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COMPUTATION OF LMS AND MATCHED DIGITAL FILTERS
FOR OPTICAL CLUTTER SUPPRESSION

I. INTRODUCTION

Matched spatial filters are commonly used for suppressing clutter and detecting signals in either
real-time or imaged output of electro-optic sensors. Least-mean-square (LMS) spatial filters have
been so-used in infrared (IR) applications. This article extends certain known methods of calculating
digital impulse responses for these filters so that the methods are applicable with both one- and two-
dimensional (1-D and 2-D) forms of rather general signal and clutter models. Concomitantly, 2-D
LMS filters are derived for the first time, and their make-up and operation are investigated and
explained. A primary objective of this article is to enable readers to compute digital impulse-response
weights of an LMS or matched filter for any signal and clutter representable by models of the
assumed types. Accordingly, the design methods are described fully and illustrated with examples so
that they can be applied easily in diverse conditions.

The methods can be used with signals from scanning or staring sensors viewing extended or
point sources against variable backgrounds, but signal shape and orientation must always be known.
Since both point and extended sources have finite images, a signal from either can be resolved (con-
sist of more than one nonzero sample). The signal shape then varies depending on where the image
f~Us in relation to the sample sites. In addition, an extended source eclipses the background. which
results in variable source contrast and further signal variability. Thus the design methods are useful if
signal shape is representable by an average or if detection of a particular signal is imperative. If the
signal is extremely variable and must be detected in all its guises, the present methods fail. For rea-
sons to be explained, the matched-filter design technique requires knowledge of clutter parameters.
whereas the LMS design technique does not. though qualitative knowledge of the background may be
useful for choosing the LMS clutter model. Needed information about signal and clutter is assumed
to be available from images of sensor output, obtained either experimentally or theoretically.

Matched filters are far older and better known than LMS filters, having been invented by D. 0.
North in 1943.' The first matched filter was designed for detection of radar signals in white noise.
Subsequently the matched-filter concept was extended to other types of noise and to optical sig-
nals.2-5 The first matched filters were for continuous input and were difficult to make. Develop-
ment of surface-acoustic-wave delay lines and digital electronics overcame the manufacturing prob-
lems and greatly increased the use of matched filters for processing both continuous and sampled
input.6 Today, 2-D digital matched filters are widely used for pattern recognition and image process-
ing.

7.s

Matched filters result from maximizing the ratio of filtered signal energy to average filtered
noise power. There are various ways to derive digital filter weights from this criterion. The method
elaborated here was introduced for [R signals by Otazo. Parenti. and Tung. who employed an aniso-
tropic clutter model based on analysis of measured IR backgrounds." 1 Their work resulted in the
now well known fourth-derivative filters, obtained by estimating the mixed partial derivative
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(es /&a2 8V2) at sampled points of the signal s. Kay and others, who also analyzed measured back-
grounds, have suggested that in some respects an isotropic clutter model may be preferable.1' - 13 In
this article, the design technique of Otazo et al. is extended by using a generalized form of Kay's iso-
tropic model. The results are presented as operator equations for the filter weights and a table of
operator arrays.

Recently W. N. Peters derived theoretical expressions for matched-filter transfer functions by
maxmmizing the signal-to-noise ratio (SNR) of the entire electro-optical system from the background
and source through the digital filter. 4 The 2-D filters obtained in this way are called We A or type B
depending on whether signal and clutter are assumed to be known in the object plane or at the
sensor's output; I-D filters designed from sensor output are called type C. The matched filters of the
present article are Peters' type B and type C since they are based on sensor output.

LMS filters are obtained from least-squares fits of signal-plus-clutter models to sensor output.
In fact, an LMS filter implements a regression analysis of the output and thereby estimates the
amount of model signal present. Takken et al. introduced the I-D LMS filter for continuous signals
and extended the continuous results to sampled data. 5 Here analysis of the discrete case is simplified
by applying the least-squares method directly to the sampled data. Equations are derived for the
weights of I-D LMS filters based on first- through fifth-degree clutter polynomials. The design tech-
nique for discrete 2-D LMS filters is then worked out. It follows the same pattern as the I-D tech-
nique, but there are more equations with more terms. Equations are given for the weights of 2-D
LMS filters based on linear through cubic clutter models. Equations for higher-order 2-D filters are
easily derived but are not given because they are too lengthy.

Frequency-donam characteristics of LMS filters receive considerable attention in reference 15.
There in Appendix A it is shown that I-D LMS filters are fixed bandpass filters having a special
property-the ability to block certain waveforms whose complexity increases with the degree of the
clutter polynomial. Frequency-domain characteristics of LMS filters are not further investigated in
this article because they are not needed for filter design and are adequately treated in reference 15.
Moreover, emphasizing the space-domain analysis calls attention to propertie of LMS filters that are
not apparent in the frequency domain and are not mentioned in reference 15.

Because of a similarity in names, it is advisable to compare and contrast LMS filters with LWS
adaptive filters. The latter devices employ an LMS algorihn that adjusts their weights to minimize
the difference between the filter output aria an externally supplied desired response. 16 In the present
context, the signal shape and orientation are the desired response The LMS algorithm does not use
the method of least squares directly but rather approximates the solution of the Wiener-Hopf least-
squares equations, hence the names of the algorithm and filter.' 7 The LMS algorithm is known to
converge with uncorrelated and correlated stationary input, and with some correlated nonstationarv,
input. but it is not known to converge unconditionally. 17.11 Since the algorithm acts iteratively and in
effect employs statistical samples of limited size, the filter exhibits settling rime and misadjustment
effects, 16.17 These could lead to problems with rapidly varying nonstationary backgrounds. The LMS
filter discussed here is a much simpler device whose weights are fixed. It nonetheless conforms to
the input because the parameters of its signal-plus-clutter model vary spontaneously to fit the back-
ground and signal, if any. within the filter. The quality of the fit depends on the model's fidelity to
the local background and so varies over the scene. Since the LMS filter solves least-squares regres-
sion equations exactly. there are no questions of convergence, settling time. and misadjustment.
These features make the LMS filter well suited for suppression of optical clutter, which can ,arv
rapidly in almost any fashion.

The best known device derived by a least-squares analysis is the Wiener filter. Its weights are
the exact solution of the Wiener-Hopf equations-the solution approximated by the LMS algorithm.
Wiener filters and LMS filters differ in the information needed to determine the filter weights and in 7'



the type of output. To determine the weights of a Wiener filter, it is necessary to know the auto-
correlation of the input and its cross correlation with the signal.19 To determine LMS-filter weights,
only signal and clutter models are required. No statistical properties of the input are needed. The
output of a Wiener filter estimates the signal itself. The output of an LMS filter estimates a signal
parameter, the amplitude.

V Finally, a few words about the organization of this article will be helpful. Matched filters. l-D
LMS filters, and 2-D LMS filters are discussed separately in sections (II, il, IV), each having sub-
sections A and B. Subsections A give the basic analyses required for calculating filter weights, with
numerical examples that can be worked through to test understanding of the analyses. Subsections B
discuss the equations and filters and analyze LMS filters for symmetric signals, which present special
problems. Those who only want to calculate filter weights can omit subsections B unless they have
trouble with their computations. In that case they may wish to read these subsections and will be in a
better position to do so. Three appendices give detailed information about matched-filter clutter
models, convolution arrays, and construction of these arrays to approximate derivative operators.
Those who wish to calculate filter weights for conditions different from the ones assumed in sections
I-IV may need to consult the appendices.

U. I-D AND 2-D MATCHED FILTERS

Matched filters can be derived for sampled or continuous sensor output by using either clutter
data from a single background or a clutter model that approximates data from a large set of back-
grounds.9" 0 The data-based and model-based approaches are complementary. A matched filter based
on data from a single background has the greatest signal-to-clutter ratio (SCR) achievable with a
linear filter, but only for the data employed. A matched filter based on a clutter model is more
widely applicable; it has nearly maximum SCR against all backgrounds reasonably well represented
by the model. The performance of a model-based filter against a specified background can be
evaluated by comparison with the data-based filter derived specifically for that background. In this
way, other investigators have found that matched filters based on Eq. (A6) of Appendix A have SCRs
not more than 4 dB below the SCRs of the best possible matched filters against those backgrounds. 9

Consequently, the matched filters developed in the present work are based on power-spectral clutter
models somewhat more general than Eq. (A6). Continuous filters are derived first and then convened
to digital form. The impulse responses rather than the transfer functions are digitized because the

'filters of interest are small-they act on no more than about 50 data at once. In such cases the filters
are more efficiently implemented in the space domain than in the frequency domain (ref. 8. sec.
11.3).

(A) Analysis and Example

The one- and two-dimensional filters will be developed jointly so that the simpler l-D analysis
will clarify the more intricate 2-D treatment. The first step is to derive the filter transfer functions by
maximizing the signal-to-average-clutter ratios. The derivations are not given here because they can
be found in many readily available sources, e.g.. refs. 7.8,20-22. For present purposes the essential
results are the equations of the transfer functions and impulse responses together with definitions of
the quantities involved. The I-D and 2-D transfer functions are

)*( and H( S*(U. V) )1&X -VV)bH(w) cS " _J and H(u. v) k .e t la.b)
N(w ) - (a-)
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with impulse responses

h F - [H S*[(Hw) e -i - eJV e"d w, and (2a)
2h N(w 2)

h(ot, {) - F-I[H(u, v)] 9

k - S* (u, v) -~j (. +,y)= ' e2 ei(u f+vO) dudv. (2b)

In these equations

c, k = arbitrary constants;
j - imaginary unit, j2  -1;
x, y = co-ordinates of maximum signal and maximum signal-to-average-clutter ratio:
W = I-D spatial frequency (radians/unit length);
u, v cartesian components of 2-D spatial frequency 0 = 4 + ;
S* (w), S (u, v) = complex conjugates of signal spectra at the sensor output;
N(wa2), N(0 2) - clutter power-spectral densities at the sensor output:
F, F- ' Fourier transformation.
of a f Fourier-transform parameters and convolution variables corresponding to x, y.

The following relations with - denoting the vector inner product further define some of the quantities.

g 2 f l =u 2 + v 2  '(i+ a)= x + vy 1(& +)=ua + vO (3a.b,c)

Explicit forms of the power-spectral densities are needed to evaluate the transforms for the
impulse responses. The power spectra employed are

N(w2 ) = No/[I + aL2W2 + + cL6W] and (4a)

N(0 2) = NO/Il + aL2j12 + bL4fU4 + cL60'O1, (4b)

where L is the clutter correlation length. These equations are spatially isotropic clutter models.
Their source and the reasons for their choice are discussed in Appendix A. Substituting Eqs. (4a.b)
and (3a) into Eqs. (2a,b) gives

h(3) = cNoF-11[l + aL 22 + bL 4W4 + cL 6W6 ]S*(w)e-mI, and (5a)

h(*. $) = kNoF-I[l + aL 2(u2 + v2) + bL 4(u4 + 2u2v2 + v4)

+ cL 6(u6 + 3u4v2 + 3u 2v4 + v)]S*(u, v)e-(Ls*vY)1. (5b)

The first terms in Eqs. (5a.b) are the same as the impulse responses of matched filters in white noise.

