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Abstract

This paper describes the design and implementation of

the Air Force Institute of Technology's (AFIT's) UNIX-based

VHDL Analyzer. The purpose of this tool is to facilitate

the introduction of VHDL into the academic environment,

which may not be able to use the Department of Defense's

VMS-based software. This research emphasized two areas:

the criteria for a "production-quality" software product and

the design of an efficient Intermediate Representation (IR)

that serves as an interface between the Analyzer and other

tools in the AFIT VHDL Environment (AVE). Background on

other UNIX VHDL analyzers, as well as other IRs, was pre-

sented. A two-part IR, based on Dallen's Patois hardware

description language and named the VHDL Intermediate Access

(VIA), was designed, and examples were given that illustrate

its use. Test results showed that the Analyzer passed over

75% of the conformance tests from the VHDL VMS Analyzer Test

Suite and performed well in the areas of compile time, mem-

ory usage, and disk usage. Recommendations for future

research include adding user options to the Analyzer and

implementing a design library for VHDL designs.

x



k Production-Quality UNIX
Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language
Subset Analyzer

I. Problem Statement

Statement of the Problem

The Department of Defense (DoD) has standardized a

hardware description language for Very High Speed Integrated

Circuits (VHSIC) called the VHSIC Hardware Description

Language or VHDL. To gain widespread acceptance in the

academic community, the VHDL software tools (analyzers,

simulators, and code retargeters) must work in the computer

environment many universities now use--UNIX. But, as yet,

no such UNIX VHDL toolset exists.

Background

To put this problem in perspective, I will briefly

describe VHDL: what is it, why is it important, what makes

a UNIX VHDL design environment desirable, and what needs

must be met to produce such a UNIX VHDL environment. I will

also relate current research in VHDL to these needs.

'UMis a trademark of Bell Laboratories.
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VHDL, among other hardware description languages, is

used to design, document, and validate hardware components

(Lieberherr, 1985:55). Its syntax and semantics allow

hardware designs to be precisely specified and those designs

to be unambiguously transferred among design engineers and

organizations (Lipsett and others, 1986:28). But, other

hardware description languages, such as ZEUS (Lieberherr,

1985), CONLAN (Piloty and Borrione, 1985), and Computer

Design Language (CDL) (Chu, 1972) among others, have been

widely used, some being used as early as the 1960s. And in

this widespread use lies part of the problem facing the Air

Force today.

In February 1985, the Air Force issued its reliability

and maintainability (R&M) plan, called "R&M 2000," which is

intended to provide greater reliability and maintainability

in defense systems (Goodman, 1987:58). Specifically, in

contracts for new defense systems, R&M criteria are now

given as much weight as cost and performance. One of the

main goals of R&M 2000 is the use of VHSIC technology in

place of more bulky circuit boards in aircraft avionics

systems. For example, one VHSIC board can take the place of

several line-replaceable units currently used and, at the

same time, offer a speed increase on the order of three to

four times. Also, the number of maintenance personnel

necessary to maintain and repair the VHSIC boards can be

reduced (Goodman, 1987:58). However, such advances in
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technology do not happen without a price. "Already in the

$2 to $5 million range, development costs of advanced ICs

[integrated circuits] must be reduced to economically meet

future government IC demands" (Dewey and Gadient, 1986:13).

The use of hardware description languages can help reduce

these development costs.

As mentioned above, many HDLs exist but none have

gained widespread acceptance (Lieberherr, 1985:55; Nash,

1984:18). Because of this, the Department of Defense began

a program, VHDL, to standardize a hardware description

language for VHSIC systems (Dewey and Gadient, 1986:12).

VHDL is an Ada 2-based hardware description language. Its

goals are to "address the broad range of descriptive

abilities required for advanced electronic system

documentation, and to establish a standard for eliminating

current diversity in hardware description languages" (Dewey

and Gadient, 1986:13). VHDL is designed to be flexible:

the VHSIC design engineer need not be concerned about the

design style or technology used (Waxman, 1986:92-93).

VHDL tools delivered under the DoD contract (ASD, 1983)

run under the Digital Equipment Corporation (DEC) VAX/VMS

(Virtual Address eXtended/Virtual Memory System) operating

2 Ma is a registered trademark of the U.S. Govewnt (Ma Joint Prop-am Office).
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system3 (Deitel, 1984:507-508). This operating system (or

environment) is in general use in the commercial world.

Universities, given the responsibility to educate their

engineering students in the use of HDLs, need a VHDL toolset

to run under UNIX (the other major operating system for the

VAX and a defacto university standard). To meet this need,

AFIT and the Air Force Wright Aeronautical Laboratories

(AFWAL) decided in 1985 to investigate the "development of a

UNIX-based VHDL integrated tool set, which subsequently be-

came known as the AFIT VHDL Environment (AVE)" (Carter and

others, 1987:3).

The 1986 prototype AFIT VHDL Environment (see Figure 1.1)

consists of a prototype VHDL source code analyzer

(Frauenfelder, 1986), a kernel VHDL simulator (Lynch, 1986),

a parallel VHDL simulator design (Kamrowski, 1986), and a

VHDL-based microcode retargeter design (Decker, 1986). In

1987, two thesis efforts were started to complete the work

begun by Frauenfelder and Lynch. Research will continue in

the other areas as student interest warrants (Carter and

others, 1987:3-6).

Scope

The goal of this project was to produce a production-

quality VHDL analyzer, using Frauenfelder's prototype as a

3 This toolset delivered er the DoD ontract will be referred to as the YUIIM
system in the remainder of this paper.
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Software

SimuatorHardware

Simulator Engine

VH D L VHDLMicro
Code 

Code

Checker 
Compler

Figure 1.1 AFIT VHDL Environment 
(Frauenfelder, 

1986:1.3)

foundation from 
which to work. 

To define this 
goal more

precisely, four 
steps needed to 

be completed:

1. Identify what 
a VHDL analyzer 

should do.

2. Define what is meant by "production-quality."

3. Apply this definition to the Analyzer project.

4. Define the tasks needed to make the prototype
analyzer a production-quality product.

The VHDL Analyzer. The DoD contract specifies the pur-

pose of the VHDL Analyzer. In general, the Analyzer must
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(1) check syntax and static semantics of the VHDL source and

(2) organize design and documentation data into a more effi-

cient machine readable form called an Intermediate Represen-

tation (IR) (ASD, 1983:11). Specifically, the DoD requires

the contract VHDL Analyzer to:

1. Detect all input syntax and static semantic

source code errors.

2. Be syntax driven.

3. Be written in Ada.

4. Run on VAX 11/780 under the VMS operating sys-
tem.

5. Be production-quality (ASD, 1983:11).

Because the IR forms the important interface between the

Analyzer and other tools in the VHDL design environment, the

DoD requirements for the Intermediate Representation should

also be presented. The purpose of the Intermediate Repre-

sentation is to "allow a lower level description of the VHDL

source to serve as an aid in interfacing the VHDL to various

design automation tools" (ASD, 1983:11). The IR is meant to

solve interfacing issues, not transportability ones, because

the VHDL source is the medium for transportability (ASD,

1983:11). An IR for VHDL should (1) be organized in an

orderly manner for easy access of any information it

contains and (2) be independent of host machine environments

and tools (ASD, 1983:11).
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Production-quality. The DoD's requirement for

production-quality, while certainly necessary, is

nonetheless quite general and needs further clarification.

In The Mythical Man Month, Brooks asserts that a useful

"programming systems product" should have the qualities of:

Generalization. The tool should accept a wide variety

of input (correct as well as erroneous) and, if the tool is

part of a programming system, it should interface acceptably

with various other tools.

Reliability. The tool should be tested thoroughly, by

itself and in conjunction with other tools. This also

implies the interfaces between each tool must be well-

defined and stable.

Maintainability. The tool should be designed in a way

that supports testing, modification, and extension. It

should be thoroughly documented, both internally and exter-

nally.

Economy. Brooks says the tool should use a "prescribed

budget of resources" (Brooks, 1975:4-6).

Production Quality UNIX Analyzer Criteria and Require-

ments. From Brooks' definition, the production-quality UNIX

VHDL Analyzer for the AFIT VHDL Environment should meet the

following specifications:

1.7

D :v-*.q * - ev



Generalization:

1. The Analyzer must run under the latest version UNIX

and use those tools commonly found in that programming envi-

ronment. As discussed above, the projected audience is the

academic environment which generally prefers UNIX. Using

common UNIX tools, such as the programming language C

(Kernighan and Ritchie, 1978) and compiler-compilers like

yacc (Johnson, 1978), allows more people to be able to use

this product. This requirement precluded the use of Ada or

the use of any licensed commercial software, because not all

UNIX installations have Ada or have invested in the same

types of commercial software tools.

2. The Analyzer must run on several different computer

configurations. This showed that the Analyzer is not tied

to any specific computer hardware and ensures portability.

Specifically, this Analyzer was ported to a VAX 11/780, an

ELXSI 6400, and a Sun 2 workstation. The VAX was chosen be-

cause it represents the general-purpose class of computer

found in many university computer installations. The Elxsi

and the Sun are representative of the newer generations of

faster and smaller processors that are now being acquired by

the academic community.

3. The Analyzer must analyze both correct and incor-

rect VHDL source. For incorrect VHDL, the Analyzer must

recover "gracefully" from any syntax or static semantic
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error, with an appropriate error message. It is impossible

to ensure that every error be detected, but the Analyzer

should not "crash" due to an incorrect input.

Testina:

4. The Analyzer must pass a comprehensive (though not

necessarily exhaustive) test suite designed to exercise each

VHDL grammar rule and associated program modules as thor-

oughly as possible. The Analyzer was tested in the same

manner and with the same test suite as the VMS version. The

VMS VHDL Analyzer Test Plan is documented in (Intermetrics,

1984b) and examples of these tests can be found in Chapter 5

and in Appendix C.

Documentation:

5. The Analyzer, including the intermediate represen-

tation, module interfaces, and major data structures, must

be well documented. This thesis provides a large part of

this documentation by explaining the design decisions made

during this project.

Maintenance:

6. The Analyzer should be easily maintainable and ex-

tensible. The source code should include in-line documenta-

tion and interface specifications for each module or

function. In general, it should subscribe to the use of
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good software engineering practices, such as information

hiding, data abstraction, and module cohesion and coupling

(Pressman 1982:Ch. 7).

Interfaces:

7. The Analyzer must produce an Intermediate Represen-

tation that provides the necessary information to the other

tools in the environment. By "necessary" it is meant that

IR should provide at least as much information as contained

in the original VHDL, i.e. structure and behavior (Nash and

Saunders, 1986), though it should be "distilled" and

organized for easy access, according to the DoD requirement.

If a tool needs more information than VHDL can supply, then

it will not be well-suited for the AVE, unless it does not

rely solely on VHDL for input.

8. The Analyzer's IR must be efficient and provide

easy access to the information it contains. Comparisons of

different IRs for VHDL were used to determine which repre-

sentation was best for the Analyzer, based on ease of

information access and the resulting output data size.

Descriptions and examples of the researched IRs can be found

in Chapter 2, with the results of those comparisons being

presented in Chapter 3.
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System Resources:

9. The Analyzer must be able to process VHDL designs

within a "reasonable" time period, dependent upon the size

of the design. Since many people equate compile times with

production-quality, the Analyzer must be efficient in its

use of CPU time. The goal for this project was 1000 lines

of VHDL source analyzed per CPU minute on an unloaded VAX

11/780 running UNIX bsd 4.2. This goal is the same as for

the VMS VHDL implementation (Intermetrics, 1984a:2.2).

10. The Analyzer must conserve the use of main memory

and secondary storage in order to be usable on smaller UNIX

systems. One goal of this project was that the Analyzer not

require more than 640K of main memory for any VHDL descrip-

tion. The resulting output will, of course, be dependent

upon the size of the input description, but it should be

compact, without sacrificing efficiency. The goal for this

requirement was that the IR output should not, on the

average, contain more than 100 bytes of data for each VHDL

statement. Both these figures are based on the corres-

ponding design goals of the VMS implementation

(Intermetrics, 1984a:3.2, 1985b:2.1).

