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Abstract

The purpose of this thesis is to investigate and

analyze bandpass sampling techniques. Bandpass sampling

theory is shown to be an extension of the Shannon low-pass

sampling theory. Five bandpass sampling techniques are

investigated: direct sampling (also called first-order

sampling), pth-order sampling (in particular second-order

sampling where p=2), conventional quadrature sampling,

quadrature sampling, and complex sampling (also called

Hilbert transform sampling).

Direct sampling is a single channel approach to

-'bandpass sampling while the other approaches require two

channels. The two channel techniques offer a sampling rate -

reduction of up to one half over direct sampling, but there

are trade-offs to consider when choosing a two channel

technique. It is shown that the effects of random phase

error can render the conventional quadrature sampling

approach useless. Timing is critical with quadrature

sampling. Reconstruction error, due to hardware timing

errors, is shown to be directly proportional to the center

frequency and is a function of the bandwidth of the signal.

Plots were developed to show the effect of timing on a given -

bandpass signal when the center frequency and the bandwidth

are known.

'

viii -

L:'



I. INTRODUCTION

Problem

The purpose of this thesis is to investigate and

analyze various bandpass sampling techniques.

Scope

This thesis considers direct sampling (also called

first-order sampling), 2nd-order sampling, quadrature

sampling, and complex sampling (sampling using Hilbert

Transforms). There are various implementations of

each technique and at times these categories overlap. The

details will be presented in Chapter II.

Background
-In a digital processing receiver the received signal Is

sampled, quantized, and processed by a digital processor.

The signal may be sampled at any point in the RF or IF

portions of the receiver. A block diagram of a digital

processing receiver is shown in Figure 1.

Antenna

Bandpass Mixer IF A/D Processor D/A
Filter Fil1ter

~Local

Oscillato~r

' Figure 1. Digital Processing Receiver
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For this thesis, uniform sampling is assumed to occur

in the IF stage. The resulting sampled spectrum may either

be a real bandpass spectrum or a complex low-pass spectrum

depending upon the sampling technique employed.

If a band-limited waveform is sampled at a uniform and

sufficiently high rate, the original waveform can be

reconstructed from the sampled values by appropriate

interpolating functions. Shannon showed that the minimum

sampling rate is equal to twice the highest frequency

component of the waveform (9:519). However, for bandpass

waveforms like the one shown in Figure 2, it is

theoretically possible to sample at a rate of u/n samples/s,

or twice the bandwidth of the bandpass waveform. Thus,

depending upon the bandpass sampling technique used, the

sampling rate for a bandpass signal can be much lower than

twice the highest frequency.

X(w)

+ w0  I
O +W

Figure 2. Typical Bandpass Waveform (13:907)KW
2
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Direct sampling, as shown in Figure 3, involves
%

multiplying the bandpass waveform with a train of uniformly

spaced pulses. The spacing of the pulses (or the sampling

rate) is governed by the bandwidth of the bandpass waveform.

Special consideration needs to be given to the sampling rate

to avoid the problem of aliasing. It will be shown that for

direct sampling of the bandpass waveform the minimum

sampling rate, fs samples/s, ranges from twice the bandwidth

to four times the bandwidth and is a function of the

relationship between the center frequency and the bandwidth.

This will be examined further in Chapter II.

x(t) - xs(t) % ?,

pt) = E 6(t-nTs )

Figure 3. Direct Sampling (10:16)

Pth-order sampling is an extension of direct sampling.

Where direct sampling involves a single train of uniformly

separated samples of the bandpass waveform, pth-order

sampling involves p trains of samples as shown in Figure 4

for the special case of p=2. The trains are slightly

displaced in time but occur at the same frequency (10:40).

The sampling rate for each of the p channels is fs/p

samples/s for an average rate of f. samples/s.

3A
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% V\ X(t) X X (t)

p(t ) 6 : (t-nTs ) ,,.n=04.

Delay 0 xs(t-Y)

P..

Figure 4. Second-Order Sampling (13:905) I

Two implementations of quadrature sampling will be

discussed. The first, from this point on to be referred to

as conventional quadrature sampling, is sketched in Figure 5.

coswot %

x ~Low-pass-- " iFilter
C -

n=-4&
Sx(t)(nT s )

-si nwot 4.

Figure 5. Conventional Quadrature Sampling (10:37)

I
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Here, the bandpass signal is preprocessed by employing

quadrature demodulation prior to sampling. In one channel

x(t) is modulated by coswot and low-pass filtered to
remove the sum frequency term to obtain the in-phase

component, p(t). Similarly, the quadrature component,

q(t), Is obtained from the sine channel. Because of the

preprocessing of x(t), the components p(t) and q(t) can be

sampled according to the low-pass sampling theorem. The

original waveform, x(t), can be reconstructed from samples

of the low-pass components.

The second implementation of quadrature sampling, .

from here on referred to as simply quadrature sampling, was

*. introduced by O.D. Grace and S.P. Pitt, and is an

application of second-order sampling (pth-order sampling

where p=2). Quadrature sampling, pictured In Figure 6,

requires uniform sampling of both the bandpass signal and

its quarter wavelength (based on nominal frequency wo )

translation, each at a common sampling rate depending upon

the exact relationship between wo and a (the bandwidth).

X(t)- -a X Xs(t)

%%

~p(t) = d(t-nT. )n=-

x ( t - t/ 2 w O )
'.Delay -0 x s (t-n/2wO )

'VV
" "Figure 6. Quadrature Sampling
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When the intersample spacing is properly chosen, the

bandpass signal can be reconstructed in Its entirety from

knowledge of the sample values; moreover, with quadrature

sampling, the (low-pass) in-phase and quadrature components

of the bandpass signal have a simple explicit representation

in terms of samples of the original bandpass signal without

9 the preprocessing required in conventional quadrature

sampling. It will be shown that the minimum sampling rate

for quadrature sampling can be as low as a/n (average)

samples/s (2:1659,1662).

Another possibility for maintaining the (average)

sampling rate equal to its minimum value a/n samples/s is

to sample both the bandpass waveform, x(t), and its Hilbert

* transform, xH(t), at a rate of a/2n samples/s. This

approach, pictured in Figure 7, is called complex sampling

(10:37-38).

x(t)- x (nTs )

P(t) = (t-nT. )

xH(t ) "-

Hilbert xH ( nTs )
Transform _W j

Figure 7. Complex Sampling (13:905).

a- -6
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Approach

The approach to this thesis was basic: analyze the

bandpass sampling techniques from a theoretical standpoint

and draw conclusions from the analysis.

In chapter II, a theoretical analysis of each bandpass

sampling technique will be presented.

Results of the analysis will be presented in Chapter

III. .,

Finally, in chapter IV, conclusions are drawn based upon the 0V

theoretical analysis presented in Chapter II and the results

detailed in Chapter III. -
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II. THEORETICAL ANALYSIS

Introduction

The conversion of signals from analog to digital

representation involves two operations: sampling and

quantization. With regard to sampling, one of the principle

requirements is that it be sufficiently fast to represent

the waveform adequately (4:91). But how do you determine

what is "sufficiently fast?" For low-pass signals the

question is easily answered with the Shannon sampling
theorem (15:43). For bandpass signals, sampling is a little

more complicated. A direct application of the Shannon

theorem will work, but there are several techniques

available that allow us to sample bandpass signals at rates
%0

much lower than twice the highest frequency component in the

signal. The purpose of this thesis is to investigate and

analyze bandpass sampling theory and to examine the

various techniques that can be used to implement bandpass

sampling. This chapter is devoted to the development

of the bandpass sampling techniques from a theoretical

standpoint.

The best approach to the topic of bandpass sampling is

to begin with a review of the Shannon sampling theorem. As

*. mentioned, this theorem primarily concerns low-pass signals,

4. but its results easily extend to the bandpass case. In

addition, by reviewing low-pass sampling theory, sampling

[, .
%-8



issues such as allasing and fold-down (to be discussed later

in this chapter - and again in Chapter III) can be addressed

early, before examining the individual bandpass sampling

techniques. It will be shown that the aliasing and fold-

down issues are basically handled the same whether talking

about low-pass sampling or bandpass sampling.

The approach in this chapter will be to consider the

low-pass sampling theorem first. That result will be

extended to the bandpass case. Then the Indivldual bandpass

sampling techniques, mentioned briefly in chapter one, will

be discussed.

Shannon's Low-Fass Sampling Theorem. Shannon's theoremt9.

states that a signal whose Fourier Transform is zero outside

the Interval jwj > B as in Figure 8, can be uniquely

represented by a set of samples of the waveform taken at

intervals of i/B seconds; i.e., the original waveform can

be completely reconstructed from its samples. The sampling

frequency, fs = B/ , is twice the highest frequency

present in the waveform and Is usually referred to as the9 o.

Nyquist frequency (4:91).

