
COSDENTIOUS(U) AXE FORCE 11157 OF TECH
WRXIT-PRTTERSOU NFl ON SCHOOL OF EmNGime3N

7 MUCRSFlED W C DELORIR DEC 6? NFIT/GCS/ENB4Th-18 F/'O 12/1 ML

-1. &U. W

A1 .2

% %%

jj FILE CON

04
40

Ilb,

DIOICAL LOGIC
SIMULATOR

WITH

CONURRNTPROGRAMMING
CON~SIDERATIONS

THESIS

Wayne C. OeLOria

Captaiflh USA

0
AET/GCS/EG/

rIG

9
DEPARTMENT Of TE AIR FORCE*,

AiR UtOVERSITY

AIRFOCE INSTITUTE OF TECHNOLOGY

4 '-gh

t1Potte r o A r Force Ba~se , O bO

Th1,05

AFIT/GCS/ENG/87D-10

V.

_4

5.

A DIGITAL LOGIC SIMULATOR WITH .

CONCURRENT PROGRAMMING CONSIDERATIONS

THESIS

Wayne C. DeLoria
Captain, USA

AFIT/GCS/ENG/87D-10

Approved for public release; distribution unlimited

b 6

AFIT/GCS/ENG/87D-10

A DIGITAL LOGIC SIMULATOR WITH CONCURRENT

PROGRAMMING CONSIDERATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology,

Air University,

In Partial Fulfillment of the o

Requirements for the Degree of '

Master of Science in Computer Systems

Accession For
NTIS GRA&I
DTIC TAB
Unannounced E. 0
Justification- -s

C.i By

Wayne C. DeLoria I Distribution/
SAvailability 0 U, es

Captain, USA A bt e
, IAvail ,i/or
Dist Special

December 1987

Approved for public release; distribution unlimited

% %

Acknowledgments

Perhaps one of the greatest lessons learned from an

intensive period of research and study, such as this thesis

effort, is the realization that such undertakings can never

come to fruition without the assistance and understanding of "..

others. We all hope for self-sufficiency, but reality proves

that we are all gregarious. Many colleagues and friends were

helpful throughout this effort, but some really stand out as

lifesavers.

Of course, I could not have accomplished any amount of

success without the guidance and assistance of my advisor,

CPT N.J. Davis. The other members of my advisory committee

were equally important --CPT Bruce George, whose bright ".

disposition kept us all going, and CPT Wade Shaw, whose

inspiration was responsible for this whole thing. Dr. Frank

Brown, who oversaw the original version of the simulator,

also supplied some direction.

Various sections of this report would never have gone to

press were it not for classmates and colleagues. CPT Edward

Poore saved my life (and perhaps my sanity) with his undying

patience and indispensable knowledge of statistics and their

applications. LT Bill Hodges' intimate familiarity with the

iPSC Hypercube saved uncounted hours in the pursuit of many

__ A

*, .k

elusive bugs which kept popping up in concurrent

applications.

My two partners in the development of the integrated

digital design tool (IDIET) were also instrumental in

whatever success was realized by this project. Although they

were working toward different goals, without the productive

interaction with CPT Charles Adams and LT Steven Wagner, I

might very well still be at the drawing board.

And last, but certainly not least, my most heartfelt

thanks and love go out to my wife Sheryl, without whose

support, and sometimes tearful understanding, this thesis

would never have been completed.

%.- ..

,.4.

ii"i
Sb

Table of Contents

Page

Acknowledgments ii

List or ,0cures vi

List of Tables viii

Abstract ix

CHAPTER 1 - THESIS OVERVIEW AND ORGANIZATION . . 1

1.1 Overview I.............
1.2 Organization 3...........

CHAPTER 2 - INTRODUCTION AND OBJECTIVES 5

2.1 Introduction 5
2.2 Research Objectives10
2.3 Summary 12

CHAPTER 3 - LOGSIM 13

3.1 Background 13 ",

3.2 LOGSIM248 Implementation 17

3.2.1 Overview 17
3.2.2 Data Structures 18
3.2.3 Operation 22

3.3 Summary 24

CHAPTER 4 - SOFTWARE DEVELOPMENT 25

4.1 Re-engineering Overview 25
4.2 Analysis - LOGSIM, version 5.5 . . 25
4.3 Design - LOGSIM248 31
4.4 Coding - LOGSIM248 35
4.5 IDIET Integration 39
4.6 Testing and Debugging - LOGSIM248 40

CHAPTER 5 - CONCURRENT LOGSIM 43

5.1 Overview 43
5.2 Parallel Approach 46
5.3 Implementation 47
5.4 Summary 49

iv

V

Page
CHAPTER 6 - DISCUSSION 51

6.1 Comparing Performance - LOGSIM V5.5
vs. LOGSIM248 51

6.2 Concurrent LOGSIM Performance 56
6.3 Using LOGSIM248 Independently 59
6.4 LOGSIM248 IC Library Expansion 61
6.5 Future Directions 62

Bibliography 66

Appendix A: Source Code - LOGSIM248 68

Appendix B: Data Flow Diagrams and Functional
Decomposition 130

Appendix C: Statistical Information 148

Appendix D: Test Case Schematics and
Graphic Interface Images 162

Appendix E: LOGSIM248 Manual for Independent
Operation 175

E.1 Overview E-1
E.2 What Is LOGSIM248 E-2
E.3 Materials Required E-3
E.4 LOGSIM248 File Interface E-5

E.4.1 Circuit Configuration Input
File - TEMP.CKT E-6

E.4.2 Output Specification
File - TEMP.DIS E-9

E.4.3 Input Data File - TEMP.IN E-9
E.4.4 Input Port Label

File - TEMP.IND E-10 0

E.5 Invoking The Simulator E-f11 4

E.6 Summary E-12
ANNEX A: LOGSIM248 TTL IC Library E-13
ANNEX A. Example Input/Output File ,%

Structure E-15

Vita 193

v

List of Figures

Page
Bi. LOGSIM248 AO....................B-i

B2. LOGSIM248 Al... ... B-2

B3. Build Ckt Data Structure.................B-3

B4. Build Input Data Structure................B-4

B5. Build Output Data Structure..............B-5

B6. Build Output Files B-6

B7. main(...........................B-7

B8. buildckto, cktinit(.................B-8

B9. setpin B-9

B10. connect.......................B-10

Bll. findic B-li

B12. catalog).......................B-12

B13. simulate B-13

B14. initouto, initinputo, buildinput)........B-14

B15. operate().......................B-15

B1.6. addout().......................B-16

B17. fileout(.......................B-17

Dl. Schematic Diagram for BCD.CKT.............D-1

D2. Inputs for BCD.CKT.................D-2

D3. Graphic Circuit Image for BCD.CKT D-2

D4. Binary Output Image for BCD.CKT............D-3

D5. Waveform Output for BCD.CKT..............D-3

D6. Schematic Diagram for ADDER.CKT............D-4

vi-

D7. Graphic Circuit Image for ADDER.CKT D-5I

D8. Inputs for ADDER.CKT................D-5

D9. Binary Output Image for ADDER.CKT D-6I

D10. Waveform Output Image for ADDER.CKT D-6

Dll. Schematic Diagram for BCR3S.CKT............D-7

D12. Graphic Circuit Image for BRC3S.CKT D-8

D13. Wiafrm Output for BRC3S.CKT. D-9

D14. Biafr Output for BRC3S.CKT............D-9

D15. Schematic Diagram for DECODER.CKT..........D-10

ra D16. Graphic Circuit Image for DECODER.CKT.........D-11

Dl7. Inputs for DECODER.CKT................D-11

D18. Binary Output for DECODER.CKT..............D-12

Dl9. Waveform Output for DECODER.CKT............D-12

El. LOGSIM248 TTL IC Library.............E-A-l

E2. Schematic For TEMP.CKT - Binary Coded Decimal
Encoder.........E-B-2

E3. Circuit Configuration Input File - TEMP.CKT . . .E-B-2

E4. Output Monitor File - TEMP.DIS...........E-B-2

E5. Input Data File - TEMP.IN..............E-B-2

E6. input Port Label FIle................E-B-2

E7. Binary Output File - TEMP.OUT............E-B-3

E8. Waveform Output File -TEMP.WAV E-B-3

viiI

',"

List of Tables V

Page
1. Data File Formats 21

2. File Format Codes 21

3. Simulation Run Time Comparison 55

4. Mean Run Time Comparison for Concurrent
Implementation 57 0.

El. Data File Formats E-7

E2. File Format Codes E-7

V

f'.

%"

N
e:5

vi i,.*.S.

V°°-
. ,',., ,,', ' .''; . 4 : V'." '.'.'.'.% . v--" ,'- .,-,..,..-v.,-,- .--...... ;..% . -" .'.- .- -. . -..'.

I- %

I..

Abstract

The digital logic simulator, LOGSIM248, a re-engineered

version of LOGSIM, version 5.5, has been implemented as a ..

component of the digital design environment, IDIET .-,

-.. .-

(Integrated Digital Engineering Tool). This new design .

expands the capabilities of the older version by improving..

run time performance, maintainability, and compatibility. ..

Written in the C programming language, LOGSIM248 boasts "

looser coupling between functional modules while exhibiting'".

greater functional cohesion within these modules. As an -,_

integral part of IDIET, the simulator overcomes difficulties '

created by the complicated user interface of earlier..

versions. .-

With greater run time performance as a goal, this new.'

simulator was studied and adapted to produce a concurrent .

implementation. Here, several roadblocks were encountered .

which essentially showed this algorithm and data structure ,

implementation to be difficult to "parallelize" at best. Due...

to communication constraints on the host computer, data ..

structures used to simulate circuits caused large delays due ""'

to the requirment to disassemble and re-assemble them at the "' ''

i x

..

various processing nodes. This program handicap coupled with

communication transmission delays between processors resulted

in time complexity problems.

Essentially a software engineering project, the re-design

of LOGSIM, version 5.5, was necessitated by various

shortcomings associated with the older version. The new

implementation conforms to the proposed ANSI standard for the

C programming language by utilizing only standard library

functions and source code which complies with the original -.

Kernighan and Ritchie model. This re-hosting has improved

system portability allowing LOGSIM248 to run on all MS/DOS

micro-computers available to the designer.

0.-.

0 .
°°,1

xi
0"

A A A-' -

-~ -. ~ -.' -~ - ,2 -

A DIGITAL LOGIC SIMULATOR WITH CONCURRENT
PROGRAMMING CONSIDERATIONS

CHAPTER 1 - THESIS OVERVIEW AND
ORGAN I ZATION

1.1 Overview

Recently, a great deal of attention has been directed

toward methods which enhance efforts to design and build *

efficient and functional digital circuits with minimum cost

and maximum performance. The primary products resulting from

these efforts are a plethora of computer aided design (CAD)

tools appearing on today's computer software market. These

tools aid the user in circuit design, circuit board layout,

and, in some cases, circuit simulation. Although not all CAD

tools include simulation as a part of their working

environment, simulation of digital circuits is an integral

part of the design process and should be considered when

building such tools.

In this thesis effort, the simulation of digital

circuits is explored with the production of a logic simulator -

as a functional by-product. This study improves on an

existing simulator called LOGSIM which was developed at the

University of Kentucky and enhanced by students at the Air

Force Institute of Technology (1). This design tool
4%%

simulates digital circuit designs at the integrated circuit

(IC) level, allowing chip and pin level circuit descriptions

to be tested for functionality and performance. Various

problem areas were still present within the enhanced version

produced at AFIT - particularly simulation run time for large

circuit designs, and software engineering inadequacies which

could hamper maintenance and future upgrades. SJ

This thesis effort centers around two main areas of

investigation. First, LOGSIM is re-engineered for inclusion

as an integral part of a digital design tool which offers a

kv graphic user interface, a circuit connectivity expert system,

and the logic simulator. Secondly, methods are explored to

re-host LOGSIM on a parallel processing computer in an effort

to realize faster simulation run times.

The first part of this effort has been accomplished with

the associated efforts of two other thesis projects. The

first of these is the design and implementation of a graphic

user interface which provides the user with a pictorial

representation of the circuit design (2). The second project

employs an expert system which studies the circuit design and

reports problems in IC inter-connectivity, missing or

improper connections, and possible oscillation/race

conditions (3). All three of these projects have been

integrated to produce a comprehensive digital design tool

which is expected to be employed in the academic arena.

The second part of this thesis deals with a concurrent

construction of the simulator to enhance run time

2

-k ik-

.* .~

performance. A parallel model has been engineered and

compiled with some improvements noted and directions for

future efforts realized. This part of the project utilized

the simulator developed for the integrated effort and

exploited the natural parallelism contained therein to

develop a "first-cut" compilation for the initial analysis.

1.2 Organization

The remainder of this thesis report provides a detailed

review of all implementation efforts and analysis of results

for those goals outlined in the previous section. It is

* followed by five appendices which contain supporting data

referenced throughout the report.

Chapter 2 contains the thesis introduction and presents

an overview of the research goals toward which this project

is aimed. In Chapter 3, early work with LOGSIM is discussed,

problem areas identified, and re-engineering efforts as

related to the integrated design tool implementation

discussed. Chapter 4 contains results of work performed

towards meeting the requirements of the digital design tool.

Methods are discussed and results presented. Chapter 5

discusses the parallel implementation, method of attack, and

comparative results. Finally, Chapter 6 offers a discussion

of the effort as a whole, lessons learned, and resulting

contributions to the computing arena.

3

1% h. * - * **L .- o

Appendix A contains a complete listing of the source code

for LOGSIM248, the simulator implemented for this project.

Appendix B is comprised of all data flow and functional

decomposition block diagrams used during the design phase of

the project. Statistical information which compares an older

version of the simulator to the new version is contained in

Appendix C. Test case documentation is contained in Appendix

D. A manual for independent use of the new simulator is

included as Appendix E.

41

-- WU WWM~I~W ~ -~ MI RI~* WI ~WU~WUWVWU W V W' .WV W W AbWW VW VW~ ~ , ~ ~ '"-

CHAPTER 2 -INTRODUCTION AND OBJECTIVES

N1

2.1 Introduction

The development process for any end item is most

effective when the item produced performs those functions

described by the applicable requirements while conserving

resources such as time, money, and materials. Design

engineers are successful during the research phase of product

development when functional prototypes perform in accordance ..

with requirements. Productive engineering practices must be

employed during all phases of the development cycle in order

to satisfy these goals.

It would be most effective to build prototypes which are

already known to function properly. This way, only those

resources necessary to build the minimum number of required 5.

prototypes will be expended and delays or cost overruns due

to extended research can be avoided. Trial and error methods

not only waste time, but are expensive and may expend costly

and scarce materials. 5

Computer simulation of functional end items is a method

through which engineers may confirm or expand the operational

capabilities of the end product without first building

expensive prototypes. Simulators can be used for fault

isolation and detection, optimization of design, and %

confirmation of component interaction in complex designs.

or fr f le e C r, 5

After simulation results have shown that the product performs

in accordance with requirements, the prototype may be built

with greater assurance of functional success (4:118).

one research area where simulation is most appropriate

is in digital circuit design. Here, especially for large,

complicated circuits, the design engineer could spend a great

deal of time debugging physical prototypes without the aid of

computer simulation.

Research and academic environments are two areas where

simulations of basic digital designs would aid in the

development process. The effects of simulation tools in the

research environment was noted earlier in this section.

in the academic world, materials are a precious

commodity and simulations which guarantee the proper

functioning of digital circuits prior to building prototypes

would be beneficial. Additionally, laboratory resources

(space, time, etc.) are difficult to schedule on most0

campuses. The time/space required for building and testing

digital circuits can be lessened by using simulation

techniques prior to prototype construction. This would free0

crowded laboratories and allow greater flexibility in

academic scheduling practices.

Effective digital circuit simulation tools should be

composed of three distinct sub-functions. The first is the

user interface. Here the user describes the circuit elements

and interconnections. The input streams, output0

specifications and circuit layout may also be described.

6

Graphical representation of the circuit is a helpful aid for

future conversion to physical prototypes and also allows the

user a pictorial view of the circuit. This view can aid in

circuit debugging and may later be included as a integral

part of a larger circuit.

The second area to be considered in a digital design

simulation tool is assuring that the input circuit is correct 0

and consistent. Such problems as input pin to output pin

connections, ground to electrical high, disconnected power,

and improper fan-out are examples of errors in the design

which must be isolated before proper simulation can take

place. A routine which checks the circuit design for these

problems should be incorporated into the simulation tool to

insure proper functionality. Debugging a design prior to

simulation allows the user to better understand simulation

results. Incorrect or unexpected results may stem from two S

areas. The circuit may be incorrectly designed, or a

connection error may have been made during the construction

of the graphic representation of the circuit. The user can

be alerted to many design errors through the use of such a

connectivity checker, giving a greater assurance of circuit

correctness.