System Integration:

11. After the Analyzer had passed the test suite

described under Testing, it had to be tested in conjunction

1.11



with the simulator. This further exercised the IR interface

and demonstrated the "end-to-end" use of the system, from

VHDL input to simulator report output. VHDL designs (such

as adders, shifters, etc.) which have a limited number of

input/output states were used, so that the resulting simula-

tion was more easily verified.

The scope of this research project did not include

several closely related areas, such as:

1. Optimizing the IR format output. Optimization of

the Intermediate Representation, like object code optimi-

zation for software compilers, involves several code-

improving translations (Aho, Sethi, and Ullman, 1986:Ch. 10;

Barrett and Couch, 1979:Ch. 11). During this project, most

of the research was directed towards increasing the

capability of the Analyzer. Once the IR had been enhanced

and modified, it needed to remain static so that concurrent

VHDL projects would have a basis from which to work.

2. Rewriting the Analyzer to conform to the upcoming

IEEE standard VHDL. VHDL has been proposed as an IEEE stan-

dard hardware description language, but with modifications

to Version 7.2 (CAD Language Systems, 1986). Because the

primary interests in this research are Version 7.2 and the

comparison between the 7.2 versions of the VMS and UNIX

Analyzers, a separate IEEE VHDL Analyzer was not a product

of this project.
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The Prototype Analyzer

Because it served as a basis for the production-quality

Analyzer, the prototype analyzer was evaluated against the

project requirements. This evaluation showed the areas that

met the requirements, as well as those needing change or

improvement.

Generalization: The prototype runs under UNIX on
both a VAX 11/780 and an ELXSI 6400. It is
written in C and uses the UNIX tools lex (Lesk and
Schmidt, 1978) and yacc (Johnson, 1978) for
lexical and syntactic analysis. It does not
include error recovery for syntax errors.

Testing: Testing (and the prototype test suite)
was limited to those constructs implemented in the
prototype, mainly declarations. (See Table 1.1.)

Documentation: Documentation for the prototype
consists of Frauenfelder's thesis (Frauenfelder,
1986) and a technical report detailing the func-
tions of each module in the prototype.

Interfaces: The Intermediate Representation of
VHDL produced by the prototype is modeled after
Design Data Structure (Knapp and Parker, 1984) and
is called the VHDL Intermediate Access (VIA). The
VIA will be discussed in more detail in Chapter 2.

Maintenance: The prototype is well modularized
and commented. As mentioned above, a maintenance
document describes each of the modules functions
and expected inputs.

System Resources: The prototype can analyze 1000
lines of VHDL source in under 3 minutes CPU time,
however, the total execution time was over 30 min-
utes. The resulting VIA output file was over 3
Megabytes in size.

1.13
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Table 1.1 Implementation of the Prototype Analyzer
(Frauenfelder, 1986:A.1-3)

Language Subset Level of Implementation

1. Design Entities Implemented except for port lists.

2. Context Clauses Implemented.

3. Declarations Implemented except for interface lists
and port lists.

4. Expressions Not Implemented.

5. Sequential Not Implemented.
Statements

6. Concurrent Not Implemented.

Statements

7. Configurations Implemented.

8. Subprograms Implemented except for parameter
lists.

9. Other (Not applicable)

System Integration: The prototype has not been
integrated with other tools in the AVE.

Research Approach

To extend the prototype to meet the Analyzer require-

ments, based on the above evaluation, the following sequence

of tasks had to be accomplished:

1. Find ways to make the prototype's Intermediate

Representation more efficient or find a more efficient IR.

The prototype's IR, called the VHDL Intermediate Access
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(VIA) (Frauenfelder, 1986:3.16), did not meet the design

goal of 100 bytes per VHDL statement, even after some minor

modification to reduce its size. Also, VIA's use of

variable length records and complex bindings makes it harder

to process and, therefore, requires a more complex internal

data structure than a representation with a fixed record

length and a simpler linked-list or tree structure. These

disadvantages of VIA prompted research into other possible

IRs, the results of which are presented in Chapter 2.

2. Document the IR for use by other tools in the AVE.

Whatever the form of the IR, it must be well documented

because it serves as the interface between the VHDL source

and the AVE tools.

3. Adapt the prototype for use of the new IR. After

selection of the IR, the prototype was modified to generate

this new IR while keeping the same level of capabilities as

the original prototype. Comparisons were then made to

ensure the efficiency of the new prototype had not degraded

with the modification.

4. Add error handling capabilities to the Analyzer.

Error recovery, and understandable error messages, are vital

parts of the human/computer interface (Kantorowitz and Laor,

1986:627-629) and allow the tool to accept a wider range of

input, i.e. erroneous as well as correct. Error recovery

was quickly added to the prototype so that it could continue
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to be used early-on in AFIT classes as a VHDL syntax and

semantic checker, thus providing feedback on the correctness

of the Analyzer's construction throughout the thesis

process.

5. Construct/obtain a test suite for the Analyzer

which tests for syntax and static semantic conformance to

VHDL Version 7.2. Construct/obtain a test suite that tests

the Analyzer's performance. As mentioned before, the

Intermetrics VHDL Analyzer test suite (Intermetrics, 1984b)

was used to test for conformance to VHDL Version 7.2.

Research by Dukes into the performance of VHDL design

environments resulted in a set of VHDL designs used to test

system performance and integration (Dukes, 1987). Finally,

VHDL designs for common TTL circuits (written by graduate

students studying VHDL) were also used in testing system

performance and integration, as well as error handling.

6. Add full language capabilities to the Analyzer.

Following the completion of the VIA modification, the

Analyzer was modified to accept the full VHDL language and

perform semantic analysis on a major subset of the language.

VHDL, like Ada, is a large language with many capabilities.

Concurrent work at AFIT by Dukes showed that many of VHDL's

features are not absolutely necessary in order to analyze

and simulate a large class of circuit designs, even if the

designer chooses any of the programming methods offered by
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VHDL: dataflow implementation, structural implementation,

or procedural implementation (Dukes, 1987). For example,

components may be declared and instantiated using the

configuration body declaration or by using component decla-

rations and instantiations. By using the second choice, a

complete design can be implemented using only entity and

architecture declarations. The implementation of

configuration body declaration and other alternative methods

was deferred so that more effort could be devoted to

developing those portions of the language that provided the

"most return" on the time spent in terms of being able to

simulate a VHDL design.

Frauenfelder divided the VHDL into nine subsets (Table

1.1). What remained of Analyzer development, at a minimum,

was to complete the semantic analysis of the language

subsets that had not been implemented. In order to maximize

the utility and therefore the potential for feedback of the

Analyzer while it was still in its maturing phases, the

expression, sequential statement, and concurrent statement

subsets were implemented first. Each subset was designed,

implemented, and tested before proceeding to the next,

thereby increasing the capabilities of and feedback from the

Analyzer--from source VHDL analysis to VIA output--as each

subset was completed.
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7. Perform Analyzer and system integration tests.

After completion of each subset, testing ensured that the

Analyzer produced the correct output for valid VHDL input

and produced the correct error message for invalid VHDL

input. In this manner, the addition of new language

constructs that introduced errors in the existing implemen-

tation was quickly discovered and corrected.

8. Document the Results. The major design decisions,

results, and conclusions are documented in this thesis.

Maximum Kxpected Gain

It is vital to the future growth of VHSIC technology

that universities, as well as industry, become involved in

VHSIC research. Universities provide both the Government

and industry with well-trained men and women, who are able

to design, implement, and manage new VHSIC research pro-

jects. The DoD VMS-based VHDL Analyzer will help stand-

ardize VHDL in the industrial community, but universities

also need the tools to teach tomorrow's engineers and

managers. A UNIX-based VHDL Analyzer is an important (and

necessary) first step in the insertion of VHSIC technology

into the academic community.

Overview of the Thesis

This thesis is presented in six chapters. Chapter 2

reports the results of a literature survey of previous

1.18

or% . % . ~ ~ ~ ,b, % % %~~' - . ..



**' W - 'V FIX r fl flJI I.W rxx " nin ILI RWWU WI~W1WV~lV~j fU U r J W~ r 1 L is

research on VHDL, Intermediate Representations, and error

recovery; it forms the foundation for the system design

presented in Chapter 3. Chapter 4 elaborates on the system

design, giving the details of the modified VIA format and

the language implementation. The testing procedures and

analysis of the system design are presented in Chapter 5.

Chapter 6 summarizes the findings of this thesis and offers

suggestions for future research in the area of VHDL tools.
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II. Literature Review

Introduction

Purpose for Literature Review.

A philosopher of imposing stature doesn't think in
a vacuum. Even his most abstract ideas are, to
some extent, conditioned by what is or is not
known in the time when he lives.

--Alfred North Whitehead (1861-1947)

Research, then, depends on the previous knowledge of

others. This chapter describes the result of a literature

review undertaken:

1. To discover if other VHDL/UNIX research work
at other institutions was being conducted.
Specifically, I suspected the prototype inter-
mediate representation, VIA, was not optimal for
use with a wide variety of tools in the AVE. How
were other researchers handling the problem of
choosing a VHDL IR? (These results will be
presented in the section discussing Intermediate
Representations.)

2. To survey existing error recovery techniques,
since error recovery, not included in the proto-
type, must be a capability of the AVE Analyzer.

3. To uncover research with hardware description
languages (and, where applicable, software
programming languages) that would support the
system design decisions that must be made to
satisfy the project requirements.

UNIX VHDL Analyzers

Currently, the only other UNIX VHDL research being

conducted is at the University of Pittsburgh, under the
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direction of Levitan (Levitan, 1987). His design of a

"stand-alone" VHDL analyzer/simulator is based on Frauen-

felder's prototype, but with several differences. First, he

uses C source code as the Intermediate Representation for

the analyzer. (This choice is further discussed in the

section "Intermediate Representations" in this chapter.)

Second, this system is not being initially designed with

other tools in mind, as were the prototype and the Analyzer

described in this paper.

Error Recovery

One of the requirements for the Analyzer is that it

detect errors and recover from those errors, i.e., it must

not "crash." A good error handler needs to perform the

following functions:

1. It should report the presence of errors
clearly and accurately.

2. It should recover from each error quickly
enough to be able to detect subsequent errors.

3. It should not significantly slow down the
processing of a correct program (Aho, Sethi, and
Ullman, 1986:161).

Several methods of error handling exist. Tremblay and

Sorenson classify error handling techniques into the

categories of acceptable and unacceptable responses to an

error. Acceptable responses are reporting the error and

2.2
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either recovering or repairing the error'. Unacceptable

responses are not reporting the error and either crashing,

looping, or producing an incorrect object program. To

report the first error and halt is also unacceptable

(Tremblay and Sorenson, 1985:183-185). Since this project

required that the Analyzer respond acceptably to errors,

either error recovery or error repair were deemed

potentially useful techniques.

Error Repair. Error repair modifies the source program

to provide subsequent parts of the compiler with a syntac-

tically valid input. This modification takes place by

inserting or deleting source text and can be accomplished

without modifying text which has already been translated.

Several methods of error repair exist: ad hoc repair,

syntax-directed repair, context-sensitive repair, and

spelling repair. Ad hoc repair calls special error handling

routines which are capable of repairing various classes of

common errors. Conway and Wilcox (1973) used this type of

error repair in their PL/C compiler. Syntax-directed

repair, used by Holt and Barnard (1976), tries to construct

a valid syntax tree by inserting a terminal symbol into the

source text when one is expected and not found. If one of

several terminal symbols can be inserted, an "insertion-cost

I Anther acetable response is to report the error and correct the error to what
the progrimnr originally wante. Even with the current advances in artificial
intelligence, this is still not psuible (Tremblay and Soreson, 1985:185; Iring,
1976b:533).
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vector" is associated with each terminal symbol and the

algorithm attempts to minimize the cost (Tremblay and

Sorenson, 1985:201-202). Context-sensitive repair ensures

that "repaired" operands have the correct attributes for a

particular context. Again, default or universal values are

replaced in the source text, similarly to syntax-directed

repair (Tremblay and Sorenson, 1985:202-203). A spelling

repair algorithm by Morgan (1970) attempts to correct simple

typing mistakes causing an identifier to be mistaken for a

keyword or vice versa. The types of mistakes Morgan's

algorithm corrects are: one symbol changed, inserted, or

deleted and two symbols transposed. This algorithm is

discussed in more detail in (Tremblay and Sorenson,

1985:203-205).

