

FILE GAR

	-	 	
AD	1		

SELF-BORING PRESSUREMETER IN PLUVIALLY DEPOSITED SANDS

Final Technical Report

by

R. Bellotti, V. Crippa, V.N. Ghionna, M. Jamiolkowski and P.K. Robertson

June 1987

United States Army

EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY

London England

CONTRACT NUMBER DAJA45-84-C-0034

ENEL CRIS - MILAN (ITALY)

Approved for Public Belease, distribution unlimited

C7 1: ... 906

REPORT DOCUMENTAT	READ INSTRUCTIONS	
REPORT NUMBER		OH NO. 3. RECIPIENT'S CATALOG NUMBER
TITLE (and Substite)		S. TYPE OF REPORT & PERIOD COVERED
SELF-BORING PRESSUREMETER IN P	LUVIALLY	FINAL TECHNICAL REPORT
DEPOSITED SANDS		Aud DA · Aud 'ST
		8. PERFORMING ORG. REPORT NUMBER BELLOTTI
AUTHOR(+)	······································	1. CONTRACT OR GRANT NUMBER()
R. Bellotti, V. Crippa, V.N. G	hionna.	DAJA 45-64-C-0034.
M. Jamiolkowski, and P.K. Rober		BELLOTTI
PERFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS
ENEL-CRIS		GIOZA.
Via Ornato, 90/14		1 L 16 11 02 BH 57EN-01
20162 - MILANO (ITALY) CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
USARDSG(UK)		JUNE 1967
BOX 65. FPC NY OSSIC	150C	13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESSI di	(b)	111ce) 15. SECURITY CLASS. (of the report)
MONTIONING AGENCY HANE & ADDRESSING	Trefent troot Controlling O	incer 13. SECURITY CLASS. (or due report)
		UNCLASSIFIED
DISTRIBUTION STATEMENT OF ALL Reports	ean Distrit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for fublic Rel		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for Fublic Rel		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of the Report) Approved for fublic Rel DISTRIBUTION STATEMENT (of the obsider of SUPPLEMENTARY NOTES REY HORDS (Continue on reverse side if necessar	lered in Black 20, 11 diller	15. DECLASSIFICATION/DOWNGRADING SCHEDULE A.I.T.ON UNIIM III ent from Roport)
Approved for fublic Rel DISTRIBUTION STATEMENT (OF the observer and SUPPLEMENTARY HOTES	iorod in Black 20, 11 dillor iy and (fontify by black n	15. DECLASSIFICATION/DOWNGRADING SCHEDULE X.I.T.ON UNII IM J.I. ent from Report)
Approved for fublic Rel DISTRIBUTION STATEMENT (of the observer only SUPPLEMENTARY HOTES REY WORDS (Continue on reverse olde if necessar Self-boring pressuremeter, San	iered in Block 20, 11 diller T and (femility by block a ds, Initial in-s	15. DECLASSIFICATION/DOWNGRADING SCHEDULE Mitton Unit im Itil ent from Report) itu horizontal stress,
Approved for fublic Rel DISTRIBUTION STATEMENT (of the observer only SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse ofde if necessar Self-boring pressuremeter, San	iered in Block 20, 11 diller T and (femility by block a ds, Initial in-s	15. DECLASSIFICATION/DOWNGRADING SCHEDULE Mitton Unit im Itil ent from Report) itu horizontal stress,
Approved for fublic Rel DISTRIBUTION STATEMENT (of the observer only SUPPLEMENTARY NOTES	iered in Block 20, 11 diller 17 and (dentify by block o ds. Initial in-s Limit Pressure,	15. DECLASSIFICATION/DOWNGRADING SCHEDULE A.t.on Unit in Itil ent from Report) itu horizontal stress, , Calibration Chamber

- ----

- ----

UNUDSSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then Dois Enterog

. . .

•

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) 20. The purpose of the testing was to evaluate the performance of the selfboring pressuremeter and to critically review existing interpretation methods of SBPT in sand. Accession For NTIS GRAAT DTIC TAB Ō Unannounced Justification By_ Distribution/ Availability Codes Avail and/or Special D4,st A

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

-

-

TABLE OF CONTENTS

2. TEST EQUIPMENT page 2.1. Calibration Chamber (CC) page 2.2. Self-boring Pressuremeter page 3. TEST SAND page 4. TEST PROCEDURES page 4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.2.3. Sample Stresses page 4.4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page TABLES TABLES	INTE	TION page	5
2.2. Self-boring Pressuremeter page 3. TEST SAND page 4. TEST PROCEDURES page 4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	TEST	IPMENT page	5
2.2. Self-boring Pressuremeter page 3. TEST SAND page 4. TEST PROCEDURES page 4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	2.1.	ibration Chamber (CC) page	5
3. TEST SAND page 4. TEST PROCEDURES page 4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page			6
4. TEST PROCEDURES page 4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page			
4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	TEST	D page	7
4.1. Sample Formation page 4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page			
4.2. Probe Installation page 4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	TEST	CEDURES page	7
4.2.1. Ideal page 4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	4.1.	ple Formation page	7
4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress: page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	4.2.	be Installation page	7
4.2.2. Self-bored page 4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress: page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page		.1. Ideal page	7
4.3. Sample Stresses page 4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page			8
4.4. Pressuremeter Expansion page 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress: Ideal Installation Ideal Installation page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	4.3.		8
 5. TEST RESULTS page 5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress: Ideal Installation page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: Self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page 	4.4.	ssuremeter Expansion page	9
5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress: Ideal Installation Ideal Installation page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page			
5.1. Initial Horizontal Stress page 5.1.1. Initial Horizontal Stress: Ideal Installation Ideal Installation page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page	TEST	ULTS page 1	0
5.1.1. Initial Horizontal Stress: Ideal Installation page 5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page		tial Horizontal Stress page 1	0
5.1.2. Evaluation of Stress Concentration page 5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: Self-Bored Installation page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page			
5.1.3. Mechanical Compliance of Strain Arms page 5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: Self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page		Ideal Installation page 1	0
5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: Self-Bored Installation page 5.2. Shear Modulus page page 5.3. Shear Strength page page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page		.2. Evaluation of Stress Concentration page 1	1
5.1.4. Evaluation of Arching Effects page 5.1.5. Initial Horizontal Stress: Self-Bored Installation page 5.2. Shear Modulus page page 5.3. Shear Strength page page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page NOTATIONS page		.3. Mechanical Compliance of Strain Arms page 1	1
5.1.5. Initial Horizontal Stress: Self-Bored Installation page 5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page			3
5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page			
5.2. Shear Modulus page 5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page		Self-Bored Installation page 1	3
5.3. Shear Strength page 5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page	5.2.		4
5.4. Limit Pressure page 5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page			1
5.5. Boundary Conditions page 6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page			5
6. SUMMARY AND CONCLUSIONS page LITERATURE CITED page NOTATIONS page			5
LITERATURE CITED page			
LITERATURE CITED page	SUMM	AND CONCLUSIONS 2000 2	6
NOTATIONS page			
NOTATIONS page	LITE	RE CITED page 2	9
	NOTA	S page 3	2
TABLES			
	TABI		
FIGURES	FIGU		

APPENDIXES

1

LIST OF TABLES

TABLE	1:	SUMMARY OF INSTALLATION CONDITIONS DURING SELF-BORING
TABLE	2:	SUMMARY OF GENERAL CALIBRATION CHAMBER CONDITIONS AFTER SAMPLE CONSOLIDATION
TABLE	3:	SUMMARY OF PROBE AND CC CONDITIONS DURING SELF-BORED TESTS
TABLE	4:	SUMMARY OF LITF-OFF PRESSURES OF INDIVIDUAL ARMS
TABLE	5:	SUMMARY OF LIMIT PRESSURE AND SECANT SHEAR MODULUS
TABLE	6:	SUMMARY OF 1ST UNLOADING-RELOADING CYCLE
TABLE	7:	SUMMARY OF 2ND UNLOADING-RELOADING CYCLE
TABLE	8:	SUMMARY OF 3RD UNLOADING-RELOADING CYCLE
TABLE	9:	SUMMARY OF 4TH UNLOADING-RELOADING CYCLE
TABLE	10:	SUMMARY OF 1ST RELOADING-UNLOADING CYCLE
TABLE	11:	SUMMARY OF CALCULATED ANGLES OF FRICTION AND DILATANCY $\{\phi'_{CV} = 34^{\circ}\}$

LIST OF FIGURES

- FIG. 1: SCHEMATIC CROSS-SECTION OF ENEL-CRIS CALIBRATION CHAMBER
- FIG. 2: SCHEMATIC OUTLINE OF CC LOADING AND DATA ACQUISITION SYSTEM FOR SBPT IN SAND
- FIG. 3: SCHEMATIC OUTLINE OF SELF-BORING PRESSUREMETER PROBE CAMKOMETER MARK VIII
- FIG. 4: GENERAL CHARACTERISTICS OF TICINO AND HOKKSUND SAND
- FIG. 5: SCHEMATIC OUTLINE OF SAND SPREADER .
- FIG. 6: SCHEMATIC OUTLINE OF IDEAL INSTALLATION PROCEDURE IN CC
- FIG. 7: SCHEMATIC OUTLINE OF SELF-BORING INSTALLATION PROCEDURE IN CC

02

....