F-=IS*(w)e-J"I = s(y - d) and (6a)

F-IS*(u. v)e-J"x"I"l = s(x - o.yX - 3). (6b)

4



In each case s is the known signal. If Eqs. (6a,b) are differeaiiated repeatedly with respect to x and
y, the even derivatives can be identified with the remaining terms of Eqs. (5a,b). The resulting
impulse responses with inconsequential parameters omitted are

h(0) 1- cL6 s~y - t3), (7a)

aL2 + + bL 4  + 2 2 +yy

-cL 6 I + 3 0 + 3 a + - s(x -a,y -3) (Tb)

= [1 - aL2V 2 + bL4 V 4 - cL6 V 6]s(x - , - 0) (7c)

where V2 represents the Laplacian operator (82/x 2) + (82 /8y 2).

These analog impulse responses can be converted to digital form by approximating the deriva-
tives numerically at sampled points of the signals. Appendices B and C discuss the approximations
and their representation by convolution arrays [-a21, ( V 21, etc. The digital matched-filter impulse
responses written in terms of these arrays are

[h(-0)] = (I - aL2[C] + bL41,W4] - cL 6[Wi]] * [s(O)] and (8a)

[h(-ct, -0)] 1 - aL 2[V 2 ] + bL4[V 4] - cL 6[V6]I * [s(oa, 0)1, (8b)

where the asterisk denotes convolution. [s (0)] and [s (a, j)1 are arrays of signal samples. With tabu-
lated signals, the impulse responses need not be delayed to satisfy causality; hence x and y of Eqs.
(7a-c) have been equated to zero. In keeping with Eqs. (7a-c), the notation indicates that the opera-
tors act on unreversed signals, and the resulting arrays are rotated 1800 about their centers to obtain
the impulse responses. The impulse-response arrays are rotated another 1800 before being applied to
filter input, as explained in Appendix B. Table I gives array approximations of the derivative opera-
tors for equal sampling intervals in the x and y directions. Appendix C explains how to construct the
operator arrays when the x and y sampling intervals are not equal.

An example will illustrate the use of Eq. (8b) to determine an impulse response. To simplify
the example, it will be assumed that the second-derivative term dominates Eq. (8b), allowing the
other terms to be ignored. Let the signal with unit total strength be

This could be a fixed signal or the average of a variable signal. Since the signal is known to be zero
beyond the listed values, peripheral zeros can be added to permit convolution with the Laplacian
operator. Equal x and y sampling intervals are assumed in order to allow use of [V 2] from Table 1.
Then from Eq. (8b) and Appendix B

0 F 0 0 1 0

-4 _ 1 0 1 10 4 -2 11 32 1 3 2 1 3 -10 -4, 2 (10)

0 01 i 0 3 2 0
L I

5I
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Reversing the resulting array gives the unnormalized impulse response,

2-4 -1 30
[h] 1 -2 4 •0ll

0 1 00

The signal output from this unnormalized filter is

1 00 2 30
i 0 8 9 -43

-4 -103 1

-2 40 0 3 - -7 -40-7 6 (12)

01 30 1 0gJ -4 9 8 0
0 3 2 00

with maximum strength (40/6). The normalized impulse response that passes the signal with max-
imum strength equal to the input total strength is

~0 2 301
2 -4 -103

[h, = - L- - 4_L (13)

-0 1 0 O

The normalization, or gain, of (3/20) is arbitrary. Since gain does not affect signal-to-clutter ratio,
any gain is permissible. Consequently, the most convenient normalization criterion can be used in
each case.

For simplicity only, one term of the impulse response was kept in the example. In practice the
terms kept are determined primarily by the relative values of the power-spectral coefficients
(1, aL2 , bL4 , CL6). These are best obtained by fitting the model Eqs. (4a,b) to measured power spec-
tra of the backgrounds involved. Unless one of the coefficients is much larger than the others, the
impulse response is a sum of two or more terms properly weighted by the coefficients. However, the
unity term is usually negligible and can be omitted.9 ' 10 Furthermore, unless it is omitted, the
impulse-response weights do not sum to zero and, therefore, the filter output does not have zero mean
locally and globally. This property is essential for correct operation of the usual type of adaptive-
threshold sensor that follows the filter. 23 .2 4 Omitting the unity term from the impulse responses
corresponds in the frequency domain to omitting the same term from the power-spectral models, and
this gives transfer functions Eqs. (la,b) that are zero at zero frequency.

(B) Discussion

The unity term is sometimes called the white-noise term because it has the same form as the
impulse response of a matched filter in white noise. Nonetheless, this term comes from the constant
of the clutter model, and that constant represents, not white noise, but power-spectral density of pure
clutter at zero frequency. The filters of Eqs. (8a.b) are derived from models that take no account of
white noise. Yet the clutter waveform actually is the sum of a pure-clutter component from the vari-
able background radiance and a white-noise component from photon arrival fluctuations and charge
fluctuations in the detector and electronics. The true clutter power spectrum is. therefore, the sum of
a pure-clutter term, a white-noise term, and cross-spectral terms between the pure clutter and the
white noise. 25 -26 The pure-clutter term is much larger than the white-noise and cross-spectral terms
except at high frequencies. Can the small terms be neglected? Figure 4 of reference 15 displays
SNR as a function of noise type for a mat,.hed filter in white noise and a matched filter in i I,"

6
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clutter. The SNRs of the two filters differ by 4.5 dB when both operate in white noise. Thus.
including the small terms in the (1/f2) filter's design could not improve its white-noise performance
more than 4.5 dB, and probably would improve it much less. If this example is typical. and the indi-
cated deficit in white-noise performance in acceptable, then Eqs. (4a,b) are adequate for deriving
clutter-suppression filters.

It is also worthwhile to consider the relation between the clutter models and the impulse-
response terms whose coefficients are aL2 , bL 4 , cL . Comparison of Eqs. (4), (5), and (7) shows
that wk or umv n in the models leads to jk(dkldyk) orj m (+n(am "Mx'ay') in the impulse responses
for even k, m, and n. Because of that fact, the impulse-response terms with coefficients
aL2 bL4 , cL6 are called, respectively, matched filters for (I/f 2), (1ff 4 ), and (I/f 6) clutter. Odd
powers of frequency have been left out of the clutter models because they do not give such simple,
general, and easily evaluated terms in the impulse response (Appendix A).

The isotropy of the models also affects the impulse-response terms. Power spectra of isotropic
models contain the spatial frequencies u, v only in the combination U2 = U2 + v2 (ref. 27, sec.
10.3.2; ref. 28, pp. 244-248). For comparison, consider the anisotropic power spectrum,

N(u 2 , v2) = N0/[(I +4 L 2u 2)(1 + Ly2v2)], (14)

which leads to the matched-filter impulse response,

h (a. 3 = 1 - L2  --- "y + LL ax4y S (X - C', y - .(5

The last term on the right side usually predominates; in that case numerical approximation of
(84/x 28y2) by [w22] of Table 1 gives the fourth-derivative filters of Otazo et al. 9"10 Equation (15),
unlike Eq. (7b), contains no sixth derivatives and no homogeneous partial derivatives above the
second. Both differences are easily identified with the powers of u and v in the respective clutter
models. Another notable difference is that the anisotropic impulse response does not contain the
Laplacian operator, whereas the isotropic response Eq. (7c) can be written in powers of that operator.
This is entirely due to the latter clutter model's isotropy and the absence of odd powers of frequency,
specifically to the facts that the correlation length is a single constant, and the spatial frequency com-
ponents occur only in the combination (u2 + v2),, p = 1, 2, 3.

In what circumstances might one prefer an isotropic filter or vice versa? References 9-13 dis-
cuss this and related questions, so comments here will be brief. If an optical sensor's output has a
predominant anisotropy, a filter mated to that anisotropy is preferable. A sensor could produce such
an output if it views only a small class of anisotropic scenes, or if its construction or perspective
induce a strong anisotropy in the output. On the other hand, a sensor may view a large class of
scenes with different equally probable anisotropies, and it may be constructed and operated so as to
induce no particular anisotropy in the output. In that case the output is likely to be isotropic on aver-
age, making an isotropic filter desirable. Stated somewhat differently, when the anisotropy of the
sensor output is unknown and/or highly variable, an isotropic matched filter could be a desirable
compromise on average. However, an LMS filter may be preferable in these circumstances since its
clutter-model parameters change to suit the local background.

11m. I-D LMS FILTERS

Although 2-D filters probably are used more often than l-D filters for electro-optical signal pro-
cessing, I-D LMS design is studied at length in this section because its key features carry over to and
illuminate the more intricate 2-D problem. which is not easily treated in the same detail. Subsection
III A develops the I-D design procedure and gives all that is needed to calculate an LMS digital filter
for any sampled I-D signal. Subsection III B elaborates certain aspects of the I-D analysis and
filters.

7



(A) Basic Analysis and Example

In the LMS design procedure a deterministic model of signal-plus-clutter is fit by least squares
to the observed sensor output. The signal is represented by the product of an amplitude A and a
shape function s. The clutter is assumed to be a continuous function of position y and to be
representable within the filter's limited span by a few terms of the function's Maclaurin-series expan-
sion. With K samples per signal length and a clutter polynomial of degree M, the signal-plus-clutter
model can be written

M
f=As, + E B"'y,j = 1,2,3... K, andK 2_ (M + 2). (16)

m -0

The superscript of B' is not an exponent; it simply associates B' with a power of y, in the clutter
model. Equation (16) is fit to the K observations within the filter by adjusting the parameters A and
B'. Consequently, the signal amplitude and clutter coefficients vary over the scene, whereas the sig-
nal shape and orientation are fixed. In this way the signal-plus-clutter model adjusts to the input, as
illustrated in Fig. 1 which shows how linear, quadratic, and cubic clutter polynomials might fit the
background at three filter positions.

At any point within the filter, the difference between the signal-plus-clutter model and the
observed sensor output v, is

ej =f1 -vj, i = 1,2,3, ... K. (17)

Equations (17) are called equations of condition. If the parameters and observations are equal in
number, these equations can be solved for parameters that make all differences zero. Usually, how-
ever, least-squares equations are derived by minimizing the sum of the squared differences with
respect to the parameters, and then the least-squares equations are solved for the best-fit parameters. ..P

Either way, the solution for the signal amplitude A provides the relative weights of an LMS digital
filter whose output estimates the amplitude of the model signal in the K samples contained by the
filter,

Least-squares equations will now be derived for a quintic signal-plus-clutter model. To simplify
notation the subscript k will imply summation over the observations, e.g.,

K
ek F. vf - vj) 2. (18)

j=L

Differentiating ek with respect to the adjustable parameters and equating the derivatives to zero, one
obtains

K aej aek _ek

E ej -A - ek-" - 0 and eka = 0, m = 0. 1, 2, 3. 4. 5. (!9)

Combining Eqs. (16,17,19) gives the desired least squares equations, which in matrix form are

Sk . Sk Sk YA S4 YA SI, I, S,.V1. -, 4

K v, 3 y.4 BO

S1 
s 

V V 1 Y 1  V 1  V" 
4  

' ' B ,.

