%

A PRODUCTION-QUALITY UNIX VERY HIGH SPEED INTEGRATED
p{ YHSIC HﬂRD..’(‘Ugcacl'gLFORCE IN: 4 EC

Aty

R R ey Py wwwyryere cav I

R e

I‘-‘m 2.5
S Ty J
£ b ==
o
= 1.8

—_—
—
””!

;

o

lizs e g

Il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS 1963 a

T S

P R

s

A
\
’l

)
4
Y

3
&

- T ey W ——. w. “4

_ . . - - _
S oy & v o ad W W, ! S A N A o S o V""V'"J'!',
e APY . USRS INE \3}.3\.‘__ :}x_.:-":\‘. .'_\.::*.\'P___,\.,\,\#:;\:\'.-\,‘. AR
}.V-: o~ R . R R AN RCACN AN .
: Tl

L d)
R -~ SN . SO NN
PaARCLCL I AL e *."\‘:\‘_si-."-.':s"_'s."'s'.\"\"'\':\."_'sf-.’s‘:\f\’:\‘:\'\\'
W / .-\.:\.-.'.r :: AN __r_‘e,_‘-.\ R A, N ~J\q~\..\-_.‘. N NI
’n‘l‘. (NN ALY LR, S A o -, o~ Lo A ! A LY

A PRODUCTION—QUALITY UNIX
VERY HIGH SPEED INTEGRATED CIRCUIT (VESIC
HARDWARE DESCRIPTION LANGUAGE {VHDL)
SUBSET ANALYZER

THESIS

Randolph M. Bratton
N Captain, USAF

-

DTIC

¢) FEB 1 01988 :

DEPARTMENT OF THE AIR FORCE

K AIR UNIVERSITY “4=
é:IB FORCE INSTITUTE OF TECHNOLOGY -

Wright-Patterson Air Force Base, Ohio
has bees '

tor gads releces and scie; Me 88 2 4 046

AFIT/GCS/MA/87D-1

A PRODUCTION-QUALITY UNIX
VERY HIGH SPEED INTEGRATED CIRCUIT (VHSIC)
HARDWARE DESCRIPTION LANGUAGE (VHDL)
SUBSET ANALYZER

THESIS

Randolph M. Bratton
Captain, USAF

AFIT/GCS/MA/8TD-1

‘ :

Approved for public release; distribution unlimited

AFIT/GCS/MA/87D-1

A PRODUCTION-QUALITY UNIX
VERY HIGH SPEED INTEGRATED CIRCUIT (VHSIC)
HARDWARE DESCRIPTION LANGUAGE (VHDL)

SUBSET ANALYZER

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Alr University

In Partial Fulfillment of the

Requirements for the Degree of Aocession For

Master of Sclence in Computer Science | NTIS GRA&I
DTIC TAB

Unannounced O

By
Dis_@;_ipution/
? Avallabhilitz o~ a3 f
! S
! i[\“v’(iil [KEOTSEINES
‘Dist Sposla

Randolph M. Bratton, B.S., B.S.E.T.

Justification]

PEER
|
Captain, USAF) H_ /(i
t

December 1987

Approved for public release; distribution unlimited

st NP L AR, O R

y X,

-

Aot

W -

ol

PN,

«
[}

r
"-I '.f'”'f’ T ﬂ

RN v ExX Tt Ty e 82 %2 8'2 252 A%, *in 8'2 4V2 &Y U ain g0, AU Biy wia abo @Y. 4t Y, ata b

Acknowledgements

I am deeply indebted to the many persons who aided my
research efforts presented in this report. Of these, there
are a few to whom I would like to express a special thanks.
First, thanks go to my thesis readers: Maj Joseph W.
DeGroat, who also worked actively in the integration of the
AFIT UNIX Analyzer and Simulator; and Capt James W. Howatt,
who offered guidance in the areas of software quality and
testing. I also appreciate the support from my thesis spon-
sors, Mr. R. Wallace and Capt J.R. Tomlinson from the Air
Force Wright Aeronautical Labs, especially for the use of
the VHDL VMS Test Suite. LTC John Dallen, now at the U.S.
Military Academy, graciously took the time to send me a copy
of his Patois research, which was precisely the new approach
my research needed. To fellow students and VHDL "gurus” CPT
Mike Dukes and 2Lt Harvey Kodama--thanks for a job well
done; I think it was worth all the sweat and frustration.

To Capt Al Deese, thanks for being a "sounding board" for my
ideas, and to both him and his wife, Dale, thanks for your

friendship and words of encouragement.

Finally, thanks go to the two persons most responsible
for the completion of this work. LtCol Richard R. Gross, my
thesis advisor, was always willing to discuss my ideas, to

point out possible pitfalls in my writing, and like every

ii

. . At A AT .
..... e e N LW S ¥,

o~

Rl o

good thesis advisor, to allow me to work through my own
problems. Thank you for all your help (even though I still
have nightmares about getting back my rough drafts com-
pletely covered in red pencil marks). And to my wife,
Kay~-I couldn't have done it without you. Thanks for all
the love and understanding through some difficult times.

God bless you!

Randolph M. Bratton

p
Table of Contents
Page
ACKNOWLeAUMENIES v vt ittt ittt e st eneeeeeneseaosoanesensss ii
List O0f Figuresoveeiierteteeenseooeesasnsscnconnsaes vii
5 T e B I o) < X - - viii
List of Analyzer Listings iieieenenenneanens ix
DN o X - o - ¥ I N X
I. Problem Statementoiiitieeeeeeersnoceesocnns 1.1
Statement of the Problemc.ciiiiiiteeerneens 1.1
Backgroundttt ittt it et et et e 1.1
1 o} = = 1.4
The VHDL Analyzerccctoveveccosancns 1.5
Productinn-quality it ittt innennn 1.7
Production Quality UNIX Analyzer Criteria

and Requirementscivevveunneeans 1.7
The Prototype ANAlYZero vtinetonnecnnennsas 1.13
Research ApPProach ¢ i v ittt i ittt ieeetenenseanonnsas 1.14
Maximum Expected Gaincietiinreennansas 1.18
Overview of the Thesis vt ieiirnereeannsas 1.18
II. Literature RevViewceeeeeenmernnenneecnn 2.1
IntrodUCEion .. ittt it i et i e e e s e e 2.1
UNIX VHDL ANAlyzZersS . ..ottt tveeneenenocoaanannas 2.1
Error ReECOVELY ittt it tetineensessosessaaonsocansas 2.2
Error RepPalrt iniineennnnensononensas 2.3
Error RECOVEILY (vt i ittt tnietnenesecsonnassos 2.4
Intermediate Representationcecceeveeenns 2.5
Intermediate VHDL Attributed Notation (IVAN) 2.5
Design Data Structure (DDS)ccvvunn 2.7

VHDL Intermediate Access (VIA) 2.10 N

University of Pittsburgh VHDL 2.12 .

Other HDLS ... ittt iriiininneeneaonaonnnennns 2.14 N

SUMMATYY vttt v o v v enseesasseeessssossansansassssess 2.15% i

iv

5

"

n,

n
eI T T A A A e TR |

IITI. System DesSigncuiiieereeeeeanscenansonsnnens 3.1
Overview of Chapter vterrenneeanossssnnns 3.1
Find a more efficient Intermediate Representation 3.1
Document the IR for use by other tools in the AVE 3.10
Adapt the prototype for use of the new IR 3.10
Add error handling capabilities to the Analyzer . 3.13

) Construct/obtain a test suite00 3.14
Add full language capabilities to the Analyzer . 3.14
Perform Analyzer and system integration tests ... 3.14
Document the Results ittt eetacaonsns 3.15
SUMMAELY o o e oo vevossosasonsessosascasasasaasocsssss 3.15

IV. Detailed DesSign ...civeeeieeeeecanssosasnsosansnsns 4.1
OV VIl BW ..ttt i ittt ascessoesocsnassncssosssasss 4.1
VIA Modification ... iiiiiitenecnetncansanasnnns 4.1
Use 0f lex and Yya8CC v i it i vt eeeneneansnsansnsas 4.4
Language Implementationc.icciveinvrascnnnens 4.6
Implementation EXamplesccceeeeecccronccass 4.8

Behavior Examplettt eeneesoanooanns 4.8
Structure ExXamplec.ct et entcccnonnens 4.13
SUMMATY « ¢ e ot e s osvaocoesenosnosossnseeennesscsensss 4.16

V. Testing and Analysisciviiinrierscesonasnns 5.1

Introduction i i ittt ittt i ittt ettt e 5.1

Thesis requirementsc.ccceveeeeronsens 5.1
Conformance teststtt eaecionnonns 5.2
Portability testscceceenveacancess 5.3
Performance testsccoevinernenancns 5.3
Integration testsccciiieinsnenns 5.4
Conformance Testing ... cuviieerenensosteanannsnss 5.4
LRM ConformancCececieeteenssnacess .o 5.4
EXrror LesSting i cv i ieeieeeeoeonaononansanns 5.8
Portability Testingttt ienenenas 5.8
Performance Testing «....vieereerossosnsesnasonns 5.9
153« 1= =1 = S 5.9
MemMOrY USA0E & i vt tvtvtnerennsseonsoonsanenss 5.10

Disk USAQe . vttt ittt tnerenseoeasossoosaassas 5.11
Integration Testingviiitieeneeerionesnesoneas 5.11
Method .. it ittt ittt esensoaencoronsaneas 5.11
Results and Comparisons with VMS VHDL 5.12
Chapter SUMMATY - v .ttt tneerenoesossaoconsnsanaess 5.12

VI. Conclusions and Recommendationssuceoeeeas 6.1
CONClUSIiONS ... ittt ittt inrecenoeeronsosssnsennas 6.1

Selection of VIA it ineeeenennnnns 6.1
Test ReSULLSttt reenesonosocosoennsnsos 6.2

A o A AT A M A S ST

,
: Recommendations for Future Research 6.3
0 Implement Entire Languageccocevceesvoes 6.3
¢ Add to User OptionsSciveeveeeonnsanaas 6.3
: Optimize VIAcocveeun e e vt e 6.4
| Add Design Library et e s e e 6.5

Implement other AVE TOo0ls eeeennes 6.6
! SUMMAYY . ittt tvosneoscscosssensncsnsesnsas e e 6.6
\‘J
K Appendix A: AFIT VHDL Analyzer Implementation A.l
2
] Appendix B: VIA Definition......... c e e c e B.1
&
§ Appendix C: VHDL Analyzer Test Suitec.... c.1
K
. Bibliography C ettt et et et . Bib.1
K
_1
g Vita C ettt et e et s e e e et et e Vita.l
K
)
I\
.
1
i3
N
9"
%
o
i
)
K
)
L/
' l

vi

o N VU U IR P
A_\.A! e Ca A A_A‘A_.‘j

- e

> e e

PR AR,

1> & @ aw >

-

- -
-’

o

AT ORI WU A Y

V.40,

List of Figures

Figure Page
1.1 AFIT VHDL Environmentccee... e 1.5
2.1 Parse and Abstract Syntax Treesu.oeeeeeenes 2.6
2.2 Signal Assignment Statement Modelled in DDS 2.9
2.3 VHDL Represented in VIA/DDS cetveennonncss 2.12
2.4 VIA Record Hierarchyveceenuoasnannas Ces e 2.13
3.1 VHDL Source and Resulting AST and C Code 3.8
3.2 Analyzer Designiiiiittenencsnnnns C e 3.11
4.1 Full-Adder EXamPle ... oot eerertiineescooonnenoenes 4.3
4.2 VIA for if statementocvicvenenonnnnconnas 4.10
4.3 VIA for signal_declarationceuveeenecneenn 4.15
vii

A

) e L e 'l*"n‘-""\-")"v'ﬂ\\ W, w0 R TR SR L L N WL R S Tl e W
s ORI I ST, T T N I A P I o T T LA T T T T Tag® ST VA SN

- - - - o

e A e e

> "™

A DO Do X O DO R W T A N £ A T S L R Y, L R L L PO T R TR TR E B T

List of Tables

Table Page

1.1 Implementation of the Prototype Analyzer 1.14

5.1 Results of VMS Test Suite Testingce... 5.9

5.2 Results of Portability Tests et e 5.10
viii

A List of Analyzer Listings

Listing Page
l‘ .
4 5.1 Syntactic Conformance Testing0... 5.6

5.2 Semantic Error Testing ¢ v.veueeeetnroooesoeneoancns 5.7

-~ AL

5N

-t

ix

.® s P D,

;

’ “»] . A % wp R, . -_v)-._- e . >~ o, .
. . XX ."15.0. . WA 0, 50 0 AN AN A 3 » *“(~, o MM@ AA.AJ‘E_LLJ

AFIT/GCS/MA/87D-1

Abstract

This paper describes the design and implementation of
the Air Force Institute of Technology's (AFIT's} UNIX-based
VHDL Analyzer. The purpose of this tool is to facilitate
the introduction of VHDL into the academic environment,
which may not be able to use the Department of Defense's
VMS-based software. This research emphasized two areas:
the criteria for a "production-guality" software product and
the design of an efficient Intermediate Representation (IR)
that serves as an interface between the Analyzer and other
tools in the AFIT VHDL Environment (AVE). Background on
other UNIX VHDL analyzers, as well as other IRs, was pre-
sented. A two-part IR, based on Dallen's Patois hardware
description language and named the VHDL Intermediate Access
(VIA), was designed, and examples were given that illustrate
its use. Test results showed that the Analyzer passed over
75% of the conformance tests from the VHDL VMS Analyzer Test
Suite and performed well in the areas of compile time, mem-
ory usage, and disk usage. Recommendations for future
research include adding user options to the Analyzer and

implementing a design library for VHDL designs.

A Production-Quality UNIX
Very Bigh Speed Integrated Circuit (VBSIC)
Hardware Description Language
Subset Analyzer

I. Problem Statement

Statement of the Problem

The Department of Defense (DoD) has standardized a
hardware description language for Very High Speed Integrated
Circuits (VHSIC) called the VHSIC Hardware Description
Language or VHDL. To gain widespread acceptance in the
academic community, the VHDL software tools (analyzers,
simulators, and code retargeters) must work in the computer
environment many universities now use--UNIX!. But, as yet,

no such UNIX VHDL toolset exists.

Background

To put this problem in perspective, I will briefly
describe VHDL: what is it, why is it important, what makes
a UNIX VHDL design environment desirable, and what needs
must be met to produce such a UNIX VHDL environment. I will

also relate current research in VHDL to these needs.

1UNIX is a trademark of Bell Laboratories.

L e

N an e an a0

an o n

VHDL, among other hardware description languages, is

used to design, document, and validate hardware components
(Lieberherr, 1985:55). Its syntax and semantics allow
hardware designs to be precisely specified and those designs
to be unampiguously transferred among design engineers and
organizations (Lipsett and others, 1986:28). But, other
hardware description languages, such as ZEUS (Lieberherr,
1985), CONLAN (Piloty and Borrione, 1985), and Computer
Design Language (CDL) (Chu, 1972) among others, have been
widely used, some being used as early as the 1960s. And in
this widespread use lies part of the problem facing the Air

Force today.

In February 1985, the Air Force issued its reliability
and maintainability (R&M) plan, called "R&M 2000," which is
intended to provide greater reliability and maintainability
in defense systems (Goodman, 1987:58). Specifically, in
contracts for new defense systems, R&M criteria are now
given as much weight as cost and performance. One of the
main goals of R&M 2000 is the use of VHSIC technology in
place of more bulky circuit boards in aircraft avionics
systems. For example, one VHSIC board can take the place of
several line-replaceable units currently used and, at the
same time, offer a speed increase on the order of three to
four times. Also, the number of maintenance personnel
necessary to maintain and repair the VHSIC boards can be

reduced (Goodman, 1987:58). However, such advances in

RSV VLTI S AR CR A

technology do not happen without a price. "Already in the

$2 to $5 million range, development costs of advanced ICs
[integrated circuits) must be reduced to economically meet
future government IC demands" (Dewey and Gadient, 1986:13).
The use of hardware description languages can help reduce

these development costs.

As mentioned above, many HDLs exist but none have
gained widespread acceptance (Lieberherr, 1985:55; Nash,
1984:18). Because of this, the Department of Defense began
a program, VHDL, to standardize a hardware description
language for VHSIC systems (Dewey and Gadient, 1986:12).
VHDL is an Ada? -based hardware description language. Its
goals are to "address the broad range of descriptive
abilities required for advanced electronic system
documentation, and to establish a standard for eliminating
current diversity in hardware description languages" (Dewey
and Gadient, 1986:13). VHDL is designed to be flexible:
the VHSIC design engineer need not be concerned about the

design style or technology used (Waxman, 1986:92-93).

VHDL tools delivered under the DoD contract (ASD, 1983)
run under the Digital Equipment Corporation (DEC) VAX/VMS

(Virtual Address eXtended/Virtual Memory System) operating

2 Ma is a registered trademark of the U.S. Govermment (Ada Joint Program Office).

AR AN e N

system® (Deitel, 1984:507-508). This operating system {(or

environment) is in general use in the commercial world.
Universities, given the responsibility to educate their
engineering students in the use of HDLs, need a VHDL toolset
to run under UNIX (the other major operating system for the
VAX and a de facto university standard). To meet this need,
AFIT and the Air Force Wright Aeronautical Laboratories
(AFWAL) decided in 1985 to investigate the "development of a
UNIX-based VHDL integrated tool set, which subsequently be-
came known as the AFIT VHDL Environment (AVE)" (Carter and

others, 1987:3).

The 1986 prototype AFIT VHDL Environment (see Figure 1.1)
consists of a prototype VHDL source code analyzer
(Frauenfelder, 1986), a kernel VHDL simulator (Lynch, 1986),
a parallel VHDL simulator design (Kamrowski, 1986), and a
VHDL-based microcode retargeter design (Decker, 1986). 1In
1987, two thesis efforts were started to complete the work
begun by Frauenfelder and Lynch. Research will continue in
the other areas as student interest warrants (Carter and

others, 1987:3-6).

Scope

The goal of this project was to produce a production-

quality VHDL analyzer, using Frauenfelder's prototype as a

3 This toolset delivered under the DoD contract will be referred to as the VHDL/VMS
system in the remainder of this paper.

- - A TG

- -

Software
Simulator

-

Hardware
Simulator Engine

Simulator __, . l .
Generator

VHDL
Analyzer

=

Form

| % i e s o

[
: Code %ﬁﬁ
i) Checker Compiler

. -
O e

Figure 1.1 AFIT VHDL Environment (Frauenfelder, 1986:1.3)

o foundation from which to work. To define this goal more

precisely, four steps needed to be completed:

1. Identify what a VHDL analyzer should do.

R
3 2. Define what is meant by "production-quality."

)

" 3. Apply this definition to the Analyzer project.

K¢ 4. Define the tasks needed to make the prototype

3‘ analyzer a production-quality product.

N

4

; The VHDL Analyzer. The DoD contract specifies the pur-

W

; pose of the VHDL Analyzer. In general, the Analyzer must

)

)

4

§ 1.5

1)

’ - Ld - 128 Ba® Bl VBT -8 L A LEY L B L. LI " O T - - - - M , . i

‘:’\\.‘ ?"Q‘ . ﬁ ‘] .";!..‘1 \ ' 'ﬂ ¢ t’.“ \'(..- J‘\ ¢ ‘ ‘ - \ ‘ -\q" .:.‘- -. \ - -\:.‘. -4,“:'(_‘: t-,:'r:f--f\f v ~.._: J"—

...\I. e \'l" !
4

T

.. e -

) ™
. "‘I. v ‘.'n".t.. ()

(1) check syntax and static semantics of the VHDL source and

{2) organize design and documentation data into a more effi-
cient machine readable form called an Intermediate Represen-
tation (IR) (ASD, 1983:11). Specifically, the DoD requires
the contract VHDL Analyzer to:

1. Detect all input syntax and static semantic

source code errors.