- FIG. 8: EXAMPLE OF TYPICAL SAMPLE CONSOLIDATION
- FIG. 9: AVAILABLE BOUNDARY CONDITIONS IN CC
- FIG. 10: TYPICAL TEST RESULT FROM SBPT IN CC
- FIG. 11: COMPARISON BETWEEN MEASURED AVERAGE LIFT-OFF STRESSES (p_o) AND APPLIED BOUNDARY STRESSES (σ_{ho}): IDEAL INSTALLATION
- FIG. 12: 1-D STRESSING OF CAMBRIDGE Ko- CELL IN CC
- FIG. 13: EXAMPLE OF STRAIN ARM COMPLIANCE DURING SAMPLE CONSOLIDATION STAGE
- FIG. 14: EXAMPLE OF PRONOUNCED MECHANICAL COMPLIANCE OF STRAIN ARMS DURING PRESSUREMETER EXPANSION
- FIG. 15: DETAILS OF ORIGINAL AND MODIFIED SBP STRAIN ARMS
- FIG. 16: COMPARISON BETWEEN MEASURED AVERAGE LIFT-OFF STRESSES (p_o) AND APPLIED BOUNDARY STRESS (σ_{ho}): SELF-BORED INSTALLATION
- FIG. 17: SCHEMATIC OF SHEAR MODULI FROM SBP TEST
- FIG. 18: SCHEMATIC OF EFFECTIVE STRESS PATH OF SOIL ELEMENT ADJACENT TO AN EXPANDING PRESSUREMETER
- FIG. 19: SCHEMATIC OF UNLOADING-RELOADING CYCLE DURING SBPT IN SAND
- FIG. 20: TYPICAL RESULTS OF SIMPLE SHEAR TESTS ON SAND (AFTER STROUD) AND THE IDEAL SOIL MODEL ASSUMED BY HUGHES ET al. (1977).
- FIG. 21: CALCULATED STRESS STRAIN RELATIONSHIPS FROM TEST No.222 (D_R = 46.2%) USING METHOD BY MANASSERO (1987)
- FIG. 22: CALCULATED STRESS STRAIN RELATIONSHIPS FROM TEST No.228 (D_R = 77%) USING METHOD BY MANASSERO (1987)
- FIG. 23: ANGLE β ; DEVIATION OF ESP FROM ISOTROPIC ELASTIC BEHAVIOUR (FOR WHICH $\beta = 90^{\circ}$)
- FIG. 24: DETERMINATION OF ϕ_{CV} FROM RING SHEAR TESTS
- FIG. 25: COMPARISON OF CALCULATED ϕ_P^{PS} FROM SBPT AND EQUIVALENT ϕ_P^{PS} FROM TRIAXIAL TESTS

LIST OF APPENDIXES

APP.	I	EXAMPLE OF COMPUTER GENERATED PLOTS FOR TYPICAL TEST RESULT
APP.	11	COMPLETE LISTING FOR EACH SBPT RESULTS
APP.	111:	CALCULATION OF AVERAGE STRESS ON HORIZONTAL PLANE AROUND EXPANDING CAVITY
APP.	IV	DETAILS ON MANASSERO (1987) METHOD FOR DETERMINATION OF ϕ FROM SBPT IN SAND

ì.

1. INTRODUCTION

This report presents the results of 47 self-boring pressuremeter tests (SBPT's) performed in the ENEL-CRIS(*)^{*} calibration chamber (CC). The tests were performed in dry and saturated Ticino and Hokksund sand. Pressuremeter tests were performed with the probe in-place during sample preparation (*ideal installation*) and with the probe self-bored into the saturated sand.

The purpose of the testing was to evaluate the performance of the self+boring pressuremeter (SBP) probe under strictly controlled laboratory conditions and to critically review existing interpretation methods of the SBPT in sands. The SBP probe used in the study was the Camkometer Mark VIII manufactured by Cambridge In-situ Ltd., England.

2. TEST EQUIPMENT

2.1. Calibration Chamber (CC)

F

The ENEL-CRIS calibration chamber was designed to calibrate and evaluate different in-situ testing devices in sands under strictly controlled boundary conditions.

A complete description of the chamber is given by Bellotti et al. (1982). The equipment consists of a double wall chamber, a loading frame, a mass sand spreader for sand deposition and a saturation system. The chamber can test a cylindrical sample of sand 1.2 m (3.9 feet) in diameter and 1.5 m (4.9 feet) in height.

A schematic cross-section of the ENEL-CRIS calibration chamber is shown in Figure 1.

The sample is confined laterally with a flexible rubber membrane surrounded by water through which the horizontal stresses are applied. The bottom of the sample is supported on a water filled cushion resting on a rigid steel piston.

The vertical confining stress is applied through the water filled base cushion and vertical deflection of the sample is controlled by the movement of the base steel piston. The top of the sample is confined by a rigid top plate and fixed beam.

The double-walled chamber allows the application of a zero average lateral strain boundary condition to the test sample by maintaining the pressure in the double-wall cavity equal to the lateral pressure acting on the sample membrane.

(*) ENEL - CRIS: Italian National Electricity Board - Hydraulic and Structural Research Center.

The axial and lateral confining pressures can be varied independently so that the ratio of the applied horizontal stress (σ_h) to the vertical stress (σ_v) can be maintained at any desired value.

A schematic cross-section of the CC loading system is shown in Figure 2.

2.2. Self-boring Pressuremeter

The SBP probe used in the study was the Camkometer Mark VIII manufactured by Cambridge In-Situ Ltd., England. A schematic outline of the SBP probe is given in Figure 3.

The SBP probe is essentially a thick walled steel cylinder with a flexible membrane attached to the outside. The instrument is advanced into the ground as the soil displaced by a sharp cutting shoe is removed up the center of the probe by the action of a rotating cutter inside the shoe. The cuttings are flushed to the surface by water or drilling mud which is pumped down to the cutting head.

The cylindrical adiprene membrane used in this study was 82 mm in diameter and 490 mm in length, corresponding to a length to diameter ratio (L/D) of approximately 6. The adiprene membrane was designed to be flush with the body of the probe. An outer flexible protective membrane with stainless steel strips ("chinese lantern") can be placed over the adiprene membrane during penetration and testing in dense or abrasive soils.

Once the instrument is at the desired test depth, the membrane is expanded against the soil using pressurized N_2 gas. The radial expansion of the membrane is measured at the mid-height of the membrane by three pivoted levers, called strain arms. The strain arms are located at 120 degrees around the circumference. The strain arms are kept in light contact with the inside of the membrane by strain gauged cantilever springs (Figure 3). Individual and average readings were taken of the three strain arms. The sensitivity of the strain arms was approximately 0.02 mm/mV.

A strain gauged total pressure cell (TPC) is located inside the probe to measure the inflation gas pressure. Two strain gauged pore pressure cells (PPC) are also incorporated into the membrane. The sensitivity of the PPC and TPC was approximately 8 kPa/mV.

The data from all six transducers (3 strain, 1 total pressure, 2 pore pressure) was collected by the original data acquisition system consisting of a data capture unit, and a thermal paper printer with the addition of a cartridge equipped HP 9825 computer and a wider paper tape printer. The output was also recorded on a four channel Y-T chart recorder and an X-Y plotter for simultaneous plotting of raw data (Fig.2).

3. TEST SAND

Two natural sands have been tested; Ticino sand from Italy and Hokksund sand from Norway. Both sands have a uniform gradation and are medium to coarse grained with a mean grain size, $D_{50}=0.53$ mm, and 0.39 mm for Ticino and Hokksund sand, respectively.

General characteristics of the sands and grain size distributions are given in Fig.4.

A detailed description of the physical properties of the two sands is given by Baldi et al. (1985).

During the course of the testing different batches of Ticino sand were used. However, each batch was tested to ensure consistent grain size characteristics.

4. TEST PROCEDURES

4.1. Sample Formation

All test samples were prepared by pluvial deposition of dry sand in air using a gravity mass sand spreader (Jacobsen, 1976). A schematic representation of the mass sand spreader is shown in Figure 5.

The pluvial deposition method has the following advantages;

- good repeatibility
- wide range of obtainable relative densities
- $(20\$ \le D_R \le 98\$)$
- good homogeneity of sample
- cost effectiveness.

The homogeneity of the samples is generally good although somewhat erratic for medium dense specimens (40% $\leq D_R \leq 60$ %). Full details concerning sample homogeneity is given by Baldi et al. (1985).

Sample formation is performed in one operation and the sand container holds enough sand necessary for specimen preparation.

4.2. Probe Installation

4.2.1. Ideal

To evaluate and avoid the influence of the self-boring installation on the pressuremeter results a series of tests were performed with "ideal installation".

For ideal installation the probe was placed in the CC before sample formation. A schematic outline of the ideal installation procedure is shown in Figure 6.

The SBP probe was placed in the center of the CC with the midheight of the membrane approximately 65 cm (25 inches) from the sample base. A protective cylinder was placed above the probe and extended up to the base of the sand container (see Fig.6). This was done to avoid sand falling onto the top of the probe during sample formation.

4.2.2. Self-bored

To simulate field self-boring conditions a series of tests were performed with the probe self-bored into the CC. A schematic outline of the self-bored installation procedure is given in Figure 7.

The sand samples were first formed using pluvial deposition and then saturated with de-aired water. Full details of the saturation procedures are given by Bellotti et al. (1982). The probe was self-bored into the CC using water as the flushing fluid. Drainage was generally allowed at the base of the sample. A summary of the installation conditions during selfboring is given in Table 1.

