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Preface

*The purpose of this study was to investigate how

parallel programming architectures can be used to provide

redundancy. Specifically, it is desirable that computers

continue to function in the presence of a hardware failure,

with a minimum of duplicated components.

This report is limited in scope to one particular

concept, and its implementation on a specific parallel

computer which is commercially available. The areas

investigated were the adaptation of the theoretical

framework to the actual operating system available, and the

resulting performance of the system.

It is difficult to find words to convey my gratitude to

nDr. M. Kabrisky, my thesis advisor, as well as my appreciative

thanks to Lt Col G. Parnell, my reader. Their encouragement,

guidance and patience were essential to completing this

project. I must also thank Capt B. Hodges, a fellow AFIT

student, for the time he took from his own thesis work to

help me. I also wish to express my deep appreciation to

Mr. Richard Norris of the parallel processing laboratory for &-

his patience and help when the computer became recalcitrant,

or when the thesis student got himself hopelessly entangled

in the computer's operating system. Finally, I wish to thank-For

all of my family and friends who saw and heard very little of I

me for their patience during these difficult months.

Gil Zilberstein
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Key Definitions

Pattern Recognition. Pattern Recognition is a subset of

computer technology whose aim is to enable computers to sense

their outside environment in a manner similar to the way

living creatures accomplish that task.

Neurons. As used here, a neuron is a computational unit

at the lowest level (i.e. computationally indivisible), which

performs the following computation: it takes the sum of

positive and negative inputs, compares the sum to a

threshold, and emits an output if the threshold is exceeded.

Neural Network. A neural network is a structured

arrangement of interconnected neurons, which is capable of

C. performing some computation at a higher level than that of

individual neurons.

Parallel Computation. The performance of independent

computations simultaneously, by independent computational

devices, rather than sequentially over time by a single

computational device (which is serial computation).

Redundancy. As used here, redundancy is the ability of

a computing device to continue functioning in spite of the

failure of a physical component, by the use of an identical

component which, previous to the failure, was surplus to the

minimum set of components required to perform the computation.

Node. As used here, a node is an independent computational

device in a cube-type parallel computation architecture.

vi
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N-Dimensional Cube. An orthogonal geometric structure,

real or imaginary, which resembles a cube in its geometric

properties. By way of example: a line is an n-cube where

"n" is 1; a square is an n-cube where "n" is 2; a cube is an

n-cube where "no is 3; and so on.

Hypercube. A hypercube is an n-dimensional cube whose

dimension is greater than 3, (which is the dimension of

Euclidean or "normal" space).

Cube-Type Parallel Architectures. A method of

connecting together the independent computational devices of

a parallel computation machine, in which the independent

computational devices (nodes) are connected to each other as

if they were the "corners" of an n-dimensional cube.

Cube-Connected Cycles. A cube-connected cycle (CCC) is

a variation of the cube-type parallel architecture, in which

instead of nodes at the n-dimensional cube's corners, there

are "loop" or "ring" type arrangements of several nodes,

which form the corners.

VLSI. The initials stand for Very Large Scale Integrated.

A VLSI circuit is one that contains a very large number of

electronic components, and their associated connections,

formed on a single piece of material of extremely small

dimensions (such that the electronic components themselves

are of microscopic size).

vii



AFIT/GSO/ENG/87D-1

Abs tract

The purpose of this study was to implement a technique

for fault-tolerant parallel computation on the Intel

Corporation's Hypercube computer. This work was motivated by

the recent progress in parallel computation and neural

network techniques.

This study focuses on the implementation of one

particular type of parallel processing architecture on the

Intel Hypercube. The architecture in question is known as

the cube-connected cycle (CCC). This architecture is used as

a basis for a reconfiguration scheme known as reconfigurable

cube-connected cycles. The aim of this reconfiguration is to

build a parallel computing system with fault tolerance

capability.

Implementation of this technique on the Intel Hypercube

was by simulation. The loading of only part of the hypercube's

available nodes, holding the remaining nodes in reserve was

accomplished, followed by a simulation of the replacement of

a deactivated node with a spare node.

Conclusions are reached regarding the suitability of

the Intel machine for fault tolerance experiments versus the

rapid computation for which it was designed. Recommendations

are made regarding the next logical steps in continuation of

the work presented in this study.

viii
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IMPLEMENTING CUBE-CONNECTED CYCLES ON THE INTEL HYPERCUBE FOR

FUNCTIONAL REDUNDANCY

I. Chapter 1: Introduction

Background

The concepts behind this report grew out of the study of

the computing problem known as pattern recognition. Some

current attempts to solve the pattern recognition problem are

now focusing on the use of neural networks (Kabrisky, 1987).

Neural networks attempt to implement, in modern electronic

computing technology, some concepts deduced from the study of

biological brains. Such networks are in an early stage of

development, but already they show promise in two main

problems in computing. First, they offer the possibility of

dramatic increases in speed through the use of a parallel

architecture. Second, they offer redundancy so that the

failure of a computing element does not compromise the

system's ability to perform its function.

This paper explores a method of achieving these same

goals of parallel computation and redundancy using more

conventional technology which is available today. By

improving the effectiveness of computers built on more

traditional lines, we may achieve improvements of the type

promised by neural networks, while bridging the time gap

while neural network technology is maturing.
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4 Such parallel, redundant computing capabilities will

probably be needed in the design of orbital systems to solve

certain national defense problems, particularly the Strategic

Defense Initiative (SDI). General Robert T. Herres,

presently Vice Chairman of the Joint Chiefs of Staff, has

said that the country's national security "depends on the

high-tech edge of our space systems." (Ulsamer, 1985: 92).

Such systems must be able to quickly find and identify

certain objects or phenomena in their environment.

With regard to Teal Ruby, which is a space-based infra-

red "staring" (as opposed to "scanning") array, the following

has been said.

A technical challenge associated with such advanced
staring infrared detection systems is the computational
capacity to deal with all the information that is being

Oproduced by the million-plus elements of the system
(Ulsamer, 1985: 95).

Since existing techniques for solving such problems are

slow when compared to the time available to solve the problem,

there is a need for faster computation (Evans and Gajewski,

February 1985: 74, 77). Parallel computing architectures,

whether implemented with traditional technology or with neural

networks have the potential of providing the necessary increase

in computing speed.

The fragility of computer hardware (and, implicitly, the

resident software) in orbiting vehicles is another area which

requires improvement. Space vehicles are known to experience

radiation and EMP (Electro-Magnetic Pulse) induced problems.

2



As micro-electronics become smaller, they offer
increased capabilities, but they also become more
susceptible to transient faults and total dose
degradation from the effects of the natural space
radiation environment (Gjermundsen, 1984: 28).

The results of radiation-induced damage to hardware, or

changes in software, can be disastrous both to the vehicle's

immediate mission, and to the vehicle itself (Evans and

Gajewski, February 1985: 74, 77). Furthermore, the memory

loss involved need not be extensive to cause serious effects.

It need only affect a physically tiny part of the computer's

circuit, which in turn controls a critical part of the

- computer's software. As an article in Defense Systems Review

states: "Random spacecraft faults must be detected, isolated

and corrected." (Gjermundsen, 1984: 27).

There is a need for solutions to such problems which

can be implemented as soon as possible. As Gjermundsen says,

"New design and manufacturing techniques must be developed to

decrease the susceptibility of microelectronics to

radiation."; and, "The military command now recognizes the

importance of autonomy to the survivability of space assets."

(Gjermundsen, 1984: 28). Redundancy, and the automatic

reconfiguration capability to use it, are a promising means

of achieving that space asset autonomy. It is increasingly

apparent that the benefits of this concept outweigh the cost.

Spacecraft configuration tradeoffs are performed
initially at subsystems level to achieve a balanced
level of protection that satisfies reliability and
capability requirements. Further tradeoffs can then
be applied to optimize redundancy (Behmann and Nawar,

~ 1985: 191).

3
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The cube-connected cycle concept discussed in this paper

offers a way to provide parallelism, and reconfigurable

redundancy, with at a reasonable, incremental step forward

from current technology.

Research Problem

This is a report on work to investigate fault tolerance,

by means of the functional redundancy provided by reconfigurable

cube-connected cycles, using the Intel Hypercube computer.

Scope & Limitations

The cube which can be used for this project is limited

by the number of nodes available on the Hypercube. The

Hypercube was set-up for 32 nodes; The redundancy required

by the reconfigurable cube-connected cycles limited the

cube dimension available to perform computations.

Failures of circuit components were simulated, since the

Hypercube's operating system cannot handle actual failure of

computer hardware.

ASSUMPTIONS

It is assumed that the problems to be solved can be

effectively parsed, or divided, into parts which are amenable

to solution by parallel processing. The problem of how to

*. set up computing problems for effective computation in

parallel will not be addressed here.

It is also assumed that the failures which are being

simulated are not degenerate in the sense that they will not

4



nullify the redundancy scheme which is proposed. In other

words, if there are two mutually redundant components, it is

assumed unlikely that the first two failures will affect

those two components, thereby eliminating the redundancy.

General Approach and Sequence of Presentation

A review of the literature will be presented first,

covering the concepts of parallel computing and redundancy as

they are derived from work on neural networks, and their

application to proposed cube-connected cycle topologies.

This will be followed by a detailed explanation of the

cube-connected cycle topology, the Hypercube's structure and

operating principles, as distinct from those of a

conventional computer, and the possibilities of re-

programming integrated circuits in the manner simulated in

this project.

