(mT) = x(mT-a) (81)

where T i3 the temporal cffset of the staggered sequence.

The sequence x;(mT) has the Fourier transform given by

X1 (W) = X(w) (82)

42

DRI R I

»

LM o T

Toy'sy

ﬂ

2

W 0 M7

1 1 e sw
L ]
Ao
LR

> u s v
P
v'

!-.

AP U "-'_;' I IS
VALV 16 W VR VL SR SR ORI IR R U SO,



 pb p0 0 gV Ba® a0 ot (" Ue° 0n’ la' e~ 0e" a¥a o¥ ol Say o » WP WY A W ‘
~

RY

] \l
‘ g
o

y and the transform of x,(mT) 1s e

e At 2 -
- S

N
: ® =~
. Xo(w) = (1/T)E  X(w+2mm/T)exp{-J{w+(2nm/T) Ja} (83) o
m=-o -

Y =
5 -
~

The use of x2(mT) Introduces a new degree of freedom over &

{ A
first-order sampling which can be used to eliminate .

j aliasing. -
3 -
The original waveform can be recovered by properly ’

N filtering and combining the two sequences, l.e., ;
) o
.‘. @ © :::‘
x(t) = £  x1(mT)hp(t-mT) + £  x2(mT)hp(-t+mT-a) (84) oo

m=-e m=-e L

-

o

e

For exact reconstruction an ideal bandpass filter is E

Qr; required with frequency transfer characteristics, Hp(w) ’
given by 3

[0, 05w w - (n/t) “

Ay, wo(n/T) £ w ¢ {{2n((2k-1)/21}/T}-wg “d

Hp(w) = =

Ay, {20(2k-1)/21/T}-wy € W £ Wo+(n,/T) T

X .
3 | 0,  wWo+(n/T) £ w < 2n/T (85) s

where

A) = {exp{-30((2k-1)/2)B-=/21}/(2/T)sin{l(2k-1)/216} (86) 53

o "_:
a Ay, = {expl-J(kB-n/2)1}/(2/T)sin(kB) (87) 3
A <
L] ~ -
. 8 = 2ra/T (88) o

)

s A
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and k is the largest integer for which

o &

[(k-1)/T] < f£4-(1/2T) (89) ¥

! 3

Conventional Quadrature Sampling Ei

Introduction. As mentioned in Chapter I, it is 31

possible to preprocess a signal prior to sampling to insure :;

being able to sample at the Nyquist rate. Recall, that a Eg.

bandpass signal can be represented In the form g.

’

X(t) = p(tlcoswyt - g(t)sinwgt {42) i

-

where p(t) and gq(t), the in-phase and quadrature components, ;

respectively, are low-pass signals with spectra occupying 7

the symmetric band lwl < 0o/2 ; effectively, the bandpass E

n signal is specified by a pair of low-pass signals. 5'

¢ The objective of conventional quadrature sampling is to 7

recover the low-pass components, p(t) and g(t), and to :;

sample them at the Nyquist rate. Because of the 5'

E preprocessing of x(t), the low-pass components are Y

b independent and may be sampled independently (10:36). This 3

ﬁ‘ means that there is only the Nyguist limit to satisfy. We .

%f no longer have to be concerned with two bandpass spectrums ]
%i overlapping or the relationship between the upper cutoff

tz frequency and the bandwidth. Samples of the low-pass 5

é{ components will uniquely determine our original -

t; bandpass signal. g

E: Analysis. A common approach to obtalnling the ?

7;% quadrature components is to employ quadrature demodulation

44
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A as shown In Figure 23 (13:907-908). 1In one channel x(t) 1is o~
" - . \h

modulated by cosw,t, or

g

- R
o x(t)coswyt = [p(tlcoswgt - g(t)sinwgtlcoswyt (90) N
< " g
: x{(t)coswyt = p(t)coszwot - gq({t)sinwgtcoswyt (91) -
‘ A
:f Recall,
Pl i
=
coszA = 1/2 + (1/2)cos2A (92)

f ;;
- sinAcosB = (1/2)[sin(A+B) + sin(A-B)] (93) D
- N
v, ~
» Here A = B, so )
:: sinAcosA = (1/2)sin2A (94)

(e x(t)coswgt = (1/2)Ip(t) + p(tlcos2wyt - q(t)sin2wyt]l  (95)
;: The filter removes the 2w, terms, and :
s
'; :I

x(t)coswgt = p(t)/2 (96)

Similarly, g(t) is obtained from the sine channel.