Installation was performed with various boundary conditions in order to evaluate their influence on the test results (see Table 1).

A small vacuum (5 t/m^2) was applied to the inside of the SBP probe to maintain the adiprene membrane in close contact with the body of the probe.

The cutter speed was generally maintained at a rate of about 60 revolutions per minute. The distance of the cutter from the leading edge of the cutting shoe was varied from about 1.9 cm (0.75 inch) to 5.4 cm (2.13 inches). For the tests in dense sand the adiprene membrane was generally protected by using the chinese lantern. The size of the cutting shoe was adjusted to be the same diameter as the membranes.

The probe was advanced into the CC at a rate of about 3 cm/min. (1.18 inches/min).

A flowmeter was used to monitor the flow rate of the flushing water sent to the cutter. The flow rate was generally about 9 to 12 lt/min. The flow rates from the probe and calibration drainage lines were also monitored. During the installation, the CC pore pressures and boundary stresses and strains were monitored. All the sand flushed out from the CC during installation was carefully collected and weighted (oven-dry).

4.3. Sample Stresses

Following sample formation and probe installation, the sample was subjected to one-dimensional consolidation under conditions of no average lateral strain (i.e. $\Delta \epsilon_h = 0$). Normally

consolidated (NC) and mechanically overconsolidated (OC) specimens were reproduced.

During the loading and unloading consolidation phases, changes in vertical effective stress (σ'_V) and the corresponding vertical strain (ϵ_V) were recorded. This allowed the calculation of the constrained modulus (M_O) and the coefficient of earth pressure at rest (K_O) .

A summary of the general CC conditions at the end of consolidation is given in Table 2.

An example of data collected during a typical sample stressing is given in Figure 8.

During the SBPT the sample boundary conditions could be controlled.

A summary of the possible boundary conditions is given in Figure 9.

The boundary conditions applied during each pressuremeter test are given in Table 2.

The most common boundary condition applied was constant vertical (σ_v = constant) and horizontal (σ_h = constant) stresses (BC1).

4.4. Pressuremeter Expansion

After sample stressing and the self-boring insertion when appropriate, the pressuremeter test was performed by expanding the membrane to a maximum cavity strain (ϵ_0) of about 10%. Cavity strain is defined in terms of circumferential strain;

$$\epsilon_0 = \frac{\Delta R}{R_0} \qquad \dots (1)$$

where:

 R_o = initial cavity radius ΔR = increment of cavity radius.

Generally, before the beginning of the expansion phase, a relaxation time ranging between:

• 30' to 60' in tests with ideal installation

• 60' to 180' in tests with self-boring installation was allowed.

Only strain controlled tests were performed using an electronic Strain Control Unit (SCU) supplied by Cambridge In-Situ Ltd.

The SCU automatically adjusts the expansion pressure as a function of the output from the strain arms.

Constant strain rates of 0.1%/hour up to 2% per minute can be achieved. Generally, tests were performed at a strain rate of about 1%/minute.

Generally, during each expansion phase, two or three unloadingreloading (UR) loops and, during the contraction phase, one or two reloading-unloading (RU) loops were performed. The strain amplitude for each UR or RU loop was maintained constant and in the order of 0.1 to 0.2%.

An example of a typical pressuremeter test result is shown in Figure 10.

Typical pressuremeter tests show the average strain for the three strain arms. The average strain is calculated at any instant in time as the numerical average of each strain arm measurement.

A summary of the probe and chamber conditions for the tests using self-bored installation is given in Table 3.

Data from all transducers in the SBP probe were stored on computer cassettes and printed in digital form on a paper tape printer. After each test the basic data was processed and corrected for membrane stiffness. Examples of the computer generated plots are given in Appendix I.

5. TEST RESULTS

A complete listing of all the test results is given in Appendix II.

5.1. Initial Horizontal Stress

It is generally postulated that, if the SBP probe is inserted into the ground with minimum disturbance to the surrounding soil, the total horizontal stress (σ_{ho}) existing in the soil prior to insertion can be measured. The σ_{ho} is measured by recording the corrected SBP cavity pressure (p_0) causing "liftoff" of the pressuremeter membrane. This postulation should be especially valid in the case of the "ideal-installation" used in the CC for test No.201 to 236, inclusive and No.262 and 263. Table 4 presents a summary of lift-off stresses for each strain arm. The lift-off stress was determined from a visual inspection of the early part of the expansion curve.

5.1.1. Initial Horizontal Stress: Ideal Installation

Examination of the results in Table 4, for ideal installation, shows that the measured average lift-off stress (p_0) is often significantly different than the applied boundary stress (σ_{h0}) . Figure 11(a) presents a comparison of the measured average lift-off stress and the applied boundary stress for the tests with ideal-installation.

The average lift-off stress is defined as the observed "liftoff" from the cavity expansion versus average strain plot, as shown in Fig.10. This lift-off is generally very close to the first lift-off of one of the arms. The reasons for the differences are not clear but may be caused by one or more of the following;

- a. stress concentration around the rigid SBP probe juring one-dimensional stressing,
- b. mechanical compliance of the strain arms,
- c. arching effects caused by the presence of an annulus of looser sand around the SBP probe.

In the field, the possible existance of anisotropic stress fields [Dalton and Hawkins (1982)] should also be considered, but this possibility does not exist in the triaxial CC tests.

5.1.2. Evaluation of Stress Concentration

The possibility of stress concentrations around the probe in the CC during the consolidation stage was investigated using a rigid self-boring K_0 -cell manufactured by Cambridge In-Situ Ltd. The K_0 -cell has the same diameter as the SBP probe and consists of a rigid steel cylinder with a K_0 -cell mounted flush on one side. The K_0 -cell is strain-gauged and operated on a null-indicator principle. Gas pressure on the inside of the cylinder is constantly adjusted to ensure no lateral strain of the K_0 -cell.

One test was performed (Test N'226) using the K_0 -cell with ideal-installation in the CC. The test was carried out using Ticino sand at a $D_{\rm R}$ - 60%. The sample was stressed under boundary conditions BC 3 up to a stress of $\gamma_{\rm ho}$ - 3 0 kg/cm² and $\sigma_{\rm VO}$ = 6.2 kg/cm². A comparison between the applied horizontal stress ($\sigma_{\rm ho}$) and the measured stress ($P_{\rm h}$) recorded with the K_0 -cell is shown in Figure 12.

The results from this special test indicate that there is little or no stress concentration around the SBP probe after ideal-installation in sand in the CC. A comparison between the K_0 -cell results and the SBP probe results is also included in Figure 11.

5.1.3. Hechanical Cumpliance of Strain Ares

The problem of mechanical compliance of the strain arms has been investigated in detail. The first indications of this phenomena emerged during SBP tests performed at several Italian clay and sand sites using the same SBP equipment used in this study [Ghionna et al. (1983), Jamiolkowski et al. (1985). Bruzzi et al. (1986)].

The following observations emerged from the field tests:

a. the "lift-off" pressures from each strain arm were almost always different. This occured even in soil deposits for which it was difficult to justify, based on geologic history, the presence of anisotropic horizontal in-situ stresses, b. the differences between the three measured "lift-off" pressures tended to increase with increasing soil stiffness and ambient in-situ soil stress.

These observations indicated a possible problem due to mechanical compliance of the strain arms. These problems where further confirmed during the CC testing when the following observations were made;

- despite the "ideal installation" of the SBP probe and the simple stress history of the CC specimens, different "lift-off" pressures were recorded for each of the three strain arms. The difference was more pronounced in the stiffer samples,
- during the sample stressing with the probe installed, apparent inward movement of the strain arms was recorded when the radial chamber stress was increased and apparent outward movement when the chamber stress was decreased. An example of this phenomenon is shown in Figure 13.

Figure 14 presents the results of the initial portion of expansion curves recorded with each strain arm and with the averaged strain for a test with pronounced mechanical compliance.

The mechanical compliance of the strain arms tends to confuse the initial part of the expansion curves and makes the detection of the lift-off pressure uncertain.

The detection of the lift-off pressure becomes more difficult with increasing stiffness of the surrounding soil because the slope of the initial portion of the expansion curve becomes very steep.

In an effort to eliminate or at least reduce the mechanical compliance the three strain arms were modified.

A comparison between the original and modified strain arm designs is shown in Figure 15. The modified arms had the following major changes:

- the body of the arms were made thicker and stiffer and were machined from stainless steel instead of the original brass,
- the alignment of the pivots and arms with respect to their seats on the probe body were improved,
- the pivots were modified by using precision miniature bearings.

All the tests from N'225 onwards used a SBP probe with the modified strain arms.

Figure 11(b) shows a comparison between the measured average lift-off stress (with modified arms) and the applied chamber stress for the remaining CC tests with ideal-installation. The results indicate that the modifications to the strain arms have minimized to some extent the mechanical compliance but have not completely removed the problem.

At pesent, based on the CC results using ideal installation it appears that the strain measuring system in the existing version of the Cambridge In-Situ Ltd., Camkometer (Mark VIII) requires radical changes in order to improve the precision of the measured lift-off pressures, especially in stiffer soils.

5.1.4. Evaluation of Arching Effects

The possible problem of arching around the SBP probe has not been directly investigated. The experience gained in the evaluation of sample homogeneity of pluvially deposited CC samples [Baldi et al., (1985)] indicates that D_R tends to increase slightly towards the center of the sample. However, this experience refers to samples formed without the SBP probe installed inside the CC.