Following the above, the actual simulation, results, and

conclusions drawn will be presented. The actual computer

programs used will be covered in an appendix in order to

retain the flow of the main text.

bI~



II. Chapter 2: Review of the Literature

Conceptual Background

The inspiration for this project came from the study of

pattern recognition, and in particular neural netwrcrks. For

this reason, this review of the literature will start with

a review of neural network related material.

The topic of self-organizing techniques is relevant,

since the proposed parallil computation technique in this

report is able to independently detect, and compensate fcr

failures in its component elements. The self-organization

referred to in the neural network literature is, admittedly,

of a qualitatively different character. The purpose is to

show the potential of independent machine action. What is

proposed in this report is simply a rudimentary starting

point.

The literature concerning the transfer of concepts from

biology to electronics is also covered. The biological

computing model, insofar as it is understood today, has

served as an inspiration, if not an actual model for what

can be achieved with parallel computing architectures. In

particular speed and redundancy seem to be key characteristics

of parallel machines.

It is in light of this background that the following

review of the literature is presented.

* ?. 6

.MD



Self-Organizing Techniques

No discussion of neural networks would be complete without

a reference to Dr. Frank Rosenblatt's Perceptron (Butz, 1959:

60-71; Hopfield and Tank, 1986: 625-633; Fukushima and Miyake,

1982, 455-469). The Perceptron was introduced 30 years ago

(Butz, 1959: 60-71). As described by Butz and Hopfield & Tank,

the Perceptron was a computing device using two-state (on/off)

neuron elements in several layers (3 layers according to

Fukushima & Miyake) which was reported to be capable of

self-teaching and pattern recognition.

The key idea was that the machine learned with an absolute

minimum of programming. Random connections, together with the

characteristics of the neurons were deemed sufficient to enable

J k learning and pattern recognition to take place (Kabrisky, 1987).

According to Fukushima & Miyake, Rich, and Kabrisky, the

Perceptron was a disappointment (Fukushima and Miyake, 1982:455;

Rich, 1983: 363; Kabrisky, 1987). Hopfield & Tank, as well as

Fukushima & Miyake and Kabrisky state that upon further study

the Perceptron was found to be a peculiar, and limited type of

two-state value manipulator (known as a Boolean operator).

According to Rich, techniques using random networks as starting

points have failed because a low-level threshold of knowledge

is a prerequisite for learning to take place (Rich, 1983:363).

What is interesting is that the basic concepts behind the

Perceptron have not died.

S7



Fukushima & Miyake have been working on a "cognitron" and

a "neocognitron" (Fukushima & Miyake, 1982: 455-456). They

work on the premise that the problems with the Perceptron were

in its details of implementation, not in its basic concepts.

Specifically, they propose more layers of neurons in the

computing hierarchy and more widespread reinforcement of

excited neurons throughout the network. They report these

improvements have resulted in computations that are both

useful for pattern recognition, and result in behavior similar

to living beings.

Some of the same general concepts have been used by Ralph

Linsker, but with a stronger connection to the biological realm

(Linsker, 1986a: 7508; 1986b: 8390; 1986c:8779). Linsker is

seeking to understand spatial orientation in certain primates.

The common ground with Perceptrons is the use of a self-adaptive

network of neurons (Linsker calls them cells) with minimal pre-

programming. In Linsker's own words: "the detailed connections

and strengths are unspecified and allowed to emerge during the

development of the system" (Linsker, 1986a: 7508). What

fascinates Linsker is that the results are "biologically

interesting network structures" (Linsker, 1986a: 7508).

Furthermore, he sees a parallel to the observed phenomenon that

in some primates, cells in the visual cortex can self-organize

in the absence of visual stimulation (Linsker, 1986c: 8779).

It is this apparent similarity to observed biological behavior

that interests Linsker.

8



The preceding research is groping with the task of

devising computing architectures that are capable of self-

organizing, i.e. learning, in a manner similar to living

creatures. While this work is progressing, it makes sense

to develop simple, architectures such as cube-connected

cycles as a means of obtaining an immediate improvement in

performance based on the idea of an independent, adaptive

computer architecture.

Transfer of Concepts from the Biological to the Electronic Realm

In 1959, D.G. Willis of the Lockheed Aircraft Corporation's

Missile and Space Division borrowed concepts from biology to

define neurons with properties that would be of interest to

electronics (Willis, 1959: 1,2-3,5). Willis concluded that

4modeling a neuron as a device that has two states, on or off,
is insufficient to explain the observed behavior of the human

brain. It also appeared to him that memory does not exist in

individual neurons (Willis, 1959: 5).

Matthew Kabrisky of the Air Force Institute of Technology

(AFIT) also realized the significance of investigating the

operation of the human brain with a view to modeling at least

parts of its functions (Kabrisky, 1966: 4,5). Given the speed

of electronic computers (even those available in 1966), Kabrisky

could foresee benefits to be gained from coupling electronic

speed with the organizational and operational principles of the

human brain.

9



There is however, one caveat Kabrisky mentions (Kabrisky,

1966: 4,5). Not all features of the human brain's construction

are necessarily useful in designing computers. For example,

birds can teach us much about aerodynamics. However, the fact

that birds use feathers and flap their wings is irrelevant to

the design of airplanes (Kabrisky, 1966: 4, 5).

Attempting to understand how the brain computes from its

anatomy can be problematic. As Hopfield & Tank point out

(Hopfield and Tank, 1986 625), he basic elements of a neural

circuit have been well known for some time: neurons, synaptic

connections, and circuit dynamics. But a detailed study of

the components, or a sampling their activity does not shed

much light on what is happening in a natural neural network.

One lesson learned from the study of these model
circuits is that a detailed description of synaptic
connectivity or a random sampling of neural activity is
generally insufficient to determine how the circuit
computes and what it is computing (Hopfield and Tank,
1986: 625).

D.G. Bounds expresses a similar thought a bit differently

(Bounds, 1986: 11,12). He says that although the brain has

been taken apart and its components examined, the algorithms

it executes are still not known. But Bounds says that 3 key

features have emerged: first, the brain is a highly parallel

computer; next, inter-element connectivity among neurons is

* orders of magnitude higher among neurons than among

miniaturized electronic components; lastly, biological systems

are not binary. Bounds also cites Hopfield's work as showing

10



that fast computations can be obtained from parallel interactions

between neurons.

R. Messner and H. Szu also studied the brain's operation,

but they picked out a more narrow area ef study (Messner and

Szu, 1985: 50,51). They focused on the interface between the

retina and the brain. Since the structure of this interface

cannot be easily examined while it operates in a living being,

computer simulation can be used.

According to Messner and Szu, the "spatial distribution

of the cone photoreceptors" (Messner and Szu, 1985: 51) will

provide the necessary knowledge for image processing

simulations. They also suggest that the interface from the

retina to the brain is a logarithmic mapping.

John Maddox, in addition to reinforcing some of the

preceding concepts, points out that part of the problem is

the difficulty of asking the right questions and the most

useful questions when doing research in this area (Maddox,

1987> 11). He states that the proper questions sometimes show

up in unexpected places, such as in neuron simulations. Thus,

he says that even simulations based on two-state, on/off

neurons can yield useful informaticn about living systems.

Maddox cites Hopfield when he concludes that memory is a

property of a network, not of single elements within a network.

This, Maddox says, may mean that memory recall can be invoked

by stimulating a fragment of a network.

^,11



In his article "Distributed Memory", Leon Cooper

reinforces some previous ideas, as well as adding some of his

own (Cooper, 1985: 1,2,3-6, 8-9). He agrees with previous

authors that the brain processes information in parallel, an

idea that Cooper thinks is evident from the structure of the

retina. Likewise, he also believes that it is the simultaneous

activity of many neurons that is important in a neural network.

Cooper also states that, "Large networks of neurons connected

to other neurons via modifiable synaptic junctions provide the

physiological substrate for the distributed parallel systems

discussed here." (Cooper, 1985: 1).

All of the preceding points to parallel computing

techniques as being a promising direction to take in

improving performance. The studies of biology and neural

networks point up the complexity levels of highly capable

parallel "computers". While such complexity is beyond the

scope of our technology, there is a need to maximize the

capabilities of the comparatively simple parallel

architectures which we do have.

Cube-Connected Cycles and their Potential Applications

The idea of using cube-connected cycles as a means of

interconnecting a parallel computer was first proposed in a

paper by Preparata and Vuillemin (Preparata and Vuillemin,

1981: 300-309). They approached the problem from the point

of existing electronics technology (specifically VLSI, or

very-large-scale-integrated circuits) , rather than from the

12



point of biological studies, as many neural network

researchers do.

Preparata and Vuillemin point out two ends of a spectrum

in the implementation of parallel processing connections on a

VLSI circuit (Preparata and Vuillemin, 1981: 300). One

extreme is to have each pair of processing elements connected

to each other. This scheme comes quite close to the way

processing elements (neurons) in biological computers (brains)

appear to be connected, and thereby close to the work being

done in neural networks. The implementation of such

connection schemes on VLSI circuits however, is impractical

given the technological state of the art.