Finally, the heart of the design tool is that routine

(or group of routines) which actually performs the functional

simulation of the circuit. Using the circuit design, input

7

r 1A'

S.,. * ~ ~ ' O '.f .1. '4~. '5.~ ~ S.S ~ ' . ~*~~- -'

~~U W ' '~~W M1PVWWU U~W T WXrUYN~ ~'Ifl * ~ W~IJWVU ~ UW~ ~V ~~' ~ MW

stream, and output specifications, this routine may perform

either logic or timing (or both) simulations by following the

circuit path from inputs to outputs and returning output

values for a designated series of clock cycles. Logic

simulators are used to verify the functioning of a given

circuit while timing simulators are used to confirm time

relationships between various signals within the circuit.

Various constraints must be realized before designing and

implementing a digital design simulation tool. The first and

perhaps foremost consideration should be the target

audience. A large number of Computer Aided Design (CAD)

tools presently exist --each configured for a specific

purpose. Tools used to simulate simple circuits designed in

an academic setting, by nature of their requirements, differ

from those used to simulate Very Large Scale Integration

(VLSI) designs used in complex production environments.

The host computer, i.e., the computer on which the0

simulation tool will be run, is also a major consideration.

The screen size, resolution, and underlying graphics hardware

affect the graphical representation created by the user

interface. The simulation designer must be concerned with

expected circuit size, layout, and complexity. Circuit

designs may be limited in these areas due to screen, memory,

and processing speed constraints. Computer memory could

limit circuit size and the necessity to utilize large,

complicated, data structures, while the processing speed of

the computer could affect the simulator's ability to produce

8

% %-

results in an acceptable time period. Large complicated

designs may be impractical to run on small, slow machines.

The user must have at his disposal a wide range of :

electrical and/or digital components to use in designing

circuits. How these components are represented within the

simulation program is a major consideration for the

programmer. Hardcoded representations of component

descriptions and/or operation may improve the speed of the

simulation but hamper easy addition of new components to the

simulators library. Component libraries stored on disk in

retrievable data base format may slow the simulation but are

easily updated and may be used universally by all modules of

the simulation tool.

Logic simulations of circuits with only a few components

may produce results using sequential algorithms relatively

quickly. However, the combinatorial explosion apparent in

simulations of circuits employing a large number of

integrated circuit (IC) packages or electronic components may

make sequential simulation routines impractical. Parallel

processing computers now being introduced into the computing

community may hold the solution to this problem of the Von

Neuman "bottleneck."

Methods by which simulation routines are "parallelized"

is a research area gaining a great deal of attention.

Because digital circuits are inherently parallel in their

design it would seem apparent that simulators which

capitalize on this parallelism must improve performance and

9 .

ZOU.

produce results more quickly. The question gaining

researcher's attention deals with the most efficient and

practical method to employ in working towards this end.
,4

2.2 Research Objectives

,4

This thesis effort is divided into two separate, but

related, objectives. The first objective is the re- 0

engineering and re-design of an existing digital logic

simulator for inclusion into an integrated design tool which

combines the three sub-functions referred to earlier -- the

user interface, the circuit connectivity checker, and the

circuit simulator. The user interface and connectivity

checker are being implemented through associated thesis

efforts. The user interface is being designed as a graphic

oriented interface employing the EGA graphics standard (2).

The connectivity checker (3) is being designed as an expert

system which utilizes Micro Data Base System's GURU expert

system tool (5).

The host computer for this integrated design tool (and

ultimately for the logic simulator) is an Intel 80286 based

Zenith 248 micro-computer utilizing the MS/DOS operating

system. However, it is desirable to insure the functionality

of both the simulator and the entire design tool on as many

compatible (MS/DOS) computers as possible.

The digital design tool is envisioned to be used primarily

in an academic environment to design, test, and simulate

l"

J.

P

basic digital circuit designs which employ TTL IC packages.

This tool will allow the student to work a level of

abstraction higher than that of most digital design tools.

Other available digital CAD systems usually require design

work at the gate level. In this project the designer will

work with those TTL components commonly found in digital a.

design laboratories. Specifically, the 7400 family of IC

packages is used as an initial library of available circuit S

components. A modest collection of 32 separate packages was

identified for the initial IC library. This insured that
I.

designs of a general nature could be simulated by the tool
.5

while permitting the designers more time to develop system

capabilities and optimize the algorithms involved.

The user interface is being implemented as a graphic

oriented, menu driven system through which the user creates a

pictorial representation of the circuit design using IC

graphic icons and interconnecting lines. The design is

produced interactively with the aid of a mouse and keyboard

input to system produced prompts. After completing the

design, the user may invoke either the connectivity checker

or the logic simulator through one of the interactive menuz

(2).

The connectivity checker consists of an expert system

which inspects subject circuits for possible illegal or

erroneous connections. Connections which are suspect but not

necessarily illegal are annotated and presented to the user

as 'questionable.' Absent connections are labeled as

.5.

'missing.' The results of both this effort and the simulator

are presented to the user on separate screens. This expert

system and the logic simulator have been designed to function .'a.

independently or as an inclusion to the integrated design

tool (3).

The second objective of this thesis deals with

exploration into methods by which this re-designed simulation 0

program may be "parallelized" in order to improve run time

performance. The host computer for this effort is a 32 node ,..

Intel iPSC hypercube parallel processor in which all or
-NJ

groups of the 32 processors may be used during simulation.

.-4

2.3 Summary 0

Simulation of digital circuits is not a new venture.

Many CAD systems exist for the design and simulation of

digital circuits. Academicians and researchers are

continuously exploring methods to improve digital design and

shorten the development cycle. This thesis effort provides a

digital logic simulator as part of an integrated design tool

which will aid design students in first year college design

courses. The design tool will incorporate three functional

systems -- a graphic user interface, connectivity checker,

and logic simulator. These three sub-systems provide the 4.

user with a robust tool which allows the user to produce

correct, functional circuits prior to prototype development.

12

~ ~ ~ ~ P. .,. ~* .. '.. (. /. ~.~& a-'.***a .~-.*.*., .. .

CHAPTER 3 - LOGSIM

3.1 Background

LOGSIM, version 5.5 (6), is a digital design logic

simulation program which has been used in the design of

simple circuits employing a very limited library of

integrated circuit (IC) packages. LOGSIM is unique in that

all simulations are performed on circuit designs represented

at the IC level. This approach differs from most digital

logic simulators which perform simulations of circuits

represented at the gate level. This higher level of

abstraction allows the user to visualize circuit layout,

economize on pin and chip count, and become familiar with

commercially available IC packages.

The original program was created at the University of .'

Kentucky by Samuel A. Smith, under the auspices of Frank M.
S..

Brown, PhD. This program, though functional, was poorly

documented, confusing to use, and difficult to maintain.

"The code is an excellent example of a very clever program

that was obviously difficult to write but it is equally

difficult to read. The original code had only 138 comments

out of approximately 2800 lines of code (2:2)." It was

implemented in Sheffield Pascal and ini-ially hosted on a

PRIME S850 computer (2:2).

13

-~~~ %-*..

4 Y.

In late 1985, CPT Mark C. Rowe from the Air Force

Institute of Technology, re-hosted LOGSIM onto a 16-bit -

microcomputer utilizing the MS/DOS operating system and onto i

the VAX 11/780 utilizing UNIX. He wrote these new versions

.-

in TURBO Pascal (7) for the microcomputer and Berkely Pascal " ,

(8) for the VAX, re-engineering the entire project. The end .:,

result of CPT Rowe's effort is a more thoroughly documented

4" '.'

simulator which is markedly easier to use and maintain. This ..

re-engineered version of LOGSIM (version 5.5), although a

usable tool, still contains many problem features making it

unattractive to inexperienced users.,,i'

First, the user interface is very cumbersome, requiring

the circuit designer to traverse a large number of menus to

completely specify the circuit. For Larger circuits, thisal

process must be interrupted to store sections of the designd

on disk. Circuit connections are specified on a pin-by-pin

basis wherein the user is prompted by IC and pin number and

responds with the IC and pin number of the connectedg

component. The user has no means of visualizing this and
must complete a detailed design by hand prior to simulation.

Secondly, because of the manner in which pin-to-pin "'

connections are referenced within the program, the number of

IC's which may be included in any one circuit design is

limited to only 32 of the more basic packages. Specific m.

chip/pin relationships are represented by a five digit e

integer. This integer identifies the IC and pn number ofin

1-4

[4 -

procss mst e inerrptedto toresecionsof he dsig

on/ dIi Circit concion ar eii ed on a in-b-i - S

the source. The first three positions of this integer

indicate the pin number while position four and five depict

the IC number. This representation allows the use of modulo

arithmetic and integer division to extract IC and pin numbers

for inter-package connections. Because of the integer

overflow problem with integers greater than 32767, only 32

packages may be included in any one circuit design.

A third problem deals with the limited number of IC's

available for inclusion in the design. All IC's used in

design simulation within LOGSIM must be contained in the

present IC library of 32 standard TTL packages. If the S

designer wishes to incorporate an IC into the circuit design

which is not present in this library, LOGSIM cannot be used.

No automated capability presently exists for the user to S

specify parameters for a new IC or to add new IC's to the

existing library. Any additions to the library would have to

hardcoded into the program. The program must then be re-

compiled, forming a new executable version of the simulator.

Another problem lies in the area of proper connectivity.

Upon completion of the design and prior to running the

simulation, the circuit is not checked by the program for

design defects, such as incorrect or incompatible pin

connections, missing inputs/outputs, improper inputs/outputs,

etc.. If problems of this sort do exist, the simulation will

run with the erroneous circuit configuration, possibly
'p.

generating incorrect results. Because the simulation may run

to conclusion, the user has no way of knowing if the results

15 •

Op

are incorrect due to design defects or improper circuit

connections specified within LOGSIM.

If the circuit to be simulated has no external inputs,

(i.e., the only connections to IC inputs pins are power,

ground, and clock) LOGSIM, version 5.5, cannot be used. At

least one input stream must be specified for every simulation

run. Additionally, it is not possible to monitor power,

ground, or clock for output display purposes. Only the

values at the IC pins and user supplied input values may be

monitored. If power, ground, or clock are connected to an

input pin and this pin is monitored, only zeros (logical low)

will be displayed for that pin. The actual values of these

pins are assumed by the attribute of the pin descriptor field

in the circuit node data structure. These descriptors are

bound during configuration of the circuit and remain static

for the duration of the simulation. This problem limits the

user to circuits which have external inputs and prevents the

user from displaying all results which may be required for

proper analysis of the circuit.

The current version of LOGSIM is a sequential program,

designed and written in TURBO Pascal and implemented on

MS/DOS (Intel 8086/8088-based) compatible micro-computers.

Digital circuits, by nature of their construction, may

contain many sections which perform operations concurrently.

Large complicated designs, if forced to execute sequentially,

may require long periods of time to perform the desired

simulation and produce usable results. LOGSIM, version 5.5,

16

'F 'der.

operates relatively quickly for small, simple designs which

utilize only a few IC's. However, as the size of the input

circuit grows, simulation time appears to increase

exponentially.

Finally, LOGSIM, version 5.5, does not run on all MS/DOS

compatible micro-computers. Because of memory constaints

inherent in the TURBO Pascal (version 3.0) compiler, overaly

files were required to allow the execution of the entire

simulator. The methods used to compile the implementation of

these overlay files cause segmentation errors in Intel 80286-
5-

based computers. It is an expressed objective of this

project to re-host LOGSIM onto a Zenith 248 which, due to

these segmentation problem, does not support the present

version of LOGSIM. Re-engineering the simulator with this

and other design considerations will vastly enhance

capabilities and performance.

3.2 LOGSIM248 Implementation

3.2.1 Overview

LOGSIM248 is a digital design logic simulation program,

developed for this thesis effort, which is a new

implementation based on LOGSIM, version 5.5. The original

source code was written in the C programming language and

developed using the Borland International TURBO C integrated

development environment (9). TURBO C conforms to the

17

%%

proposed ANSI standard for C compilers and also contains

additional function libraries which enhance it's

capabilities. LOGSIM248, however, does not incorporate any

TURBO C specific library functions. Portability of LOGSIM248

source code is, therefore, not compromised.

This simulation program may be run independently or as an

integral part of the larger digital design tool, IDIET

(Interactive DIgital Engineering Tool). If run

independently, all files normally created by IDIET's graphic

user interface must be created by the user as ASCII files.

Because LOGSIM248 performs no checking of input file

correctness, all files created as input for the simulator

must be formatted in accordance with predefined interface

specifications (see Appendix E). When run as an integral

part of IDIET, LOGSIM248 is invoked through the graphic user

interface. All input files are created by the user interface

prior to simulation run and are supplied to LOGSIM248

properly formatted.

3.2.2 Data Structures

LOGSIM248 operates on three main data structures; the

circuit configuration list, the input data list, and the

output display list. Each of these is implemented as a

circular linked list with a dummy header node. This

configuration is useful when complete list traversals are

180

'' e
' ' % -

% ± , ' % " % " .%.. " " %, " " -.'' ' '"'". "'-'," '', ' '% %" _ % " -.-.. .' " .

required as the index is left pointing to the head of the

list after completion of the traversal. .1

The circuit configuration list consists of linked nodes,

each representing one IC package of the input circuit

design. These nodes are modeled after similar data

structures in LOGSIM, version 5.5, and contain fields for IC

type, IC number, pin types, initial and subsequent pin TTL

values, and pin-to-pin connection descriptors. -

The input data list consists of nodes which correspond to
WI%v

input source descriptions. These nodes contain two fields --

the input number and the input value of the current clocked

input from that source.

The output display list consists of nodes corresponding

to user requested output monitor points. Each node is

represented by a string of two parts. The first 32 elements

of the string consist of a description of the monitor point.

The remainder of the string consists of output values derived .

.%'

from the simulation which correspond to the clocked input

values.

Four associated data files are required for proper

functioning of the simulation program. These files

communicate the circuit configuration, input data stream,

input port labels, and output monitor points to the

requesting LOGSIM248 modules (see Table 1).

(1) TEMP.CKT contains all connections required to O

complete the circuit design.

19 .

%

(2) TEMP.IN contains input numbers and their
.. .-

corresponding input streams.

(3) TEMP.IND contains the user supplied, two

character, input port labels used to identify corresponding

input streams.

(4) TEMP.DIS contains a listing of all user requested

monitor points to be used in constructing the output file.

LOGSIM248 creates two output data files. These files

contain simulation results in two separate formats:

(11) TEMP.OUT contains a description of the requested

monitor points in a usable format (different from that of

TEMP.DIS) followed by the corresponding output stream of ones S

and zeros.

(2) TEMP.WAV is divided into two parts. The first is

a listing of the input ports (again in a usable format, with S

user assigned port labels) followed by the input data

stream. The second part consists of the output monitor

points and associated data streams as described for TEMP.OUT _

above. The data streams for this file, however, are made up
5-,..

of graphic characters which give the waveform equivalent of ..

the binary data. •

20

.-

S..
V S V*S ~ .'.. *-'.-*~-.*- '*~ -. * '. 5 .5

I Table 1. Data File FormatsI
I (see Table 2. for format codes)I

Iteup.ckt_ -- circuit input fileI
I - format (dnnnttttttpp coseent:dnnnttttttpp comment)
I example:
I P000 power +5Ydc :T001 740014 power Vcc

Itesp.dis -- output monitor fileI
I- format: [dnnnttttttpp comment:]I
I- examples-

I TO0l 740003 output pgin #3 I
I 1003 input #3 I

Itelpanf -- input data stream fileI
I- format: Ennn:iiiiiiiiii ...J I
I- example:I

I 001:10101010101010110101010101010I

Itrop.out -- binary output file I-
I -format: (IC #nnn (SNnnnnn) PIN Inn :ODo. .. I
I(Input nnn :ODo...] I
I(Clock :ooo ...] I

[Power :ooo ...] I
[G(round :ODD...] I

I - examples:I
I IC # I (SN 7400) PIN 613 :011011100111100001 10011
, Iput 003 :100Il000011!00110001101
C Clck :01010!01010101010101010 I
Power :ll~llllllll

I Ground :00000000000000000000000 I

I eU.Niv -- wavef ore output fileI
I- input stream descriptionI

Iformat: (Input *nnn Port cc -iii ...J I
I- output stream descriptionI 4

Iformat: CIC #nnn (S nnnnn) PIN Inn :NWw ... I W
I(Input nnn :WW...) I

[Clock :NW.. I
(Power - wit. .1 I

- xml:(Ground :NWw..A. I

I Input file contents:
I nput #001 Port Al I m....~.