NN
PR
R

‘ x(t)sinwgt = p(t)sinwgtcoswyt - q(t)sinzwot (97)
’ , <
E sin“wot = (1/2)[1-cos2wqt] (98) ‘
..l ~
o
x(t)sinwgt = (1/2)[p(t)sin2wgot - q(t) + ql(t)cos2wyt] (99)
:j Once again, filtering out the 2w, terms 3
' \
y ~
(V) o)
@ x(t)sinwgt = -q(t)/2 (100)
-, LS .
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Conventional Quadrature Sampling (10:37)
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Both channels are then sampled at a rate N
'.'
of o¢o/2n samplez/s. The samples are written as <
o 7
p(t) = £ p(kTg)8(t-kTg) (101) =
k=-w ‘::
o
@ N
g(t) = ¢ q(kTg)8(t-kTg) (102) ]
k=-w o

These equations have the familiar form of a low-pass signal
"
in terms of its samples. The next step in the process {s to 2‘
apply the samples to the reconstruction fllters as in Figure §4

23b. These reconstruction filters are the spectral windows
referenced earlier. Signals p(t) and q(t) are modulated

once again to yield the familiar form of Eq (42)
x(t) = p(tlcoswyt - g(t)sinwgt (42)

Summary. Conventional quadrature sampling allows us to
sample an arbitrary bandlimited bandpass signal at a total
rate of o/n samples/s, using preprocessing, regardless of
the ratio of the center frequency and the bandwidth, and

recover x(t).

Quadrature Sampling

Introduction. This approach to quadrature sampling is

illustrated in Figure 24, 1Instead of preprocessing to
determine the low-pass components, p(t) and q(t) are
determined from samples of the bandpass signal and its

quarter-wavelength extension (7:1453-1454).
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¥

&

x(t) o{(x) e xg (t)

®»
P(t) = 8 d(t‘nTs)
n=-o

x(t-w/2wq)

—»{Delay Xg(t-n/2wy)

Fiqure 24. Quadrature Sampling

Three cases will be discussed. 1In Case I it is assumed
that 2wgy/0 = k , where k iIs an integer 2 1. It will be
shown that sampling at an average rate of o/n samples is
sufficient to recover the bandpass signal. Case ii assumes
only that 0 < 0/2 < wg < @ ; l.e., 2wy/0 may or may
not equal k. A technique is applied where Ij(wgy,0) is
embedded in a larger band, 1I3(w,,0'), having the same
center frequency w,, and a bandwidth o¢' 2 0 . 1In Case
111, Ij(wy,0) is embedded in an "optimal" band, Ij(wy',o0"),
that requires 2w,'/o" to be an integer. Cases ii and iii
allow sampling at an average rate between o/n and 20/n

samples/s as will be explained in detall in the following

paragraphs.
Case 1. (2:1660) Quadrature sampling's goal |is
to recover the low-pass components p(t) and q(t) directly

from samples taken of the bandpass signal x(t) and its
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quarter-wavelength translation x(t-w/2w,) (2:1659). Case |

assumes the constraint 2w,/0 = k , where k is an
integer 2 1.

Recalling Eq (42)
x(t) = p(ticoswat - q(t)sinw,t (42)
In terms of its samples x(t) becomes
x(nTy) = p(nTy)cos(nwyTy) - q(nTy)sin(nw,T;) (103)

Letting T3

2n/0 and 2wy/0 = k

x(nTy1) = p(nTy)cosin(ok/2)(2r/0)}
- g9(nTy)sin{n(ok/2)(2n/0)} (104)
x(nT;) = p(nTy)cos(nrk) - q(nT;)sin(nnk) (105)
or,
x(nTy) = (-1)¥"p(nTy) (106)
x(nT1-n/2wg) = (-1)*"g(nT;-n/2w,) (107)

These equations show that samples of p(t) at a rate of

1/Ty = 0/2n samples/s are available from the original
bandpass waveform x(t), as are samples of q(t-x/2wy) at o¢/2x
samples/s. Recall that p(t) and q(t) are bandlimited to

|w| € 0/2 , which implies that they can be reconstructed
from their samples at the low-pass rate.

From the Shannon low-pass sampling theorem

49

. ~ .I - ‘1

........

RN RIS R
2 S L WA 0 WL VA SR R S | & SRR I T P

r

l”"'l"’{'

e

L AT
'n‘.%f\,"



Y

o

%Y p(t)

n
oM e

p(nTy)@(t-nTy)
«©

where

®(t)

{sin(ot/2)1/(0t/2)

So, plugging Eq (106) into Eq (108) yields

p(t) = (-1*Px(nTyre(t-nTy)
n=-o
Similarly,
o
g(t-a) = ¢ q(nTy-a)®(t-nTy)
n=-o

where a is real.

Let t =¢t + a
@

q(t) = £ g(nTy-a)@(t+a-nT)
n=-w

For a = n/2w,

q(t) = Q(nTy-n/2Wo)@{t+(n/2w,)-nTy}

amM s

Plugging Eq (107) into Eq (112)

@®
. ate) = (-1)%Px (nTy-r/2wg) @t + (n/ 2wy ) -nTy }
- =—-@
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K
sg; So, by plugging Egs (110) and (113) Into Eq (42) 3
o
© k :~
x(t) = £ (-1)""x(nT1)é(t-nT1)coswt :
n=-o ¢~
o
~ ‘:

2 k
- (-1 Tx(nTy-n/2wy) it+(n/2w) -nTylsinwgt  (115) x
n=-o f
N
which is the desired quadrature sampling formula for the ?
case 2w,/0 = k = integer 2 1 . o
")
The low-pass components p(t) and gq(t) were sampled at a o
rate of o/2n samples/s ylelding an average rate of o/n 5
samples/s for the bandpass signal. x
~
Case ii. (2:1660) For this case assume only that &
iﬁh @ > wy, 2 0/2 >0 . In other words, 2w,/0 need not always S