2. Be syntax driven.

3. Be written in Ada.

4. Run on VAX 11/780 under the VMS operating sys-
tem.

S. Be production-quality (ASD, 1983:11).

Because the IR forms the important interface between the
Analyzer and other tools in the VHDL design environment, the
DoD requirements for the Intermediate Representation should
also be presented. The purpose of the Intermediate Repre-
sentation is to "allow a lower level description of the VHDL
source to serve as an aid in interfacing the VHDL to various
design automation tools" (ASD, 1983:11). The IR is meant to
solve interfacing issues, not transportability ones, because
the VHDL source is the medium for transportability (ASD,
1983:11). An IR for VHDL should (1) be organized in an
orderly manner for easy access of any information it
contains and (2) be independent of host machine environments

and tools (ASD, 1983:11).

W N L L L% L T \ L i mt e e .
A B L ML R Mt »A|'| -! PPN ‘}-.).'%,.\) ‘-". »~ Lt I . ‘ ‘. . *1' "-“h

) 5

Production-quality. The DoD's requirement for
production-quality, while certainly necessary, is
nonetheless quite general and needs further clarification.

In The Mythical Man Month, Brooks asserts that a useful

"programming systems product" should have the qualities of:

Generalization. The tool should accept a wide variety

of input (correct as well as erroneous) and, if the toecl is
part of a programming system, it should interface acceptably

with various other tools.

Reliability. The tool should be tested thoroughly, by

itself and in conjunction with other tools. This also
implies the interfaces between each tool must be well-

defined and stable.

Maintainability. The tool should be designed in a way

that supports testing, modification, and extension. It
should be thoroughly documented, both internally and exter-

nally.

Economy. Brooks says the tool should use a "prescribed

budget of resources" (Brooks, 1975:4-6).

Production Quality UNIX Analyzer Criteria and Require-
ments. From Brooks' definition, the production-quality UNIX

VHDL Analyzer for the AFIT VHDL Environment should meet the

following specifications:

20000 LR LS LAY VA S EL AL S LR O EAT AT AN (G X CRVR T |

(2.8 o a - 4 a'd . .8k :oa Py T TR WO FCTOR] e R TOF R TOR LRV X) (3

o Generalization:

) 1. The Analyzer must run under the latest version UNIX

‘ and use those toocls commonly found in that programming envi-

; ronment. As discussed above, the projected audience is the

" academic environment which generally prefers UNIX. Using

o common UNIX tools, such as the programming language C
(Kernighan and Ritchie, 1978) and compiler-compilers like
yacc (Johnson, 1978), allows more people to be able to use
this product. This requirement precluded the use of Ada or

! the use of any licensed commercial software, because not all

e UNIX installations have Ada or have invested in the same

A types of commercial software tools.

i 2. The Analyzer must run on several different computer
"W configurations. This showed that the Analyzer is not tied
"o

W to any specific computer hardware and ensures portability.
" Specifically, this Analyzer was ported to a VAX 11/780, an
o ELXSI 6400, and a Sun 2 workstation. The VAX was chosen be-
)

H .

i cause it represents the general-purpose class of computer

1

?

" found in many university computer installations. The Elxsi
LU

= and the Sun are representative of the newer generations of
)

ﬁ: faster and smaller processors that are now being acquired by
0

ﬁ' the academic community.

[}

"

»& 3. The Analyzer must analyze both correct and incor-
b

i rect VHDL source. For incorrect VHDL, the Analyzer must

u

& recover "gracefully"” from any syntax or static semantic

o

"

o‘l

0t

o 1.8

n

by

PR A ST el B I e N AT A AT AP R N I i

Lt e A

J error, with an appropriate error message. It is impossible
to ensure that every error be detected, but the Analyzer

should not "crash” dAue to an incorrect input.

P

Ey

Testing:

4. The Analyzer must pass a comprehensive (though not
N necessarily exhaustive) test suite designed to exercise each
VHDL grammar rule and associated program modules as thor-
oughly as possible. The Analyzer was tested in the same
: manner and with the same test suite as the VMS version. The
VMS VHDL Analyzer Test Plan is documented in (Intermetrics,

1984b) and examples of these tests can be found in Chapter 5

’

. and in Appendix C.

(.

[\

¢ Documentation:

3 5. The Analyzer, including the intermediate represen-
‘p tation, module interfaces, and major data structures, must
. be well documented. This thesis provides a large part of
) this documentation by explaining the design decisions made
>, during this project.

3 Maintenance:

: ’

)

a 6. The Analyzer should be easily maintainable and ex-
% tensible. The source code should include in-line documenta-
a tion and interface specifications for each module or

L)

2 function. In general, it should subscribe to the use of

.

3

)

3 1.9

o P e A A i A - . e ama nh e e
Ly o N N N o T 3 T e AT O O . LAY WY . R L P Y |

LIV PO PO POR PN PUR POS PO TOF PUR FORPUN U U MU Uy

good software engineering practices, such as information
hiding, data abstraction, and module cohesion and coupling

(Pressman 1982:Ch. 7).

Interfaces:

7. The Analyzer must produce an Intermediate Represen-
tation that provides the necessary information to the other
tools in the environment. By "necessary"” it is meant that
IR should provide at least as much information as contained
in the original VHDL, i.e. structure and behavior (Nash and
Saunders, 1986), though it should be "distilled" and
organized for easy access, according to the DoD requirement.
If a tool needs more information than VHDL can supply. then
it will not be well-suited for the AVE, unless it does not

rely solely on VHDL for input.

8. The Analyzer's IR must be efficient and provide
easy access to the information it contains. Comparisons of
different IRs for VHDL were used to determine which repre-
sentation was best for the Analyzer, based on ease of
information access and the resulting output data size.
Descriptions and examples of the researched IRs can be found
in Chapter 2, with the results of those comparisons being

presented in Chapter 3.

1.10

T L L TN L. AL o e PGS e
A AT T T e T e i L T M W T T T T T e

P

e

-

e e) e -

R TR RS

Y

Ao > _ow on e

-

[

- - - -

L}

AN S

System Resources:

9. The Analyzer must be able to process VHDL designs
within a "reasonable" time period, dependent upon the size
of the design. Since many people equate compile times with
production-quality, the Analyzer must be efficient in its
use of CPU time. The goal for this project was 1000 lines
of VHDL source analyzed per CPU minute on an unloaded VAX
11/780 running UNIX bsd 4.2. This goal is the same as for

the VMS VHDL implementation (Intermetrics, 1984a:2.2).

10. The Analyzer must conserve the use of main memory
and secondary storage in order to be usable on smaller UNIX
systems. One goal of this project was that the Analyzer not
require more than 640K of main memory for any VHDL descrip-
tion. The resulting output will, of course, be dependent
upon the size of the input description, but it should be
compact, without sacrificing efficiency. The goal for this
requirement was that the IR output should not, on the
average, contain more than 100 bytes of data for each VHDL
statement. Both these figures are based on the corres-
ponding design goals of the VMS implementation

(Intermetrics, 1984a:3.2, 1985b:2.1).

System Integration:

11. After the Analyzer had passed the test suite

described under Testing, it had to be tested in conjunction

1.11

T W
e)

R AL TS
e S NS R R Y o d

with the simulator. This further exercised the IR interface

and demonstrated the "end-to-end" use of the system, from
VHDL input to simulator report output. VHDL designs (such
as adders, shifters, etc.) which have a limited number of
input/output states were used, sc that the resulting simula-

tion was more easily verified.

The scope of this research project did not include

several closely related areas, such as:

1. Optimizing the IR format output. Optimization of
the Intermediate Representation, like object code optimi-
zation for software compilers, involves several code-
improving translations (Aho, Sethi, and Ullman, 1986:Ch. 10;
Barrett and Couch, 1979:Ch. 11). During this project, most
of the research was directed towards increasing the
capability of the Analyzer. Once the IR had been enhanced
and modified, it needed to remain static so that concurrent

VHDL projects would have a basis from which to work.

2. Rewriting the Analyzer to conform to the upcoming
IEEE standard VHDL. VHDL has been proposed as an IEEE stan-
dard hardware description language, but with modifications
to Version 7.2 (CAD Language Systems, 1986). Because the
primary interests in this research are Version 7.2 and the
comparison between the 7.2 versions of the VMS and UNIX

Analyzers, a separate IEEE VHDL Analyzer was not a product

of this project.

e e I_\I‘}J‘:V?{}j

l-uI-u!UNIl'lNlHﬂIRHﬂH'BH'HHHV!N!'ﬂN'HHN'IHU'ﬂH'EIHU“HMHHE‘NUHNVHNT!NTRﬂ'ﬂﬂﬁ'ﬂ!ﬂ"?ﬂnlﬂ

The Prototype Analyzer

Because it served as a basis for the production-quality
Analyzer, the prototype analyzer was evaluated against the
project requirements. This evaluation showed the areas that
met the requirements, as well as those needing change or
improvement.

Generalization: The prototype runs under UNIX on

both a VAX 11/780 and an ELXSI 6400. It is

written in C and uses the UNIX tools lex (Lesk and

Schmidt, 1978) and yacc (Johnson, 1978) for

lexical and syntactic analysis. It does not
include error recovery for syntax errors.

Testing: Testing (and the prototype test suite)
was limited to those constructs implemented in the
prototype, mainly declarations. (See Table 1.1.)

consists of Frauenfelder's thesis (Frauenfelder,
1986) and a technical report detailing the func-
tions of each module in the prototype.

Interfaces: The Intermediate Representation of
VHDL produced by the prototype is modeled after
Design Data Structure (Knapp and Parker, 1984) and
‘ is called the VHDL Intermediate Access (VIA). The
! VIA will be discussed in more detail in Chapter 2.

E Documentation: Documentation for the prototype

Maintenance: The prototype is well modularized

Y and commented. As mentioned above, a maintenance
1 document describes each of the modules functions
and expected inputs.

System Resources: The prototype can analyze 1000

lines of VHDL source in under 3 minutes CPU time,
however, the total execution time was over 30 min-
utes. The resulting VIA output file was over 3
Megabytes in size.

B e o g

Table 1.1 Implementation of the Prototype Analyzer
({Frauenfelder, 1986:A.1-3)

!7 Language Subset Level of Implementation
-
1. Design Entities Implemented except for port lists.
2. Context Clauses Implemented.
3. Declarations Implemented except for interface lists
and port lists.
4. Expressions Not Implemented.
5. Sequential Not Implemented.
Statements
6. Concurrent Not Implemented.
Statements
7. Configurations Inplemented.
8. Subprograns Implemented except for parameter
lists.
9. Other (Not applicable)

System Integration: The prototype has not been
integrated with other tools in the AVE.

Research Approach

To extend the prototype to meet the Analyzer require-
ments, based on the above evaluation, the following sequence

of tasks had to be accomplished:

1. Find ways to make the prototype's Intermediate

Representation more efficient or find a more efficient IR.

The prototype's IR, called the VHDL Intermediate Access

"ihi

ot

- W P e -

K - .) . e e -,
g'i“k(‘!...q“ ‘.V.‘.‘ ‘ ‘.. B ““ - - -,\\.n'.',-)‘.,.-}-..-.'_\)\ WLV N ---"J‘: TS AT - T p*‘..- n

(VIA) (Frauenfelder, 1986:3.16), d4id not meet the design

goal of 100 bytes per VHDL statement, even after some minor
modification to reduce its size. Also, VIA's use of
variable length records and complex bindings makes it harder

to process and, therefore, requires a more complex internal

data structure than a representation with a fixed record
length and a simpler linked-list or tree structure. These
disadvantages of VIA prompted research into other possible

IRs, the results of which are presented in Chapter 2.

2. Document the IR for use by other tools in the AVE.
Whatever the form of the IR, it must be well documented
because it serves as the interface between the VHDL source

and the AVE tools.

3. Adapt the prototype for use of the new IR. After
selection of the IR, the prototype was modified to generate
this new IR while keeping the same level of capabilities as
the original prototype. Comparisons were then made to
ensure the efficiency of the new prototype had not degraded

with the modification.

4. Add error handling capabilities to the Analyzer.
Error recovery, and understandable error messages, are vital
parts of the human/computer interface (Kantorowitz and Laor,
1986:627-629) and allow the tool to accept a wider range of
input, i.e. erroneous as well as correct. Error recovery

was quickly added to the prototype so that it could continue

1.15

Bl A) » n i X

f R T T TR T TE U TN TN TR W UW TR US TR U DE N U O Ol O O DN O O T U T T O DR UW UV DR T Ty W T W W T e W e

to be used early-on in AFIT classes as a VHDL syntax and
semantic checker, thus providing feedback on the correctness
of the Analyzer's construction throughout the thesis

process.

5. Construct/obtain a test suite for the Analyzer
which tests for syntax and static semantic conformance to
VHDL Version 7.2. Construct/obtain a test suite that tests
the Analyzer's performance. As mentioned before, the
Intermetrics VHDL Analyzer test suite (Intermetrics, 1984b)

was used to test for conformance to VHDL Version 7.2.

Research by Dukes into the performance of VHDL design
environments resulted in a set of VHDL designs used to test
system performance and integration (Dukes, 1987). Finally,
VHDL designs for common TTL ¢ircuits (written by graduate
students studying VHDL) were also used in testing system

performance and integration, as well as error handling.

6. Add full language capabilities to the Analyzer.
Following the completion of the VIA modification, the
Analyzer was modified to accept the full VHDL language and
perform semantic analysis on a major subset of the language.
VHDL, like Ada, is a large language with many capabilities.
Concurrent work at AFIT by Dukes showed that many of VHDL's
features are not absolutely necessary in order to analyze
and simulate a large class of circuit designs, even if the

designer chooses any of the programming methods offered by

R A L G S B R R PO S

T

rgn P = o e

LI A P

[IR R I LR)

oy - . .~y - g .= - - . -~ - BRI e mg e
LSOO A RO Cadln O A A et Y uc, WM .t. N .. "] .‘ L1 7o y f\'. *. ¥ | * ".) W ‘.\d-"'.\'..'rl\::'r:".;j

VHDL: dataflow implementation, structural implementation,

or procedural implementation (Dukes, 1987). For example,

components may be declared and instantiated using the

configuration body declaration or by using component decla-
rations and instantiations. By using the second choice, a
complete design can be implemented using only entity and
architecture declarations. The implementation of
configuration body declaration and other alternative methods
was deferred so that more effort could be devoted to
developing those portions of the language that provided the
"most return” on the time spent in terms of being able to

simulate a VHDL design.

Frauenfelder divided the VHDL into nine subsets (Table
1.1). What remained of Analyzer development, at a minimum,
was to complete the semantic analysis of the language
subsets that had not been implemented. 1In order to maximize
the utility and therefore the potential for feedback of the
Analyzer while it was still in its maturing phases, the
expression, sequential statement, and concurrent statement
subsets were implemented first. Each subset was designed,
implemented, and tested before proceeding to the next,
thereby increasing the capabilities of and feedback from the
Analyzer--from source VHDL analysis to VIA output--as each

subset was completed.

L aa o e

7. Perform Analyzer and system integration tests.

After completion of each subset, testing ensured that the
Analyzer produced the correct output for valid VHDL input
and produced the correct error message for invalid VHDL
input. 1In this manner, the addition of new language
constructs that introduced errors in the existing implemen-

tation was quickly discovered and corrected.

8. Document the Results. The major design decisions,

results, and conclusions are documented in this thesis.

Maximum Expected Gain

It is vital to the future growth of VHSIC technology
that universities, as well as industry, become involved in
VHSIC research. Universities provide both the Government
and industry with well-trained men and women, who are able
to design, implement, and manage new VHSIC research pro-
jects. The DoD VMS-based VHDL Analyzer will help stand-
ardize VHDL in the industrial community, but universities
also need the tools to teach tomorrow's engineers and
managers. A UNIX-based VHDL Analyzer is an important (and
necessary) first step in the insertion of VHSIC technology

into the academic community.

Overview of the Thesis

This thesis is presented in six chapters. Chapter 2

reports the results of a literature survey of previous

PRI I I R R I A P N A D g
AT AR A S VR VA 5 s VU T A LS L

Kot e

"
v
o
’.
0
W
‘ -

W hiS S L) »
UG ORCR WK M X OO W SN -l LW, -\ "

¥ fat dad dad §.8 AR AN MR LYY N O Y T U U R R O OO T T SO TR T Y WY T T T T RO T

research on VHDL, Intermediate Representations, and error
recovery; it forms the foundation for the system design
presented in Chapter 3. Chapter 4 elaborates on the system
design, giving the details of the modified VIA format and
the language implementation. The testing procedures and
analysis of the system design are presented in Chapter 5.
Chapter 6 summarizes the findings of this thesis and offers

suggestions for future research in the area of VHDL tools.

1.19

-y

® P S 3 TS AT N IS RS SR e
L M X M XY) g oo, .) WD

N

D vx—vv‘

T T N I ABT AT AL AU NE AN |

IX. Literature Review

Introduction

Purpose for Literature Review.

A philosopher of imposing stature doesn't think in
a vacuum. Even his most abstract ideas are, to
some extent, conditioned by what is or is not
known in the time when he lives.

--Alfred North Whitehead (1861-1947)

Research, then, depends on the previous knowledge of
others. This chapter describes the result of a literature

review undertaken:

1. To discover if other VHDL/UNIX research work
at other institutions was being conducted.
Specifically, I suspected the prototype inter-
mediate representation, VIA, was not optimal for
use with a wide variety of tools in the AVE. How
were other researchers handling the problem of
choosing a VHDL IR? (These results will be
presented in the section discussing Intermediate
Representations.)

2. To survey existing error recovery techniqgues,
since error recovery, not included in the proto-
type, must be a capability of the AVE Analyzer.

3. To uncover research with hardware description
languages (and, where applicable, software
programming languages) that would support the

system design decisions that must be made to
satisfy the project requirements.

UNIX VHDL Analyzers

Currently, the only other UNIX VHDL research being

conducted is at the University of Pittsburgh, under the

B S T R
PR T P PR s T AL . |

L

direction of Levitan (Levitan, 1987). His design of a

"stand-alone" VHDL analyzer/simulator is based on Frauen-
felder's prototype, but with several differences. First, he
uses C source code as the Intermediate Representation for
the analyzer. (This choice is further discussed in the
section "Intermediate Representations” in this chapter.)
Second, this system is not being initially designed with
other tools in mind, as were the prototype and the Analyzer

described in this paper.

Error Recovery

One of the requirements for the Analyzer is that it
detect errors and recover from those errors, i.e., it must
not "crash." A good error handler needs to perform the
following functions:

1. It should report the presence of errors

clearly and accurately.

2. It should recover from each error quickly
enough to be able to detect subsequent errors.

3. It should not significantly slow down the

preocessing of a correct program (Aho, Sethi, and

Ullman, 1986:161).

Several methods of error handling exist. Tremblay and
Sorenson classify error handling techniques into the

categories of acceptable and unacceptable responses to an

error. Acceptable responses are reporting the error and

[St |

either recovering or repairing the error!. Unacceptable
responses are not reporting the error and either crashing,
looping, or producing an incorrect object program. To
report the first error and halt is also unacceptable
(Tremblay and Sorenson, 1985:183-185). Since this project
required that the Analyzer respond acceptably to errors,
either error recovery or error repair were deemed

potentially useful techniques.