--- I
I Output data streams:I
I IC I I (SN 7400) PIN 013 1

IC #t 13 (SN74101) PIN 613 -EMLME-L - O I
Input 003 a.M - N-L-L I

I Clock :-4LL4aMUAap1VMa.L
I PowerI(Ground ------------------- I

I Table 2. File Format Codes

I codes: d x connector descriptor (I character)I
I~ T:TTL ICI
I I : input portI
I P : power (.5Vdc)I
I~ 6: ground (O~dc)I
I~ C:clockI

In =IC or input number (3 digits)I.4
t 2IC type (6 digits)I 4

I ~optional for input, pow, ground, clock I4
I p pin number (2 digits)I

optional for input, power, ground, clock
comment zoptional 20 character comment field II
i nu aue, logical value I or 0I
a output value, binary logical value I or 0 I
output value, waveform logical value I z

logical value 0 -

I w~iP~tvl 21

t.

3.2.3 Operation

LOGSIM248 first opens the circuit configuration file

(TEMP.CKT) and reads the circuit connection list one entry at

a time. Each entry represents a two ended connection. This

may be pin-to-pin, input-to-pin, power-to-pin, etc.. Circuit

configuration nodes are initialized and added to the circuit

configuration list for each new IC number encountered.

Initialization of these nodes includes dynamic allocation of

storage for the node, linking of the node to the front of the

circuit configuration list, and assigning initial values to

all fields of the node data structure. After this

i%

initialization has been accomplished, connections are

annotated by assigning IC/pin numbers, power or ground

indicators, or input port numbers to the appropriate field of

',

the node. If new IC numbers are encountered for the next -

connection, only the connection field of the already existent

IC nodes are updated.pe

The next step is to initialize the input data list by

creating a linked list header, opening the input data file

(TEMP.IN), and dynamically allocating storage for each input

node indicated by a input number and associated data stream

from the input data file. As each input node is created, the

input number corresponding to the next entry of the input

data file is assigned to the input number field of the node.

22

As the simulation progresses through the associated data

streams the data field of the input node is updated for each

clock pulse until all data is exhausted.

Two coded functions are required for each IC type (i.e.,

SN7400, SN7402, etc.). The first of these functions is used

when initializing circuit configuration nodes. This function S

contains initial values for certain fields of the data J.

structure. These include IC type, pin types, and some

initial pin values and connections. All fields not

initialized by this function are assumed general in nature

and are initialized by a general initialization function.

The second function required for each IC type deals with

the operation of the IC. This function is used during the

simulation to equate output pin values to existing input

values using functional descriptions obtained from TTL data

manuals. During each clock pulse of the simulation and

immediately following the assignment of all new input values,

the operation function related to each IC of the

configuration circuit list is called in turn and the new

values of the output pins assigned to the corresponding

fields of the appropriate circuit nodes. This is repeated

until two consecutive operations of the circuit produce the

same output values. At this point the clock can be advanced

and the next data set evaluated. Failure to produce two

consecutive constant output pin value sets after a specified

23

number of iterations causes termination of the simulation.

The user is notified that the circuit is in an oscillation

condition and is presented with the clock pulse containing

the errant data set.

The final function of the simulator is to produce the two

output files discussed in section 3.2.2. After each set of

input values (for a particular clock pulse) is simulated, and

prior to moving on to the next set, the circuit configuration

list is searched for those pins identified in TEMP.DIS.

These are the pins which the user identified as monitor

points for inclusion in the output files. After locating

these points the corresponding values are appended to the

appropriate output stream in the output display list. After

the last set of input values has been simulated, the output

display list is used to create TEMP.OUT and TEMP.WAV.

3.3 Summary

.

Although a usable tool, LOGSIM, version 5.5, was in need

of a major overhaul. Problems in software design,

portability, and performance limited its' use and impaired

its' maintainability. LOGSIM248, as will be seen in the next

chapters, has overcome these problems, and presents a more

efficient and usable tool. Re-designed data structures and a

new data interface have allowed the integration of LOGSIM248

into a total digital design tool while improving

maintainability.

24

-_* 7",!.:%

,..,

CHAPTER 4 - SOFTWARE DEVELOPMENT

4.1 Re-engineering Overview

The re-engineering effort which resulted in the design

and implementation of LOGSIM248 proceeded in five distinct

phases;

(1) analysis of LOGSIM version 5.5

(2) design, LOGSIM248

(3) coding, LOGSIM248

(4) integration of LOGSIM248 into IDIET

(5) testing and debugging, LOGSIM248 and IDIET

4.2 Analysis - LOGSIM, version 5.5

The analysis of LOGSIM, version 5.5 was divided into two
S

separate parts. The first part consisted of a "hands-on"

approach which was necessary to become familiar with user

interaction and program performance. Several small digital

circuits were used to accomplish this objective. These

circuits consisted of one or two IC's which performed very

basic functions and are of no consequence here.

25

.

The second part of the analysis involved an in-depth

study of the simulation source code and accompanying%

documents. This proved to be a time consuming effort due to

the length of the source code and those software engineering

shortcomings discussed in Chapter 3.

During the "hands-on" familiarization with LOGSIM,

version 5.5, most problems encountered pertained to "ease of

use." These problems included mastering the menu driven userY

interface, visualizing the overall circuit layout, dealing

with input inadequacies, and interpreting output data. A

short discussion of each of these problems follows. a

In order to build the circuit, specify input data and

output format, and run the simulation, the user is required

to navigate through a myriad of menus which offer options

pertaining to these operations. After spending some time

working with the program it becomes apparent that these menus

are related in a tree-like manner. Movement through the
a'

menus consists of no more than moving up and down this tree.

Although it is easy to get lost, upward movement (i.e., -

repeatedly exiting the present menu) will eventually return

the user to the root where circuit manipulation and

simulation may be started again. After running a number of

simulations, the user should be able to learn this menu

mechanism well enough to accomplish his objective. However,

the primary audience envisioned for LO0GSIM248 is the academic

(collegiate) arena. Here students will be expected to

26

%0

4.

Lb

quickly master the various tools of the laboratory and may

not have the necessary time to become thoroughly familiar

with the complexities of this intricate menu system.

Another difficulty noted during the "hands-on" phase was

the inability to visualize the circuit during construction.

The user is first prompted for an IC package type and

identification number, after which, more prompts for all

connections to this package are presented, pin by pin. After

entering data for a particular chip, the user may start over

at the first pin of the present chip or request chip data

previously entered. Here he may either check or correct

circuit data. This accomplishes the objective of configuring

the circuit, but makes it difficult to visualize the circuit

as it is created. If the user were able to see a graphic

image of the circuit design as it was being created,

comparisons could be made directly to design support material

to insure correct entry of cirruit data and to visualize IC

layout and pin orientation.

Simulation output also has a presentation problem. All

requested output data are presented in columnar fashion.

Each clocked output data set appears on consecutive rows in

the display, resembling a truth table. These data sets may

include input streams, output streams, and/or any other pin

values, all of which may be viewed at the same time for a

particular clock pulse.

For some circuit designs, the individual input/output

data streams are better viewed with the data presented from

27

-7S

left to right. This is especially true when performing

various waveform analyses. Some sort of waveform display

option would give the user the ability to see input/output

relationships in a different, and, perhaps, more usable

format.

It was during this phase of the analysis that circuit

input limitations were discovered. After designing a three

stage binary ripple counter which only requires power,

ground, and clock values as input to the circuit, LOGSIM,

version 5.5, would not allow the simulation to proceed

because no external input streams had been supplied.

Additionally, the program provided no apparent means of

presenting power, ground, or clock values as part of the

output display. This problem, discussed in Chapter 3,

prevents the user from comparing output values with the

system supplied clock, and requires some sort of external

input even for those circuits which do not require it.

This "hands-on" phase of the LOGSIM, version 5.5

analysis showed the simulator to be a useful, but sometimes

confusing tool which presents simulation output in a manner

that could prove difficult to analyze by the less experienced

designer (i.e., first year design students).

The second part of the LOGSIM, version 5.5 analysis

consisted of the inspection and analysis of the source code

produced by Captain Rowe (6). Although some documentation

did exist, a great deal of time was required to organize,

28

I I-- . ..- .-.-. .-.-..

analyze and understand the various modules which comprised

the simulator program.

The following are the wajor software engineering

deficiencies discovered during this phase:

(1) A 15 page report and 12 pages of block diagrams

are all the design documentation that accompanies

over 4,500 lines of code. Although each procedure

and function contains a header block listing a

small amount of information about the function of

that procedure, little to no comments can be

found in the code.

(2) Some procedures contain as many as 50 lines.

(3) Block indentation is inconsistent creating

confusion in source code structure.

(4) Global coupling is prolific throughout the

program. This type of coupling requires a large

amount of globally declared variables and wasted

memory space.

(5) Because TURBO Pascal, version 3.0, allows

executable files to occupy no more than 64 Kbytes

of storage (due to 16-bit addressing

limitations), and because of the size of the

simulation program, overlay files were needed to

allow the entire program to be compiled and run

within the 64 Kbyte limit.

29

4 .'- .% %

Because of these deficiencies, maintenance,

modifications, and/or upgrades to this source code would

certainly be difficult. The need for re-engineering was

apparent, in spite of the requirement to integrate a re-

engineered simulator into IDIET. Toward this end, all user

interface modules needed to be stripped from the existing

code, data structures rebuilt to accommodate the IDIET

interface, all modules translated into the C programming

language, and a great deal of documentation supplied.

The C programming language was chosen for a number of

reasons. The user interface to IDIET is also written in C in

order to use the underlying graphics package. For uniformity

and future maintenance/upgrade reasons, C was also chosen for

LOGSIM248. As stated earlier, the Pascal version of LOGSIM

was not entirely compatible, i.e., this version was not

supported by Intel 80286 micro-computers (Zenith 248, IBM AT, -

etc.). By using the C programming language (in particular

TURBO C) compatibility among more computers was expected. In

addition, the Intel iPSC Hypercube does not support any

version of Pascal, but does support the C programming ..

language. In order to complete the concurrent version of

LOGSIM on this computer system, re-hosting the simulator in C

was necessary.

30
.

,.

4.3 Design - LOGSIM248 6

LOGSIM248 easily decomposes into four distinct

functional areas:

(1) circuit configuration

(2) input data structure configuration

(3) circuit simulation

(4) output file construction.

LOGSIM248 has been designed with these four functional

areas as the initial decomposition. Four input files (see

section 3.2.2) are created by the user interface module of

IDIET and are used to communicate data between the user

interface and the simulator. These four files are the only

input or control structures required by LOGSIM248. Output

consists solely of two output data files. These two files

are supplied to the user interface for screen presentation.

Data flow diagrams and functional decomposition block

diagrams illustrating the design methodology for LOGSIM248 .

are contained in Appendix B. The data flow diagrams (SADT

diagrams) depict information flow and the transformations

that are applied as data moves from input to output (10:99).

These diagrams decompose the simulator into the various

activities which occur during program execution. The

functional decomposition block diagrams show the actual

decomposition used while writing the source code. Data flow

31

kz M-; X

diagrams help to visualize those transformations that input

data undergoes during program execution. These diagrams are

immediately translatable into the functional decomposition.

As discussed in Chapter 3, three data structures are the

primary objects used by the simulator. Each of these is a

circularly linked list configured with a dummy header node.

These data structures are used to store and maintain the

circuit configuration data, input data, and output data. The

linked lists used in LOGSIM248 differ from the corresponding

data structures used in LOGSIM, version 5.5, in three ways:

(1) All three list are circular. Resetting an

index to the beginning of the list is not required

for iterative processes that repeatedly traverse

the entire list. The index is properly positioned

at the beginning of the linked list after

completion of each iteration. LOGSIM, version 5.5,

uses nil terminated lists that required

re-initialization after each traversal. This may

not be time effective -- especially for those

procedures that must traverse the linked lists

repeatedly.

(2) LOGSIM, version 5.5, is designed to build an

input linked list early in the simulation which

contains the entire input stream for all inputs

specified by the user. This requires the use of a

32

[€ '.' '.- .- . .. ". ". . . - ... ,-. .-. , .- - - . . .+-. .- , - -. .

K pr -

great deal of memory (especially for those

simulations which required large amounts of input

data) due to the manner in which TURBO Pascal V

allocates dynamic memory. If the input data

streams are large, and the circuit configuration

linked list (already created) is also large,

internal memory could easily be exhausted before

all data structures are completed. If memory does

become exhausted, LOGSIM, version 5.5, contains a

routine which stores incomplete data structures on

disk. When the simulation is run, this incomplete

information must be swapped in and out of memory,

as needed. This system does work, however, it is

obvious that a time penalty for this file I/O will

be incurred.

LOGSIM248 uses a different strategy for input

data. As the simulation progresses only the data- -
0

set required for the clock pulse currently being

simulated is stored in memory. This input data

linked list is updated with new data for each

clock pulse of the simulation. Here, less memory

is used and the traversal of the present input

data set linked list requires less time.

(3) The output data list in LOGSIM248 is also a

linked list which contains the output monitoring

points (as specified for TEMP.DIS in Table 1)

33

Z

IWUrVW VU W %r.FW V'W~ Ml PJWP NO II*W FV' WJ1 Pin IrW NnW W1W XF WU . WF ~~II' VXW~ VW W r r ~W J VW VW Vt

followed by the output data stream. This data

stream is built one element at a time as the

simulation progresses through each clock pulse of

the input data list. After the simulation is

complete, the monitor points are reformatted (as

shown for TEMP.OUT and TEMP.WAV in Table 1) and

the reformatted output points are written to both I
TEMP.WAV and TEMP.OUT followed by the output data

stream (in waveform and binary format,

respectively).

LOGSIM, version 5.5, writes each output data

set to the requested I/O device (disk, screen,

printer) as it is created. A large time penalty

is incurred, especially when writing output data

to a disk, due to disk spin-up and seek time.

All coupling between functional modules has been

improved. Most modules are simply data coupled. The problem

of global (or common) coupling, discussed earlier has been

almost completely eradicated. Only three global variables

are used, each of which is a pointer to the three data

structures explained above. These global variables are

available for manipulation by any module in the program.

Another problem of LOGSIM, version 5.5, noted above, is

the length of the procedures. Many of these procedures
0

exhibit cohesion problems. Too many functions are

34

7M U'

accomplished within one procedure making it difficult to

understand the purpose of each module. All of the functions

defined by the decomposition for LOGSIM248 are designed as

single-function modules. This functional form of cohesion p.'

enhances understanding of each module and improves

maintainability.

These improvements in both coupling and cohesion are

evidenced in the functional decomposition illustrated in

Appendix B. Excepting the three global variables which are

used throughout the program to point to the three linked

lists, all data required for each module is passed when that

module is called. The arrows associated with links between

blocks illustrate both control (solid head arrows) and

informational data which is passed between functional

modules. This is indicative of good data coupling. -As can

be seen, all modules present this form of coupling, or (in

the case of no passed data) no coupling at all. The

improvements in functional cohesion (i.e., each module

performs one function) is indicated by the module names, but

is better seen in the source code itself (Appendix A).

4.4 Coding -LOGSIM248

All source code for LOGS[M248 is contained in six

separate files (see Appendix A). These files can be directly

correlated to the decomposition referred to in the previous

section and are organized in a functionally cohesive manner.

35

- logsim.h: This is a header file which contains all

constant declarations and data structure

type declarations used in the program

modules.

- simlib.c: This file contains low level functions used

throughout the program to perform parsing,

data type conversions, random number

generation, etc..

- exec.c: This file contains the function main() and

all debugging functions. This file also

contains the error handler used throughout

the program.

- makeckt.c: This file contains all functions associated

with the construction of the circuit

configuration linked list. Here the

TEMP.CKT file is read, all circuit

connections parsed from this file, and all

circuit information plus initial pin values

stored in the circuit configuration list.

- simio.c: This file contains those functions

associated with the initialization and

maintenance of all input and output data

structures. Additionally, those functions

used to construct the output files,

TEMP.OUT and TEMP.WAV, are contained in

this file.

36

- srun.c: This file contains the heart of the

simulator program. Here pin values of

those IC packages contained in the circuit

configuration linked list are updated for

each clocked input data set, after which

each IC is "operated" to produce new output

values at the output pins. Oscillating

circuit conditions are also detected here.

