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Final Report for N00014-84-K-0143
Lawrence Snyder

* The following text describes technical achievements for the above mentioned contract,
entitled "The Blue CHiP Project II". It must be noted that the work sponsored by this
contract was the final portion of a large project known as the Blue CHiP Project, Contract
N00014-81-K-0360, SRO-100. The Blue CHiP Project was funded in two parts because the
Principal Investigator moved to the University of Washington from Purdue. This report
will detail significant progress of both contract periods.

Since the project is organized into five research topic areas - theory, algorithms, ar-
chitecture, software and VLSI - it is convenient to organize the report into those five
subheadings. See Figure I for a diagram relating major components of the project.

1 Theory

Theoretical analysis has been of great use in other areas of the project. Here we describe
those results that are of particular interest in their own right.

Minimax edge length. The embedding of a graph into the plane is a useful abstraction
for the layout of a circuit into a VLSI technology, or the specification of the communication
structure of a CHiP program in the CHiP computer's lattice. Since signals take time to
propagate along a wire, the length of a line in an embedding will indicate the amount
of time for a particular communication and the longest edge length of an embedding will
indicate the minimum clock cycle for a circuit. It is for these reasons that we have studied
the minimax edge length of graph embeddings, i.e. graph layouts that have the horstest
maximum length edge over-all embeddings. Since most circuit graphs contain a tree as a
subgraph, we have focused on the minimax edge length in binary trees.

The first set of results concerns the rather surprising fact that it is not possible to
achieve simultaneously the shortest possible edges and the smallest possible area of a
layout[l]. For example, trees with their n leaves on the perimeter of a convex region (the

02 typical case in VLSI) may have area 0 (n log n) or have minimum-maximum edge length
,(n/log n), but not both. When the area is minimum, the edge length is O(n/log log n)
and when the edge length is minimum, the area is O(nl+e), e > 0.

The second set of results concerns the simultaneous achievement of minimum area, min-
imum edge length and planarity of layouts for binary trees[2]. This result builds on work
of Valiant and is surprising when one considers the number of constraints simultaneously
achieved.

'.,,. Tile Salvage. If one considers a VLSI wafer as a region covered with tiles, then after the
wafer has been "probed", the dysfunctional chips are given red dots, the wafer is "diced-

. up' and the functional tiles are saved. Suppose now that the wafer is a checker board of
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black and white tiles and the same process is repeated, except that now we wish to save
adjacent, functional black-white pairs. (The purpose, of course, is to get larger chips by
patterning half the circuit on the black tiles and the other half on the white tiles).

We have shown that there is an efficient (O(n 2 -5 )) algorithm for maximizing the con-
nected, functional, black-white pairs [3]. The basic technique is to use a variant of the
"marriage" problem solution. Unfortunately, from the point of view of the motivation, the
problem of maximizing the adjacent, functional red-white-blue-green quads on a wafer of
alternating rows of alternating red-white and alternating blue-green tiles is NP-complete.
That is, the problem of making bigger chips by grouping four good adjacent tiles together
is computationallly intractable. This negative result is not as negative as it first appears
however. First, the wafer is not "arbitrarily large" as required by the theory of intractabil-
it'. Second, one need not always maximize the salvaged chips - it is possible to waste a
few. Third, our work has stimulated the work of Brenda Baker at Bell Labs to develop very
good heuristic solutions that supersede the ones proposed. Best of all, however, this work
has lead to a much more basic understanding of the computational difficulty of general
planar layout problems, and with Berman, Leighton, and Shor, we have solved a number
of open problems such as planar graph partitioning. These results, as yet unpublished,
largely explain the sources of complexity for planar layouts. Indeed, David Johnson has

* recently extended these results so that the theory of planar layouts is even more complete.
Coordination. The old theory of cellular automata, due to von Neumann, assumed

that all cells read and write simultaneously in every direction on every step. H. T. Kung's
systolic arrays do this simultaneous I/O too. But the more general parallel algorithms
hosted by the CHiP Computer cannot assume that the I/O is so regular. Processors must
be assumed to read and write when necessary, oblivious to the actions of the senders and
receivers. It is for this reason that the CHiP machine assumes a "data driven" model of
computation: reads, proceed only after data has arrived, and writes send unless doing so
will cause buffer overflow. Such a scheme is safe but it is not very efficient because of the
overhead of the handshaking protocol that must take place to support the asynchronous
I/O timing.