5.1.5. Initial Borizontal Stress: Self-Bored Installation

Figure 16 compares the measured average lift-off pressures against the applied boundary stress ($\sigma_{\rm ho}$) for the CC tests with self-boring installation. In almost all cases the measured average lift-off stress is less than the applied stress and often close to the water pressure in the CC. This indicates significant sample disturbance during the installation, especially in loose and medium dense samples.

The ratio between the average lift-off stress (p_0 (AV)) and the applied boundary stress (σ_{ho}) for the self-bored installation is:

$$\frac{P_0 (AV)}{\sigma_{h0}} = 0.47 \pm 0.28 \qquad \dots (2)$$

Table 4 presents a summary of the individual lift-off pressures for each strain arm. Examination of Table 4 shows that, for the self-bored installation, the variation between lift-off pressures from the individual arms in extremely large.

Because sands are generally stiff in comparison to soft clays, the measurement of in-situ stress in sands is extremely difficult.

A slight outward disturbance during self-boring will tend to produce an overestimate of σ_{ho} . A slight inward disturbance during self-boring can cause the sand around the probe to arch and produce a significant underestimate of σ_{ho} .

Based on the CC results, it appears that the measurement of insitu stresses in sands using the self-boring pressuremeter is extremelly sensitive to disturbance.

5.2. Shear Modulus

The evaluation of deformation characteristics of soils from the results of a SBPT is usually linked to the assumption that the probe is expanded in a linear, isotropic, elastic, perfectly plastic soil. With this assumption the soil surrounding the probe is subjected to pure shear only. This holds true provided the applied pressuremeter cavity effective stress (p') stays below the yield stress (p'_y) of the soil element adjacent to the cavity wall. The values of p'_y in a purely frictional Coulomb material is given by the formula [Baguelin et al. (1978):

$$p'_{V} = p'_{O} (1 + \sin \phi) \qquad \dots (3)$$

For the range of effective cavity stress $p'_0 < p' \le p'_y$, the expansion curve should have a constant slope $d_p/d\epsilon_0 = 2 G_i$ [Baguelin et al. (1972, 1978) where:

 G_i = initial shear modulus of tested soil, see Fig.17

The above is true for SBPT's performed in an infinite medium (i.e. in-situ). However Fahey (1980) demonstrated that because of the limited dimensions of a CC the initial slope of expansion curves obtained in the CC tend to be slightly too small. In this study, the effect of the limited dimensions of the ENEL CRIS CC has only a minor effect, resulting in a reduction of less than 3% on the measured values of G.

The definition of G_i given above implicity incorporates the following simplified assumptions:

- a. The length (L) to diameter (D) ratio of the probe is sufficiently large to ensure deformations of the surrounding soil occur in plane strain conditions $(\epsilon_z = 0)$.
- b. The expansion proceeds with no volume change in the surrounding soil mass (i.e. linear, isotropic elastic material).
- c. All soil elements surrounding the expanding cavity have the same stress strain characteristics.

The first assumption (a) appears reasonable for the Camkometer probe used in this research, where the L/D=6. The other assumptions (b) and (c) are both strictly linked to the hypothesis made about the stress-strain relationship of soil. Both assumptions require that the effective stress path (ESP) projected on the horizontal plane should have a shape as shown schematically in Fig.18. In reality because of, the strain nonlinearity, elastic anisotropy, and work hardening plasticity, etc., the behavour of sands deviates from that of the isotropic-elastic perfectly plastic material so that volume changes occur even during the early stage of the expansion. A more realistic ESP, as obtained by Manassero (1987), is qualitatively also shown in Fig.18. Comparison of the two stress paths shown in Fig.18 clearly indicates that beyond the initial elastic stage (point 1') the mean effective stress (σ'_{O}) in the soil surrounding the expanding pressuremeter probe is not constant and consequently the volumetric strain cannot be equal to zero.

Since the modulus (G_i) can only be determined with validity from the very early part of the expansion curve the value is very sensitive to disturbance.

An alternative to the assessment of G_i from the initial part of the expansion curve is to evaluate G from correctly performed unloading-reloading (G_{UR}) and reloading-unloading (G_{RU}) loops as illustrated in Fig.17. According to Wroth (1982) the amplitude of the unloading should be performed in such a manner as to avoid the failure of the soil at the cavity wall in extension. For an isotropic-elastic, perfectly plastic material the magnitude of the effective cavity stress change ($\Delta p'$) during an elastic unloading should therefore not exceed the following:

$$\Delta p' = \frac{2 \sin \phi^{PS}}{1 + \sin \phi^{PS}} \quad p'_C \qquad \dots \quad (4)$$

where:

 ϕ^{PS} = friction angle under conditions of plain strain p' = effective cavity stress at which unloading loop starts.

The slope of the secant within the loop, (see Fig.17) is again equal to 2 G_{UR} or 2 G_{RU} . Both G_{UR} and G_{RU} represent an "elastic" shear stiffness of the tested sand. Within the framework of elasto-plasticity it can be demonstrated that during a drained test any unloading of the expanding cavity wall will bring the surrounding soil below the current yield surface. Inside this yield surface, (see Fig.19) the strains are small and to a large extent recoverable.

In addition to the above mentioned moduli (G_i, G_{UR}, G_{RU}) it is also possible to evaluate directly from the expansion curve the secant pressuremeter modulus G_g , as shown in Figure 17. The assessment of G_g is also based on the assumption of an elastic soil behaviour which, except for the very early part of the expansion curve where $G_g \approx G_i$, and during unloading-reloading cycles, is conceptually not true.

Despite the lack of a clear physical meaning, G_g is frequently incorporated in the empirical design rules for shallow and deep foundations in France [Baguelin et al. (1978)].

Table 5 reports the values of G_{g} computed at cavity strains equal to 0.5%, 1.0% and 1.5%.

Values of $G_{\rm UR}$ for the different unloading-reloading cycles are given in Tables 6 to 9. Values of $G_{\rm RU}$ for the reloading-unloading cycle are given in Table 10.

In all soils, and especially in sands, the early part of the self-bored pressuremeter curve is strongly influenced by disturbance due to the installation. Therefore, G_i and G_s are also strongly influenced by disturbance. On the other hand, $G_{\rm UR}$ and $G_{\rm RU}$ are almost completely independent from the initial shape of the expansion curve and hence, independent from disturbance.

Despite this advantage, there is still the problem of how to apply the measured G_{UR} and G_{RU} values in engineering design. This requires some assessment of the average stress and shear strain levels relevant to the measured moduli [Robertson (1982). As with all boundary value problems this is difficult to assess and requires a number of simplifying assumptions.

Concerning the relevant stress level, existing pratice has been to refer G_{UR} to the average stress existing around the expanding pressuremeter probe. This average stress may be either the mean octahedral effective stress [Robertson (1982)] or the mean value of the plane strain effective stress [Fahey and Randolph (1984)].

In this study the latter stress will be adopted.

When a value of the reference stress has been selected, the following tentative procedure can be used to relate the measured $G_{\rm UR}$ and $G_{\rm RU}$ values to any level of effective stress:

- Consider the value of $G_{\rm UR}$ corresponding to a given value of the double shear strain amplitude of the cycle $(\Delta \gamma = \gamma_{\rm B} \gamma_{\rm A})$ and to the effective cavity stress from which the cycle starts $(p_{\rm C}')$, see Fig.19 and Tables 6 through 10.
- Compute the weighted average of the current effective stress (p_{AV}) existing around the SBP probe at p_C' , adopting an appropriate constitutive equation:

$$\mathbf{p}_{\mathbf{AV}}^{\prime} = \mathbf{x} \ \mathbf{p}_{\mathbf{C}}^{\prime} \qquad \dots \qquad (5)$$

For elastic perfectly plastic material, referring to the average stress on the horizontal plane existing in the plastic zone ($r_c \le r \le R_p$), the parameter χ can be computed from the following equation, see also Appendix III:

$$\chi = \frac{1}{(1-\sin\phi^{\text{PS}})} \cdot \frac{\left[\frac{p'_{\text{c}}}{\sigma'_{\text{ho}} (1+\sin\phi^{\text{PS}})}\right]^{\omega_{1}}}{\left[\frac{p'_{\text{c}}}{\sigma'_{\text{ho}} (1+\sin\phi^{\text{PS}})}\right]^{\omega_{2}}} \dots (6)$$

where:

 σ'_{ho} = initial effective horizontal stress. In a high quality SBPT σ'_{ho} should be closed to the measured effective lift-off pressure p'_{o}

$$\omega_{1} = \frac{1 - \sin \phi^{PS}}{2 \sin \phi^{PS}} \qquad \dots (7)$$

$$\omega_2 = \frac{2 \sin \phi^{-2}}{1 + \sin \phi^{PS}} \qquad \dots \quad (8)$$

r = radial distance from center of cavity $R_p = radius$ of plastic zone $r_c = radius$ of cavity when cavity pressure = p'_c

In practice the true value of σ'_{ho} is generally unknown, therefore, the assessment of χ is made by introducing into the above formula the measured value of p'_{o} . The values of χ computed for each SBPT performed in the CC are given in Tables 6 through 10 together with the corresponding values of p'_{AV} .

The use of the relationship, $p'_{AV} = \chi p'_{C}$, is correct provided the following condition is satisfied:

$$p'_{C} > \sigma'_{ho} (1 + \sin \phi^{PS}) \qquad \dots (9)$$

If this condition is not fulfilled the p'_{AV} should be assumed equal to $\sigma'_{hO} \approx p'_{O}$.