- configic.c: This file contains all chip configuration

functions and an executive function which

chooses the appropriate configuration

function. These functions are called by

the makeckt.c module upon initialization of

a new node in the circuit configuration

linked list. These nodes represent a

single IC package in the present circuit

design. After adding the node to the list,

each field of the structure is bound to

initial values for the corresponding IC by
Z

functions in this file.
0

- opic.c: This file contains all those functions

required to operate the IC packages used in

the circuit configuration list. These

functions perform the appropriate boolean,

arithmetic, and other assorted TTL

operations for those IC's presently

contained in the simulator IC library.

37

LZ0

All modules included in the above source code files

(with the exception of configic.c and opic.c) contain an

average of nine functional statements apiece. Because these

modules are functionally cohesive they are designed and coded

to perform one function. The modules used for IC

configuration and operation also perform a single function.

However, due to the requirement for functional completeness,

some of these are substantially longer.

Optimization of source code was attempted, wherever

possible. Register variables were used for counters and loop

indices to insure rapid incrementing. Increment and

decrement operators (++ and --), and pointer arithmetic were

used wherever possible to speed up these operations. To

insure greater maintainability, a great deal of

modularization was achieved. This was expected to detract

from the overall speed of operation due to the stacking

operations of local variables at each function call.

Statistical analysis of the comparative speed of LOGSIM248 to

LOGSIM, version 5.5, however, does not bear this out (see

section 6.1).

4.5 IDIET Integration

After successful compilation and limited testing of

LOGSIM248, integration of the simulator into the digital

design tool, IDIET (Integrated Digital Engineering Tool)

38

~uw w wuv ww ~rwuu- i~ gvi~ruguu-uguguwq -w-vvw-u~V w r rJ -.v Ma.. - ~ r~ "W rV WV W-. -x .', I-. w

* became the next goal. Here, not only were design and code

considerations important, but insuring a productive working

environment for all project designers became the dominant

* theme. Prior to the start of the individual component

projects, the three project designers (graphic user

interface, connectivity checker expert system, and simulator

* program designers) agreed on a set of specifications for all

interface requirements. Due to unforeseen difficulties

during each individual's design and coding phases, these

specifications sustained a small amount of modification.

Through good communication of modified requirements, all

interface changes were effected painlessly. The resulting

* specifications are contained in the file formats for those

files listed in Table 1.

At this point it was decided that the production of a

waveform output (TEMP.WAV) would be more easily accomplished

by the simulation program and the required additions to

LOGSIM248 were incorporated into the source code file

containing all 1/0 modules (simio.c). Additionally, due to

memory constraint problems with the host computer, it was not

possible for all three programs to remain resident at the

same time. Therefore, a small executive program was created

to run the graphic interface and simulation components

independently of the expert system.

39

1AI

4.6 Testing and Debugging - LOGSIM248

As with any software engineering project, finding test

cases which test the proper conditions and provide results

which can be used to evaluate program performance was a

difficult task. The test cases used were grouped into three

separate classes.

The first class consisted of circuit designs used during

the development phase of the project. These designs needed

to be simple enough so that time was not wasted implementing

them but large enough to insure some measure of proper

performance.

The second class of test cases consisted of those

circuit designs implemented during the testing phase of the

integrated design tool, IDIET. These cases consisted of

circuit designs which taxed the power of the simulator and

provided measurable performance indicators used for debugging

and performance enhancement.

The third class of test cases consists of circuit

designs created by those students of the Air Force Institute

of Technology chosen to field-test the digital design tool as

a whole. These circuit designs, along with the inexperience

of the users, were expected to provide a myriad of insights

into software design flaws for all aspect of the design tool.

Because of the combinatoric explosion involved with

testing circuits which use all IC's contained in the IC

library, more emphasis was placed on the execution of those

403

,Sj

4-w w

MVLWRNWWWWVWT PR :; .

modules involved in circuit configuration, input/output

specification, and simulation execution. All functional

modules (excepting those modules contained in configic.c and

opic.c) were completely tested using dummy stubs at each

stage of the coding phase.
4

Because of limitations of the graphic user interface,

circuits comprised of more than 10-12 IC packages are

difficult to create with IDIET. The size of the screen

prohibits larger circuits with many connections. As the
.

circuit grows, the screen takes on the appearance of a "rat's

nest" and becomes impossible to sort out connections for

debugging or modification. Subsequently, the four test cases

used during the IDIET testing phase contain 3-6 IC packages

with 20-75 connections between packages. This proved to be a

manageable circuit size through which productive program

debugging could be accomplished.

The four test cases used are (1) a binary coded decimal

encoder, (2) a two-bit full adder, (3) a three stage binary

ripple counter, and (4) a 3 by 8 decoder. Schematics and

graphic screen images of these circuits are contained in

Appendix D.

The Digital Circuit Design class of the Air Force

Institute of Technology was chosen to perform user "hands-on"

testing of IDIET. Their first assignment included the design

of a Binary Coded Decimal to Excess 13 encoder. All students

%%

41 41

,% • . %% % - .-z -. .. -.. . . , % % % .=. % 0

easily mastered the design tool, producing results which

either confirmed their designs or indicated circuit flaws.

No appreciable negative comments were made with regards to

LOGSIM248. More user testing is forthcoming and will be used

to upgrade and/or maintain the system.

Z%

420

CHAPTER 5 - CONCURRENT LOGSIM

5.1 Overview

r

Although applying concurrent processing techniques to a

digital circuit simulator like LOGSIM248 would appear to be S

advantageous in producing improved performance, other factors

peculiar to this implementation need to be considered. The

most practical way to produce LOGSIM248 test cases which can

be verified as correct is to use the integrated design tool,

IDIET. After configuring and simulating a digital circuit,

all relevant files (containing circuit configuration and

input/output data) used during the simulation may be saved

for further study. These files contain all data required to

recreate the circuit, provide input and output .

specifications, and simulate circuit performance (see Chapter

3). It would be impractical to compare the performance of

the LOGSIM248, divorced from IDIET, to a "parallelized"

version designed on a concurrent processor due to those

difficulties involved with independent use of LOGSIM248 (see

Chapter 6).

IDIET, however, presents some limitations which may

devalue the implementation of a concurrent LOGSIM248. The

most obvious of these limitations is the inability to produce

circuits (using IDIET) large enough to tax the speed of the

43"0

A .5

OAN

host computer -- the Zenith 248 (see section 6.1). Test

cases designed with IDIET, which were constructed from only

six IC packages, began to clutter the graphic design area of

the screen. With careful planning, and judicious use of the

graphic design area, circuits consisting of nine or ten

separate IC packages represent the upper limit of workable

circuit size using IDIET. However, based on the statistics

produced for test cases used during program implementation

(see section 6.1), it is not envisioned that circuits of this

size would produce time delays of any consequence. It is

obvious from those statistics, however, that simulation speed

is inversely proportional to circuit design size. Thus far,

circuits designed using IDIET have not slowed the system.

So, how slow is too slow?

The primary purpose of concurrent processing is to reduce

the time complexity limitations of sequential computers for

large, CPU intensive problems by employing multiple CPU's,

all working concurrently on decomposed areas of a compound

problem. As stated in Chapter 2, digital circuits are, by

their very nature, parallel constructs that would appear to

conveniently lend themselves to concurrent applications.

However, the trade-off between time savings and computing

cost must be considered, especially if no inconvenience is

perceived by a sequential implementation. At this writing,

IDIET stands as an integrated system whose capabilities are

limited in such a way as to present no such time

inconvenience.

44

Looking at the problem from another perspective, a

particular simulator program design and implementation may

limit concurrent applications. Digital circuits are

inherently parallel in design, however, the algorithm and

data structures used to simulate these circuits may not be.

LOGSIM248, and it's predecessors, were designed with this

structural limitation, at least insofar as re-hosting the

simulator on the Intel iPSC Hypercube is concerned. As

detailed in Chapter 4, three linked list data structures are

used to completely describe the circuit configuration, input

data sets, and output specifications. Communication between

the cube manager and the individual cube nodes of the iPSC,

as well as, communication between the cube nodes themselves,

involves passing all data structures which are to be

processed in the nodes. For a single node of the cube to

perform operations on all, or even a significant section, of

the subject circuit, a great deal of time consuming

disassembly and assembly of the basic data structures would

be required.

There is no practical way of passing an entire linked

list to a cube node for processing. This must be

accomplished by disassembling the linked list into separate

entities which are equivalent to the individual nodes of the

linked list. Then these separate entities (C language

structures, in the case of LOGSIM248) must be individually

passed to one of the cube processors, requiring a separate 0

inter-nodal message for each. Once at the node, these

45 0

individual structures must be re-assembled as a replication

of the original linked list prior to processing. The time I

involved in disassembly and re-assembly alone would render

concurrent processing ineffective. The added time required

for multiple message passing would devastate any advantages

gained by parallel operations.

5.2 Parallel Approach

Because future improvements to IDIET's user interface

could alleviate circuit size limitations, concurrent

programming techniques for LOGSIM248 should be explored.

Although the sequential implementation of the simulator

presents problems in decomposition of data structures for

concurrent applications, there are sections of the program

which might be exploited. During the simulation, the circuit

configuration linked list is traversed and each node

representing an IC within the circuit is visited. This is

when the functions which operate the individual IC's are

called and output pin values for the visited IC changed to

reflect the functional relationship to all inputs. Each IC

is operated independently of the others. However, because

the linked list is traversed in a sequential fashion, each iC

is also operated sequentially. Here is a good example of a

situation in which a parallel approach might save some time.

The parallel approach used for this part of the project0

will involve the operation functions associated with each IC

460

ft~~~ ~~~~~~~~~~ Z . * - .2 -. tZS.A ~ .. - . I'

type. During the simulation module (see section 4.4, srun.c)

function calls are made to function operate() which in turn,

calls the module which contains all IC operation functions.

The function calls to operate() are made for each input data

set, updated after each clock pulse. Function operate() dis-

assembles the configuration linked list and independently

passes each IC of the circuit to the operation module.

Function operate() is blocked until control is returned from

the operation function called for each IC. It is possible

here to pass each independent IC data structure to a

different processor wherein they will be operated

concurrently. After completion of each individual IC

operation, the process which accomplished the operation can

pass results (the modified IC data structure) back to the

main process. Here, the function operate() will re-assemble

the circuit configuration list with the IC structures

containing new output pin values. Although this is a small

portion of the entire program, success in this initial design

may be used as a model for implementing similar concurrent

structures throughout the simulator.

5.3 Implementation

The implementation for this concurrent approach consists

of two main concerns. The first involves the construction of

a program which contains a new executive module and the IC

operation modules extracted from LOGSIM248 (opic.c). This

47

47

program, when compiled and properly loaded, resides on all

nodes of the hypercube allowing the simulator to send IC

structures to as many as 32 different processors. The

executive module of these node processes receives a message

containing and IC structure for processing from the manager

process (residing on the cube manager). After this IC is

operated upon by the appropriate operation function, the

executive module returns the updated IC structure to the

manager process in a new message.

The program residing in the cube manager (the processor

used to manage all node processors) is essentially the same

as that used in the sequential version of LQGSIM248. The

file that contains all IC operation modules (opic.c) however,

is not needed here as all those operation functions are used

only by the individual node processes. The call to the IC

operation functions (which resides in the function operate()

in the sequential version of LOGSIM248) has been replaced by

a call to the function sendmsg() which sends one of the IC

structures from the current circuit configuration list to a

node process. The node process is blocked until it receives0

one of these messages from the manager.

The first approach taken disassembled the configuration

linked list in the cube manager, sent the individual IC

structure to the appropriate cube node for processing, and

awaited the receipt of the updated IC structure back in the

cube manager. As each IC structure was returned to the cube 0

manager a portion of memory was dynamically allocated and a

48S

the configuration linked list recreated. This approach

failed for large circuits or circuits with a large amount of

input data. These circuits required a great deal of dynamic

memory due to the repetitive recreation of the configuration

linked list or recreation of large linked lists. As this

dynamic memory allocation was repeated memory would become

exhausted and the program would abort.

A more successful approach was implemented in the cube

manager by sending an image of each IC data structure to a

node process. When the updated structure returned, the

updated fields of this structure were copied into the

original structure still contained in the configuration

linked list. This kept memory from becoming exhausted but

suffered a time penalty for the copy operation. Performance

of this concurrent implementation is discussed in Chapter 6.

5.4 Summary 0

Because of the limitations that IDIET places on the
4.

circuit size of design circuits created by the design tool,

combined with the difficulties in converting LOGSIM248 to a -

concurrent implementation, it would not appear as though I..

anything is to be gained by this effort. However, due to the

expectation of improvements to the integrated design tool,

IDIET, some exploration into a concurrent implementation

should be attempted. A "first-cut" design has been

implemented wherein the individual [C's of the design circuit

.4%
49 0,

are removed from the circuit configuration list and operated

concurrently. A performance evaluation and comparison to the

sequential version is presented in Chapter 6.

.,%

.o-

-,

*

5O0
o..

CHAPTER 6 - DISCUSSION

6.1 Comparing Performance - LOGSIM V5.5 vs. LOGSIM248

Appendix C contains statistical information comparing the

run time performance of LOGSIM, version 5.5, to that of the

new LOGSIM248. Because of the inability of LOGSIM, version

5.5, to run on the Zenith 248 micro-computer, all times used

for these comparisons were generated by running both

simulation programs on a Intel 8088-based, Leading Edge Model

D micro-computer operating at 4.77 MHZ. Due to the improved

portability of LOGSIM248, run times generated on the Zenith

248 are also presented, providing additional data which helps

analyze performance improvements.

All run time samples reflect only the time elapsed for

the circuit simulation and file output modules of each

simulator. Because of the major differences in processing S

implementation for circuit configuration and input/output

specification, any run times which incorporated these parts

of the simulators would not reflect equivalent performance

parameters.

Run time samples for each of the test cases described in

section 4.6 are contained in Appendix C. These samples

represent multiple simulations of each test case using the

51 ~ ~*.

same input data for each run. As can be seen, LOGSIM248

sample times are consistently similar, as opposed to those of

LOGSIM, version 5.5. This inconsistency among the simulation

run times of LOGSIM, version 5.5, is attributed to the manner

in which circuit output is written to the output file. This

simulator writes to the output file as each output data set

(i.e., one bit for each output monitor point) is computed.

Seek times combined with disk spin-up contribute to the

variance in the samples recorded in Appendix C.

LOGSIM248 uses a different method for circuit output. As

the output data sets are computed, they are stored in the

output display list described in section 3.2.2. All

resultant output data streams are then formatted and written

to the output files upon completion of the simulation.

The first task of developing reliable statistics for this

comparison was to determine the proper number of simulation

run time samples which insured that the sample mean did not

deviate, within a reasonable tolerance, from the true mean.

A tolerance of 0.1 seconds was chosen in an effort to keep

the required number of samples from being too great. A

sample size large enough to guarantee, at a 95% confidence

level, that run times exhibit a normal distribution was the

desired result of the first test, Using the equation for the U

Student t distribution (best used for sample sizes from 0 to

100) yields the formula:

520

N "U %'W.

dIW.

where

(or error tolerance within /-seconds) represents the

allowable deviation of the sample mean from true mean.

(true deviation) is replaced with the sample deviation

to produce the equation:

which may be rewritten to produce the equation for

required sample size.

530

Appendix C contains three separate reports for each of

four test cases. These test cases are:

a) BCD.CKT - Binary Coded Decimal encoder

b) ADDER.CKT - 2-bit full adder

c) BRC3S.CKT - 3-stage binary ripple counter

d) DECODER.CKT - 3X8 decoder

0

The first report was generated using the S statistical

package (11), and contains information derived from the

formula above. In the case of BCD.CKT, for example, 50

simulations runs were performed. LOGSIM248 produced a mean %

run time of 4.174399 seconds, with a standard deviation of

.02459135 seconds. Only 0.1700558 (or one run) was shown to

be required to guarantee that the deviation from the mean did

not exceed the prescribed tolerance (at a 95% confidence

level). However, because of a wider variance in the sample

data for LOGSIM, version 5.5, at least 35 runs were required

to guarantee the same deviation limit. The three other test

cases can be evaluated in the same manner.

Being confident that the sample distribution conforms to

the normal distribution and having determined that the

required sample sizes lie between 0 and 100 run times (with a

deviation lying within prescribed tolerances), a paired t-

test can be used to test the hypothesis that LOGSIM248

performs faster than LOGSIM, version 5.5. The second report

for each test case in Appendix C uses the SAS statistical

54

package (13) to perform such a paired t-test on the first two

columns of the sample data list (supplied in the thiid report

for each test case). This SAS report al';o displays the mean

and standard deviation for each sample. The difference in

the two sample means is computed and t-tests performed. The

label "'PR>ITI ' shows the probability of the difference

occurring by chance. For all four test cases this

probability was 0.01%. In other words, this test showed that

there is a 99.99% probability that the difference in the

sample means was due to LOGSIM248 performing faster. In

fact, as the number of IC packages in the design circuit

increases (for those test cases shown), so does the run time

difference, as shown in Table 3. When hosting LOGSIM248 on

the Zenith 248 an even greater increase in run time is noted.