.1."

X(w)

w

-B +B

Figure 8. Typlca] Low-Pass Sign..' (,;3

.9.



Since this sampling theorem Is so significant to the

understanding of bandpass 
sampling theory, two different

proofs will be presented here (15:43,46). However, the

proofs are not mathematically rigorous, and for our

purpose, only the key concepts 
as they apply to bandpass 

-P

sampling will be reviewed here.

Proof 1. Assume X(w) is only non-zero along the

finite interval -B < w S B , and expand it in a Fourier

Series as

X(w) = r cnexp{jntow} (1)
n= -.

where,

to = 2n/2B (2)

B

Cn (1/2B)J X(w)exp{-jntow)dw (3)
-B(3

Also, the Fourier inversion formula tells us that

B

x(t) = (1/2n)J X(w)exp{jwt)dw (4)
-B

Comparing Eq (3) with Eq (4) we find that

Cn = (n/B)x(-ntO ) = (n/B)x(-nn/B] (5)

SThis says that the cn are known once x(t) Is known at the

points t - nn/B Plugging these values of cn Into the

series expansion for X(w), Eq (1), we find that

10
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X(w) = (n/B)E x(-nn/B)exp{Jwnn/B} (6)
fn=-w

Eq (6) is essentially a mathematical statement of the

sampling theorem. It states that X(w) is completely known

and determined by the sample values, x(-nn/B). These are

the values of x(t) at equally spaced points in time. We can

plug this X(w), given by Eq (6), into the inverse Fourier

integral, Eq (4), to find x(t) in terms of its samples.

This will yield the following result:

x(t) =(i/2n) (/B) x(-nn/B)explJnwn/B}exp{Jwt)dw
n=-cD -B

(7)

or, after simplifying

x(t) = E x(-nn/B)[sin(Bt+nT)/(Bt+nn)] (8)
n= -c

The original signal, x(t), may be exactly reconstructed by

interpolating samples spaced t = ni/B apart. In other

words, if we have a signal x(t) with no spectral energy

beyond limit B, all information about the signal is

contained in a sequence of samples taken at a uniform rate

greater than B/ samples/s. Note Eq (8) has

the form

x(t) = E x(kTs)h(t-kT s ) (9)
k=-o

11 "
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where T. is the period between samples taken periodically at

times kT. , x(kT s ) are the samples, and h(t) is the

low-pass filter, or the sampling (interpolation) function

h(t) = (sinBt)/Bt (10)

Notice that h(t) has the form sinx/x , whose transform is

a spectral window centered about zero. (The importance of

this spectral window will be more obvious after Proof 2.)

Eq (9) will be referenced throughout this chapter.

Although this proof was straightforward and it gives us

x(t) in terms of its samples, it provides little insight

into the sampling process. A more intuitive approach is

considered In Proof 2, which follows.

Proof 2. Assume once again that x(t) has the

transform X(w) which is band limited to the interval

-B < w < B as in Figure 8. Next consider the product of

x(t) with a periodic train of delta functions, p(t), where p

p(t) = 6 6(t-nT s ) (11)
n= -.

p

The sifting property of the impulse function tells us that

E x(t)d(t-nTs) = E x(nTs )(t-nT s) (12)
n=-n n=-mD

Using this property, we find that the sampled version of

x(t), xs(t), is given by

12
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Xs(t) = x(t)p(t) (13)

xs(t) = E x(tld(t-nTs )  (14)
n=-w

Xs(t) = E x(nTs)d(t-nTs ) (15)
n=-w

Figure 9 illustrates the relationship of x(t) and xs(t);

i.e., xs(t) is x(t) sampled at Intervals of T s .

To show that x(t) can be recovered from xs(t), we can

use the frequency convolution theorem to get

Xs(t) = x(t)p(t) <---- > (1/2n)X(w)*P(w) = Xs(w) (16)

where

* denotes convolution

-aD

P(w) = (2n/Ts)E 6(w-nw s ) (17)
n=-m

and

ws = 2n/T s  (18)

Recall that convolution with a delta function simply shifts

the original function. Therefore,

E X(w)*d(w-nws ) = % X(w-nw s) (19)
n=-s n=-.

13
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-B B.a) b)

e'

TW

plt)} P(w)

f c) d) 22

xslt) Xs(w)

/' e) f)

t "V
-2B 2B

Figure 9. Low-Pass Sampling Operation (15:46)
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Xs(w) = (1/2n)X(w)*(2n/Ts)E d(w-nw s ) (20)
~n = -

w

Xs (w) = (l/Ts)E X(w-nws ) (21)
n=-w

This Xs(w) is sketched in Figure 9. From the sketch of

Xs(w) it is clear that X(w) can be identified. In

practice, we need only filter Xs(w) with the ideal low-

pass filter, H(w), shown in Figure 10, to recover X(w).

This is the spectral window referred to in Proof 1. The

window function passes all frequency components in the

interval -B s w 5 B and rejects all others.

In Figure 9f the assumption was made that the "humps"

in the figure do not overlap. The sampling rate is set at

twice the bandwidth, or fs = B/u samples/s. Figure 11 is a

sketch of Xs(w) with f. > a/u samples/s and f. < u/n

samples/s. To prevent overlapping spectra the point labeled

"ws - B" must fall to the right of that labeled "B." If

this were not true as in Figure llc, the result would be

undersampling, or aliasing. When aliasing occurs,

H(w)

-B +B

- Figure 10. Ideal Low-Pass Filter (9:518)

15
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It Is Impossible to uniquely recover X(w) by Ideal filtering

or any other means. This restriction can be rewritten as

follows

ws-B > B < -> ws > 2B (22)

Since

Ws = 2n/T s  (23)

this restriction becomes

Ts < u/B (24)

In other words the samples cannot be spaced any further

apart than n/B samples.

(a Simply stated, the Shannon sampling theorem requires

that x(t) be sampled at a rate greater than twice the

highest frequency component in x(t) in order to be able to

recover the original signal from the sampled data form.

This process is summarized in Figure 12.

Aliasing. Aliasing plays an important role in bandpass

sampling Just as in low-pass sampling. To be able to

recover the original signal from the sampled data, none of

the shifted spectral components can overlap. This makes

bandpass sampling theory a bit more complicated because now

two spectral bands are involved in the bandpass case (one at

+wo and one at -wo as in Figure 2) as opposed to only one in

the low-pass case (from -B to +B as in Figure 8).

17
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Allasing can occur If either the signal Is not

bandlimited or if the sampling rate is too low. Theoretic-

ally, if a signal is not bandlimited, there is no way to

avoid the aliasing problem with the basic scheme Just

discussed. However, the spectra of most realizable signals

may be assumed to be bandlimited. Furthermore, a common

practice is to filter the continuous time signal before

sampling to ensure that it does meet the band-limited
.,4

criterion. These anti-aliasing filters are also important

in preventing the possibility of noise or interference

folding into the spectrum occupied by our signal (16:47).

The use of antialiasing filters is best illustrated

- with an example. Assume the speech signal in Figure 13 is

confined to the frequency interval between 0.3 and 3.0kHz.

Additionally, there is interference at 6kHz. Our concern is

what happens to the 6kHz sine wave as a result of sampling?

If the composite signal is sampled at 8kHz (a standard in

telecommunications), the 6kHz noise will be folded to (or

replicated about) the 2kHz position as in Figure 14. The

4, Power
Spectrum Interference

f(kHz)
0.3 3.0 6.0

Figure 13. Speech Signal With Interference (12:63)

19
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Pover
Spectrum Interference

zf(kHz)
0.3 2 3 6

Figure 14. Example of Noise Folding Down (12:64)

interfering signal cannot be removed without loss of a

portion of the original speech signal. The noise could,

however, be removed prior to sampling by filtering the

speech signal (12:63-64). This antialiasing process serves

two important functions: it artificially bandlimits the

signal being sampled; and, it filters out noise which could

otherwise fold down and make signal recovery impossible

(14:52). More will be said about antialiasing in Chapter

III.

This background material lays the necessary foundation

for discussing the individual bandpass sampling techniques.

References will be made throughout the rest of this chapter

to this material: in particular, Eq (9) will be referenced

with the development of each bandpass sampling technique.

Bandpass sampling involves the uniform sampling of the

bandpass signal by one or more train of impulses. In each

case, equations for the bandpass signal will be developed in

Vterms of its uniform samples. The minimum possible sampling

20



rates and the conditions for the minimum sampling rates

will also be developed.

The purpose of this chapter is to develop these

bandpass sampling techniques. Techniques are compared in

Chapter III.

Direct Sampling

Introduction. Direct sampling will be developed from

two points of view: the conventional approach, referred to

simply as direct sampling, is developed using an intuitive

approach to give a "feel" for bandpass sampling theory; the

second approach, called first-order sampling, is

mathematically developed and reduces the sampling problem to

an application of the low-pass sampling theorem.