• Once the p_{AV}^{*} is assessed it is possible to compute the modulus number K_{G} from the following empirical formula proposed by Janbu (1963):

$$G_{\rm UR} = K_{\rm G} p_{\rm a} \left(\frac{P_{\rm AV}}{P_{\rm a}} \right)^{\rm n} \dots (10)$$

where:

K_G = modulus number

n = modulus exponent

 p_a = reference stress, usually p_a = 98.1 kPa p_{AV}^{\prime} = average effective stress around the probe

For sand, the modulus exponent is generally within the range of 0.4 to 0.5, with a slight tendency to increase with increasing level of strain [Wroth et al. (1979). Knowing the value of $K_{\rm G}$ it is possible to compute the shear modulus G for any desired stress level.

Following the procedure outlined above, the measured $G_{\rm UR}$ and $G_{\rm RU}$ values for each cycle have been referred to the effective horizontal stress $\sigma'_{\rm ho}$ applied to the boundary of the CC specimen, assuming n=0.43 as obtained by Lo Presti (1987). The corresponding values of $G_{\rm URO}$ and $G_{\rm RUO}$ are given in Tables 6 through 10.

The same tables also show the values of maximum dynamic shear modulus (G_0) obtained from resonant column tests performed by Lo Presti (1987) on pluvially deposited Ticino sand. The value of G_0 corresponding to each SBPT has been computed using the following empirical equation based on the experimental data obtained by Lo Presti (1987):

$$G_{o} = 647.0 \cdot p_{a} \left(\frac{\sigma'_{ho}}{p_{a}} \right)^{0.43} \frac{(2.27 - e)^{2}}{1+e} \dots (11)$$

where:

e = void ratio of the sand in the CC (*) p_a = reference stress = 98.1 kPa

In order to make a meaningful comparison between the $G_{\rm URO}$ and $G_{\rm o}$ values it is necessary to consider other factors influencing the deformation characteristics of sand. Among them, the most relevant is the strain level. Each cycle is characterized by the double shear strain amplitude ($\Delta\gamma$) at the cavity wall where:

$$\Delta \gamma = \gamma_{\rm B} - \gamma_{\rm A} = 2 \left(\epsilon_{\rm OB} - \epsilon_{\rm OA} \right) \qquad \dots (12)$$

Values of $\Delta\gamma$ are reported in Tables 6 through 10. The maximum shear modulus G_0 corresponds to a shear strain level less than 10^{-4} , which is two orders of magnitude smaller than the strains at which G_{UR} and G_{RU} have been measured. In order to be able to compare G_0 against G_{UR} , at the same strain level, it is necessary to use a relationship which can match the decay of G with increasing γ . The simplest solution is offered by the well known hyperbolic stress-strain relation in the form proposed by Hardin and Drnevich (1972):

(*) Computed assuming the specific weight of the tested sands 26.35 kN/m^3 and 26.72 kN/m^3 for Ticino and Hokksund sands, respectively.

$$\frac{G}{G_{0}} = \frac{1}{1 + \frac{\gamma}{\gamma_{r}}} = \frac{1}{1 + \frac{G_{0}}{r_{max}}} \qquad \dots (13)$$
where:

$$G = \text{shear modulus}$$

$$\gamma = \text{shear strain}$$

$$r_{max} = \text{maximum shear stress}$$

$$\gamma_{r} = \text{reference strain} = \frac{G_{0}}{r_{max}}$$

Referring to the SBP unloading-reloading cycle and relating the above given hyperbolic formula directly to the modulus number (K_G), one gets:

$$\frac{G_{\text{UR}}}{G_{\text{O}}} = \frac{1}{\frac{G_{\text{O}} \Delta \gamma_{\text{AV}}}{2 \sigma_{\text{ho}}^{\prime} \sin \phi^{\text{PS}}}}} \dots (14)$$

and therefore:

$$K_{G_{O}} = K_{G_{UR}}(\sigma'_{hO})^{n_{UR}-n_{O}} \cdot \left[1 + \frac{K_{G_{O}}(\sigma'_{hO})^{n_{O}} \cdot \Delta \gamma_{AV}}{2 \sigma'_{hO} \sin \phi^{PS}}\right] \dots (15)$$

where:

 K_{G_0} = modulus number related to the maximum dynamic shear modulus

K_GUR = modulus number as computed from G_{UR}, see equation ...(10)

 $\Delta \gamma_{AV}$ = average strain in the plastic zone around the expanding probe

= modulus exponent related to the maximum dynamic shear no modulus, Go

 n_{UR} = modulus exponent related to G_{UR} , see equation ... (10)

Referring to the data given in Tables 6 through 10 and assuming:

• $\Delta \gamma_{\rm AV} \approx$ 0.45 $\Delta \gamma$, see Robertson (1982)

- $n_0 = n_{UR} = 0.43$ $\sigma_{h0} =$ boundary stress applied to the CC specimen,

one can assess, extrapolating using the hyperbolic stress strain relation, the value of K_{G_0} and hence compute;

$$G_{o}^{SBP} = f (G_{UR}, \Delta \gamma, \sigma'_{ho}) \qquad \dots (16)$$

For the available tests in this study this approach gives, for the 1st and 2nd unloading-reloading cycles, the following:

$$1.3 \leq \frac{G_0}{G_0^{SBP}} \leq 1.8$$
 ... (17)

where:

G₀ = maximum dynamic shear modulus as measured in the resonant column tests

 G_{O}^{SBP} = maximum dynamic shear modulus assessed from G_{UR} .

The lack of coincidence between G_0 and G_0^{SBP} may be due to the following:

- The oversimplified and approximate nature of the procedure used to obtain G_0^{SBP} from G_{UR} .
- The influence of the number of unload-reload cycles on the shear stiffness of sands. Values of $G_{\rm UR}$ have been measured during a single unloading-reloading cycle. Therefore the extrapolated $G_{\rm O}^{\rm SBP}$ values should be referred to the 1st unload-reload cycle while the resonant column $G_{\rm O}$ has been measured after thousands of unload-reload cycles. For the given level of shear strain amplitude this factor can be expected to be responsible for differences between $G_{\rm O}$ and $G_{\rm O}^{\rm SBP}$ of up to about 10 to 20 percent.
- The pluvially deposited sand tends to exhibit an anisotropic behaviour. Within the framework of the theory of elasticity for transverally isotropic soils, the available shear moduli can be defined as follows:

 $G_{UR} = G_{HH}$ = shear modulus for shearing in horizontal direction $G_{O} = G_{VH}$ = shear modulus for shearing in vertical direction

However this factor does little to justify the observed differences between G_0 and G_0^{SBP} . The results of large scale tests performed by Stokoe and co-workers [Knox (1982, Stokoe and Ni (1985), Lee (1986)] indicate that, in sand the velocity of the horizontally polarized shear wave (v_S^{HH}) is 1.1 to 1.15 higher than the vertically polarized shear wave velocity (v_S^{VH}) . This data indicates a G_{HH}/G_{VH} ratio ranging between 1.2 and 1.3, therefore suggesting $G_0^{SBP} > G_0$.

5.3. Shear Strength

Theoretical methods for the determination of the peak friction angle (ϕ) of sands from pressuremeter test data have been proposed by several authors; i.e. Gibson and Anderson (1961), Ladanyi (1963), Vésic (1972), Hughes et al. (1977), Robertson (1982) and Manassero (1987). Each method relies on a model for the sand behaviour. Most of the above methods consider that sand has a constant friction angle at failure. However, not all methods allow for the fact that sand changes in volume during shearing.

In Ladanyi's method the volume change is considered to be constant at the point the failure stress ratio is reached. This volume change is introduced into the assessment of the friction angle by a trial and error method.

Vésic's solution uses the results of laboratory tests directly to determine volume change. However, the problem of determining the appropriate laboratory density to perform the tests, is not easy to resolve. Also, the laboratory tests may not produce reliable volume change behaviour because the in-situ structure and fabric cannot be reproduced in the laboratory.

The solution developed by Hughes et al. (1977) relies on the fact that the volume changes are occurring during the expansion of the cavity and the amount of volume change (dilation) is closely related to the current friction angle developed. This approach brings together the stress dilatancy concept of Rowe (1962) and the observed behaviour of sand in simple shear, as for example, observed by Stroud (1971).

Figure 20 shows typical results of simple shear tests on sand conducted by Stroud (1971) and the ideal soil model assumed in the method by Hughes et al. (1977). In the method proposed by Hughes et al. (1977), it was shown that:

 $\log \left(\frac{\Delta R}{R_{o}} + \frac{c}{2}\right) = \frac{n+1}{1-N} \cdot \log (p-u_{o}) + \text{constant}$... (18) where: Ro = initial radius of pressuremeter = change in radius of pressuremeter ΔR AR/Ro = cavity strain, ϵ_0 = intercept shown on Fig.20 (c) and (d) С = total pressuremeter cavity stress P = pore water pressure u_o $= \frac{(1+\sin \nu)}{2} \cdot \sin \phi = \text{slope S}$ 1-N n+1 (1+sin *♦*) - maximum dilation rate sin v

In the above method the intercept "c" is assumed zero and a plot of the pressuremeter data in terms of log $(p-u_0)$ (effective cavity stress) against log $(\angle R/R_0)$ will tend towards a straight line with a slope S. This slope is related to the in-situ friction angle (ϕ) and the maximum dilation rate (sin ν).