At the opposite end of the spectrum, Preparata and

Vuillemin say, some researchers limit themselves to "planar

links between topologically neighboring cells (arrays or

meshes)" (Preparata and Vuillemin, 1981: 300). The advantage

of these is that they are well within the limits of the

current state of the art in VLSI technology. The

disadvantage however, is that they cannot efficiently

implement certain kinds of algorithms, particularly sorting

and convolution problems. The point at which they are at a

disadvantage is in moving data between points that are

topologically far apart in a 2-dimensional (planar) array.

One answer to the problem of implementing algorithms

such as discrete Fourier transforms, convolution, sorting,

etc. has been the n-dimensional cube (Preparata and

o13



Vuillemin, 1981: 300). Implementing an n-dimensional cube

with VLSI technology is, however, infeasible for large values

of "n" dimensions.

This has led to alternative layouts. One proposed

layout is the perfect-shuffle-exchange (Stone, 1971: 153;

Preparata and Vuillemin, 1981: 300). By simulating the

perfect shuffle of two halves of a deck of cards (after the

shuffle, cards from the first and second halves of the

original deck will alternate), processors which were

originally topologically far apart are brought closer to each

other. The shuffle connection scheme has the advantage that

it can be implemented in current VLSI technology.

Preparata and Vuillemin proposed the cube-connected

cycle as a means of achieving the best of both worlds, cube-

connection advantages and ease of implementation within

existing VLSI constraints. It is a modified cube type of

network, but has a compact and regular VLSI layout.

Additionally, Preparata and Vuillemin say it is suited to

"a wide class of problems" (Preparata and Vuillemin, 1981: 300).

A similar idea was expressed by Seitz in his article "The

Cosmic Cube" (Seitz, 1985: 22).

The Cosmic Cube nodes were designed as a hardware
simulation of what we expect to be able to integrate onto
one or two chips in about five years. (Seitz, 1985: 22)

Preparata and Vuillemin's work forms the basis for work

by Banerjee, Kuo and Fuchs (Banerjee et al, 1986: 286-291).

This newer work adds the idea of reconfiguration capability to

14



the previous work done on cube-connected cycles. Banerjee,

Kuo and Fuchs agree with Preparata and Vuillemin that

cube-connected cycles offer an efficient way of performing

algorithms such as discrete Fourier transforms and sorting.

They also agree that n-dimensional cubes are "not directly

usable in VLSI" (Banerjee, et al, 1986: 286), and that the

cube-connected cycle "is suitable for realization in VLSI".

To the preceding work Banerjee Kuo and Fuchs add the

idea of "designing reconfigurable CCC networks which are

capable of tolerating classes of multiple failures."

(Banerjee, et al, 1986: 286). They point out that current

trends permit the implementation of parallel architectures on

VLSI chips or wafers, using large numbers of interconnected

processing elements. But this necessitates the consideration

of reliability issues.

However, as the number of active devices on dies
and wafers increases, the probability of single or
multiple physical failures becomes unacceptably large.
Consequently, redundancy has to be included in these
systems to increase yield when there are production
defects and to increase reliability when there are
operational failures (Banerjee, et al, 1986: 286).

* Banerjee, Kuo and Fuchs propose "cube-connected cycles

(CCC) architectures capable of tolerating multiple failures."

(Banerjee, et al, 1986: 286). They further state that

cube-connected cycles are superior to hypercubes

(multi-dimensional networks with a cube-geometry) because

the CCC complies with the basic requirements of VLSI
technology: modularity, ease of layout, simplicity of
communication among the PEs and simplicity in timing and
control (Banerjee, et al, 1986: 286).

15
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Two approaches to achieving the desired redundancy are

presented in the above referenced paper, 1) global, and

2) local, redundancy and reconfiguration. Both techniques can

retain the original CCC structure, while invoking a reasonable

cost in spare or duplicated components, and extra circuit area

on the integrated circuit chip.

The hardware side of the circuit reconfiguration issue is

discussed in a paper by Greene and Gamal (Greene and Gamal,

1984: 694-717). Their main focus is on forming workable

circuits at economic rates in the presence of production

defects. They do, however, mention performance of

reconfiguration using "electrically reprogrammable switches"

(Greene and Gamal, 1984: 694, 716) which are integrated into

Ithe circuit, as a means of attaining "dynamic fault tolerance,

in which elements fail during use" (Greene and Gamal, 1984:

716).

The paper also mentions that "regular layouts and

interchangeable elements" (Greene and Gamal, 1984: 694) are

necessary in order to apply reconfiguration techniques. This

is similar to the regularity of VLSI circuitry which was

mentioned as being desirable in the previous papers on cube-

connected cycles.

Specifically, Greene and Gamal say that reprogrammable

switches or, in the case of production defects, lasers, can

be used to circumvent faulty processing elements in the

circuit, and connect together the functioning processing

16
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elements. In this way, any desired circuit within the limits
of the chip's structure can be implemented. This benefit,

of course, comes at a price. The cost of obtaining this

flexibility is increased overhead area (due to switches,

extra interconnections and extra processing elements, and an

"increase in signal propagation delay." (Greene and Gamal,

1984: 694, 695). In the next sentence, they also mention

another cost: "Also, determining the switch settings may

entail a nontrivial computation." But this is a problem

where ideas such as those of Banerjee, Kuo and Fuchs, about

the reconfiguration possibilities of cube-connected cycles

can be of help. The common goal is to attain, or maintain a

functional circuit (specifically, a parallel circuit) in the

_- presence of failed processing elements.

Conclusion

The literature in pattern recognition implies that a

technological revolution is in the making. Attempts to link

biological studies of living brains with the design of

computers are progressing steadily. However, direct,

* practical applications are not at hand, and in the meantime

modifications of conventional techniques may be more

immediately useful.

Many researchers have analyzed the anatomy and behavior

of brains and neurons in attempts to find underlying

principles. Several conclusions have been reached by several

researchers independently. First of all, it is apparent that

" - 17
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the braiin processes large amounts of data in parallel (i.e.

simultaneously). Likewise, brain functions, particularly

memory are distributed throughout the entire neural network

of a brain, in such a manner that no single component is

indispensable.

It is these two basic concepts, parallelism, and the

redundancy of components, that are used in the proposed cube-

connected cycles architecture. In this way it is possible to

reap some of the benefits of biologically inspired advances,

and use the existing state-of-the-art in electronics to

implement them. The reconfigurable cube-connected cycle

architecture has the potential to provide a significant

improvement in capabilities using technology that is close

at hand.

6
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III. Chapter 3: The Intel "Hypercube" Parallel Computer

Basic Concepts

Parallel Computers. The Intel Hypercube is a computer

with a parallel architecture. A parallel computer makes use

of the fact that many computational problems are composed of

independent sub-problems. Conventional computers have only

one processing device, usually called a Central Processing

Unit (CPU). Conventional computers must therefore work on a

problem in sequence over time (using the single CPU), in

*spite of any sub-problem structure inherent in the overall

problem.

On the other hand, parallel computers have a number of

independent processing devices. Thus, each processing device

in a parallel computer can work independently on a sub-problem

which is an independent component of an overall problem.

If the sub-problems do not depend on results from previous

calculations, their calculations can be performed

simultaneously as well as independently. It is this capability

to solve a computational problem quickly by simultaneous work

on independent parts of a problem that gives parallel computation

its main appeal.

The difficulty in designing parallel computing

architectures is in the management of the independent

processing elements. The main computational problem's

component sub-problems must be handled in an orderly,
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structured way. Furthermore, there must be a master, or

overseer in the system which collects, or collates the

completed sub-problems and synthesizes them into the solution

to the main problem.

Hypercubes. The Intel Hypercube offers one solution to

the problem of how to structure parallel computer architecture.

It is based on geometric symmetry and geometric properties that

are amenable to certain problems suited to parallel computation.

The hypercube uses the concept of the n-dimensional cube.

Expanding on the definition already given, an n-dimensional

cube is not really a cube in the ordinary sense of the word.

A "normal" cube is the 3-dimensional member of the

n-dimensional cube family. Calling such structures cubes is

simply a convenient way to think about them and visualize them.

An n-dimensional cube consists of nodes, or corners,

which are connected to each other in an orthogonal, geometric

arrangement. The cases of "cubes" of dimensions "0" and "1"

are trivial cases (see Fig. 1). The 0-dimensional "cube" is

merely a single node or point. The 1-dimensional "cube" is

simply two nodes, or points connected by a single line, (link

or channel) (Notes, 1986).

It is at n = 2 and higher that the issue becomes

4interesting. The 2-dimensional "cube" is commonly known as

a square. For the 2-dimensional and higher "cubes", the

number of connections (links or channels) per node (corner)

is equal to the dimension of the "cube" (Notes, 1986). See

20
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Table 1 and Fig. 2 for a summary of these cube properties.

Furthermore, it will be noted that sets of parallel structures

exist as subcomponents of "cubes", at one dimension less than

that of the "cube". In other words, a square (dimension = 2),

has 2 pairs of parallel lines (dimension = 1). A "normal" cube

(dimension = 3), has 3 sets of parallel planes (dimension = 2).

The difficulty of visualizing the properties of "cubes"

of dimensions beyond 3 can be demonstrated by considering a

"cube" of dimension = 4. By extension from the preceding

discussion, one would expect it to have 4 pairs of parallel

"normal" cubes of dimension = 3. But such a geometry is

difficult to visualize. Even a rendition of the 4-dimensional

cube such as Figure 3 is of limited help.