Conventional Direct Sampling. The first bandpass

sampling technique, direct sampling, can be viewed as the

result of the product of a signal, x(t), and a periodic

pulse train, p(t), just as in the case of low-pass sampling.

The bandpass signal and the sampling process are

demonstrated in Figure 15. Recall, when sampling bandpass

waveforms we no longer have Just one spectrum which is

periodically replicated; instead, referring back to Figure

15b, there is a positive and a negative spectrum which get

replicated. The sampled spectrum of the negative frequency

portion of X(w), X_(w), is sketched in Figure 15d, and

corresponds to a periodic shift every 2nf s rad/s.

. V. Similarly, the sampled spectrum of the positive frequency
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portion of X(w), X+(w), is sketched in Figure 15e. Figure

15f shows the combined result of the positive and negative

spectrums being replicated. Reconstruction of X(w) will be

obtained by ideal bandpass filtering of Xs(W) over the

original bandwidth of X(w) as long as the sampling rate is

such that none of the spectral replicas overlap in the

original bandpass region.

Analysis. A closer examination of the sampled

spectrum provides insight in determining the minimum

sampling rate possible. It will be shown that the Nyqu1st

sampling rate for a bandpass waveform of twice the

bandwidth, or a/n samples/s, can be realized only when the

signal is positioned in such a way that the upper cutoff

frequency (wo + a/2) is an integer multiple of a. Otherwise

the required sampling rate will be a value between a/n and

2o/n samples/s. To determine the minimum sampling rate for

these two cases we'll consider each separately.

First, consider Case 1 in Figure 16 where wo + a/2 =k

(k integer). Just as we reconstructed the low-pass

waveform in our earlier examples, we wish to be able to

reconstruct our sampled waveform over the original bandpass

spectrum. Notice in the Case 1, where wo + c'/2 = ka and

fs = a/n samples/s, none of the replicated spectrums

overlap the original bandpass spectrum. Ideal bandpass

filtering will recover our original bandpass waveform. This

Is not true in Case 2 of Figure 16. Here, the upper cutoff

% 'i
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frequency Is not an integer multiple of a and if fs = a/n

samples/s as in Case 1, the shifted spectrums overlap

within the original bandpass spectrum and there is aliasing.

Ideal bandpass filtering will not recover our original

signal. A higher sampling rate is needed to "adjust" the

spectra until there is no overlapping spectra as in Case

3 for a/n < fs < 2a/n samples/s.

As stated before, the sampling frequency needed to

prevent this aliasing will be somewhere between a/ and

2a/n samples/s. But how do you determine the actual

sampling rate required? Refer to Figure 17, assume that the

negative frequency spectrum of X(w) is shifted Just to the

left of the positive frequency spectrum for some integer m,

the (m~l) integer shift must move it completely to the right

* to avoid overlap. In other words, we require that

(-w0 + a/2) m2f s < w0 - a/2 (25)

mws < 2wo-a (26)

ws < (2wo-a)/m (27)

and

(-wo + a/2) + (m+1)2nfs > wo + a/2 (28)

(m+l)w s > 2wo  (29)

ws  > (2wo)/(m+l) (30)
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Figure 17. Determining fs(min) (6:237-238)

or

(2wo)/(m+l) < w. < (2wo-a)/m (31)

From this, ws(min) can be determined and w. can be plotted.

Let

M = [(w o - a/2)/1a] (32)

where I J denotes the greatest integer function. From

Eq (31)
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.59 (2w 0 -r )/M (33) .

=s (2w0 -a)/[(w 0 -a/2)/a] (34)

Equation (34) Is plotted In Figure 18 as a function of (w0 +

a/2)/a .Notice that when (wo + a/2)/o = negrL h

sampling rate Is always twice the bandwidth, or a/It

samples/s. when Cwo + a/2)/a does not equal an Integer, w s

must be determined from Eq (34) or Interpolated from

Figure 18.

IA

ws(nin) 3OC .9

(v0+a/2 I/o

Figur 16.Wa(.in) as a Function of wo and a'
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Recall from our review of low-pass sampling that we

found x(t) in terms of its samples in Eq (9). That equation

has the form

%'
CD''I%'

x(t) = r x(kTs)h(t-kTs) (9)

where T s is the period between samples, x(kT s ) are the

samples, and h(t) is the low-pass reconstruction filter, or

the "interpolating function."

It is possible to extend Eq (9) to the case of a direct

sampled bandpass signal. Since we want to reconstruct our

sampled signal by ideal bandpass filtering over our original

bandpass spectrum, we can use the transfer pair in Figure 19

" and show that our bandpass filter h(t) is

h(t) = (aTs/n)Sa(at/4l )coswot (35)

where Sa(x) = sinx/x , and x(t), in terms of its uniform

samples, becomes

x(t) (aT s /n)z x(kTs)Sa[to(t-kT 5 )/4n]cos[wo(t-kTs)] (36)

. This bandpass sampling theorem is constrained to the

sampling rate in Figure 18 and Eq (34).
S

Note, from Figure 18, for narrowband systems where

a << wo = wo +(a/2) (37)

I
It Is possible to sample at the Nyquist rate and still

28 .4"p"
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recover the bandpass waveform.

The subject of direct bandpass sampling followed very

closely the theory involved in low-pass sampling. Our "e

bandlimited bandpass signal is sampled by multiplying it A

with a pulse train. For recovery, a window function (an

ideal bandpass reconstruction filter) is applied to our .

properly sampled (f3 chosen to prevent aliasing) signal.

First-Order Sampling. An alternative approach to

direct sampling, also called first-order sampling, was

examined by John L. Brown (3:613-615). He showed that the

first-order sampling of a bandpass signal is reduced to an

application of the low-pass sampling theorem when the upper

cutoff frequency is an integer multiple of the bandwidth. .'

He uses a simple band-embedding technique to restore the

positioning constraint when the upper cutoff frequency is

not equal to an integer multiple of the bandwidth.

This proof uses only the standard quadrature

representation of the bandpass signal and the classical

sampling theorem for low-pass signals. For real numbers

Wo, a satisfying wo ? a/2 > 0 we define (wo,a) to consist

of all complex valued bandpass signals x which can be

represented in the form

x(t) (1/2u) J X(w)exp(Jwt)dw for all t (38)

Il, 12

where

30
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w 1(0 or (w 0 -o/2 w+ a/2) (39)

12 =-Il (-w0 -a/2, -w0 +a/2) (40)

and Ie

J I(W)I dw < z (41)

11,12

* thus x possesses finite energy and all Its derivatives are

continuous. If w0 +o/2 = ka for some positive integer k,

then x(t) can be represented by samples taken at an average

rate of a/It samples/s. If (w0 +a/2)/ar is not an integer

(the general case), then the bandwidth a Is increased to

a' ,. where (wo +a/ 2)/a- (Cwo +a/ 2/aJ I and [I denotes

the greatest integer function. For the general case, an

average sampling rate between ar/i and 2ar/i samples/s is

needed.

Analysis. Let x(t) be a bandpass signal having

all its spectral components in the band wo-(ar/2) 5 I'WI

w0 +(a/2) so that (w01 a) characterizes the position of the

band. Also, let x F t3(w01a)

Under these assumptions x(t) may be represented as

x(t) p~t)coswot - q~t)sinwot (42)

for all t, where p(t) and q(t) are low-pass functions

31



bandlimited to w < a/2. Each of these signals, p(t) and

q(t), may be sampled at a rate of a/2n samples/s.

This analysis is broken into two phases. In the first

phase we assume wo + a/2 = ka , where k is a fixed positive

integer and in the second phase (the general case) we assume

w o  o/2 > 0 (arbitrary band positioning).