Error Recovery. There exist several means to achieve

error recovery in a compiler or analyzer. The panic mode of

error recovery is the simplest to implement, but has the

decided disadvantage of throwing away source input that has

not been checked for validity (Tremblay and Sorenson,

1985:199). Aho and Johnson propose the use of error tokens

(in grammars that define languages such as C) as a means of

error recovery. When the parser detects an error in a

production containing an error token as a terminal symbol,

it replaces the current input with error and reports the

error. The parsing stack is then searched for a state that

can follow error and parsing continues (Aho and Johnson,

1974; Tremblay and Sorenson, 1985:196; Horning, 1976b:537).
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The main disadvantages of this method are that it increases

the size and complexity of the grammar and it may make the

grammar ambiguous (Horning, 1976b:537). Also, if error

tokens are not properly specified, then this method can

behave similar to panic mode recovery. On the other hand,

the use of error tokens with the UNIX tool yacc is fully

documented in (Schreiner and Friedman, 1985:Ch 4). These

two facts are important design criteria in deciding whether

to implement error recovery rather than error repair.

Intermediate Representation

Currently, there are three Intermediate Representations

being used with VHDL: Intermediate VHDL Attributed Notation

(IVAN) (used in the VMS version), VIA (used with the

prototype), and the language C (used with the Pittsburgh

version). These were researched first, along with the model

for VIA, Design Data Structure (Knapp and Parker, 1984).

Rather than restrict the survey to only VHDL implementa-

tions, other hardware description languages were studied to

determine if any other particular IRs were in frequent use.

Intermediate VHDL Attributed Notation (IVAN) (Gilman,

1986:46). IVAN is an annotated form first produced as an

abstract syntax tree (AST) by the lexical and syntactical

phases of the VHDL/VMS Analyzer. An AST is a tree where

each nonleaf represents an operator and each leaf represents

an operand. For example, the AST for a VHDL

signalassignment statement is shown in Figure 2.1, along
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VHDL Source: SUM <= S1 xor CIN;

Parse Tree: sequential statementF
signal-assignment-statement

signal-name list <= waveform

simple name waveform element
1- I-

indentifier expression

name rela xor re ation
I I I

SUM slmp e..expr simple expr

term term,I I
•factor factor

primary pnmary
I I

name name
I I

simpl _name simplfname

indentifier indentifier
I I
Si CIN

Abstract Syntax Tree: signal i tatement

SUM xor

S1 CIN

Figure 2.1 Parse and Abstract Syntax Trees
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with the more specific parse tree. Later phases of analysis

"decorate" the AST with semantic attributes. Thus IVAN is

to VHDL as DIANA (Descriptive Intermediate Attributed

Notation for Ada) (Evans and others, 1983) is to Ada. In

its use with VHDL, IVAN's advantage is that it preserves the

exact structure of the original VHDL source. Its main

disadvantages are that it, like DIANA, is not a compact

representation of the input VHDL and, because it mirrors the

original VHDL source so closely, accessing IVAN's

information requires the use of a database manager.

Design Data Structure (DDS). DDS forms the basis for a

design library database that supports the interactive

retrieval for an expert synthesis system (Knapp and Parker,

1984:4). The smallest unit represented in DDS is a

component, with each component represented in four abstract

subspaces: dataflow subspace, timing subspace, structure

subspace, and physical subspace. Each subspace or view

forms a tree, and complex relationships can exist among the

subspaces. Included in the respective subspaces are values

for the following entities (Knapp and Parker, 1984:10;

Frauenfelder, 1986:2.6-2.11):

dataflow: nodes and values

sequencing: points and ranges

structure: modules and carriers

physical: blocks and nets
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An example illuminates DDS capabilities. In VHDL, a

signal is an object which can be used to connect design

components together and can, over the course of time,

acquire a series of values. It assumes these values through

a signal assignment statement, such as the one that follows:

SIG (= '1' after 5 ns ;

Translated, this statement means that the signal "SIG" will

get the value TRUE (binary '1') after 5 nanoseconds ("ns")

have elapsed. In the DDS model, "SIG" is a carrier, "(=" is

a node, '1' is a value, and "after 5 ns" represents a range.

The DDS representation is shown in Figure 2.2. From this

representation, one sees the division of this simple

statement into three of the four subspaces. Bindings exist

among the subspaces, shown by the dotted lines connecting

those subspaces. As can be seen, this simple example can

become rather complex, as other statements and more bindings

are added. The hierarchy can consist of several levels and

is rendered complex by the fact that the bindings tie the

subspace hierarchies together into a network.

While the descriptive qualities of DDS in defining the

structure of a design are among its strong points, a decided

disadvantage is the artificial division of a design's

behavior into dataflow and tin,-.ng, a shortcoming that both

the authors (Knapp and Parker, 1984:12) and (Walker and

Thomas, 1985:459) recognize. A tool such as a design

simulator must recombine DDS's dataflow and timing
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information into a behavior subspace, thus making DDS harder

to use. In addition, the timing subspace implementation

includes "a great deal of redundancy" (Knapp and Parker,

1984:23). While the authors go on to discuss the possible

tradeoffs and justify this redundancy, they also point out

that it requires "a large storage space" (Knapp and Parker,

1984:23). One should also note that VHDL does not make the

distinction in a design's behavior between dataflow and

timing.

A further disadvantage of DDS for VHDL is the

inflexibility of its control and sequencing statements,

which biases DDS towards dataflow and against algorithmic

representations (Knapp and Parker, 1984:6, 12): VHDL, due

to its flexible descriptive characteristics, requires both

kinds.

VHDL Intermediate Access (VIA). Frauenfelder found

that DDS could not represent all the information specified

by VHDL, specifically dynamic sequencing and scheduling.

VHDL can express the next state of a simulation based on the

current state; but DDS, using static sequencing, determines

all future states based on initial conditions (Frauenfelder,

1986:3.15). Accordingly, Frauenfelder extended DDS to the

so-called VHDL Intermediate Access (VIA) format (Frauen-

felder, 1986:3.16).
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VIA is a text file where each record (text line) can

reference another record by its line number (Frauenfelder,

1986:3.16). The format for each VIA record is:

record-number record-type-name
( field-name-i = field-value-I;
field-name-2 = field-value-2;

field-name-n = field-name-n ; )

Each record is numbered in the record-number field; the

record-type-name determines which field-names will follow.

Using the DDS model for hardware, a VHDL design is analyzed

and broken down into three of the four DDS subspaces,

dataflow, timing, and structure.2  This internal DDS

network is then written out in its external form, VIA.

Figure 2.3 shows a simple example of a VHDL interface

declaration and its DDS and VIA transformations. While this

example is simple enough to readily understand, the full VIA

hierarchy (shown in Figure 2.4) is many degrees more

complex, both visually and conceptually. Even though VIA is

an enhancement to DDS, many of the other shortcomings of DDS

(when applied to representing VHDL) also apply to VIA, such

as problems handling sequencing constructs and the arti-

ficial division of the design behavior. In contrast, VIA is

well suited for (1) describing the structure of VHDL, (2)

describing designs using dataflow implementations, and (3)

providing separate information on timing requirements.

2 VM does not currently represent the physical ,bspace.
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via cornonent:

name: INTERFACE NAME
complete bit: true

component operation bindings: null
dataflow model: null
timing model: null
structural model: null

Figure 2.3 VHDL Represented in VIA/DDS (Frauenfelder,
1986:3.18)

University of Pittsburgh VHDL. Preliminary information

on the University of Pittsburgh VHDL project suggests that

it will be built using the source code of Frauenfelder's

prototype as a basis. The proposal for this implementation

describes a compiler for a subset of VHDL coupled to a

mixed-mode simulator (Levitan, 1987:5). The compiler will

produce "a network of primitive logic elements" that

"captures the structural components of designs" and a

translation of VHDL to C source code for the behavioral

aspects of VHDL (sequential statements) (Levitan, 1987:3-4).

After the C code is compiled, the simulator will execute the
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resulting object code whenever the corresponding behavior

has to be simulated. Levitan plans to "extend the software

to compile into an intermediate form suitable for a design

data base" (Levitan, 1987:6).

Other HDLs. ZEUS and CONLAN are general purpose

hardware description languages, similar to VHDL in their

support for hardware abstraction, modular design, data

abstraction and typing, functional/structural descriptions,

strongly typed signals, and user-defined data types (Aylor,

Waxman, and Scarrat, 1986:25-26). Both ZEUS (Lieberherr,

1985:56) and CONLAN (Piloty and Borrione, 1985:88) transform

their source HDL to abstract syntax trees. ZEUS, when used

for silicon compilation, stores the AST in a design database

(Lieberherr, 1985:56). The CONLAN intermediate represen-

tation uses Pascal record trees and, in future implementa-

tions, will also use a design database (Piloty and Borrione,

1985:88-89).

Patois is a C based "hardware systems modeling

language" designed by Dallen at Duke University. It allows

a design to be modeled behaviorally, structurally, and

physically from the initial specification through

simulation. Its primary use is to express a behavioral

description of hardware systems which can be used to drive a

simulator for verification and evaluation (Dallen,

1983:4.2).

2.14



Dallen's intermediate representation is especially

relevant. He uses a two-part intermediate form, repre-

senting the structure and behavior of the design. The

structure portion is a list of the symbols found in the

design and their definitions. Essentially, this is a

listing of the analyzer's symbol table. The behavior

portion is translated into g-code, essentially an AST,

(Dallen, 1986:Section 11.1) that models the behavior of the

objects in the symbol table.

Summary

This chapter has presented a survey of other VHDL

research, error handling, and intermediate source forms.

The work at the University of Pittsburgh on a UNIX-based

VHDL analyzer/simulator was discussed. The three major

types of error handling are error recovery, error repair,

and error correction. This chapter also reviewed inter-

mediate representations for HDLs, including IVAN, DDS, VIA,

C source code, ASTs, ZEUS, CONLAN, and Patois. Chapter 3

continues the discussion of intermediate representations

with an analysis of each representation and its suitability

for use with VHDL in the AFIT VHDL Environment. I will also

discuss the overall design of the AFIT VHDL Analyzer.
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III. System Design

Overview of Chapter

Software engineering projects generally begin with a

set of requirements defining what the end product must

accomplish. These requirements and the related tasks to

fulfill these requirements were presented in Chapter 1.

Each task presented a problem to be solved, either with

existing solutions or with new solutions. For each task

from Chapter 1, I will discuss possible alternative solu-

tions (except where one generally accepted solution exists),

along with their strengths and weaknesses, and outline the

proposed solution.

Find a more efficient Intermediate Representation. A

major issue that had to be resolved was the Intermediate

Representation which the analyzer should use. The require-

ments from Chapter 1 specify that it be efficient, provide

easy access to the information it contains, and provide the

information VHDL provides in a more efficient manner. Also,

as the analyzer moves from a subset compiler to a

production-quality compiler, this IR must also expand in its

capabilities. The first step was to evaluate the proto-

type's IR, VIA, to determine whether or not to continue

using it as the Analyzer IR.
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The primary strength of VIA is in its structural

descriptive capabilities, inherited from its DDS parentage.

The fact that these capabilities were implemented first in

the prototype demonstrates the facility with which VIA and

DDS can structurally describe VHDL.

One shortcoming of VIA as an intermediate form in a

VHDL design environment is in the area of the functional

behavior of an entity. The separation of an entity's func-

tional behavior into timing and dataflow subspaces, which

are then networked together with the structure subspace,

causes several problems. First, there is not a one-to-one

relationship between the VHDL and the resultant VIA, thereby

preventing tools that rely on this relationship (e.g., re-

verse analyzers) from utilizing the VIA interface (Frauen-

felder, 1987). For example, a VHDL design described by VIA

has many more named objects (carriers and values) than do

exist in the original VHDL source. This results from the

manner in which VIA handles a complex hierarchy and the

bindings that exist among the levels of that hierarchy.

These additional names and bindings do not map to any unique

VHDL statement, but to the design as a whole. This becomes

a problem when one wishes to use VIA with a reverse

analyzer. A reverse analyzer, which supports the "reverse

engineering" of VHSIC chips, would use the VIA as its source

and output equivalent VHDL source code. Because the VIA may

generate, for one VHDL statement, many records and bindings
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among those records, it does not lend itself well to reverse

analysis.