Error Repair. Error repair modifies the source program
to provide subsequent parts of the compiler with a syntac-
tically valid input. This modification takes place by
inserting or deleting source text and can be accomplished
without modifying text which has already been translated.
Several methods of error repair exist: ad hoc repair,
syntax—-directed repair, context-sensitive repair, and
spelling repair. Ad hoc repair calls special error handling
routines which are capable of repairing various classes of
common errors. Conway and Wilcox (1973) used this type of
error repair in their PL/C compiler. Syntax-directed
repair, used by Holt and Barnard (1976), tries to construct
a valid syntax tree by inserting a terminal symbol into the
source text when one is expected and not found. If one of

several terminal symbols can be inserted, an "insertion-cost

! Another acceptable response is to report the error and carrect the error to what
the programmer originally wanted. Even with the current advances in artificial
intelligence, this is still not possible (Tremblay and Sorenson, 1985:185; Horning,
1976b:533).

L A% 3 v‘\ L S iy Ve e e L Tw
3 b A e o ey P g e e e e e Sl ay m . Pt ~
5078, 0" M) AN A Mo ". WA LA.{J_{_L 2R ._"A.'-; I .\. e .;_ “L‘. KA "':4‘

PR AT ARG WL ﬂ.‘J

: f / " ” \- .‘l aa’ ..- V --‘u‘r " o .’ ."- = A" " A"

vector" is associated with each terminal symbol and the
algorithm attempts to minimize the cost (Tremblay and
Sorenson, 1985:201-202). Context-sensitive repair ensures
that "repaired” operands have the correct attributes for a
particular context. Again, default or universal values are
replaced in the source text, similarly to syntax-directed
repair {(Tremblay and Sorenson, 1985:202-203). A spelling
repair algorithm by Morgan (1970) attempts to correct simple
typing mistakes causing an identifier to be mistaken for a
keyword or vice versa. The types of mistakes Morgan's
algorithm corrects are: one symbol changed, inserted, or
deleted and two symbols transposed. This algorithm is

discussed in more detail in (Tremblay and Sorenson,

1985:203-205).

Error Recovery. There exist several means to achieve
error recovery in a compiler or analyzer. The panic mode of
error recovery is the simplest to implement, but has the
decided disadvantage of throwing away source input that has
not been checked for validity (Tremblay and Sorenson,
1985:199). Aho and Johnson propose the use of error tokens
(in grammars that define languages such as C) as a means of
error recovery. When the parser detects an error in a
production containing an error token as a terminal symbol,
it replaces the current input with error and reports the
error. The parsing stack is then searched for a state that
can follow error and parsing continues (Aho and Johnson,

1974; Tremblay and Sorenson, 1985:196: Horning. 1976b:537).

Nt A ay, A R A T e 'x\"a-.'\:-."h"_mi

TR,

The main disadvantages of this method are that it increases

the size and complexity of the grammar and it may make the
grammar ambiguous (Horning, 1976b:537). Also, if error
tokens are not properly specified, then this method can
behave similar to panic mode recovery. On the other hand,
the use of error tokens with the UNIX tool yacc is fully
documented in (Schreiner and Friedman, 1985:Ch 4). These
two facts are important design criteria in deciding whether

to implement error recovery rather than error repair.

Intermediate Representation

Currently, there are three Intermediate Representations
being used with VHDL: Intermediate VHDL Attributed Notation
(IVAN) (used in the VMS version), VIA (used with the
prototype), and the language C (used with the Pittsburgh
version). These were researched first, along with the model
for VIA, Design Data Structure {(Knapp and Parker, 1984}.
Rather than restrict the survey to only VHDL implementa-
tions, other hardware description languages were studied to

determine if any other particular IRs were in frequent use.

Intermediate VHDL Attributed Notation (IVAN) (Gilman,
1986:46). 1IVAN is an annotated form first produced as an
abstract syntax tree (AST) by the lexical and syntactical
phases of the VHDL/VMS Analyzer. An AST is a tree where
each nonleaf represents an operator and each leaf represents

an operand. For example, the AST for a VHDL

signal_assignment statement is shown in Figure 2.1, along

vy

~

T,

LTS

g
>

b)
)
n

> o
N AN AN N '\..‘aihj\'i* P:A'J'. _ﬂ'-n't.h'l‘ ‘" "&‘.A .a..

......

VHDL Source: SUM <= S1 xor CIN ;

Parse Tree: sequential_statement

signal_assignment_statement

signal_name_list <= waveform

simple_name waveform_element
indentifier expression

l ,/I\
naine relimon xor re zlation

SUM simp‘e_expr simplle_expr

term term

fac!tor fac!tor
primary primary
nalme na!ne

simplT_name simplr_name
indentifier indentifier

S1 CIN

Abstract Syntax Tree: signal_assignment_statement

SUM xor

N

S1 CIN

Figure 2.1 Parse and Abstract Syntax Trees

T sy T s s e R

with the more specific parse tree. Later phases of analysis

"decorate" the AST with semantic attributes. Thus IVAN is
to VHDL as DIANA (Descriptive Intermediate Attributed
Notation for Ada) (Evans and others, 1983) is to Ada. 1In
its use with VHDL, IVAN's advantage is that it preserves the
exact structure of the original VHDL source. Its main
disadvantages are that it, like DIANA, is not a compact
representation of the input VHDL and, because it mirrors the
original VHDL source so closely, accessing IVAN's

information requires the use of a database manager.

Design Data Structure (DDS). DDS forms the basis for a
design library database that supports the interactive
retrieval for an expert synthesis system (Knapp and Parker,
1984:4). The smallest unit represented in DDS is a
component, with each component represented in four abstract
subspaces: dataflow subspace, timing subspace, structure
subspace, and physical subspace. Each subspace or view
forms a tree, and complex relationships can exist among the
subspaces. Included in the respective subspaces are values
for the following entities (Knapp and Parker, 1984:10;

Frauenfelder, 1986:2.6-2.11):

dataflow: nodes and values
sequencing: points and ranges
structure: modules and carriers

physical: blocks and nets

N R R R R SR LA LY
TN LT AT e R, o .\"_\".\.":-.‘f\.‘ﬁj

" i e an n u

-

An example illuminates DDS capabilities. In VHDL, a

signal is an object which can be used to connect design
components together and can, over the course of time,
acquire a series of values. It assumes these values through

a signal assignment statement, such as the one that follows:
SIG <= '1l' after 5 ns ;

Translated, this statement means that the signal "SIG" will
get the value TRUE (binary 'l') after 5 nanoseconds ("ns")
have elapsed. In the DDS model, "SIG" is a carrier, "<=" is
a node, 'l' is a value, and "after 5 ns" represents a range.
The DDS representation is shown in Figure 2.2. From this
representation, one sees the division of this simple
statement into three of the four subspaces. Bindings exist
among the subspaces, shown by the dotted lines connecting
those subspaces. As can be seen, this simple example can
become rather complex, as other statements and more bindings
are added. The hierarchy can consist of several levels and
is rendered complex by the fact that the bindings tie the

subspace hierarchies together into a network.

While the descriptive qualities of DDS in defining the
structure of a design are among its strong points, a decided
disadvantage is the artificial division of a design's
behavior into dataflow and tim.ng, a shortcoming that both
the authors (Knapp and Parker, 1984:12) and (Walker and
Thomas, 1985:459) recognize. A tool such as a design

simulator must recombine DDS's dataflow and timing

N NI N2 PR s Cula T a "aa®a e o g ara™ " G ataca A A ndn e A p . A L N
oo . iy Yy WA AR VN N ’ T B e e TR PO,

Component

Structural Dataflow Timing
Model Model Model
Single Single l Single Single
Carrier Node ‘ Value Range
T] 1
AN / /
SIG AN <= /' o after 5 ns
AN / /
N / /
AN /! 7
N /| 7/
NV
Binding

Figure 2.2 Signal Assignment Statement Modelled in DDS

..... et e P
AN St S SR S Gl
‘\:s':.a.{a.i,!\.".'ﬂ_s_".'..‘ﬁg

information into a behavior subspace, thus making DDS harder

to use. In addition, the timing subspace implementation
includes "a great deal of redundancy” (Knapp and Parker,
1984:23). While the authors go on to discuss the possible
tradeoffs and justify this redundancy, they also point out
that it requires "a large storage space" (Knapp and Parker,
1984:23). One should also note that VHDL does not make the
distinction in a design's behavior between dataflow and

timing.

A further disadvantage of DDS for VHDL is the
inflexibility of its control and sequencing statements,
which biases DDS towards dataflow and against algorithmic
representations (Knapp and Parker, 1984:6, 12): VHDL, due
to its flexible descriptive characteristics, requires both

kinds.

VHDL Intermediate Access (VIA). Frauenfelder found
that DDS could not represent all the information specified
by VHDL, specifically dynamic sequencing and scheduling.
VHDL can express the next state of a simulation based on the
current state; but DDS, using static sequencing, determines
all future states based on initial conditions (Frauenfelder,
1986:3.15). Accordingly, Frauenfelder extended DDS to the

so-called VHDL Intermediate Access (VIA) format (Frauen-

felder, 1986:3.16).

R TG S P NS ISR Y L - . g, o A
e N T A e A T N L AN A ;\i\'.\('i

VIA is a text file where each record (text line) can

reference another record by its line number (Frauenfelder,
1986:3.16). The format for each VIA record is:
record-number record-type-name
(field-name-1 = field-value-1;

field-name-2 = field-value-2;

field-name-n = field-name-n ;)

Each record is numbered in the record-number field; the
record-type-name determines which field-names will follow.
Using the DDS model for hardware, a VHDL design is analyzed
and broken down into three of the four DDS subspaces,
dataflow, timing, and structure.? This internal DDS
network is then written out in its external form, VIA.
Figure 2.3 shows a simple example of a VHDL interface
declaration and its DDS and VIA transformations. While this
example is simple enough to readily understand, the full VIA
hierarchy (shown in Figure 2.4) is many degrees more
complex, both visually and conceptually. Even though VIA is
an enhancement to DDS, many of the other shortcomings of DDS
(when applied to representing VHDL) also apply to VIA, such
as problems handling sequencing constructs and the arti-
ficial division of the design behavior. In contrast, VIA is
well suited for (1) describing the structure of VHDL, (2)
describing designs using dataflow implementations, and (3)

providing separate information on timing requiremeats.

2 VHIL does not currently represent the physical subspace.

S . .. P S
TAAN G .Mﬁf&fhfﬁ&fﬁ'-f‘.i‘.':‘q

- e e - .

T me m e O

D
D
U
Y
)

viatable component:

| name: INTERFACE_NAME
complete bit: true
operation_bindings: null
dataflow _model: nuli
timing model: null
structural model: null

component

Figure 2.3 VHDL Represented in VIA/DDS (Frauenfelder,
1986:3.18)

University of Pittsburgh VHDL. Preliminary information
on the University of Pittsburgh VHDL project suggests that
it will be built using the source code of Frauenfelder's
prototype as a basis. The proposal for this implementation
describes a compiler for a subset of VHDL coupled to a
mixed-mode simulator (Levitan, 1987:5). The compiler will
produce "a network of primitive logic elements” that
"captures the structural components of designs” and a

translation of VHDL to C source code for the behavioral

aspects of VHDL (sequential statements) (Levitan, 1987:3-4).

After the C code is compiled, the simulator will execute the

RupL
Agyoue jo
MUl SINYONNS

y a—

_ upd

(eanjonas /

ud
Mope3ep

Asgjoue 30
L upod

N

nuy

A04jout jo
| Aopeyep

Lepows
Adjour 40
PO [eanjonays

Riue

jueJa}}ip © Jo paoIed

p4028.4 auo 0} Jejujod

p.1038.

spa0oed fiuow 0} siejujod Qe
-

-aN3937

1opows
J04joue Jo

1opows Bujusy

AL ey
(L L DL i 2 moyeyep
— —
A0y4400 yujod MN|eA snpows obues spou
o bys s bys #buis abuys obus sdus
AUt i nuy| |opows {opows
teamon.ns || Bujuyy moyeyep (eanyonns

1spows
JoYjout 4O
SpOW Moy r\ep

W >

:B.3)

(Frauenfelder, 1986

.
’

VIA Record Hierarchy

Figure 2.4

2.13

B s SR E L2 LA O A A B P AL S

e

AR R N

%'r'

resulting object code whenever the corresponding behavior

has to be simulated. Levitan plans to "extend the software
to compile into an intermediate form suitable for a design

data base” (Levitan, 1987:6).

Other HDLs. ZEUS and CONLAN are general purpose
hardware description languages, similar to VHDL in their
support for hardware abstraction, modular design, data
abstraction and typing, functional/structural descriptions,
strongly typed signals, and user-defined data types (Aylor,
Waxman, and Scarrat, 1986:25-26). Both ZEUS (Lieberherr,
1985:56) and CONLAN (Piloty and Borrione, 1985:88) transform
their source HDL to abstract syntax trees. ZEUS, when used
for silicon compilation, stores the AST in a design database
(Lieberherr, 1985:56). The CONLAN intermediate represen-
tation uses Pascal record trees and, in future implementa-
tions, will also use a design database (Piloty and Borrione,

1985:88-89).

Patois is a C based "hardware systems modeling
language" designed by Dallen at Duke University. It allows
a design to be modeled behaviorally, structurally, and
physically from the initial specification through
simulation. Its primary use is to express a behavioral
description of hardware systems which can be used to drive a

simulator for verification and evaluation (Dallen,

1983:4.2).

™ AU

IS) T 18 A T S R I A S I S)
A AN A A A A A A A N A A AR

Dallen's intermediate representation is especially

relevant. He uses a two-part intermediate form, repre-
senting the structure and behavior of the design. The
structure portion is a list of the symbols found in the
design and their definitions. Essentially, this is a
listing of the analyzer's symbol table. The behavior
portion is translated into g-~code, essentially an AST,
(Dallen, 1986:Section 11.1) that models the behavior of the

objects in the symbol table.

Summary

This chapter has presented a survey of other VHDL
research, error handling, and intermediate source forms.
The work at the University of Pittsburgh on a UNIX-based
VHDL analyzer/simulator was discussed. The three major
types of error handling are error recovery, error repair,
and error correction. This chapter also reviewed inter-
mediate representations for HDLs, including IVAN, DDS, VIA,
C source code, ASTs, ZEUS, CONLAN, and Patois. Chapter 3
continues the discussion of intermediate representations
with an analysis of each representation and its suitability
for use with VHDL in the AFIT VHDL Environment. I will also

discuss the overall design of the AFIT VHDL Analyzer.

LA L B SN rd - -
TN N T N o o o, o, e,

III. System Design

. Overview of Chapter

Software engineering projects generally begin with a

set of requirements defining what the end product must

TP

accomplish. These requirements and the related tasks to

PRy

fulfill these requirements were presented in Chapter 1.
N Each task presented a problem to be solved, either with
existing solutions or with new solutions. For each task
from Chapter 1, I will discuss possible alternative solu-
b tions (except where one generally accepted solution exists),
along with their strengths and weaknesses, and outline the

proposed solution.

Find a more efficient Intermediate Representation. A
major issue that had to be resolved was the Intermediate
¥ Representation which the analyzer should use. The require-
] ments from Chapter 1 specify that it be efficient, provide
. easy access to the information it contains, and provide the
X information VHDL provides in a more efficient manner. Also,
as the analyzer moves from a subset compiler to a
' production-quality compiler, this IR must also expand in its
capabilities. The first step was to evaluate the proto-
type's IR, VIA, to determine whether or not to continue

using it as the Analyzer IR.

| o - e -

- -

)
L)
L)
L
() T M LRV PR B oy maem . m e M~ "I s~ .t e w ey - - - v " -

...A‘q l'-.l.h ‘-.I.o_l‘v l'v.\'. (L “. t.cu . A% .| D P MG 'Q ‘. ¥ '.‘l. '. .“I .L N Xl > f I~ A e b * ‘.\'. '.v{ by J' -?‘_{' ‘- -h\r\::\:j

- U W W . Yy A VERYUWUW LUV WL W N \"vmvununw‘

e

-

The primary strength of VIA is in its structural
descriptive capabilities, inherited from its DDS parentage.
The fact that these capabilities were implemented first in
the prototype demonstrates the facility with which VIA and

DDS can structurally describe VHDL.

One shortcoming of VIA as an intermediate form in a
VHDL design environment is in the area of the functional
behavior of an entity. The separation of an entity's func- h
tional behavior into timing and dataflow subspaces, which

are then networked together with the structure subspace,

causes several problems. First, there is not a one-to-one
relationship between the VHDL and the resultant VIA, thereby
preventing tools that rely on this relationship (e.g., re-
verse analyzers) from utilizing the VIA interface (Frauen-
felder, 1987). For example, a VHDL design described by VIA
has many more named objects (carriers and values) than do
exist in the original VHDL source. This results from the
manner in which VIA handles a complex hierarchy and the
bindings that exist among the levels of that hierarchy.
These additional names and bindings do not map to any unique
VHDL statement, but to the design as a whole. This becomes
a problem when one wishes to use VIA with a reverse
analyzer. A reverse analyzer, which supports the "reverse
engineering" of VHSIC chips, would use the VIA as its source

and output equivalent VHDL source code. Because the VIA may

generate, for one VHDL statement, many records and bindings

among those records, it does not lend itself well to reverse

analysis.

Second, tools that need access to both the behavior and
structure of a design (e.g., simulators) have to rejoin the
timing and dataflow subspaces into a behavior subspace.
Refer back to Figure 2.2 in the previous chapter. 1In order
to construct an event for simulation, the information from
the timing model must be retrieved as well as the informa-

tion from the dataflow model and the binding of those two

models. The simulator needs the timing tied directly to
transactions for efficient simulation. During simulation,
as the simulation clock advances, each transaction
(behavior) may be executed depending on its value (Inter-
metrics, 1985b:8.16-8.18). If timing and dataflow are
separated, the simulator either has to search both subspaces
for corresponding bindings to consolidate before the
simulation begins or must perform this search for every new
simulation clock cycle. This makes the design of the

simulator more complex and less efficient.

The prototype implementation of VIA also proved to be
rather unwieldy, though some improvements could be made.
Its DDS foundation requires the use of variable length
records, which, in turn, require the use of field names for
each VIA record. This is because a VIA field may appear any

number of times in one record, each field pointing to other

- e w2 tB

- e sy &

e e e

A R Ry N T A S N At SRS LR AL R LA SL PR Rt DL SN
‘.‘!. et S A 5 S “ ad v .' s '.' VAW Mo e ' Tt g T Sgr v

records. Thus, there is no way to know a priori how many
fields a particular record may have. This requires more
effort on the part of tools using VIA to parse and process

each record.

Finally, the most serious problem with VIA involves its
use cof system resources, specifically, disk space and CPU
time. The complex nature of VIA requires more computational
time for its creation. A medium-sized design consisting of
1000 dataflow-type statements (signal assignment statements)
took over 30 minutes to analyze on a lightly loaded VAX
11/780, with the resulting VIA output being over 3 Megabytes
in size. VIA certainly cannot be lightly regarded, but,
clearly, a more efficient and more general IR needed to be

found.

With VIA rejected for the above reasons, there were
three general categories of intermediate forms remaining for
the analyzer: (1) use an attribute—~annotated syntax tree
similar to the IVAN format, (2) use a high order language
similar to that being used at the University of Pittsburgh,
or (3) design a new intermediate form, possibly using

abstract syntax trees.

Recall from Chapter 2 that IVAN is an annotated Ada-
based intermediate form. Tools requiring access to the
original VHDL syntax, like reverse analyzers and VHDL

optimizers, can use the IVAN format. Another strength {(and

.4 COAACH,

L, weakness) is that it is Ada-based, i.e., that it uses an Ada
r compiler. This dependency insures IVAN portability among

o systems with validated Ada compilers, but not all UNIX

Q installations have such compilers. Since this project must
? use common UNIX tools, IVAN is an unlikely choice. Finally,
¥ as mentioned in Chapter 2, IVAN requires an ancillary design
:: library and library manager. Because the AVE IR itself is
C to serve as the design library., IVAN could not be used in

ﬁ the AVE without extensive modification or the development of
t supplementary tools.