4
be an integer. Here I;(w,,0) is embedded in a larger band -
‘o
I;(we,0') which has the same center frequency and a #
bandwidth o' 2 ¢ as shown in Figure 25. Holding wg ;'
constant, and increasing o (if necessary) to the value o' -3
such that 2w,/0' will be an integer, yields ;
2wo/0' = [2wy/0) = s = integer {116) f
where -
b,
S € 2wy/0 < s+l (117) R
N
The results of Case i now apply with o , T; , k , ;:
KN
replaced with ¢' , T1' = 2n/0c' , s respectively. So, ~3
[ J

ot o
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p(t) = £ (-1)°"x(nTy )@ (t-nTy ") (118) <
n=-o P,

® o

q(t) = £  (-1)°"x(nTy'-n/2wg)éy{t+(n/2wg)-nTy'} (119) g

n=-o :A

where By
~

$1(t) = {sin(o't/2)}/(0't/2) (120) s
D\-

Sampling x(t) and x(t-n/2w,) at the rate :{
1/T1" = 0'/2r = {(2Wg/0)/12we/0 1} (0/2n) (121) 2

or R
1/T1' = {2a/(2al}(0/2m) (122) 3
ylelds an average sampling rate h
(2a/12a1) (0/n) (123) -

W

samples/s for the reconstruction of x(t) from Eg (42) ﬂ
x(t) = p(t)coswgt - g(t)sinwgt (42) ;;

-

When 2wg,/0 is an integer Eq (123) becomes o/n samples/s, s
which is the equivalent to Case | as expected. i
Case 1ii. (2:1661) 1In this case it is not R

necessary to hold w, or o fixed. Here, x(t) is a general ::
-

bandpass signal, wy doesn't have a strict sense of center :i
N\

(angular) freguency, but only a sense of "averaqe of ;
extremes" (wg-0/2 and wg+0/2). N
53 -
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Again, assume that ® > wg 2 0/2 >0 , and that 2wg,/0

RNV i :\ R

'y gy

may or may not equal an integer. The objective s to

T - "l'l.l‘
N

determine a generalized result by allowing another degree of
freedom in the embedding technique of Case 1i1.

For this embedding technique, the upper cutoftf

PN RAER
A"ss"sx-.-_n.

A7

. .....'.'."

frequency, wg+0/2, 1s held invariant while increasing the

bandwidth (Figure 26). An "optimal" covering band

%
AV a3

",

I1(wy',0") i3 determined where it is required that 2w, '/o" =

2

integer. The analysis follows.

y + -

L]

Let 8 = [2w,/0] be the greatest integer contained in
2wo/0 and s < 2wy/0 < s+41 . From Figure 26, it is

obvious that

Wo' = (Woto/2)-0"/2

To determine o" , set

2wy ' /0" = 2{wo+(0/2)-0"/2}/0" = = [2wgy/0)

2wo'/o" = (2wgto-o") /0" = 8 = [2wy/0)
Solving for o"
oﬂs =
o"s+0”

o"(s+l)
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o" = (2wyt0)/(8+1) (130)
ot
N
o" = {0(2wo/0)+1}/{(2wy/0141} (131)
Now, let Y = w,/0
o" = {o(2Y+1)}/12v+1]) (132)
If vy 21 then o" < 20 and wg-0/2 < wo' < wg,
Further, w,'+0"/2 = wy+0/2 ; 1.e., the upper
cutoff frequency of the covering band remains invariant.
V The low-pass components p(t) and q(t) with respect to
- the center frequency w,' have the form
® sn
v p(t) = (-1)""'x(nTy")®(t-nT ") (133)
. n=-o
.. @
a(t) = £ (-1)°"x(nTy"-n/2wy ' )@ (t+(n/2wy' ) -nTy"}  (134)
n=-«
where
¢2(t) = {sin(o"t/2)}/(0o"t/2) (135)
and
T1" = 2n/0" (136)
with
x(t) = p(t)cosw,'t - g(t)sinw,'t (136)
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x(t) = £ (-1)3%x(nT1")e2(t-nT;")coswy't
n=-a
@
- L (-1)°TX(nTy"-n/2wo ' )it (n/2ws' ) -nT1"Isinw, 't
n=-o
(138)
the average sampling rate in thils reconstruction is
{(2¥v+1)/[2¥+1})}(o/m) (139)
samples/s. Since
(2¥v+1)/12v+1] < 2v/12Y] (140)
the sampling rate is improved over that in Case ii.
Summary. In Case i an average sampling rate of o/n

samples/s was determined for the reconstruction of x(t) from

x(t)= p(ticoswot - g(t)sinwgt (42)

for the situation where the upper cutoff frequency was an
integer multiple of the bandwidth. When this constraint
doesn't hold, the average sampling rate was

{(2v)/02¥])}(o/n) samples/s as determined In Case ii. Since
1 < 2v/02v) < 2 for all vy 2 1/2 , the average rate
necessary for reconstruction of x(t) varies from o/m to o/2n

samples/s. Lastly, when the freguency w, is allowed to

o
vary, a further improvement in the sampling rate can be

obtained, the average rate being given by Egq (139).
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Complex Sampling

Introduction. Another possibility for maintalnlng the

(average) sampling rate equal to the minimum value of o/mn
samples/s is to sample both x(t) and its Hilbert transform
at a rate of 1/Tg = o/2n samples/s (10:37). Since x(t) and
its qguadrature function are Hilbert transforms of each
other, the low-pass components, p(t) and g(t), can once
again be determined, this time from samples of x{(t) and its
Hilbert transform, xy(t).