Second, tools that need access to both the behavior and

structure of a design (e.g., simulators) have to rejoin the

timing and dataflow subspaces into a behavior subspace.

Refer back to Figure 2.2 in the previous chapter. In order

to construct an event for simulation, the information from

the timing model must be retrieved as well as the informa-

tion from the dataflow model and the binding of those two

models. The simulator needs the timing tied directly to

transactions for efficient simulation. During simulation,

as the simulation clock advances, each transaction

(behavior) may be executed depending on its value (Inter-

metrics, 1985b:8.16-8.18). If timing and dataflow are

separated, the simulator either has to search both subspaces

for corresponding bindings to consolidate before the

simulation begins or must perform this search for every new

simulation clock cycle. This makes the design of the

simulator more complex and less efficient.

The prototype implementation of VIA also proved to be

rather unwieldy, though some improvements could be made.

Its DDS foundation requires the use of variable length

records, which, in turn, require the use of field names for

each VIA record. This is because a VIA field may appear any

number of times in one record, each field pointing to other
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records. Thus, there is no way to know a priori how many

fields a particular record may have. This requires more

effort on the part of tools using VIA to parse and process

each record.

Finally, the most serious problem with VIA involves its

use of system resources, specifically, disk space and CPU

time. The complex nature of VIA requires more computational

time for its creation. A medium-sized design consisting of

1000 dataflow-type statements (signal assignment statements)

took over 30 minutes to analyze on a lightly loaded VAX

11/780, with the resulting VIA output being over 3 Megabytes

in size. VIA certainly cannot be lightly regarded, but,

clearly, a more efficient and more general IR needed to be

found.

With VIA rejected for the above reasons, there were

three general categories of intermediate forms remaining for

the analyzer: (1) use an attribute-annotated syntax tree

similar to the IVAN format, (2) use a high order language

similar to that being used at the University of Pittsburgh,

or (3) design a new intermediate form, possibly using

abstract syntax trees.

Recall from Chapter 2 that IVAN is an annotated Ada-

based intermediate form. Tools requiring access to the

original VHDL syntax, like reverse analyzers and VHDL

optimizers, can use the IVAN format. Another strength (and
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weakness) is that it is Ada-based, i.e., that it uses an Ada

compiler. This dependency insures IVAN portability among

systems with validated Ada compilers, but not all UNIX

installations have such compilers. Since this project must

use common UNIX tools, IVAN is an unlikely choice. Finally,

as mentioned in Chapter 2, IVAN requires an ancillary design

library and library manager. Because the AVE IR itself is

to serve as the design library, IVAN could not be used in

the AVE without extensive modification or the development of

supplementary tools.

Plans for the University of Pittsburgh VHDL analyzer

call for separating the VHDL into a network of structural

descriptions (which Levitan calls "primitive logic

elements") and C source code (to represent the behaviors)

(Levitan, 1987:3). I will refer to this intermediate form

as VHDL/C. Independent of his effort, I developed a similar

intermediate form using C, with the following conclusions:

1. The use of C is in keeping with the philosophy of

the UNIX environment--every UNIX operating system, being

based on C, has a C compiler. This insures portability and

avoids one of the limitations of IVAN, which uses Ada.

2. The division of VHDL, as by Levitan, into only

structure and behavior components, is a sound decision,

supported in the Language Reference Manual. The

implementation of the simulator is thereby simplified in
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that whenever a design entity's behavior has to be simu-

lated, the compiled C code can be run instead. This allows

an analyzer/simulator system to be more quickly designed and

implemented.

3. A major weakness of VHDL/C is that several VHDL

constructs have no direct C counterparts. These include

signal attributes, physical types, array slices, and enumer-

ation types (in some C implementations). While block state-

ments can be nested in VHDL, C functions cannot. Levitan

plans to avoid this issue temporarily by supporting "only

simple typing, scoping and visibility" and add the full

language at a later time (Levitan, 1987:5).

4. Another major weakness results from the first:

since this intermediate form is partly a C translation of

the VHDL source, tools relying on a representation of the

original VHDL source cannot use VHDL/C. Examples of such

tools are reverse analyzers and VHDL optimizers. Because of

the nesting problem mentioned in the preceding paragraph,

the normal hierarchy of design functions has to be

"flattened" to be represented in C. This, for practical

purposes, irrecoverably masks the structure, though not the

behavior, of the original VHDL.

5. Finally, the compiled C code hides much of VHDL's

behavioral information on design entities. While simulation

tools do not need this information, tools such as Decker's
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microcode retargeter cannot use VHDL/C. This is true

because the microcode retargeter does not simulate a VHDL

design but relies on VHDL to provide a description of a

chip's structure and micro operations, which is then used to

retarget microcode for that chip (Decker, 1'86:9-12).

Therefore, behavioral information, as well as a structural

description, must be readily available in a general and

efficient intermediate form. To use VHDL/C in this manner

would require another analysis, this time from the C source

code to some other form. This is not cost effective if

other alternatives can be found.

In summary, based on the above discussion, VHDL/C,

while suited to a "'stand alone' compiler/simulator system"

(Levitan, 1987:5), cannot serve as the interface for a more

general design environment, such as the AVE.

ZEUS, CONLAN, and IVAN (to a degree) use abstract

syntax trees (ASTs) as their Intermediate Representations.

The main strength of this approach is that algorithms exist

for creating and maintaining ASTs (e.g., Noonan, 1985), as

do ways for storing and retrieving ASTs to/from disk files.

An AST, being created directly from the VHDL syntax, can

provide VHDL's structure to those tools that need to see

this information. Figure 3.1 shows an example of a VHDL

design and the resulting AST representation, clearly

demonstrating the correlation between the two. On the other

3.7

* '*** . J



VHDL Simple Design:

entity IN OUT
(X : In BIT;

Y : out BIT)
Is
end INOUT

architecture DATAFLOW of INOUTis
BI: block
begin
Y <- X;

end block B1;
end DATAFLOW;

Abstract Syntax Tree:
IN OUT''

X Y DATA FLOW

BIT I
signal-assign

C Representation: Y x

IN OUT (X, Y)
Mt X, *Y;

{ *YX; }4

Figure 3.1 VHDL Source and Resulting AST and C Code
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hand, an AST is not as concise a representation of VHDL

behavior as C source code (which is also shown for

comparison). But an AST can provide more explicit

information, such as resultant types of expressions and

operations, which can be attached as attributes to each tree

node.

The biggest problem with ASTs is that, while VIA and

DDS separate VHDL designs into too many subspaces, an AST

performs no separation at all. This lack of separation, in

effect, hides part of the information that VHDL supplies,

the division into structure and behavivr; a requirement of

the IR (from Chapter 1) is that it supply all the structure

and behavior information contained in the original VHDL.

Therefore, an IR with the simplicity of an AST coupled with

separate structure and behavior subspaces is needed.

This requirement can be met using the Intermediate

Representation of Patois, which provides several advantages.

First, it reduces the complexity of the analyzer by limiting

the number of subspaces to manage to only two. Second, it

offers a more universal solution to the interface problem:

VIA tried to fit VHDL into a model which was not well suited

to the needs of other AVE tools and VHDL/C tried to involve

the analyzer in areas best left to the simulator (i.e.

generation of C code, which is still the best way to handle

the simulation). Also, Patois is already UNIX-based (being

3.9
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written in C), virtually eliminating portability problems.

A new Intermediate Representation, based on Patois, was

developed and was also called VIA. This new VIA retains the

overall structure of Patois, having structure and behavior

divisions, but was modified specifically for use with the

VHDL language. First, the structure division was modified

in order to accommodate the types of objects found in VHDL,

which are different from those found in Patois. This

structure division is called the symbol table (SYMTAB).

Second, new record types were added to the behavior

division, since VHDL is a more complex language in this

respect than Patois. The behavior division is called the

operation table (OPTAB).

Document the IR for use by other tools in the AVE. The

definition for VIA can be found in Appendix B.

Adapt the prototype for use of the new IR. After

having decided upon using the Patois-based IR as the new

VIA, the prototype analyzer was modified to generate the new

IR. Due to the prototype's modular design, this involved

only replacing the modules that generated VIA with ones to

generate the AST and modifying the semantic checking

routines. The resulting design is shown in Figure 3.2.

The lexical analyzer produced by the UNIX utility lex

(Lesk and Schmidt, 1978) and the parser generated by yacc

(Johnson, 1978) form the foundation of the analyzer. These

3.10



Symbol
Table

VHDL LexicalVIA Gen
Source Analyzer

Message Operation
Handier =Table

Figure 3.2 Analyzer Design

tools are common UNIX utilities and the de facto standards

for compiler development. The lex scanner groups the

individual characters of the VHDL source into lexical

elements (keywords, identifiers, literals, etc.) called

tokens. The yacc parser checks the syntax or the ordering

of the tokens in a VHDL design and creates a stack structure

of the results of the analysis of each VHDL grammar rule.

As each statement of the VHDL source is scanned and parsed,
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yace passes this parse stack to the semantic analysis

portion of the analyzer, which determines the semantic

validity of the statement. Symbol table and operation table

routines handle the creation of their respective tables as

each VHDL statement is analyzed. Errors, warnings, and

other messages are sent through a separate message handler,

to be output with the output listing. When a design has

been analyzed with no errors, the code generator routines

read the SYMTAB and OPTAB to generate the VIA.

The original structure of the symbol table was also %

improved for efficiency. Execution profiling showed that

the prototype analyzer spent much of its time either P

entering data into or retrieving data out of the symbol

table. The prototype design was based on a kernel for a C

compiler, using its simple linked-list symbol table,

modified for use with VHDL (Frauenfelder, 1986:3.4, 3.10).

A more efficient approach is to use a hash table for

identifier lookup and a display table to implement scope and

visibility. The hash table allows (in most cases) direct

access to an identifier, therefore, yielding constant 0(1)

lookup times versus 0( (n + 1)12 ) time for a sequential

search of table of size n (Tremblay and Sorenson, 1985:429,

450). The display table is a stack of contexts. As

declarative regions are entered and exited, these contexts

are pushed and popped, causing the declarations they contain

to become visible and hidden. Routines to access a symbol

3.12
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table implemented in this manner are simpler to construct

and more efficient than ones that have to work with a

linearly-ordered symbol table (Aho, Sethi, and Ullman,

1986:429).

Add error handling capabilities to the analyzer. The

alternative solutions for error handling discussed in

Chapter 2 are error recovery and error repair. In the

academic environment, students learning to program (whether

in a software or a hardware programming language) are more

prone to mistakes than in a commercial environment where the

programmers are expected to have more expertise. Error

repair is probably not cost effective because any error

handling technique that flags the errors (for the students

to later correct) will suffice in a learning environment

(Aho, Sethi, and Ullman, 1986:164). Therefore, only error

recovery techniques were considered.

The two main error recovery techniques discussed in

Chapter 2 were panic mode and the use of error tokens. As

noted there, a program that halts after detecting the first

error is not acceptable. Since error recovery should try to

uncover as many errors as possible, the panic mode method of

error recovery is unsuitable. Because the use of error

tokens is "built-in" to the UNIX tool used to create the

VHDL parser (yacc) (Schreiner and Friedman, 1985:Ch 4), this

means of error handling was selected.
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Construct/obtain a test suite for the analyzer which

tests for syntax and static semantics conformance to the

VHDL Version 7.2. The actual test suite for the VMS VHDL

analyzer was used to test the analyzer for conformance. As

was mentioned in Chapter 1, VHDL designs by Dukes, augmented

by designs from other VHDL graduate students, formed the

test suite for performance and integration testing. More on

testing can be found in Chapter 5.

Add full language capabilities to the analyzer. After

the design for the VIA interface was selected, adding new

language constructs to the analyzer became more of an imple-

mentation problem than one of design. The methods proposed

by Frauenfelder which were outlined in Chapter 1 were used

in the implementation and are detailed in Chapter 4.

Perform analyzer and system integration tests. The

conformance tests, mentioned above, verify only that the

analyzer can process correct VHDL aiid detect incorrect VHDL.