R

7 Plans for the University of Pittsburgh VHDL analyzer

P call for separating the VHDL into a network of structural

; descriptions (which Levitan calls "primitive logic

' elements") and C source code (to represent the behaviors)
55 (Levitan, 1987:3). I will refer to this intermediate form
f: as VHDL/C. Independent of his effort, I developed a similar
& intermediate form using C, with the following conclusions:

"

E 1. The use of C is in keeping with the philosophy of
ié the UNIX environment--every UNIX operating system, being

; based on C, has a C compiler. This insures portability and
2 avoids one of the limitations of IVAN, which uses Ada.

7\
i_ 2. The division of VHDL, as by Levitan, into only

é structure and behavior components, is a sound decision,

:3 supported in the Language Reference Manual. The

% implementation of the simulator is thereby simplified in

: 3.5

:

Y

et W " 0 (N o ™ o, o, Wy oy - CRE 2 PR, o N o
MO e .‘ A ..‘ MEAEN T Sy e AL L DRAR LSRN

&' Aath 'l arh a'l ot otk ol 0 e %0 VR AR o G 040 L' AR Ah A a'0n tan AR £

n -
a

b

.';!

13‘

$' that whenever a design entity's behavior has to be simu-

LRy

»ﬂ lated, the compiled C code can be run instead. This allows
" an analyzer/simulator system to be more quickly designed and
M

" .

,Q implemented.

1",

o

'h 3. A major weakness of VHDL/C is that several VHDL

|‘ '»

< constructs have no direct C counterparts. These include

E)

5‘ signal attributes, physical types, array slices, and enumer-

ation types (in some C implementations). While block state-
s ments can be nested in VHDL, C functions cannot. Levitan
plans to avoid this issue temporarily by supporting "only

simple typing, scoping and visibility" and add the full

W
b language at a later time (Levitan, 1987:5).
N-d
1%
{f 4. Another major weakness results from the first:
e since this intermediate form is partly a C translation of
o
j% the VHDL source, tools relying on a representation of the
)
K .
o original VHDL source cannot use VHDL/C. Examples of such
$; tools are reverse analyzers and VHDL optimizers. Because of
.
i
': the nesting problem mentioned in the preceding paragraph,
.:“
I the normal hierarchy of design functions has to be
o "flattened" to be represented in €. This, for practical
R
;$ purposes, irrecoverably masks the structure, though not the
'
Qg behavior, of the original VHDL.
"
\2 5. Finally, the compiled C code hides much of VHDL's
h-
fé behavioral information on design entities. While simulation
1)
¥
4 tools do not need this information, tools such as Decker's
o
o

-9
L)

| . VORI TR " EARATEREREN R S LIV DR T I T T R -

o PN
¥ . e .
DAL 6 LAY, ¢ e, . . " . P T L L AL .\&.&_r_(\.(‘_.ri

microcode retargeter cannot use VHDL/C. This is true

because the microcode retargeter does not simulate a VHDL
design but relies on VHDL to provide a description of a
chip's structure and micro operations, which is then used to
retarget microcode for that chip (Decker, 1°86:9-12).

Therefore, behavioral information, as well as a structural

Y

N description, must be readily available in a general and

s

? efficient intermediate form. To use VHDL/C in this manner
» would require another analysis, this time from the C source
3

; code to some other form. This is not cost effective if

X other alternatives can be found.

X

;f In summary, based on the above discussion, VHDL/C,

e while suited to a "'stand alone' compiler/simulator system”
-

- (Levitan, 1987:5), cannot serve as the interface for a more
¥

'n general design environment, such as the AVE.

h

N

it ZEUS, CONLAN, and IVAN (to a degree) use abstract

5 syntax trees (ASTs) as their Intermediate Representations.
W

The main strength of this approach is that algorithms exist

i

Y for creating and maintaining ASTs (e.g., Noonan, 1985), as
) do ways for storing and retrieving ASTs to/from disk files.
! An AST, being created directly from the VHDL syntax, can

A% provide VHDL's structure to those tools that need to see

f this information. Figure 3.1 shows an example of a VHDL
R
\ design and the resulting AST representation, clearly

o',

; demonstrating the correlation between the two. On the other
+ 3.7

K

{

m

.

»

T - A ¢ ¥ . R X A0 {)'.‘ I{J‘:(‘ r -,-\‘ RS '-',‘-‘__J‘\J\- r \.,-‘ _\(R AR -\:-’,:'-‘.‘i_. f_\-‘\- \S\f‘ _A'..\ \bf\j

oSt e e

e e b W T A&

a'm s a A

S
0}

VHDL Simple Design:

entity IN_OUT
(X :inBIT;
Y : out BIT)
is

end IN_OUT;

architecture DATA FLOW of IN_OUTIis
B1: block
begin
Y <= X;
end blockB1;
end DATA _FLOW;

Abstract Syntax Tree:

X Y DATA_FLOW
A4 a1
BIT
signal_assign
C Representation: Y X
IN_OUT (X, Y)
int X, *Y;
{ *Y=X; }

Figure 3.1 VHDL Source and Resulting AST and C Code

PRI Y VR T R O T R W e L R N N I
R I N AN P R AT AT e N e A .(*“‘.r P

PR

! hand, an AST is not as concise a representation of VHDL

ﬁ behavior as C source code (which is also shown for

ﬂ comparison). But an AST can provide more explicit

% information, such as resultant types of expressions and

;? operations, which can be attached as attributes to each tree

node.

ol
-

FoF Bl L

The biggest problem with ASTs is that, while VIA and

DDS separate VHDL designs into too many subspaces, an AST

ft performs no separation at all. This lack of separation, in
Ej effect, hides part of the information that VHDL supplies,

4

5¢ the division into structure and behavior; a requirement of
&f the IR (from Chapter 1) is that it supply all the structure
-

‘3 and behavior information contained in the original VHDL.

Therefore, an IR with the simplicity of an AST coupled with

3

&

separate structure and behavior subspaces is needed.

AT

This requirement can be met using the Intermediate

™ Representation of Patois, which provides several advantages.
h

)

‘r First, it reduces the complexity of the analyzer by limiting
1‘ .

& the number of subspaces to manage to only two. Second, it

offers a more universal solution to the interface problem:

? VIA tried to fit VHDL into a model which was not well suited
;i to the needs of other AVE tools and VHDL/C tried to involve
" the analyzer in areas best left to the simulator (i.e.

? generation of C code, which is still the best way to handle
‘ﬁ the simulation). Also, Patois is already UNIX-based (being
%

L PO
SR A Tt

A .‘;.'- R - R
K 5 L . e,

._1 .‘1 .-- -’-' R"u. - .'d‘,\'w \.l ~il ,‘r ."‘ L] LI « A v ‘:- _-- - -
T e g e oo S e T A A L L TN

. s

N)
L3
.

—
s

written in C), virtually eliminating portability problems.

e
CX XA

i A new Intermediate Representation, based on Patois, was

1 developed and was also called VIA. This new VIA retains the
é overall structure of Patois, having structure and behavior

: divisions, but was modified specifically for use with the

. VHDL language. First, the structure division was modified
; in order to accommodate the types of objects found in VHDL,
& which are different from those found in Patois. This

ﬂ structure division is called the symbol table (SYMTAB).

' Second, new record types were added to the behavior

& division, since VHDL is a more complex language in this

; respect than Patois. The behavior division is called the

N operation table (OPTAB).
®

: Document the IR for use by other tools in the AVE. The
N definition for VIA can be found in Appendix B.

"
'J Adapt the prototype for use of the new IR. After

" having decided upon using the Patois-based IR as the new
oy VIA, the prototype analyzer was modified to generate the new
g IR. Due to the prototype's modular design, this involved

e only replacing the modules that generated VIA with ones to
;} generate the AST and modifying the semantic checking
: routines. The resulting design is shown in Figure 3.2.
K
: The lexical analyzer produced by the UNIX utility lex
% (Lesk and Schmidt, 1978) and the parser generated by yacc

: (Johnson, 1978) form the foundation of the analyzer. These
3
3

) 3.10

—.--\‘-x*;.f\ ‘.f‘-f’u he 'J'\.-"
> ¥%9,8%8. Roas Mg B (MR R X

WA '"ﬁiﬁi}iﬁﬁﬁﬁfﬁ}iﬁﬁ"t?.{;&ir}:k;'k&tirt}i

LIPS RN ~

O Wy

$ W e T Y
8, !'n. N 3 D‘l. “t.l'a.l . 3

- - - .

- o
> -

I A

S P o

:

i Y pL g < U + ’ 9.8 L AN (N 4 v . N “ Y - ¥ \! oy =y » Y ry ", 1ot

Symbol
Table
. Serhantic
VHEL—» Lexical |l parser [VIA Gen }—a=VIA
Source | Analyzer Analyzer
Message Operation
Handler Table
Output
Listing

Figure 3.2 Analyzer Design

J
YN Nulo‘

tools are common UNIX utilities and the de facto standards
for compiler development. The lex scanner groups the
individual characters of the VHDL source into lexical
elements (keywords, identifiers, literals, etc.) called
tokens. The yacc parser checks the syntax or the ordering
of the tokens in a VHDL design and creates a stack structure
of the results of the analysis of each VHDL grammar rule.

As each statement of the VHDL source is scanned and parsed,

. KN - . e
u‘unu ., ", 18 S "'5" J’"-’m‘k;

'L!.\.\._; R ‘qfﬁ'f“\d ('u.‘r 'u :h:n-' " "J a L : i

TN

LAY TR ST R IAIN YUYV P2 872 00 8"0 '3 s At MW in i 3 »; ‘a b dta dia’ Ay - W LY Uny UV RO T g,

yacc passes this parse stack to the semantic analysis
portion of the analyzer, which determines the semantic
validity of the statement. Symbol table and operation table
routines handle the creation of their respective tables as
each VHDL statement is analyzed. Errors, warnings, and
other messages are sent through a separate message handler,
to be output with the output listing. When a design has
been analyzed with no errors, the code generator routines

read the SYMTAB and OPTAB to generate the VIA.

The original structure of the symbol table was also
improved for efficiency. Execution profiling showed that
the prototype analyzer spent much of its time either
entering data into or retrieving data out of the symbol
table. The prototype design was based on a kernel for a C
compiler, using its simple linked-list symbol table,
modified for use with VHDL (Frauenfelder, 1986:3.4, 3.10).

A more efficient approach is to use a hash table for
identifier lookup and a display table to implement scope and
visibility. The hash table allows (in most cases) direct
access to an identifier, therefore, yielding constant 0(1)
lookup times versus O((n + 1)/2) time for a sequential
search of table of size n (Tremblay and Sorenson, 1985:429,
450). The display table is a stack of contexts. As
declarative regions are entered and exited, these contexts
are pushed and popped, causing the declarations they contain

to become visible and hidden. Routines to access a symbol

3.12

LA

o \"l“f‘ij‘ T

PR PREAS NANAARRALTS

-

b fak £av gad #.4 R R R AR T Ty oY L w ot ete

table implemented in this manner are simpler to construct
and more efficient than ones that have to work with a
linearly-ordered symbol table (Aho, Sethi, and Ullman,

1986:429).

Add error handling capabilities to the analyzer. The
alternative solutions for error handling discussed in
Chapter 2 are error recovery and error repair. In the
academic environment, students learning to program (whether
in a software or a hardware programming language) are more
prone to mistakes than in a commercial environment where the
programmers are expected to have more expertise. Error
repair is probably not cost effective because any error
handling technique that flags the errors (for the students
to later correct) will suffice in a learning environment
(Aho, Sethi, and Ullman, 1986:164). Therefore, only error

recovery techniques were considered.

The two main error recovery techniques discussed in
Chapter 2 were panic mode and the use of error tokens. As
noted there, a program that halts after detecting the first
error is not acceptable. Since error recovery should try to
uncover as many errors as possible, the panic mode method of
error recovery is unsuitable. Because the use of error
tokens is "built-in" to the UNIX tool used to create the

VHDL parser (yacc) (Schreiner and Friedman, 1985:Ch 4), this

means of error handling was selected.

" 'h »
.&A‘)AJx.l.A.A l.&j‘;hﬁ'ﬁf

“w \

e T

Y":;'.ﬁu L] u o

-

-
)

a

I

R

£

£

P

-
s WA v S

-,

- N e
P)

- -
b v

-

X

- -

)
A\l

) o ""'N""'..'
'l‘.l. AT Y * K) F - -iti»

Construct/obtain a test suite for the analyzer which
tests for syntax and static semantics conformance to the
VHDL Version 7.2. The actual test suite for the VMS VHDL
analyzer was used to test the analyzer for conformance. As
was mentioned in Chapter 1, VHDL designs by Dukes, augmented
by designs from other VHDL graduate students, formed the
test suite for performance and integration testing. More on

testing can be found in Chapter 5.

Add full language capabilities to the analyzer. After
the design for the VIA interface was selected, adding new
language constructs to the analyzer became more of an imple-
mentation problem than one of design. The methods proposed
by Frauenfelder which were outlined in Chapter 1 were used

in the implementation and are detailed in Chapter 4.

Perform analyzer and system integration tests. The
conformance tests, mentioned above, verify only that the
analyzer can process correct VHDL aiid detect incorrect VHDL.
Other tests and evaluations must be performed before the
analyzer can be deemed "production-quality.”" These tests
evaluate how well the analyzer performs, how well it con-
serves system resources, how portable it is, and how well it
performs with other AVE tools. The results of these tests,
as well as the analyzer conformance tests, are found in

Chapter 5.

. L e e 4 4 ¢ v e e, .
LA - \’ - -' -0 - f I -‘_! .
. ™ L

———

v & &« a8 L&

-
- -

-_--
)’ fod

e
"- LA

N
;u
‘
A
[}

Document the Results. This chapter, and Chapters 4 and
5, document the major design decisions and test results of

this project.

Summary

This chapter has presented the overall design of the
AFIT VHDL Analyzer with emphasis on the manner in which
alternative solutions were evaluated and a new IR was
selected. The selected intermediate form is based on the
intermediate form used in Dallen’'s Patois. The details of
the analyzer's implementation of the new IR, also called

VIA, are presented in the next chapter.

L2 -"

‘v”‘ .“\' LY o \J'.'I ¥,

PO

'-s\.\-\\‘-.\.x

N TR TR NI S N
!' e ".A} ‘lq..'.a“-_.nr_h\l‘.‘\‘\.ﬂ‘_‘ .A\‘\..]

P T

IvV. Detailed Design

Overview

In Chapter 1, requirements the Analyzer had to meet in

order to be considered production-quality were discussed. To

satisfy these requirements, certain tasks (extending the
VIA, adding error recovery, completing the language subsets,
and testing) had to be completed; and for each task, design
solutions were selected. This chapter will discuss those
design solutions in the implementation of VIA and the re-

maining language subsets.

4 VIA Modification

After the form for the intermediate representation was
selected, its specification was documented (and can be found
in Appendix B). It was then determined that three steps
would accomplish the modification of VIA/DDS. They were:

1. Determine the information provided by VHDL and

whether this information is structural, behav-

ioral, or a binding of structures. Bindings
connect structures together through the VIA AST.

2. Map the VHDL structure to the VIA symbol
table, VHDL behavior to the VIA AST, and bindings
of VHDL structures to the AST which connects

‘ entries in the symbol table.

)

3. Code and test the modules to generate VIA.

bo

W W Y e e ..

¥ 0 ! TN ¥ oY . NSy BTSSR S U R S N G N I L . PR S
‘5]‘!‘"- FOMTATICORIATOMTAR A i 2 RSN ... » X RN AN NN A Q.. 3 o N N A b ".;Iu'.‘._ .i.h’{.’dﬁh::h}.lf;!h (‘.f.."t." .A,A-P:Di‘_'b

) S ath o v U g Q g 3 O ‘ a¥, g

\ This was an iterative process for each of the language

Q‘ subsets to be implemented. The following sections discuss
" these steps in more detail.

? 1. Determine the information provided by VHDL and

o whether the nature of this information is structure,

‘ﬁ behavior, or a binding of structures. VHDL can be mapped

?\ into two subspaces--structure and behaviort-2. For

)

* example, the interface declaration from the full-adder

%: design (Figure 4.1) is mainly structural. It specifies the
$i name of the interface and the names and types of its ports.
<

On the other
architecture

value of the

hand,

the signal

description DATA_

assignment statement in the

FLOW_IMPL shows behavior--the

expression on the right hand side of the

-~ statement is assigned to the signal variable on the left
"
} hand side. For each VHDL construct, a similar analysis,
. . . .
r using the information provided in the VHDL Language
;..

' Reference Manual and User's Reference Guide (Intermetrics,
“i 1985b and 1985d), was performed, and the information that

Ay

-

\: VIA needed to provide was added to that construct's VIA

e

]

’ definition. This was generally a straightforward process,
) -

P

0

X ! Both the Walker/Thomas model (menticned in Chapter 2) and DDS include a physical
- subspace. At this time, VHDL does not describe the physical aspects of a design, such as
» the wiring gecmetry (Nash and Saunders, 1986:65). Until this capability is added to VHDL,
{ the physical subspace must be ignored.
N

¢ 2 Nash and Saunders provide this mapping (including the physical damain) for each
;:. level of abstraction from architecture down to the circuit level (Nash and Saunders,

. 1986:55). In the case of component instantiations or procedure/function calls with

¥, parameters, each language construct provides information that binds two structures
:g ’ together.

e A AT e e o ey

VT T $ BN N dav)i de i v % @ 2 aid 8g ola" TR TP IO) Y YREVYIRY Vg “Alavaly ala saleal tal Sal b,

- VHDL Full Adder:

"' entity FULL_ADDER
i (X, Y : InBIT; -- one-bit addends
-, CIN : inBIT; --carryin

SUM :outBIT; -- one-bit sum
COUT: out BIT) -- carry out

;:;" iIs end FULL_ADDER;

:.,.' architecture DATA_FLOW_IMPL of FULL_ADDER is

W BLOCK_1: block

N signal C: BIT; -- Local signal declaration

i) begin

N SUM < X xor Y xor CIN after 5 ns;

N o] <= (Y and CIN) or(X and CIN) or(X and Y);
- COUT « C after 6 ns;

5 end block BLOCK_1;

end DATA_FLOW_IMPL ;

N Figure 4.1 Full-Adder Example (Intermetrics, 1985c:1.3-1.5)
LX)
6
S
s,
oot
}, due to the aforementioned mapping. One problem encountered
’.“l
was the combination of directives and specifications with
EE declarations in several places in the VHDL grammar. While
P\ Pa
o declarations defined entries in the symbol table, directives
¥
and specifications define operations and, therefore, are
Ay
Q mapped into the OPTAB AST. This caused a problem in that
‘ "
ﬁ' the routines processing declarations return pointers to the
‘
3 symbol entry while the routines processing AST entries
:‘: return array indices (integers). By requiring directives
q.‘ 4
ﬂ; and specifications to follow all declarations, this problem
It
; was solved.
L
Y
)
A
'§ 4.3
ks
‘)"\ [P O P T TR R T e R - . W SRR - cy - C et AN
) 'al ’ ". A .. n.l‘o.o‘ ,f -. o ‘¢ \‘.\f\‘.‘ .\"\":‘.-- . 'b’lt W PR TS Yo : S -_\"\- \: . .':-.". AT

CN TR FURAJEPLR) L ™3 * RN T\ "o gl Bte Sin St 'y A1y g a Bta Ate 8% ata 410 Bln A0 aVa Ava RV, AN AL aFa alatal. -, 4 2t byt

P

2. Map the VHDL structure to the VIA symbol table and

X VHDL behavior to the VIA AST. Using the information from

" Step 1, each VHDL construct was mapped into VIA. The

h structural portions of each construct would be entered into

i

E the symbol table to be written to the VIA SYMTAB upon

x analysis completion, while the behavioral portions generated

! nodes of the abstract syntax tree (OPTAB). Bindings became

i nodes of the AST with leaves that referenced the symbol

4 table portion of VIA. An example of a binding is a function

t call with a parameter list. Each formal parameter is bound

Y to an actual parameter, but this binding is created in the
operation table because the entire function call statement

2l

;: is an operation.