Such cubes, of dimension greater than 3, are called

hypercubes. It is apparent from the difficulty of

visualizing the properties of such cubes as described above,

why they have earned the special nomenclature. An attempt to

depict cubes through dimension = 5 is shown in Figure 1.

In order to effectively manipulate higher-dimensional cubes

(hypercubes), it is useful to describe their properties in

generic terms.

Geometric Properties. As seen in Table 1, "n" will

designate the dimension of the cube. The first parameter of

interest is the number of nodes (corners) that an n-dimensional

cube has. This is of primary interest because when implementing

such a cube on a parallel computer, the nodes will be the
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o Total Number of Nodes: T = 2n , n = dimension

o Number of Nearest Neighbors per Node = n

o Maximum Distance Between Two Nodes = n

o Average Distance Between Two (random) Nodes = n/2

o Number of Binary Digits in a Node Label is Equal to

the Dimension (n) of the Cube

o Labels of Nearest Neighbor Nodes Differ by One Bit

o The Minimum Distance Between any Two Nodes ic Equal

to the Number of Bits that are Different in their

Addresses

o The Number of Minimum-Distance Parallel Paths Between

any Two Nodes is Equal to the Number of Bits that are

Different in their Addresses

o The Number of Parallel Paths Between any Two Nodes is

Equal to the Dimension of the Cube

o Internal Communications Bandwidth = ( T/2 ) log 2 T

Figure 2: Hypercube Properties

(Notes, 1986)
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Figure 3: The Four-Dimensional Hypercube

25

0'i



V independent computational processors. The number of nodes for

an n-cube (i.e. an n-dimensional cube) is equal to 2

Therefore, for a computer having this type of architecture,

the number of independent processors has to be a power of 2

(Notes, 1986).

The number of channels (links, or lines in the figures)

per node is equal to "n", the dimension of the cube. The

total number of actual channels however, is more difficult to

describe, mathematically it is:

n * 2 n-1 (1)

where n is the dimension of the cube (Notes, 1986).

If the n-cube is considered to be a unit cube, that is,

all of its "edges" or "sides" are equal to one, it will have

the following properties. The maximum distance between a

pair of nodes will be equal to "n", the dimension of the cube.

(The preceding will hold true for nodes which can be thought

of as being at diagonally opposite ends of the cube.) The

average distance between any 2 randomly chosen nodes, on the

other hand, will be equal to n/2 (Notes, 1986).

Binary Properties. In addition to the precedinq

properties of hypercubes, which are geometric in nature,

there is a set of interesting and useful properties which

arise from assigning binary numbers to the nodes of the

hypercube as addresses. The binary address numbering system

starts with the first address (number) being all zeroes.
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The addresses progress from there to the maximum number of

nodes in a hypercube minus one. The minus one arises because

the first node is numbered zero, instead of being numbered

one. This property is non-trivial, since it permits a highly

ordered and efficient binary addressing scheme to be

implemented. The first property of this binary addressing

scheme is that the number of digits in the address for a node

is equal to the dimension of the hypercube (Notes, 1986).

Note that this would be impossible if the first node were

to be numbered one instead of zero. This is analogous to

counting ten items by starting with zero and ending with nine,

rather than the conventional way of starting with one and

ending with ten. By going from 0-9, one digit in the "address"

is saved, since the two-digit 10 doesn't have to be used. An

analogous situation exists with binary numbers. One digit in

a binary address is saved by starting the count with zero.

This is no small consideration when designing a machine which

will have to use this address in large numbers of components,

many times over as it operates.

In addition to the above property of having the dimension

of the cube be the same as the number of digits in its

address, there is an address relationship between nodes.

The simplest such property is that nearest neighbor nodes

differ in their addresses by only one digit of their

addresses (Notes, 1986). By nearest neighbor is meant nodes

27
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which are only a unit "length" apart. (In a "normal" square

or cube,these would be corners separated by a common edge.)

A property which, with further consideration, arises

from the preceding, is that the minimum distance between any

two nodes is equal to the number of digits that are different

in their addresses (Notes, 1986). This property can be seen

by considering the intermediary nearest neighbor pairs as

stepping-stones between any desired pair of nodes.

Continuing with the less obvious properties, the number

of minimum-distance parallel paths which are possible between

any pair of nodes is equal to the number of bits that are

different in their addresses (Notes, 1986). This is a

propeity of the cube's symmetry, and can be seen without too

&much difficulty in the 2-dimensional and 3-dimensional cubes.

A feature which arises from the earlier property that

each node has "n" channels, and the property mentioned in the

previous paragraph, is that the number of parallel paths

possible between any two nodes is equal to the dimension of

the cube (Notes, 1986). This can be seen by noting that the

originating node has "n" channels going "out", and the

destination node has "n" channels coming "in"

Intel Hypercube Hardware Arrangement

The Intel Corporation's Hypercube parallel computer uses

the available state of the art in electronics to implement

the above cube-connection concepts. The nodes (corners) of

the cube are, in actuality, microcomputers. These node

28
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microcomputers are connected together by dedicated high-speed

communication channels to form the "cube".

The cube, however, cannot function as a stand-alone unit

when implemented in hardware. Besides the usual computer

input/output devices (keyboards, terminals, printers, etc.),

the cube needs a system manager. This management function is

provided by a "Cube Manager" (iPSC User's Guide, 1986). The

cube manager is also, like the nodes, a microcomputer, but

with much more memory, and runninq a different program.

Each node's microcomputer has some memory associated

With it. Specifically, each node uses an Intel 80286 Central

Processina Lnit, an 80287 Numerical Processing Unit, 512K of

Dynamic Random Access Memory (RAM, i.e. usable memory) and

64K of ROM (Read-Only Memory) (iPSC User's Guide, 1986).

The nodes also have three communications channels with their

asscciated communications processors and controllers. These

are: the inter-node channels; the global channel to the cube-

manager; and the diagnostic channel to the cube-manager.

Additionally, the nodes are provided with red and green LEDs

which are visible at the front of the cube's cabinet. These

LEDs illuminate to provide diagnostic information (iPSC User's

Guide, 1986).

The cube-manager is an Intel System 310 microcomputer,

and uses the same Central Processing Unit and Numerical

Processing Unit cs the nodes, but with more memory. The

cube-manager has a 140 Meg. hard disk drive, a 360K floppy
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disk drive, a 45 Meg. cartridge tape and 2 Meg. of Random

Access Memory (RAM) (iPSC User's Guide, 1986).

The cube-manager's software capabilities cover several

different functional areas. First of all, communication

with the cube is made through the cube-manager using a VT-100

compatible terminal. The operating system is Xenix, which is

a derivative of Unix. The system can be programmed in C or

Fortran, and in addition has software to perform

communications management within the cube, and diagnostics.

The communications management function is necessary

because the nodes communicate with each other and with the

cube-manager by "message passing" (iPSC User's Guide, 1986).

The communications software must manage bit packaging, as

well as message protocol, queueing, addressing and collision

avoidance, among other functions. The system also has

diagnostics permanently residing in ROM for: initialization,

confidence tests, the initial addressing of the nodes, and

primitives (simple permanent programs) which enable nodes to

receive their initial programs (iPSC User's Guide, 1986).

The nodes and the cube-manager each have their own

versions of a software library of commands and functions

unique to the hypercube environment. In their roles as

components of a parallel computer, the nodes can independently

execute their own programs on their own data after downloading

them from the cube-manager.
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IV. Chapter 4: Cube-Connected Cycles

Background

The use of cube-connected cycles (CCC) as a means of

interconnecting parallel processors was proposed in 1981 by

Preparata and Vuillemin (Preparata and Vuillemin, 1981).

Their main motivation was the conflict between the parallel

processing topologies which were ideal from a computational

standpoint, and those which were ideal from the standpoint of

implementation on VLSI chips.

The topology best suited for VLSI implementation is a

planar layout, which can be an array or mesh (Preparata and

Vuillemin, 1981: 300). While such a layout is commendably

simple, it limits the processors' communication to "planar

links between topologically neighboring cells" (Preparata and

Vuillemin, 1981: 300). While such a layout is suitable for

some types of problems, it is not suitable for problems where

data must be moved "between processors that are topologically

far apart." (Preparata and Vuillemin, 1981: 300).

A topology which does enable the latter types of

problems to be solved efficiently is the n-dimensional cube.

As an example: sorting, permutations and fast Fourier transforms

"are algorithms whose data exchange pattern corresponds to

the links of the binary multidimensional cube." (Preparata

and Vuillemin, 1981: 300; Banerjee et al, 1986: 286). But,

while the n-dimensional cube accommodates the data exchange

31



patterns necessary for certain algorithms, "it is not

directly usable in VLSI" (Banerjee et al, 1986: 286). The

reason for this is that "each of the 2k processors in the

system is connected to k other processors." (in Preparata and

Vuillemin, k=n), (Preparata and Vuillemin, 1981: 300). Such

a connection scheme is impractical in current VLSI technology.

The cube-connected cycle (CCC) has therefore been proposed

as a practical alternative to an n-dimensional cube connection

network (Preparata and Vuillemin, 1981: 300), (Banerjee et al,

1986: 286). The CCC is readily adaptable to VLSI technology

due to its structural regularity (Banerjee et al, 1986: 286).

Furthermore, processing time for algorithms suited to n-cube

implementation "is not significantly increased" (Preparata and

LAI Vuillemin, 1981: 300) in comparison to an n-cube.