Other tests and evaluations must be performed before the

analyzer can be deemed "production-quality." These tests

evaluate how well the analyzer performs, how well it con-

serves system resources, how portable it is, and how well it

performs with other AVE tools. The results of these tests,

as well as the analyzer conformance tests, are found in

Chapter 5.
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Document the Results. This chapter, and Chapters 4 and

5, document the major design decisions and test results of

this project.

Summary

This chapter has presented the overall design of the

AFIT VHDL Analyzer with emphasis on the manner in which

alternative solutions were evaluated and a new IR was

selected. The selected intermediate form is based on the

intermediate form used in Dallen's Patois. The details of

the analyzer's implementation of the new IR, also called

VIA, are presented in the next chapter.
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IV. Detailed Design

Overview

In Chapter 1, requirements the Analyzer had to meet in

order to be considered production-quality were discussed. To

satisfy these requirements, certain tasks (extending the

VIA, adding error recovery, completing the language subsets,

and testing) had to be completed; and for each task, design

solutions were selected. This chapter will discuss those

design solutions in the implementation of VIA and the re-

maining language subsets.

VIA Modification

After the form for the intermediate representation was

selected, its specification was documented (and can be found

in Appendix B). It was then determined that three steps

would accomplish the modification of VIA/DDS. They were:

1. Determine the information provided by VHDL and
whether this information is structural, behav-
ioral, or a binding of structures. Bindings
connect structures together through the VIA AST.

2. Map the VHDL structure to the VIA symbol
table, VHDL behavior to the VIA AST, and bindings
of VHDL structures to the AST which connects
entries in the symbol table.

3. Code and test the modules to generate VIA.
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This was an iterative process for each of the language

subsets to be implemented. The following sections discuss

these steps in more detail.

1. Determine the information provided by VHDL and

whether the nature of this information is structure,

behavior, or a binding of structures. VHDL can be mapped

into two subspaces--structure and behavior' .2 For

example, the interface declaration from the full-adder

design (Figure 4.1) is mainly structural. It specifies the

name of the interface and the names and types of its ports.

On the other hand, the signal assignment statement in the

architecture description DATA_FLOWIMPL shows behavior--the

value of the expression on the right hand side of the

statement is assigned to the signal variable on the left

hand side. For each VHDL construct, a similar analysis,

using the information provided in the VHDL Language

Reference Manual and User's Reference Guide (Intermetrics,

1985b and 1985d), was performed, and the information that

VIA needed to provide was added to that construct's VIA

definition. This was generally a straightforward process,

SBoth the Walker/Thomas model (mentioned in Chapter 2) and DDS include a pkysical
subspace. At this time, VHDL does not describe the pysical aspects of a design, such as
the wiring geometry (Nash and Saunders, 1986:65). Until this capability is added to VDL,
the physical ubspace must be ignored.

2 Nash and Saunders provide this mapping (including the physical domain) for each
level of abstraction from architecture down to the circuit level (Nash and Saunders,
1986:55). In the case of ccmonent instantiations or procedure/functim calls with
parameters, each language oxistruct provides informatio that binds two structures
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VHDL Full Adder:
entity FULLADDER

(X, Y : in BIT; -- one-bit addends
'4 CIN : In BIT; -- carry in

SUM :out BIT; -- one-bit sum
COUT: out BIT) -- carry out

Is end FULLADDER;
architecture DATAFLOWIMPL of FULL-ADDER is

BLOCK_1: block
signal C: BIT; -- Local signal declaration

begin
SUM <= X xor Y xor CIN after 5 ns;
C <- (Yand CIN)or(X and CIN) or(X and Y);
COUT <. C after 6 ns;

end block BLOCK_1;
end DATAFLOWIMPL;

Figure 4.1 Full-Adder Example (Intermetrics, 1985c:1.3-1.5)

due to the aforementioned mapping. One problem encountered

was the combination of directives and specifications with

declarations in several places in the VHDL grammar. While

declarations defined entries in the symbol table, directives

and specifications define operations and, therefore, are

mapped into the OPTAB AST. This caused a problem in that

the routines processing declarations return pointers to the

symbol entry while the routines processing AST entries

return array indices (integers). By requiring directives

and specifications to follow all declarations, this problem

was solved.
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2. Map the VHDL structure to the VIA symbol table and

VHDL behavior to the VIA AST. Using the information from

Step 1, each VHDL construct was mapped into VIA. The

structural portions of each construct would be entered into

the symbol table to be written to the VIA SYMTAB upon

analysis completion, while the behavioral portions generated

nodes of the abstract syntax tree (OPTAB). Bindings became

nodes of the AST with leaves that referenced the symbol

table portion of VIA. An example of a binding is a function

call with a parameter list. Each formal parameter is bound

to an actual parameter, but this binding is created in the

operation table because the entire function call statement

is an operation.

3. Code and Test Generate VIA Modules. Finally, test

cases were written for each construct added, the Analyzer

processed each test case, and the results were checked and

verified. Chapter 5 describes the testing procedures and

sample test cases.

Use of lex and yacc

Before discussing the implementation details in which

VHDL is mapped by the Analyzer to VIA, a short discussion of

the use of lex and yacc will make that section more under-

standable. The UNIX utility lex (Lesk and Schmidt, 1978),

when given an input file of regular expressions that maps

character sequences into identifiers and literals (called

tokens), generates a C routine (yylex) that will perform

4.4
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that mapping3 . The UNIX utility yacc (Johnson, 1978) uses

an input grammar to construct a C routine (yyparse). The

grammar yacc uses is similar to Backus-Naur Form (BNF),

which is used to define many current programming languages

(VHDL among them). Thus, given a BNF for a language, it is

a straightforward task to construct a yacc input for that

language4 . The yacc grammar is composed of one or more

rules or productions. These rules specify how a particular

language statement (or construct) is put together. For

example, a simple English sentence could be represented by:

<sentence> ::= (noun> <verb> (object> '.'

This shows that a sentence is a noun followed by a verb, an

object, and end with a period ('2). The elements sentence,

noun, verb, and object are called nonterminals, which means

they are, themselves, composed of other elements. The

period is a terminal symbol--it cannot be decomposed. When

yacc parses a noun followed by a verb followed by an object

followed by a period, it reduces this rule to a sentence.

In the example grammar, sentences may be reduced to

paragraphs and paragraphs to chapters. In this manner, an

entire "program" may be reduced to one symbol, known as the

2 Regular expessions are shorthand for specifying different sequences of
characters. Identifiers are names given to designs, packages, objects, types, etc.
Literals are numbers or characters that represent themselves, such as 0, 3.141579, 'A,
and "this character string".

'yecc produces a parser for IAA(1) languages. The differences between 1A, LL,
and LAU languages are outside the scope of this discussion and should rot hinder its
understanding.

4.5



start symbol. Of course, if the input being parsed fails to

match any rule in the grammar (if, for example, an object

precedes the noun), an error occurs and yacc displays a user

generated message (Aho, Sethi, and Ullman, 1986:264-266).

yacc allows semantic actions to be embedded in the

grammar. Using the above example, the yacc input would be:

sentence
noun
verb
object

I $S = checkverb(S2);

As yacc parses the input, it creates a stack of the results

of that parse. This stack is available for use as input to

C routines, such as "checkverb" in the above example.

Here, the value of verb (denoted by "$2") is passed to

"check-verb" (which could check to see if the verb takes an

object or not). The return value of "checkverb" becomes

the new stack value ("S$") (Aho, Sethi, and Ullman,

1986:260). For a more complete discussion of the use of

yacc and lex with compilers, see (Schreiner and Friedman,

1985) or (Aho, Sethi, and Ullman, 1986:257-266).

Language Implementation

The implementation of the remaining subsets of the VHDL

required the following steps for each construct in each

subset:
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1. Check that the syntax is correctly defined for
yacc in the prototype5 . If not, correct it, using
the VHDL grammar given in the Language Reference
Manual (Intermetrics, 1985b:Appendix C).

2. Determine the resulting VIA (from the above-
described steps to modify the VIA) for each VHDL
construct. Design, code, and test modules to
generate that VIA.

3. Determine what values would be left by yacc on
its value stack upon completion of the analysis of
each construct. These values are the results
(i.e., symbol table or tree table references) from
earlier grammar reductions.

4. Determine what semantic actions need to be
taken during the parse of this construct. For
example, in assignment statements, the type of the
right hand side must match the type of the left
hand side or a semantic error occurs.

5. Design, code, and test each function that
performs a semantic action and insert it into the
yacc grammar so that the parser performs this
action at the appropriate time in the analysis.

6. Add error recovery for each construct.

7. Design test cases for each construct, run the
Analyzer against each test case, and verify the
results.

8. After each construct is successfully tested,
inform the simulator design team so they could
also test the new construct with the simulator
(Kodama, 1987).

This stepwise approach insured that problems and errors were

detected and corrected before they had a chance to impede

the progress of the project. It also insured that each

construct was implemented completely before attacking the

next. It involved the design team of the AFIT VHDL

simulator so that as each VHDL construct was added, the

Te prototype analyzer was designed to accept the entire VHL. The yax input
was dable-checked to insure that there were no errors.

4.7



IMflr4 W?1fJ1 Xrin 'A "r JI .r,--Wq TV n}V oruQ -V WC' "x 49V WWWrn V" M M~ WVW W% -

Analyzer produced the correct VIA and the simulator could be

upgraded to process the Analyzer's output.

Implementation Examples

Behavior Example: An example of the way a ifstatement

was implemented will help demonstrate the implementation

process for behavior language constructs. The BNF

definition of the ifstatement is:

ifstatement ::=
if condition then

sequenceofstatements
I elsif condition then

sequence ofstatements I
[ else

sequenceofstateitents ]
end if ;

1. Check that the syntax was correctly defined for

yacc. From the above BNF grammar, a corresponding yacc

grammar was written. The yacc input for an ifstatement is

given as

ifstatement
IF
condition
THEN
..ELSIF__THENseq of stmts..
.ELSE seqofstmts.
END
IF
SemicolonI

SS=ifstatement(S2, $4, $5, $6);

Upper case names (such as IF and THEN) are tokens passed

from lex; lower and mixed case names (condition, Semicolon,

4.8
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and .ELSEseq_ofstmts.6) denote productions; and the

statements between the braces ($$=if_statement($2,...,$6);

are C functions (defined in another part of the Analyzer)

that will be performed when the parser accepts the

immediately preceding production. The "$$" represents the

value of the yacc stack for this construct and, in this

example, is a pointer to the AST generated and returned from

the C function "ifstatement." For the ifstatement, these

C functions originally (in the prototype) displayed only a

message "If statement not implemented" and returned a null

value. Comparisons with the VHDL LRM grammar and testing

showed that the yacc grammar was correct.

2. Determine the resulting VIA for each VHDL

construct. Design, code, and test modules to generate that

VIA. The VIA that should be generated for the ifstatement

is given in Figure 4.2. This was designed using generally

accepted methods of generating ASTs from languages like

Pascal and Ada (which VHDL closely resembles) (Aho, Sethi,

and Ullman, 1986:287-290). The yacc rules for condition and

sequenceof statements (which were designed in the same

manner as the ifstatement) will generate the appropriate

' yac allo.s non-terminals to be named using aiphanumerics, the underscre, and
the period. A naming covention was used whereby non-terminals that could be repeated
zero o one time began and ended with a single period ' presenting the beginning and
ending brackets in Backus-Naur Form); a rnc-terminal tat could be repeated zero or mre
times began and ended with two periods (for enclosing braces); and a io-terminal that
defined a list that began with a couna and could be repeated any number of times, began
with three periods (signifying an opening brace and the coma) and ended with two periods
(the closing brace). In this manner, the action of every yac grammar rule could be

4determned from its nme.
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VHDL Source: If condition then
sequenceofstatements

elsif condition then
sequenceofstatements

else
sequence ofstatements

end If;

VIA:

cond clause cond clause

condition sequenceofstatements

Lower case letters denote the root of a subtree of one or more nodes.

."" Denotes zero or more nodes.

IDenotes a NULL pointer.

Figure 4.2 VIA for if-statement
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VIA when executed and place pointers to that VIA on the yacc

parse stack.

3. Determine what values would be left by yacc on its

value stack upon completion of the parse of each construct.