-

B 3. Code and Test Generate VIA Modules. Finally, test

‘$ cases were written for each construct added, the Analyzer

,§ processed each test case, and the results were checked and

' verified. Chapter 5 describes the testing procedures and

4? sample test cases.

~-A

'

Use of lex and yacc

Before discussing the implementation details in which

VHDL is mapped by the Analyzer to VIA, a short discussion of

)
M the use of lex and yacc will make that section more under-
W standable. The UNIX utility lex (Lesk and Schmidt, 1978),
s

when given an input file of regular expressions that maps
X character sequences into identifiers and literals (called
N, tokens), generates a C routine (yylex) that will perform
Y
'!
W 4.4
b
e

1) WA, * LNy - O N O R A U R A T e WL W . P et . o - R .
Y 19| Y A TS A S I LN o e 2 "[LAPLNEIE AT A SRR SN PP R S A I G AR
SUILICI A, Sl e P AN N R I TR EC £ S L N AN S R S LT R E T LS o ST e

il

VWOV AL LW U TS L W LU TR S ae . pit st A\ (P LAY aa ata-al tal. ab gtnt caty abe ety ak, gl cad. gk gl

K that mapping®. The UNIX utility yacc (Johnson, 1978) uses
‘o an input grammar to construct a C routine (yyparse). The

grammar yacc uses is similar to Backus-Naur Form (BNF),

!r-‘

- -«

which is used tco define many current programming languages

- - -
- - -

(VHDL among them). Thus, given a BNF for a language, it is

| a straightforward task to construct a yacc input for that

]

&; language*. The yacc grammar is composed of one or more

AN Y

? rules or productions. These rules specify how a particular
) language statement (or construct) is put together. For

;: example, a simple English sentence could be represented by:

<{sentence> ::= <noun> <verb> <(cbject> '.

X

.

s This shows that a sentence is a noun followed by a verb, an

:: object, and end with a period ('.'). The elements sentence,
;; noun, verb, and object are called nonterminals, which means

:§ they are, themselves, composed of other elements. The

3: period is a terminal symbol--it cannot be decomposed. When

Ky yacc parses a noun followed by a verb followed by an object
,ﬁ followed by a period, it reduces this rule to a sentence.

; In the example grammar, sentences may be reduced to

paragraphs and paragraphs to chapters. In this manner, an

d

) entire "program” may be reduced to one symbol, known as the

o

y

s. — -

§ 3 Regular expressions are shorthand for specifying different sequences of

] characters. Identifiers are names given to designs, packages, objects, types, etc.
Literals are numbers or characters that represent themselves, such as 0, 3.141579, 'A',

and "this character string".

4 yacc produces a parser for LALR(1) languages. The differences between LR, LL,
and LALR languages are outside the scope of this discussion and should not hinder its
: understanding.

l..
g A IOU" Y U U AN /T R o) - e e Tn ' -
o I T T T N N P DX I TV B e R antksm;ﬂmﬂmm&fﬁm:{m

5 pat gad 4.0 g0 g% B 9.8 4o IR AN PRANERN AT AN ATV N) B Bad Rt §ab Bo3 gav dat fia pur A gad Sav yu gat hat o ust bl s TS

start symbol. Of course, if the input being parsed fails to
match any rule in the grammar (if, for example, an object
precedes the noun), an error occurs and yacc displays a user

generated message (Aho, Sethi, and Ullman, 1986:264-266).

yacc allows semantic actions to be embedded in the
grammar. Using the above example, the yacc input would be:
sentence :
noun
verb
object

{ 88 = check_verb{($2); !

As yacc parses the input, it creates a stack of the results
of that parse. This stack is available for use as input to
C routines, such as "check_verb" in the above example.
Here, the value of verb (denoted by "$2") is passed to
"check_verb"” (which could check to see if the verb takes an
object or not). The return value of "check_verb" becomes
the new stack value ("$$") (Aho, Sethi, and Ullman,
1986:260). For a more complete discussion of the use of
yacc and lex with compilers, see (Schreiner and Friedman,

1985} or (Aho, Sethi, and Ullman, 1986:257-266).

Language Implementation

The implementation of the remaining subsets of the VHDL
required the following steps for each construct in each

subset:

- LI - . - ..-l-.. - - e "W - - a" e = - - - - - e - e - ~ -om - - - - - - -
A A T R R A A R R i, S TR Y o8 A T A

. "om

O

LA st philabh alin” 84 & N TR A TN T N N

> e .

1. Check that the syntax is correctly defined for
yacc in the prototype?. If not, correct it, using
the VHDL grammar given in the Language Reference
Manual (Intermetrics, 1985b:Appendix C).

- o b

‘o 2. Determine the resulting VIA (from the above-
A described steps to modify the VIA) for each VHDL
¥ construct. Design, code, and test modules to

'y generate that VIA.

3. Determine what values would be left by yacc on

; its value stack upon completion of the analysis of
each construct. These values are the results

\ {i.e., symbol table or tree table references) from

earlier grammar reductions.

/ 4. Determine what semantic actions need to be
taken during the parse of this construct. For
example, in assignment statements, the type of the
right hand side must match the type of the left
hand side or a semantic error occurs.

5. Design, code, and test each function that
performs a semantic action and insert it into the
yacc grammar so that the parser performs this
action at the appropriate time in the analysis.

6. Add error recovery for each construct.
7. Design test cases for each construct, run the

Analyzer against each test case, and verify the
results.

_— e e e
Ty,

8. After each construct is successfully tested,
inform the simulator design team so they could
also test the new construct with the simulator
{(Rodama, 1987).

Calulml e

This stepwise approach insured that problems and errors were
detected and corrected before they had a chance to impede

3 the progress of the project. It also insured that each
construct was implemented completely before attacking the
next. It involved the design team of the AFIT VHDL

simulator so that as each VHDL construct was added, the

5 The prototype analyzer was designed to accept the entire VHDL. The yacc input
was double—checked to insure that there were no errors.

AT AR AL .-"'.-'.- CRSNCICIC I SO _'J'_‘.' e e e e L e RPN RN ARV
Pt NI%) ’) a.a " \ N ‘\A‘ A‘m_‘n‘“‘ ..._n\.\ \;\\.' ..'h‘: ' o '\.‘-‘\ "_‘-':‘.' S |

..‘\?s o i" ' EALA A.?.“. I‘b. PN l

Analyzer produced the correct VIA and the simulator could be

upgraded to process the Analyzer's output.

Imrplementation Examples

Behavior Example: An example of the way a if_statement

was implemented will help demonstrate the implementation
process for behavior language constructs. The BNF

definition of the if_statement is:

if_statement ::=

if condition then
sequence_of_statements

{ elsif condition then
sequence_of_statements }

[else
sequence_of_stateaents]

end if ;

1. Check that the syntax was correctly defined for

yacc. From the above BNF grammar, a corresponding yacc
grammar was written. The yacc input for an if_statement is

given as

if_statement :

IF

condition

THEN

. .ELSIF__ THEN__ _seq_of_stnmts..

.ELSE__seq_of_stnmts.

END

IF

Semicolon
{
$$=if_statement($2, $4, $5, $6);
}

~e

Upper case names (such as IF and THEN) are tokens passed

from lex; lower and mixed case names (condition, Semicolon,

II o,

Nl

-"’v‘(d‘-'t‘ Ly Ly ol N e T T T
O A A A N T T s B L G Ny R

« -
L

PR

and .ELSE__seq of_stmts.®) denote productions; and the
statements between the braces ($$=if_statement($2,...,$6);)
are C functions (defined in another part of the Analyzer)
that will be performed when the parser accepts the
immediately preceding production. The "$$" represents the
value of the yacc stack for this construct and, in this
example, is a pointer to the AST generated and returned from
the C function "if_statement." For the if_statement, these
C functions originally (in the prototype) displayed only a
message "If statement not implemented” and returned a null
value. Comparisons with the VHDL LRM grammar and testing

showed that the yacc grammar was correct.

2. Determine the resulting VIA for each VHDL

construct. Design, code, and test modules to generate that

VIA. The VIA that should be generated for the if statement
is given in Figure 4.2. This was designed using generally
accepted methods of generating ASTs from languages like
Pascal and Ada (which VHDL closely resembles) (Aho, Sethi,
and Ullman, 1986:287-290). The yacc rules for condition and
sequence_of_statements (which were designed in the same

manner as the if_statement) will generate the appropriate

¢ yacc allows non—terminals to be named using alphanumerics, the underscore, and
the period. A naming omvention was used whereby non-terminals that could be repeated
zero or one time began and ended with a single period ' epresenting the beginning and
ending brackets in Backus-Naur Form); a non-terminal tnat could be repeated zero or more
times began and ended with two periods (for enclosing braces); and a non-terminal that
defined a list that began with a comma and could be repeated any number of times, began
with three periods (signifying an opening brace and the comma) and ended with two periods
(the closing brace). In this manner, the action of every yacc grammar rule ocould be
determined from its name.

2 A AN ! e e W A A O AN D A A WS |

Sooad. Mve At d'a A% d'2 fia %2 at Al) av A AV, a¥. a¢. Al ' o 'gha ot), TR . ol N 1, at

" VHDL Source: it condition then

" sequence_of_statements
K elsif condition then

| sequence_of_statements
) else

’.,' sequence_of_statements
_ end if;

¥

’ VIA:

3 it —f

’ yd

> cond_clause|—» - cond_clause |—/

" condition > sequence_of_statements ——/

A ¢
~I
o

Lower case letters denote the root of a subtree of one or more nodes.

Y *** Denotes zero or more nodes.
‘ —1 Denotes a NULL pointer.

Figure 4.2 VIA for if_statement

DAl R TR T T TN SR e e O D0 SRR R b SRR AR I SO I AN |

CaB Vo $o0 (el 0 4.4 000 L NN N - ENUNY ? N - g . e . 0 w “8.a! 0 g » b oav », . rwe o at (TH EY Ty n) . q b m

] VIA when executed and place pointers to that VIA on the yacc

X parse stack.

o 3. Determine what values would be left by yacc on its
]
2 value stack upon completion of the parse of each construct.

The value stack returned by yacc for the if_statement is:

$ (1) the token IF
{2) the pointer to the AST node for
4 condition
(3) the token THEN
N (4) the pointer to the AST node for
o the first statement in
M sequence_of_statements
N {5) the pointer to the AST node for
R a condition node for the ELSIF part
{6) the pointer to the AST node for
N the first statement in the ELSE part

V {7) the token END
) (8) the token IF
;3 (9) the token Semicolon

The types of values returned by nonterminals are determined

~

! by the return types of the corresponding semantic action

B,

. routines written by the user. The values for the terminals
{tokens) are integers determined by yacc from a list of

8

w terminal symbols supplied by the user.

W

':’.

' 4. Determine what semantic actions must be taken

l‘.

% during the analysis of each construct. 1In this construct,

gt

o

% only the condition must be checked for being a boolean type

K

]

_: (it has only the values TRUE or FALSE) and the grammar rule

s

:& that parses condition handles that chore. Therefore, no

',.'

& further semantic actions need be taken for this example.

ot

°, The parser must connect the AST nodes returned on the parser

N

.3 stack (from the analysis of condition and any ELSIF and/or

n

Y

?

X 4.11

;

¢, oy €, 4, o e o« L4 - .
S 3 “ .h N e e ' S W ‘s o "- N o L. « WY
A .. () " ‘.. KA P L Mo N M X a Nad M\ i) .‘ N Ku X) {L\ A.{AXL\L'{].KMAAA—\JAAL{AA LX‘AJ{LR’;AL(L\

[NIRRT TIRPVRIT AT Y ~ah oy ‘ab ak WL 5 Sad. Al da 8ia A¥a’] ‘2 82 iads ¥ <3~

ELSE statements) in the proper manner to construct the VIA

. PrTC
e |

S

tree given in Figure 4.2.

pe)

- -

5. Design, code, and test each function that performs

-

)
'l
h a semantic action and insert it into the yacc grammar so
)
. that the parser performs this action at the appropriate time
K
. in the analysis. In this case, the routines to create and
#
connect AST nodes were already coded and tested. Then,
N
i
before error recovery was added, a few sample test cases
‘l
"\ (with no syntax errors) were run to insurc that the
)
[y if_statement was performing correctly.
.
& 6. Add error recovery for this construct. As was
el
A mentioned in the previous chapter, yacc supports syntactical
X, error recovery through the use of a special token called
: error. 1In practice, error recovery consisted of adding
s
. another sequence to the end of the above described
o if statement syntax. The complete yacc grammar for the
M if_statement is now:
)
if_statement :

W IF
Y condition

THEN
i . .ELSIF__ THEN__seq_of_stmts..
% .ELSE__seq_of_stmts.
i END
" IF
- Semicolon
W {
X $$ = if_statement($2, $4., $5, $6);
% l
Y ! IF

error

Semicolon
% :
W)
M
%
4

’3’ 4.12

X at W o o ¥ T M e T X . .) A . . e r AT T A MM a st A A .
R T e e T T T G e OO AT T T A A T
L 2 X 1 2 M o M M oL o o ' LNt A I WAV)

Y REAN (W R PR R T WD) (XYY ST Y A T T L T U AR T AR R AT AR THA AR R ANYT YRR PN U LU A oy R A) s

¥
.& This addition to the grammar allows the parser to accept
,’

SN either the correct if_ statement or the reserved word "if"
o followed by any syntax error (denoted by the token "error"?)
é and continue parsing until it detects a semicolon.
k:
Ao
Finally, Steps 7 and 8 tested the new construct
-
)
§ (against correct and incorrect test cases), and when it
ot
hot

passed, the simulator design team was notified of an update

to the Analyzer.

b Structure Example: In a similar manner, each
4,
W language construct that described a structure in VHDL was
N implemented. Recall in Chapter 2, an example of DDS was
¥
8 presented using a VHDL signal and signal_assignment
L
;' statement. A signal_declaration, then, defines that type of
e VHDL object and creates a symbol table entry for a list of
W
:: one or more names (identifiers) which will be declared as
W3
R signals. The BNF notation (step 1) for this grammar rule
A is:
~
L]
- signal_declaration ::=
R signal identifier_list : subtype_indication ;
.f
:v and the yacc grammar is:
)
g
]
s
e.‘_f
Q‘:v
K
u
.
!
h‘ 7 The token error generates an error message that lists the tokens the parser was
: expecting.
v:i
Y 4.13

AL PPy) AT

A A A S

S

A .
AV K%, €8 .. 2 v A »

W NP S P Tl S A My '.'-{
\s.m.“:u{a.‘\.-_c P ACY

AT TR -
Y .
|

NS LA LR L
2 . Cos AERY.%

i e T x i.p i Yo m e Al I A Sih AR e das’ N TP W) " ‘B a's ath o’ ‘aa 0 ‘2 ok o y . N

X signal_declaration :

) SIGNAL

identifier_list

Colon

subtype_indication

» Semicolon

{

$$ = signal_declaration($2, $4);
J

P

-~

The VIA for this construct (step 2) consists of one or

0 more symbol table entries, each containing the name of the

ﬂ signal and a reference (pointer) to the type given by
»

f‘ subtype_indication (Figure 4.3). yacc returns the
o

)

¢ following value stack (step 3):

‘l

R (1) the token SIGNAL

Y (2) a pointer to a linked list of

$ identifiers

Y (3) the token Colon

({4) a pointer to the symbol table entry for
subtype_indication

$ (5) the token Semicolon

Q There are several semantic actions (step 4) that must be
performed. First, locations for each identifier in
identifier list must be created in the symbol table. Since

': we are declaring new object names, no other definitions
using the same name in the same design should exist; if this

¥ is not true, an error message (generated by the symbol entry

1 create routine) indicates that the object is declared twice.

¥ VIA categorizes each structure in VHDL into classes and

ﬁ kinds. A class may be an object, (design) unit, or type. A

]
. kind may be an object like a variable, signal, or constant;

a unit like an interface, architecture, or package; or a

T A \'-.. N AT e T VRIS AR
&l R

> S, -" s 'fl!'j.,fby:._('.;_\\' A.fL{A.f).f

I I I
DS YR N L
K

. IR o ¥
Sttt Y

Pl & o &

tE g Saf Sat ot P 0 4

O 3 -(- N - 'f'f--"f--‘- .f.-") e ot -'--__- L r v ar ™ . LR Y LI P I T I P I
ohg ._-f\ s RN T ln > .\‘f,_ S e, ,_,‘\ __-\\.\.__. _.,___ K \.»___-. .r_\.\i-}.-\. PO

(WO N B O y v iiad dav dov e int a7 4a* 0 ald atA a2 a') 2B 2'8 4" ‘s O Sal tab Vel Sa) uud taf cab b din 10 BV . v

VHDL Source: signal identifier_list: subtype_indication ;
VIA:

Name: NAME_1
CLASS: object
KIND: signal type
next

Name: NAME_2
CLASS: object type —
KIND: signal

Name: subtype_indication
CLASS:type
KIND: subtype

next

Name: NAME_n type
CLASS: object
KIND: gignal

Figure 4.3 VIA for signal_declaration

type such as an integer range. enumeration, or array. In
the above example, for each identifier, a symbol table entry
is created for an object class of kind signal. The type of
each identifier is referenced by subtype_indication. 1If
this reference is NULL, subtype_indication was not defined
earlier (and has already been noted by an error message).
When this error occurs, the type of each identifier is a
reference to ANY_TYPE. This special entry allows the
identifiers to be used later in the analysis as if they had
been properly declared, without causing a rash of error

messages.

4.15

Next, since the lookup and creation of symbols are
predefined symbol table primitives, no other semantic
routines needed to be implemented (step 5). Error recovery
{step 6) was added using a grammar rule similar to the
if_statement. Test cases were created, the proper operation
of this construct was verified (step 7), and the definition
of this construct was given to the simulator design team

(step 8). In a similar manner, using the information

supplied in the VHDL LRM, the rest of the VHDL language

subset was implemented and tested.

Summary

This chapter discussed the methods employed in the
implementation of the design decisions made in Chapter 3.
The steps taken to create the VIA for new VHDL constructs
and to implement new language subsets to the Analyzer were
outlined and examples of behavioral and structural con-
structs were shown. Chapter 5, Test and Analysis, will

discuss the ways the Analyzer was tested and the manner in

which it met the production-quality requirements.

. " AL TN \'\-‘\"\'.\ NN W UYL N
N SURGY A TG A T IR IS TN ICININ' |

) "- L]
e R

- g

V. Testing and Analysis

Introduction

This chapter will describe the testing performed on the
UNIX VHDL Analyzer and the analysis of those test results.
It will show what tests were needed to demonstrate that the
thesis requirements were met. It will alsoc show how those
tests reflected the quality of the thesis product, based on

the criteria established in Chapter 1.

Thesis requirements

In Chapter 1, the requirements for this thesis were
developed. This section reviews the thesis requirements and
shows how each one was tested for completion. These

requirements are outlined below:

Generalization:

(1) Run under UNIX.