Analysis. (13:906) This technique, illustrated in

Figure 27, is egquivalent to forming the analytic signal

Zy(t)

"w

x(t) + Ixy(t) (141)

x(t) (%) * x(nTg)

p(t) = £ 6(t-nTg)
n

xg(t)

Hilbert X * xy (nTg)
"] Transform

Figure 27. Complex Sampling (13:905)

The Hilbert transform of x(t), xu,(t), 1is obtained by the

following operation
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xylt) =

The Fourler transform of the analytic signal,

22X (w), W >

Zx(t) =

For the bandpass case,
U is the step function.

In terms of the positive and negative frequency

spectra, X4;(w)

{llustrated

X(w) =

where

>
|,-\
€
ft
)
£
o —

Thus,

Zy(w)

2X¢(W)

The analytic signal

2,(t) = x(t) +

f et e "m et ar
B

~JIsgn(w)X{(w)

X(w), w =0

and X_(w),

in Figure 28,

RS R S R S S S I I S S SRS G .

H{sﬂ_

r

N I; v,

(142)

Zx(t), 1s .3

vy -
S
hY

o
»

XA ARS

0, w <0 (143)

F AT AN s

A a4 Gy

X(0) = 0 and Zy(t) = 2X(w)U(w), where

EE A A

P
“ 5 L

respectively, which are

LI W
[REN R
» l’ ll l' I'

X_(w) (144)

(NN

w 2 0

]
otherwise (145) 'q

w < 0

otherwise (146)

et

(147) o

g
3
.1
]
)
a4

Ixy (t) (148)
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" has a spectrum confined to the positive frequencles
‘S ‘1‘..-:
e poSy Wy - 0/2 < w < Wy +0/2. S0 we can write

“~ ]
N Zy(t) = ¢ Zx(nTg)sinclo(t-nTg)/2lexpliwg(t-nTg) ] (149)
~ n=-o
~
-

and from this, .
‘ :
/ .
< Ay
- Xx(t) = Re{Zy(t)} (150) .
: <

@ RS
%4 Xx(t) = £ {x(nTg)sinclo(t-nTg)/2]coslw,(t-nTg)] N
- n=-o ~
’ RS
¢
o !
-/ - xg(nTg)sinclo(t-nTg)/2)sin(wg(t-nTg) 1} (151) ‘
f) :'
: Once again we have the familiar form of Eq (42) $
o N
4 A i N
p ": x(t) = p(ticoswot - g(t)sinwgt (42) ~
I
: Summary. Obviously there is not a strict separate
-
rs interpolation in Eq (151) since the "carriers" are
:_ coslwg(t-nTg)] and sinlwg(t-nTg)]. But, once again, the
'\ bandpass signal is represented in terms of its uniform
N
s
-, samples.
A
ﬁ Chapter Summary
'i As mentioned in the introduction, the purpose of this
J
" chapter was to develop, theoretically, the bandpass sampling
P
- techniques. 1In each case, x(t) was developed in terms of
.
. its uniform samples. 1In addition, the minimum sampling rate
’,
* ° was developed for each technigque.
v,
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: ?aﬁ 1I11. Results ?
AR :
. Introduction .
N
:i One "figure of merit" for comparing bandpass sampling }
)
:: techniques is to compare the minimum sampling rate possible 3
'} for each case. The following is a review of the key results .
.i of Chapter 1II. %
; Direct sampling can be accomplished at a minimum rate ?
- .
v of £5 = o/n samples/s only when wq + 0/2 = ko (k = .
; integer). Otherwise, the minimum sampling rate is governed i
g by the exact relationship between the bandwidth and the S
‘; center frequency and can be determined from Eq (34) or from :‘
'i Figure 18, ;
ii . For conventional gquadrature sampling, the low-pass 5
- ; components can each be sampled at a minimum rate of
\; fg = 0/2n camples/s for a total (average) rate of fg = o/m ;
;:] samples/s. This approach allows arbitrary band positioning. ;
‘_ In other words, the relationship between the center .
~ -
; frequency and the bandwidth is not considered when f
;E determining the sampling rate. The preprocessing allows the é
. low-pass components to be independently sampled according to y
ﬁ the low-pass sampling theorem (10:36). Since we are usually g
ﬁi interested in the amplitude, A(t), and the phase, ®(t), of ;;
. x(t), the time-varying nature of our signal requires that j
.
f samples of p(t) and g(t) be taken at the same Instant ;
. .
3 (18:731).
~, qg‘ Quadrature sampling allowz sampling at the average rate
M :
G 62
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of fs = o/xn samples/s when 2wo = ko (k = integer).