The value stack returned by yacc for the ifstatement is:

(1) the token IF
(2) the pointer to the AST node for

condition
(3) the token THEN
(4) the pointer to the AST node for

the first statement in
sequence of-statements

(5) the pointer to the AST node for
a condition node for the ELSIF part

(6) the pointer to the AST node for
the first statement in the ELSE part

(7) the token END
(8) the token IF
(9) the token Semicolon

The types of values returned by nonterminals are determined

by the return types of the corresponding semantic action

routines written by the user. The values for the terminals

(tokens) are integers determined by yacc from a list of

terminal symbols supplied by the user.

4. Determine what semantic actions must be taken

durina the analysis of each construct. In this construct,

only the condition must be checked for being a boolean type

(it has only the values TRUE or FALSE) and the grammar rule

that parses condition handles that chore. Therefore, no

further semantic actions need be taken for this example.

The parser must connect the AST nodes returned on the parser

stack (from the analysis of condition and any ELSIF and/or
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ELSE statements) in the proper manner to construct the VIA

tree given in Figure 4.2.

5. Design, code, and test each function that performs

a semantic action and insert it into the yacc grammar so

that the parser performs this action at the appropriate time

in the analysis. In this case, the routines to create and

connect AST nodes were already coded and tested. Then,

before error recovery was added, a few sample test cases

(with no syntax errors) were run to insurc that the

ifstatement was performing correctly.

6. Add error recovery for this construct. As was

mentioned in the previous chapter, yacc supports syntactical

error recovery through the use of a special token called

error. In practice, error recovery consisted of adding

another sequence to the end of the above described

if_statement syntax. The complete yacc grammar for the

ifstatement is now:

if-statement
IF
condition
THEN
..ELSIF__THENseq of stmts..
.ELSE seqofstmts.
END
IF
SemicolonI

= ifstatement($2, $4, $5, $6);

I IF
error
Semicolon

4.12
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This addition to the grammar allows the parser to accept

either the correct if-statement or the reserved word "if"

followed by any syntax error (denoted by the token "error"'
7 )

and continue parsing until it detects a semicolon.

Finally, Steps 7 and 8 tested the new construct

(against correct and incorrect test cases), and when it

passed, the simulator design team was notified of an update

to the Analyzer.

Structure Example: In a similar manner, each

language construct that described a structure in VHDL was

implemented. Recall in Chapter 2, an example of DDS was

presented using a VHDL signal and signalassignment

statement. A signaldeclaration, then, defines that type of

VHDL object and creates a symbol table entry for a list of

one or more names (identifiers) which will be declared as

signals. The BNF notation (step 1) for this grammar rule

is:

signaldeclaration
signal identifierlist : subtypeindication ;

and the yacc grammar is:

7The token error generates an error message that lists the tokens the parser was
epecting.
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signal-declaration
SIGNAL
identifierlist
Colon
subtypeindication
Semicolon

!
SS = signal_declaration(S2, $4);

The VIA for this construct (step 2) consists of one or

more symbol table entries, each containing the name of the

signal and a reference (pointer) to the type given by

subtypeindication (Figure 4.3). yacc returns the

following value stack (step 3):

(1) the token SIGNAL
(2) a pointer to a linked list of

identifiers
(3) the token Colon
(4) a pointer to the symbol table entry for

subtypeindication
(5) the token Semicolon

There are several semantic actions (step 4) that must be

performed. First, locations for each identifier in

identifierlist must be created in the symbol table. Since

we are declaring new object names, no other definitions

using the same name in the same design should exist; if this

is not true, an error message (generated by the symbol entry

create routine) indicates that the object is declared twice.

VIA categorizes each structure in VHDL into classes and

kinds. A class may be an object, (design) unit, or type. A

kind may be an object like a variable, signal, or constant;

a unit like an interface, architecture, or package; or a

4.14
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VHDL Source: signal identifier-list: subtype_indication;

VIA: Name: NAME_1CLASS: object

next

KIND: signal 3 V fLA

tyesc s*nitr range enumeryp~iationy. I

isceae LfrAnS objectclsofkn sigaL.S Thpe tyeo

d Ir isl rKIND* subtypecti

next

Name: NAME-n type

CLASS: object
KIND: signal

Figure 4.3 VIA for signaldeclaration

type such as an integer range, enumeration, or a ge)y. In

the above example, for each identifier, a symbol table entry

% is created for an object class of kind signal. The type of

%each identifier is referenced by subtype indication. If

this reference is NULL, subtype indication was not defined

earlier (and has already been noted by an error message).

When this error occurs, the type of each identifier is a

reference to ANYTYPE. This special entry allows the

identifiers to be used later in the analysis as if they had

*= been properly declired, without causing a rash of error

messages.

4.15
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Next, since the lookup and creation of symbols are

predefined symbol table primitives, no other semantic

routines needed to be implemented (step 5). Error recovery

(step 6) was added using a grammar rule similar to the

ifstatement. Test cases were created, the proper operation

of this construct was verified (step 7), and the definition

of this construct was given to the simulator design team

(step 8). In a similar manner, using the information

supplied in the VHDL LRM, the rest of the VHDL language

subset was implemented and tested.

Summary

This chapter discussed the methods employed in the

implementation of the design decisions made in Chapter 3.

The steps taken to create the VIA for new VHDL constructs

and to implement new language subsets to the Analyzer were

outlined and examples of behavioral and structural con-

structs were shown. Chapter 5, Test and Analysis, will

discuss the ways the Analyzer was tested and the manner in

which it met the production-quality requirements.
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V. Testing and Analysis

Introduction

This chapter will describe the testing performed on the

UNIX VHDL Analyzer and the analysis of those test results.

It will show what tests were needed to demonstrate that the

thesis requirements were met. It will also show how those

tests reflected the quality of the thesis product, based on

the criteria established in Chapter 1.

Thesis requirements

In Chapter 1, the requirements for this thesis were

developed. This section reviews the thesis requirements and

shows how each one was tested for completion. These

requirements are outlined below:

Generalization:

(1) Run under UNIX.
(2) Run on several different computer

architectures.
(3) Analyze both correct and incorrect

VHDL.

Testing:

(4) Pass VHDL Test Suite.

Documentation:

(5) Be well documented.
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Maintenance:

(6) Include inline comments and module
specifications.

Interfaces:

(7) Produce Intermediate Representation
providing analyzed VHDL information
to other environment tools.

(8) Produce an efficient and easy to use
IR.

System Resources:

(9) Process VHDL designs within a "reason-
able" time period.

(10) Conserve the use of main memory and
secondary storage.

System Integration:

(11) Must show "end-to-end" use of the AFIT
VHDL Environment, specifically, the
simulation of VHDL designs.

From this list, we see that the requirements for

Documentation (5) and Maintenance (6) only require the

submission of material. Interface requirement (7) requires

that an IR be produced; its quality is determined in

requirement (8). Testing ensured the remainder of the

requirements were satisfied. These tests were divided into

four categories based on the requirement areas: conformance

tests, portability tests, performance tests, and integration

tests.

Conformance tests. (Requirements 3 and 4). Confor-

mance tests ensured that the Analyzer conformed to the

specification of VHDL given in the VHDL Language Reference
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Manual (Intermetrics, 1985b) and met the production-quality

requirements (3 and 4) listed above. As each language

construct was added to the Analyzer, these tests were

performed to verify that no errors were introduced during

coding and that the new code did not adversely impact

existing code in terms of efficiency and module interfaces

(parameter passing). For example, early releases of the

Analyzer only recognized simple names. Later releases of

the Analyzer were able to handle indexed names (array

names), which are represented in VIA differently from simple

names. Each routine that processed any VIA "name" node was

modified to now also handle array names. Testing ensured

that all the necessary changes had been made. It was only

when tests showed the Analyzer conformed to the LRM that

other tests could be performed. The final phases of

conformance testing used the VMS Analyzer test suite

described in (Intermetrics, 1984b).

Portability tests. (Requirements 1 and 2). These

tests ensured that the Analyzer performs under UNIX bsd

version 4.2 (Bell, 1983) and on various computer

configurations. Passing these tests showed that the

Analyzer design and implementation could be moved to other

UNIX sites, thus meeting the generalization criteria for a

production-quality tool.

Performance tests. (Requirements 8, 9, and 10). These

tests ensured that the Analyzer's performance met the

5.3
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project's requirements for processing speed, memory usage,

and disk usage.

Integration tests. (Requirement 11). The final set of

tests involved the AFIT UNIX VHDL simulator (Kodama, 1987).

These tests were "end-to-end" simulations of several VHDL

designs with the results manually verified and compared to

simulations of the same designs run under VHDL/VMS. These

tests confirmed the interoperability of the system interface

(VIA) with the simulator.

Conformance Testing

Introduction. Conformance testing showed the degree to

which the Analyzer met the VHDL LRM 7.2 "standard". This

testing was similar to the testing in the Ada Cowpiler

Validation Capability (ACVC) (Goodenough, 1986), which is

itself based on the Pascal Validation Test Suite (Wichmann

and Ciechanowicz, 1983). Both ACVC and the Pascal Test

suite involve three phases: LRM conformance, error

handling, and implementation restrictions'.

LRM Conformance. Testing for conformance to the VHDL

LRM involved: selecting a part of the language to be

tested, determining what objectives must be met in order

that the selected part is fully tested, and constructing

I Because this last pase required executable code (such as that produced by an Ada
or Pascal comiler) and the Analyzer only produces a ncr-executable intermediate form,
this test was not perfored on the Analyzer.
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tests for those objectives. This is the manner in which the

test suite for the VMS VHDL system was constructed (Inter-

metrics, 1984b). The VMS Analyzer test suite contains two

types of tests: short and error. The short tests contain

correct VHDL and must generate the correct output VIA. The

Analyzer must not detect any syntactic or semantic errors

for any fully implemented construct. Since this implemen-

tation is a subset VHDL analyzer, semantic errors were

allowed for non-implemented features of the language, but no

syntactic errors. The error tests contained syntax and

semantic errors which are supposed to be detected by the

Analyzer. For those features of the language that were

fully implemented, all syntactic and semantic errors had to

be detected. For partially and non-implemented language

constructs, an error test that caused no error messages was

allowed to pass, but an error test that caused an abnormal

termination of the Analyzer failed. For example, a simple

objective is:

Show that the Analyzer will accept the syntax for
the simplest interface declaration, which is

entity identifier is end

This objective can be tested by constructing a short test

using the above interface declaration (substituting a valid

name for identifier) and submitting it to the Analyzer (the

actual test run is shown in Listing 5.1). If the correct
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Listing 5.1 Syntactic Conformance Testing

verbose cc
AFIT VOL Analyzer Revision: 3.0

[1] -- TEST 1.1.1-1, CL&SSC FYaMNCE, SECT=-Interface Declaration
[2]
[31 -: This prram tests the minimal interface declaration.
(41
(5] entity i1 is
[6) eni ;

Number of errors detected: 0
Generating VIA file.. .dne
VHDL Analysis complete.

VIA representing the entity interface is produced, the

Analyzer passes. Any other result indicates failure2 .

For a semantic error test, an objective might be:

Ensure that, in an architecture body declaration,
the entity name of the interface is visible and
has been analyzed before the architecture.

The test for this objective is shown in Listing 5.2. For

the VMS Analyzer test suite, each objective and corres-

ponding test for the rest of the language was determined

from the definition of VHDL in the Language Reference

Manual.

In using the VMS Analyzer test suite, several

modifications had to be made. First, the tests that only

2 This is known as black-box testing. It ass the internal structure of the
program is hidden and only tests for the results of executing that program.
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Listing 5.2 Semantic Error Testing

verbose on
AFIT VML Analyzer Revision: 3.0
[1] -- TEST 1.2.1-3, CIASS=ERR(tR, SECT--Architectural Body Declaration
(2]
[3] -: This program tests that the correct entity name is found for a
[4] -: particular architectural body declaration.
(5]
(6] - This program requires also the minimal block and process statements.
[71
[8] - When separate compilation is completed, the interface declaration
[9] - preceding the arch declaration can be deleted.
(10]
(11] entity ii is
[12] end il;
[13]
(14] architecture tlp2pld3 of i2 is
[15] blockl:
[16] block
[17] begin
(18] process
[19] begin
(20] null,
[21] end process;
-)[warning] line 21 near ";"; process sensitivity list is empty
[22] end block;
(23] end;
-)[fatal] line 23 near ";"; interface name 12 not found
(24)
Number of errors detected: 1
Errors in VHDL source. No VIA produced
VHDL Analysis complete.

tested portions of VHDL that were not implemented were

counted and removed from the test suite. Second, those

tests that tested both implemented and non-implemented

language features were specially handled. These tests were

split into two tests--one tested implemented features and

became part of the test suite, and the other tested the non-

implemented features and was removed.
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The results of each run of the test suite are summar-

ized below in Table 5.1. Because the Analyzer does not

semantically analyze the entire VHDL language, it will

sometimes detect errors in otherwise correct VHDL source.