{(2) Run on several different computer
architectures.

(3) Analyze both correct and incorrect
VHDL.

Testing:
(4) Pass VHDL Test Suite.

Documentation:

(5) Be well documented.

€ o T)

ff P Ly A\ . N L R N T E ald
Wt) VRV AL N e A O R N O Ot o A SR S

P 2"k a') a'd g%l m

u o a e Boud e ag sae Salf 2B Val 2 vab ® Vab Colt Dal Can 0l b TaBotal . ad ¢ Y, gt of At Ay gt e’ gt 4% 472 S ats 4V TUYTY U : [y

- .
- .

|

CAR R

Maintenance:

- w7t
2

(6) Include inline comments and module
specifications.

RN ——

- .

e
L

Interfaces:

N
[}
" (7) Produce Intermediate Representation
* providing analyzed VHDL information
to other environment tools.
Q‘ (8) Produce an efficient and easy to use
Q IR.
L System Resources:
i (9) Process VHDL designs within a "reason-
Xy able" time period.
" (10) Conserve the use of main memory and
s secondary storage.
[t
\ System Integration:
i
s {11) Must show "end-to-end" use of the AFIT
VHDL Environment, specifically, the
D simulation of VHDL designs.
)
o From this list, we see that the requirements for
)
& Documentation (5) and Maintenance (6) only require the
"
ER)
submission of material. Interface requirement (7) requires
.
3 1
J that an IR be produced; its quality is determined in
b
z requirement (8). Testing ensured the remainder of the
)
5 requirements were satisfied. These tests were divided into
|
: four categories based on the requirement areas: conformance
D
) tests, portability tests, performance tests, and integration
[}
’l
- tests.
o
o
. Conformance tests. (Requirements 3 and 4). Confor-
f 4
N mance tests ensured that the Analyzer conformed to the
specification of VHDL given in the VHDL Language Reference
!
\,
L
$ 5.2
1
f'ff’;#%fﬁfffvT#vafﬁvaVJf?:jﬁVﬂMV%ﬁc

NPT

.

"N T N e e
o. ' #‘ o J'\(-f‘

Manual {Intermetrics, 1985b) and met the production-quality
requirements (3 and 4) listed above. As each language
construct was added to the Analyzer, these tests were
performed to verify that no errors were introduced during
coding and that the new code did not adversely impact
existing code in terms of efficiency and module interfaces
({parameter passing). For example, early releases of the
Analyzer only recognized simple names. Later releases of
the Analyzer were able to handle indexed names (array
names), which are represented in VIA differently from simple
names. Each routine that processed any VIA "name" node was
modified to now also handle array names. Testing ensured
that all the necessary changes had been made. It was only
when tests showed the Analyzer conformed to the LRM that
other tests could be performed. The final phases of
conformance testing used the VMS Analyzer test suite

described in (Intermetrics, 1984b).

Portability tests. (Requirements 1 and 2). These
tests ensured that the Analyzer performs under UNIX bsd
version 4.2 (Bell, 1983) and on various computer
configurations. Passing these tests showed that the
Analyzer design and implementation could be moved to other
UNIX sites, thus meeting the generalization criteria for a

production-quality tool.

Performance tests. (Requirements 8, 9, and 10). These

tests ensured that the Analyzer's performance met the

P

-

N, . S N L N

e !

\\:)_\‘ \}‘\1 ’
YA A

o T PP TR OV R R AR PO AN AN R AT Ry Bt dle Gta Bte fio-giy gV 2° 0 aVs gt gty ¥, 4’0 D

r‘

'y

]

ﬂ project's requirements for processing speed, memory usage,
R

2 and disk usage.

"

,u Integration tests. (Requirement 11). The final set of
) tests involved the AFIT UNIX VHDL simulator (Kodama, 1987).
1

1'0

e These tests were "end-to-end" simulations of several VHDL
? designs with the results manually verified and compared to
1& simulations of the same designs run under VHDL/VMS. These
)

:L tests confirmed the interoperability of the system interface
2 (VIA) with the simulator.
'4
L
& Conformance Testing

s_

Introduction. Conformance testing showed the degree to

LY,

~l

ﬁ which the Analyzer met the VHDL LRM 7.2 "standard". This
o testing was similar to the testing in the Ada Corpiler

; Validation Capability (ACVC) (Goodenough, 1986), which is
‘E itself based on the Pascal Validation Test Suite (Wichmann
l
k. and Ciechanowicz, 1983). Both ACVC and the Pascal Test

. suite involve three phases: LRM conformance, error
12 handling, and implementation restrictions!.
. L]

)

N LRM Conformance. Testing for conformance to the VHDL
;: LRM involved: selecting a part of the language to be
L)

>
5: tested, determining what objectives must be met in order

)

)

! that the selected part is fully tested, and constructing
A
®
o

"y 1 Because this last phase required executable code (such as that produced by an Ada
o or Pascal compiler) and the Analyzer only produces a non—executable intermediate form,
‘; this test was not performed on the Analyzer.

Y

y

y

X

‘o 5.4

J

) .

LT R Ay Ve e T T R SIS .,
i) !l‘. N *" N “ }N wy) N " (g v SRS (\" ‘f * 4‘" ""\:"‘-"1-\.""

WWHER TR,

\. '
CNENES . LSNP NN

-~ &

2la s gy

¥
-t oM

WP 7 2

L e §

.
i ¥

tests for those objectives. This is the manner in which the
test suite for the VMS VHDL system was constructed (Inter-
metrics, 1984b). The VMS Analyzer test suite contains two
types of tests: short and error. The short tests contain
correct VHDL and must generate the correct output VIA. The
Analyzer must not detect any syntactic or semantic errors
for any fully implemented construct. Since this implemen-
tation is a subset VHDL analyzer, semantic errors were
allowed for non-implemented features of the language, but no
syntactic errors. The error tests contained syntax and
semantic errors which are supposed to be detected by the
Analyzer. For those features of the language that were
fully implemented, all syntactic and semantic errors had to
be detected. For partially and non-implemented language
constructs, an error test that caused no error messages was
allowed to pass, but an error test that caused an abnormal
termination of the Analyzer failed. For example, a simple
objective is:

Show that the Analyzer will accept the syntax for

the simplest interface declaration, which is

entity identifier 1is end ;

This objective can be tested by constructing a short test
using the above interface declaration (substituting a valid
name for identifier) and submitting it to the Analyzer (the

actual test run is shown in Listing 5.1). 1If the correct

s - e a ea e v n o
B N S A R A S e R
" " W

¢

LT

2™ e L e "

™

.ll‘l<‘_

>

el e - -

"l

L 8

p g« .a’-

LRI L LR ™ » oW Ba¥ B Gab But BaF Rac $a0 % 2.0 4.V R0 v-P”vTWWWW“'WrJW"

Listing 5.1 Syntactic Conformance Testing

verbose on
AFIT VHDL Analyzer Revision: 3.0

[1] —TEST 1.1.1-1, CLASS=CONFORMANCE, SECT=Interface Declaration
(2)

(3] —: This program tests the minimal interface declaration.
(4)

(5] entity il is

[6] end ;

Number of errors detected: 0

Generating VIA file...done

VHDL Analysis ocomplete.

VIA representing the entity interface is produced, the

Analyzer passes. Any other result indicates failure?.

For a semantic error test, an objective might be:

Ensure that, in an architecture body declaration,

the entity name of the interface is visible and

has been analyzed before the architecture.
The test for this objective is shown in Listing 5.2. For
the VMS Analyzer test suite, each objective and corres-
ponding test for the rest of the language was determined

from the definition of VHDL in the Language Reference

Manual.

In using the VMS Analyzer test suite, several

modifications had to be made. First, the tests that only

2 This is known as black-bax testing. It assumes the internmal structure of the
program is hidden and only tests for the results of executing that program.

L P Y A P AT T B YO PR P e " -
L or e e Al s S W e Ot

Listing 5.2 Semantic Error Testing

verbose on

AFIT VHDL Analyzer Revision: 3.0

{1] —TEST 1.2.1-3, CLASS=ERROR, SECT=Architectural Body Declaration

(2]

[3] —: This program tests that the correct entity name is found for a

(4] —: particular architectural body declaratiom.

5]

[6] — This program requires also the minimal block and process statements.
n

[8] - V¥hen separate compilation is completed, the interface declaration
[9) — preceding the arch declaration can be deleted.

(10)

[11] entity il is

[12] end il;

[13)

{14]) architecture tlp2pld3 of i2 is

[15) Dblockl:

[16] block

(17 begin

(18] process

[19) begin

{20] nll;

[21] end process;

—> [warning] line 21 near ";"; process sensitivity list is empty
[22) end block;

(23] end;

—>{fatal] line 23 pear ";"; interface name I2 not found

[(24]

Number of errors detected: 1
Errors in VHDL source. No VIA produced
VHDL Analysis complete.

tested portions of VHDL that were not implemented were
counted and removed from the test suite. Second, those
tests that tested both implemented and non-implemented
language features were specially handled. These tests were
split into two tests--one tested implemented features and
became part of the test suite, and the other tested the non-

implemented features and was removed.

LR -

¢ .‘{

AN et s ol

1

The results of each run of the test suite are summar-
ized below in Table 5.1. Because the Analyzer does not
semantically analyze the entire VHDL language, it will
sometimes detect errors in otherwise correct VHDL source.
Other messages showed where the Analyzer ignored parts of
the language that were not implemented in any manner. The
error messages tell the user what restrictions the Analyzer

is using and what actions the Analyzer took.

Error testing. Error tests using the VHDL VMS test
suite were run on the final release of the Analyzer. The
results of error testing were given above. The higher
percentage of passed tests resulted because many of the
tests involved erroneous input that was not syntactically
correct. These errors were caught by the parser generated
autcmatically by yacc from the VHDL grammar. Other error
tests were constructed based on knowledge of the internal
structure of the Analyzer and were designed to catch
implementation errorsd®. These were not part of the original

VHDL VMS Analyzer test suite.

Portability Testing

Using the conformance and error tests discussed above,
the Analyzer was tested on three different computer systems,
the VAX 11/780, the ELXSI 6400, and the Sun 2 Workstation.

Simple VHDL designs, discussed in Chapter 1, were tested, as

3 This is known as white-bax (or glass-bax) testing, because it assumes that one
knows how the program being tested operates.

5.8

e adhath o'y

| A0 A P N

- .
PR

P

P s

N

- s
-

P o

Table 5.1 Results of VMS Test Suite Testing

[Result Short Error Total
Pass 230 (68%) 378 (81%) 608 (76%)
Fail 42 (13%) 72 (15%) 114 (14%)
Not Impl 65 (19%) 19 (4%) 84 (10%)
Total 337 469 806

were the performance tests discussed later in this chapter.
Portability testing showed whether the Analyzer had system-
specific code that would prevent others from using this
research. For example, if the Analyzer used a C function to
obtain information from the operating system (such as the
date or the amount of memory on the processor), then this
{or an equivalent) function must be available on other
processors. Because the Analyzer was written with no such

system-specific code, there were no portability problems.

Performance Testing

Speed. Analyzer execution speed was measured by
averaging the compile times for several VHDL designs which
used several different types of design methods, so as not to
be biased in favor or against the implementation of the
Analyzer. "Wall-clock" time and CPU times were measured
with the UNIX time command (Bell, 1983) and the results are
presented in Table 5.2, along with the times for <the

VHDL/VMS Analyzer. The Analyzer's performance is well

within the requirements of 1000 lines per CPU minute. 1In

.41‘“

o

G

:i

Qf Table 5.2 Results of Portability Tests

%

B

A

;4 Processor

W,

R Design Type VAX VMS VAX UNIX SUN ELXSI

R}

% Dataflowl 32.92! 2.63 1.39 0.91

(0.69)2 (0.05) (0.03) (0.21) '

o

N Procedural 33.66 2.52 1.34 0.90

0 (1.71) (G.05) (0.07) (0.22)

b

»

! Dataflow2 W ----- 2.22 1.13 0.85
(==--) (0.08) (0.07) (0.20)

Ny

,& i 1Time in CPU seconds. 2?standard deviation

: 1

g

f$ fairness, it must be noted that since the VHDL/VMS Analyzer

e is written in Ada and is not a subset analyzer, its analysis

L)

;~ times were expected to be slower. This is because of the

[

Kol run—-time checks that Ada performs that C (the implementation

ﬂi language of the UNIX Analyzer) does not. Also, the full VMS

\...

§

i$ version performs more semantic checks on the input than the

l":

ip UNIX subset Analyzer. Finally, the VHDL/VMS Analyzer uses a

o] design library which increases the system overhead due to

; the opening and closing of design library files. Therefore,

.

j& it can be conjectured that because the UNIX VHDL Analyzer

ﬁ: uses C and does not use a design library, a full implemen-

o .

Ry tation will still be somewhat faster than the VMS version.

;a"

iﬂ

:f Memory Usage. For each of the performance tests

l“

)

;? described above, the memory usage was measured (again using

Wy

5' the time command)}. This usage varied from 300K to over

&

o 800K. Memory usage depends on the number of VHDL objects

o

ﬁ

o

o,

I.'

o 5.10

bi

Y

L)

N

E N Do N s b o, S T e s S e VN SR s L N

defined and not on the number of VHDL statements. This is
A because the symbol table is dynamically created and the

operation table is a static array.

:m: Disk Usage. The goal for this project (Chapter 1) was
ﬁé 100 bytes of VIA for each VHDL line. This criterion was

fﬁ. tested by measuring the size of the resulting VIA files from
%% the analysis of the aforementioned VHDL designs. The

§$ average size of each design was 51 lines and, therefore, the
$ goal was a VIA file of 5100 bytes or less in size. The

a; average VIA file size was 5180 bytes, which was only

§§ slightly above the goal for this project.

& Integration Testing

el Integration tests were the culmination of the Analyzer
o test phase. Their purpose was to ensure that the interface
34 between the Analyzer and an AVE tool (the UNIX VHDL

*ﬁ Simulator (Kodama, 1987)) was operable and provided the

information necessary to process a VHDL design.

)
é Method. Using the VHDL benchmarks developed by Dukes
LV, (Dukes, 1987), each design was analyzed and the resulting
Qﬁ VIA submitted to the simulator along with a set of test
%; vectors. To verify that the design was correctly analyzed
ﬁ{ and simulated, the outputs from the Analyzer and the simula-
§§ tor were compared to the same simulation performed using the
ig VMS VHDL environment and to a manual simulation (of the
3$ simpler designs).
:;::
%
2

s 5.11

;

P L L T ol P T R O R
e P I DTN .r:'l}.rxﬁ}..{'.ny;ﬁ'j P&)ﬂ:‘.r)‘m' a.'a’;‘ﬁ;‘fj‘ﬂ\: \ .Aﬁ'ﬂ:‘.'i

ey NI AR AR
AN RO W

Results and Comparisons with VMS VHDL. The results for
the Analyzer portion of the integration tests have been
given previously in Table 5.2. For a comparison of the VMS

VHDL Simulator and its UNIX counterpart, see (Kodama, 1987).

Chapter Summary

This chapter has showed the manner in which the
Analyzer was tested and the results of those tests.
Recommendations for future research with the Analyzer and

final conclusions are presented in the final chapter.

-,y “» WM N e W W N W
QRGN AT AN I T

| N

s,

\
i
:

’

)

l"|) L " » - MUY 7 SN I S T SV Yo Tl P - - - e PO LI o
BN R R A e e O I Y, - e St D L ¥ i i M o o e T T g ol e,

VI. Conclusions and Recommendations

This thesis has presented the development and
implementation of a UNIX-based VHDL analyzer. Future
research, recommended below, will further expand its
capabilities. The direction this research takes, however,
will depend on the conclusions presented first in the

following section.

Conclusions

Selection of VIA. The effort in developing a new VIA
has been well rewarded. After its design was finished, work
on an AVE UNIX simulator has been able to proceed rapidly
and with visible results. The subset of VHDL that was
implemented in this project proved robust enough to allow
the design and simulation of several useful VHDL circuit
descriptions. A subgoal of this research--to demonstrate
"end-to-end" throughput of a VHDL design--was attained. As
was mentioned before, several portions of the VHDL language
were not implemented. These portions (Appendix A) include
separate compilation, configurations, revision specifica-
tions, user attributes, and floating point arithmetic, as
well as several of the semantic checks on those constructs
that were implemented. The elimination of these capa-

bilities from the analyzer d4id not detract from its

X R AN

-
RN
N e e

ot .',".’
S JACN A

P

"X

N ey

- - -

- -

- - -

-

e e

- e

usefulness: using the analyzer and simulator, the

beginnings of a VHDL circuit library have taken shape.

Test Results. Based on the tests described in Chapter
5, the major goals of this project have been successfully

completed:

1. The Analyzer runs under UNIX on several
processors.

2. The Analyzer has been subjected to thorough
testing.

3. The Analyzer produces an intermediate
representation that meets the design requirements
for compactness and efficiency.

4. The Analyzer correctly analyzes more than 75%
of VHDL Version 7.2. As was mentioned in the
preceding section, this subset is robust enough to
describe many of the VHDL designs that students
would be generating.

5. The Analyzer generally performs within its

performance gocals. Although memory usage was

larger than expected, many UNIX environments have

up to 16 Megabytes of main memory. The Analyzer's

usage of memory was, therefore, deemed acceptable.

6. The Analyzer has been tested in conjunction

with the UNIX VHDL Simulator.

Thus, this implementation can be described as
production-quality based on the above evaluations!. More

work can be done to improve its conformance and error

handling qualities, as well as its use of main memory.

! Source code for the Analyzer is available from the Department of Mathematics and
Camputer Science, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433.

\ '—\
B B A e A G A S S A e e A A e e S e Y

Recommendations for Future Research

At least five topics for further research resulted from

this project.

P
)
§
? Implement Entire Language. It is envisioned that the
4
b7, .
A analyzer, at some future date, will be able to generate VIA
&
e for the entire language. Many of the design decisions
3‘
v
% during this project were made with this extension in mind.
)
nt .
fl For example, the structure of the symbol table was designed
o to support separate compilation. While the analyzer now
%
"
k rounds floating point numbers to the nearest integer, the
)
W
;ﬁ future introduction of real numbers is facilitated by
p separation of integer and floating point literals in both
b
g the grammar and the supporting routines (even though both
vy}
{ﬁ are currently mapped to long integers). At a later time,
!
-ﬁ code could be added to the supporting routines to implement
v.
?‘ floating point without affecting the code for integers.
i Add to User Options. The only user option implemented
.U
; in the analyzer was a "verbose" option that generates a
..
: listing file (with error messages, if any): other options
<k were not necessary during the analyzer's development. But,
]
@ as the analyzer matures, it should offer the user the
%
:p following options:
")
I
e 1. Build option. After separate compilation is
7..'
b: implemented, the analyzer should have the capability of
Q.:
]
f& either creating separate VIA files for each design unit in a
\
l.
@
\:'
:‘: 6.3
p
*
o
¢
.".

TN o

PASA” ANARAN v Y | g o [\ Cn 0 A I PP S SN N P P
I b O O A N A A e R SO N O A A N T N T T T TS T R RS VRN

A o'y oY L}

§ iR g) an L ad a2 . o+ °.] ‘ZoRh Atk T2 QA a'd pid gia aYR Sth- i LTI TR T U ¢ WO TOV KR TOR FOTP O AN _fa8 2.4 fa8 o0 ““S"l"‘lﬁ

1! design file or a completely linked VIA file that could be

R4 used directly by the simulator.

2. Context option. The user should have the capa-

$ bility of instructing the analyzer where the VIA files for
0

I . .