Case I. Where x(t) is defined by Eq (42) and

x(nT) = p(nT)cos(nwoT) - q(nT)sin(nwoT) (43)

Assume T = n/a corresponding to a sampling rate of a/.

samples/s. So,

x(nT) = p(nT)cos(nnwo/a) - q(nT)sin(nnwo/) (44)

and with wo + a/2 = ka , where k is fixed positive

integer {wo/a = (k-1/2) = [(2k-I)/2]}

x(nT) = p(nT)cos[nn(2k-1)/2]

- q(nT)sin[nn(2k-1)/2] (45)

Where n is even, n = 2v , and letting T1 = 2T = 2n/a

the sine term goes to zero and p

x(2vT) x(2vT1 /2) = x(vT I ) = p(vTl)(-l)v (46)

Where n is odd, n = 2v-1 , the cosine term goes to zero 1
and

x[(2v-1)T] = x[(2v-l)Tl/2] (47)
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. X[(2V-l)TI/2] x(vT1-TI/2) =(1 1 v +k +l qvlT/) (8= - qvLvTI-TI/2)-148)

Notice that the samples [p(vT l )] determine p(t) by

the classical Shannon Theorem and the samples

[q(vT 1 -T1 /2)] determine q(t). The low-pass sampling

expansions are

p(t) = p(vTl),9(t-vT I )  (49)
V = -W

q(t) = E q(vTI-TI/2)fa(t-vTI+TI/2) (50)
V= -"

%0 where

O (t)= (sin(at/2)]/(at/2) (51)

Plugging in Eqs (49) and (50) into Eq (42)

x(t) E p(vTll)t(t-vT1 )coswot
V= 4

- q(vTi-Tj/2)Olt-vTl+Tl/2)sinwot (52)
V=C

Let T 2T
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1.6X(t) =Ep(2VT)9O,(t-2vT)COSW t
V=-W

-rq(2vT-T)o*,(t-2vT+T)sinwot (53)

but from Eq (46)

p(2vT) = x(2vT)(-1) v (54)

and from Eq (48)

q(2vT-T) =x[U2v-l)TI(-l)v~ (55)

Plugging these into Eq (53)

CD

x(t) =E x(2vT)(-1)vfa(t-2vT)coswot

vk
E x[(2v-1)tl(-1)v *a(t-2vT+T)sinwot (56)

Now, letting v =n

OD
nx(t) E x(2nT)(-1) *O(t-2nT)coswot

n=-.D

=E x[(2n1l)tJ(1) c(t2nT+T)silwot (57)

Since wot =(2k-1)'r/2

coswot = coswo(t-2nT) (58)
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" and since

(-1)n ksinwot = coswof-(2n-l)TI (59)

Eq (57) becomes

x(t) : x x(vT)4a(t-vT)co5wo(t-vT) (60)

which is the desired form of the expression for the case

w o + a/2 = ka

Case ii. For the general case, we assume

arbitrary band position and wo  u /2 > 0. Define

r = [(wo+a/2)/ ] (61)
with

r 5 (wo+ur/2)/u < r+1 (62)

Holding the upper cutoff frequency, wo + a/2

constant (Figure 20) and increasing the bandwidth a to

a' such that (wo + 7/2)/a' = r

Now,

wo ' = (wo+/2)-a'/2 (63)

I.(Wo',U') > I1 (wo,a) (64)

12 (wo',o') > I2 (wo,r) (65)

and x C O(wo',a')

J"
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Figure 20. Embedding Technique for First-Order Sampling

The upper cutoff frequency wo + a/2 is a multiple of
'p

a' and a, T, and wo are replaced in Eq (60) by a', '

T= xa ' , and wo ' respectively.

We now have

x(t) = x(nT')O a , (t-nT')coswo (t-nT') (66)

3"

,~~~~~.........,,..... ..... ,...,........... ....................... .....-....-.. ,..........,.......,.....,,,



So a representation of x(t) is possible with uniform samples
at a rate of

fs= I/T' = a'/ a = o/[a1u (67)

samples/s where a = (wo + a/2)/a

Summary. Uniform sampling of a bandpass signal at an

average rate of u/n samples/s will suffice to determine

the signal for all values of time only when the upper cutoff

frequency is an integer multiple of the bandwidth. For the

case where the upper cutoff frequency is not an integer

multiple of the bandwidth, an average rate between a/r and

2c/u samples/s is required. For direct sampling, this rate

can be determined from Eq (34) or from Figure 18. For

-r .first-order sampling, Brown demonstrated a simple band

embedding technique which can be used to determine the

minimum sampling rate for the signal. Brown's approach used

only the quadrature representation of the bandpass signal

and the classical Shannon sampling theorem in his proofs.

" The sampling rate, f., for the general case is given by
• 'a

- Eq (67).

pth-order Sampling

Introduction. Kohlenberg extended the idea of first-

order sampling to pth-order sampling (8:1432-1436). Unlike

-, first-order sampling which involves a single train of

a' uniformly separated samples of the bandpass waveform, pth-

* order sampling involves p trains of samples. The trains are

"" 37
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slightly displaced in time but occur at the same frequency

(10:40).

The following development discusses pth-order sampling

followed by second-order sampling (the case where p = 2).

To date, only quadrature sampling, a special case of second-

order sampling, has been shown to be a practical approach to

pth-order bandpass sampling. For that reason, quadrature

sampling will be covered in greater detail.

The second-order development will lead to a

representation of x(t) in terms of its uniform samples Just

as in the previous developments; however, in this case, x(t)

will be represented by two trains of uniform samples.

pth-Order Sampling Analysis. (8:1442-1443) Kohlenberg

: ..considered the spectra of amplitude modulated sequences of

pulses of the form

g(t) = E x(an)s(t-an) (68)
n=-,

where

s(t) gives the shape of the basic pulse, and

x(t) represents the modulating amplitude

Here, the function g(t) represents the first-order sampling.

-Kohlenberg defined pth-order sampling as a function

P ' P

g(t) = E gi(t) (69)

8'38
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p
g(t) = (E x(ain+ki)si(t-ain-k 1 ) (70)

1=1 n=-.

where the ith sampling of gi(t) has step size ai, phase

ki, and sampling function si(t).

To find the Fourier transform of g(t) consider

gi(t) = E x(ain+ki)si(t-ain-ki) (71)
n= -c

Using the Dirac, 6, function this becomes

+W
gi(t) = Ix(l)si(t-Y)dY-ain-ki)dT (72)

n=- 4_

Interchanging the order of summation and Integration

~+6X

gi(t) = x(Y)si(t-Y){E d(Y-ain-ki))dY (73)

J-O' n =-o

This summation in brackets represents a periodic function

with period ai. Using its Fourier-series expansion

Sd('(-ain-ki) = ai-lexp{J2xn(Y-kj)/aj} (74)
n=-u n=-.

and rewriting

gj(t) x(Ylsi(t-Y)a i  (E exp{J2nn(Y-ki)/ai}dY (75)
4CODn

= 
-w
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• - or%

gi(t)=ai Z {si(t-Y)x()exp(J2nnY/ai)dYexp(-J2nnki/ai)}
n - =_ O _

(76

Taking the Fourier transform (F.T.) of both sides of this

equation and using the fact that

F. T.{x(Y)exp(j2nnY/ai)) = X(w+2nn/ai) (77)

GI(w) a i  Z exp(-J2nnki/ai)Si(w)X(w+2nn/a i ) (78)

Summing over all "i" yields
W,

G(w) = Z a i  Si(w){F X(w+2nn/aj)exp(-j2nnkj/ai)) (79)

This pth-order sampling theorem gives the Fourier transform

of g(t) in terms of the sampled function x(t) and the

sampling parameters.

Second-Order Sampling Analysis. (13:907) Second-order

sampling Is a specialized case of pth-order sampling (p=2).

Two equally effective implementations of second-order

sampling are pictured in Figure 21. In one case the

bandpass signal is passed through two channels, one channel

is delayed in time and both channels are then simultaneously

sampled. In the other implementation, the bandpass signal

is once again fed through two channels; however, this time

one of the sample trains Is delayed (Figure 22). The

" samples occur at the same frequency but are delayed in time

from each other.

"4 40
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X(t) x mx(nT5)

P(t) d (t-nT.)

Delay .0 x x(nT.3 C)

*X(t)- X -(nT.)

p(t) =E d(t-flT.)

Delay
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Figure 22. Sample Trains For Second-order Sampling (10:41)

As mentioned, second-order sampling yields two sets of

uniformly spaced samples which are interleaved, i.e.,

xl(mT) =x(mT) (80)

and

X2(mT) =x(mT-a) (81)

where T Is the temporal offset of the staggered sequence.

The sequence xl(mT) has the Fourier transform given by

• -. Xl(W) : x(w) (82)

42

'"'4. ''""4 .
"  

. ".". 4""" . "" .r"" . """. . " . "/ """
" 

"". 
"  

"# " ""." """"S " "
-

r
"
." "• " ".ra " ""m" .""" ."

• " Z ' - -"-Z ' -"> ' ".""', '"' " "" *" " "% .V : V """h , " '". Z"t tL '':'. ..'./ "...



andi the tra~nsform of x 2 (mT) Is

X2 (w) = C/T)E X~w+2nm/T)expl-jlw+C2tm/T)]a} (83)
Mn= - C

The use Of x2 (mT) introduces a new degree of freedom over

first-order sampling which can be used to eliminate

alias ing.