Basic Concepts

The cube-connected cycle (CCC) as presented by

7reparata and Vuillemin, and utilized by Banerjee et al, is

based on a 3-dimensional cube (see Fig. 4). What makes this

3-dimensional cube unique is the structure of the corners.

In a conventional n-dimensional cube layout, each corner is a

node, or processing element. In the CCC, each corner is a

ring-type connection of several processing elements (see

Fig. 4). These ring-connection structures are called

"cycles" (Preparata and Vuillemin, 1981: 303), hence the

name of the connection scheme.
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Since the overall cube is 3-dimensional, each cycle has

3 connections to adjacent cycles (formerly corners in an n-

*' cube, see Fig. 4). Furthermore, each processing element

within the cycle has a maximum of 3 connections to other

processors. The processors which. link-up to adjacent cycles

have the two links to neighbors in their cycle, plus one more

link to the adjacent cycle (see Fig. 4). Processors in a

cycle which do not link-up to adjacent cycles simply have the

two connections to their neighbors in their cycles. It is

this limit to the number of connections or links required by

the processing elements that makes the CCC a practical

proposition for implementation in VLSI. The cube's advantage

of communication to distant nodes is retained, but with a

limit to the number of communication links each processor is

required to have.

In the examples used in Preparata and Vuillemin, and in

Banerjee et al, the cycles have four processing elements

each, as illustrated in Figure 4. Thus, three of the four

prccessors in a cycle are linked to adjacent cycles.

Additionally, the total nurber of processors is 32 ( 4 per

cycle or corner, multiplied by 8 corners in a 3-dimensicnal

cube). If this number of nrocessors were to be connected in

the conventional n-dimensional cube scheme, the cube would be

a 5-dimensional cube (25=32), and the number of connections

per "corner" would be 5, thus corplicating things greatly

(see Table 1).
".3
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Geometric Properties of the CCC

N To begin with, all processing elements are assumed to be

identical, which permits the free assignment of sub-problems

of the main problem to any processor. As stated previously,

each processing eement has either 2 or 3 ports with which to

communicate to other processors, depending on whether or not

it cormunicates with adjacent cycles. The total number of

processors required for a given CCC is derived from the

following equation:

T = h * 2n  (2)

i where

~ila T = number of processing elements

h number of processing elements per cycle

n = dimension of the cube

Sn = number of cycles (analogous to corners of the cube)

* = multiplication

h>n

* (Banerjee et al, 1986: 286)

In words, the above equation states, "The processing
' n

elements are grouped into 2 cycles, each cycle consisting of

* .h processing elements." (Banerjee et al, 1986: 286).

Each processing element has an address in the form of a

,pair of integers, (c, p). In this addressing scheme, "c" is

the address of the cycle (corner) to which the processing
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* element belongs, while "p" is the address of the particular

processing element within the cycle denoted by "c". The

limits of the "c" address parameter are: 0 < c < 2n - 1

due to the requirements of the digital numbering system

described in Chapter III under "Binary Properties". The

limits of the "p" address parameter are 0 < p < h-i , again

the count does not go all the way to "h" due to the binary

numbering requirements previously described.

The preceding description of the addressing limits will

be helpful in understanding which processing elements have

* 3 communications ports, and which have 2, in the proposal by

Banerjee et al. The following will apply to the processing

elements within any given cycle of address "c". The

processing elements whose "p" addresses are within the

limits: 0 < p < n-i will have 3 communications ports,

because the cycles which form the corners of the cube need to

be linked up to the dimension of the cube, which is n-i

Processing elements with addresses beyond the abcve, i.e.

with addresses: 0 < p < n... h-i , have 2 communications

ports, because the remainder of the Frocessing elements beyond

the cube dimension (i.e. p > n-i ), need to link only with

their adjacent neighbors within the cycle (ccrner).

* The 3 possible types of communications ports are

classified as: F (forward), B (backward), L (lateral)

(Banerjee et al, 1986: 286), (Preparata and Vuillemin, 1981:

303). The processing elements forming any particular cycle
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are connected into a cycle (analogous to a circle) by the

F and B (forward and backward) ports. The first n

processing elements in each cycle (numbered p=O -- > n-i )

are interconnected into an n-cube by using the L (lateral)

ports (in addition to the F and B ports which form the cycle).

The remaining processing elements (numbered p>n-l ), have

only the F and B ports (Banerjee et al, 1986: 287). There

is an interesting subtlety about the role of the p parameter

in the processor's (c, p) address. When processors in different

cycles (cube corners) which are connected together via their

L (lateral) ports, these connections form the edges of the

cube. Furthermore, there are sets of four parallel edges in a

3-dimensional cube which have a common axis. These edges,

with a common parallel axis (one of the 3 axes of 3-space),

are denoted by a common value of p in their (c, p)

addresses (see Fig. 4).

It is now possible to express, in a generalized form,

the connections between any pair of processing elements. In

the following, F, B and L as well as (c, p) are the same as

referred to in the preceding text.

F (c, p) connects to B (c, ( p + 1 ) modulo h

B (c, p) connects to F (c, ( p - 1 ) modulo h

* L (c, p) connects to L ( c + e * 2P , p)

where

e = 1 - 2 * bit (c)

bit (c) = the p th bit of c

37
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Expanding on the preceding: bit, as used above, means a

digit in a binary number. The significance of this is that

the expression bit (c) will be either a 0 or a 1

since these are binary numbers. In turn, this means that e

will have a value of either + 1 or - I . Therefore the

purpose of e is to serve as a positive/negative decision

value. This positive/negative decision is necessary to

define the forward/backward direction of the connection between

ports within a cycle, and is similar to the symmetry tetween

the F port using (p + 1) modulo h, and the B port using

(p - 1) modulo h. The L port connects the cube's corners,

as shown in Figure 4.

4CCC Redundancy

The CCC structure is utilized by Banerjee et al as a

starting point for devising a "parallel network architecture"

"capable of tolerating multiple failures." (Banerjee et al,

1986: 286). This technique provides an improvement in

reliability b y the efficient use of a limited degree of

redundancy. The CCC does not degrade in performance upon the

*failure of processing elements because the redundancy is used

to "maintain the complete cube-connected cycles structure

after successful reconfiguration" (Banerjee et al, 1986: 286).

In order to achieve the desired redundancy and

reconfiguration capability, all processing elements will be

provided with 3 communications ports (F, B and L) to enable

.$ ""-" 38

%V



them to function at any point in the CCC network depicted in

Figure 4. A spare cycle is made available to each of the

original cycles, which form the corners of the cube in

Figure 4, so that upon failure of an original cycle's

processing element, a spare cycle can be brought into

operation and enable the program to continue to execute as if

there had been no failure. Graphically, the spare cycle would

be located inside of the cube, accessible to all corner cycles,

and would require extra processors in addition to the ones

shown in Figure 4. Since the spare cycle is commonly

* available to all the cycles in the CCC, it offers a reasonable

compromise between minimizing the use of VLSI resources and the

number of redundant processing elements required, while

retaining the cube's parallel processing capabilities.

Two methods of accessing the spare cycle have been

devised (Banerjee et al, 1986: 286-291). According to

Banerjee et al, "Reliability analysis shows both schemes to

provide for significant reliability improvement over classical

CCC networks."
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V. Chapter 5: Re-Configurable Cube-Connected Cycles

The information in this chapter is based on work by

Banerjee, Kuo and Fuchs (Banerjee et al, 1986: 287-289).

The basic concept is to enhance the reconfiguration options

of a cube-connected cycle (CCC) in the most efficient,

economical means possible. Specifically, the methods proposed

enable the retention of a CCC structure by the reconfiguration

of the network upon failure of a processing element, The

proposed methods make this possible using a minimum of

additional, redundant processors and inter-processor

communications links.

Global Redundancy and Reconfiguration

This reconfiguration scheme adds processors and inter-

processor communications links in the following manner.

Recallina the discussion headed "Geometric Properties of the

CCC" in Chapter 4, we start with a structure of an n-cube

(that is, a cube of dimension = n). Each corner of the

n-cube has a ring-connected cycle of 'h' processors. These

corner cycles are inter-connected to form the n-cube.

In the global reconfiguration scheme, a redundant

processor is added for each dimension of the cube, and

(2n
-1 + 1) redundant lateral links which form a ring

connection (Banerjee et al, 1986: 287). Additionally,

(h - n) redundant processors are added to "form a redundant
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cycle of 'h' processors using F and B (forward and backward)

links." (Banerjee et al, 1986: 287).

The following benefits are gained by the modified CCC

network:

1) Each of the processors with a lateral communications

port (see discussion in Chapter 4) has gained an

extra port due to the addition of a lateral lInk.

2) The number of cycles available in the CCC has

increased by one to (2 n + 1).

The net result is that a spare cycle has become

available to replace a faulty cycle, without increasinq the

dimension of the CCC.

The total number of processors required for a globally

reconfigurable CCC is given in the following equation:

T = h * (2n + 1) (3)

where

T = number of processing elements

h = number of processing elements per cycle

n = dimension of the cube

2n + I = number of cycles (analogous to corners of the cube)

* = multiplication

h>n

(Banerjee et al, 1986: 287)

As previously described in Chapter 4, each processing

element has an address of the form (1, p). Once again, '1'
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F

is the address of the cycle (cube corner) to which the

"V% processor belongs, and 'p' is the address of the processing

element within its cycle.