{ the separate components of his/her design can be found.

“V’l

]

. This would allow the creation of a central VHDL library for
“

i commonly used components or several libraries, each having
-
;ﬁ its designs implemented using one of VHDL's three design
E.l

_ implementations.

By

K

o 3. Generate option. This option allows the user to
3

) direct the creation of VIA files to any subdirectory.

%
N Optimize VIA. 1In several areas the VIA could be
o
§¢ optimized. First, when generating a complete VIA file from

separate modules, only those objects in the VIA symbol table

;% that are referenced need be output to disk. This method

ir would, over the course of time, save much disk storage space
o since many of the objects in user defined packages and in

§\ the pre-defined package STANDARD (Intermetrics, 1985b:

3 Appendix A) are not referenced in every VHDL design.

;w Second, code improving optimizations could be applied to the
g; operation table of VIA. These optimizations include common
§; subexpression elimination, copy propagation, and the detec-
;l tion of loop-invariant computations (Aho, Sethi, and Ullman,
U

t& 1986:Ch. 10). Finally, even though storing the VIA as a

gﬂ binary file, rather than in ASCII, could save disk space, I
é: suggest the VIA remain as an ASCII file. The use of ASCII
-

"'.

w 6.4

‘.i
o b
"
K

A » Y " A : NS ; WL
B AN NG N IO ST S R S RN By \.o e " M:m L™

0

o 3w

A NGRS N) j
Ul R AN AN RN

AN VLA
. " L o M W XY M

i S

o B o

i
-y

g %

. -
- e ¥ ¥

e

-

TN T PN TR U WU W DR U UYL 4o gt al, a4, at R Ak VAl B a8\l Al Sad sib ol AR i d af +

files was necessary during the design phases of both the
analyzer and the simulator, so that the output of the
analyzer could be visually checked. If there was an error
with the analyzer, the VIA could be manually corrected with
a text editor before being used by the simulator. This use
of ASCII files allowed the simulator development to proceed
without having to wait for every error to be removed from
the analyzer. Now that the initial development phases are
completed, the usefulness of an ASCII VIA file continues.
An ASCII VIA file can be used with UNIX source code
management utilities such as the Source Code Control System
(SCCS) (Rochkind, 1985) and the Revision Control System
({RCS}) (Tichy, 1982) (which do not handle binary files).
These utilities could be used to implement revisions of
design units, where the user specifies which version of the
design unit should be used and the utility retrieves that
version of VIA from the revision file and writes it to disk.
This method would also save considerable disk space since
only the base version of a VIA representation is saved in
its entirety. As other versions are added, only the
differences needed to create those versions are saved. This
philosophy of using existing UNIX tools follows from the

requirements of this project.

Add Design Library. As more persons begin using the
Analyzer for more complicated designs, its memory usage
could become a problem. A design library could alleviate

this problem by supplying symbol table information so that

DA’ P B, be? By T APL PR IR AT BN TO TN W LN T Lt L LT e e e N T Lt
L.'L n“!"q"‘ I.F."O.‘.O‘ t M XN 8%, ‘Q, .A '. L 3% 1,9, . f"’“ 'F ',. Xy -‘ A o () \

- - -

- - -

-

-

S S P el

- e ey e

P TN e S P

- o -

t
|
Al
1

3 s dn dad A e gt Ak o @b Bab - pa 0 B0 g8 Bt 2o Bot b Bt B0 00 B 48 Rt

the analyzer would not have to locad an entire VIA file to
access one definition. The form of the design library could
range from several random VIA access routines to an inte-
grated database manager. Such a database manager could
possibly be built with artificial intelligence techniques to
detect inconsistencies in VHDL designs introduced through
modification of one of the design components. It could also
help the user design and select the components of his/her

circuit.

Implement other AVE Tools. Other tools to facilitate
UNIX VHDL design are needed. Among them are reverse
analyzers and silicon compilers. Reverse analyzers were
discussed earlier. Going the other way, a silicon compiler
would read a VIA representation and help to generate a cell
layout for the circuit that could be manufactured into an
actual chip. With both of these tools available, a designer
could write a VHDL description of a c¢ircuit, generate the
corresponding VIA, use the VIA to generate the cell layout,
manufacture the chip, and then reverse engineer the chip
(using the reverse analyzer) to obtain the VHDL description
of the manufactured chip. Then the original VHDL descrip-
tion could be compared to the VHDL that resulted from the

chip analysis to detect possible manufacturing errors.

Summary

The UNIX VHDL analyzer produced during this research

provides the academic community with a necessary tool for

TR, \ DL - » T M e P g M N e R L T N T Y T R T T T e T T Ty T
RO AT O I i sl A I s Lo i AR e o G SR N A N SO A O SO S T AR O S BN K

-
'a’e

e

- i

-«u-’,’w.“ T

R X

T

P A .

g

)
[}

the acquisition of further knowledge of VHSIC design. The
need for such tools becomes more and more evident as new
technology increases the complexity of electronic circuits.
A standardized manner to describe such circuits can be found
in the use of VHDL. Through ongoing research, such as the
project presented in this paper, the availability of VHDL
can be broadened for the mutual benefit of industry and

academia, which, in turn, directly benefits the Air Force.

AT f._.\.,\;.'\"f.;ﬁf;r -‘;“;'-‘;"-."%"" A e Py

%—M” 832 A PRODUCTIDN-M!TV UNIX VERV HIGH SPEED IITEMTED 2/2
- ClRCl.ll VNSIC m (U FORCE INST OF TECH
SCHOOL OF ENG R H DMTTM
UNCLASSIFIED DEC 9? WIT/GCS/M

SE3] E IR e Fa e g et b XNy Tt e b SR T | AT A T
y lvb"swm"wkﬂﬁrﬁ.ﬁ%grh % e ;%r;g ¥ AN AN
Fd
N ~— . ’
:
g
£ .
2
5 .
:
.) —
“. R I i :
: == = 5z
s o — = » £
¥ & .3-_ b I 2%
_. T B
. .‘.—n—muuut.&. = 5 .
. = 2 =
’ o - %
., =N =l g
. - N S £
< e g z
: _ e == Q2 .
m.. » e
< R

)
]
1

Tyt
! 0

oy
W

v
!y

APPENDIX A. AFIT VHDL ANALYZER IMPLEMENTATION

This section outlines the status of the AFIT VHDL

) Analyzer at the time of the completion of this report. 1It,
like the similar appendix in Frauenfelder's thesis, is keyed
to the VHDL Language Reference Manual, by chapter. If a
particular function is listed as "not implemented" then the
analyzer will only check the syntax of the construct and no

VIA is generated.

Chapter 1: Design Entities

N Implemented except for next level configuration.

Chapter 2: Subprograms

Implemented.

R

Chapter 3: Packages

Implemented.

Chapter 4: Types

Multidimensional array types not implemented.

All predefined types implemented except character
) names.

Floating point types mapped to integer values.

' (I LA R N IR Y Y BF R o oA m . < KSR L O o .
30N NN Yy ’q.-.l' A AN, .'. Gl T " & ""‘ Y et \ ".".l ¥ > N ‘\.' SOy ".\ \'."

R A PR

IR N

PRSI

-

L g

" "

-

A R

Chapter 5: Declarations

Alias declarations not implemented.

User-defined attributes not implemented.

Chapter 6: Specifications and Directives

Attribute specification not implemented.
Select directive not implemented.

Entity aspect, port and generic map aspects, and
body aspect not implemented.

Configuration specification and binding indication
not implemented.

Chapter 7: Names and Expressions

Names of statement labels are ignored when used as
selected names.

Library names not implemented.

Context and revision specifications not
implemented.

Indexed names of more than one dimension are not
implemented.

User-defined attribute names are not implemented

Mod and rem implemented, but actual values not
calculated for constants.

Chapter 8: Statements

Exit statement not implemented.
Procedure call statement not implemented.

Generate statement not implemented.

I E - -~ L. L] \ " » » | AR LT AT T 2Vl ")) y)
Ay 'l!l’..l‘;.l AOSCRS .‘.’Q‘a A ABC S AAA ‘0. .l.i.t WAL KA ANy, U\ 4 b Lt W ‘n ..* e *J\m.lmﬁ

Chapter 9: Scope and Visibility

K Objects cannot be selected through use of a
0 statement label.

Overloading not implemented.

* Chapter 10: Design Units and Their Analysis

X Separate compilation not implemented.

% Appendix A: Lexical elements

Alternate replacement characters not implemented.

' Maximum identifier length is 255 characters.
U
Appendix B: Predefined Language Envirocnment

! Only predefined attributes for scalar types
" implemented.
¥

Character names (NULL .. DEL) not implemented.

X Time functions TMIN and TMAX not implemented.

s,

n

>
[]

1

P o A) X, by R PR

LTS L 5% LY I

0 ICAIBIEAAL, O 2 W A Ca o o O X
) '.‘_"g"".,“‘.',’. I",?‘I)J‘ Wt ."._‘ A Ly 4 .?],.‘ AOMN ,.Q!, DAY n‘l‘ LAY V

At -!‘

A \,.l,-n t$(-‘ -"(q—.,.r « o, f.-v _\-“".' \-."

\ D)
[M B a M X 4 X3

-
-

Ay s o o

-

)
{
)
)
]

s ¢ L% . LRI “ P I L LS . AN Y A a4 W W Wy o L2l X s
An ’ o W, ",
L g U N T SV a1 b oY " OO 0.1, " - GO vo & . ' "&. » \" -’ , "“ . .n M o .u n. &};}f:'k;::?;h:’i:‘m:"ﬂ

APPENDIX B. VIA DEFINITION

The following is the format for the VIA intermediate

file.

File Definition: The VIA file is an ASCII file

consisting of 4 major divisions: header, symbol table,
operation table, and string table. The header provides

information to enable the access of the other tables.

BNF: In this definition, nonterminals are surrounded
by angle brackets "< >". Comments are preceded by two

hyphens, as in VHDL and Ada.

(via_file> ::= ¢header> (symtab> (optab> (strtab>

<header» ::= <#_design_units> (#_op_recs> <(#_sym_recs> <#_chars>

<#_design_units> ::= integer -- number of design units

(#_op_recs> ::= integer -~ number of entries in the operation table
(#_sym_recs> ::= integer -- number of entries in the symbol table
<(#_chars> ::= integer -- number of characters in the string table

(symtab) ::= (sym_rec)> { <sym_rec’ |
(sym_rec> ::= <unit) | (object> | <(type>

<unit> ::= <(interf> | <arch> | <config> | <(pack> { <(proc> | <func>

<interf> ::= (rec_num> <sym_name> UNIT INTERFACE (info)> (vis>

(sym_ref> -- record number of first port
(sym_ref> -- record number of first generic
(sym_ref> -- record number of first declaration
(op_ref> -- record number of first directive
¢(sym_next) -- record number of next declaration

<arch> ::= (rec_num> <sym_name> UNIT ARCHITECTURE <info> <(vis>

<(sym_ref> -- record number of interface
<op_ref> -- record number of block statement
(syn_next> -- record number of next declaration

. (config> ::= (rec_num> (sym_name> UNIT CONFIGURATION <(info> (vis>

. <(sym_ref> -- record number of interface

\ (sym_ref> -- record number of architecture body
<(op_ref> -- record number of next level configuration
<sym_next> -- record number of next declaration

(pack> ::= <(rec_num> <sym_name)> UNIT PACKAGE <info> <(vis>

N W

- -

-
as” 8

R, 1

D
)

by (sym_ref>

<(sym_next>

-- record number of first package declaration
~- record number of next declaration

(proc) ::= (rec_num> <(sym_name> UNIT PROCEDURE <(info> (vis>

(sym_ref>
<op_ref>
(sym_next>

-- record number of first parameter
~- record number of first statement
~- record number of next declaration

(func> ::= <(rec_num)> <(sym_name> UNIT FUNCTION <info> (vis)>

(sym_ref>
(sym_ref>
(op_ref>
(sym_next>

~- record number of first parameter

~- record number of return type

~-- record number of first statement

-- record number of next declaration

(object> ::= (sig)> ! <var)> | <(const> | <label> | (elem> ! <(param> |

(alias>

! (comp>

(sig> ::= (rec_num> <sym_name> OBJECT SIGNAL <info> (vis>

<(sym_ref>
(sym_ref)>
<(op_ref>
(sym_next>

-~ record number of type

-- record number of resolution function

-~ record number of initialization expression
-- record number of next declaration

(var> ::= (rec_num> <(sym_name> OBJECT VARIABLE <info> <(vis>

(sym_ref>
<(sym_ref)
(op_ref>
(sym_next>

D A ™ oW e ¢ - .y (P ™ % e e @ w e
\‘y’l‘t ALY ..“‘.l.le a>) o~ "’ '- .

e N1

v v e N A e A ™ e L N e L :
ARG ARG LIRS S r(" W' . "'. -\ ., .l, W

-- record number of type

-- record number of resolution function

-- record number of initialization expression
-- record number of next declaration

T L T WS e

TR

oo

‘.“.‘.‘,;....

" » - N W -
AU AN

i i . 1z MU PONU U . T R UPVIY PUFG YO T YTy . wab S aloveB S2fa s Bln Alm f7a B T I S

(const)> ::= (rec_num> (sym_name> OBJECT CONSTANT <(info) <vis>

(syn_ref) -- record number of type

(sym_ref> -- record number of resolution function
<(op_ref> -- record number of initialization expression
<(val> -- constant value

(sym_next> -- record number of next declaration

<(label> ::= <(rec_num> <(sym_name> OBJECT LABEL <info> (vis>

(op_ref> =-- record number of first statement
<op_ref> -- record number of initialization expression
(sym_next)> -- record number of next declaration

<elem> ::= <(rec_num)> <sym_name> OBJECT ELEMENT <info> (vis>

(sym_ref> -~ record number of type
(sym_ref> -- record number of record type
(sym_next> -- record number of next declaration
(param> ::= (rec_num)> <sym_name)> OBJECT PARAMETER <(info> (vis>
(sym_ref> -- record number of type
(sym_ref> -- record number of subprogram
(op_ref> -- record number of initialization expression
(sym_next> -- record number of next declaration

<(alias> ::= (rec_num> (sym_name> OBJECT ALIAS <info> <(vis>

(sym_ref> -- record number of base type
<(sym_ref> -- record number of aliased object
(sym_next> -- record number of next declaration

<comp) ::= (rec_num> (sym_name> OBJECT COMPONENT <info> <(vis>

(sym_ref> -- record number of first port
<(sym_ref)> -- record number of first generic
<(sym_next> -- record number of next declaration

(type> ::= <(irange> | (rrange> ! <(enum> ! (array, | (record> |
<(physical> } <(subtype>

(irange> ::= <(rec_num)> <(sym_name> TYPE IRANGE <info> (vis>

(sym_ref> -~ record number of base type
integer -- minimum range

integer -- maximum range

(sym_next> -- record number of next declaration

(rrange> ::= (rec_num> <(sym_name> TYPE RRANGE <info> (vis)

(sym_ref)> -- record number of base type

real -- min range

real -- max range

(sym_next> -- record number of next declaration
B.3

- »f v . -' - ~' ﬁ ’ M 'l " .I .! ' .. I ‘. . .l -- -ﬂ‘ .--'. . - -
SN M A NN a U N ".‘\ N . AN PLA RS \if';}:l\;\i",u‘:ﬂ

<(enum> ::= <(rec_num> <sym_name> TYPE ENUM <info> (vis>

integer -- number of literals
integer -- value of first (always 0)
integer -- value of last
(sym_ref> -- record number of first literal
(sym_next> -- record number of next declaration
(array> ::= (rec_num> (sym_name> TYPE ARRAY <info> (vis>
<sym_ref> -- record number of index type
(sym_ref> -- record number of element type
integer -- value of lower bound
integer -- value of upper bound
<sym_next)> -- record number of next declaration

(record> ::= (rec_num> <sym_name> TYPE RECORD <info> <(vis>
(sym_ref> -- record number of first field
(sym_next> -- record number of next declaration

<physical> ::= <rec_num> <(sym_name> TYPE PHYSICAL <info> <(vis>

(sym_ref)> -~ record number of base unit
integer -- number of units

intager -- minimum value

integer -- maximum value

(sym_next> -- record numbcr of next declaration

(subtype> ::= (rec_num)> <sym_name> TYPE SUBTYPE <info) <vis>

(sym_ref> -- record number of base type

<sym_ref> -- record number of resolution function
integer -- minimum range

integer -- maximum range

(sym_next> -- record number of next declaration

(sym_name)> ::= character string
<info> ::= (info_field> ! <info> <info_field>

¢(info_field> ::= NO_INFO | PORT | GENERIC ! PARAM | MODE_IN |
MODE_OUT | MODE_IO | MODE_BUF | MODE_LINK | ATOMIC |
GRANULAR | STATIC | LOOP_VAR { ARCH_CHILDLESS !
ARCH_STRUCTURE

(vis> ::= integer -- scope of definition's visibility
(sym_ref> ::= integer -- record number of SYMTAB record

(op_ref> ::= integer -- record number of OPTAB record
(sym_next> ::= integer -- record number of next SYMTAB definition

(optab) ::= (op_rec> | <op_rec)> |

P T T A S O T S e R S LI
s B9, BT, {&Mﬁd‘ L{L&&L{Lflﬁ*; (l\‘..: - ‘..‘f}-‘ ‘j

(op_rec> ::= (rec_num> <op_name> <line_num> <label> (type>
g <first> <op_next> <(value>
#

{(rec_num> ::= integer -- unique record number

<(op_name> ::= QABS | ADD { AFTER ! ALT_CLAUSE | AND ! ASSERT |
ASSOC | ATTRIBUTE | BINDING |} BLOCK ! CASE |
CHOICE_CLAUSE | COMPONENT | COND_CLAUSE | CONST_LIT |
CONST_STR | DISABLE | DIV | E_VALUE | ELMT_OF |
ENABLE | EQ | EXP | FOR | FUNC_CALL | GE ! GENERIC |
GT | GUARD } I_VALUE | IF ! INITIALIZE ! LE | LOOP |
LT | MOD { MUL | NAND | NE | NEXT | NOOPR | NOR ! NOT
K NULL | NULLBR | OPEN | OR ! OTHERS | PORT | PROC_CALL
¢ PROCESS | R_VALUE | RANGE | REM | REPORT | RETURN !
SENS_LIST | SEVERITY ! SIG_ASSIGN ! SUB | SYM_REF |

e e e

[l
]
{
]

¢ 1
: TRANSPORT | VAR_ASSIGN | VOID _NODE | WAVE | WHEN !
. WHILE | XOR
0 <(line_num> ::= integer -- line number from source VHDL
\l
3 (label> ::= (sym_ref> -- symbol table index to label for this
; -- statement
L)
)
(type> ::= (sym_ref> -- symbol table index for the type of this
. -~ statement
B
§
L (first> ::= (op_ref> -- operation table index for first pointer
"
Ky (op_next)> ::= (op_ref) -- operation table index for next pointer
F (val> ::= integer ! real -- value for constant literals
4 (strtab) ::= { <(string> |
.
% (string> ::= character { character | '\0'
L
§
X
K
¥
i
i
o
-8
¥
¢
4
K
[}
[}
\ B.5

i
K
K

Py “'-.‘I.s"‘* A " ‘f DO ‘|- 4 ‘j.“"“q‘&e' 3, ’.' : -'\'.‘11 w Y T S A R I E R N A I D S S T S S S S

N e e e e e

)
D)
*
]

“’.,i)‘ !.