Other messages showed where the Analyzer ignored parts of

the language that were not implemented in any manner. The

error messages tell the user what restrictions the Analyzer

is using and what actions the Analyzer took.

Error testing. Error tests using the VHDL VMS test

suite were run on the final release of the Analyzer. The

results of error testing were given above. The higher

percentage of passed tests resulted because many of the

tests involved erroneous input that was not syntactically

correct. These errors were caught by the parser generated

automatically by yacc from the VHDL grammar. Other error

tests were constructed based on knowledge of the internal

structure of the Analyzer and were designed to catch

implementation errors3 . These were not part of the original

VHDL VMS Analyzer test suite.

Portability Testing

Using the conformance and error tests discussed above,

the Analyzer was tested on three different computer systems,

the VAX 11/780, the ELXSI 6400, and the Sun 2 Workstation.

Simple VHDL designs, discussed in Chapter 1, were tested, as

3 7his is kIo as wute-bku (or glass-bwd testing, because it assmes that oe
iors how the program beirg tested operates.
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Table 5.1 Results of VKS Test Suite Testing

Result Short Error Total

Pass 230 (68%) 378 (81%) 608 (76%)
Fail 42 (13%) 72 (15%) 114 (14%)
Not Impl 65 (19%) 19 ( 4%) 84 (10%)

Total 337 469 806

were the performance tests discussed later in this chapter.

Portability testing showed whether the Analyzer had system-

specific code that would prevent others from using this

research. For example, if the Analyzer used a C function to

obtain information from the operating system (such as the

date or the amount of memory on the processor), then this

(or an equivalent) function must be available on other

processors. Because the Analyzer was written with no such

system-specific code, there were no portability problems.

Performance Testing

Speed. Analyzer execution speed was measured by

averaging the compile times for several VHDL designs which

used several different types of design methods, so as not to

be biased in favor or against the implementation of the

Analyzer. "Wall-clock" time and CPU times were measured

with the UNIX time command (Bell, 1983) and the results are

presented in Table 5.2, along with the times for ':he

VHDL/VMS Analyzer. The Analyzer's performance is well

within the requirements of 1000 lines per CPU minute. In
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Table 5.2 Results of Portability Tests

Processor

Design Type VAX VMS VAX UNIX SUN ELXSI

Dataflowl 32.92 2.63 1.39 0.91
(0.69)2 (0.05) (0.03) (0.21)

Procedural 33.66 2.52 1.34 0.90
(1.71) (0.05) (0.07) (0.22)

Dataflow2 2.22 1.13 0.85
(---) (0.08) (0.07) (0.20)

'Time in CPU seconds. 2 standard deviation

fairness, it must be noted that since the VHDL/VMS Analyzer

is written in Ada and is not a subset analyzer, its analysis

times were expected to be slower. This is because of the

run-time checks that Ada performs that C (the implementation

language of the UNIX Analyzer) does not. Also, the full VMS

version performs more semantic checks on the input than the

UNIX subset Analyzer. Finally, the VHDL/VMS Analyzer uses a

design library which increases the system overhead due to

the opening and closing of design library files. Therefore,

it can be conjectured that because the UNIX VHDL Analyzer

uses C and does not use a design library, a full implemen-

tation will still be somewhat faster than the VMS version.

Memory Usage. For each of the performance tests

described above, the memory usage was measured (again using

the time command). This usage varied from 300K to over

800K. Memory usage depends on the number of VHDL objects
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defined and not on the number of VHDL statements. This is

because the symbol table is dynamically created and the

operation table is a static array.

Disk Usage. The goal for this project (Chapter 1) was

100 bytes of VIA for each VHDL line. This criterion was

tested by measuring the size of the resulting VIA files from

the analysis of the aforementioned VHDL designs. The

average size of each design was 51 lines and, therefore, the

goal was a VIA file of 5100 bytes or less in size. The

average VIA file size was 5180 bytes, which was only

slightly above the goal for this project.

Integration Testing

Integration tests were the culmination of the Analyzer

test phase. Their purpose was to ensure that the interface

between the Analyzer and an AVE tool (the UNIX VHDL

Simulator (Kodama, 1987)) was operable and provided the

information necessary to process a VHDL design.

Method. Using the VHDL benchmarks developed by Dukes

(Dukes, 1987), each design was analyzed and the resulting

VIA submitted to the simulator along with a set of test

vectors. To verify that the design was correctly analyzed

and simulated, the outputs from the Analyzer and the simula-

tor were compared to the same simulation performed using the

VMS VHDL environment and to a manual simulation (of the

simpler designs).

5.11
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Results and Comparisons with VMS VHDL. The results for

the Analyzer portion of the integration tests have been

given previously in Table 5.2. For a comparison of the VMS

VHDL Simulator and its UNIX counterpart, see (Kodama, 1987).

Chapter Summary

This chapter has showed the manner in which the

Analyzer was tested and the results of those tests.

Recommendations for future research with the Analyzer and

final conclusions are presented in the final chapter.
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VI. Conclusions and Recommendations

This thesis has presented the development and

implementation of a UNIX-based VHDL analyzer. Future

research, recommended below, will further expand its

capabilities. The direction this research takes, however,

will depend on the conclusions presented first in the

following section.

Conclusions

Selection of VIA. The effort in developing a new VIA

has been well rewarded. After its design was finished, work

on an AVE UNIX simulator has been able to proceed rapidly

and with visible results. The subset of VHDL that was

implemented in this project proved robust enough to allow

the design and simulation of several useful VHDL circuit

descriptions. A subgoal of this research--to demonstrate

"end-to-end" throughput of a VHDL design--was attained. As

was mentioned before, several portions of the VHDL language

were not implemented. These portions (Appendix A) include

separate compilation, configurations, revision specifica-

tions, user attributes, and floating point arithmetic, as

well as several of the semantic checks on those constructs

that were implemented. The elimination of these capa-

bilities from the analyzer did not detract from its
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usefulness: using the analyzer and simulator, the

beginnings of a VHDL circuit library have taken shape.

Test Results. Based on the tests described in Chapter

5, the major goals of this project have been successfully

completed:

1. The Analyzer runs under UNIX on several
processors.

2. The Analyzer has been subjected to thorough
testing.

3. The Analyzer produces an intermediate
representation that meets the design requirements
for compactness and efficiency.

4. The Analyzer correctly analyzes more than 75%
of VHDL Version 7.2. As was mentioned in the
preceding section, this subset is robust enough to
describe many of the VHDL designs that students
would be generating.

5. The Analyzer generally performs within its
performance goals. Although memory usage was
larger than expected, many UNIX environments have
up to 16 Megabytes of main memory. The Analyzer's
usage of memory was, therefore, deemed acceptable.

6. The Analyzer has been tested in conjunction
with the UNIX VHDL Simulator.

Thus, this implementation can be described as

production-quality based on the above evaluations'. More

work can be done to improve its conformance and error

handling qualities, as well as its use of main memory.

ISource code for the Aalyzer is available frcm the Deptment of Mathematics and

Canputer Science, Air Force Institute of Technology, Wright-Patterson AFB, CH 45433.
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Recommendations for Future Research

At least five topics for further research resulted from

this project.

Implement Entire Language. It is envisioned that the

analyzer, at some future date, will be able to generate VIA

for the entire language. Many of the design decisions

during this project were made with this extension in mind.

For example, the structure of the symbol table was designed

to support separate compilation. While the analyzer now

rounds floating point numbers to the nearest integer, the

future introduction of real numbers is facilitated by

separation of integer and floating point literals in both

the grammar and the supporting routines (even though both

are currently mapped to long integers). At a later time,

code could be added to the supporting routines to implement

floating point without affecting the code for integers.

Add to User Options. The only user option implemented

in the analyzer was a "verbose" option that generates a

listing file (with error messages, if any); other options

were not necessary during the analyzer's development. But,

as the analyzer matures, it should offer the user the

following options:

1. Build option. After separate compilation is

implemented, the analyzer should have the capability of

either creating separate VIA files for each design unit in a

6.3
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design file or a completely linked VIA file that could be

used directly by the simulator.

2. Context option. The user should have the capa-

bility of instructing the analyzer where the VIA files for

the separate components of his/her design can be found.

This would allow the creation of a central VHDL library for

commonly used components or several libraries, each having

its designs implemented using one of VHDL's three design

implementations.

3. Generate option. This option allows the user to

direct the creation of VIA files to any subdirectory.

Optimize VIA. In several areas the VIA could be

optimized. First, when generating a complete VIA file from

separate modules, only those objects in the VIA symbol table

that are referenced need be output to disk. This method

would, over the course of time, save much disk storage space

since many of the objects in user defined packages and in

the pre-defined package STANDARD (Intermetrics, 1985b:

Appendix A) are not referenced in every VHDL design.

Second, code improving optimizations could be applied to the

operation table of VIA. These optimizations include common

subexpression elimination, copy propagation, and the detec-

tion of loop-invariant computations (Aho, Sethi, and Ullman,

1986:Ch. 10). Finally, even though storing the VIA as a

binary file, rather than in ASCII, could save disk space, I

suggest the VIA remain as an ASCII file. The use of ASCII
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files was necessary during the design phases of both the

analyzer and the simulator, so that the output of the

analyzer could be visually checked. If there was an error

with the analyzer, the VIA could be manually corrected with

a text editor before being used by the simulator. This use

of ASCII files allowed the simulator development to proceed

without having to wait for every error to be removed from

the analyzer. Now that the initial development phases are

completed, the usefulness of an ASCII VIA file continues.

An ASCII VIA file can be used with UNIX source code

management utilities such as the Source Code Control System

(SCCS) (Rochkind, 1985) and the Revision Control System

(RCS) (Tichy, 1982) (which do not handle binary files).

These utilities could be used to implement revisions of

design units, where the user specifies which version of the

design unit should be used and the utility retrieves that

version of VIA from the revision file and writes it to disk.

This method would also save considerable disk space since

only the base version of a VIA representation is saved in

its entirety. As other versions are added, only the

differences needed to create those versions are saved. This

philosophy of using existing UNIX tools follows from the

requirements of this project.

Add Design Library. As more persons begin using the

Analyzer for more complicated designs, its memory usage

could become a problem. A design library could alleviate

this problem by supplying symbol table information so that
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the analyzer would not have to load an entire VIA file to

access one definition. The form of the design library could

range from several random VIA access routines to an inte-

grated database manager. Such a database manager could

possibly be built with artificial intelligence techniques to

detect inconsistencies in VHDL designs introduced through

modification of one of the design components. It could also

help the user design and select the components of his/her

circuit.

Implement other AVE Tools. Other tools to facilitate

UNIX VHDL design are needed. Among them are reverse

analyzers and silicon compilers. Reverse analyzers were

discussed earlier. Going the other way, a silicon compiler

would read a VIA representation and help to generate a cell

layout for the circuit that could be manufactured into an

actual chip. With both of these tools available, a designer

could write a VHDL description of a circuit, generate the

corresponding VIA, use the VIA to generate the cell layout,

manufacture the chip, and then reverse engineer the chip

(using the reverse analyzer) to obtain the VHDL description

of the manufactured chip. Then the original VHDL descrip-

tion could be compared to the VHDL that resulted from the

chip analysis to detect possible manufacturing errors.

Summary

The UNIX VHDL analyzer produced during this research

provides the academic community with a necessary tool for
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the acquisition of further knowledge of VHSIC design. The

need for such tools becomes more and more evident as new

technology increases the complexity of electronic circuits.