For very dense sands the intercept "c" is essentially negligible and for all practical purposes can be ignored. The results of the laboratory studies conducted by Jewel et al. (1980) in very dense sands ($D_R = 90$ %) using the self-boring pressuremeter probe show that the above technique appears to work very successfully. In loose materials the method is not so convenient as the pressuremeter does not expand sufficiently for the sand around the probe to reach the linear portion of its volumetric strain/shear strain curve.

The method by Robertson (1982) expands on the method by Hughes et al. (1977) but incorporates an empirical correction to account for the non-linear nature of the volume change - shear strain relationship (see Figure 20).

The method developed by Manassero (1987) is also a further development of the Hughes et al. (1977) method but incorporates the full non-linear nature of the stress-strain curves. The method assumes that Rowes stress dilatancy concept is valid and solves the shear-volume coupling in a unique manner by using a finite difference numerical solution.

The method by Manassero (1987) allows the complete stress strain and stress path to be calculated for each pressuremeter test. Figures 21 and 22 show typical examples of the calculated stress strain and stress paths for pressuremeter tests with ideal installation. From the stress path plots (d) in Figures 21 and 22 it is clear that the soil surrounding the probe is initially strain hardening up to the point of peak strength $(\sigma_T^2/\sigma_B^2)_{max}$, and then strain softening.

The deviation of the soil behaviour from the simple isotropic elastic behaviour can be represented by the angle β (see Fig.23), which is the angle between the point of peak strength $(\sigma_r/\sigma_f)_{max}$ and the initial mean normal stress, p_0 . Values of β are given in Table 11 for each pressuremeter test analysed using the method by Manassero (1987). In order to avoid numerical instability in the calculation of the stress strain curves and stress paths using the method by Manassero (1987) a 7th order polynominal function was made to fit the measured curve. Full details of the method by Manassero (1987) is given in Appendix IV.

The methods by Hughes et al. (1977), Robertson (1982) and Manassero (1987) have been evaluated using the results from the SBPT's performed in the CC, and results are presented in Table 11.

All three methods require a knowledge of the friction angle at constant volume (ϕ_{CV}). Values of ϕ_{CV} were determined for Ticino and Hokksund sand using a ring shear apparatus. A summary of the ring shear results are shown in Figure 24. An average value of $\phi_{CV} = 34^{\circ}$ was used in the analyses.

A summary of the calculated angles of friction and dilatancy obtained from the pressuremeter tests performed in the CC are presented in Table 11.

Peak friction angles have also been determined from triaxial tests on Ticino sand at various stress levels and densities. Triaxial specimens were formed using the same pluvial deposition technique as used to form the CC specimens. The peak friction angles (ϕ_p^{PS}) and dilation angles (ν^{PS})

The peak friction angles (ϕ_p^{PS}) and dilation angles (ν^{PS}) determined from the pressuremeter are obtained under approximately plain strain conditions and are related to the average effective stress around the probe during the test. Therefore, to compare the calculated peak friction angles from the pressuremeter (ϕ_p^{PS}) with those obtained from triaxial tests (ϕ_p^{TX}) requires some corrections to account for stress level at failure (σ_{ff}) and boundary conditions (plain strain-triaxial).

The peak friction angles obtained from the laboratory triaxial compression tests (ϕ_{ff}^{TX}) where corrected to the equivalent stress level at failure (σ_{ff}) occurring in each pressuremeter test and then corrected to an equivalent plain strain value (ϕ_{ff}^{PS}) .

The stress level at failure (σ_{ff}) for each pressuremeter test was calculated assuming a linear elastic isotropic soil behaviour, where:

$$\sigma_{ff}^{\prime} = \sigma_{ho}^{\prime} \left[1 - \sin^2 \phi_{p}^{PS} \right] \qquad \dots (19)$$

The values of ϕ_P^{TX} were then determined at the σ_{ff} stress level using the curved strength envelope equation developed by Baligh (1975), where:

$$\tan \phi_{p}^{TX} = \tan \phi_{0}^{TX} + \tan \alpha \left(\frac{1}{2.3} - \log \cdot \frac{\sigma_{ff}}{p_{a}} \right) \dots (20)$$

where:

 ϕ^{TX} = secant friction angle from triaxial compression test at $\sigma'_{ff}=2.72 p_a$

p_a = reference stress = 98.1 kPa

a = angle which describes the curvature of the failure envelope

Values for ϕ_0^{TX} and α for Ticino sand are given by Baldi et al. (1986).

The triaxial friction angle values were then converted to equivalent ϕ_P^{PS} using the following equation by Lade and Lee (1976);

$$\phi_{\mathbf{p}}^{\mathbf{PS}} = \phi_{\mathbf{p}}^{\mathbf{TX}} \cdot 1.5 - 17^{*}$$

The calculated equivalent ϕ_P^{PS} values determined from the laboratory triaxial results are also shown in Table 11.

Comparisons between the calculated ϕ_P^{PS} from the SBPT results using the methods by Hughes et al. (1977), Robertson (1982) and Manassero (1987) and the equivalent ϕ_P^{PS} obtained from triaxial results are shown in Figure 25. The following comments can be made about the results presented in Figure 25.

- 1. No method provides a reliable estimate of ϕ_p^{PS} for sands from the SBPT.
- 2. The method by Robertson (1982) appears to produce less scatter.
- 3. Generally the scatter in calculated ϕ_P^{PS} is slightly larger for the test results where the probe was selfbored into the CC.

It is interesting to note that, although most of the self-bored results gave very poor values of $\sigma_{\rm ho}$ due to disturbance, the self-bored data gave reasonable values of $\phi_{\rm p}^{\rm PS}$. This is consistent with observations made in the field (Ghionna et al., 1983; Jamiolkowski et al., 1985; Bruzzi et al., 1986). Based on the CC results, it appears that the determination of peak friction angle $(\phi_{\rm p}^{\rm PS})$ in sands using the self-boring

peak friction angle (ϕ_p^{PS}) in sands using the self-boring pressuremeter is not very reliable and depends on the method of analyses.

Table 11 also provides the values of the staté parameter (ψ) , as defined by Been and Jefferies (1985). The ψ combines the influence of both mean effective stress level and void ratio on the dilatancy of sand and may correlate to the parameters reflecting the behaviour at failure, i.e. ϕ , ν .

5.4. Limit Pressure

Table 5 presents the calculated limit pressures $\{P_{1,m}\}$ is a each SBPT using two existing methods. The two methods evaluated were:

WW Plim : Method by Windle and Wroth (1911 AA Plim : Method by Al Awkati (1975)

Examples of the plots to calculate $\mathsf{P}_{1,1,m}$ are given in Appendix I.

Unfortunately, the concept of a limit pressure is \rightarrow applicable to pressuremeter tests in sand, especially with a maximum cavity strain of only 10%. Because there is no fundamental concept to support the values of P_{11m}, their application to design is related to empirical correlations. This is further complicated by the fact that different values of P_{11m} are obtained from the infferent methods (see Table 50.)

5.5. Boundary Conditions

The laboratory studies by Fahey (1980) showed that the condition of a constant horizontal stress boundary at some finite distance from the expanding pressuremeter had the effect of producing an apparent strain softening in the pressure expansion curve. This situation was not observed in any of the pressuremeter tests performed for this study. The reasons for this apparent lack of boundary effect could be the following:

- The ENEL-CRIS CC is 1.2 m in diameter, compared to the 0.9 m diameter CC used by Fahey (1980).
- Fahey studied only very dense sand $(D_R = 92\%)$ in which the plastic zone expands rapidly during the pressuremeter test. For the tests in this study where $D_R = 90\%$ there was no strain softening observed.

No influence of boundary effects could be observed for the interpreted values of σ_{ho} , G and ϕ .

6. SUMMARY AND CONCLUSIONS

A series of 47 self-boring pressuremeter tests have been performed in the ENEL-CRIS calibration chamber. 25 tests were performed with the probe in-place during sample preparation i.e. ideal installation) and 22 tests were performed with the probe self-bored into saturated sand. I test was not completed due to a ruptured membrane during probe installation (Test No. 240).

The surpuse of the testing was to evaluate the performance of the self-tering pressuremeter probe under strictly controlled substitutions and to critically review existing interpretation methods of SBPT in sands. The SBP probe used in the study was the Camkometer Mark VIII manufactured by Cambridge In-Situ Ltd., England. The results of the testing can be summarized as follows:

1. Assessment of in-situ stress (abo)

Ideal installation:

Large scatter exists in the experimental data because of mechanical compliance of the strain measurement system. The precision required (approximately 0.005 mm) is probably beyond the limits of a mechanical system. There is, therefore, a need for improvement in the measurement system of lift-off pressure, possibly by adding non-contact precision transducers.

The existing strain arm design is sufficiently reliable to measure radial displacement during the main expansion phase.

Self-bored installation:

The disturbance caused by the self-boring process generally rendered the measured lift-off pressure too low, highly scattered and generally unrealiable. However, the soil tested in this study (i.e. freshly deposited, unaged, uncemented, clean sand) creates particularly unfavourable conditions with respect to the reliable assessment of in-situ stress. More reliable assessment of a_{ho} may be possible in natural sand deposits.