. ey ‘ w, ", Wy W o o e - R
J “‘-‘i‘;‘ﬁ WAL a’.’s_.: St .o ,00.0 l.c,n L0 A *' ‘\' > ﬁw\.' > “"‘:\ \J\ % !“'.’\"

Appendix C. VHDL ANALYZER TEST SUITE

This appendix details the number of test objectives
(Intermetrics, 1984a:19-20) and tests for each chapter of
the Language Reference Manual. These tests have been
formulated to check for each requirement in the LRM and are
similar to the examples shown in Chapter 5. However, due to
copyright restrictions, the actual tests in the VHDL

Analyzer Test Suite cannot be published in this thesis.

Chapter 1: Design Entities (58 objectives)

Short tests: 13 Error tests: 22

Chapter 2: Subprograms (20 objectives)

Short tests: 7 Error tests: 14

Chapter 3: Packages (4 objectives)

Short tests: 2 Error tests: 3

Chapter 4: Types (82 objectives)

Short tests: 37 Error tests: 41

Chapter 5: Declarations (51 objectives)

Short tests: 36 Error tests: 43

Chapter 6: Specifications and Directives (150 objectives)

f{frr "o O

- -
- L

-~

Ty > -~

- e = e

o

-

Short tests: 42 Error tests: 24
C.2
0 p hay Y L IR TS I T 0 N e e T T Y AT A A S L S S A
RO R A KON AT i e D D T 5 T i S e X, T o0y W » (o A% Yp “)' NN

JUICH [T AN IR FU N UL T URT U PO RO RN TR TR 1O TR RURORY

Short tests: 26 Error tests: 54

Chapter 7: Names and Expressions (59 objectives)

Short tests: 71 Error tests: 84

Chapter 8: Statements (66 objectives)

Short tests: 68 Error tests: 107

Chapter 9: Scope and Visibility (14 objectives)

Short tests: 21 Error tests: 21

Chapter 10: Design Units and Their Analysis (11

objectives)

Short tests: 14 Error tests: 21

Appendix A: Lexical elements (47 objectives)

Short tests: O Error tests: 34

Appendix B: Predefined Environment

AR APLURR LRy Y Bl p b a0 Rt A e e AT b 8 8 E A A dta 8% AV b'a'tin A% 8% Ala’ AV Aba Ve ade'als’ ,..i.

B Bibliography

X Aeronautical Systems Division, Air Force Systems Command.
VHSIC Hardware Description Language (VHDL) Program.
Solicitation No. F33615-83-R-1003. Wright-Patterson
o AFB OH, 30 Mar 1983.

-

e s

Aho, Alfred V. and S.C. Johnson. "LR Parsing." Computing
Surveys. 6 (2): 99-124 (June 1974).

@ Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman.
' Compilers: Principles, Technigques, and Tools.
. Reading., MA: Addison-Wesley Publishing Co., 1986.

W Aylor, J.H., R. Waxman, and C. Scarratt. "VHDL--Feature
Description and Analysis." IEEE Design and Test of
o Computers. 3: 17-27 (April 1986}.

]

’ Barrett. William A. and John D. Couch. Compiler

\ Construction: Theory and Practice. Chicago: Science
' Research Associates, Inc., 1979.

p Bell Telephone Labs. Inc. UNIX Programmer's Manual, 4.2
BSD. Berkely. CA: August 1983.

Brooks, Frederick P., Jr. The Mythical Man-Month. Reading
MA: Addison-Wesley Publishing Co, 1975.

NN Carter, Lt Col Harold W. and others. 1986 Research Report:
4 AFIT VHDL/DB/DBMS Research. AFIT-ENC-TR-87-01. Air

i Force Institute of Technology (AU}, Wright-Patterson
AFB OH., January 1987.

CAD Language Systems, Inc. "VHDL Language Reference Manual
. (Draft Standard 1076/A).," CAD Language Systems, Inc.,
A Rockville, MD, 31 December 1986.

3 Chu, Y. Computer Organization and Microprogramming.
.ﬁ Englewood Cliffs NJ: Prentice-Hall, 1972.

v Conway, R.W. and T.R. Wilcox. "Design and Implementation of
. a Diagnostic Compiler for PL/I," Communications of the
- ACM, 16 (3): 169~-179 (March 1973).

l Dallen, John Anthony., Jr. The Synthesis and Validation of
~ Experimental VLSI Design Using Decoupled Behavioral,
b Structural and Physical Specifications. PhD

.b Dissertation. Department of Computer Science, Duke
University, Durham NC, 1983.

N Bib.1

s
A - R Caie e a-
'.’n;'_"!f.'i?-'\|'\‘,|’_|‘.‘ _l,.’l‘ XoLX . 'IF.' N ' r

d '~

X _(A ," o » (-- *le f, TN ;:",' -'.’_;J";J\'(_;I_‘.-\q"..u"‘,- .-.-.f‘;.-\'.- ", -_r%{_'.-__."(‘"'-r

’y 3 .
=3 s, (.
§op 8 § o e g b x B ai a Bt §74 870 @-'n B mia B0y Aa f'a Rl Ahy Al qVa Vg V0 Bte 4V BV Avg d0e ate S o€ 2N eayl ab. abo ato g\ AN abe gl aY,

2.4 ———. Patois User's Manual. Department of Computer

1
& Science, Duke University, Durham, NC, 1983b.
o
P. Decker, Capt Sharon L. A Study and Implementation of An
& Automatically Retargeting Microcode Compiler System.
MS Thesis GCS/ENG/86D-9. School of Engineering, Air
W Force Institute of Technology (AU), Wright-Patterson
A AFB OH, December 1986.
A
'&' Deitel, Harvey M. An Introduction to Operating Systems.
a Reading MA: Addison-Wesley Publishing Company, 1984.
& Dewey, Alan and Anthony Gadient. "“VHDL Motivation," IEEE
nJ Design & Test of Computers, 3 (2): 12-16 (April 1986).
"W,
§ Dukes, CPT Michael A. Examination of a VHDL Simulator on
h(SISD and MIMD Systems. Technical Report. School of
Engineering. Air Force Institute of Technology (AU},
) Wright-Patterson AFB OH, to be published.
[~
&
Lo Evans, Arthur, Kenneth J. Butler, G. Goos, and William A.
1? Wulf. DIANA Reference Manual Revision 3. Tartan
N Laboratories. Inc. Contract No. MDAS03-82-C-0148.
o Pittsburgh PA, 28 February 1983,
‘)
-
;J Frauenfelder, Capt Deborah J. An Implementation of a
gl Language Analyzer for the Very High Speed Integrated
:a Circuit Hardware Description Language. MS Thesis
o GCE/MA/86D-1. School of Engineering, Air Force
- Institute of Technology (AU}, Wright-Patterson AFB OH,
P December 1986,
‘-:
::4 ——. Telephone interview. Colorado Springs, CO, 29 June
- 1987.
:'
: Gilman., Alfred S. "VHDL--The Designer Environment," IEEE
; Design & Test of Computers, 3 (2}): 42-47 (April 1986).
7, . . o
", Goodenough, John B. The Ada Compiler Validation Capability
- Irmplementer's Guide (Version 1). Wright-Patterson AFB
N OH: SofTech Inc., December 1986.
» Goodman, Glenn V¥ "VHSIC a Potential Boon to Alir Force R&M
,ﬁ and Advanced Tactical Fighter." Armed Forces Journal
1,

International, 124 (5): 58-64 (January 1987).

b“ Holt, R.C. and D.T. Barnard. "Syntax-Directed Error Repair
N and Paragraphing,"” Computer Systems Research Group.
3% University of Toronto, 1976.
':;:
b7
o]
M4
LY,
"
\ Bib.2
e Y0
2
Ky
e
.
R o o O o A AN L At Ot At oo W e

e e e e s

Y e Ge Ak Ae s -

1y
4

.

Horning, J.J. "What The Compiler Should Tell the User,"
Compiler Construction: An Advanced Course (Second
Edition), edited by F.L. Bauer and J. Eickel. New
York: Springer-Verlag, 1976.

Intermetrics, Inc. VHDL Analyzer Program Specification.
Contract F33615-83-C-1003. Bethesda MD, 30 July 1984a.

. VHDL Analyzer Test Plan. Contract F33615-83-C-1003.
Bethesda MD, 30 July 1984b.

——. VHDL Design Library Specification. Contract F33615-
83-C-1003. Bethesda MD, 1 August 1985a.

VHDL Language Reference Manual Version 7.2.
Contract F33615-83-C-1003. Bethesda MD, 1 August
1985b.

VHDL User's Manual: Volume I - Tutorial. Contract
F33615-83-C-1003. Bethesda MD, 1 August 1985c.

VHDL User's Manual: Volume II - User's Reference
Guide. Contract F33615-83-C-1003. Bethesda MD, 1
August 1985d.

Johnson, S.C. "Yacc: Yet Another Compiler-Compiler,"”
Murray Hill, NJ: AT&T Bell Laboratories, 31 July 1978.

Kodama, 2nd Lt Harvey. The UNIX VHDL Simulator. MS Thesis,
School of Engineering, Air Force Institute of
Technology (AU), Wright-~Patterson AFB OH, December
1987.

Kamrowski, Capt M.S. Design of a Parallel Simulator for the
VHDL. MS Thesis. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1986.

Kantorowitz, E. and H. Laor. “"Automatic Generation of
Useful Syntax Error Messages," Software--Practice and
Experience, 16 (7): 627-640 (July 1986).

Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language. Englewood Cliffs NJ: Prentice-
Hall, Inc., 1978.

Knapp, David W. and Alice C. Parker. A Data Structure for
VLSI Synthesis and Verification. Contract DAAG29-80-k-
0083. Department of Electrical Engineering-Systenms,
University of Southern California, Los Angeles CA, 8
May 1984.

Bib.3

- Em e Y W

) 2,7] 3, 0,5 v L™ v o ™ M ® - » LR R R B B S)
49,860,301, l'g‘l'!!“:“l.- O AT N A AT RN 'l'-h.i‘n LA R i o e Mo MR i i .f* d-‘..‘!iﬁis'i' r:;')::‘ﬁ:h'i):.ﬂﬁi

-
Rt %

s
"

} W , ey .
TN by POFOUCI o0 000 M I .;‘u“) OO N OO X s ‘.! W

- C? L 1o A%a-a%e Ao a0, L. 4la 4

Lesk, M.E. and E. Schmidt. "Lex--A Lexical Analyzer
Generator," Murray Hill, NJ: Bell Laboratories, 31
July 1978.

Levitan, Steven P. Architectural Simulation of Digital
Systems. Project proposal. Department of Electrical
Engineering, University of Pittsburgh, Pittsburgh PA,
22 April 1987.

Lieberherr, Karl J. "Toward a Standard Hardware Description
Language," IEEE Design and Test of Computer of

I
Computers, 2 55-62 (February 1985).

Lipsett, Roger, Erich Marschner, and Moe Shahdad.
"VHDL~-The Language,” IEEE Design and Test of
Computers, 3 (2) 28-41 (April 1986).

Lynch, Major W.L. A Kernel VHDL Simulator. MS Thesis.
School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December

1986.

Morgan, H.L. "Spelling Correction in Systems Programs,"”
Communications of the ACM, 13 (2): 90-94 (February
1970).

Nash, J.D. "Bibliography of Hardware Description
Languages,”" ACM SIGDA Newsletter, 14 (1) 18-37
(February 1984).

Nash, J.D. and Larry F. Saunders. "VHDL Critique," IEEE

Design & Test of Computers., 3 (2): 54-65 (April 1986).

Noonan, Robert E. "An Algorithm for Generating Abstract

Syntax Trees," Computer Language, 10 (3/4): 225-236
(1985).
Piloty, Robert, and Dominique Borrione. "The Conlan

Project: Concepts, Implementations, and Applications,”
Computer 81-82 (February 1985).

Pressman, Roger S. Software Engineering: A Practitioner's
Approach. New York: McGraw-Hill Book Company, 1982.

Rochkind, M.J. "The Source Code Control System," IEEE
Transactions on Software Engineering Vol. SE-1: 4 (Dec
1985).

Schreiner, A.V., and H.G. Friedman, Jr. Introduction to
Compiler Construction with UNIX. Englewood Cliffs:
Prentice-Hall, Inc., 1985.

Bib.4

B NP N I AN LA ATt T e
WS l.l sy .0 '\'\ TN

e e
R uumnaﬁqxudyﬁiud

7 WP

. N 5 N ’ e 4 et 0 oaty: TR | e’ e Vg’ bl ha Vel)t s . .‘l g
R I D T L R O RN R KA A AGT G SNV S ay v s ity bt Vg

AL

Tichy, W.F. "Design, Implementation, and Evaluation of a

Revision Control System," Proceedings of the 6th
International Conference on Software Engineering (Sep
1982).

Tremblay, Jean-Paul and Paul G. Sorenson. The Theory and
Practice of Compiler Writing. New York: McGraw-Hill
Book Company, 1985.

Walker, Robert A. and Donald E. Thomas. "A Model of Design
Representation and Synthesis," Proceedings of the 22nd
Design Automation Conference 1985: Paper 28.1, 453-459.

Waxman, Ron. "Hardware Design Languages for Computer Design
and Test," Computer, 19 (4): 90-97 (April 1986).

Wichmann, Brian A. and 2Z.J. Ciechanowicz. Pascal Compiler
Validation. Chichester Great Britain: John Wiley &
Sons, 1983.

Bib.5

.'ﬂ.‘- [2 U

2L

" AT 3 N NPT LW T LY 1) U N LY T Y I UY VY UN T UN IR U Y an B h Bl Bad Bav b BN By Lad 40t Aot Ba- ta DA ote 2Pl b

s

VITA

e
ol

Captain Randolph M. Bratton was born on 11 October 1949
ﬁ, in Atlanta, Georgia and was raised in Greensboro, North

; Carolina. He graduated from Guilford High School in 1967

At and attended North Carolina State University from 1967 until
1972, majoring in Aerospace Engineering and Liberal Arts-

' Spanish. In 1973, he enlisted in the United States Navy as
a Musician Seaman and served until his honorable discharge

3 in 1980. He was stationed aboard the USS Forrestal during

N her 1974 Mediterranean cruise and served with the Navy bands
RX at Orlando, Florida and Memphis, Tennessee. He completed

work on the degree of Bachelor of Science from the Univer-

*J sity of the State of New York (External Degree Program) in
b September 1979. 1In January 1981, he entered Memphis State
% University, pursuing a second Bachelor degree in Computer

% Technology as well as a commission from the USAF through the
k ROTC program. After graduation in December 1982, he was

b selected as an AFROTC Distinguished Graduate and received a
.: Regular commission. After his return to active duty in

if January 1983, he served as a computer systems analyst at the
{ Aeronautical Systems Division, Wright-Patterson AFB, Ohio

é until entering the School of Engineering, Air Force

g Institute of Technology, in June 1986.

f Permanent Address: 204 Brushwood Dr.

% Greensboro, North Carolina 27410

;

;

b VITA.1

5

OUOL OO O . (W x Y \ a0 X N
A3 J “'\"“1.3.5" O‘\‘.l 0!’"‘..'0‘- l‘.t’\ [l.' .‘.»‘l. .c ’s L) -" n'l" e A :‘I d \ ARR ‘ s

.....

UNCLASSIFIED

URI LASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

A58 § 3L

22. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/MA/87D-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

. OFFICE SYWBOL
a, 1cabie,
AR TR

6a. NAME OF PERFORMING ORGANIZATION
School of Engineering

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, Ohio 45433-6583

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE' SYMBOL
ORGANIZATION Air Force (if applicable)
Wright Aeron i 1 Labs AFWAL/AADE

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢c. ADDRESS (City, State, and ZIP Code)
Wright-Patterson AFE, Ohio 45433

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

TASK
NO

PROGRAM PROJECT
ELEMENT NO. NO.

11. TITLE (Include Security Classification)
See box 19.

12. PERSONAL AUTHOR(S)

Randolph M. Bratton, B.S., B.S.E.T., Captain, USAF

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

MS Thesis FROM TO 1987 December 113
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if recessary and identify by block number)
FIELD GROUP SUB-GROUP VHDL Compilers
T2 05 VHSIC Hardware Description Language
VIA UNIX

Title: A Production-Quality UNIX Very

Hardware Description Language

Thesis Chairman: Richard R. Gross, Lt

19. ABSTRACT {(Continue on reverse if necessary and identify by block number)

. Col., USAF

High Speed Integrated Circuit (VHSIC)
(VHDL) Subset Analyzer

g - .
se@?ﬁ;ﬁ,‘a’- ‘"’“_ y

Alr Force lnctinue c'l I A
ot echn!
Wright-Fatteipon AtB 0;1)

ESUHE BT A
B¢
wrrcl Davelopmend
Y (Al

443

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

EXUNCLASSIFIED/UNLIMITED [SAME AS RPT 3 DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

Richard R. Gross, LtCol, USAF

22b TELEPHONE (Include Area Code) | 22c OFFICE SYMBOL

DD Form 1473, JUN 86

. - . - ,- - » ™ » » T - - S
LTI (AL S A A

Previous editions are obsolete.

(513)255-3098 AFTIT/ENC
SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

RS

N

45

&4

N4y
o

s 8 o - -
b Yoy
_ﬁ"ﬁf‘&{ ¢

o

B
~ LA

PN ok
VSO,

]
e

3,
L4

LA A
L d

N4

ay e,
A

etee
e]

RN

A
1
a

L AN RN
‘fl'flu'f-

e Al W U
P '1‘ 2 ‘e fl.,‘

-
5
7

iy
L P
)
s

2,

[
.-'n'l.l‘
N .

4y “s

v
3

2l

e
o [

»

v

PR o S R
&"5“‘.‘."‘." .

g
40

PR

ey

y TN R L PR R wy Y A ‘dal $al PaB' ¥ag™ IR Y e ot e h 't g i g 't p'd 0 i 0P, O AR Y

¥ Security Classification of this Page v
. UNCLASSIFIED b
¢)
¥ ' 3
' ¢
])
1 4
| Abstract .
N *
4 . 0
A" .7 w3
; This paper describes the design and implementation of
)
3 4
the Air Force Institute of Technology's (AFIT's) UNIX-based -
: VHDL Analyzer. The purpose of this tool is to facilitate ’
X))
%
: the introduction of VHDL into the academic environment, s
k)
Oy
which may not be able to use the Department of Defense's |
v
’ VMS-based software. This research emphasized two areas: :
! the criteria for a ®"production-quality® software product and N
f N,
K the design of an efficient Intermediate Representation (IR) P
>
B that serves as an interface between the Analyzer and other A
\ -
| tools in the AFIT VHDL Environment (AVE). Background on ﬁj
4 S
4 other UNIX VHDL analyzers, as well as other IRs, was pre- d
o
! sented. A two-part IR, based on Dallen's Patois hardware E
; description language and named the VHDL Intermediate Access ;
(VIA), was designed, and examples were given that jillustrate 'i
.J Y
its use. Test results showed that the Analyzer passed over -ﬁ
] o
; 75% of the conformance tests from the VHDL VMS Analyzer Test :
) '{
; Suite and performed well in the areas of compile time, mem- ~
ory usage, and disk usage. Recommendations for future h%
research include adding user options to the Analyzer and Q;
' -
A\
implementing a design library for VHDL designs. L
\\‘ // Tal
RS o
/ i
\.:,
i
T
Security Classification of this Page Qﬁ
UNCLASSIFIED T "
A ¥ L NS Sl 08 W, S R SR RN R PR P - P A A T N ‘-"_f,.-' R R N LI e ‘_'_.."-:A
,.'!.a,'t' ‘c‘.l':_"'l"l?“l, ALY i 'l oh 'o’ ' ’a.‘-‘u’ﬁ AN NN, Lot S L PP

TR R .
N oyl S A L e
1 OO O AR R
PO IS YO A RS NG

I e N . WY,