Table 3. Simulation Run Time Comparlson

TEST COSE LOGSIM L5.5 LOGSIn248 LDESIM2±8 # IE's' ?

Leading Edge Leading Edge Zenith 248

BCD.CKT 6.2114 sec 4.1744 sec 1.4S98 sec 3

% increase 149 425%

SRC3S.CKT 6.3806 sec 3.1S46 sec 1.8072 sec 3

increase 20l% 3S3%

ADDER.CKT 15.388 sec 6.7107 sec 2.0900 sec 4

% Incvene 229 736%

DECODEP.CKT 21.61-1 nec 8.7905 SMC 2.8257 sec G

%increase 246% 765%

55

**1

These performance improvements may have been produced by

a variety of variables. As discussed in Chapter 3 and 4, the

main data structures in LOGSIM248 have been improved and 4

source code optimized. However, the noted improvement in

performance is probably due more to compiler optimization

than source code optimization. Even with this consideration,

the objective of improved performance in simulation run times

has been realized.

6.2 Concurrent LOGSIM Performance and Recommendations

As noted in the previous chapter, the algorithm and data

structures utilized in the design of LOGSIM248 do not easily

lend themselves to a concurrent implementation. The specific0

implementation chosen produced rather disappointing results

in terms of run time performance. However, the lessons

learned from this effort can hopefully be used to improve on

implementations used in the future.

Table 4. shows a comparison of the mean run times for

four different simulation implementations. Here the mean run

times for LOGSIM, version 5.5, and LOGSIM248 gathered from

simulations implemented on the Leading Edge Model D can be

compared to those mean run times gathered from both the

Zenith 248 and the iPSC Hypercube. Two separate times are

presented from the Hypercube. The first (labeled Intel

286/310) gives the mean simulation run time for an

implementation of LOGSIM248 run entirely on the cube

56

manager. None of the node processors were used for this

implementation. The mean run time shown in the table

provides a basis of comparison for any concurrent

implementation used. If, in fact, this time is faster (and

can be shown statistically to be faster) than that of a

concurrent implementation, then there is reason to believe

that no improvement has been miade. This is the case for the r.
C

concurrent implementation used for this project. 0

'a

Tatle It. Mean Run Time Comparison for S
Concurrent Implementation

Test Case LOSSIM248 LSIM248 LOGSIM2'"8
Zenitt 21!8 Intel 296/310 Intel iPS"

BCO.ZXT I.tS9 0.8352 2.1940

BRC3S.CKT 1.8072 0.5232 1.S291

AUCER.CKT 2.0900 1.7217 *.157

DEZODER.CKT 2.82S7 2.5115 7.6036 j I

The primary reason for this lack of improvement in run

time performance lies in the communication delay between the

cube manager and those node processors used by the

simulator. In the concurrent implementation used, only one

IC data structure from the circuit configuration list is sent

to a node processor per message (communication from the

manager). The time required to execute the operation

570

N N N> N V

function used by any one IC data structure is significantly

less than the communication time required to send that data

structure from the cube manager to the node processor. A

proposed solution to this time disproportion may involve

decomposing the circuit configuration list into groups of IC

data structures. These groups of data structures could be

placed into a contiguous array and then passed to the node

processor. This would require the node processor to execute

a number of operation functions, one for each IC data

structure in the array. By decomposing the circuit

configuration list into different numbers of IC data

structures the optimum implementation could be found wherein

the communication problem is overcome while the power of the

concurrent machine is exploited.

This proposed implementation, however, is constrained by

the size of the circuit to be simulated. If the number of IC

data structures required for efficient use of the node

processors is large, then circuits which require few IC

packages in their overall design cannot be simulated

concurrently with any expectation of improved performance

over sequential implementations. Presently, as discussed in

Chapter 5, the means for constructing large circuits (using

the integrated design tool, IDIET) does not exist. As

IDIET's graphic user interface is improved and circuits

consisting of a larger number of IC packages can be

configured, then research in this concurrent implementation

can be initiated.

58 I..........

The concurrent implementation described above, as well as

the one actually implemented, only deals with a small part of

the entire simulation program. Other functional areas of the

program exhibit the potential for concurrent operations.

During creation of the configuration linked list, each new IC

type encountered in the circuit input file (TEMP.CKT)

requires two operations. The first operation creates a

structure containing fields for IC type, IC number, pin types

(input, output, clock, Vcc, etc.), pin connections, and pin

values. The next operation initializes these fields to

reflect those values which are required for simulation but

may not be altered by the simulation (such as the indication

that a certain pin will have a clock input). For larger

circuits these operations could be parceled out to the node S

processors of the iPSC Hypercube in much the same way as

described above.

The input data list and the output display list are

constantly updated and maintained by various functions within

the program. These functions may also be exploited in an

effort to further "parallelize" the simulator. 0
A

6.3 Using LOGSIM248 Independently

LOGSIM248 was essentially designed as an integral part of

the digital design tool, IDIET. As an integral part of this

tool, LOGSIM248 performs in its' optimal environment, is 0

assured of correct input via the input file interface, and

59 0

w .~ -W-

requiresN r n u se in olem n toN " X 'ZA' U N-N'M WKaccomX'plish its *' X ' a sk.A'X ~'~V .

prquis no userinvolvemeitito aomplish its'itak.

Hoeere LOGSIM24 ma besperaed in thep absncet fof the

knowledgles ofethed ibputhfie grpisrinterface tiomh pose

of tis seo toupto eduat the ptenuotia use i ulthe o

independent operpt nfration of cOSM2 oeer an fewrpoints

pertcrainne toth ti cabilit shouldabe mpetioned.ns.Th

Bnyecaus eckn performws esid to accept24 inpuht ofro thee

cIIen file creiadby. the rahicue inrac compsont

ofis oDrToten assumpt aio, sSI24 maetrogotter smtion

aproritat allo inputg inoto ispu corre anormattelya

ine acodane wihsheaee interface sp irote ciation ofthe

onlyfc ie.Torpiaeti error checking pefrewyLGI28i htoufle

contentl an valilability.he required inptheute fierdocno

dgex orcotionformaadwston Lprecious eoptnerspae the

appopriae noeerrrmse itnto tworoputl filates normlly

cnotiigm iuation as mrets Allpu ot eror checngtd is

adn mat then cuse interae levelrior oteceaino.h

interface files.e Tonrplicte thismaio erobcecingd wrouldh

dheae pierformance, and.N wast preous D copuin supc.ut

produced by the simulator is written to TEMP.OUT and

60

TEMP.WAV. After each simulation run it is imperative that

the user rename or copy these output files. During the next

simulation run these files will be destroyed prior to re-

writing them with new output information.

As a sideline to those difficulties outlined above, _

independent use of LOGSIM248 requires some sort of file .

editor to produce the input files used by the simulator. Of

course, this means that all users must be familiar with an

editor capable of producing ASCII files.

6.4 LOGSIM248 IC Library Expansion

LOGSIM248 contains a library of 32 SN7400 family TTL

Integrated Circuits. This library is hard-coded into two

source code files, configic.c and opic.c (see Chapter 4 for

an explanation of the operations of these files). Each IC

requires two functions, one to initialize the chip and one to S

operate it. These functions are located, one each in .

configic.c and opic.c. In addition to these two functions,

each IC requires a case statement in each file which is used 0

to call the appropriate IC operation or configuration

function. In configic.c this case statement is located in

the module catalog(), and in opic.c, module icfunction(. S

Difficulty in upgrading this library has been
Wr-

significantly reduced due to the program structure. All that

is required to add a new IC to the simulator's library is the 0

creation and addition of two functions -- one to configic.c

61 S

r. r .,

' - , -. , -. Ike0

and one to opic.c. Additionally, the appropriate case

statement must be added to the functions described above.

This in itself is not an improvement. However, because the C

programming language allows source files to be compiled

separately, only these two file need be re-compiled. Because

object code files exist for all other source code files,

these may be linked to the newly compiled files without re-

compilation. By separating all IC functions from the control

functions of the simulator some upgrade difficulty has been

alleviated.

6.5 Future Directions

Realizing the full potential of LOGSIM248 relies on

upgrades to both the simulator and the integrated design

tool, IDIET. Presently, LOGSIM248 works efficiently on those .

small circuit designs which can be create through IDIET, but

lacks the challenge of larger, more complicated circuit

simulations. When the graphic user interface gives the user 0

the ability to input large complex digital circuits by

incorporating a pan and zoom function within the graphics

package, then simulations on circuits which tax the full A

capability of LOGSIM248 may be realized. To this end,

concurrent processing of these large circuits may prove

beneficial in reducing the time complexity of the simulation 0

program.

62-0

Even though it is somewhat easier to upgrade the IC

library with those design changes incorporated into

LOGSIM248, the major difficulty is the actual construction of

the functions which must be added for each new IC. Some of

the chip operation functions (opic.c) are very involved and

require in-depth knowledge of the functions and hardware

involved. This difficulty, when added to the annoying

problems of re-compiling source code, cause library upgrades

to be burdensome and, most likely, very complex.

A future addition to IDIET in the form of a library

expansion routine would afford those users who require more

design power (but have neither the desire or know-how to re-

write the source code) the ease of library upgrades. This

could possibly be implemented by presenting the user with a

function template equating input to output pins, prompting

for gate level functions, inquiring about previous flip-flop S

conditions, etc..

For users not capable of installing the entire IDIET tool

due to computer system configuration problems (such as, the

lack of an EGA graphics capability) it would be advantageous

to incorporate a limited version of the user interface into

LOGSIM248 to facilitate circuit configuration. This

interface could be designed in a similar fashion to that of

LOGSIM, version 5.5, with modifications implemented to

produce correctly formatted output files. A simple interface

would relieve the user of the burden of insuring input file

-3

* ' ,-'-'.' ' ' " "'" '.- ' ' ' . ° " " ' x . ." " °.." -. ,".', ." ,"V - " , ."- - - -" " .

integrity while allowing simulator familiarization in a more

timely manner than is presently allowed by LOGSIM, version

5.5.

6.6 Conclusions

The initial objectives of the thesis effort were two-

fold; (1) to re-engineer and re-host LOGSIM,version 5.5, for 0

the inclusion in an integrated digital design tool, and (2)

to explore concurrent simulation implementations which might

further enhance performance. Unexpectedly, the efforts of

the first part impacted those of the second.

The re-engineering of LOGSIM, version 5.5, was undertaken

with the expressed desire to improve the portability,

performance, and maintainability of the simulator. As has

been previously discussed, these objectives have been

successfully accomplished. The performance of LOGSIM248 is I

markedly improved, the readability and maintainability of the

source code enhanced by a complete redesign, and the ability

to port the simulator to other hosts documented. The S

integrated digital design tool, IDIET is built, functional,

and already being demonstrated on many college campuses.

Several obstacles were overcome through effective interaction

between the designers of the three components of this tool

with all components integrated well.

I

64

N N % % %.
A '&

These re-engineering efforts, however, exposed the

difficulties to be encountered with the exploration into

concurrent implementations. It was discovered that not all

sequential programs, regardless of their seemingly inherent

tarallelism can be easily implemented as such. Even though

performance was not enhanced by concurrent implementations,

many lessons were learned and future directions brought to 0
-

light. As the capabilities of the integrated tool increase
'-55

so will the concurrent applications.

,

_-

..

Bibliography

1. Rowe, Mark C. EE650: Special Studies LOGSIM Software
Engineering. Class Report. Air Force Institute of
Technology, Wright-Patterson AFB OH, June 1985. lp

2. Adams, Charles A. Jr. A Digital Circuit Design
Environment. MS thesis, AFIT/GCS/ENG/87D-1. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

3. Wagner, Steven M. An Expert System for Discrete
Component Digital Circuit Design. MS thesis,
AFIT/GCS/ENG/87D-28. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1987.

4. Miczo, Alexander. Digital Logic Testing and Simulation.
New York NY: Harper & Row, Publishers, Inc..

5. Micro Data Base Systems, Inc.. GURU Reference Manual,
Volumes 1 and 2. Lafayette IN, October 1986.

6. Rowe, Mark C. LOGSIM, version 5.5. Computer Software.
Air Force Institue of Technology, Wright-Patterson AFB
OH, June 1985.

7. Borland International. TURBO Pascal Reference Manual
Version 3.0. Scotts Valley CA: Borland International,
1984.

8. University of California, Berkely. Berkely Pascal.
Computer Software. University of California, Berkely,
Berkely CA:

9. Borland International. TURBO C Reference Guide. Scotts
Valley CA: Borland International, 1987

10. Pressman, Roger S. Software Engineering: A Practitioners
Approach. New York NY: McGraw-Hill, 1982.

11. Becker, Richard A. and John M. Chambers. S Language and
System for Data Analysis. Murray Hill NJ: Bell Labs,
1981.

12. Rowe, Mark C. The LOGSIM Simulator Revised User's
Guide. Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, 1985.

66

13. Cody, Ronald P. and Jeffrey K. Smith. Applied Statistics
and the SAS Programming Language. New York NY: North-
Holland, 1985

SOI

67A

Appendix A: Source Code -LOGSIM248 --

% .

68 I~

% %

7~ rMr~~ FJ,. MW k~W~W W V~ wy VW1'V'. ~~ ~ ~r~IL.L ~ U7! K' 2 . W~F ~ ~ -- V-

Source code available upon request.
Write to:

Air Force Institute of Technology
School of Engineering
Department of Engineering and Computer Science
Wright Patterson Air Force Base, Ohio 45433 N

A-1

qvzwwwu M~MN~ W~W'M M~W~ Wd W'~ W~S W~ WV WV W~. WV M'~I WV WV WV W.L w~I1r~ W'J U'~ WV W. ~X. -d WV ~-v ~ w~ w~. .~. .~v -~ .-.. -i. - -

S.

.5-.

.5.
-S

S.

-. 5.

'5..-
S..

.5-.

.5.

.5

.5
'5-
* "5

.5.
J

0

-S..

-5.

-5'.

Appendix B: Data Flow Diagrams and Functional Decomposition

'5

0

0

5-

-.5

S

C,

130 5,.

.5.

0

* ~ ~ 5 . 5 *-.-.-5.~5.5..5.?-r ~ p *-~
~ 's.% - S * s's 5

ww

-C

W IIq

wa

Cl dez
cc0

I cc.

ctp

cc Q Q

Li 1.d

OldB-1

ob

CI

-4c4
1.M
wz

co
Lal.. %
I-> %

wLa
wc

0r0

0.a.

Loo

tq4 <~-

uJ

B-2

oc

zc

LAI.

42.-

w-
*1%

Lii..

Icc
(b.'

olo

ow

UL

B-3

powwwwvwvwwwvwvvwvvwwwwww-w VKWVWYIX~rw'WVWW5V

.5%-

us w

I !-t

w0

C

.5

CI

wp
It Qz

0 S.

-i 44 w

c~ca

CIL-

0 0

-B-

0

4-Cf-

I.-.A

at0

CLi

B-

LLI-
cm.

oco

pqp

U1*

ca

00

N.J

V-i-

main

JJJ

DATE* .46 ULY 8

B-7C

14,6

from~S lin

initnode sctpin () connect()

p

B-8 Ie

satpin (

nt

ini is; Set\ e Seo
L, 1 #1 1114s J. AL

NAW:cprwy~iEc. oLOR(TITE: stpi

B-9S

Pon

connect (

findic~ Ueicno(Setp(etpin()

B-10

findic ell

nfode-~ *node\ c-

intoepinfun(Catalg 1.1
0

NAME: CPT WAYNE C. DELORJA TITLE:fn~c(
DATE:- 30 JULY 97NOE
POJECT:- L0GSIM V'40 OE ±±'

Figure B11. findic()

B-li

NrWWU WV-dWU WWU'W~rWU vr"XZ TVIVP lSv

_
a'to5

PWJEC.- L04SIA 1-8NODE

Figure B1. aalg

B-12~

no. n

filerr n& Ad.1'

*node

inifot 6uldinuf oera.