We have developed [4] a model of parallel computation in which the above mentioned
phenomena can be expressed: synchronous I/O, data driven I/O, asynchronous I/O, etc.
Moreover, the model is capable of comparing the various strategies fairly, because each
communication paradigm is a parameter to a common model. This is the first time that

*different communication mechanisms have been so unified. Moreover, we have done more;
we have made these theoretical results practical.

A system of parallel processors is said to be coordinated if each write in the system is
immediately (i.e. on the next step) answered with a read. It has been shown that the

problem of recognizing whether a system is coordinated is P-SPACE hard, i.e. compu-
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tationally intractable [5]; this result is proved only for completeness. More positively, it

has also been shown that there are polynomial time algorithms for determining whether
certain restricted classes of parallel processes are coordinated. Furthermore, it has been

shown [6] that there are polynomial time algorithms for constructing coordinated parallel

systems from certain families that are not coordinated. This result is significant because it

implies that a compiler's code generator could accept programs that were written using an

"expensive" (i.e. high in overhead) data driven semantics and convert them into efficient
coordinated programs. This implication has motivated a large amount of software work to

develop such code generators. They are now complete and experiments are being run to

determine the amount of improvement from coordination.
Among the experimental results that can be reported, we know (from Cuny's work)

that the Kung-Leiserson systolic band-matrix multiplication algorithm requires 1.16 times

longer to execute in date-driven mode than in coordinated (i.e. synchronous) mode. Ad-
ditionally, the "duty" cycle of this systolic array is only 1/3 as originally defined, i.e. each
processor is executing on only every third step. But using techniques developed by Cuny

for this project, the processors can be fully utilized.
Using the Poker software from this project (see below) Cuny had done much more

extensive experiments that indicate that the savings from coordination can be very large.

For example, speed ups of 50% have been achieved.

2 Algorithms

The greater part of the application algorithms work has been done in collaboration with
Dennis Gannon and has been encouraged, but not directly supported by this contract.
Of special note is Cannon's work with Panetta ("Restructuring SIMPLE for the CIhiP

Architecture," Purdue Technical Report, 1984) in which they report on how this classic

Livermore benchmark can be run on the CHiP machine.
Linear Recurrences. Because the CIliP architecture is so novel, there was little guid-

ance, initially, on how to formulate effective algorithms. Our work on solving linear re-

currences [7] took up this challenge in a way that also suggested how known algorithms

might exploit the CHiP machine. Building on a technique developed by Chen, Kuck and

Sameh, we developed several algorithms to solve linear recurrences depending on various

assumptions on where the input is located. To see the basic idea, visualize a matrix in
which rows are selected for "elimination", first in adjacent pairs, then in pairs separated

by a row of zeros, then by three zero rows, etc. This strategy naturally induces a binary

tree structure on the rows of the matrix which manifests itself as a binary tree structure in
the CHiP machine's switch lattice. The form of the tree varies depending on assumptions

of where the data resides. The resulting algorithms are all optimal, based on both the

3
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"unit" cost and "proportional to distance" cost measures.
Processor Interconnection Structures. The graph that is embedded into the lattice when

* one programs a processor interconnection structure reflects the communication structure
of the algorithm. As a means of exploring the general question of what types of com-
munication can be supported efficiently in the lattice, we studied a variety of processor
interconnection structures [8]. These include optimal embeddings for the ubiquitous bi-
nary tree and the torus. Additionally we invented an ingenious technique for routing data
down the corridors of a lattice. (Recall that the corridor is the row of switches separating
PEs). One would expect that a k corridor lattice could routek data paths between two
processors, but it is possible to achieve 3k data paths, all distinct, by a technique called

"lacing" which eplits the cross over and diagonal edges that are provided in the normal
eight degree lattices.

Databases. AIthough supercomputers are typically associated with purely numerical
computation, %%( 1' e investigated non-numeric applications related to databases [9, 21].

* The main results include the implementation of various known sorting algorithms on the
-. . (f|liP machine. and a unified processing paradigm for database operations that is applicable

to the construction )f a special purpose machine. Specifically, it is possible to formulate

the operations of union, intersection, difference, remove duplicates and sorting as variants
on one processing algorithm. The key observation is that sorting algorithms augmented
with some tag bits can with additional hardware, do each of the five operations equally
efficiently. If a special purpose device is built with this approach, it may be prudent to
choose a lattice that has an aspect ration that is(n/log n) z (log n) rather than square in
order to provide greater access to external data storage.