In this case, however, the processors having lateral

links to other cycles (cube corners) have four ports, no.

three as in the basic CCC. This is because of the extra

connection to the spare cycle in the reconfigurable network.

In the following, the connections are expressed in a

,creralized form, with L2 denoting the extra lateral

connection to the spare cycle.

F (1, p) connects to B (1, ( p + 1 ) modulo h

B (1, p) connects to F (1, ( p - 1 ) modulo h

L 1, p) connects to L1 ( 1 + e * 2P p)

L2 (1 2P , p) connects to L 2 ( 1 + e * 2 P 1 , p)

(the above is performed modulo (2 n + 1)

e = I - 2 * bit (1)p

bit (1) = the pth bit of 1

This concludes the description of global redundancy and

reconfiguration.

Local Redundancy and Reconfiguration

In this reconfiguration scheme, spare processors and

inter-processor communications links are added to each cycle

(cube corner) of the CCC.
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The utility of this method is based on two assumptions:

(Banerjee et al, 1986: 288)

1) Each operational node processor can either process

data or let the data pass through it.

2) A deactivated or faulty node processor will still

allow data to pass through its ports.

In the case of the Intel Hypercube, the first assumption

above is, in fact, a basic concept in its processing and

message passing system. In the case of the second

assumption, whether or not it is met depends on the

particular method used to simulate faulty node processors on

the Intel machine.

~ In their work, Banerjee, Kuo and Fuchs state that the

first assumption is met by "a classical CCC network."

(Banerjee et al, 1986: 288). Insofar as the second

assumption is concerned, they propose a "simple network of

switches" (Banerjee et al, 1986: 288) to route messages

around a failed processor. Although they don't state this

explicitly, Banerjee et al imply that these switches must be

controllable in real time from the program's software.

The reason for this technique being referred to as local

redundancy and reconfiguration is that these functions are

provided for and exercised locally at each cycle (cube

corner) in the network. A defective processor in any cycle

is replaced by a redundant processor in the same cycle, this
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being implemented by a reconfiguration of the switch network

mentioned earlier. A redundant processor would be depicted

in Figure 4 as an open circle, such as the 2-port processors

shown. Finally, the reconfiguration is implemented in a

manner that preserves the original network structure. In

the words of Banerjee, Kuo and 'uchs:

Reconfiguration is performed such that the relative
ordering and interconnections of nodes is the same
structure as that before reconfiguration.
(Banerjee et al, 1986: 289)
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VI. Chapter 6: Fault Tolerance Simulation on the Hypercube

Optimal Methods

The original goal of fault tolerance was to enable a

parallel computer to continue its operation in spite of the

failure of one of its processors to execute the portion of

the problem allotted to it. This failure to execute would

render that processor totally inoperative as far as the

overall problem solution algorithm was concerned.

The ideal method of simulating such a situation would

also involve total failure of a processor, or node in the

hypercube structure. The more physical the nature of this

failure, the more realistic would be the simulation. An

actual failure in an operational circuit would involve some
p

sort of physical change, deterioration or destruction of a

circuit component. A simulation using a controlled,

duplicatable physical failure would come closest to actual

operational conditions.

An example of such a simulated failure would be to

disrupt power to a processing node. The node would suddenly

cease to respond to the master program (the cube manager in

the case of the Intel Hypercube) in any manner whatsoever.

• The program would then have to be capable of switching in a

spare node and continuing to execute the master program

without interruption or loss of accuracy.
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The most appropriate way to accomplish such a power

disruption would be through a special switch or relay built

into the hypercube's physical power connectors for its node's

electronics boards. Such a device would have to be accessed

by the software in order to control the simulation.

Additionally, such a device would have to be capable of

switching the node pro-essor back on in an appropriate

manner, including initialization and self-test functions in

order that the node be able to participate in future

calculations.

The preceding method, although it would be extremely

realistic, is not practical under the circumstances of this

project, since it entails fundamental physical and electronic

modifications to the Intel Hypercube. This would be an

electrical engineering design project requiring close

coordination with the manufacturer.

A more simple, and in a sense more realistic way of

acnieving the same goal would be to physically withdraw a

node board while it is participating in a computation. This

would be a dramatic demonstration of a fault tolerant

system's capabilities. The effects of such an action on a

system which was not designed to handle such a disruption are,

however, unpredictable. The consequences could be damage to

the node requiring down-time and repair.

Because of the above mentioned reasons, the fault

simulation methods which are optimal from the point of view
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of the realism of the simulation, are impractical in terms of

the limitations of the equipment available.

Alternative Methods

An alternative way of simulating fault tolerance without

the complications and risks referred to in the preceding

section is to perform the simulation solely using software.

While this method does not simulate the physical aspect of

nodes becoming inoperative, it does provide a safe way, to

accurately control when the nodes will come into and leave

the parallel computation.

0The ring demonstration program provided by the Intel

Corporation (Notes, 1986) provides a basis for building such
i.

a program. The ring demonstration program is a learning aid

for programmers using the Intel Hypercube which passes a

message around the nodes. The program prompts the user for a

message size, and a number of times to pass the message

around the ring.

The ring itself can be considered to be a rudimentary

cube-connected cycle (CCC). It is a CCC of dimension n = 0

with one node (see Fig. 1). The processors in this

single-node ring can be considered to be simply a cycle at

that single node with a very large number of members in the

cycle. In Formula 2, Chapter 4, this would be a large value

of 'h' , with n = 0

Taking the above view of the ring structure into

consideration, one can build a cube-connected cycle of the
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type discussed previously by increasing the dimension n of

the CCC, and decreasing the value of 'h' , the number of

processors per cycle.

Once such a structure is implemented using software, one

has a CCC on which one can perform simulated failures of

processing elements.

Node Based Failure Simulation. The failure of a node

processor can be simulated in software at the node in

question itself. The concept is to cause the node to

generate an error which would stop its computation. On the

Intel Hypercube, errors at the node processors generate error

messages to the cube manager in order to notify the user that

an error has occurred, and to aid in debugging.

The action taken by the cube manager upon receipt of an

error message from a node processor is variable. Normally, a

standardized, 'built-in' exception handler in the cube's

software takes appropriate action, depending on the error

involved.

It is possible for the user to write his own exception

handler, if the action desired upon receipt of an error

message is different from what the manufacturer's software

provides. These user written exception handlers must,

however, be written in assembly language, and therefore

demand a high degree of expertise from the user.

A simple way to make use of the preceding capability

would be to load the node which is to be deactivated with
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data which would generate a computational error, such as

division-by-zero. These data would be loaded into that

particular node by the cube manager. A user written

exception handler to that particular error would then switch

in a spare processor, and keep the overall program running.

Cube Manager Based Failure Simulation. Anothe- point at

which a node processor's failure can be simulated in software

is at the cube manager. This method uses node control

commands provided by Intel for the Hypercube's operating

system.

The failures can be performed in the operating system by

using the 'kill' function built into the software libraries

(iPSC User's Guide, 1986). The node in question can be

deactivated by using a 'kill' command from the cube manager

selectively on that node. Thus, nodes can be deactivated at

will from the program running on the cube manager, in a

manner that does not disrupt or change the standard operating

system.
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VII. Chapter 7: Methodology

Analysis and Problem Formulation

As mentioned early in this report, there are several

emergent technologies in computer design which hold promise

for solving problems related to satellite-borne data

processors. Parallel computing is particularly attractive

for space applications.

The specific problem areas where parallel computation

holds the greatest promise are speed of computation and

redundancy. In this report, the focus was on the problem of

redundancy. Space-borne systems are vulnerable to all of the

failures to which a device of equivalent quality would be

subject in ground operations. Additionally, there are

.iaracteristics unique to the space environment,

specifically, radiation damage, operation in a vacuum, and

operation under extreme temperatures. To the preceding must

be added the inaccessibility of the device once it is in

orbit.

The study required the selection of an approach to the

study of solutions to the satellite reliability problem,

using information in the published literature as a starting

point. The most salient characteristics of a system which

have a bearing on reliability are: 1) the probability of

failure of a given component; 2) the availability of

redundant components in case a component does actually fail.
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The probability of failure of computing system

components is rooted in their detail design. This kind o.

analysis was excluded from the scope of this report in favor

of the issue of redundancy. This was necessary to narrow the

scope of the problem which was addressed.

The focus of the study was narrowed to one proposed

system instead of a variety of alternative systems. This

enabled the use of unique computing facilities at the

U.S. Air Force Institute of Technology (AFIT). It also

permitted this system to be examined to a greater degree of

depth than would have been possible with a comparative

report.

The method discussed in this report, that of

reconfigurable cube-connected cycles (CCC), exists only in

the literature at the time of writing. It does, however,

promise feasibility in 3 important factors: 1) technical

feasibility; 2) economic feasibility; 3) operational

feasibility (Markland, 1983: 9). This study deals with the

technical and operational feasibilities of reconfigurable

CCCs.

Model Building

There are two classes of models which apply to the

problem solving methodology. At the early stages of a

project, the models used are of the initial type. These

models are qualitative in the way they treat the problem.

Subsequently, the models evolve into quantitative models, as
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.& u,,. more information becomes available, and the problem can be

defined rigorously in quantitative terms. The model can then

be manipulated by means of controllable quantitative variables.

This study deals with an initial, qualitative model.