A standardized manner to describe such circuits can be found

in the use of VHDL. Through ongoing research, such as the

project presented in this paper, the availability of VHDL

can be broadened for the mutual benefit of industry and

academia, which, in turn, directly benefits the Air Force.
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APPENDIX A. AFIT VHDL ANALYZER IMPLEMENTATION

This section outlines the status of the AFIT VHDL

Analyzer at the time of the completion of this report. It,

like the similar appendix in Frauenfelder's thesis, is keyed

to the VHDL Language Reference Manual, by chapter. If a

particular function is listed as "not implemented" then the

analyzer will only check the syntax of the construct and no

VIA is generated.

Chapter 1: Design Entities

Implemented except for next level configuration.

Chapter 2: Subprograms

Implemented.

Chapter 3: Packages

Implemented.

Chapter 4: Types

Multidimensional array types not implemented.

All predefined types implemented except character
names.

Floating point types mapped to integer values.
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Chapter 5: Declarations

Alias declarations not implemented.

User-defined attributes not implemented.

Chapter 6: Specifications and Directives

Attribute specification not implemented.

Select directive not implemented.

Entity aspect, port and generic map aspects, and
body aspect not implemented.

Configuration specification and binding indication
not implemented.

Chapter 7: Names and Expressions

Names of statement labels are ignored when used as
selected names.

Library names not implemented.

Context and revision specifications not
implemented.

Indexed names of more than one dimension are not
implemented.

User-defined attribute names are not implemented

Mod and rem implemented, but actual values not
calculated for constants.

Chapter 8: Statements

Exit statement not implemented.

Procedure call statement not implemented.

Generate statement not implemented.
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Chapter 9: Scope and Visibility

Objects cannot be selected through use of a
statement label.

Overloading not implemented.

Chapter 10: Design Units and Their Analysis

Separate compilation not implemented.

Appendix A: Lexical elements

Alternate replacement characters not implemented.

Maximum identifier length is 255 characters.

Appendix B: Predefined Language Environment

Only predefined attributes for scalar types
implemented.

Character names (NULL .. DEL) not implemented.

Time functions TMIN and "MAX not implemented.
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APPENDIX B. VIA DEFINITION

The following is the format for the VIA intermediate

file.

File Definition: The VIA file is an ASCII file

consisting of 4 major divisions: header, symbol table,

operation table, and string table. The header provides

information to enable the access of the other tables.

BNF: In this definition, nonterminals are surrounded

by angle brackets " >". Comments are preceded by two

hyphens, as in VHDL and Ada.

(via-file> ::= (header> (symtab> (optab> (strtab>

(header) ::= <#_designunits) <#_oprecs) <#_sym.recs> <$_chars>

(#_design units> ::= integer -- number of design units

<#op recs> ::= integer -- number of entries in the operation table

<#_sym-recs> ::= integer -- number of entries in the symbol table

(4_chars) ::= integer -- number of characters in the string table

(symtab> ::= (sym_rec> I (symrec> I

(symnrec> ::= (unit) 1 (object) I <type)

(unit) ::= interf> I (arch> 1 (config) I (pack> I (proc) I (func
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<interf) ::= (rec num) (symname> UNIT INTERFACE (info> (vis>
(sym_ref) -- record number of first port
(sym_ref> -- record number of first generic
(symnref> -- record number of first declaration
(op ref -- record number of first directive
(sym next> -- record number of next declaration

(arch> ::= (recnum> (symname> UNIT ARCHITECTURE (info> (vis>
<sym-ref> -- record number of interface
(opref> -- record number of block statement
(sym_next> -- record number of next declaration

(config) ::= (rec num) (symname> UNIT CONFIGURATION (info> (vis>
(sym_ref> -- record number of interface
(sym_ref> -- record number of architecture body
(opref) -- record number of next level configuration
(sym_next) -- record number of next declaration

(pack) <recnum> (symnname> UNIT PACKAGE (info> (vis>
(sym_ref -- record number of first package declaration
(sym next> -- record number of next declaration

(proc> (rec_num) <symname> UNIT PROCEDURE (info> (vis)
(sym_ref> -- record number of first parameter
<op_ref> -- record number of first statement
(symnext> -- record number of next declaration

(func> (recnum) (symname) UNIT FUNCTION <info> <vis>
<sym_ref> -- record number of first parameter
(sym_ref> -- record number of return type
(opref> -- record number of first statement
(sym_next) -- record number of next declaration

(object> ::= (sig) ( <var) t (const) ( <label) 1 (elem> ( <para) 1
(alias> <comp>

<sig> ::= (rec num> (symname> OBJECT SIGNAL (info> (vis>
(sym_ref> -- record number of type
(symref> -- record number of resolution function
(op ref) -- record number of initialization expression
<symnext> -- record number of next declaration

(var> (rec-num) (symname> OBJECT VARIABLE (info> (vis>
(sym_ref> -- record number of type
(symref) -- record number of resolution function
(opref> -- record number of initialization expression
(symnext> -- record number of next declaration
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(const> ::= (rec-num) (sym name> OBJECT CONSTANT (info) (vis>
(symaref) -- record number of type
(symref> -- record number of resolution function
(opref) -- record number of initialization expression
(val> -- constant value
(symnext> -- record number of next declaration

(label) ::< rec.num> <symname> OBJECT LABEL (info> (vis>
<op ref> -- record number of first statement
<opref> -- record number of initialization expression
<sym next> -- record number of next declaration

(elem> <rec-num> (symname) OBJECT ELEMENT (info> (vis>
<sym ref> -- record number of type
<symnref) -- record number of record type
(sym next> -- record number of next declaration

(param> (rec num> <symname) OBJECT PARAMETER <info> (vis>
(symref> -- record number of type
(symnref> -- record number of subprogram
<opref) -- record number of initialization expression
(sym-next) -- record number of next declaration

(alias> (recjnum) (symnname> OBJECT ALIAS (info> (vis>
(sym ref> -- record number of base type
(sym ref> -- record number of aliased object
<sym next> -- record number of next declaration

(comp> (rec num> (sym name> OBJECT COMPONENT (info) (vis)
(symaref> -- record number of first port
(sym ref) -- record number of first generic
(sym next> -- record number of next declaration

<type) (irange> <rrange> (enum> <array 1 (record) 1
<physical> ( (subtype>

(irange> (rec num> <sym name> TYPE IRANGE (info) (vis)
(symref> -- record number of base type
integer -- minimum range
integer -- maximum range
<symjnext> -- record number of next declaration

(rrange> (recnum> (symnname> TYPE RRANGE (info> (vis>
<symref) -- record number of base type
real -- min range
real -- max range
<sym_next> -- record number of next declaration
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(enum> ::= (recnum) (symname) TYPE ENUM (info) (vis)
integer -- number of literals
integer -- value of first (always 0)
integer -- value of last
<symref> -- record number of first literal
<sym next) -- record number of next declaration

(array> (rec-num> (symname) TYPE ARRAY (info) (vis>
(symref -- record number of index type
(symref> -- record number of element type
integer -- value of lower bound
integer -- value of upper bound
<sym-next> -- record number of next declaration

<record> ::= <rec num> <symname> TYPE RECORD (info> (vis>
(symref> -- record number of first field
(symnext> -- record number of next declaration

(physical> <recnum> <sym name> TYPE PHYSICAL <info> <vis>
(symref> -- record number of base unit
integer -- number of units
integer -- minimum value
integer -- maximum value
<sym_next> -- record numbcr of next declaration

(subtype> <rec num> (sym name> TYPE SUBTYPE (info> (vis)
(sym_ref> -- record number of base type
(sym_ref> -- record number of resolution function
integer -- minimum range
integer -- maximum range
(symnext> -- record number of next declaration

(sym-name> character string

<info> ::= (info-field> ( (info> <info-field)

(info-field> ::= NO-INFO 1 PORT I GENERIC 1 PARAM 1 MODE-IN
MODE-OUT 1 MODEIO 1 MODEBUF I MODE-LINK I ATOMIC 1
GRANULAR 1 STATIC I LOOP-VAR 1 ARCH-CHILDLESS 1

ARCH-STRUCTURE

'vis> ::= integer -- scope of definition's visibility

(symref> ::= integer -- record number of SYMTAB record

<op-ref> ::= integer -- record number of OPTAB record

<sym next> ::= integer -- record number of next SYMTAB definition

(optab ::( op_rec) I (op rec> I
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(op_rec) (rec num) (opname> (line num> (label> (type>

(first> (op_next> (value>

(rec num> integer -- unique record number

(opname> ABS ! ADD 1 AFTER 1 ALT CLAUSE 1 AND 1 ASSERT 1
ASSOC 1 ATTRIBUTE 1 BINDING 1 RLOCK ! CASE :
CHOICECLAUSE 1 COMPONENT I CONDCLAUSE 1 CONST LIT 1
CONSTSTR I DISABLE 1 DIV 1 E_VALUE 1 ELMTOF I
ENABLE 1 EQ 1 EXP 1 FOR 1 FUNCCALL I GE 1 GENERIC I
GT I GUARD I I-VALUE 1 IF 1 INITIALIZE 1 LE 1 LOOP 1
LT I MOD H KUL 1 NAND 1 NE I NEXT 1 NOOPR I NOR 1 NOT 1
NULL 1 NULLBR I OPEN 1 OR I OTHERS I PORT I PROC CALL 1
PROCESS I RVALUE I RANGE 1 REM I REPORT 1 RETURN 1
SENSLIST 1 SEVERITY I SIGASSIGN 1 SUB 1 SYMREF 1
TRANSPORT 1 VAR-ASSIGN I VOID-NODE I WAVE I WHEN 1
WHILE 1 XOR

(linenum> integer -- line number from source VHDL

<label> <sym-ref> -- symbol table index to label for this
-- statement

(type> (sym_ref> -- symbol table index for the type of this
-- statement

<first> (op-ref> -- operation table index for first pointer

(opnext> ::= (opref) -- operation table index for next pointer

(val> ::= integer I real -- value for constant literals

(strtab) I <string> I

(string> character I character I '\O'
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Appendix C. VHDL ANALYZER TEST SUITE

This appendix details the number of test objectives

(Intermetrics, 1984a:19-20) and tests for each chapter of

the Language Reference Manual. These tests have been

formulated to check for each requirement in the LRM and are

similar to the examples shown in Chapter 5. However, due to

copyright restrictions, the actual tests in the VHDL

Analyzer Test Suite cannot be published in this thesis.

Chapter 1: Design Entities (58 objectives)

Short tests: 13 Error tests: 22

Chapter 2: Subprograms (20 objectives)

Short tests: 7 Error tests: 14

9

Chapter 3: Packages (4 objectives)

Short tests: 2 Error tests: 3

Chapter 4: Types (82 objectives)

Short tests: 37 Error tests: 41

Chapter 5: Declarations (51 objectives)

Short tests: 36 Error tests: 43

Chapter 6: Specifications and Directives (150 objectives)

C.1
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Short tests: 26 Error tests: 54

Chapter 7: Names and Expressions (59 objectives)

Short tests: 71 Error tests: 84

Chapter 8: Statements (66 objectives)

Short tests: 68 Error tests: 107

Chapter 9: Scope and Visibility (14 objectives)

Short tests: 21 Error tests: 21

Chapter 10: Design Units and Their Analysis (11

objectives)

Short tests: 14 Error tests: 21

Appendix A: Lexical elements (47 objectives)

Short tests: 0 Error tests: 34

Appendix B: Predefined Environment

Short tests: 42 Error tests: 24
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Abstract

This paper describes the design and implementation of
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the criteria for a Oproduction-quality4 software product and

the design of an efficient Intermediate Representation (IR)

that serves as an interface between the Analyzer and other

tools in the AFIT VHDL Environment (AVE). Background on

other UNIX VHDL analyzers, as well as other IRs, was pre-

sented. A two-part IR, based on Dallen's Patois hardware

description language and named the VHDL Intermediate Access

(VIA), was designed, and examples were given that illustrate

its use. Test results showed that the Analyzer passed over

75% of the conformance tests from the VHDL VMS Analyzer Test

Suite and performed well in the areas of compile time, mem-

ory usage, and disk usage. Recommendations for future

research include adding user options to the Analyzer and

implementing a design library for VHDL designs.
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