1 1', OV 8' -V v20)

I S01 3 ISV& Y, ,.' yI," .15 V, B ,, ,

*it %'t 1"t 5".t ,t H~ :t *

s A,,.
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where. e.g.. skyk s)y" 'and the dummy index of summation on the right side has been changed
from k to X for clarity in later work. Equations for lower-degree signal-plus-clutter models are
obtained simply by eliminating appropriate elements from Eq. (20). For example. the equation for a
quadratic model is obtained by eliminating the last three rows and columns of the coefficient matrix
and the last three elements of the parameter and observation vectors. The coefficients of the parame-
ters and observations are obtained from the know,'n values of the model signal s, and the sample co-
ordinates y,. Both the coefficient matrix and computation of its elements are simplified by choosing
the co-ordinate origin judiciousl). A I-D signal has either an odd or even number of samples which
lie equally on each side of a central point. If the origin is placed at the central point, the number of
co-ordinate values y, is halved except for sign, and all matrix elements yf with p odd are zero. After
the coefficients have been determined. the set of linear equations is solved numerically for the best-fit
signal-amplitude parameter A. and the terms of the solution are written as a convolution sum (defined
and illustrated in Appendix B). Finally, the LMS fdter weights are obtained by inspection of the con-
volution sum.

An LMS filter for the signal [5 2 1 3 4 31 determined by six throws of a fair die will be com-
puted as an example. The signal is chosen to emphasize the fact that the procedure is applicable to
any signal whatsoever. Assume that the clutter within the signal length is adequately fit by a qua-
dratic function. The co-ordinate origin is placed at the signal center, and Y, is measured in units of
the sampling interval. Thus we have:

Model f =Asj + (Bo + Biv, + B-y)'). j 1. 2 ... 6
Indices(j) i 2 3 4 5 6

5 3 1 1 3 5
Co-ordintes y,) -2 2 2 2 2 2

Signal values (sj) • 5 2 1 3 4 3
Observations (v,) • vI  V0 v3  V4  v5  (

Elements are eliminated from Eq. (20) to suit the model, and the co-ordinates and signal values are
substituted into the reduced equations. This gives the following set of equations for the best-fit model
parameters:

64 18 -1 64.5 1 .4

18 6 0 17.5 B0  vx
- 1 0 17.5 0 By Vv x  1l

64.5 17.5 0 88.375 _B YV

The solution of interest is that for the signal amplitude.

A = (3920s\v\ - 8085v, + 224.v\v\ -2b0 v)/23856. (22)

The denominator is the determinant of the coefficient matrix: it is absorbed eventually in the filter
normalization (gain). The unsigned numbers in the numerator are the minors of the elements in the
first column of the determinant array. Since the denominator is irrelevant and the subscripts imply
summation.

= (3920s,- 8085 224x, - 1260v:Iv. =N_ w _v. 23)

9
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The right side of Eq. (23) can be interpreted as a convolution sum in which the paremheuca udbums
are the LMS filter weights. In terms of convolution arrays [Appendix B. Eqs. tBI-B4j I the last
equality of Eq. (23) is

A = [w 1w 2w 3w 4wsw6J * [VIV 2V3V4VSV 6 ] = w 6 v 1 + wSv2 + w 4 v 3 + w 3v 4 + w.v 5 " Wive.  124)

By comparison of Eqs. (23) and (24),

w6 - 3920OsI - 8 5 + 224y1 - 1260y V30W0. (25)

In the same way one fins for the other weights w5 =-3416. w 4 -- 4592. w3 = 3472.
w2 = 5096, w, = -3640. These weights can be checked by calculating 4 of Eq. (23) with the
model-signal values sj substituted for the observations v,. The result should be and is the deter-
minant 23856 of the coefficient matrix. This check is based on the fact that the filter output is pro-
portional to the amplitude of the model-signal content of the upat. Another check is based on the
fact (discussed in subsection Ml B) that an LMS filter rejects Maclaurin-senes aiput corresponding to
the terms of its clutter model. In this example the filter should and does reject the arbitrary quadratic

[(a + byj + cy') - (1/4)((4a - Ib + 25c) (4a - 6b + 9c x4 - 2b + c)

(4a +2b + c)(4a +6b + 9c)(4a lb + 25c)]

Since any LMS filter blocks constant input, the weights should always sum to zero. This check is
part of the previous one, but is noted specially became it is emy to use. The final step is to normal-
ize the weights according to any desired crienon, as discussed in the matched-filter example.

The following points related to solution of Eq. (20) should be nosed.

(1) The signal values and observations are equal in number

(2) The number of observations must equal or exceed the number of model parameters

(3) If the parameters and observations are equal in number the best-fit parameters can be -alculated
from either the equations of condition or the les-%quares equatons. ctherwise the least-,quares
equations must be used.

(4) With a nonsymmeric signal the clutter model may end with either in even or idd pK)wer of

With a symmetric signal the clutter model must end with An odd power of

The second and third points are familiar mathematical facts, (he fourth receive% a.tittmai .itention ,n

the next subsection.

(B) Further Arovss and Disciisum

This subsection gives further examples. expiores the Noiut&)f ot E04 _'M in greater Jetaii. trl-

discusses the make-up of the filter weights and how the fikers ,-Perate Readers ,ith .,te .1r 'u,

interest in these matters can lum or omit thi,, pan The ' fa &iant :o oln--der i ate'r IAc+er I

they are puzzled by certain aspects ot their .1cuatuions Tor parituidr !ilter,

"I'
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Numocal solutions like the preceding one are easily obtained and are the most efficient way to
derive LIMS filters for given signals. On the other hand. algebraic solutions provide more informa-
toabout the properties of the equations and filters. Accordingly, algebraic solutions for centrally
symwic signals will be derived and discussed. These signals receive special attention for two tea-
som. First. their symnw y introduces certain unique features into the solution of Eq. (20). Second,
pom-source signals are of this type, and detection of infrared point sources is important in practice.

With the co-ordiae origin at the center of a centrally symmetric signal, all terms containing
odd powers of yj are zero in the coefficient matrix of Eq. (20). and the equations separate into two
sm. Owe conmaimn the odd clutter parameters, the other the even clutter parameters and the signal

V& sk skyk? skyA A )X

'k, ykyk"Y B, yV X2 yv, 6S Yk4 4: L6: =k LLi (26

4 Y6

yk y6 X y IVX= (27)

The solution of Eq. (26) for the best-fit signal amplitude is

A - s~J(svx)- Is I(v) + Is2y1.(yx v ) - IsyI(y vJX. (28)

where the determinant of the coefficient matrix is ignored because it is absorbed eventually in the
filtr normalizaton. The symbols Is l. I sk I. etc. represent the minors of the elements sk. Sk, etc.
in the determinant array, e.g..

K, YC

IsdI - det. of A" Yk 4 . (29)

Since the subscript X implies summation. Eq. (28) can also be written

K

A4 S- I tS~ 1 - I + sI S v7 j - I SkYk I Y/h'J (30)

The subsums in braces are the impulse-response weights of the fifth-order LMS filter for the signal
amplitude parameter. Comparison of these expressions with Eq. (BI) of Appendix B shows that the
weights are

= -,k S. - 'Sk Ykv 1.2 - 1SiYk4y.J. j = 1.2. .. K. (31)

Least-,quares equations applicable with third- and first-degree clutter models can be obtained by
eliminating approprate elements from Eqs. (26,27). Correspondingly. eliminanon of terms from Eq.
130) gives ,olutions ot the reduced Eq. (261. Spectfically. LMS filters based on cubic or linear clutter

0'



models are obtained by eliminating (Isy,'Iyj') or (IskyAIY2 - tskyk4yJ) from Eq. (30). The
resulting solutions with the minors expanded are

A 1: I(K(Y)) - - [(sk)(Y.) - (y2)(skyk2)]

+ [(sk)(yk2) - K(skyk)LVJ 21 vi, and (30a)

A - ( tKsj - S&I vi. (30b)
j-l

Again, the subsums in braces are the impulse-response weights and are to be evaluated as previously
described. The expanded fifth-order solution is not given because of its length. Specific fifth-order
solutions are best obtained directly from Eq. (30).

Table 2 gives algebraic solutions of Eq. (30) for linear, cubic, and quintic models and two sym-
metric sample patterns. Actually, the sampling is hardly ever symmetric because the signal phase is
random. That is usually accounted for, however, by averaging the sample values over the equally
probable phases. With a symmetric signal the averages have one of the patterns in Table 2, depend-
ing on the ratio of signal length to sampling interval. On average, therefore, the examples of Table 2
include all types of sampled, l-D, symmetric signals.

No solutions for even-order models are given in Table 2 because none exist. The signal sym-
metry does not allow the clutter function to end with an even power of y,. If one attempts to use an
even-order model, he finds that the number of observations must be sufficient to permit solution of
Eq. (27) for the next higher odd clutter parameter. The fact that this is due to the signal symmetry is
not apparent in the least-squares equations, but it can be found in the equations of condition by
expanding the coefficient matrix on the row or column containing the signal values.

Table 2 provides examples of several filters for each signal-plus-clutter model. The first exam-
ple for each model has the least number of observations needed to determine the model parameters.
Each successive example then has one more observation than its predecessor. All filter weights are
weighted sums of the model signal's even derivatives estimated at the sample point nearest the signal
center. This is illustrated by the examples of third-order filters, those based on a third-degree clutter
polynomial.

" In the first example, there are just enough samples to estimate the central value of the signal's
fourth derivative, and the filter weights are multiples of the estimate (2b - 8a + 6) - -y.

" In the second example, the number of samples is sufficient to estimate the signal's fifth
derivative, but it is zero, and so only the fourth derivative is estimated at the two points
nearest the center. The filter weights are multiples of the estimate (b - 3a + 2) a 5.

* In the third example, there are enough samples to estimate central values of both the fourth
and sixth derivatives, and the filter weights are weighted sums of the two. However. the
derivative values enter the filter weights in different proportions and so do not factor out as
they do in the previous examples.

" In the fourth example, the filter weights are weighted sums of the model signal's fourth and
sixth derivatives estimated at either point nearest the signal center.

" Presumably. higher and higher even derivatives enter the filter weights as the number of Sam-
pies is increased.

12
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The same type of comments describe the first- and fifth-order filter weights, except that they are
made from different derivatives.

Figure 2 shows that the derivative components of the weights and the terms of the clutter func-
tio are interchangeable in a certain sense. For example, with five observations and a linear clutter
ftuiction, the filter weights contain the second and fourth derivatives. With the same number of
observations, adding quadratic and cubic terms to the clutter funtction eliminates the second derivative
from the weights. Further inspection of Fig. 2 provides additional examples of this type. It follows
that the weights of Table 2 are built up from values of the model signal's even derivatives above the

* degree of the clutter function.

Since the filter weights are made from the signal's central derivatives, the weights will be very
small or zero if the derivative components are very small or zero. Obviously such filters should be
avoided. The cases in Table 2 where the derivative value factors out of the weights may appear to be
exceptions. One could argue that only the relative weights matter in such cases, and the derivative
factor can be ignored. If the ignored factor is zero, however, the filter output is nevertheless zero
with the signal centered on the relative weights. Moreover, since the weights vanish with their
derivative components, it can be seen from Eqs. (3 1,30,28) that in these cases the coefficient matrix
of Eq. (26) is singular and there is no filter solution. Thus the filter always vanishes with the model-
signal's central derivatives.