Otherwise fg = {(2v+1)/(2v+1]}(0/n) samples/s, where Y =
wo/0 . As in direct sampling, the minimum sampling rate is
a function of the relationship between the center frequency
and the bandwidth.

Another possibility for maintaining the (average)
sampling rate equal to its minimum value o/n samples/s in
any case (arbitrary band position) is to sample both x(t)
and 1ts Hilbert transform, xy(t), at a rate of fg5 = o/2n
samples/s.

The last three approaches offer a sampling rate
reduction of up to one-half over direct sampling, but none
of the approaches offer a significant rate reduction over
each other. So, how do you chose a sampling scheme? The
best answer to that question, ultimately, is determined by
how the sampling scheme will fié into the overall system
(receiver) design. There are many factors that must be
considered when choosing a sampling scheme. For instance,
if your design is being driven by cost, it may be cheaper to
use a single A/D and use direct sampling. Or, using "off
the shelf" equipment may keep the cost down and at the same
time drive your design to match the avallable hardware. 1If
the system design requires down-conversion, direct sampling
or the conventional quadrature approach may be appropriate.

Since there is no real "figure of merit" to compare the

individual sampling techniques (unless you base your
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L decision on the minimum sampling rate possible), selectlion E
6&; of a sampling scheme should be made only after an g‘
| examination of what it actually takes to implement these :
‘; techniques in hardware. E
A quick glance at the figures in Chapter I glves a g
pretty good idea of the hardware components needed, but :
N there is more to consider. Recall in low-pass sampling, the ”;
; theoretical minimum sampling rate was shown to be twice the ;%
. highest freguency. That may be true in theory, but in t
; practical applications the rate is higher. A good rule of E
: thumb has been shown to be five times the highest frequency E.
: (14:53). The reason for the difference is that in the :
; theoretical derivation all things were consldered ideal. E
j . Signals had bandlimited spectrums and filters could pass E?
f" or reject whatever freguencies were required. But the fact \1
; is, signals are not ideally bandlimited, and since bandpass i;
j. sampling rates are typically determined based upon
. consideration of the bandwidth, some thought needs to be
E given to the definition of bandwidth. A few of the more
: popular definitions are given below (4:61-62).
Half-power bandwidth is the interval between the
:Z frequencies where the signal has dropped to half power (or
- 3 dB below the peak value).
\ The equivalent rectangular bandwidth 1s defined as the
E bandwidth which satisfles the relatlionship P = W/ S(f_.),
S where P 1s the total signal power over all frequencles, W,
v ,,. i{s the equlvalent nolse bandwidth, and S(f-) 13 the value of
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the =2lgnal at the band center frequency (assumed to be the
maximum value over all frequencies).

The null-to-null bandwidth is the width of the main
spectral lobe, where most of the power is contained.

There are other definitions of bandwidth available, but
the point is, there are many definitions of bandwidth and
the definition you choose has a direct affect on the
sampling rate, fg.

Besides topics such as bandwidth, which effect each
sampling scheme, there are other concerns that need to be
addressed that are peculiar to the particular two-channel

technique chosen. They will now be discussed.

Conventional Quadrature Sampling

Radar and communications systems are becoming
increasingly dependent upon coherent dlgltal processing.
Conversion of signals from IF analog form into digital
complex samples carrying amplitude and phase information has
been traditionally implemented in the form of two parallel
IF to baseband converters operated in quadrature each
followed by A/D converters which thus provide digitized in-
phase, p(t), and quadrature, q(t), components (conventlional
quadrature sampling - see Figure 23). Balancing the two
baseband converters over a wide dynamic range is difficult
and phase errors are typically 20-39 for commercial coherent
detectors (18:731). To examine the effects of phase error

in the quadrature sampling process, recall that any bandpass
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PO waveform may be written

x(t) = p(ticoswat - q(t)sinw,t

(42)

Now, induce a phase error, ©, between the IF to baseband

converters. 1In other words, assume we demodulate with

coswot and sin(wyt+8) . Beginning with the cosine channel

x(t)cosw,t [p(ticoswyt - g(t)sinw,tlcosw,yt

p(t)coszwot - q(t)sinwgtcosw,t

x(t)coswgt

x(t)coswyt (1/72)Ip(t)+p(t)cos2wot-q(t)sin2wyt]
The low-pass filter removes the 2w, terms, and

x(t)coswyt = (1/2)p(t)

Similarly, q(t) is obtained from the sine channel.

x(t)sin(wot+8) p(tisin(wst+8)cosw,t

- g(t)sin(wot+8)sinwst

But,

sinAcosB (1/2)[(sin(A+B) + sin(A-B)]

sinAsinB

(1/2){cos(A-B) - cos(A+B)]

x(t)sin(w,t+6) (1/72)p(t)[sin(2w, t+6) + sine]

- (1/72)q(t)lcos® - cos(2wyt+0)]
o The low-pass fllter removes the 2w, terms, and
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x(t)sin(wot+8) = (1/72)[p(t)sinB - gl(t)cose]l (160)

Normally we expect to be able to recover the amplitude,
A(t), and phase, ¢(t), information about x(t) using the

following relations,

A(t) = (p2(t) + g2(t)1/? (161)
@(t) = tan_llp(t)/q(t)] (1€2)
wWhat we actually have 1is
A(t) = [p2(t)+(p(t)sind)+(q(t)cose)?1t/? (163)
#(t) = tan T{p(t)/lp(t)sind - q(t)cossl} (164)

Obviously the phase error causes attenuation of the output
signal. For small fixed errors, this is tolerable. For
phase errors approaching =909, however, the received signal
is wiped out (17:206).