The original waveform can be recovered by properly

filtering and combining the two sequences, i.e.,

X~t) E xl(mT)hD(t-mT) + 1: x2CmT)hD(-t+MT-a) (84)

For exact reconstruction an ideal bandpass filter is

required with frequency transfer characteristics, HD(W)

given by

0, 0 f w 5 wo (n/t)

A,, wo-(TE/T) f w s {{2Ttr(2k-1)/2fl/T}-wo
HDW) r

A2 , {2[C2k-l)/2]/T}-wo w :5 wo+CT,'T)

0, w +(Tt/T) s5 w f 2n/T (85)

where

A1 = exp{-J[ C 2k-1)/2)(3-'/2fl/(2/T)sin{E (2k-1)/2]f3) (86)

A2 = expc-J(kr3-i/2)J}/(2/T)sin(k3) (87)

0 2Tra/T (oo)

43



and k is the largest integer for which

[(k-1)/T] < fo-(1/2T) (89)

Conventional Quadrature Sampling

Introduction. As mentioned in Chapter I, it is

possible to preprocess a signal prior to sampling to insure

being able to sample at the Nyquist rate. Recall, that a

bandpass signal can be represented in the form

x(t) = p(t)coswot - q(t)sinwot (42)

where p(t) and q(t), the in-phase and quadrature components,

respectively, are low-pass signals with spectra occupying

the symmetric band w u/2 ; effectively, the bandpass

signal is specified by a pair of low-pass signals.

The objective of conventional quadrature sampling is to

recover the low-pass components, p(t) and q(t), and to

sample them at the Nyquist rate. Because of the

preprocessing of x(t), the low-pass components are -

independent and may be sampled independently (10:36). This

means that there is only the Nyquist limit to satisfy. We

no longer have to be concerned with two bandpass spectrums

overlapping or the relationship between the upper cutoff

frequency and the bandwidth. Samples of the low-pass

components will uniquely determine our original

bandpass signal.

Analysis. A common approach to obtaining the

quadrature components is to employ quadrature demodulation

44
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~ ~...as shown in Figure 23 (13:907-908). in one channel x(t) is

modulated by cosw~t, or

x(t)coswot = [P(t)coswot - q(t)sinwot~coswot (90)

x(t)coswot =p(t)cos 2wot -q(t)sinwotcoswot (91)

Recall,

cos 2A =1/2 + (1/2)cos2A (92)

sinAcos-B =(1/2)(sin(A+B) + sin(A-B)] (93)

Here A -B, so

sinAcosA =(1/2)sin2A (94)

x(t)coswot =(1/2)[p(t) + p(t)cos2wot -q(t)sin2wot] (95)

The filter removes the 2w0 terms, and

x(t)Coswot z P~t)/2 (96)

Similarly, q(t) is obtained from the sine channel.

xI.iwt Ptsnocswt qtsn2wt(7

22

sin wot =(1/2)[1-cos2wot] (98)

x(t)slnw~t =(1/2)[p(t)sin2w~t - q(t) + q(t)cos2w~t] (99)

Once again, filtering out the 2w0 terms

*x(t)slnwot -q(t)/2 (100)
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Both channels are then sampled at a rate

of a/2n samples/s. The samples are written as

p(t) = p(kTs)6(t-kT s ) (101)

q(t) = E q(kTs)d(t-kT s) (102)

These equations have the familiar form of a low-pass signal

in terms of its samples. The next step in the process is to

apply the samples to the reconstruction filters as in Figure

23b. These reconstruction filters are the spectral windows

referenced earlier. Signals p(t) and q(t) are modulated

once again to yield the familiar form of Eq (42)

x(t) = p(t)coswot - q(t)sinwot (42)

Summary. Conventional quadrature sampling allows us to

sample an arbitrary bandlimited bandpass signal at a total

rate of a/ samples/s, using preprocessing, regardless of

the ratio of the center frequency and the bandwidth, and

recover x(t).

Quadrature Sampling

Introduction. This approach to quadrature sampling is

illustrated in Figure 24. Instead of preprocessing to

determine the low-pass components, p(t) and q(t) are

determined from samples of the bandpass signal and its

V. quarter-wavelength extension (7:1453-1454).
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Figure 24. Quadrature Sampling

Three cases will be discussed. In Case i it is assumed
S

that 2wo/o = k , where k is an integer t 1. It will be

shown that sampling at an average rate of 7/7 samples is

sufficient to recover the bandpass signal. Case ii assumes

only that 0 < a/2 S wo < * ; i.e., 2wo/a may or may

not equal k. A technique is applied where Ii(wo,a) is

embedded in a larger band, II(wo,o'), having the same S

center frequency wo, and a bandwidth a' k a . In Case
'.

iii, Ii(wo,a) is embedded in an "optimal" band, Ii(wo',a"),

that requires 2wo'/al" to be an integer. Cases ii and iii

allow sampling at an average rate between a/l and 2a/w

samples/s as will be explained in detail in the following

paragraphs.

as . (2:1660) Quadrature sampling's goal Is

to recover the low-pass components p(t) and q(t) directly

from samples taken of the bandpass signal x(t) and Its
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quarter-wavelength translation x(t-x/2w o ) (2:1659). Case I

assumes the constraint 2wo/o = k , where k is an

integer a 1.

Recalling Eq (42)

x(t) = p(t)coswot - q(t)sinwot (42)

In terms of its samples x(t) becomes

x(nT1 ) = p(nT 1 )cos(nwoT1 ) - q(nT 1 )sin(nwoT1 ) (103)

Letting T1  2i/a and 2wo/a = k

x(nTj) = p(nT1 )cosfn(ak/2)(2n/))

- q(nTl)sinln('k/2)(2x/a)} (104)

x(nTl) = p(nTl)cos(nnk) - q(nT,)sin(nnk) (105)

or,

knx(nTl) = (-1) p(nTl) (106)

knx(nTl-x/2w o ) = (-1) q(nTl-n/2wo) (107)

These equations show that samples of p(t) at a rate of

lI/T 1 = a/2n samples/s are available from the original

bandpass waveform x(t), as are samples of q(t-n/2wo) at a/2.

samples/s. Recall that p(t) and q(t) are bandlimited to

Iwi 5 o/2 ,which implies that they can be reconstructed

from their samples at the low-pass rate.

From the Shannon low-pass sampling theorem
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p(t) =r p(nT1 )O(t-nT,) (108) a

n=p.

where

f(t) f sin(ort/2)l/(at/2) (109)

So, plugging Eq (106) into Eq (108) yields

knp(t) =E (-1) x(nTj)O(t-nTl) (110)

Similarly, -

where a is real.

Let t =t + ~'

q(t) = q(nT1 -a)f(t+Q-nTl) (112)

For a =/w

q(t) =E q(nTl-x/2w0 )#{t+(rc/2w 0 )-nT 1  (113)

Plugging Eq (107) Into Eq (112) y

q(t) r (-)k ~~-/woOt(/w)nl (114)

50



So, by plugging Eqs (110) and (113) into Eq (42)

knxlt) = . (-l)knx(nTl)4 (t-nTl)cOSWot

CD kn
- -l)nx(nTl-m/2wo)l{t+(u/2wo)-nTl}sinwot (115)

n =-

which is the desired quadrature sampling formula for the

case 2wo/O = k = integer 1

". The low-pass components p(t) and q(t) were sampled at a

rate of a/2n samples/s yielding an average rate of a/t

samples/s for the bandpass signal.

Case ii. (2:1660) For this case assume only that

Pu . > wo  a/2 > 0 In other words, 2wo/a need not always

be an integer. Here Ii(wo,a) is embedded In a larger band

11 (wo,a') which has the same center frequency and a

bandwidth a' a as shown in Figure 25. Holding wo

constant, and increasing a (if necessary) to the value a'

such that 2wo/a' will be an integer, yields

2wo/a' = [2wo/c) = s = integer (116)

where

s : 2wo/a < s+1 (117)

The results of Case I now apply with a , TI  , k ,

replaced with a' , T1 ' 2n/a' , s respectively. So,
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I(Wo, a)

Iw o

I I0  I
I I "

I I

I I I

I I I
ll(wo,' ) I

I I I

I

I I =

V 0  4 W-
w

o

Hold the center
frequency fixed while
increasing the bandwidth
from a to a'

Figure 25. Embedding Technique - Case ii
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snp(t) : (-1) x(nTl')4 l(t-nT I ') (118)~n=-oD

Sn
q(t) = E (-I) x(nTl'-T/2wo)l{t+(C/2wo)-nTl '} (119)

n=-co

where

01 (t) {sin(a't/2))/(a't/2) (120)

Sampling x(t) and x(t-n/2w o ) at the rate

I /T I = o'/2n = {(2wo/al)/[2wo/c)(a/2n) (121)

or

I/T1 ' = {2a/[2a]}(a/2n) (122)

yields an average sampling rate

2a/[2aI)(r/n) (123)

samples/s for the reconstruction of x(t) from Eq (42)

JI x(t) = p(t)coswot - q(t)sinwot (42)

When 2wo/a is an integer Eq (123) becomes u/n samples/s,

which is the equivalent to Case I as expected.