As a part of our work on the Poker environment, we have programmed a large number
of basic algorithms, typically for numerical linear algebra. In addition, we have written
certain nonnumerical algorithms such as sorting. This software was, at project's end,

V ,being assembled into a library for use by other scientists in the spirit of classic subroutine
libraries.

3 Architecture

Perhaps the most visible contribution of the project is that collection of ideas known as
the CHiP Computer. Of these, the one attracting the greatest interest is the externally

0- imposed configurability based on circuit switched regional communication. But there are
many other interesting aspects of the architecture that have attracted our attention.

Quantifying the CHiP machine. In the early papers describing the CHiP architecture
[10, 11], it was observed that certain characteristics of the design were variable and that

hi the CHiP "machine" was really a family of computers. The following question was left
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open: What are the ranges of optimality for these characteristics? Although the question
has concerned us throughout the project, no really definitive answer has ever been given
in print. It is appropriate that we offer our best judgement as of the moment:

" n, the number of processors, will likely be a perfect square since there is no apparent
advantage with a non-square lattice, except for database applications. (Note that

- this statement depends on using the CHiP for general computation; there could

be an advantage for special purpose devices.) Furthermore, it is quite convenient,
e.g. for trees, that n be (an even) power of 2, although it is hardly a necessity. It

seems appropriate to build computers with 64 to 4K processors; more processors are
possible but further architectural analysis is required.

* d, the degree of the PEs and switches, should be 8. There has been no need for larger
degrees and no consistent pattern to the cases where smaller degrees are acceptable.

" . c, crossover level, must be 2 but 3 is frequently useful, especially for narrow corridor
.z. cases; it was recently thought that because there is a significant cost 3 would be a

reasonable compromise from 4, the maximum, but results within the past six months
imply that 4 is probably mandatory.

" w, internal corridor width, must be at least 2 which is completely adequate for a 64
PE lattice; in the 64 < n < 4096 range, 4 would probably suffice. Because additional
width is so expensive, especially in terms of pins, a w=2 choice could be a fair tradeoff

for large lattices.

* u, external corridor width, must equal internal width w, because anything less rep-

4 resents a poor place for savings.

"" p, phases, can be as low as 4 but 8 or 16 might be better choices provided the PE

memory is comparably larger than the 2K currently provided on the Pringle.

" m, local memory for PEs, should be as large as possible consistent with keeping
.- the memory on board; of course this trades off with functionality and fea+ures like
-. floating point take precedence over memory[12]. The current 12K limit is being

upgraded to a more realistic 8K.0.

The remaining parameters such as data path width are so sensitive to issues such as pin
availability, clock skew, etc. that no general statement appears to be safe.

Pringle. Detailed emulation of a sequential computer by a sequential computer is often
estimated to lose a factor of 1000 in performance; evaluating a parallel computer will lose

an additional factor at least proportional to the number of processors, but probably much

5
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more if the communication is great. So, we built a hardware emulator in order to make
realistic sized runs feasible. But since it was premature to do a VLSI implementation, it
was impossible to exploit the benefits of VLSI for the lattice. Consequently, our emulator
is not a true CHiP computer, since it replaces the lattice with a polled bus [13,22,23].

The Pringle has 64 processirr elements each of which is composed of an Intel 8031
microprocessor, an Intel 8231 floating point processor, a 2K x 8 RAM and a 4K x 8
EPROM*2. 1 The RAMs of the PEs are memory mapped into the address space of
the controlling 8086 minicomputer for convenient down-loading and debugging. The PEs

Icommunicate with each other by writing to an 8 bit latch or reading from a queue that is
16 bytes deep. The source and destination of the I/O is managed by a polling device that
cyclically consults each processor to see if it wishes to write from any of its 8 logical ports;

if so, the destination PE and port number are found in an internal table (corresponding to
the configuration setting), the data is entered into the queue of the appropriate PE, and it
is tagged with the correct port number. This bus achieves a transfer rate of 64 Mbits/sec.

* using fhe designed 32MHz clock rate. The processors achieve a rated speed of 64M (8-
bit) instructions per second. The Pringle was powered up and ran its first (diagnostic)
program in March 1983 and the switch was checked out and running by August 1983. By
December 1983 a second copy was completed (using parts funded by the National Science
Foundation). By April 1984 the Pringle was fully interfaced to its software environment
and the first program, written and run from the Poker System, was run on the Pringle.
(One copy of the machine resides at Purdue University in D. Gannon's lab; the Blue CHiP
Project copy is at the University of Washington in the Blue CHiP lab).