From the make-up of the impulse responses, it follows that the filters of Table 2 operate by
correlating input with weighted sums of a model-signal's even derivatives; however, the operation can
be explained more physically as follows. Let the input at any instant be expanded in a Maclaurin
series about the filter center. (This series represents the actual signal and clutter; it is not related to
the signal-plus-clutter model.) The filter weights are symmetrically distributed and sum to zero. As
a result, the filter eliminates the constant and odd terms of the input series. Furthermore, the weights
are so related that even-input terms below the last term of the clutter model also are eliminated. Thus
the filter operates by passing only even-input terms higher than the filter order. This explanation can
be checked by working out examples from Table 2.

The following useful picture of an LMS filter's operation emerges from the preceding discus-
sion. Let the input consist of additive signal, pure clutter, and random noise, each expanded in a
Maclaurin series. The filter blocks input terms that correspond to its clutter model or that have sym-
metry different from its model signal. The remaining input terms are correlated with combinations of
the model-signal's derivatives above the filter order, and the result is passed. The passed quantity is
a weighted sum of signal, pure-clutter, and random-noise terms of an order higher than the clutter
polynomial. Hence, one can say that an LMS filter assigns to clutter and rejects input (including sig-
nal and random noise) that can be represented by the clutter model or has the wrong symmetry, while
it assigns to signal and passes input (including pure clutter and random noise) that correlates with the
model-signal's derivatives above the filter order.

It is worthwhile to compare l-D LMS filters for sampled and continuous symmetric signals.
The least-squares equations and solutions for the two filter types are very similar, differences being
due only to summing or integrating the squared errors over the signal length depending on whether
the data are sampled or continuous. Consequently, least-squares equations for continuous data can be
obtained from Eqs. (26,27) by substituting signal length 2Y for number K of samples per signal
length, and replacing sums over samples by integrals over signal length. The same substitutions in
Eqs. (30,30a,30b) give the continuous solutions for the best-fit signal-amplitude parameters. For
example. with a symmetric signal and a linear clutter model.

A Y1 £tYs )- L Ys ()d v(Y)dY = YL Y s( ) - < s> I v(Y)dY 2 YL h ( -)v(id. (32)
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The first equality is the continuous analog of Eq. (30b). The angular brackets < > in the second
equality denote an average over the signal length. Inspection of the last equality gives the continuous
impulse response,

h (y)=s (-y) - < s> -Y : y :5 Y

= 0, elsewhere. (33)

From this expression it is easy to show that the continuous impulse response, like the discrete one, is
a weighted sum of the model signal's even derivatives above the filter order. Replacing the signal
function with its Maclaurin series everywhere in Eq. (33) yields

h (Y) n _ _ - (D's)o, (34)

h~v)= . n + I
n -2,04.... 1 [J

where (Ds)o is the model signal's nth derivative at the signal center. The derivative weights depend
on the y co-ordinate in the continuous case and on the sample position in the discrete case. Similar
results can be obtained for higher-order filters. All even derivatives above the filter order occur in
continuous impulse responses, but discrete impulse responses contain no derivatives beyond the
highest that can be estimated with the number of samples available. Decreasing the sampling interval
increases the number of samples in the signal length and brings higher derivatives into the filter
weights. This indicates that a discrete filter passes smoothly to a continuous one as the sampling
interval is reduced to zero.

The behavior described also implies that oversampling should improve LMS-filter performance.
Extra samples allow use of a higher-order filter or a more selective lower-order filter whose weights
contain a greater number of derivatives. The lower-order filter passes more input terms containing
both signal and clutter, and is the better performer if the resulting fractional increase of output signal
exceeds that of output clutter. In a staring system for detection of point sources, the needed oversam-
piing requires high spatial resolution, several times higher than is currently available. With a scan-
ning system this limitation can be overcome in the scan direction by increasing the electronic sam-
pling rate. It has been suggested that a similar effect can be achieved in the cross-scan direction by
using several columns of detectors with offset centers. 29 It is also possible to increase the number of
samples by adding zeros at the ends of the model signal, but that is not as effective as oversampling
for two reasons: The zeros provide little extra information about the signal. and the added clutter
values may be weakly correlated with those inside the nonzero signal length.

Finally, reference 15 shows that a first-order LMS filter and a matched filter in (1 If 2) clutter
have the same transfer function for a raised-cosine signal. This has led to the misconception that an
LMS filter is always equivalent to some matched filter. On the contrary, the two types of filters usu-
ally are not the same. Relations that determine the circumstances in which they are identical can be
obtained by equating general expressions for their impulse responses or transfer functions - e.g.. Eqs.
(7a) and (33) for I-D continuous filters and Eqs. (8a) and (31) for I-D discrete filters. This problem
is not studied here because it is only marginally related to computation of filter weights, the main
topic of the article.

IV. 2-D LMS FILTERS

The LMS design procedure can be applied in two dimensions almost as easily as in one.
although this has not been done heretofore. The derivation of the least-squares equations is the %ame
in both cases: there are simply more equations with more terms in the 2-D case. This makes the 2-D
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equations more difficult to solve but does not affect the main features of the solutions. Since the I -D
and 2-D cases are so alike, they are presented in the same way. Subsection IV A contains all the
information needed to calculate the weights of a 2-D LMS digital filter for any specified signal. Sub-
section IV B provides additional examples and discussion of the equations, solutions, and filters for
symmetric signals.

(A) Basic Analysis and Example

As in the I-D case, a model of signal-plus-clutter is fit by least squares to sensor output within
the filter, which is the same size as the signal. The signal model is the product of an amplitude A
and a shape function s, and the clutter model is an arbitrary continuous function represented within
the filter by a few terms of its truncated Maclaurin series. A right-handed co-ordinate system is
employed with positive y axis rightward and positive x axis downward (Fig. 3 and Appendix B). To
simplify notation, the samples of signal, co-ordinates, and sensor output are labeled with a single
ordered subscript. The indexing system is fully specified by the examples in Table 3. With these
conventions the signal-plus-clutter model of degree M for K samples can be written

Mn,fj = Asj + r, 1:BTx"ryf
Ml =0 R -0

= Asj + [Boo + (B'°xi + B01yj) + (B2°x1
2 + BIIxy) + Bo"y;")

+...(BOxm + ... Bom ym )l, j = 1,2,3 ... K, andK z I + E E 135)-

As before, the superscript of B" -" is not an exponent but simply associates the parameter with the
corresponding powers of x, and y 1 . A and 8 M- " are adjusted to achieve the least-squares fit. In
operation the filter algorithm makes these adjustments spontaneously at every point of the scene.

To limit the size of the 2-D least-squares equations. they will be derived for a cubic model
(M - 3) instead of the quintic model used in the I-D case. Equation (17) still represents the
equations of condition for the differences e, between model values and observations. Differentiating
the sum of the squared differences with respect to the model parameters and equating the derivatives
to zero gives 'S

e.--- 0 and e - = 0. m =0. 1. 2, 3. and n :s m (36)

15



in- ~ ~ ~ X IWI wL-~ %M xW IV UJ 9U T~U Ar ~

As in Eq. (19), the subscript k implies summation over the K samples in the filter. Equations (17)
and (35) are now substituted into Eqs. (36) to obtain the least-squares equations:

Sk~~~~~~kY Skk Sk 4 SXkk 5 k SX

Sk, S Sk X Sk~k Sk XkSkXkYk Sk~ kX Xkk kSIYk

Sk K Xk Yk Xk XkYk Y Xk' XYk Xk Y&'

S&XA Xkk Xk& XkYk' Xkk XkYk' XkYd 4k A Yk' Xkj2 k' XkYk

SkYc Yk Xk yk Xkk Xkk Yk XAY' k XkYk? A

Sk~h A x4 Y 4kk 4yk A 4yk Yk 4yX~k X~' k
2~ 3 Xkk k'

£k 4 Yk' X*Yk' xYk4  Xkj, Xk'Yk' X4Yk 2  XkY XkYk' 4 Yk XkYk 3  X&

S*X&k 4k 4k X4k y 4k Xk~k X&) 'k X *~'XYk& X Yk' A

2~2 2 3 2

2 ~ ~ 0 22 2 3 2

3~B3 33 4

s12 kyhv k

.3 .0 %



In this equation, e.g., SkXkYk a F, sjXy,, and the dummy index of summation has been changed
from k to X on the right side to facilitate subsequent analysis. Equations for higher-degree models are
no more difficult to derive but are inconveniently large. The equations for quartic and quintic models
have, respectively, (16 x 16) and (22 x 22) coefficient matrices. Eliminating appropriate elements
from Eq. (37) gives equations for lower-degree signal-plus-clutter models. For example, eliminating
the last four rows and columns of the coefficient matrix and the last four elements of the parameter
and observation vectors gives the least-squares equations for a quadratic model. Unlike I-D signals,
2-D signals do not always have a central point about which the samples are equally distributed. Even
so, the co-ordinate origin should be placed as symmetrically as possible among the samples in order
to simplify the coefficient matrix and computation of its elements.

Equation (37) and its reduced forms are applicable to any signal whatsoever. They are solved
for the filter weights in the same way as the I-D Eq. (20). An example will illustrate the procedure.
Find the LMS filter for the signal and clutter model below.

Model: fj = Asj + [Boo + (B'0 xj + B0 lyj) + (B20x + 81x.y + Byj-)], j = 1, 2, 3, ... 9

Signal Indices Co-ordinates
(Si) (j) (xi) (yj) A-

1 2 1 4 -3/2 -3/2 -1 0
1 0 2 2 5 8 -1/2 -1/2 -1/2 -1 0 1
4 1 3 3 6 9 1/2 1/2 1/2 -l 0 1

2 7 3/2 0

The co-ordinate values result from putting sample I in the third quadrant of the x-y plane (Fig. 3),
placing the origin between the fifth and sixth samples, and measuring x and y in units of the sampling
interval. If the interval is different in the two directions, either interval can be used for the unit of
measure, as explained below in subsection IV B. First, Eq. (37) is reduced to its quadratic form, and
the elements of the coefficient matrix are calculated from the signal values sj and co-ordinates
(xi, yj), with the result

40 16 1 -1 14 0.5 11 A sAV,

16 9 -1.5 -1 8.25 1.5 5 v

1 -1.5 8.25 1.5 -3.375 -2.25 -1.5 810 XxvA

-l -1 1.5 5 -2.25 -1.5 -1 B 0 yhvk (38)

14 8.25 -3.375 -2.25 15.5625 3.375 3.25 B20 X2 vA

0.5 1.5 -2.25 -1.5 3.375 3.25 1.5 8" XAYVv-

11 5 -1.5 -1 3.25 1.5 5 802 yXvk

The solution for the best-fit signal amplitude is

,4 = (7872s xv - 3300v\ - 3616x\v\ - 336y%\v\

- 5232.rv- - 9 88.rO.\v\ - 14732v-V\)/28O0. 39)

17

,"5



The denominator is the determinant of the coefficient matrix, and the numbers in the numerator are,
except for signs, the minors of the elements in the first column of the determinant array. As in the
1-D case, the determinant can be omitted since it does not affect the relative filter weights and disap-
pears finally in the normalization. Then, taking account of the summation implied by the subscript
and factoring the common multiple vj from the terms of the numerator gives