A further cause of concern, with the same conseqguences,
is phase errors between the transmitter and the receiver.
Typically, this is no major problem when the transmitter and
receiver are in cliose proximity. Again, 29-3° {=s tolerable.

The key polnt to this discussion 1s that random phase

errors must be controlled or the phase errors will render

this conventional quadrature sampling approach useless.

Quadrature Sampling

NOTE: The material in this section parallels and expands on
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Persons' quadrature sampling error formula (11:511-512).
For that reason and ease of reference, Persons' notation
will be used. To be consistent with the rest of this
thesls we let 2nf, = w, and 2awW = 0.

Recall that the aim of quadrature sampling is tc
recover the low-pazs components, p(t) and g(t), directly
from samples of both the bandpass signal x(t) and its
quarter-wavelength translation x{t-1/(4f_)], the samplec:
being taken at the low-pass rate. The Grace-Pitt

+

interpclation formela (7:1454).

@
git) = ¢ f(n/f;)s{t-n/fg)
n:-w
T
+ C fin/fg+l/xfg)s(t-n/fg-1/xf,) (1
n=-m
where x = 4, allocwe an exact reconstruction of high
freguency bandlimited wavefcrms with a minimum average
sampling rate of W samples/s (or W/2 samples/s/channel)
whenever  2f. = kW as in Figure 29. This was verifiel !y

Persorns whern he developed a quadrature sampling errcr
formula.

For the general cace, where 2f, does not egual kW,
irterpolation formula given by Egq (165%) with x = 4 will

exactly yield f(t). Persons showed a way to measure the

[eal
o

U W aVaWaWq Wy,

the

ncot

amount of reconstructlion error when using this equation for

the general case. More specifically, he determined ¢, the
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Figure 29. Bandpass Signal for 2f, = kW (k = lnteger)

ratio of the power in the error band to the power in the
signal band.

By following the same approach taken by Persons, it s
possible to more fully develop the quadrature sampling error
formula into a generalized formula in which the effects
on Q due to hardware timing errors can be investigated.

It will be shown that timing is extremely critical when
sampling at or near f5 = o/n samples/s (average).

Analysis. Beginning with the general interpolation
formula of Eq (165), recall that the obljective i3 to
determine the power in the error relative to the power in
f(t).

We can express Eg (165)
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g(t) = [f(t)C 8(t-n/fg)1*s(t)

n=-o

®»

+ [f(t)C 8(t-n/f5-1/xf5) 1*s(t) (166)

n=-o

where * denotes convolution.

Taking the Fourler transform of Eq (166) ylelds

@® @
G(f) = £5S(£){F(£)*[C 8(f-nfg)+L S(f-nfglexp(-I2nnfg/xf )]}
n=-o n=-o
(167)
G(f) = 2f5S(£){F(£f) + (1/2)L F(f-nfg)ll+exp(-In2nfg/xf,) 1}

n40
(168)

Let 2f45S(f) =1 1in the region where F(f) is nonzero and

zero elsewhere,
2£58(f) = {rect[(f-£,)/W] + rect((f+f,)/WI]} (169)

This is equivalent to applying an ideal antlaliasing filter

to the bandpass signal. Solving for S(f)
S(f) = (1/2fg){rect((f-£,)/W] + rectl(f+f,)/W]} (170)
The inverse Fourlier transform of S(f) is

s(t) = (U/fs)sinc(wt)cos(anot) (171)

Substlituting Eq (170) into Eq (168) ylelds
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G(f) = F(f) + {(1/2){rect[(f—fo)/W] + rect[(f+fo)/w1} ;:.
N
£ F(n-nfg)ll+expl-znZnfg/xf )]} (172) ',~
n#O o
<.
-
. - J-.
Notice that G(f) is made up of F(f), the term we want, plus X
e
scme extra terms. It is the power in these extra terms .
re.ative to that in F(f) that will be determined. Because o
cf the rect functicrs (antialliasing filter), only the terms oo
3iving bands in the vicinity of £, will interfere. .
Let 2f./f. = = + r = K , where =z = integer. Als_, e
A
ascune that f-. > w , which ls an obvious neel or else the o
regeateld spectral karnds would overlap. Note that for '
cisf- = o 7 integer, and x = 4 , there is only cne hand -
f2r rn = s+« 2 which overlaps F{f), but the amplitude term o
Lo+ expi-zTny o= 0 In gerneral, there will be tw:o barls .
cverlapping Fif), ccrresponding to the term .
]
n o= =2z, s£{2+1) Consicdering only the p zitive o
.\_:
freguenciecz, Figure 20 showr the 2z and (z+1) terr 1
v : -~ 4
cver.apping F{f) for the general case where i. [0 rnzt egu-l :
R
tc kW 'k = integer), ani f. = W sanplies o, 'ﬁ
-(l.
Define Q ejqual t. the rati. of prwer oo
t. the power in Flf,, and agairn consider o
frejuencies

Defirie
a, -~ (1/2)01 « exp! jmdf-z 'wof )]
a4y = (272001 ¢ expl-Jdn4f- ol wlf
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Figure 30. Bandpass Signal for 2f, * kW (k = integer) ?