Case iii. (2:1661) In this case it is not

necessary to hold wo or a fixed. Here, x(t) is a general

bandpass signal, wo doesn't have a strict sense of center

(angular) frequency, but only a sense of "average of

extremes" (wo-u/2 and wo+a/2).
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Again, assume that - > w o t a/2 > 0 , and that 2wo/a

may or may not equal an integer. The objective is to
J1

determine a generalized result by allowing another degree of

freedom in the embedding technique of Case ii.

For this embedding technique, the upper cutoff

frequency, wo+a/2, is held invariant while increasing the

bandwidth (Figure 26). An "optimal" covering band

Ii(wo',") is determined where it is required that 2wo'/a" =

integer. The analysis follows.

Let s = (2wo/'] be the greatest integer contained in

2wo/a and s < 2wo/a < s+1 . From Figure 26, it is

obvious that

w = (Wo+a/2)-a"/2 (124)

where a" _ a

To determine a" , set

2Wo'/"= 2{wo+(a/2)-a"/2}/a1" = s = [2wo/a] (125)

or

2Wo'/o"= (2wo+a-a1")/a" = s = [2wo/aJ (126)

Solving for a"

al"s = 2wo+a-a" (127)

=7"s~a" 2wo+a (128)

a l(s+l) = 2wo+a (129)
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or" = (2wo+a)/(s+i) (130)

a" = {a(2wo/)+ 1/112wo/arI+1 (131)

Now, let Y = Wo/O

a" = Io(2Y+ll/[2Y+1] (132)

If Y _ 1 then a" < 2(r and wo-a/2 < w o ' _ wo .

Further, wo'+a"/2 = wo+a/2 ; i.e., the upper

cutoff frequency of the covering band remains Invariant.

The low-pass components p(t) and q(t) with respect to

the center frequency wo' have the form

~ (1)snp(t) = (l) x(nTl")9*2 (t-nT1 '
') (133)

, q(t) = I (-ilsxnTl"-TE/2wo')12lt+(/2Wo)-nTl") (134)

where

t21t) {sin(a"t/2)I/la"t/2) (135)-S.i

and

S.,j
TI" =2x/a" (136)

£ With

1it

x(t) = p(t)coswo't - q(t)sInwo't (136)
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x(t) = ( -1)snx(nTl"),2 (t-nTl")COSWo'tI n=-cD

(-l) Snx(nTil"-n/2Wo')4 2{t+(TE/2Wo')-nTl"}sinwo't
n =-c,

n=-®

(138)

the average sampling rate in this reconstruction is

(2 +I)/[2Y+I] } (/i) (139)

samples/s. Since

(2y+1)/[2y+1J 5 2/[2Y] (140)

the sampling rate is improved over that in Case ii.

Summary. In Case i an average sampling rate of a/

samples/s was determined for the reconstruction of x(t) from

x(t)= p(t)coswot - q(t)sinwot (42)

for the situation where the upper cutoff frequency was an

integer multiple of the bandwidth. When this constraint

doesn't hold, the average sampling rate was

{(2Y)/[2J]}(a/n) samples/s as determined in Case ii. Since

1 2Y/[2Y] < 2 for all Y 1/2 , the average rate

necessary for reconstruction of x(t) varies from a/n to a/2n

samples/s. Lastly, when the frequency wo is allowed to

vary, a further improvement In the sampling rate can be

obtained, the average rate being given by Eq (139).
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Complex Sampling

Introduction. Another possibility for maintaining the
(average) sampling rate equal to the minimum value of a/"

samples/s is to sample both x(t) and its Hilbert transform

at a rate of l/T s = a/2n samples/s (10:37). Since x(t) and

its quadrature function are Hilbert transforms of each

other, the low-pass components, p(t) and q(t), can once

again be determined, this time from samples of xlt) and its

Hilbert transform, xH(t).

SAnaysls.. (13:906) This technique, illustrated in

Figure 27, is equivalent to forming the analytic signal

Zx(t) x(t) + JXH(t) k141)

Vi

x(t) ip x(nTs)

p(t) = fn=®t-nTs) i

xH(t )
Transformx

Figure 27. Complex Sampling (13:905)

The Hilbert transform of x(t), xH(t), is obtained by the

"following operation

58

- S ~ -



XH(t) = -Jsgn(w)X(w) (142)

The Fourier transform of the analytic signal, Zx(t), is

2x(w), w > 0

Zx(t) = (w), w= 0

0, w < 0 (143)

For the bandpass case, X(0) = 0 and Zx(t) = 2X(w)U(w), where

U is the step function.

In terms of the positive and negative frequency

spectra, X+(w) and X_ (w), respectively, which are

illustrated in Figure 28,

X(w) = X+(w) + X_(w) (144)

where

+0
'[ (w), w > 0

X+(w) =

0, otherwise 145

X(w), w 0
X_(w) =

0, otherwise (146)

Thus,

Zx(w) = 2X+(w) (147)

The analytic signal

Zx(t) X(t) + JXH(t) (148)
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Figure 28. Fourier Transform of an Analytic Signal (13:907)
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- has a spectrum confined to the positive frequencies

4 wo - a/2 < w < wo + o/2. So we can write %

Zx(t) = E Zx(nTs)sinc[o(t-nTs)/2]exp[jwo(t-nTs)J (149)

and from this,

x(t) = Re{Zx(t)} (150)

X(t) = {x(nTs)sinc[u(t-nTs)/2]cos[wo(t-nTs)I
n= -o

- xH(nTs)sinc[(Ct-nTs)/2]sin[wo(t-nTs)]} (151)

Once again we have the familiar form of Eq (42)
°°A

x(t) = p(t)coswot - q(t)sinwot (42)

Summary. Obviously there is not a strict separate
S.

interpolation in Eq (151) since the "carriers" are

cos[wo(t-nTs)J and sin[wo(t-nTs)]. But, once again, the

bandpass signal is represented in terms of its uniform

samples.

Chapter Summary

As mentioned in the introduction, the purpose of this

chapter was to develop, theoretically, the bandpass sampling

techniques. In each case, x(t) was developed in terms of

its uniform samples. In addition, the minimum sampling rate

was developed for each technique.
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* III. Results

Introduction

One "figure of merit" for comparing bandpass sampling

techniques is to compare the minimum sampling rate possible

for each case. The following is a review of the key results

of Chapter II.

Direct sampling can be accomplished at a minimum rate

of fs = a/n samples/s only when w o + a/2 = ka Ck =

integer). Otherwise, the minimum sampling rate is governed

by the exact relationship between the bandwidth and the

center frequency and can be determined from Eq (34) or from

Figure 18.

For conventional quadrature sampling, the low-pass

components can each be sampled at a minimum rate of

fs o/2 samples/s for a total (average) rate of f s u /

samples/s. This approach allows arbitrary band positioning.

In other words, the relationship between the center

frequency and the bandwidth is not considered when

determining the sampling rate. The preprocessing allows the

low-pass components to be independently sampled according to

the low-pass sampling theorem (10:36). Since we are usually

interested in the amplitude, A(t), and the phase, 0(t), of

x(t), the time-varying nature of our signal requires that

samples of p(t) and q(t) be taken at the same Instant

(18:731).

Quadrature sampling allows sampling at the average rate
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of fs = u/n samples/s when 2wo = ka (k = integer).

Otherwise f. = {(2Y+l)/[2Y+]](a/n) samples/s, where Y =

wo/r As in direct sampling, the minimum sampling rate is

a function of the relationship between the center frequency

and the bandwidth.

Another possibility for maintaining the (average)

sampling rate equal to its minimum value '/r samples/s in

any case (arbitrary band position) is to sample both x(t)

and its Hilbert transform, xH(t), at a rate of f. = a/2.

samples/s.

The last three approaches offer a sampling rate

reduction of up to one-half over direct sampling, but none

of the approaches offer a significant rate reduction over

ire each other. So, how do you chose a sampling scheme? The

best answer to that question, ultimately, is determined by

how the sampling scheme will fit into the overall system

(receiver) design. There are many factors that must be

considered when choosing a sampling scheme. For instance,

if your design is being driven by cost, it may be cheaper to

use a single A/D and use direct sampling. Or, using "off

the shelf" equipment may keep the cost down and at the same

time drive your design to match the available hardware. If

* the system design requires down-conversion, direct sampling

or the conventional quadrature approach may be appropriate.

Since there is no real "figure of merit" to compare the

individual sampling techniques (unless you base your

63

C..



decision on the minimum sampling rate possible), selection

of a sampling scheme should be made only after an

examination of what it actually takes to Implement these

* techniques In hardware.

A quick glance at the figures In Chapter I gives a

pretty good Idea of the hardware components needed, but

there is more to consider. Recall in low-pass sampling, the

*theoretical minimum sampling rate was shown to be twice the

highest frequency. That may be true in theory, but in.

practical applications the rate is higher. A good rule of

thumb has been shown to be five times the highest frequency

(14:53). The reason for the difference is that in the

C. theoretical derivation all things were considered Ideal.

Signals had bandlimited spectrums and filters could pass

or reject whatever frequencies were required. But the fact

is, signals are not ideally bandlimited, and since bandpass

sampling rates are typically determined based upon

consideration of the bandwidth, some thought needs to be

given to the definition of bandwidth. A few of the more

popular definitions are given below (4:61-62).