1416 Z

inifin___ "2 npckevln

N~mE cpTw~yoe coE~~iA ITLE simlat
DATE: -30 ULY 7 W D : i0
PROJE~: LOQIM 24

Figur B13 simlate

B-13

*

initout Iiflrrinput) bufidinpur

no..

no..

cknmpts 0f',ler

B-14S

z5

*-Ates 023 A 0101TRL LOGIC SIMULATOR HITH COMCURENT PROGRA IN 2/2
CONSIDERATIONS(U AIR FORCE INST OF TECH
URIGHT-PATTERSON WD OH SCHOOL OF ENGINEERING

UNLASSIFIED N C DELORIA DEC 87 WITOCS/ENG/'97D-10 F/G L2/1 AL

o m
4 1.

w2

_, - - . . ' , . - , ' - - . . .6

+, + , ,, -. ,.% p %. 5 . . m ,% % , " , , ,. . , '

operate(

4.no&... II,

L.2.b,.±,j "f0o

E~

NAME: CPr WAYNE C. OLORIA TITLE: operafe
DATE: O JULY 87
IP :OJECT: LOO5IM t1 NODE: 1,2,.6

Figure B15. operate()

B-15

.- '2"".

Lu

aAwout()

ufal J. L- i.14' .77

PWJECT.-. S.,f 24

B-16

I.w

iI

f~icout)

ill's

rtrp raformatoIN

iue W1. ie

5 V

B- 170

V

"V

".v

Appedix : Sat~sicalInfrmaton

4'

S.i

"

~~148 ,:

oS

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
BCD.CKT

NUMBER RUNS NEEDED FOR SPEED COMPARISON

0.95
confidence level

0.1
error tolerance within +/- seconds

Ra50ie
Read 50 items
Read 50 items '

LOGSIM248 Data

4.174399 0.02459135
average standard deviation

0.1700558
NUMBER RUNS NEEDED

LOGSIM V5.5 Data

6.227600 0.3524987
average standard deviation

34.9415
NUMBER RUNS NEEDED

Paired T-test for BCD.CKT

LOGSIM RUN TIME DATA 1
14:55 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR
OF MEAN

LOGSIM V5.5 50 6.21140000 0.04485533
LOGSIM248 50 4.17480000 0.00341951

LOGSIM RUN TIME DATA 2
14:55 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR T PR>ITI
OF MEAN

DIFF 50 2.03660000 0.04408490 46.20 0.0001

C-1

%S

Run Times for BCD.CKT

LOGSIM V5.5 LOGSIM248 LOGSIM248 LOGSIM248
Leading Edge Leading Edge Zenith 248 Intel iPSC

6.71-------- ----- -- 2
6.71 4.210 1.370 2.160
6.13 4.210 1.430 2.160
6.07 4.210 1.380 2.160

6.61 4.180 1.430 2.200
6.17 4.180 1.490 2.220
6.55 4.210 1.430 2.180
6.40 4.190 1.430 2.180
6.02 4.200 1.430 2.180
6.11 4.200 1.430 2.160 0
5.98 4.190 1.430 2.160
5.86 4.180 1.420 2.180
5.85 4.190 1.420 2.180
5.92 4.190 1.430 2.180
6.66 4.200 1.430 2.180
6.86 4.220 1.430 2.180
5.85 4.210 1.430 2.160
6.46 4.190 1.430 2.160
6.66 4.210 1.480 2.160
6.61 4.210 1.430 2.160
6.23 4.210 1.480 2.160
5.96 4.150 1.420 2.200 .
6.46 4.170 1.480 2.180
6.82 4.160 1.480 2.220
5.62 4.150 1.480 2.160
6.40 4.130 1.480 2.160
6.03 4.140 1.490 2.180
6.30 4.170 1.480 2.160
6.19 4.160 1.490 2.180
6.15 4.140 1.480 2.160
6.05 4.170 1.480 2.220
5.71 4.190 1.420 2.160
6.11 4.170 1.480 2.180
6.12 4.150 1.430 2.180
6.13 4.140 1.540 2.180
5.74 4.140 1.490 2.160
6.34 4.170 1.480 2.160
6.83 4.160 1.490 2.200
6.22 4.150 1.490 2.160
6.29 4.170 1.480 2.180
6.17 4.150 1.480 2.180
5.96 4.160 1.420 2.180
5.61 4.170 1.480 2.220
5.99 4.160 1.530 2.180
6.39 4.150 1.490 3.000
6.52 4.180 1.480 2.180 0
6.09 4.170 1.540 2.160
5.87 4.150 1.490 2.160

C-2
0x

Run Times for BCD.CKT (cont.)

6.24 4.170 1.480 2.160
6.02 4.150 1.430 2.260
6.53 4.140 1.480 2.180

mean 6.2114 4.1744 1.4598 2.1940

%

C.-

-.j

"a

"I

-i.

.'

C-3 -"

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
ADDER.CKT

J&

NUMBER RUNS NEEDED FOR SPEED COMPARISON
,.4

0.95
confidence level 4..

@..I

0.1
error tolerance within +/- seconds

Read 70 items
Read 70 items

LOGSIM248 Data

6.710714 0.03600813
average standard deviation

0.3605694
NUMBER RUNS NEEDED

LOGSIM V5.5 Data

15.38814 0.495871
average standard deviation

68.3793
NUMBER RUNS NEEDED .

Paired T-test for ADDER.CKT

LOGSIM RUN TIME DATA 1
14:58 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR 0
OF MEAN

LOGSIM V5.5 70 15.38814286 0.05926789
LOGSIM248 70 6.71071429 0.00430379

LOGSIM RUN TIME DATA 2
14:58 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR T PR>ITI
OF MEAN 0

DIFF 70 8.67742857 0.05721547 151.66 0.0001

C-4 "-
%0

• * • - - -,, , '

Run Times for ADDER.CKT

LOGSIM V5.5 LOGSIM248 LOGSIM248 LOGSIM248
Leading Edge Leading Edge Zenith 248 Intel iPSC

16.43 6.750 2.090 4.160
16.28 6.790 2.200 4.140 0

16.07 6.700 2.030 4.120
15.50 6.780 2.090 4.160
15.88 6.740 2.090 4.140
16.72 6.740 2.030 4.160
16.42 6.720 2.090 4.140
1.5.45 6.700 2.030 4.160
15.51 6.720 2.090 4.120
15.63 6.760 2.140 4.140
15.47 6.780 2.090 4.140
16.31 6.710 2.080 4.100
15.37 6.750 2.030 4.140e
15.91 6.730 2.090 4.120
15.54 6.740 2.140 4.120
15.13 6.750 2.150 4.120
15.35 6.730 2.090 4.120
16.05 6.770 2.030 4.120
15.22 6.730 2.090 4.120
16.00 6.730 2.090 4.120
15.25 6.780 2.080 4.120 :
15.48 6.740 2.090 4.140
15.68 6.730 2.090 4.1.60
1.5.52 6.760 2.030 4.120
16.45 6.700 2.030 4.120
15.89 6.750 2.090 4.140
15.60 6.750 2.030 4.100
15.92 6.720 2.090 4.120
15.06 6.720 2.090 4.120
15.90 6.700 2.030 4.140
15.59 6.71.0 2.150 4.120
15.81 6.720 2.080 4.1.20
14.92 6.720 2.090 4.160
15.81 6.730 2.090 4.120
15.15 6.730 2.140 4.180
15.22 6.740 2.090 4.1.40
15.09 6.730 2.080 4.140
15.26 6.760 2.140 4.120
15.19 6.710 2.090 4.1409
15.22 6.770 2.090 4.140
14.93 6.680 2.030 4.140
1.5.17 6.670 2.090 4.120
1.5.94 6.680 2.090 4.140
14.96 6.680 2.090 4.140
14.96 6.690 2.090 4.140
15.45 6.670 2.030 4.120
15.01 6.680 2.090 4.140

C-5

%S

Run Times for ADDER.CKT (cont.)

14.83 6.670 2.090 4.220
15.06 6.670 2.080 4.180
14.96 6.670 2.090 4.340
14.95 6.670 2.090 4.160
14.99 6.670 2.090 4.140
14.94 6.680 2.090 4.180
14.76 6.680 2.080 4.160
14.98 6.670 2.080 4.120 d

14.76 6.680 2.090 4.120
14.69 6.680 2.090 4.120
14.87 6.670 2.090 4.120
14.82 6.670 2.090 4.140
15.01 6.670 2.090 4.180
15.89 6.680 2.090 4.180 -

14.97 6.680 2.090 4.140
14.99 6.670 2.080 4.160
15.19 6.680 2.090 4.140
15.29 6.680 2.140 4.160
14.88 6.680 2.140 4.140
14.86 6.670 2.140 4.160
15.21 6.670 2.140 5.120
14.74 6.670 2.150 4.120
14.86 6.680 2.140 4.140

mean 15.3881 6.7107 2.0900 4.1557

C-6.

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
BRC3S.CKT ,

NUMBER RUNS NEEDED FOR SPEED COMPARISON

0.95
confidence level

0.1
error tolerance within +/- seconds A

Read 65 items
Read 69 items

LOGSIM V5.5 Data 0

3.165692 0.02839286
average standard deviation

0.2246619 h

NUMBER RUNS NEEDED

LOGSIM248 Data

6.380869 0.4872877
average standard deviation S

66.059
NUMBER RUNS NEEDED

Paired T-test for BRC3S.CKT

LOGSIM RUN TIME DATA 1
15:01 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR S
OF MEAN

LOGSIM V5.5 69 6.38086957 0.05866254
LOGSIM248 69 3.16463768 0.00338984

LOGSIM RUN TIME DATA 2
15:01 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR T PR>ITI
OF MEAN

DIFF 69 3.21623188 0.05740001 56.03 0.0001

C-7

S

Run Times for BRC3S.CKT.5

LOGSIM V5.5 LOGSIM248 LOGSIM248 LOGSIM248

Leading Edge Leading Edge Zenith 248 Intel iPSC .

6.98 3.150 1.810 1.900

6.45 3.150 1.750 1.920

5.89 3.170 1.760 1.920

6.24 3.9 1.810 1.920

6.42 3.170 1.820 1.920

6.97 3.180 1.810 1.940

6.86 3.190 1.810 1.920

7.02 3.180 1.810 1.940

6.93 3.180 1.760 1.920

6.85 3.180 1.820 1.940

6.42 3.210 1.810 1.940

7.06 3.190 1.820 1.920

6.35 3.160 1.810 1.900

7.88 3.190 1.810 1.920

6.42 3.170 1.750 1.920

5.79 3.200 1.810 1.940

5.59 3.190 1.820 2.160

6.81 3.200 1.810 1 .920

7.00 3.200 1.810 1.940

6.36 3.190 1.750 1.920

6.37 3.200 1.760 1.940

6.86 3.200 1.820 1.920

6.62 3.190 1.820 1.920

6.32 3.140 1.810 1.900 4

6.46 3.200 1.860 1.920

7.28 3.190 1.810 1.920 4

6.65 3.200 1.810 1.920

6.69 3.210 1.760 1.920

6.34 3.200 1.810 1.920

6.98 3.190 1.760 1.920

7.16 3.180 1.820 1.940

6.22 3.190 1.810 2.000 $

6.56 3.190 1.810 1.920

6.84 3.200 1.810 1.900

6.38 3.220 1.870 1.920

6.06 3.120 1.820 1.920 8

5.83 3.120 1.750 1.920

6.24 3.140 1.870 1.920

6.32 3.130 1.920 1.920

5.95 3.130 1.870 1.940

7.36 3.140 1.810 1.920

6.18 3.120 1.760 1.980 -

6.51 3.140 1.810 1.940

6.31 3.140 1.810 1.900

6.34 3.120 1.810 1.920 -0

6.02 3.120 1.760 1.920

6.18 3.140 1.810 2.000

C-8

Run Times for BRC3S.CKT (cont.)

6.20 3.140 1.810 1.920
6.63 3.140 1.810 1.920
6.35 3.160 1.810 1.900
6.62 3.120 1.820 1.940
5.96 3.150 1.870 1.920
6.90 3.140 1.870 1.920
6.01 3.150 1.870 1.900
6.27 3.190 1.810 1.920
5.58 3.160 1.810 1.920 Y
5.78 3.140 1.810 1.940
5.61 3.150 1.760 1.920
6.08 3.140 1.760 1.920
5.84 3.140 1.810 1.920
5.76 3.160 1.750 1.920
6.27 3.140 1.750 1.940
5.91 3.160 1.760 1.920
6.47 3.150 1.870 1.920
5.82 3.140 1.810 1.920
5.89 3.160 1.810 1.920
5.58 3.120 1.810 1.920
5.71 3.150 1.810 1.900
5.72 3.160 1.810 1.920

mean 6.3809 3.1646 1.8072 1.9281

--9

..

'C.'.

C- 9 "
I

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
DECODER.CKT

NUMBER RUNS NEEDED FOR SPEED COMPARISON

0.95
confidence level

0.1
error tolerance within +/- seconds

Read 112 items

Read 112 items ,.

LOGSIM248 Data

8.791125 0.02086686
average standard deviation

0.1206719
NUMBER RUNS NEEDED

LOGSIM V5.5 Data

21.60821 0.566321
average standard deviation S

88.2772
NUMBER RUNS NEEDED

Paired T-test for DECODER.CKT

1 LOGSIM RUN TIME DATA 1
18:46 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR

OF MEAN

LOGSIM V5.5 112 21.60821429 0.05351229
LOGSIM248 112 8.78107143 0.00230535

bj

LOGSIM RUN TIME DATA 2
18:46 SUNDAY, OCTOBER 25, 1987 N?

VARIABLE N MEAN STD ERROR T PR>ITI

OF MEAN

DIFF 112 12.82714286 0.05383677 238.26 0.0001

C-10

,.~ ' % %
-..V %. '

Run Times for DECODER.CKT

LOGSIM V5.5 LOGSIM248 LOGSIM248 LOGSIM248
Leading Edge Leading Edge Zenith 248 Intel iPSC

22.17 8.800 2.800 7.600
21.67 8.750 2.800 7.600
22.52 8.770 2.810 7.600
21.79 8.750 2.860 7.580
21.65 8.750 2.800 7.560
21.31 8.750 2.800 7.560
21.52 8.750 2.800 7.640
21.77 8.770 2.800 7.600
21.54 8.770 2.800 7.600 S
21.65 8.750 2.800 7.560
21.45 8.770 2.810 7.560
21.97 8.770 2.800 7.640
21.52 8.750 2.800 7.620
21.51 8.750 2.750 7.580
21.52 8.750 2.800 7.560
22.10 8.780 2.800 7.560 ,.
21.44 8.750 2.850 7.580
21.26 8.750 2.910 7.580
21.02 8.750 2.860 7.560
22.91 8.750 2.850 7.560
21.71 8.750 2.860 7.560
22.13 8.750 2.920 7.640
22.39 8.770 2.860 7.560
21.45 8.770 2.860 7.560
21.62 8.750 2.910 7.600
21.37 8.760 2.800 7.580
21.67 8.750 2.860 7.600 S
22.91 8.750 2.800 7.560
22.79 8.760 2.860 7.580
21.44 8.760 2.860 7.560
21.91 8.750 2.850 7.680
21.73 8.750 2.850 7.580
22.68 8.750 2.860 7.560
21.48 8.750 2.910 7.600
22.51 8.800 2.860 7.600
22.71 8.780 2.910 7.600
21.18 8.790 2.850 7.580
21.54 8.780 2.850 7.560
21.41 8.800 2.860 7.560
21.41 8.790 2.860 7.560
22.79 8.770 2.800 7.580
21.88 8.790 2.910 7.580
22.42 8.830 2.860 7.580
21.75 8.780 2.920 7.560
21.34 8.780 2.910 7.600 S
22.34 8.810 2.910 7.580
21.21 8.780 2.800 7.560

c-11
C- II S

wig" "vJVVVUW~wIwvwvwuw

Run Times for DECODER.CKT (cont.)

21.23 8.770 2.850 7.560
22.91 8.770 2.800 7.580
22.79 8.830 2.860 7.560
21.44 8.810 2.850 7.600
21.91 8.800 2.800 7.580
21.73 8.820 2.850 7.560
22.68 8.780 2.850 7.780
21.48 8.830 2.850 7.560
22.51 8.770 2.860 7.580
22.71 8.810 2.910 7.580
21.18 8.780 2.800 7.580
21.54 8.800 2.800 7.620
21.41 8.780 2.850 7.560
21.41 8.790 2.810 7.560
22.79 8.770 2.800 7.600
21.88 8.770 2.740 7.600
22.42 8.770 2.860 7.560
21.75 8.770 2.800 7.600
21.34 8.760 2.800 7.580
22.34 8.780 2.800 7'560
21.21 8.770 2.800 7.:6 00
21.23 8.830 2.810 7.640
21.35 8.820 2.800 7.600
21.79 8.780 2.850 7.600
21.26 8.780 2.800 7.600
21.48 8.810 2.800 7.580
21.01 8.830 2.800 7.640
20.91 8.780 2.800 7.560
20.96 8.830 2.800 7.560
20.89 8.830 2.850 7.560
22.57 8.810 2.740 7.620
21.14 8.800 2.800 7.580
21.20 8.780 2.800 7.560
21.29 8.760 2.850 7.580
21.12 8.800 2.810 7.580
21.01 8.780 2.800 7.6400
21.00 8.780 2.740 7.580
21.21 8.810 2.800 9.100
21.43 8.780 2.800 7.680
21.06 8.780 2.810 7.640
21.50 8.830 2.800 7.600
22.21 8.820 2.800 7.580
21.15 8.790 2.860 7.580
21.01 8.790 2.850 7.580
20.91 8.780 2.850 7.680
21.00 8.760 2.860 7.560
21.25 8.760 2.860 7.640
21.06 8.790 2.800 7.600
20.98 8.780 2.800 7.580
21.45 8.780 2.800 7.580

C-12

i~aakk IL

Run Times for DECODER.CKT (cant.)