[yt

E~ = bandwidth of zth term (175) T

Biz+2y = bandwidtl. of (z+1)st term (176)

-
-

Since we've appllied the antialiasing filter, the numbers B.

arl B(gzs+1) are determined by the overlap with T
rect{(t-f,)/Ww) . Let the power In F(f) = W ; then from N

\ )
Eqe (172-176)
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Q = |az| (By/W) + |a(z+1)| [B(z+l)/W] (177) ;
N
where B, and B(z41) must be greater than zero, else they are j-:
2
taken as zero. N
>
Now, from Eq (173) L
2 _ 2 -
laz| = (1/74)|[1 + exp(-jn4fsz/x2fo)1| (178) 8
-
but K = 2f,/f5 and 2z = (K] , where [ ] is the greatest
integer function. -
2 2 N
laz]| = (1/74)|{1 + exp(-Ind[KI/xK)}| (179)
2 2
|az| = {cos” (2n(K]/xK)} (180)
%— Likewise, T
' -
2 _ 2 o
ja(z+1)|" = (1/74) {1 + exp{-Im4((K]+1)/xK}}| (181)
2 = fcos?(2m(IK1+1)/xK}} (182)
|a(z+1)| = {cos n X s
X
Note from Figure 30, the center of the zth band is at ﬁ’
)
£, = {zfg - £o} = {[KI2f /K - £4) (183) -
and the center of the (z+l)st band is at =
fiz+e1) = ((241)fg - £5)} = {([KI+1)2f,/K - £,1 (184) :?'
Now determine B,/W . From Figure 30, By = f, + W - £, 3
)
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So,
By/W = (f; + W - f£45)/W (185)
Bo/W = £,/W + 1 - £,/W (186)
By/W = £,/W + 1/2 - (fo/W - 1/2) (187)
Substituting
t, = [K12f£,/K - £, (188)
Bz/W = {[K]2f4,/K - fo}/W + 1/2 - {f,/W - 1/2} (189)
Since £, = £gK/2 ; K = 2f,/fg
B,/W =1 - {£f5(K-[K]))}/W (190)
Likewise,
B(z+1)/W = 1 ~ {f5(1-K+I[K]}/W (191)

Substituting into Eq (177) and using the definition

K=2z+1r=1[K] +r and L = fg/W

Q(K,L) = fcos?(2n(K1/XK)}([1-Lr]]

+ {cos®(2r([K1+1)/xK)}I[1-L(1-x)]] (192)
where
K = 2f_/f, (193)
z = (K] (194)
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(195)

(196)

and [[ )] indicates the quantity is to be taken as zero if
it is negative. Eq (192) holds for L s 2f45/W + 1 ; for
larger L, the error ls zero.

This is the desired result. Note that substituting
x = 4 into Eq (192) will yleld the gquadrature sampling
error formula developed by Persons.

Given f, and W, Q can be plotted as a function of K for
any L. As mentioned, Eq (192) provides us with the
flexibility to investigate the effects of hardware timing
errors on Q. If we use Persons' example we can establish it
as a baseline (he assumed no timing error). 1In other words,

we'll assume that we've sampled f(t) and £(t-1/4£f,) with no

timing error. This is the case where x = 4 Letting
L = f5/W =1 we have
Q(K,L+1) = {cos2(nz/2K)}[[1-r]]
+ {cos?(n(z+1)/2K)}[(r1] (197)

which 1s plotted in Figure 31. Figure 3la shows the full

scale of Q for 0 < Q < 1.0 where 1.0 = 100% error. 1In part

b the Q scale was expanded to emphasize the shape of the
error plot. Notlce that Q is zero for K = integer and

approaches zero for narrowband systems (large values of K).
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5

The interesting question i1s, what happens to Q if we
3 ﬁﬁp
L have a timing error? 1In other words, we think we're
¥ sampling £(t) and £(t-1/4£f,), but we're actually
‘; sampling £(t) and £(t-1/xf,) where x does not equal 4.
f$ Since gquadrature sampling requires sampling the bandpass
” signal and its gquarter-wavelength translation, we expect
; some reconstruction error. The next few figures will show
»

that there is indeed a reconstruction error and this error
can be quite significant. For instance, 1f x=2 then the
bandpass signal and its half-wavelength translation are
being sampled and the reconstruction error approaches 100%
{the signal cannot be reconstructed).