Half-power bandwidth is the interval between the

frequencies where the signal has dropped to half power (or

3 dB below the peak value).

The equivalent rectangular bandwidth is defined as the

bandwidth which satisfies the relationship P =WnS(f 9,
where P is the total signal power over all frequencies, Wn

Is the equivalent noise bandwidth, and S(fc) 1, the value of
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the signal at the band center frequency (assumed to be the

maximum value over all frequencies).

The null-to-null bandwidth is the width of the main %

spectral lobe, where most of the power is contained. %

There are other definitions of bandwidth available, but %

the point is, there are many definitions of bandwidth and

the definition you choose has a direct affect on the

sampling rate, fs •

Besides topics such as bandwidth, which effect each

sampling scheme, there are other concerns that need to be

addressed that are peculiar to the particular two-channel

technique chosen. They will now be discussed.

Conventional Quadrature Sampling

Radar and communications systems are becoming

increasingly dependent upon coherent digital processing.

Conversion of signals from IF analog form into digital

complex samples carrying amplitude and phase information has

been traditionally implemented in the form of two parallel

IF to baseband converters operated in quadrature each

followed by A/D converters which thus provide digitized in-

phase, p(t), and quadrature, q(t), components (conventional

quadrature sampling - see Figure 23). Balancing the two

baseband converters over a wide dynamic range is difficult

and phase errors are typically 20-30 for commercial coherent

detectors (18:731). To examine the effects of phase error

* •in the quadrature sampling process, recall that any bandpass
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waveform may be written -

X(t) =p(t)coswot -q(t)sinwot (42)

N4OW, Induce a phase error, e, between the IF to baseband

converters. In other words, assume we demodulate with

coswot and sin(wot+e) .Beginning with the cosine channel

x(t)coswot = p(t)cosw~t - ~~iwt~cosw t (152)

2
x(t)coswot =p(t)cos wot -q(t)sinwotcoswot (153)

x(t)coswot =(1/2) fp(t)+p(t)cos2wot-q(t)sin2wot] (154)

The low-pass filter removes the 2w0  terms, and

x(t)coswot (1/2)p(t) (155)

Similarly, q(t) is obtained from the sine channel.

x(t )sin(wot+e) =p(t )sin(wot+e)coswot

-q(t)sin(w t+O)sinw t (156)

.4 But,

sinAcosB =(1/2)(sin(A+B) + sin(A-B)] (157)

sinAsinB =(1/2)(cos(A-B) -cos(A+B)] (158)

x(t)sin(wot+e) =(1/2)p(t)[sin(2wot+G) + sine]

-(1/2)q(t)(cose - cos(2wot+e)) (159)

* The low-pass filter removes the 2w0  terms, and
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x(t)sin(wot+) = (1/2)[p(t)sine - q(t)coseS (160)

Normally we expect to be able to recover the amplitude,

A(t), and phase, 0(t), information about x(t) using the

following relations,

2  2 1/2A(t) l p (t) + q (t)] )l

-1
0(t) tan [p(t)/q(t)] (162)

What we actually have is

A~) 2 2 2 1/2 (13

A(t) ([p 2(t)+(p(t)sine) +(q(t)cose) 2 163)

-I
0(t) : tan {p(t)/[p(t)sinO q(t)cose]l (164)

Obviously the phase error causes attenuation of the output

signal. For small fixed errors, this is tolerable. For

phase errors approaching ±900, however, the received signal

is wiped out (17:206).

A further cause of concern, with the same consequences,

is phase errors between the transmitter and the receiver.

Typically, this is no major problem when the transmitter and

receiver are in close proximity. Again, 20-30 is tolerable.

The key point to this discussion is that random phase

errors must be controlled or the phase errors will reider

this conventional quadrature sampling approach useless.

Quadrature Sampling

NOTE: The material in this section parallels and expands on
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Persons' quadrature sampling error formula (11:511-512).

'* f.For that reason and ease of reference, Perso--'' notation

will be used. To be consistent wilth the rest of this

thesis we let 2f o = wO arid 2nW = .

Recall that the aim of quadrature samplinr> is t .

recover the Iow-pass components, p(t) and q(t), dIrectly

from samples of both the bandpass signal x(t) and ito

quarter-wavelength translat Ion x t-I/(4f ) I , the -amp' e ,-

being taken at the low-pass rate. The Grace-Pitt

ir.ter.,clation formula (7:1454).

CO

g t) f(n,/fs)skt-n/'f s )

n - -

wl..re x = 4, allcws an exact reconstruction of high

frquerzcy band:imited waveforms with a minimum average

sampling rate of W samples/s (or W/2 samples/s/chan:.e')

w!hneve 2f,- kW as in Figure 29. This was verifies iy

Persons wlen he developed a quadrature sampling error

formula.

For the general case, where 2fo does not equal kW, the

irterpolation formula given by Eq (165) with x = 4 will not

exactly yield f(t). Persons showed a way to measure the

amount of reconstrct 1, n error when uslrni this. equatI,:,. for

the general case. More specifically, he determined Q, tlie
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kW

Wp

xc ff

-f0  +f0

Figure 29. Bandpass Signal for 2f o = kW (k = integer)

ratio of the power In the error band to the power in the

signal band.

By following the same approach taken by Persons, It Is

possible to more fully develop the quadrature sampling error

formula into a generalized formula in which the effects

on Q due to hardware timing errors can be investigated.

It will be shown that timing is extremely critical when

sampling at or near fs = a/u samples/s (average).

Aalysis. Beginning with the general Interpolation

formula of Eq (165), recall that the objective Is to

f(t).

We can express Eq (165)
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g(t) = f(t)r. d(t-n/f5 )]*s(t)

+ (f(t)r- d(t-n/f51/xf0 ))*s(t) (166)
n= -c p

where *denotes convolution. C

Taking the Fourier transform of Eq (166) yields

W CD

G(f) =fsS(f)fF(f)*[E 6(f-nfs)+E d(f-nfs)exp(--J2nnfs/xf0 )J)
n=-cD n=-c

(167)

G(f) -2f 3 S(f){F(f) + (1/2)r- F(f-nfs)[14'exp(-Jir2nfs/xf0 )]}
n~0

(168)

Let 2f5 S(f) =1 in the region where F(f) is nonzero and

zero elsewhere,

2f5 S(f) f rectl(f-f0 )/WJ rect[(f+f0 )/Wl) (169)

This Is equivalent to applying an Ideal antialiasing filter

to the bandpass signal. Solving for S(f)

S(f) =(l/2fs)(rect[(f-f 0 )'W] + rect[(f+f0))/W]1 (170)

The Inverse Fourier transform of S(f) Is

s(t) =(W/fS )sinc(Wt)Co5(2ntf 0 t) (171)

Substituting Eq (170) Into Eq (168) yields
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.(f) = F(f) + {(1/2){rect[(f-f )/W] + rect[(f fo)/W],

njO

Notice that G(f) is made up of F(f), the term we want, plus

some extra terms. It is the power in these extra terms

relative to that in F(f) that will be determined. Because

of the rect functicr.s (antiallasing filter), only the terms

;ivin bands in the vicinity of fo will interfere.

Let 2 f-/f z + r K , where z integer. Als_,

a S tat f. 5whh an obvious nee or else the

zeated ectral tards would overlap. Note that for

'f -.... tr.te9er, and x 4 , there is onl:y ' ore hand

f-r n = z which overlaps F(f), but the amplitude term

1 ex -z ~ --, . l. re will t.'- tw:

v F f), ccrre : p nd F:; t t . ter

n z, z+l; Considerlng o-ly the

f ecqii#-<i e:, F:i ~re 23 C hw h z arc ! (z+l ter,-_

cver la. irig F)f ) for the general case where 2f- i .

to kW k integer), an f W s' : -

t .. e powur in F f, an aga.r, ccns ic -r

fre quencies.

r f ine

(1 C ,2) " ex<f jT4f -z >: i .

a'z4i) - (1/2) I + ex[ jrt4f- :.l -
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V.

F.-I

X,.f.

-f0  +fo

0p

X(f)

(z+l) fs---

~zf s

-f0  +f0

Figure 30. Bandpass Signal for 2fo 9 kW (k = integer)

- = bandwidth of zth term (175)

bandwidt1. of (z+l)st term (176)

rice we've applied the antialia sng fIlter, the numbers E..

arn B(z+l) are determined by t he overlap with'

rect[(f-f)/W] Let the p wer In F(f) W ; then from"

E4'72-17F)
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2 2
Q IazI (BZ/W) + Ia(z+l)I [Bz+u/WJ (177)

'where Bz arnd B(z+j) must be greater than zero, else they are

taken as zero.