21.16 8.810 2.800 7.600
20.99 8.780 2.800 7.560
21.43 8.810 2.800 7.560
21.18 8.830 2.800 7.580
21.*24 8.780 2.800 7.580
21.26 8.760 2.800 7.580
21.16 8.780 2.800 7.600
20.96 8.800 2.800 7.620
20.98 8.780 2.750 7.680
21.09 8.770 2.800 7.640
20.96 8.770 2.800 7.560
21.28 8.800 2.740 7.580
21.13 8.780 2.800 7.600

mean 21.6179 8.7805 2.8257 7.6036

C-13

~IininIwuwwwwwwIwvww1awwu uu IJw1,~ Uu u-u ~ru uw Jv u-v ~ -~ u-v ~ j ~ ~y

P
'p

4..

4
* 1~

-'U

'U 'U

"'P..
S.. ~

"A

Appendix D: Test Case Schematics and 'P

Graphic interface Images
"P

.5.

VA

4,--

* .5..

"U,

4,

'U'.

-- S

"P

S

"U

-'U.

4,

S

4,

162 'U. "A

p

S
4,'U

1, Mrx- W r

01p

0.1-

03$

044

D-1V

N

Ful LX 7xmain menu

5 -e

..-.. "l Ci rcui t,

* -- ' I h aI,--- J'1 ',- I i Retrive

- - ,-
_

; i ,TCi
roui . .. -tI _ .

49 -- - 419 ---------?q8• _ - , -

J L Del CX.
-I m _ Save CXT

II
;"

LOGS -

i

_0 Help

EXIT

Figure D3. Graphic Circuit Image for BCD.CKT

I :01010101010101010101

12: 00110011001100110011
13: 00001111000011110000
I4: 00000000111111110000 A.->
IS:i0101010101010101010 ".
I:11001100110011001100
17:11110000111100001111
I:.1ii11Iii1000000001111

Figure D2. Inputs for BCD.CKT

D-2

del.. 1

Input data streamt:

Input #8i Port ii 3.LLL.KLL L .
*-..U a P~rt : A:- L -I m I -, 02 Pot i3 .. _

Input 884 Port i
Input #885 Port i4 ---

Input #886 Port i6
Input #887 Port i7
Input #888 Port i 8 -------

Output file contents:

IC U 2 MSN 7418) PIN 112 ---_ -*----I

IC N 2 (SN 7418) PIN 6 :
II' U ('-- 7AO-S) PI. : 6 :L L - L - m L

ir S - " A~i I

Input 1 2

Figure D5. Waveform Output for BCD.CKT

input data files;

iz 962 "n399 -11 -1011011

i4 "- 04 -___-__--------- 00001111;

997 - - - :1111999911119991111

is 0B Bee 11 8ixi -1111100ee0111.

output file contents:

IC # 2 (SM 7419) PIN *12 :9B91g1i11111111
IC # 3 ISM 7418) PIN N 6 :01111111101111110111
IC 0 3 (SN 7486) PIN i & :191g196191gl ai;1919
Input 9 Z "00119B111100100

Figure D4. Binary Output Image for BCD.CKT

D.

~~D- 3 -

t4

~OOo

zzz~

CC)
U

CC) H p

"a
'.4

-.
o (

S

-.'a

-~ C)
-' (NJ .,-l 'p

ctj 0
S

C)

'.0
'I

w
0

N
(KJ 0

p..

0
HH~ b-I

-a

a"

a"

D-4
S

.....................

IcI

-c -l h/gbi t

s-

IC

I RetrGI ev

doi''u

.

13000 1100J 100.--I,-.Oll

--- 0000000-001 - l l:- 4 De iI

Fiur D8. 9 Inut fo-DERC

D-5

Input data file$;
Al. 991 MW "W4-0-
AZ 892 ~ ~ 9~9911911211,M'1i31G9l911%

91 90 w"A mmslm"90898J,39911 199111999111

Output file contants:

IC 2 1 (SM '1486) PIN # :36:1991111h91192
IC 4 1 (SM 7486.' PIN 411 ;~.~1l818811~I881
IC Ai 4 (SH 7.44 P1.4 4 4 gororialrllarezl 2111_I

Figure D9. Binary Output Image f or ADDR.CKT

Input data z-zeams:

Input #801 Pori A! LLZZL..L.L-

input 2M3 Port n2

Input 4884 Pori 9 ________

Input 0885 Part C1---------I

Output file ccnzants:

IC I I (ZN 7486) PIN 4 6
IC $ 1 NZ 7486) ?TM #11
IC 4 4 (IN 740d) ?N 4

Figure DIC. Waveform. utput Irnage for AILER.C1,T

D-6

0r

II-

_ 1.-I'

,,'

,5.. "

Ci.cui t

dm -

De! CH.

Save CJ-

oft,, . -. . ..- . , ; -, '

LOGS N

EXIT
. . 1 ..CPx=2

Figure D12. Graphic Circuit Image for BRC3S.CKT

D-84

A-.
-9.

D -8 ""'"4

',. a

. k , ? , ')? ?':;< . ; . ¢ . : ? :;... ... 4..

- ' -: : : : : % ,' -% " ',.%.'JM ,%,. ".5.'.

output file contpnt5:

IC #662 (SM874167) ?IN 483 1a 18 19±91 8

IC h963 (SM674197) FIN M3:9811111086
IC *eel (Sfl887108) PIN 086 8 881 889 188

Figure D13. Binary Cutput f or BHC3S.C1KT

Input data ttreang:

no input streams WuppWed
--- - - - -- - ---

-- -

output file contents:

Clock _RM wL m_
IC ff882 (SH8741B?) PIN 183

IC IU803 (SH074107) FIN :03 *-

IC goal1 (S87480) FIN 286

Figure D14. Waveform Output for BCSCK

D-9 %

.5'h

51SN740

I %

r A.

D-10

I, -. • m l 2 n M e'

•
,,

IIICircus I

--- " Y - -m-
',-

, .- h.! [- -, , .3 5

'/'. ""I... --- ; : ~ - - -
------ '--~ U~~ - LI

-f -7=

• ' ;r ' " l -'' "-. , = 5 .% -. . .

74&. 7 -. -4 - I ,,,

2P Z 4: -- ---
•.....-i::::.:::iEi:::---L --. :. ... L .. :... _: 3

SC2 x:=2 y

Figure D16. Graphic Circuit Image for DECODE.CKT

..,
a .,

-..4

IS: ii 1Oi000111D110000000011115:010101010101010101010101010101010101 01"
16 : 0011i0011i001 i0011i001 1001 :0011001100110011".
17:00OOO011100001 lO00011 1OOO11100001iI

"
.. =

Figure D17. Inputs for DECODER.CKT

D-11

". D,". ,'',' -, ... ,. . . .
*.

-5 - -, , - ,

"VV v Wj Uv w'j Uw~ wv

I

InpOu data files;
EN 994 g99991x11199999111ii

997 - - -- - -- - - -- - -- - -- - - -- - -- - -- --------- - -- n..'.

Output file contents!

10 . N 7A44 PIN d1W i2OAOAQA gflgAoAQAA44 gO4gOAA gQA'Q1f._O-
IC A 5 (SN 7494) FIN UlI :X19e9988o9e9eIeeUI99e9B9eee99Be991 i
IC q 5 (S1 7484) FIN 0 a Bel 9988898AOQ9P ?Og
IC A & (SN ?494) PIN 4 29I9999999999999b9e99999G9gQegGg i; r

IC "' 6 (SM 7494) FI 1. 4 :9IUU9I6lI99l1O69OW 8
C' 4 6 'S?6 '494) PIM 4 6 99999609099999999999
IC 0 6 SN 7404) PIN #12 ,999g99l999999989909999199g99999998999919
1C 4 6 (SM 7494) ?!N 19 :9N189U~ie9899eeOgOg99l!-999gO9898991

Figure D18. Binary Output for DECODER.CKT

'.

Input data streams:

Input #884 Port EN .- .-"--
Input 952S Port U2 :-L3LL -L3LLL3LLLLL LL-L-LLL

Input 88 Port 12
Input f887 Port 13 ,

Output C111c czntcn-t-:

IC I S (SM 7484) PI 12 I - --- -------------

IC # 5 (S! 7484) PIN 1 ------------ -------- -----

iC s .S. 7i@4) p a 8 : ------- --- -- -------------

IC i1 6 (S 744) PIN A 2 ---- ------ -L_

IC 4 6 (SM 7484) PIN 1 4 --- _------------ ------------- L__

IC 4 6 (SK 7484) PIN 4 6 .- L --------- -------------- L_
---- 1(___ - --------2 a. ------------- R-IC 1 6 (S. 74e4) PIN 12 .. .--------------- -- -------------IC 4t 6 (SlM 7404) P(IN 31. . .LL8,

Figure D19. Waveform Output for DECODER.CKT

D-12

r

I.
p

p
p

p

p

0

p
Appendix E: LOGSIM248 Manual for Independent Simmulation

0

i
S

0

S

'4

S

5-

.5-
*55

S

5S

175
S

a~%~%~ .a~'',5-

'~ ' ~v ~ -:----~ - *-~-** a.. ~,.*.a ~1. ft ...A ~ .~

LOGSIM248 MANUAL FOR INDEPENDENT SIMULATION

E.1 Overview

LOGSIM248 is a new implementation of LOGSIM, version

5.5, which is a digital design logic simulation program

developed by students of the Air Force Institute of

Technology. All source code for this new implementation is

written in the C programming language and developed using the

Borland International TURBO C Integrated Development

Environment.

LOGSIM248 is used to simulate sequential or combinational

digital circuits comprised of TTL (Transistor to Transistor F

Logic) Integrated Circuit (IC) packages. Presently, the IC

library within LOGSIM248 consists of 32 separate packages

from the 7200 family of integrated circuits.

This simulation program may be run as an independent

simulator or as an integral part of the larger digital design

tool, IDIET (Integrated DIgital Engineering Tool).

Presently, no user interface is built into LOGSIM248 to

enable interactive circuit entry. All data used by the

simulator is supplied by four ASCII files. Three of these

files are required, while the fourth is optional. LOGSIM248

results are written to two additional ASCII files and are

available for user analysis.

.

1.4

............................

The four input files must be available to LOGSIM248 prior

to invocation of the simulator for proper independent

execution. Some sort of file editor capable of creating

ASCII files will be required by the user for creation of

these files. Word processors which can convert formatted

files to ASCII will work perfectly, provided no control

characters (characters used for printer manipulation) are

imbedded in the converted files.

The following sections of this manual present LOGSIM248

operation, materials required to run LOGSIM248, the

input/output data file interface, file format and

construction, and possible error conditions resulting from

incorrect operation. Examples are presented as needed and

are based on those test cases used for LOGSIM248 simulator

development.

'V.

E.2 What Is LOGSIM248? -q

LOGSIM248 is a digital logic simulator used to simulate

digital circuit designs which use TTL IC packages as major

components. As the term "logic" implies, this simulation

tool performs no timing simulation -- it is primarily

designed to confirm expected output and circuit design by

supplying the user with binary output streams based solely

upon input data. Data is input in one or more binary streams

corresponding to user defined input ports. This data is then

E-2

-0

ANIL. - % - •

n

operated upon one bit (or set of bits for multiple inputs) at V

a time to produce output in the form of binary or waveform

data streams.

All input data is supplied through the input file

interface, and all output presented through similar output

files. Under ideal conditions, these input files are created

through the integrated digital design tool, IDIET. This tool

combines a graphic user interface, and a connectivity

checker, as well as, LOGSIM248. The graphic interface allows

the user to draw the circuit on a computer monitor screen

using both menu and mouse directives, after which the expert

system may be invoked to check connections prior to

simulation. Further explanation of this integrated design

tool is beyond the scope of this manual. For a more detailed

explanation of the functions and capabilities of IDIET, refer F

to "A Graphic User Interface for Digital Circuit Design:

User's Manual", by Charles Adams.

It is not necessary to own an executable version of all

components of IDIET to simulate circuits with LOGSIM248. All

that is required is knowledge of the LOGSIM248 file

interface, a text editor, and an executable version of the

simulation program.

E.3 Materials Required

LOGSIM248 runs on all IBM PC, XT, and AT compatibles

utilizing the MS/DOS operating system, therefore, it is

E-3-

NWJ

necessary for the user to have one of these of computers at

his disposal. of course, an executable version of LOGSIM248

is also required. This executable version may be obtained

upon request by writing to:

Air Force Institute of Technology
School of Engineering
Department of Engineering and Computer Science
Wright-Patterson AFB, Ohio 45433

and enclosing one 5 1/4 inch diskette.

LOGSIM248 may be invoked from either a floppy disk or

hard disk provided all input files are located within the

same directory as the executable version of the simulator.

Upon completion of the simulation, all output files will also

be located in this directory, so it is important to insure

plenty of storage room for this purpose.

Finally, the user will require the use of a text editor

or word processor capable of producing ASCII files. This

capability is required to produce the input files used during

LOGSIM248 execution. All files produced must be pure ASCII -

files with no extraneous control characters imbedded in the

text. if word processors are used they must be able to

conform to this requirement or LOGSIM248 will not function

properly.

E-4

E.4 LOGSIM248 File Interface

As mentioned above, LOGSIM248 uses four files as input.

The data from these files is used to; (1) construct the

circuit, (2) identify the output monitor points, (3) provide

input data to the simulator, and (4) construct the files

containing output data. All output data is contained in two

separate files. One of these contains the output displayed

in binary streams (ones and zeros), while the other displays

each output stream graphically, in square-wave form. All

input and output data is obtained from ASCII files containing

no imbedded control characters or executable machine code. e-

These files can be viewed or created through the use of any

text editor or word processor with ASCII file production

capability. When creating these files it is imperative that .

all data is entered as presented in the following sections.

Any errors in these input files will either cause the

simulator to produce erroneous results or cause the program
0

to abort.

LOGSIM248 input/output file information is presented in

Table E-1. This table shows the file name, file type (input

or output), file entry format (delimited by [1), and examples

of file entries. File format entry codes are shown in Table

E-2. .

zA,

E-5 . .

V V %

A.%

E.4.1 Circuit Configuration Input File - TEMP.CKT

The first of the input files, and perhaps most important,

is TEMP.CKT. This file contains all input information

required to build the circuit. All IC's and connections

between these IC's are specified within this file.

Additionally, connections between user defined input ports,

power, ground, and clock must be contained in this file.

All entries to TEMP.CKT are composed of two fields

separated by a full colon and followed by a new-line

character (carriage return). Each of the two fields describe

both ends of a particular connection within the circuit being

designed. Each field consists of four sub-fields as pictured

in Table E-1.

The first sub-field contains a capital letter immediately

followed by a three digit number. This four character field

describes where that end of the connection comes from. If

the letter used is a 'T' then that end of the connection

originated at a TTL IC package. The letter 'I' means an '

input, 'C' is the clock, 'P' is power, and 'G' is ground.

The three digit number identifies the particular input port

or TTL IC being referenced by this sub-field. For (P)ower,

(G)round, and (C)lock this three digit number is

inconsequential and may be anything. The number need not

consist of three digits, but all position in the field must

be filled with either a digit or a space. Padding with zeros

E-6

0..

II

Table E-1. Data File Formats
I (see Table E-2. for format codes) II I

I telp.ckt -- circuit input file I
I - format [dnnnttttttpp comment:dnnnttttttpp comment] I
I - example: I
| P0 power +5Vdc :TOOI 740014 power Vcc
II

temp.dis -- output monitor file
format: [dnnnttttttpp comment:]

-examples:
I To01 740003 output pin3 :
I 1003 input 6. :
Step.in -- input data stream file

- format: [nnn:iiiiiiiiii,..
tl - example:

001o:l010l010l01010ll0l010101010lO

temp.out -- binary output file
I- format: [IC #nnn (SNnnnnn) PIN #nn :coo...]