2.0

2. Assessment of Shear Modulus, G

- Even for the same sand (grain size, fabric, stress history, etc.) the shear stiffness is a complex function of; void ratio (e), effective stress (p'), shear strain (γ) , number of cycles (N_c) and anisotropy and plasticity.
- There is a need to improve the link between the measured G and the stiffness required for specific design problems.
- The initial shear moduli (G_i) and the secant shear moduli (G_s) are both sensitive to disturbance and are very complex to locate within the framework of elastoplastic theory. Therefore, G_i and G_s are almost impossible to link to other laboratory and in-situ tests and to design problems.
- The shear moduli determined from unload-reload cycles $(G_{UR} \text{ or } G_{RU})$ are "elastic" but non-linear and are much less sensitive to disturbance due to installation. G_{UR} or G_{RU} should be linked to the relevant design problems via appropriate corrections accounting for stress (p') and strain (γ) level. Soil anisotropy should also be considered, since SBPT $G_{UR} = G_{HH}$, while in many practical problems the value G_{VH} is appropriate.
- Because G_{UR} and G_{RU} reflects the shear stiffness of sands inside the current yield surface they implicity refer only to overconsolidated (OC) materials.
- When relating $G_{\rm UR}$ to the dynamic shear modulus $(G_{\rm o})$ the influence of number of cycles $(N_{\rm c})$ should also be considered.
- Further theoretical work is required concerning the application of G_{IIP} to engineering design practice.
- At present G_{UR} represents a rather unique method to assess directly some kind of shear stiffness for natural sands in-situ, with the exception of the dynamic shear moduli from in-situ shear wave velocity measurements.

3. Assessment of peak friction angle (PS

- A large scatter exists between the calculated p_p^{PS} from the SBPT results and the equivalent values of p_p^{PS} obtained from triaxial compression tests.
- None of the existing methods evaluated (Hughes et al., 1977; Robertson, 1982; Manassero, 1987) provided consistently reliable values of the peak friction angle under plane strain conditions $(*_P^{PS})$.
- Evaluation of the reference friction angle from laboratory triaxial testing is complicated by the curvature of the failure envelope, the variation in stress level at failure (σ_{ff}) in the pressuremeter test and the strain conditions (plain strain-triaxial).
- The calculation of ϕ_p^{PS} from the self-bored pressuremeter tests appear to be less sensitive to initial disturbance than the measurement of in-situ stress (σ_{ho}) .
- The method by Robertson (1982) appears to produce less scatter.
- Because of the relatively high densities $(D_R > 40\%)$ and low stresses (max 500 kPa) the sand tested had $\phi_P^{PS} \ge 41^{\circ}$. Therefore, the high friction angles creates particularly unfavourable conditions for the ϕ methods evaluated.

The objective of this study has been to verify the performance of the SBPT in sand and to critically review existing approaches to interpretation of the data for geotechnical design.

The objectives of this study have been reached. However, the study has produced extensive data concerning the SBPT in sand and not all the information has been fully studied and discussed in this report. Further research can be performed to fully evaluate all the available data resulting from this study.

LITERATURE CITED

- AL AWKATI A., (1975). "On Problems of Soil Bearing Capacity at Depth". Ph. D. Thesis, Duke Univ., Durham, N.C.
- BAGUELIN F., JEZEQUEL J.F., LE MEE H. and LE MEHAUTE A., (1972). "Expansion of Cylindrical Probes in Cohesive Soils". JSMFD, ASCE, SM11.
- BAGUELIN F., JEZEQUEL J.F. and SHIELDS D.H., (1978). "The Pressuremeter and Foundation Engineering". Trans. Tech. Publications, Clausthall.
- BALDI G. et al. (1985). "Laboratory Validation of In-Situ Tests". AGI, Jubilee Volume, XI ICSMFE, San Francisco.
- BALDI G. et al., (1986). "Interpretation of CPT's and CPTU's. II Part: Drained Penetration on Sands". Proc. IV Int. Geotech. Seminar NTI on Field Instrumentation and in Situ Measurements, Singapore.
- BALIGH M.M., (1975). "Theory of Deep Site Static Cone Penetration Resistance". Res. Rep. R75-56, N.517, MIT Cambridge Mass.
- BELLOTTI R., BIZZI G., GHIONNA V.N., (1982). "Design Construction and Use of a Calibration Chamber". Proc. ESOPT II, Amsterdam, V.2.
- BEEN K. and JEFFERIES M.G., (1985). "A State Parameter for Sand". Geotechnique, N.2.
- BRUZZI D. et al. (1986). "Self-Boring Pressuremeter in Po River Sand". Proc. II Int. Symp. on the Pressuremeter and Its Marine Applications. Texas A&M Univ., ASTM STP 950.
- DALTON J.P.C., HAWKINS P.G., (1982). "Some Measurements of the In-Situ Stress in a Meadow in Cambridge Shire Country Side". Gr. Engng. N.5.
- FAHEY M., (1980). "A Study of the Pressuremeter Test in Dense Sand". Ph. D. Thesis, Cambridge Univ., U.K.
- FAHEY M., RANDOLPH M.F., (1984). "Effect of Disturbance on Parameters Derived from Self-Boring Pressuremeter Tests in Sand", Geotechnique, N.1

- GHIONNA V.N., JAMIOLKOWSKI M., LACASSE S., LADD C.C., LANCELLOTTA R. and LUNNE T., (1983). "Evaluation of Self-Boring Pressuremeter". Proc. Int. Symp. on Soil and Rock Investigation by In-Situ Testing, Paris, V.2
- GIBSON R.E. and ANDERSON W.F., (1961). "In-Situ Measurement of Soil Properties with the Pressuremeter". Civ. Eng. & Publ. Works, Rev., May.
- HARDIN B.O. and DRNEVICH V.P., (1972). "Shear Modulus and Damping in Soils: Design Equations and Curves", JSMFED, ASCE SM7.
- HUGHES J.M.O., WROTH C.P. & WINDLE D., (1977). "Pressuremeter Tests in Sands". Geotechnique, N.4.
- JACOBSEN M., (1976). "On Pluvial Compaction of Sand". Rep. N.9. Laboratoiert for fundering. Aalborg Univ., Denmark.
- JAMIOLKOWSKI M., LADD C.C., GERMAINE J.T., LANCELLOTTA R., (1985). "New Developments in Field and Laboratory Testing of Soils". Proc. XI ICSMFE, San Francisco, Theme Lectures, V.1.
- JANBU N., (1963). "Soil Compressibility as Determined by Oedometer and Triaxial Tests". Proc. III ECSMFE, S.1, Wiesbaden.
- KNOX D.P., (1982). "Effect of State of Stress on Velocity of Low Amplitude Shear Wave Propagating Along Principal Stress Direction in Dry Sand". Ph. D. Thesis Texas Univ., Austin.
- LADANYI B., (1963). "Evaluation of Pressuremeter Tests in Granular Soils". Proc. of the II Pan American Conf. SMFE São Paulo, V.1.
- LADE P.V. & LEE K.L., (1976). "Engineering properties of Soil", Report UCLA-ENG-7652, California Univ., Los Angeles.
- LEE S.H.H., (1986). "Investigation on Low Amplitude Shear Wave Velocity in Anisotropic Material". Ph. D. Thesis, Texas Univ., Austin.
- LO PRESTI D., (1987). "Mechanical Behaviour of Ticino Sand from Resonant Column Test". Ph. D. Thesis, Polítecnico di Torino, Torino.
- MANASSERO M., (1987). "Stress-Strain Relationship of Sands from Self-Boring Pressuremeter Tests". Atti del Dipartimento di Ingegneria Strutturale, Politecnico di Torino, Torino.

- ROBERTSON P.K., (1982). "In-Situ Testing of Soil With Emphasis on Its Application to Liquefaction Assessment", Ph.D., Thesis, Univ. British Columbia, Vancouver.
- ROWE P.W., (1962). "The Stress-Dilatancy Relation for Static Equilibrium of An Assembly of Particles in Contact". Proc. Royal Soc.
- STROUD M.A., (1971). "Sand at Low Stress Levels in the Simple Shear Apparatus", Ph. D. Thesis, Cambridge Univ., U.S.
- STOKOE K.H. & NI F.H., (1985). "Effects of Stress State and Strain Amplitude on Shear Modulus of Dry Sand". Proc. II Symp. on Interaction of Non-Nuclear Munitions with Structures, Panama City Beach, Florida.
- VESIC A.S., (1972). "Expansion of Cavities in Infinite Soil Masses", JSMFED, ASCE, SM3.
- WINDLE D., WROTH C.P., (1977). "In-Situ Measurement of the Properties of Stiff Clays". Proc. IX ICSMFE, Tokyo, V.1
- WROTH C.P., (1982). "British Experience with the Self-Boring Pressuremeter". Proc. Symp. on the Pressuremeter and Its Marine Applications, Paris.
- WROTH C.P., RANDOLPH M.F., HOULSBY G.T. & FAHEY M., (1979). "A Review of the Engineering Properties of Soils with Particular Reference to the Shear Modulus", Cambridge Univ., CUED/D Soils TR75.
NOTATIONS