The External Input/Output (XIO) system has been designed, built and checked out.
The system uses four Winchester disks each of which has its controller connected to a host
8086 minicomputer. Each of these host devices, in turn, is connected to eight one chip
microcomputers (Intel 8031s) which are, in turn, interfaced into the Pringle's switch.

Data for and from the external environment is viewed as moving between the XIO and
the processor lattice as a collection of "streams", i.e. data value sequences. To achieve

0 this illusion using normal files, an (as yet unimplemented) operating system views each file
as a set of k streams where the first (k field) record of the file is the first element of each

"-" stream. The hosts read files from their disks and "break" then into streams which they
route to the "stream transfer" microcomputers. These machine. serve as buffers from the
streans, delivering values to the PEs as required.

' O.Notice that our 64 processor Pringle requires 36 computers to support the XIO. It would
M be accurate to conclude that in parallel computation, supporting the external input/output

is more than half of the problem.

IIt should be mentioned that Intel Corporation donated a substantial amount of hardware (all of the
processors and memories) thus stretching contract funds.
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4 Software Support

W,'e have produced an enormous amount of software to support the project's work including:

* LAPSE, a VLSI layout programming language,

* CONFIG, an offline language for switch lattice programming,

e SIM, an event-based CHiP machine simulator,

plus numerous smaller incidental systems. Each of these has been of considerable use to

the project but not of sufficient external interest to be documented beyond project notes.

There is, however, one other somewhat more notable system.
Poker. Implemented in the C programming language to run on a VAX 11/780 under

UNIX, Poker is a parallel programming environment designed to support CHiP program-

*l ming [14-16, 24, 25]. Poker provides facilities to assist the programmer with nearly all

phases of parallel programming: programming processor elements, programming processor
communication structures, compiling, assembling, coordinating, loading, running, specify-
ing input/output files, tracing and debugging. Poker programs can be emulated on a full

Pringle software emulator, they can run on the Pringle hardware, and one day, they will
be able to run on a CHiP computer.

The Poker environment uses two displays in its work station: a conventional display

and a 1C24 x 768 pixel bit mapped display for graphics support. It was written during

the summer of 1982 by 10 very committed gentlemen: 2 the "Poker Players" Over the
course of the Blue CHiP Project and the Blue CHiP Project 11, a dozen other programmers

contributed full or part-time to the Poker implementation. Among its novel features is the
ability to progr !im the communication structure of the algorithm (i.e. the lattice) using

graphics. The programmer "draws a picture" of the data paths to be used by the algorithm;

a compiler then converts the graphical form into a symbolic form suitable for down loading

into the Pringle. This is the first example of graphic programming of symbolic text.
Another novel feature is the way that Poker system handles processor to processor

communication. The I/O behavior of a processor is based on a data driven semantics, i.e.

the writers write immediately (unless the buffer would overflow) and the readers wait until

data has arrived before proceeding. This scheme engenders considerable overhead due to

*l "handshaking". However, an experimental version of Poker has the ability to coordinate
the programs using the synthesis algorithms described above.

The Poker system allows the programmer to "watch" the execution of his program

on the graphics display. Specifically, while the emulator is running, values that have
2Many of the project personnel, including most of these fellows were receiving graduate fellowships from

other sources; this is another way in which contract funds have been stretched.
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been designated as "trace variables" are continuously displayed on the screen. Thus, the
programmer watches the dynamic behavior of his program. At any time the programmer
wishes he can stop emulation and change (i.e. poke) any of the displayed variables; he can
then resume execution. This facility is completely integrated into the environment so that
the entire context of the source program is available to the programmer while he is tracing
and debugging.

5 VLSI

The CHiP Computer has been designed to be easily and efficiently implemented in VLSI,
but it is premature to actually demonstrate such an implementation. This fact has not
prevented us from spending considerable effort exploring VLSI-related matters.

Switch Design. Over the course of the project, we have designed, perhaps, half a dozen
different versions of the basic lattice switch. These have been used chiefly to evaluate
different architectural choices, so it was unnecessary to fabricate them. However, to test
performance, it is necessary to implement a design; so early in 1983 we fabricated our first
switches. 3

We did not simply construct a switch. Rather, we built an experimental apparatus in
silicon which enabled us to investigate a variety of operating conditions. We instrumented
the system for the following set of conditions in any or all combinations: switch-to-switch
on-chip communication, switch-to-switch off-chip communication, switch-to-switch com-
munication via a 3500 lambda delay line. The test setting was organized so that variables
line delay through signal capture pad drivers could be factored out of the measurement.