Now, from Eq (173)

Iazi 2 (1/4)111 + exp(-J',4fsz/x2f0 )] 2 (178)

but K = 2f0 /fs and z [ K] ,where [ I is the greatest

integer function.

IazI2  (1/4)111 + exp(-Jnt4[K]/xK)}12  (179)

2 2
lazi = COS (2ir(K]/xK)) (180)

Likewise,

l a(z+1)I (1/4)111 + exp{-ii:4((K]+1)/xKll (181)

lazll2 {Cos 2 {2n([K]+l)/xKfl (182)

Note from Figure 30, the center of the zth band is at

fz {zf, fo) = {[K12f0/K -fol (183)

and the center of the (z+i)st band is at

f(z+1) f (z+1)fs fo) = {UK]+1)2f0 /K -fo} (184)

Now determine Bz/W .From Figure 30, Bz fz + W -o
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So,

Bz/W =f + W -f 0 )/W (185)

Bz/W fz/w + 1 -f 0/w (186)

BZ/W =fz/W + 1/2 -(f 0/W -1/2) (187)

Substituting

=z [KJ2f0 /K -fo (188)

Bz/W = {K]2f0 /K - fo)/W + 1/2 - ff/W- 1/21 (189)

Since fo fsK/2 ;K =2f 0/fs

Bz/W =1 ff(K-[K)}/W (190)

Likewise,

B(Z+1)/W =1 -ffs(1-K+[K]}/W (191)

Substituting Into Eq (177) and using the definition

K =z + r [ K] + r and L =fs/w

2
Q(K,L) { Cos (2n[K]/xK)}U[1-Lr]]

2
+ (cos (2n(UK]+l)/xK)}U1l-L(1-r)]] (192)

where

K =2f 0 /f5  (193)

0 s

z =(K) (194)
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r = K - [K] (195)

L = £s/W (196)
4.

and [H 11 indicates the quantity is to be taken as zero if

it is negative. Eq (192) holds for L 5 2fo/W + 1 ; for

larger L, the error is zero.

This is the desired result. Note that substituting

x = 4 into Eq (192) will yield the quadrature sampling

error formula developed by Persons.

Given fo and W, Q can be plotted as a function of K for .

any L. As mentioned, Eq (192) provides us with the

flexibility to investigate the effects of hardware timing *

errors on Q. If we use Persons' example we can establish it

as a baseline (he assumed no timing error). In other words,

we'll assume that we've sampled f(t) and f(t-1/4f o ) with no

timing error. This is the case where x = 4 Letting

L fs/W = 1 we have

2
Q(K,L+l) = {cos (nz/2K)}[[l-r]] % A

+ {cos 2 ((z+l)/2K)}[[r]] (197)

which is plotted in Figure 31. Figure 31a shows the full

scale of Q for 0 5 0 5 1.0 where 1.0 = 100% error. In part

b the 0 scale was expanded to emphasize the shape of the

error plot. Notice that O is zero for K = integer and

approaches zero for narrowband systems (large values of K). .

%-
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Q(K=2fo/W,L=fs/W= 1) vs K<

co

Q 4. a 1 1

OAS

2 4 i 1 12

Fiur 1.0 aK it 10 esos'RaKl
0.76



The interesting question is, what happens to Q if we

' have a timing error? In other words, we think we're

sampling f(t) and f(t-1/4fo), but we're actually

sampling f(t) and f(t-1/xfo ) where x does not equal 4.

Since quadrature sampling requires sampling the bandpass

signal and its quarter-wavelength translation, we expect

some reconstruction error. The next few figures will show

*that there is indeed a reconstruction error and this error

can be quite significant. For instance, if x=2 then the

*bandpass signal and its half-wavelength translation are

being sampled and the reconstruction error approaches 100%

-, (the signal cannot be reconstructed).

Q is plotted in Figure 32a for x = 4.0, 3.9, 3.8, 3.7,

- 3.6, 3.5 and 0 5 0 5 1.0 and once again in Figure 32b

with 0 5 Q 0.16 The individual plots for the various

values of x are more easily distinguishable in part b.

Notice as the timing error increases, or ix-4.0g grows

larger, that Q increases. Figure 33 shows the case where

the timing error has increased to the point where we are

Pe sampling the bandpass waveform and its half-wavelength (x =

2.0). In this figure, Q is plotted with x = 4.0, 3.8, 3.5,

3.0, 2.5, 2.0 As before, 0 approaches 100% as x

approaches 2.0 . Figure 33b is a three-dimensional

surface plot of part a.

To summarize, consider an example with three high

frequency bandpass signals with center frequencies of f, =

40 MHz, f2 = 500 MHz, and f3 = 1 GHz. Once again

5. 77
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Q(K=2fo/W~fs=W=1) vs K
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Q(K=21o/W,L=fs/W=1) vs K
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TABLE I

Comparison of Timing Errors (TE in pS)

TE for
X

fj 40 MHz f2 = 500 MHz f3 = 1 GHz

3.9 160 13 6

3.8 329 26 13

3.5 893 71 35

3.0 2083 167 83

2.5 3750 300 150

2.0 6250 500 250

f= 1.5W , fs 2.0W and fs = 5.0W respectively. As

the sampling rate grows large compared to the bandwidth the

error terms approach zero. In Figure 36, Q is negligible

for x = 4.0 (no timing error), 3.8 and 3.5 The only

significant Q terms are for x 3.0, 2.5 and 2.0.

Increasing sampling rates will reduce the 0 terms even

further.

To summarize, quadrature sampling requires very precise

timing. Even with center frequencies less than 100 MHz,

nanosecond precision is required. If such precision is not

possible, higher sampling rates will be needed to overcome

the reconstruction error terms.
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let L = 1 = fs/W. The timing errors, TE, is a function

of X:

TE = T(1/4 - 1/x) (198)

where T is the period of the corresponding bandpass signal.

In Figure 33, a value of x = 2.0 results in a Q of

almost 1.0 (or 100%) . Referring to Table I, and putting

this in terms of a timing error, we see that for fl, a TE

of only 6nS yields a Q of 100% Similarly, TE = 500 pS

and 250 pS for f2 and f3 , respectively.

The important point here is that Q is directly

proportional to the center frequency. The higher the center

frequency, the more precise the timing must be to keep Q

small.

Typical communication signals will be sampled at the IF

stages of the receiver, so TE for f, is representative of

the type of timing precision needed for quadrature sampling

when f. = W samples/s. Referring again to Figure 33 and

looking at the column for f, in Table I, where x = 3.8,

TE = 329 pS and Q is relatively small for large values of

K. A value of x = 3.0 represents a 2 nanosecond timing

error and a Q that levels off at 0.3 (30%). Obviously,

timing must be kept to nanosecond precision or it won't be

possible to reconstruct the signal from the samples.

The next question is, what can be done to get around

this timing problem? The answer is to sample at a higher

rate. The next three figures (34-36) are plots of Q for
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Q(K=2fo/W,L=fs/W=5) vs K

C0.

',

2,0 4,0 6,0 9,010.0 ,?"

. 0 6..

"K

84'C "
S :"ILJr 6 sIvthr . ,.

"C--

L82 37 , 1.:C

Ki
!

*, Fiue3.. sKvtZ .

" .," <," , " "_ , . , , , - " ._ : .<..:: " ":,:: " . ",". -': ':- -", -r.'." " , " " ',% '.:, -', " -. ._' . , " , ", ' C-



Irv.

.

The drawback of complex sampling Is the preprocessing

that must be done to obtain the Hilbert transform of the

bandpass signal. There is the further disadvantage that it

is not easy to obtain a precise Hilbert transform (the

noncausality of the Hilbert transform does not allow one to

implement it for signals having non-zero bandwidth,

theoretically). Simpler processing is usually desirable

(5:289).
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IV. Conclusions and Recommendations

Conclusions

Five bandpass sampling techniques were evaluated. In

each case, equations for the bandpass signal were developed

in terms of its uniform samples. The minimum sampling rate

and the conditions for those minimum sampling rates were

discussed. In comparing sampling rates it was found hat

each of the two-channel techniques offered a rate reducti.

of up to one-half over the single-channel approach. T.'

are always tradeoffs that result in varying degree3 cf

accuracy and must be considered when determining wv-."

technique to to use. For example, it was show'.

conventional quadrature sampling requires pre:..

synchronization, quadrature samriling wa- 7-

extremely sensitive to timing err,-- a.!

hard to implement in hardware. : ,,

purpose for which the data wi --

" the chcic ,  o( f sa m " .

s- r. a~ir;
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aspect which can be investigated is the reconstruction error

due to the combined effects of hardware timing errors and

varying levels of noise.
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