9
A= E (7872sj - 3300 - 3616x- 336yj

i-1 J~9

- 5232x; + 9 8 8 &xjyj - 14736y2)vj fi (10j)V (40)
i-1

The right side of Eq. (40) can be interpreted as a 2-D convolution sum in which the parenthetical sub-
sums are the LMS filter weights. This is most easily seen if the last equality of Eq. (40) is written in
terms of convolution arrays. From Appendix B, Eqs. (B5-B7), and the discussion of those equations,

W9 W6 0 V 1 V4 V7a 0 W3 0 V ! V4 V7a

wS WS w 2  v 2  V5 V8  WI W4  W 7  V? V5 VS
A- fI If * =

W 7  W4  W [ V3 V6 V9  W2 W5 WS V3  V6 V9

0 W 3 0 v3a V7 V9a 0 W 6  W9  V3a V7 Vga

= W9Vl + W8V2 + W7 V3 + W6 V4 + W5V 5 + W4 V6 + W3 V7 + W2V8 + wIV9 . (41)

Zero weights and corresponding unused observations (va, V7a, vga) are included in the arrays of Eq.
(41) for consistency with the notation of Appendix B. Comparing Eqs. (40) and (41) one finds

w9 = 7872s, - 3300 - 3616x1 - 336y,

- 5232x4 + 9888x yI - 14736y = -1344. (42)

In the same way the other relative weights are found to be w8 = -4384, w7 = 5728. w, = 6096.
w -- -2800, w4 = 1456, w 3 = -4752, w, = -7072, w, = 7072. The weights are checked as in
the I-D case. "A" calculated from Eq. (40) with vj = sj should be the determinant 28400 of the
coefficient matrix, and the filter should reject arbitrary Maclaurin-series input
[(a + bxj + cyj + dx2 + gxIyI + ry2)] corresponding to the terms of the clutter polynomial. The
sum of the weights must be zero for rejection of constant input in the second check. The final step is
to normalize the relative weights (set the filter gain) according to any convenient criterion.

Everything needed to calculate an LMS filter for any 2-D signal has now been given. The
reader is cautioned, however, that a 2-D LMS filter cannot always be designed simply by solving Eq.
(37). With quadratic and higher-degree clutter functions, there is more than one filter for a given sig-
nal. This should not be surprising; a matched filter for a given signal also depends on the clutter
model, as Eqs. (la,b) show. The mathematical reasons for the dependence are different in the LMS
case, however, and are useful for choosing among alternative LMS filters. This is discussed in the
next subsection, where solutions of Eq. (37) for certain symmetric signals are considered.

18
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(B) Further Analysis and Discussion I

The signal symmetries of interest are those which cause all terms of the coefficient matrix
involving an odd power of x or y to vanish. Examples of these symmetries for linear and higher-
degree signal-plus-clutter models are

linear higherdegree

cbd cbc
ala ala
dbc cbc

The symmetry for a linear model is slightly lower because Eq. (37) for a linear model contains no
coefficients of the type skxfyk, p and r a 1. With signals of the specified symmetry, eighty-six.
matrix elements vanish, and Eq. (37) splits intg four equations:

VSj k StXi Skyk rA rxv
FSk K 4k y II Boo V2,

B 2 4 2 VxV, (43a)
yL 2 X yt k 2 ° Xkk X

SkYk Yk x Yk' Yk' JyLvxJ

L:yk2 x6 y Xx>j [e .] 4x3JYA Yk XkYk B 0 -V)

Yk Yk Xykr 10 X (43d)
4k Xk X 6 12 >'V)
22 '4 2 [Ba L vx

,Xk Yk XYk' Xk Yk ILY> ' Xy

The signal-amplitude solution of Eq. (43a). omitting the determinavt, is

A = Is~Isxvx - st Ivx + Ikxk IXXvX IskyklyXvx (44,)

K
= . IIs~ljj- IskI + IskxkIXf - IskkIylyjI (45a)

where s1  I, 1 s I, etc. are the minors of the elements in the first column of the determinant array:

Ssrt - det. of x~ Xk-Y, . etc. (46?
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Equation (45a) gives the best-fit A for cubic signal-plus-clutter models. As in the 1-D case, there are
no solutions for quadratic models with signals having the specified symmetry. After elimination of
the third and fourth rows and columns from Eq. (43a), the signal-amplitude solution (without deter-
minant) for a linear model is found to be

K
A = [,KIs - Sk vj. (45b)

j=1

This has the same form as the corresponding 1-D solution Eq. (30b).

The right sides of Eqs. (45a,b) are convolution sums in which the filter weights are the subsums
enclosed by braces. Since the impulse response is reversed before convolution with the input vj, the
filter weights for cubic and linear signal-plus-clutter models are respectively

W(K+I)-J = tSkh7 - ISkI + iSkXkiXj' - ISkYkIYJ and (47a)

W(K+I)_j = Ksj - sk, j = 1, 2, ... K. (47b)

Expansion of the minors in Eq. (45a) shows that all the terms in braces are equidimensional in
x, y, and s. That is, x occurs to the same power in every term, as also do y and s. This means
that the relative filter weights are not changed if all values of x,, or y, or sj are multiplied by a con-
stant, a relation with three notable consequences: (1) The signal and co-ordinates can be scaled to
simplify computations if the numbers are awkward. (2) If the x and y sampling intervals are
unequal, either can be used as the unit of measure. (3) A difference in the two sampling intervals
affects the relative filter weights through the signal values, not through the co-ordinates. Further
implications of these facts are pointed out in the last paragraph of this subsection.

Tables 3 and 4 show filters for selected symmetric signals combined with linear and cubic
clutter functions. A clutter function is cubic if it has a term xfvj with (p + r) = 3. The cubic
models were determined by eliminating terms from the complete cubic function until a solution for A
containing all values of sj was found. The complete linear function was used in all cases. Tables 3
and 4 begin with the signals having the fewest samples required to determine the parameters of a
linear or cubic model. The other signals were chosen to illustrate the fact that the signal shape, the
clutter function, and the number of observations jointly determine the derivative components of the
filter weights. In the l-D examples (Table 2) the number of observations is varied with the clutter
function and signal shape fixed. In the 2-D linear examples (Table 3) the clutter function is fixed, but
the signal shape changes to maintain the specified symmetry as the number of observations is
increased. And in the 2-D cubic examples (Table 4) both the clutter function and the signal shape
change with the number of observations. Consequently, the development of the filter weights from
the model-signal's derivatives is not illustrated as straightforwardly in two dimensions as in one. The
key features are the same in both dimensions, however, and are evident in Tables 2-4. When the
number of observations equals the number of model parameters, the filter weights are made from a
single model-signal derivative. As the number of observations within the signal is increased, more or
different derivatives enter the filter weights depending on the signal shape and clutter function. This
suggests, by analogy to the t-D case, that discrete 2-D filters pass smoothly to continuous form as the
sampling interval approaches zero.

Since the filter weights are made from the model-signal's derivatives, the two vanish together.
It is also true, as can be seen from Eqs. (47a.45a), that the coefficient matrix in Eq. (43a) is singular
when the derivative components of the filter weights are zero. Hence the filter vanishes with the
derivatives, even if there is only one component that factors out of the weights. as in the first and

fifth examples of Table 4.
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The selectivity of the filter depends on the number of derivative components in the weights.
The number of observations needed to bring a given number of derivatives into the weights is usually
greater in two dimensions than in one because of the greater number of model parameters involved.
This makes oversampling of the signal more important for filter performance in two dimensions than
in one.

It was noted earlier that an LMS filter, like a matched filter, is not unique but depends on the
clutter model as well as the signal. Table 5 exhibits alternative third-order LMS filters for two sig-

nals of Table 4. Comparison of the tables shows that clutter terms and model-signal derivatives are
interchangeable in the following way. Adding B° 2y2 to the second signal-plus-clutter model of Table
4 eliminates (D2s), - (3 from the filter weights. Similarly, adding B2 Y or B20X. to the third
model eliminates (D2s )3.6 - 6 or (D2s)3,6 - a from the filter weights. This effect has at least two
consequences. First, in some instances terms must be omitted from the clutter polynomial in order
for the filter weights to contain as much information as possible about the signal. That is why the
models of Table 4 were determined by eliminating terms from the full cubic clutter function until a
signal-amplitude solution containing all signal values was found. Second, the filters of Table 5 reject
some input passed by the corresponding filters of Table 4. This is be ise the filters of Table 5 have
more clutter termis and, as pointed out in subsection 11 B, an LMS ,titer rejects input representable

by its clutter function. Which filters are better depends on whether rejection of additional input, con-
taining both signal and clutter, reduces output signal or output clutter by a greater fraction. The
answer probably differs from case to case. %

The filter weights and derivative components in Tables 3-5 are for equal x and y sampling inter-
vals. How does changing one of the intervals, say Ax, affect these results? The question is answered
by the relations noted earlier between filter weights, co-ordinates, and signal values. With Ay the
unit of measure, changing Ax scales xj values but does not alter the expressions for the relative
weights as sums of signal samples a, b, etc.. But the invariance is only algebraic because one or
more of the signal values is changed, thereby altering the relative weights numerically. At the same
time, derivative components involving Ax are changed by appropriate multiples, and the coefficients
of these components in the filter weights are changed inversely by the same multiples, so that the
algebraic expressions for the relative weights as sums of signal samples remain unchanged. In practi-
cal terms this means that if the definitions of a, (, etc. are substituted into the relative filter weights
in Tables 3-5, the resulting expressions for the weights in terms of a. b, etc. are valid for any ..x
and Ay. (In fact the weights were derived as sums of signal values and then. to show their basic
structure, were converted to the tabulated sums of derivative values with Ax = Av = I sample inter-
val.)

V. SUMMARY .P

Spatial filters are often used to enhance signal-to-clutter ratio in an electro-optic sensor's output
prior to signal detection. Matched filters and LMS filters are two types commonly employed. A
matched filter maximizes the ratio of filtered-signal energy to average filtered-clutter power. An
LMS filter implements a regression analysis of the sensor output and estimates the amplitude of the
signal present.

This article gives methods of computing the impulse-response weights of one- and two-
dimensional digital matched filters and LMS filters for any signal and clutter representable by certain
types of models. The methods and models are applicable to outputs from scanning or staring optical
sensors and to signals from extended or point sources. The signal at the sensor output must he known
to design either kind of filter. With resolved signals. whose shapes are variable, the design tech-
niques are limited to cases where an average signal is adequate or a particular form of the ignal must
be detected. For matched-filter design the clutter power spectrum at the ,ensor output also must he
known. but for LMS design prior knowledge of the background is not essential. ihouh it ma% he
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helpful for choosing the clutter model. Images of sensor output are the best sources of the required
information about signals and backgrounds.