The fabricated chips were returned in April 1983 and found to be functionally correct
on the first time through fabrication! The detailed measurements indicate that the signal
transit time of the switch is on the order of 25 nanoseconds for nMOS technology.

Processor Displacement Methodology. It is possible to be too good at designing VLSI
chips! Specifically, as silicon technology advances ahead of packaging technology and as
better parallel algorithms are developed, it is possible to place so much parallel processing
circuitry on a chip that it cannot be provided with data fast enough to keep the processors
busy. The problem has been over parallelized.

Clearly, unless there is greater bandwidth across the chip's perimeter, there is no way
to get more work done per unit time. But it is still possible to utilize the silicon. The
strategy is to multiplex the processor elements so that a larger problem can be solved in the
given area at a rate that matches the I/0 bandwidth. Such a scheme is called the Processor
Displacement Methodology[17] and it has been shown to be effective for problems such as
dynamic programming.

3The fabrication was funded by the DARPA MOSIS facility and thus incurred no contract costs.

8
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The CHiP Design Methodology. Managing the complexity of very large VLSI designs
has long been regarded as a problem that can be solved with hierarchical design method-
ologies. The intent is to begin with small designs that can be composed with repetition to
form larger elements. The difficulty is that the methodology emphasizes the composition
rather than the repetition.

In the CHiP Design Methodology the repetition is emphasized over the hierarchy
[18,26]. Specifically, the CHiP machine is used as an abstraction for programmable sili-

con. The designer specifies his chip functionally at the highest, i.e. least detailed, level by

programming the CHiP machine to do the algorithm. This program will be composed of a
small collection of individual PE programs operating in parallel and repeated throughout
the lattice. Next these constituent PE programs are themselves coded as CHiP machine

programs but using a simpler set of primitives. Through a series of refinements, the algo-
rithms of the constituent PEs of level k are recoded as CHiP programs (using the whole
lattice) at level k + 1 until the primitive set of operations used for the program is so simple

* that they can either be directly implemented as VLSI layouts or are stored in a cell library.

At this point, the entire design can be produced through substitution of the k + st layout
into the cells of the kth layout. There is a hierarchy, but it will likely be shallow (two or

three levels) and the repetition of cells will be emphasized.
Wafer Scale Integration. As it becomes more and more difficult to achieve higher VLSI

device densities through better fabrication techniques, it is natural to seek alternatives.
One such approach is to consider making the chip bigger, which in the limit means using
the whole silicon wafer for a single circuit.

Our approach has been to solve what might be called the "logical" problems of wafer
scale integration by exploiting the CHiP architecture's configurability [19, 20]. Specifi-
cally, we pattern onto the wafer a CHiP lattice which has been augmented with extra,

i-t redundant switches. Because of these extra switches and because switches are so small
that the chance of failure is unlikely, we can expect a high yield for the switches. This
permits the switches to be used to interconnect the functional processing elements. Since

these are much larger, it is more likely for them to be dysfunctional; they wiP sparse
over the lattice. Our strategy of connecting them together restricts the distance that the
communication signals must travel by linking PEs that are in the same neighborhood. The

result of the interconnection of the PEs by the switches is a dense, logical CHiP lattice
built from a sparse physical lattice.

O* The wafer scale approach has the desirable property that the algorithms for construct-
ing the lattice and for finding the functional PEs are very efficient. The price we pay for
this efficiency is that not all processor elements will necessarily be used. Still, the approach

has proved effective. A systolic array processor can be built on a 5" wafer produced by a

fabrication line that achieves 20% yield on chips, and this processor will be a dense array

4 9
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of 16 x 16 elements at least 99% of the time. By additional tricks, it is possible to build a
28 x 28 = 784 systolic processors on a wafer using the ground rules described above.

6 Conclusion

The foregoing discussion concentrates on an enumeration of the specific, published results
of the project. There have also been numerous other results which have not made it into
print. These manifest themselves indirectly by influencing the way problems are chosen

and the way the directions of future research are selected.
The objectives outlined in the proposal for the Blue CHiP Project have been achieved.

In addition, the Poker System is being distributed; it is the first programming environment

for nonshared memory parallel computers, a major achievement of the Project. It is filled
with new ideas and will hopefully lead to a new generation of parallel programming systems.

10
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