The reconfigurable CCC is a conceptual model for one approach

to solving the reliability problem in computational machines.

The reconfigurable CCC is a subset of the use of parallel

computer architectures to achieve reliability through

6redundancy.

Further methodological development would require the

testing of a completed system, preferably with the

involvement of a potential user. Feedback from a potential

'real-world' user would refine the model, and test its

applicability to an environment outside of the laboratory.

Once a system is found to be applicable to a user's

environment, and acceptable to the user's method of

operation, the solution can be implemented. The

implementation plan should accommodate a method for following

the system's performance in the field to ensure that it

continues to meet operational requirements.
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VIII. Chapter 8: Failure and Switch-Over Simulation

Proceeding from the previous chapter, the method chosen

for simulation of node failure, and node switch-over was by

control from the cube manager. The commands used were from

those available in the cube manager's software library

provided by the Intel Corp. The program was based on the

ring demonstration program provided by the Intel Corporation

(iPSC Program Development Guide, 1986).

The Intel ring demo program is intended to demonstrate

* the message passing system of the Intel Hypercube. The nodes

are arranged, as the name suggests, into a ring network. The

nodes then pass a message of given size, a given number of
A-

times in a loop around the ring. The program interacts with

the user at a terminal, querying the user as to the size

(in bytes) of the message to be passed, and the number of

times to loop around the ring. The program also sends

information to the terminal screen to keep the user informed

.of the program's progress.

The first set of modifications necessary to the ring

4 demo program are to the cube manager's program, which is

called the host program (program host in the Appendix). The

* main purpose of these modifications is to control the node

loading function. The original program loads all of the

available nodes (determined by the cube's dimension)

simultaneously using the 'call load' function. This function

A 53

Pi" ... .



*.... must be modified to enable the load to load only part of the

total number of available nodes, in order to keep some nodes

as spares.

The loading was accomplished using the 'call load'

command, but with the individual nodes specified (see Appendix).

A specified number of nodes, in this case the first 30 out

of 32, were loaded using the 'call load' command in a loop.

In addition to permitting two nodes to be held in reserve,

loading the nodes by means of a loop allowed the process to

be easily observed by watching the node lights provided on

the node boards to monitor node status (see Fig. 5).

The next modification enabled the user to interactively

select which node would be simulated to fail. Terminal

screen prompts tell the user to pick a node from 1 to 29 for

a simulated failure (see Appendix). The prompt explains

that node 0 cannot be used because it is the one that

communicates with the cube manager. The user is also told

what to do if the program's execution hangs-up.

An operational modification follows the above prompts.

A variable previously defined as 'kaputtnode' is used to

denote which node the user has selected for a simulated

failure. The variable 'kaputtnode' is then used in a

selective 'call kill' command from the cube manager, to

deactivate the selected node. A 'call load' command is then

*issued from the cube manager to load in one of the spare
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nodes (see Appendix). In this program, node 30 is selected

as the node to be substituted for the failed node.

This change-over of the nodes can be monitored by viewing

LEDs (light emitting diodes) installed on the node boards to

monitor node status. The photographs in Figure 5 show how

the LEDs reflect the nodes' activities during the change-over.

Figure 5 shows nodes numbers 30 and 31 (the 31s t and 32n d nodes)

in stand-by status after loading the first 30 nodes. Figure 5

shows node number 29 after deactivation, with node number 30

taking its place. Likewise, Figure 5 shows node number 23

after being deactivated, and again, node number 30 taking

its place.

The final modification to the host program on the cube

Amanager is the enlargement of the message buffer from 2 to 3,

and the definition of the new buffer thus created, see the

Appendix. The purpose of this is to allow the value of the

inoperative node's address to be transferred from the host

program to the node programs. As seen in the Appendix, the

third message buffer ( msgbuff (3) ) is used to transfer the

value of 'kaputtnode', the inoperative node, to the node

programs.

The modifications to the node programs concerned the

addressing system for message passing in the ring.

Specifically, the method by which any given node calculates

the next node to which the ring's message should be sent

needs modification to take into account a deactivated node in
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:.. the ring. Firstly, as seen in the Appendix, the modulo

function in the 'nextnode' statement needs to be modified

to 30, the number of nodes in use.

Finally, modifications are required to route messages

around the deactivated node via the substitute node (in this

case, node number 30). This routing consists of two 'if'

statements. The first 'if' statement takes effect if the

next node in the message passing sequence is the deactivated

node. This statement then passes the message to the

replacement node (in this case, number 30). The second 'if'

statement's purpose is to return the message back to the ring

network at the point where it would have been had there been

no deactivated node.

This last part of the program is, at the time of writing,

not functional. When an attempt is made to run the ring demo

program, the program stops without returning a ring count.

The success of the node switch-over, which simulates replacing

a failed node processor, can be seen by viewing the node

board's LEDs, as described previously. This part of the

program is functional.

The entire program, written in Fortran, compiled with no

errors or warnings. Therefore, the remaining problem appears

to concern the message passing system. Most likely, a message

was misrouted, leaving the nodes in the network waiting

indefinitely for the misrouted message. The next program

development step would be to debug the message passing system.
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IX. Chapter 9: Conclusions and Recommendations

The main conclusions that can be drawn from this study

concern the implementation of concepts found in the parallel

processing literature on the Intel Hypercube and its

operating system.

The Intel Hypercube is one of a recent generation of

parallel computers using cube architectures. The main

purpose of these computers, according to Seitz, is to

increase the speed with which problems can be solved. He

states that:

highly concurrent systems of this type are an
effective means of achieving faster and less expensive
computing in the near future. (Seitz, 1985: 22)

The experience during the course of this project

indicates that such is the case with the Intel Hypercube.

This creates difficulties when attempting to use the Intel

Hypercube to achieve an objective other than increased

computational speed.

The purpose of this project was to utilize the built in

redundancies of a parallel architecture to achieve fault

tolerance. The operating system of the Intel Hypercube is

designed with efficiency and speed as the primary goals.

Fault tolerance was apparently not considered as a key design

parameter.
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:-<' The result is that a great deal of expertise and

programming at low levels in the software, including assembly

language, is necessary in order to implement the

reconfigurable CCC which is the subject of this report. A

particular problem is with the error notification system

employed by the Intel Hypercube. The error system is

designei to stop execution and notify the user of the

problem. The purpose of this is to avoid as much as

possible, the presentation to the user of fallacious or

misleading computational results. Since most users are

expecr-ed to adapt existing programs to the hypercube, the

focus in the Intel s'stem is on errors in parallel processing

which would not have occurred in the serial processing

implementation.

The error system is therefore not designed to deal with

a user who wishes to continue a computation after

encourtering an error. The user for which the system is

desiqned wishes to stop computation upon encountering an

error. In the fault tolerant application, the whole point is

"re, isely to continue execution in the presence of an± error.
4

The limited time available made extensive software

modifications infeasible, given the level of expertise

available. However, the modifications which have been

implemented on the Intel ring demonstration program show that

it is indeed possible to simulate fault tolerance on the

Intel Hypercube.
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.. While it would certainly be convenient to use a machine

specifically designed for redundancy, one cannot rely on such

a machine being available when needed. If it is assumed that

the parallel processing industry's focus on speed continues,

then further work on reconfigurable cube-connected cycles will

have to work around the existing equipment's limitations as

was the case here.

Given the importance of reliability in space operations,

work on redundancy using parallel architectures should

continue in spite of equipment limitations. In continuation

of this study, the next step would be to debug the inability

of the existing program to continue message passing after

reconfiguration.

Once this has been accomplished, the next logical step

would be implementation of either the global or the local

* reconfiguration schemes for the CCC.

The global reconfiguration method would appear to be

capable of implementation in the hypercube's addressing

system between the node processors. The local

reconfiguration method requires switches. Assuming it is

undesirable to interpret switches to mean a hardware

modification for reasons cited in Chapter 6, the local

reconfiguration's switching requirements would most likely be

met through software in the cube manager.

This last point, concerning the cube manager relates to

one other recommendation. The error system on the hypercube
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,y would have to be modified to enable the cube manager to take

the appropriate corrective action, without stopping the

execution of the entire program. As stated in Chapter 6,

this would entail the writing, by the programmer, of a

user-written exception handler.

In summary, progress on this problem has been made, but

usable results will require more detailed software design

work to make use of the equipment which is available. In

more general terms, this study encountered a gap between the

inherent redundancy of parallel computers, and the actual

capability to make use of the redundancy. There is a need

to join the concepts of parallel computing with the

technology of fault sensing and corrective action in a manner

that will not interrupt a computer's operation.
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Appendix

(iPSC Program Development Guide, 1986)

I more host.for
c t .t.e .. tt.t.. *t.tt. tt*..*..t.t*t ttt tt

program host

..t..*t.*....fl .... *.*t**t*t....tt**....ttt**..****.*.mmtt~t.