The matched-filter design technique is developed by using isotropic power-spectral clutter
models, Eqs. (4a,b), which contain only even powers of spatial frequency. This leads to fairly simple
expressions, Eqs. (7a-c), for the l-D and 2-D continuous impulse responses as weighted sums of the
model signals and their derivatives. The weights are the coefficients of terms in the power-spectral
models. Consequently, these coefficients must be known either theoretically or from background
measurements, preferably the latter. The 1-D imnpulse-response equation contains only even deriva-
tives; the 2-D equation contains only powers of the Laplacian operator [(a2 / aX2) +

(82 / ,y 2)Jp, p = 1, 2, 3. These equations are converted to discrete form by numerical approxinma-
tion of the derivatives. The results are a pair of operator equations (8a,b) for the filter weights and a
table of derivative operator arrays (Table 1). 2-D arrays are tabulated only for equal x and y sam-
pling intervals. The derivations of the equations and operators are given in sufficient detail so that a
reader can repeat them with different clutter models and unequal x and y sampling intervals. If the
clutter model contains odd powers of frequency, the impulse responsq is not easily determined. For
that reason, such models were not used in this work.

LMS fiters are derived from least-squares fits of deterministic signal-plus-clutter models, Eqs.
(16, 35) to sensor output. The clutter models employed here are truncated and sampled Maclaurin-
series expansions of continuous functions. Their coefficients, unlike those of the power-spectral
models, need not be known because an LMS filter constantly and automatically adjusts the parameters
of its signal-plus-clutter model to suit the input, as in Fig. 1. However, information about the back-
ground is useful for choosing the clutter function since it is not specified by LMS design, which
rather makes best use of the model chosen. Least-squares equations (20) are given for 1-D LMS
filters based on first- through fifth-degree clutter polynomials. Even the fifth-degree equations are
easily solved with a hand-held calculator capable of inverting a (7 x 7) matrix. The equations for
2-D LMS filters are much like those for l-D filters. There are simply more of them, and each has
more terms than its l-D counterpart. Least-squares equations (37) are given for 2-D LMS filters
based on first- through third-degree clutter models. Solution of the third-degree equations requires
inversion of an (11 Ix 11) matrix. Fourth- and fifth-degree equations are not difficult to derive or to
solve numerically with a computer, but they are not given because they involve (16 x 16) and (22 x
22) coefficient matrices.

LMS filters for specific signals *Are most easily obtained by solving the least-squares equations
numerically, but the solutions provide little understanding of the filters. For understanding, algebraic
solutions are needed. Accordingly, the equations are solved algebraically for symmetric signals.
which are of special interest and present special problems. Only two types of symmetric, I -D. sam-
pled signals are possible on average, and solutions are given for both (Table 2). In the 21-D case,
however, the treatment is necessarily limited to a few of the many possible symmetric signals (Tables
3-5).

Examination of the algebraic solutions shows that LMS digital-filter weights are sums of the
model-signal's derivatives estimated as near as possible to the signal center. Likewise. continuous
LMS impulse responses can be expressed as sums of the model-signal's centrally evaluated deriva-
tives, e.g.. Eq. (34). The derivative components of the impulse response and the terms of the clutter
model are interchangeable. that is. adding a term to the clutter model eliminates a derivative from the
impulse response (Fig. 2 and Table 5). A continuous LMS impulse response contains all signal
derivatives not ruled out by the clutter model. The derivative components of a discrete LMS impulse
response are further limited by the number of signal samples. A derivative cannot appear in the filter
weights if there are not enough samples to estimate it. As the sampling interval is decreased, the
number of samples in the signal span, increases, and more of the signal's derivatives enter the filter
weights (Fig. 2). This shows how a discrete LMS filter passes to continuous form with decrease of
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sampling interval. Improvement of filter performance by oversampling also is indicated since a
filter's selectivity depends on the number of derivatives in its weights.

The build-up of the impulse response from the model-signal's derivatives, except those ruled out
by the clutter model, suggests two simple explanations of an LMS filter's operation. Clearly the filter
correlates input with the signal derivatives, but a more physical explanation can be given as follows.
An LMS filter assigns input to signal, clutter, and residual. Assigned clutter is all input representable
by the clutter model. Assigned signal is the remaining input that correlates with the model signal.
Residual is any input left over (none if the model parameters and observations are equal in number).
Assigned signal, clutter, and residual all contain actual signal and clutter in different proportions.
Assigned clutter and residual are rejected, assigned signal is passed. Addition of a term to the clutter
model causes additional portions of actual signal and clutter to be assigned to clutter and/or residual
and rejected. Whether performance improves depends on whether this causes actual signal or actual
clutter in the output to decrease by the greater fraction, a question that must be answered case-by-
case. Notice that this physical explanation essentially describes what a regression analysis does, in J

keeping with the LMS filter's mathematical basis.

N
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Table 3 - 2-D, First-order, LMS Filters for Certain Symmetric Signals
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Table 4 - 2-D, Third-order, LMS Filters for Certain Symmetric Signals
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Fig. I - Adjustment of I -D clutter models to

.w N. local background. This figure is discussed in the
first paragraph of subsection II A.

CLUTTER DATA ADDRESSES

2.4.6.8 4.6.8 68 -

Fig. 2 -Signal-derivative components (D"), , 2.4.6.8 4.6.8 6's

of l-D. LMS. digital filters for symmetrc sig-
nals. This figure shows the model-signal derriva A 24.6 4.6 6

tives that make up the weights of first- third-,
and fifth-order filters with increasing number of 72,4.6 46 6
samles/signal length. i.e.. decreasing sampling .

interval. Comparison of columns shows that the 24£trd Ir

weights are made of derivatives above the degree it at Derrvm
of the clutter model (filter order). Reading up -5 Comoa.nefts 01k,

the columns, one sees that more and higher 5 2.4 4
derivatives enter the weights as the sampling
interval is decreased. Reading across the rows. 2 ~ CIMd VOS FIe

one sees that adding terms to the clutter polyno- W 0o a*V0 A
mial eliminates model-signal derivatives from the
filter weights. 1 323
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APPENDIX A

Clutter Models

The clutter models used in the derivations of LMS filters are deterministic, i.e., represent
unaveraged local clutter properties. These models are simply continuous functions that are fit by least
squares to the background within the filters. In such limited regions the models can be represented by
a few terms of their Maclaurin series Eqs. (16 and 35). Maclaurin series are used for simplicity;
expansions in any complete set of orthogonal functions also could be used. Whatever the expansion,
the deterministic models conform to the input; i.e., the least-squares values of the expansion coeffi-
cients change as the background passes through the LMS filter.

Statistical models are used for the matched-filter derivations. These models are fixed; they do
not respond to local background variations; rather, their parameters are adjusted before use to approx-
imate certain globally averaged properties of the anticipated clutter. The remainder of this appendix
discusses three candidate statistical models and the reasons for choosing one of them.

Temporal stationarity and spatial isotropy are important qualities related to the choice. A pro-
cess is stationary and isotropic if its average properties depend only on time and distance between its
points (ref. 27, sec. 10.3.2). Most types of optical clutter are naturally nonstationary and anisotropic.
Moreover, these qualities are affected by experimental conditions. Nonstationarity is increased if the
sensor views different backgrounds in rapid succession. Anisotropy may be induced or altered by the
sensor's construction, and is always affected by the sensor's perspective because the length scale
varies with direction in the background plane unless the scene is viewed along a normal." Neverthe-
less, clutter often is represented by stationary isotropic models for reasons of convenience and
ignorance: Nonstationarity and anisotropy are mathematically difficult to treat, and too little is known
about them to make the effort worthwhile. In addition, unless a certain anisotropy predominates
because of the sensor's construction, clutter will tend to be isotropic on average if the sensor views
many scenes from all perspectives. 12.13

Clutter usually is modeled in the time and space domain by autocorrelation functions, and in the
frequency domain by their Fourier transforms, power spectra. In this article time dependence and
hence stationarity are ignored. Three purely spatial autocorrelation functions that have been proposed
as models are 9

- 13

R(Ar) = cr exp (-Sr (AL), (1)

R(r. yAy) = a- exp [-(4x2 + -y2-1y2)/-/LI. and (A2)

R(,r..Av) = expi-f 'Ax /L,) - (AY /L,)]. (A3)

Here .r = i - .v is a displacement vector. o is clutter variance. L is correlation length, and -

is a factor that accounts for a change of scale due to perspective. The first model is isotropic: the
second is anisotropic due to perspective alone: the third is mtrinsically ,nisotropic. i.e.. without

31

S i o



regard to perspective and even if L, = L. The power spectra derived from these autocorrelation
functions are 1

N = F[R(Ar)] = 21o 2 L2 /(l + L2 922)3 2 , (A4)

N(uz. v2 / y2) = F[R(Ax, y)] = 2roa(L 2 /Y)/[l + L 2u 2 + L 2(v/y)2]3/2 , and (A5)

N(u 2 , v2) = F[R(&, Ay)] = 4o2LxLy/[(l + Lxu 2)(l + LY2v2)], (A6)

where F ndicate Fourier transformation and b -fi a+ 0 is 2-D spatial frequency with x and y com-
ponents i, 9. Note that q.(A4) is a function of the combination 02 = (u7 + v2), not a function of
the separate variables u, v2. This results from the isotropy and consequent circular symmetry of the
autocorrelation function, Eq. (Al) (ref. 11, app. B; ref. 28, pp. 244-248). A I-D power spectral
model is obtained heuristically from Eq. (A4) by substituting u = 0 and replacing v by w for nota-
tional clarity.

For reasons already explained, the isotropic power spectral model is used here. However, Eq.
(A4) and its 1-D counterpart are mathematically awkward for deriving matched filters. More suitable
forms are obtained by expanding the denominators in Maclaurin series. This leads to

N(w2 ) = No/(I + aL/2  + bL4
1

4 + cL 6oP) and (A7)

5.-

N(0 2) = No/(l + aL'W + bL4 W + cL6 0 6), (A8)

where N o is power-spectral density at zero frequency. Terms beyond the fourth are dropped because
they lead to filters larger than any expected correlation lengths. (NO, aL 2 , bL4 , cL6) can be regarded
as disposable parameters to be determined from ineasurements of natural backgrounds. In reference
30 an approximation to a I-D power spectrum is derived, rather than heuristically inferred, from Eq.
(A4); the approximate function varies as 1/(1 + dw2). Additional terms in the denominator of Eq.
(A7) can be regarded as empirical higher-order approximations. Equation (A8) is an isotropic model

because it depends only on Q = +/u 2 + v2 and therefore its transform, the autocorrelation function,
depends only on the magnitude of Ar (ref. 28, pp. 244-248).

An isotropic power spectrum like Eq. (A8), but containing both odd and even powers of Qt, can
be obtained by expanding the denominator of N(fl) = No/f (0) in a Maclaurin series:

N(Q) = N 0 /(1 + 6fl + e 2 + .f3 + ..... ) (A9)

This model can decrease less rapidly than (1/172) as some measured power spectra do. Since physical
quantities are real, however, autocorrelation functions and hence power spectra must be real and
even. This ordinarily is considered to rule out odd powers of frequency in series or polynomial
power-spectral models (ref. 31, sec. 5.10). But if such models are functions of frequency magnitude,
they can contain odd powers and yet be even. Thus models with odd powers of frequency seem
physically permissible. When Eq. (A9) is substituted into Eq. (2b), however, the odd powers lead to
terms in the impulse response which cannot be related simply and generally to the signal. This disad-
vantage of the odd powers is considered to outweigh the greater flexibility they provide for fitting
measurements. For that reason models with odd powers of frequency are not used in this article.