Q is plotted in Figure 32a for x = 4.0, 3.9, 3.8, 3.7,
3.6, 3.5and 0 £ Q £ 1.0 and once again in Figure 32b
with 0 £ Q £ 0.16 . The individual plots for the various
values of x are more easily distinguishable in part b,
Notice as the timing error increases, or |x—4.0| grows
larger, that Q increases. Figqure 33 shows the case where
the timing error has increased to the point where we are
sampling the bandpass waveform and its half-wavelength (x =
2.0). In this figure, Q is plotted with x = 4.0, 3.8, 3.5,
3.0, 2.5, 2.0 . As before, Q approaches 100% as x
approaches 2.0 . Figure 33b 1s a three-dimensional
surface plot of part a.

To summarize, consider an example with three high
frequency bandpass signals with center frequencies of f; =

40 MHz, £ = 500 MHz, and f£f3 = 1 GHz. Once again
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TABLE 1 7
Comparison of Timing Errors (Tg in pS) ;
Tg for g
X -
f1 = 40 MHz f2 = 500 MHz f3 = 1 GHz 7
3.9 160 13 6 oy

3.8 329 26 13
3.5 893 71 35 ;ﬁ
3.0 2083 167 83 3

2.5 3750 300 150
2.0 6250 500 250 -
fs = 1.5w , f5 = 2.0W and fg = 5.0W respectively. As gi
the sampling rate grows large compared to the bandwidth the Eﬂ
error terms approach zero. In Figure 36, Q is negligible ”
for x = 4.0 (no timing error), 3.8 and 3.5 . The only és
significant Q terms are for x = 3.0, 2.5 and 2.0. ;tl
Increasing sampling rates will reduce the Q terms even ~
further. 8
To summarlze, gquadrature sampling requires very precise -
timing. Even with center frequenclies less than 100 MHz, B
nanosecond precision is required. 1If such precision is not Egi
possible, higher sampling rates will be needed to overcome is
Y

s

the reconstruction error terms.
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let L =1-= fg/W. The timing errors, Tg, ls a function

of x:
Tg = T(1/4 - 1/x%) (198)

where T is the period of the corresponding bandpass signal.

In Figure 33, a value of x = 2.0 results ln a Q of
almost 1.0 (or 100%) . Referring to Table I, and putting
this in terms of a timing error, we see that for f£;, a Tg
of only 6nS ylelds a Q of 100% . similarly, Tg = 500 pS
and 250 ps for f; and f3, respectively.

The important point here is that Q is directly
proportional to the center frequency. The higher the center
frequency, the more precise the timing must be to keep Q
small.

Typlical communication signals will be sampled at the IF
stages of the receiver, so Tg for f; is representative of
the type of timing precision needed for quadrature sampling
when fg = W samples/s. Referring again to Figure 33 and
looking at the column for £; 1n Table I, where x = 3.8,

Tg = 329 pS and Q is relatively small for large values of
K. A value of x = 3.0 represents a 2 nanosecond timing
error and a Q that levels off at 0.3 (30%). Obviously,
timing must be kept to nanosecond precision or it won't be
possible to reconstruct the signal from the samples.

The next questlion is, what can be done to get around

this timing problem? The answer is to sample at a higher

rate. The next three fligures (34-36) are plots of Q for
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Complex Sampling

The drawback of complex sampling is the preprocessing
that must be done to obtain the Hilbert transform of the
bandpass signal. There is the further disadvantage that it
is not easy to obtain a precise Hilbert transform (the
noncausality of the Hilbert transform does not allow one to
implement it for signals having non-zero bandwidth,
theoretically). Simpler processing is usually desirable

{5:289).
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IV. Conclusions and Recommendations

Concluslons

Five bandpass sampling technigques were evaluated. 1In
each case, equations for the bandpass signal were developed
in terms of its uniform samples. The minimum sampling rate
and the conditions for those minlmum sampling rates were
discussed. In comparing sampling rates 1t was found that
eachk o¢f the two-channel technigques offered a rate reductic:
of up to one-half over the single-channel approach. Ther.
are always tradecffs that result in varying degrees cf
accuracy and must be considered when determining whi::
technique to to use. For example, it was showr <=5

conventional quadrature sampling requires pre-.. P

synchronization, quadrature sampling wac o= «°
extremely sensitive tc timing ervors a3t N
hard to implement in hardware. I* w:

purpcse for which the data will - . N

of
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aspect which can be investigated is the reconstruction error
due to the combined effects of hardware timing errors and

varying levels of noise.
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The purpose of this thesis is to investigate and
analyze bandpass sampling techniques. Bandpass sampling
theory is shown to be an extension of the Shannon low-pass
sampling theory. Five bandpass sampling techniques are
investigated: direct sampling (also called first-order
sampling), pth-order sampling (in particular second-order
sampling where p=2), conventional quadrature sampling,
quadrature sampling, and complex sampling (also called
Hilbert transform sampling).

Direct sampling is a single channel approach to
bandpass sampling while the other approaches require two
channels. The two channel techniques offer a sampling rate
reduction of up to one half over direct sampling, but there
are trade-offs to consider when choosing a two channel
technique. It is shown that the effects of random phase
error can render the conventional quadrature sampling
approach useless. Timing is critical with quadrature
sampling. Reconstruction error, due to hardware timing
errors, is shown to be directly proportional to the center

frequency and is a function of the bandwidth of the signal. -.
Plots were developed to show the effect of timing on a given

bandpass signal when the center frequency and the bandwidth
are known.
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