C
c This is the Kost code (in Fortran) for the Ring demo.
C
c It prompts the user for:
c a) the length of a message to send around a
C RING in the cube
c b) the number of times the message is to go around
c the RING.
c
c C It outputs:
c a) a ring -count- each time the ring message goes past
c node 0, and
c b) the time it took the message to go around the ring
c the specified number of times.
c

• c"
t t t t t t t t t t t

tttt
e

ttt***ttt**ttt******t *U
t t t t t 

t St
t t t

ttttt
t
**

t
*

C
c
c DECLARATIONS:
c
c
c Declare & initialize CONSTANTS:

integer*4 NODEPID

integer-4 HOSTPID

integer*4 ALLNODES
integer*4 INITTYPE
integer*4 TIMEMSGSIZE
integer*4 CNTMSGSIZE
integer-4 INITMSGSIZE
integer*4 N

c
c Declare iPSC System Functions used:
c

integer'4 copen

c
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c Declare program variables:
c

integer-4 ci,type,cntfrnode,frpid
integer*4 msglen
integer*4 ringcount
integer-4 msgbuff(3)
inte

g
er4 kaputtnode

c Declare time variaole:
real*4 ringtime

DATA NODEPID /I/
DATA HOSTPID I/
DATA ALLNODES /-i
DATA INITTYPE 110;
DATA TIMEMSGSIZE /4/DATA CNTMSGSIZE /4/
DATA INITMSGSIZE /8/
DATA N /01

C

c
c MAIN CODE:
c
c

write (6.51)
51 format) LOADING RING INTO CUBE ... '1

c load the cube:

do 55 N-0,29,1
call load('node', N, NODEPID

55 continue
write,6,160)

160 format$' I
write 6,161)

161 format)' PICK THE NODE YOU WANT TO PUT OUT OF COMMISSION
write (6,162)

162 format(' BUT DO NOT PICK 0 !; PICK FROM 1 TO 29 )
write (6,166)

166 format(' -- THE REASON YOU CANNOT PICK 0 IS THAT IT
write (6,167)

167 format(' COMMUNICATES WITH THE CUBE MANAGER
write)6,181)

181 format ')
write(6,182)

182 format)'If the PROGRAM HANGS-UP - press SHIFT/BACK-SPACE 1)write)6,183)
183 format('then RESET THE CUBE with a load -c COMMAND')

read(5,163) kaputtnode
163 format ()3

call lkill(kaputtnode,NODEPID)
call loadi'node'.30.NODEPIDI
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c Open a channel for the host-to-node-0 communications.

ci copen(HOSTPID)

Cc BEGIN MAIN PROGRAM LOOP:

c

10 write (6,100)
100 format(' *.******ttt****t****.* READY *...****..*

c get the number of times to go around the ring:

write(6,101)
101 format(' Number of times to go around the ring (neg.

Ivalue quits): 'I
read(5,102) ringcount

102 format(i7)
c ringcount * 1

c If ringcount is negative exit HOST program:
c

if (ringcount .It. 0) goto 600

c Include ringcount in the message to the RING:

msgbuff(1) - ringcount

c get the message length:

write (6,201)
201 format Length of Ring message in bytes (0-16384):

read (5, 202) msglen
202 format(i5)
C msglen - 2

.6 c Include moglen in the message to the RING:

msgbuff(2) - msglen

P sgbuff(3) - kaputtnode

I

.
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c ship the message buffer off to node 0:

call sendmsg(ci, INITTYPE, msgbuff, INITMSGSIZE, 0.
> NODEPID)

c Get the current ring zount from node 0 and report
C to user:

do 400 i-1, rxnqcount

call recvmsg(ci, type, msgbuff, CNTMSGSIZE, cnt, frnode,
> frpid)

write (6,310) msgbuff(l)
310 format-Ring count: ',15l

400 continue

c Get the RING time from node 0 & report to user:

call recvmsgqci, type, msgbuff, TIMEMSGSIZE, cnt, frnode,
> frpid)

ringtime - real(msgbufft1))/1000.00

write t6,306) ringtime
306 formatI/.' Ring time :',F9.2,' secs.')

goto 10

c
c END OF MAIN PROGRAM LOOP.
c

C

c CLEAN UP TIME!
c

600 write (6,601)
601 formati' CLEARING THE CUBE ... )

c Kill RING processes in cube

call lkilliq-l,-l)
call lwaltalli-l,-l)

write (6,701)
701 format( .. *****.******** .. DONE *.*******

end
c
c......................... ...................... .... ..... .
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I more node.for

program node

................ *..............................

2 This is the NODE part of the RING demo Program.

l Node 0 will play the role of *controller' node.

* It waits for a message from the host telling it:
)% * a) the number of times to go around the RING, and

b) the length of the message to send around.

* It then sends a message of the desired length to node 1 and
"controls" how many times the message goes around the RING.

* At the end, Node 0 reports back to the Host the time it took
* the message to go around the RING.

* All the other nodes wait for a message and then
:sass it on to the next node in the RING.

........................................... ... *.*.... .****** ....................

' DECLARATIONS:

c Program CONSTANTS:

integer-4 HOSTNID
integer*4 HOSTPID

integer'4 INITTYPE
integer*4 NODETYPE
integer-4 TIMETYPE
integer-4 COUNTTYPE

integer*4 INITSIZE
integer.4 TIMESIZE
integer'4 COUNTSIZE

S
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integer'4 MIAXSGSIZE

integer*4 NC)T'-SY

integer*4 NUMNODES

1PSC System Calls u~sed:

integer*4 copen, status, mynode, mypid, cubedim
integer-4 clock

c Program variables:

integer-4 hostcha,, nodecnan
inteoer-4 i, count, ringccunt
integer-4 msglen
integer-4 nextnode, nextpid
integer-4 nsgouff(4096)
integer*4 ownnode, ownpid
integer-4 rtype, rcnt, rnode. rpid

c Timin~g variables:

integer*4 starttime, ringtime

data HOSTNID '378

data HOSTPID /I/

data INIr'rYPE /.0/
data NODETYPE /201
data TIPIETYPE /30/
data COUNTTYPE 140/

data INITSIZE /12/
data TIMESIZE 14/
data COUNTSIZE /4/
data MAXMSGSIZE /16384/

data 14CTBUSY /0/
data NUMNJOES /'30/

..................... *.................... ... .....*.*

* MAIN -,3E:
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C Each process identifies the node its running on and its pid:

ow-nnode - mynodef)
ownpid - mypidi)

c Each process determines the node id £and the pid of the next
c node in the RING:

3nextnode - mod ownnode *1, 30)
nextpid - ownpid

a ifbownnode.eq.0) then

*BEGIN NODE 0 CODE:

c Open channels for communicating with both the next node in
c the RING (node 11 & the host:

nodechan - copen(ownpid)
hostchan - copenbownpid)

*NODE 0 MAIN LOOP:

10 call recvw(hostchan, INITTYPE, msgbuff, INIrSIZE, rcnt,
> ) mode, rpid)

ringcount - msgbuff(l)
msglen z msgbuff (2)3kaputtnode - msgbuff (3)

'I. starttime - clock(,

do 400 i-l,rinqcount
nextnode - mod(ownnode - 1, 30)
i f (nextnode.eq.kaputtnodel nextnode.30

if (ownnode.eq.3Ci nextnode - modkaputtnode - 1. 30)

call sendw(nodechan. NODETYPE, msgbuff, msglen.
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> nextnode, nextpid)

call recvwtnodechan, NODETYPE, msgbuff, msglen, rcnt.
) mnode, rpid)

c As soon as the host channel is not busy report the
c current count to the HOST:

20C if (status(hostchanl .eq.NOTBUSY) goto 300
call flick()
goto 200

300 continue

count -

call send (hostchan, COUNTTYPE, count, COUNTSIZE,
> HOSTNID, HOSTPID)

400 continue

ringtime - clocki) - starttime

call sendwihostchan, TINETYPE, ringtime, TIMESIZE,
> HOSTNID, HOSTPID)

goto 10

*END NODE 0 MAIN LOOP.

* END OF NODE 0 CODE.

................................................................ *4 4444

else

* BEGIN OTHER NODES' CODE:

c All other nodes wait for a value from their left hand
c neighbor, and pass it to their right hand neighbor.
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c They only have to open one channel for communication:

nodectian =copenovnpid)

............ ........... *....... *.* .................

BEGIN OTHER NODES' MAIN LOOP:

20 call recvw(nodechan, NODETYPE, msgbuff, MAXMSGSIZE, rcnt,
> nmode, rpid)

call sendwlnodechan, NODETYPE, msgbuff, rcnt, nextnode,
> nextpid)

goto 20

• END OTHERS' MAIN LOOP.

........................... *............*........*......P....

* END OTHERS' CODE.

endif

end

C ... OF PROGRAM CODE.

................................................................... t
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Abstract:

The purpose of this study was to implement a technique
for fault-tolerant parallel computation on the Intel
Corporation's Hypercube computer. This work was motivated
by the recent progress in parallel computation and neural

* network techniques.
This study focuses on the implementation of one

particular type of parallel processing architecture on the
Intel Hypercube. The architecture in question is known as
the cube-connected cycle (CCC). This architecture is used
as a basis for a reconfiguration scheme known as
reconfigurable cube-connected cycles. The aim of this
reconfiguration is to build a parallel computing system
with fault tolerance capability.

Implementation of this technique on the Intel Hypercube
was by simulation. The loading of only part of the hypercube's
available nodes, holding the remaining nodes in reserve was
accomplished, followed by a simulation of the replacement of
a deactivated node with a spare node.

Conclusions are reached regarding the suitability of the
Intel machine for fault tolerance experiments versus the
rapid computation for which it was designed. Recommendations
are made regarding the next logical steps in continuation of
the work presented in this study.

V

.



-/

"Sj S 0 0 0 0 0 0 0 0 0 0 S 0 0 0 0