Attention has been directed to certain consistencies and discrepancies between physical proper-
ties of clutter and mathematical properties of statistical models. Though such comparisons are siLflti-
cant and useful, it should be remembered that the Wiener-Khintchine type of models employed here
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are pfrmarily mathematical constructs and tools. They were not discovered by analysis of physical

processes, and their connection with natural phenomena often is obscure. 32 Thus their suitability is to

be judged more by results obtained with them than by physical consonance or dissonance between
model and phenomenon.
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APPENDLX B

Convolution Arrays and Co-ordinates

The operation of nonrecursive digital filters can be represented by tables of sampled input data,
impulse-response weights, and output values. In Appendix C it is shown that the same type of tables
can be used to represent numerical approximations of derivative operators. For reasons that will
become apparent, these tables are called convolution arrays. Reference 28 (pp. 30-40) explains the
basis of this representation and an alternative using vectors and matrices. The vector and matrix
representation is discussed at length in references 8,33,34. Convolution arrays are not vectors or
matrices because they do not multiply as vectors and matrices do; the multiplication rule is described
below. However, addition and multiplication by a scalar are performed as with vectors and matrices.
To distinguish the two types of quantities, convolution arrays will be enclosed in brackets [ ], vectors
and matrices in parentheses. Convolution arrays lack the mathematical completeness and power of
vectors and matrices but are much simpler. In this article, convolution arrays are used wherever pos-
sible.

The elements of a 1-D convolution array are written in a row and labeled with indices j. For
example,

IV1 V2 V3 ... Vi Vj+I V 2 ... I and [w I w 2 w 3 1,

with vj and wj being input values and impulse-response weights respectively. An input and impulse
response are convolved by rotating the weight array 1800 about its center, passing it stepwise over the
input array, and at each step summing the products of coincident elements. Graphically, a single step
of the process is

w 3 W2 W1 1 -

x x x (BI)

2
[v I v2 V3 ... vi vj.I vj+ 2 ... = W3-vj I.

3=0

Rotating the weight array 1800 reverses one of the sequences as convolution requires. Either array
could be rotated, but if the input sequence is reversed, some thought may be necessary to obtain the
output in the right order. Reversing the weight array avoids the need for thought. A quantity like
that on the right side of Eq. (BI), in which one index decreases while the other increases, is called a
convolution sum since it approximates a single value of a convolution integral. Passing the weight
array over the input gives a point-by-point numeric estimate of the convolution integral's functional
form. The resulting filter output is a row of convolution sums (ref. 28. p. 31). With * denoting
convolution, the output obtained by passing a five-element input through a two-weight filter is

[w I w2]*[v I v2 v3 v. v4] = (B2)

[(w2vj + -VV,)(Vv, + 1 V3)(W,V + W 1 V4 )(VVt + WjVs)].
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The number n of input samples must equal or exceed the number m of weights, and the weights must
always fully overlap the input. Consequently, the output has (m - 1) fewer values than the input,
i.e., n - (m - 1) values. Sometimes the input can be extended by adding peripheral zeros, but only
when it is known to be zero beyond the listed samples. If the input above were known to begin and
end with zeros, then the filter output would be

1lwIW ] * 10vIv 2v 3v v 0 ]5f0i (B3)

[(W 1 Vl)(W 2 V1 + W I V2 )(W 2 V2 + WlV3 )(W 2 V3 + W I V4 )(W 2 V4 + WIV5)(W2Vs).

If two arrays are the same size, they can be multiplied by placing one over the other without rotating
either, and then summing products of coincident elements. Multiplication is indicated simply by writ-
ing the arrays in sequence. Thus

[v 1 V2 V3][W1 W 2 W 3] -- W 1vI + W2,V2 + W3 V3. (B4)

The elements of a two-dimensional convolution array are written in square or rectangular form
and can be indexed in various ways. A common method is to label them with row and column
numbers ij, for example,

V1V22 W1 "'W 12

and Fl 1[w 21 W22

This input and impulse response are convolved by rotating the weight array 1800 about its center,
passing it stepwise horizontally and vertically over the input array, and at each step summing products
of coincident elements. Graphically, a single step of the process is

V I1 ................. ................

W22 w 21 X X . V VJ

W1 W1 I j X g+ ) (,WJ-I )Ij (B

...... ......................... v k.

Here also, rotating the weight array 1800 about its center reverses it as convolution requires. The
quantity on the right side of Eq. (B5) is a 2-D convolution sum. and the filter output is an array of
such sums. The output from a four-element filter with a nine-element input is

i WV 1 1 V1 v1 3 1

wi W11 * v1 1 V2 2 V23  = (B6)

v31 v-2 v13

(W2 1 V1 I + W2 1V12 + VV 12V21 + W11 V12 + V-13 + %v:2 - 1-%'ilY23 )

(W 22 V2 1 + W2 1 V22 + tV12V3 1 + %V1 1V3 2) (w2V22 + rt'1V23 _r'12v32 "'I IV 3
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As in the 1-D case, the two arrays being convolved must always fully overlap. Thus, if the impulse
response has m rows and n columns, the output array has (m - 1) fewer rows and (n - 1) fewer
columns than the input array. Peripheral zeros may be added to extend 2-D input arrays only if they
are known to be zero beyond the listed samples. The procedure for multiplying 2-D arrays of equal
size is analogous to the procedure for 1-D arrays.

Elements of 2-D arrays also can be labeled with a single ordered subscript. Such a system for
matrices is described in references 8,33,34. In that system, labeling begins at the top left element of
the array, goes down the column, then to the top of the next column, and continues thus to the bottom
right element. Labeling of course does not affect the rules for addition, multiplication by a scalar,
multiplication, or convolution. For example,

F2 W5 1S [V2 V5 V8  = wivi. (B7)

[W3 W6 W9 J V3 VI6 V9 =

This is not the only possible system of labeling with a single ordered subscript. The purpose of such
a system is to simplify a discussion or derivation by simplifying notation, or to extend l-D mathemat-
ical techniques to two dimensions. Any system that does either is permissible.

Input data in a convolution array are related as well to a co-ordinate system. Consequently, the
connection between the arrangement of the data in the array and in the co-ordinate system should be
specified. The 3-D co-ordinate system used here is shown in Fig. 3. It is a right-handed system with
the positive x and y directions downward and rightward respectively. This choice of co-ordinates
reconciles two conventional notations: x corresponds to row number, y to column number; x pre-
cedes y, and row number precedes column number; x and row number increase downward, y and
column number increase rightward. To simplify computations, the co-ordinate origin is placed as
symmetrically as possible among the samples of signal. With the usual rectangular sampling grid, the
origin is located at the center of the smallest rectangle enclosing the signal, and the unit of measure is
the sampling interval in either the x or y direction. If the two intervals are the same, as in Fig. 3,
the co-ordinates of the sample points are integers or odd half integers. Row and column numbering
begins with 11I at the third-quadrant corner of the smallest rectangle enclosing the signal. Alterna-
tively, the co-ordinates, signals, and observations can be labeled with a single subscript in any con-
venient order, as already explained.
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APPENDIX C

Approximation of Derivatives and Derivative Operators

This appendix describes estimation of derivatives by finite differences and approximation of
derivative operators by convolution arrays. The finite-difference formulae are needed to identify
derivative components of LMS-filter weights and to derive the operator arrays, which are needed to
calculate matched-filter weights from Eqs. (8a,b).

1. Finite-Difference Approximations

The basic relation between finite differences and derivatives is (ref. 35, art. 18)

Anf(y) = f(n)(y + OnAy), 0 < 0 < 1. (C1)

Ayn

This relation says that if an interval is divided into n equal subintervals of length Ay, the n th differ-

ence of a continuous function f (y) in the interval, divided by Ay', is equal to the nth derivative of

the function somewhere in the interval. Equation (Cl) is not completely satisfactory for applications

because it does not specify the point where the derivative is evaluated. However, most numerical-

analysis texts derive more specific relations from interpolation formulae, e.g., the Newton-Sterling

central-difference formula, and the Gregory-Newton forward- and backward-difference formulae. 35 - 43

These formulae yield the following lowest-order approximations of the first six derivatives (ref. 35,

art. 48; ref. 36, secs. 35,36).

Ay(dv/dy) Av, = Vv, = -v 1 + v,

Av2(d 2v/dV2 ) 12v 1 V 2v3 = 62V, = v - 2v, + v3

Av 3(d 3v/dv3) .1v, V 3v4 = -v 1 + 3v, - 3v 3 + V4  (C2-C7)

Ay 4 (d 4v/dy4) -- A 4 v! = Vtv5 = 54v3 = v1 - 4v, + 6v3 - 4v4 + v5

Ay'(d v/dy5) ,Inv, = V~v6 = -v, + 5v, - 10v 3 + 1OV4 - 5v5 + v,

AV6(d 6v/dV6) A6v 1 - V 6V7 = 66 v 4 = v, - 6v, + 15v, - 20v, + 15v 5 - 6v, + v-

Here y is position or time, v is sensor output, vj is a sample of sensor output. and A. V", 6" are

forward, backward, and central differences. The forward-. backward-, and central-difference formu-

lae are the same for even derivatives, but for odd derivatives the lowest-order central-difference
approximations are

Av(dv/dy) -6v = - -V 1 + V3),

Av 3(d 3v/d 3) A-'v, = I(-V 1 + 2v, - .v'4 v'). C8-C 10)

Av 5(d v/dv 5 ) -6
5v, = (-v 1 -- -Iv. - - 5v - ,v, - v-).
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If the unit of y is one sample interval. .1y" = I and the formulae as written approximate the deriva-
tives themselves. The central-difference formulae are usually more accurate than the forward- and
backward-difference formulae (ref. 36, sec. 29). The formulae for the fifth and sixth derivauves are
included for completeness; ordinarily they are not used because differences higher than the fourth tend
to be erratic (ref. 35, art. 17).

As noted, these formulae are the lowest-order approximations of the derivatives. Higher-order
approximations are available but are seldom used for filters, possibly because additional samples are
required, and reduced correlation between the added and original samples may offset the greater accu-
racy of the higher-order formulae. In addition, the higher-order approximations require higher-order
differences, which usually are avoided as already explained. Second-order central-difference approxi-
mations of the first six derivatives ae

Ay(dv/dy) -- v3 - --L6v 3 - -(V - 8 ' + 8 - v 6 -12 12

Ay 2(d~v/dy2 ) -- v3 - -5'v 3 = -(-v, + 16v, - 3V 3 + 6v, - v5 2.Ay ( 2 3 - 12 12- 3O ' 6 4 - v )

,y 3 (d3 v/dy 3 ) W3 v4 - -LA 5 V4 = 4I- 8v2 + 13V3 - 13v5 + 8v, - v)
4 8

i.y(d 4vd) e5v 4  4 = -L'(-v, + 12v, - 39v, + 56v, - 39v, -12v, v.). )Cl I-C 16)
6 6

Ay 5 (d 5v/dy5) M P65v 5 - -LA7v 5 W -- (vj - 9v, + 26v3 - 29v, + 29v - 26v, + 9v, - v.),
3 6 -~~y 6~+9,-v)

Ajy 6 (d6v/dy6') -Mev - 166v/5 - 1-v + 12v, - 52V/3 + I116V4 - 150-v, + 116v, - 52v. +- 2v, - v)

Extensive tables containing coefficients of v1 in formulae like Eqs. (C2-C16) can be found in refer-
ence 44. These tables provide many additional approximations with estimates of the errors involved
in their use.