[Input nnn looo... I
[Clock :ooo... I

I [Power :000... I
I (Ground :Doo...] II ~ - examples:I

IC # I (SN 7400) PIN 113 :01101110011110000110011
I Input 003 :10011000011100110001101
I Clock :01010101010101010101010
I Power :lll iIlI111lllll 1l l
I Ground :00000000000000000000000

I teep.may -- waveform output file
- input stream description
format: [Input Innn Port cc :iii...] I

I - output stream description
I format: [IC #nnn (SNnnnnn) PIN Inn :www... I
I (Input ,nn :www ... I
I (Clock :www... I
I [Power :www... II
I (Ground :www...1

- example:
Input file contents:PINnput #013 Prt At :..MSm,,mwmm-._mm_.m

I--I
I utut data streams:I out

1 I (SN 7400) PIN 613 .. _
IC I 13 (SN74161) PIN #13 1

I Input 003 :1
m Clock :-&.,,L , ,m ,m --,,
I Power :
I Ground :---------------------- I
I , : I

0

Table E-2. File Format Codes

codes: d = connector descriptor (I character)
T : TTL IC
I : input port
P : power (+5Vdc)
6 : ground (OVdc)
C : clock

n z IC or input number (3 digits)
t z IC type (6 digits)

optional for input, power, ground, clock .
p = pin number (2 digits)

optional for input, power, ground, clock
comment z optional 20 character comment field "
i :input value, logical value I or 0
S output value, binary logical value I or 0 I
w output value, waveform logical value I =

logical value 0 z I

E-7

%r I"'

is a good practice for insuring proper field width. When

padding, it is good practice to left justify the number; ex.

T001, I 2, G000, etc..

The second sub-field consists of a six digit number

describing the type of TTL IC being used for this

connection. Because some IC type numbers are only four or

five digits long (i.e., 7400, 74107) the same rules of

padding hold here as above. It is important here to insure

that the number entered is indeed in the IC library used by

the simulator. A list of the 32 IC's presently contained in

the library is provided as Annex A to this manual. If the

end of the connection in question is connected to the clock,

power, or ground, these six positions may be left blank or

filled with any character.

Following the IC type indicator is a two digit number

representing the particular pin on the IC being used for this

connection. The same padding rules can be used here as

above. These two positions may also be left blank in the

case of power, ground, or clock. If the number entered here

exceeds the number of pins normally found on IC packages of

the type specified in the IC type sub-field, the simulator

will not perform properly.

The next 20 positions of each field are not used by the

simulator and r-ay be used for comments by the designer.

These positions have been included for future use or circuit

specific details not contained in the other sub-fields.

E-8

6 .. N NI.P

* 'WyWW)WVWVW WV TV -77- I.F Nrw

An example of this file is contained in Annex B of this

manual. It should be noted that all connections to the power

(Vcc) and ground (GND) pins are listed in this example file.

Although these are not required by the simulator (the

simulator assumes power and ground connections for Vcc and

GND pins only) it is good practice to include them.

E.4.2 Output Specification File - TEMP.DIS

In order to view expected output, it is necessary to

specify those places in the circuit where this output will

originate. These output monitor points are specified in the

file TEMP.DIS. All entries in this file consist of one field

terminate with a full colon. Each entry in this file is

exactly like one field of the entries in TEMP.CKT. Only the

left field is used and all sub-fields are the same as those

70described in the previous section. An example of this file

is also contained in Annex B.

E.4.3 Input Data File -TEMP.IN

TEMP.IN contains all input data from each input port

required for proper circuit simulation. Although some

circuit designs may take all input data from the power

supply, clock, or ground (electrical low), this file still 0
must exist. If no input ports have been specific in the

E-9

-:7

circuit then no data need be present in this file. An empty V

file in this circumstance is needed for proper functioning of

the circuit.

The entries in this file are comprised of two fields 0[

separate by a full colon. The first field contains a three

digit number specifying an input port for the data stream

which follows in the second field. The input port number

must be left justified in the three digit field and padded

with zeros. The input data stream for this input port must

immediately follow the colon and may be as long as 80

characters. This data field may only contain zeros and ones .

which represent electrical high and low. Any other-"

characters will not be correctly interpreted by the simulator [

and will produce erroneous results. An example of this file t

is also contained in Annex B. ,

E.4.4 Input Port Label File -TEMP.IND [

[.:

This file contains the labels used to identify input i[

ports. These labels are two character identifiers which will [.

be used in the output waveform file. This is an entirely

optional file. The simulator tests for the presence of this

file and uses it only if it exists. However, if it does of

exist it must have correct data in it. The absence of data

or an incorrect number of input port labels may cause

whic folon in th secon fild Th nutprnme

smutb left jutfe intetreoiinildadpde

simulation run time errors. a

E-101

zZ; Z7

Entries in this file consist of two characters followed

by any amount of information (up to 8 characters total) and

a new-line character (carriage return). Only the first two ..

characters of the line are read by the simulator. The rest

of the line may be used for any purpose the designer wishes.

The example in Annex B was created by the integrated digital -

design tool, IDIET, and contains additional information

required by the graphic user interface component of that

tool. This information is not mandatory.

These are the only files required for effective operation A.

of LOGSIM248. A complete example consisting of a schematic

circuit diagram, the three input files, and the two output

files is contained in Annex B.

E.5 Invoking the Simulator

All that is required to invoke the simulator is a copy of

the executable file, logsim.exe. Those input files described

above should be created and placed in the same directory as

logsim.exe. If these files are not in the same directory,

the simulator will not be able to find them and the output .

files will contain an error message alerting the user.

At the computer prompt the user need only type: ',

A>logsim ,.(

E-11

'p%

followed by a carriage return. LOGSIM248 will simulate the

circuit specified by the input files and return the system

prompt when finished. After the prompt has reappeared on the

screen, the output files, TEMP.OUT and TEMP.WAV, are

available for viewing.

E.6 Summary

LOGSIM248, a digital logic simulator for simulating

digital circuits comprised of TTL IC packages, was designed

for ideal performance when incorporated as a component of the

integrated digital design tool, IDIET. However, the

simulator may still be utilized in the absence of this tool.

This short manual has explained the operation and creation of

interface data files for this simulator and presents examples

in the following Annexes. All IC packages contained in Annex

A may be used to construct a myriad of sequential and
S

combinational digital circuits. These circuits can be

efficiently simulated using this manual, a test editor, and a

copy of the executable version of LOGSIM248.

,'.

E-12

AS

w

"p

S

ANNEX A: LOGSIM248 TTL IC Library

0
'-S

.5'.

5%~

C

.5

0r.

'p.

0

.~

.5'.

55

CM..

.5'.

'5

-'S
'P.S

S

0

"S.

5-.

"S.

E-13 $5.

0
ad"

'p

7400 - Qad2-npt ostie AN Gte
7400 - Quad 2-Input positive NAND Gate.
7402 - Quad 2-Input positive NOR Gate.
7404 - Hex Inverters.
7408 - Quad 2-Input positive AND Gate.
7410 - Triple 3-Input positive NAND Gate.
7420 - Dual 4-Input positive NAND Gate.
7425 - Dual 4-Input positive NOR Gate with strobe.
7427 - Triple 3-Input positive NOR Gate.
7430 - Single 8-Input positive NAND Gate.
7442 - Single BCD to DECIMAL (4 line to 10 line

Decoder).
7483 - Single 4-Bit Binary Full adder with fast carry.
7486 - Quad 2-Input Exclusive-OR Gate.
7489 - Single 64-Bit Read/Write Memory.
7493 - Single 4-Bit binary counter.
7495 - Single 4-Bit Shift Register.
74107 - Dual J-K Flip Flop with clear.
74109 - Dual J-K positive edge-triggered Flip Flop with

preset and clear.
74116 - Dual 4-Bit Latches.
74135 - Quad Exclusive-OR/NOR Gates.
74151 - Single 1-of-8 Data Selector/multiplexer.
74153 - Dual 4-Line to 1-Line Data

Selector/multiplexer.
74157 - Quad 2 to 1-Line Data Sel/mult (Non-Inverted

Data Outputs).
74163 - Synchronous 4-Bit Counter (Binary, synchronous

clear).
74175 - Quad D-Type Flip Flop.
74181 - Arithmetic Logic Units/Function Generators.
74183 - Dual Carry Save Full Adders.
74193 - Synchronous Up/Down Dual Clock Counter (Binary

with clear).
74194 - Single 4-Bit Bidirectional Universal Shift

Register.
74274 - Single 4-Bit by 4-Bit Binary Multiplier.
74279 - Quad (Inv)S - (Inv)R Latch.

74284 - Single 4-Bit by 4-Bit Parallel Binary
Multiplier used with '285'.

74285 - Single 4-Bit by 4-Bit Parallel Binary
multiplier used with '284'.

74298 - Quad 2-Input Multiplexer with storage.
74378 - Hex D-Type Flip Flop.

Figure E-1. LOGSIM248 TTL IC Library

E-A-1

1

A.

F

a.

1~

.1
'Iv

ANNEX B: Example Input/Output File Structure IS

*55

S

S
k

I-

S
*1~

I.

'I.

S

S.

*1I

S
I.

1

I.

'p
E-15

S

S.
5

. *~SSSI -* *~ ~ ~ I ~ ~" IS

P~~~~~~~~VV~. 0 OE 464**********

P 0 POWER 0 1****************:T 3 748614********************
P 0 POWER 0 2****************:T 2 741014********************
P OE *******T 1 740014******************: GON
T 1 7400 7 4****************:G @GROUND

T 3 7486 7 6****************:G OGROUND
T 1 7400 3 7**********k******:T 2 74102**********
T 1 7400 6 8****************:T 2 741013********************
T 3 7486 3 9****************:T 2 7410
T 1 740011 10****************:T 3 74864**********

I I ii 0 11********T 1 74001*********
I 1 il. 0 12****************:T 1 74004**********
I 1 il. 0 13****************:T 3 7486 **********

1 2 i2 0 14****************:T 1 7400 2*********
1 2 i2 0 15****************:T 1 740013********************
1 3 i3 0 16****************:T 1 740012****************~**
1 3 i3 0 17****************:T 1 7400 **********
1 4 i4 0 18****************:T 3 7486 **********
1 5 i5 0 19****************:T 3 74862**********
1 6 i6 0 20****************:T 2 74104**********
1 7 i7 0 21****************:T 2 74103**********
1 8 i8 0 22***********b*****:T 2 74101**********

Figure E-3. Circuit Conficjuration Iakut File - TEMP.CKT

T 2 741012********************.
T 2 7410 6**********
T 3 7486 6**********
1 2

Figure E-4. Output Monitor File -TEMP.DIS

001 :01010101010101010101
002: 00110011001100110011
003:00001111000011110000
004: 00000000111111110000
005: 10101010101010101010
006: 11001100110011001100
007: 11110000111100001111
008: 11111111000000001111

Figure E-5. Input Data File -TEMP.IN

Input data files:
il - 001 ********************:01010101010101010101
i2 = 002 ********************:00110011001100110011
i3 = 003 ********************:00001111000011110000
i4 = 004 ********************:00000000111111110000
i5 = 005 ********************:10101010101010101010
i6 = 006 ********************:11001100110011001100
i7 = 007 ********************:11110000111100001111
i8 =008 ********************:11111111000000001111

FigureE-6._Input Port Label File -TEMP.IND

E-B-1

Output file contents:

IC # 2 SN 7410 PIN #12 :00010101111111110001
IC # 23N 7486) PIN # 6 :01111111101111110111

IC# (N 48)PIN # 6 :10101001101010011010
Input # 2 :00110011001.100110011

Figure E-7. Binary Ouput File - TEMP.OUT

-M O M -- -- - ONES

S-., :I #1 * m mmumum -

i 0 N % 4 .,,

In t # 2 mnarnn.m

Figure E-8. Waveform Output File -TEMP.CKT

E-B-2

% % % % % %- -* % *

* - * ** ~ g - NN

I-.

completin WWI. ovrsa asigmets After attanin theW7 vy V 9"
VITA

Captain Wayne C. DeLoria was born on 27 January 1954 in

Chicopee, Massachusetts. He graduated from high school in

1972 and enlisted into the U.S. Army in March 1974. He

served for six years as a Non-Morse Communications Analyst

completing two overseas assignments. After attaining the '

rank of Sergeant, Captain DeLoria was accepted to Officer

Candidate School from which he graduated on 29 February

1980. He then served as a Project Officer and Headquarters

Company Commander for the Electronic Material Readiness

Activity, Vint Hill Farm Station, Virginia. In 1984 he

entered James Madison University through the full time Degree

Completion Program. After graduating in December 1986 with a

Bachelor of Science Degree in Computer Science, Captain

DeLoria went on to attend The Air Force Institute of
16..

Technology, School of Engineering.

0

Permanent address 36 Hillside Avenue .

Chicopee, Massachusetts 01020

193

NS
-- I,.

* ~L.A.-,:.:.,

J NCLASS='TED
SECURITY CLASSIFICATION OF !'HIS PAGE P

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Ia. REPORT SECJRITY CLASSIFrCATON lb RESTRICTIVE MARKINGSUNCL AS S 1F I =- r

2a. SECURITY CLASSIFiCATiON AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIF CATION/DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

AF!7/ T CS/ENG/87D- 10 "

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORrNG ORGANIZATION
(If applicable)

School of Engineering AF IT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZfP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583 ,

8a. NAME OF FUNDING SPONSORING 1 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONj (If applicable)

5c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

6PROGRAM IPROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Securrty Classification)

See Box 19

12. PERSONAL AUTHOR(S)
Wayne C. DeLoria, B.S., Captain, USA

13a. TYPE OF REPORTS e 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 1 S5 PAGE CCUNT
MS Thesis FROM _____TO ___ 1987 December 205

16. SUPPLEMENTARY NOTATION

17 COSA71 CODES 18. SUBJECT TERMS (Continue on revere if necessary and identify by block number)
FIELD GROUP SUB-GROUP

05 Digital Simulation, Parallel Processing12o :.
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: A DIGITAL LOGIC SIMULATCR WITH CONC'JRR (PRCGRAYi-NG S
C S::ERATICNS ('-TC'ASSIF IED)

Th esis Chairman: Nathaniel J. Davis iV, Captain, Ph-D, USA
ECE Assistant Professor of Electrical and Computer
Engineering

I I I
,.r,,P !, rel , .,- Ar. 1.,

0

20 DISTRIBUT ON AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
C3-UNCLASSFED'UNL;M1IED U SAME AS RPT C3 DTIC jSERS ',L7,. ,AS_ 3"F ..=-

22a NAME OF RESPONSBLE NDIVIDUAL 22b TE, '.PONE (Include Area Code) 22c OFF CE ,SYMBOL
OPT Nathaniel J. Davis IV (513) 255-3576 AFIT/R:G

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

LNCLASSE IED

• ... ,. .,......

UNCLASSIFIED

Block 19. (cont.)

The digital logic simulator, LOGSIM248, a re-engineered
version of LOGSIM, version 5.5, has been implemented as a
component of the digital design environment, IDIET

(Integrated DIgital Engineering Tool). This new design
expands the capabilities of the older version by improving

run time performance, maintainability, and compatibility.
Written in the C programming language, LOGSIM248 boasts
looser coupling between functional modules while exhibiting
greater functional cohesion within these modules. As an
integral part of IDIET, the simulator overcomes difficulties

created by the complicated user interface of earlier
versions.

With greater run time performance as a goal, this new
simulator was studied and adapted to produce a concurrent
implementation. Here, several roadblocks were encountered
which essentially showed this algorithm and data structure
implementation to be difficult to 'parallelize,* at best. Due
to communication constraints on the host computer, data
structures used to simulate circuits caused large delays due
to the requirment to disassemble and re-assemble them at the
various processing nodes. This program handicap coupled with
communication transmission delays between processors resulted
in time complexity problems.

Essentially a software engineering project, the re-
design of LOGSIM, version 5.5, was necessitated by various
shortcomings associated with the older version. The new
implementation conforms to the proposed ANSI standard for the
C programming language by utilizing only standard library
functions and source code which complies with the original
Kernighan and Ritchie model. This re- hosting has improved
system portability allowing LOGSIM248 to run on all MS/DOS
micro-computers available to the designer.

UNCLASSIFIED

r.
-I

S

pe4.

Rc ..

7£t" "

/ ,-
w W w W W W W

?"d'' ~.P d -~*555 5*~ ' ~

5a 'a1A