Equations (C2-C16) approximate derivatives at different sample points from sets of values begin-
ning with the same sample v1 . The forward-. backward-, and central-difference formulae estimate the
derivatives, respectively, at the first (v,), last (v2 to v-). and central (v'. v 3 , V4. vro sample points.
This must be taken into account when approximating partial derivatives and sums of derivatives.
There are numerous alternatives to these formulae as indicated by the tables of reference 44. That
should not be surprising since this is a problem in approximation. and such problems usually can be
solved in many ways. In particular, the derivatives need not be estimated only at first. last. and cen-
tral points or even at sample points: the interpolation formulae permit their estimation at arbitrary
points. However, Eqs. (C2-C7) are most satisfactory for the purposes of this article. If other formu-
lae are used, it is sometimes impossible to identify the derivative components of the LMS filter
weights. The probable cause of this is pointed out in the next part.
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2. Derivadve-Operaoor Arrays

Arrays approximating continuous derivative operators will now be obtained by writing Eqs.
(C2-CIO) in terms of convolution arrays. It is important to remember that the finite-difference equa-
tions determine how and where the derivatives are estimated. The arrays do not affect the approxima-
tions; they are simply a convenient way of writing the equations.

With Ay - 1 sample interval, the lowest-order central-difference formula for the first derivative
is

dv/dy 2[-1 0 l][Vl V: v3] -(--V I + v3).2 2

The row of weights approximates the operator (didy), but it is not very useful because it can operate
only once on an array of its own size. Its utility is much increased by reversing the weights to form a
convolution array and writing

(d/dv) &-- 0 -l.

This array, when convolved with any other of equal or greater size, operates repeatedly on the other
array to estimate the derivative at the sample points that coincide with the array's central weight, ie..

2 [10 - 1- *I[... V. lVmnv l~ 2 . .] [... (dv/dy), (dv/dy) ... .

Thus both the derivative's values and its functional form are approximated numerically. Convolution
arrays approximating the other monovarite-derivative operators can be constructed in the same way.
The results are given in Table I where the array for the nth-derivative operator is represented by
[w']. Since these operators are actually zero beyond the listed weights, they can be extended by
peripheral zeros when necessary.

Before taking up partial derivatives, it is necessary to consider some properties of the I-D
operator arrays and implications of those properties. It may seem that the result of convolving
discrete operators should be predictable by analogy to continuous operators. That is true for discrete
operators derived from Eqs. (C2-C7)-the forward-, backward-, and even central-difference formulae.
For example, convolving [w'I and tw21 from Eqs. (C2) and (C3) gives [1w 31 from Eq. iC4. a
expected by analogy to (d/dv) (d 2 /dv -) = (d3/dV 3):

[W'1 * IW
21 = [1 11 * [0 1 -2 1 O = [1 -3 3 -I = [w3].

But operators derived from Eqs. (CS-C16)-the odd central-difference and higher-order formulae-do
not behave likewise. This emphasizes that discrete operators represent finite-difference formulae and
must be used consistently with them, not by analogy to continuous operators. Conversely. the
discrete-operator behavior indicates that Eqs. (C2-C7) are analytically related in the same way as con-
tinuous derivatives, but Eqs. (C8-C16) are not. This explains why the former equations are more
satisfactory than the latter for identifying the derivative components ot LMS-filter weights. In appli-
cations where numeric accuracy is more important than analytic properties. Eqs. ICS-C I Si hould he
better.

Turning now to bivariate partial derivatives, the associated operators are approximated h. .quare
or rectangular arrays whose horizontal and vertical directions correspond. re%pecti'el.h. to the I and
variables (Fig. 3). The first step in constructing a bivanate operator is to derive an approximation tor
the partial derivative from finite-difference equations. The monovariate parent equations determine
the point where the partial derivative is estimated. Monovarate operators are then combined to torm
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a 2-D array that acts on data to reproduce the approximate formula.45  The procedure is best
explained with examples. Initially it will be assumed that Ax - Ay - I sample interval. Fre-
quently, however, the sampling interval is different in the two directions, and the difference must be
taken into account as described at the end of this appendix.

Central-difference operators for even homogeneous derivatives are easily constructed. For
example, from Eq. (3)

( 2v/y 2) a v. 1 - 2v. 2 + Vz3 and (.v/a2) a v1Y - 2v 2 , + v3,, (C17)

with the derivatives estimated at the central points. Now suppose we have the data array

vii V12 V13 1
V21 v22 v23

V3 1 v 3 2 v33 ,,

and we want to estimate (av/av2) and (Wv/x 2) at the position of v,. Add peripheral zeros to [w:]
of Table I and to its transpose [w2] ', and write tentatively

a/0 -0 0 0[W , (a2/aX2) a [ -
(alla)y)  1 -2 1 [02] ( /g I -2 0 [']

0 0 1 0

Next, apply these operators to the data array, and compare the results with Eqs. (C17).

F 0 01 vi 1 v32 V 3
0 -2 1 v, -v, v3 =v, -2v,, +v3 a (a2v/a:)"

Lo 00o Lv3' v32 v33 j -

vi v12 vIA

-2 0 * v, 1 VV' 3 1 v 1 2. ... :3

LO 1 0 Lv31 V-12 V13

The operators give the desired denvative estimates. Since the estimates are made at the same point
and the arrays are equidimensional. the operators can be added to obtain the approximate Laplacian
operator.

0 1 0
V2 . (a'/3Y2) +(&'/ax-) a [w'21 + 1w2t1 1 -4 I i.

0 1 0

It should be noted that the peripheral zeros are not essential in the arrays for a-'a;/v' and Pal!a.t').
which also can be wntten

a: 1 -2 I1 and t " :) -2

However. these operators cannot he added to obtain the Laplacian operator ,ince the% are not equidi-
mensional and do not rwcesarll% etimate the derivatives at the same point. Co' o ving ian% tt hese

44)
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operators with a data array of equal or greater size estimates a derivative or sum of derivatives at
sample points that coincide with the operator center. For example,

v ': j ... ... . . (V v )2 . .j .'41 VI) IV...... .V)ZJ-1
0 1 0 . . .

II I

2V4 ... 2V.. (j_

v~................................. ?Vv ( _ ) _ I

The question marks indicate that the Laplacian derivative is indeterminate at the sample points in the
first and last rows and columns because the operator, when centered at these points, lies partly outside
the data array.

Forward- and backward-difference operators are constructed in the same way as central-
difference operators. For example, from Eq. (C2)

(Nvy) Z -V,1 + v, 2 and (v/lx) i -V1 y + v, (C18)

with the derivatives estimated at either the first or last sample points. From [w'] and [w'j' of Table
1 we have tentatively

(/ay) -a [1 -11 = [wot] and (ax) -:1 [

To determine if and where these operators approximate the derivatives, apply them to a (2 x 2) data
array, and compare the results with Eqs. (C18).[V~ 1 V1 F(-V1 + V12) 1 (av/By), 1 (av/av)12 1

V9, 1 VVj L(-v, + v,2) - j(ov/8v)2, -=-

[11 ,v, 1
-J * Lv2 [(-v 11 + v20(-v12 + v _,)l = [(av/ax)1 , (av/ax)12)]

- [(av/ax)2, (v/ax): 2 ]

The operators do indeed estimate the derivatives at the indicated points. The positions of the esti-
mates are ambiguous, but the ambiguity is in the forward- and backward-difference formulae. The
arrays correctly represent those formulae.

Operators for mixed partial derivatives are constructed by the same methods used for homogene-
ous derivatives. Let us find the forward- and backward-difference operator for (a3v/x ay). From
Eqs. (C2.C3)

(ov/av2) a Vv - 2v,, + V,3,

(a3v/ aXay2) = (a /aX )(a-v/ ay) - C-v, - v.) - 2- V2 + V) + -v13 " V:,). (C19)
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with the third derivative estimated at either vil or v23. The data array that contains only the samples
in Eq. (C19) is

1V2 VI3 1
V21 V22 V23 "

An array of numbers is needed which, when reversed and multiplied with this data array, gives the
right side of Eq. (C19). By inspection the required array is

[w 21 = - 2 1]

If the 1-D forward- and backward-difference operators [w ], [w2] are regarded temporarily as row
vectors, the array above is the matrix product [w 11[w 2]. Thus the desired 2-D forward- and
backward-difference operator is

(a3 /xay 2) = [wl1'[w 21 = [w121.

The derivative is estimated at either the top-left or lower-right corner of the array, the ambiguity
again originating in the forward- and backward-difference formulae.

Next let us find the central-difference operator for the same derivative. From Eqs. (C3,C8)

(a2v/ay2 ) = Vx1 - 2Vx 2 + Vx3,

(o/aX)(a2v/ay2 ) = "-(-V 1 1 + v 3 1) - (-vi 2 + V32 ) + '(-v 1 3 + v 33 ), (C20)

with the third derivative estimated at the position of v22. The right side of Eq. (C20) in array nota-
tion is

1 1 V 31
i [ ' V 1  VV3

2 2 - I V31 V32 V33 q

so the first array must be an operator which approximates (a3v/x ay2) at the array center. This array
is the matrix product of the l-D central-difference operators 1wiji and [w2] regarded temporarily as
row vectors. Thus the desired 2-D central-difference operator is

(a3 /xav 2) = [w'][w21 = [w12].

This is the same as the relation for the corresponding 2-D forward- and backward-difference operator.

In general, for any mixed partial derivative.

(0" ' lax , ay" =- [W 1' ,Dmr" = [w "],
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where [w], [w"] are I-D operators regarded temporardy as row vectors. and r denotes the tran-
spose. The I-D operators may represent either central-difference formulae or forward- and
backward-difference formulae. The formulae determine the points where [w 'I estimates the deriva-
tive.

Thus far it has been assumed that Ay = Ax = I sample interval. If the sample interval is not
the same in the two directions, the finite-difference formulae must be expressed in a common unit
before the operator arrays are constructed. Suppose the Laplacian-operator array with Lc = 3,1Y is
required. Either sample interval can be chosen as the unit. but to avoid fractions in the arrays, let It
be the unit. Then from Eq. (C3)

I(02v/ ayl )  a v ., - 2v,, + v3  and Otv/ &2) a v,, 2v,, + v3,.

The corresponding operator arrays are

W(&/dy 2 ) 9 -18 9 = [w"2] and (12/ax) a 0 -2 0 w"1.

LO 00 LO 1 0

Since these arrays are equdimensional. have the same units. and estimate the derivatives at the same
point, they can be added to obtain the Laplacian-operator array for sampled data with I. = 3.1v

0 1 0
1V2-1 WO21 + 1W_' 9 -20 9

It should be noted that use of a common unit for the x and v variables does not resolve all
issues raised by unequal x and y sampling intervals. In those circumstances, for example. the
Nyquist frequency and the accuracy of the derivative estimates are different in the two directions.
What do these facts imply? Such issues are worth considering, but they do not affect calculation ot

filter weights and. therefore. are not addressed here.
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