BC	≈ Boundary condition
L	= Length of pressuremeter membrane (490 mm)
D	\approx Diameter of pressuremeter (82 mm)
^o h' ^o h	= Horizontal stress; total and effective
σν, σγ	= Vertical stress; total and effective
D _R	= Relative density (after consolidation)
ĸo	= Coefficient of earth pressure at rest
OCR	= Overconsolidation ratio
٤v	= Vertical strain
Mo	= Tangent constrained modulus
Mo	= Secant constrained Modulus
٤o	= Pressuremeter cavity strain
R _o	= Initial radius of cavity
Δ R	= Change in radius of cavity
₽ ₀	= Lift-off stress
p _o (AV)	= Average lift-off stress (3 Arms)
p'	= Effective cavity stress
Py	= Yield stress
P'c	= Effective cavity stress at start of unloading cycle
¢ ^{PS}	= Friction angle under plain strain conditions
¢ ^{TX}	= Friction angle under triaxial conditions
G	= Shear modulus

32

Gi	=	Initial shear modulus
G _s ^{1.5}	=	Secant shear modulus at cavity strain of 1.5%
G _{UR} , G _{RU}	=	Shear modulus for unload-reload and reload-unload cycle
G _{URO} , G _{RUO}	=	Shear modulus from unload-reload and reload-unload cycle normalized to the stress level σ'_{ho}
Go	=	Maximum dynamic shear modulus obtained from resonant column test
γđ	=	Bulk density
u _o	=	Pore pressure at center of CC
Plim	=	Effective limit pressure using method by Al Awkati (1975)
'WW Plim	=	Effective limit pressure using method by Windle and Wroth (1977)
^{Δγ} AB	Ŧ	Shear strain increment during unload-reload or reload-unload cycle
PÁV	=	Calculated average effective stress around cavity
ν	=	Maximum dilation angle
β	=	Angle of straight line connecting p'_0 and the point of peak strength $(\sigma'_r/\sigma_\theta)_{max}$
¢	=	State parameter (Been and Jefferies, 1985)

33

Test	вс	Membrane Type	Chamber Drainage	Cutter Setting	Advancement Rate	Cutter Speed	Water Flow	Vacuum Inside Membrane	Soles
No.				ca	cm/min	rev/min	L 212	: n ²	
237	B-1	Not protected	Open at top and base	2.5	3 0	50÷60	11-14	5	25 cm before and of installation stopped for 3 mins
238	B-1	Not protected	Cpen at base	2.5	2.4	50÷60	:3	5	Instrument rotated 180° with respect to Test No.237+10 cm from end of installation stopped for 3 mins. At end of installation piping in CC
239	B-1	Not protected	Cpen at base	2.5	2 4	50÷60	÷	5	10 cm from end of installation probe started to lift
240	B-1	Not protected	Cpen at base	2.5	3.0	50÷60	::	5	Failed test due to ruptured membrane during installation
241	B-1	Protected	Open at base	2.0	3.0	50÷60	:>	5	
242	B-1	Not protected	Open at base	1,9	3.0	50÷60	:3	5	
243	B-1	Not protected	Open at base	2.5	4.2	50÷60	э	5	
244	B-1	Not protected	Cpen at base	3.5	3.0	50÷50	3.5	5	
245	8-1	Not protected	Open at base	5,4	3.0	60	3-3	5	After 22 cm of penetration in- stallation stopped for 5 mins
246	B-3	Not protected	Open at base	4.5	3.0	60	э	5	
247	B-3	Not protected	Open at base	3.4	3.0	60	3+13	5	
250	B-4	Not protected	Open at base	3.4	3.0	60	3+:3	5	
251	B-4	Not protected	Open at base	3.4	3.0	60	11	5	
252	B-4	Not protected	Open at base	3.3	3.0	60	:1	5	
253	B-4	Not protected	Open at base	3.3	3.0	60	10-11	5	
254	B-1	Not protected	Open at base	3.3	3.0	60	11	5	
255	B-4	Protected	Open at base	2.4	3.0	60	:1	5	
258	B-4	Protected	Open at base	2.4	3.0	50	11	5	
257	B-4	Protected	Open at base	1.9	3.0	60	11	5	
258	8-4	Protected	Open at base	1.9	3.0	60	12	5	Probably disturbed due to drilling vibrations
259	8-4	Protected	Open at base	1.9	3.0	60	11	5	Probably disturbed due to drilling vibrations
260	B-4	Protected	Open at base	1.9	3.0	60	:1	5	
261	B-4	Frotected	Open at base	1.9	3.0	60	:1	5 ′	
			T	ests fra	237 TO 261	SAMPLES	FILLY	SATURATE)

TABLE 1 SUMMARY OF INSTALLATION CONDITIONS DURING SELF-BORING

.

F

	Test	Sand	γ _d	D _{RC}	OCR	σ' νο	σ'ho	ĸ	u _o	Mo		er of cles	вс
	No.	-	kN/m ³	8	-	kPa	kPa	-	kPa	MPa	L'R	RU	
	201	НS	16.08	67.0	2.77	112.8	74.56	0.662	0	192.18	2	1	1
í í	207	нs	15.22	43.9	3.29	109.9	64.75	0.586	0	185.51	2	1	ī
I	208	TS-4	14.82	43.2	1.00	112.8	45.13	0.400	0	34.14	2	1	i
D	209	TS-4	15.01	49.2	1.00	116.7	51.99	0.441	0	43.56	3	1	1
E	210	TS-4	15.13	53.3	1.00	511.1	244.27	0.479	0	100.06	3	ĩ	1
Ā	211	TS-4	15.57	67.4	1.00	512.1	242.31	0.473	Ō	114.88	3	2	1
L	212	TS-4	15.49	64.6	2.86	110.9	82.40	0.747	0	189.82	3	1	i
-	213	TS-4	14.96	47.5	2.78	112.8	83.39	0.740	Ō	168.63	3	1	i
I	214	TS-4	14.80	42.4	1.00	113.8	53.96	0.476	l õ	50.82	3	1	4
N	215	TS-4	16.42	92.3	1.00	514.6	225.63	0.439	ŏ	143.72	3	1	1
s	216	TS-4	14.92	46.3	7.57	60.8	56.90	0.927	ŏ	156.76	3	1	i
T	218	TS-4	15.51	65.4	7.66	59.8	59.84	0.980	lő	169.62	3	1	1
Â	219	TS-4	15.52	65.9	5.46	112.9	101.04	0.902	Ŏ	207.48	3	i	1
L	220	TS-4	14.95	47.2	1.00	313.3	150.09	0.481	0	80.15	3	1	1
L	221	TS-4	14.95	44.6	2.88	108.9	81.42	0.751	0	167.36	3	1	
								0.850	Ö		3	1	1
A	222	TS-4	14.92	46.2	5.50	111.8	95.16		0	199.05		-	1
T	224	TS-4	15.81	74.6	5.38	113.8	93.20	0.816		222.39	3	1	1
I	225	TS-4	15.81	74.6	5.46	111.8	87.31	0.775	0	218.27	3		1
0	228	TS-4	15.89	77.0	1.00	518.0	215.82	0.417	0	120.27	3	1	1
N	233	TS-4	15.98	79.6	1.00		224.65	0.439	0	121.25	3		1
	234	TS-4	15.93	76.1	5.34	115.8	103.99	0.904	0	216.21	3	1	1
	235	TS-4	14.99	48.5	1.00	516.0	239.36	0.465	0	80.54	3		1
	236	TS-4	15.83	75.2	2.72		78.48	0.686	0	190.41	3	1	1
	237	TS-4	15.79	74.6	2.90	96.1	81.42	0.850	6.87	178.35	3	1	1
	238	TS-4	15.79	74.8	2.83	101.0	83.39	0.828	5.89	171.28	3	1	1
	239	TS-4	15.79	74.8	2.84	101.0	86.33	0.856	5.89	169.32	3	1	1
	240	TS-4	16.47	94.1	2.84	101.0	90.25	0.892	5.89	195.22	3	1	1
1	241	TS-4	16.38	91.8	2.76	104.0	86.33	0.829	5.89	192.37	3	1	1
	242	TS-4	14.72	40.1	1.00	103.0	49.05	0.475	6.87	32.67	3	1	1
S	243	TS-4	14.79	42.7	3.10	95.2	74.56	0.785	6.87	141.46	4	-	1
E	244	TS-4	14.80	42.8	6.12	97.1	94.18	0.970	5.89	172.36	4	-	1
L	245	TS-4	14.72	40.0	1.00	102.0	54.94	0.539	6.87	41.40	4	-	1
F	246	TS-5	14.72	43.0	1.00	102.0	52.97	0.523	6.87	45.32	4	-	3
ļ	247	TS-5	14.80	43.0	4.19	190.3	147.15	0.776	6.87	212.58	4	-	3
B	250	TS-5	14.81	43.0	1.00	480.7	219.74	0.457	6.87	93.20	4		4
0	251	TS-5	14.74	41.0	1.00	100.1	51.01	0.508	6.87	36.30	4	-	4
R	252	TS-6	15.79	75.0	1.00	101.0	52.97	0.518	6.87	58.27	4		1
E	253	TS-6	15.68	71.0	1.00	103.0	52.97	0.517	6.87	58.99	4	-	3
D	254	TS-6	15.69	71.0	6.16	97.1	88.29	0.912	6.87	194.43	3	-	1
	255	TS-6	15.49	65.0	1.00		55.92	0.514	6.87	56.70	2		i
	256	TS-7	15.46	65.0	1.73	345.3	277.62	0.690	6.87	263.69	4	-	ī
	257	TS-7	16.22	87.0	1.00		77.50	0.597	6.87	69.16	4		1
	258	TS-7	16.18	86.0	1.00		226.61	0.458	6.87		4	.	ī
L :	259	TS-8	16.39	92.0	4.63	138.3	139.30	1.008	6.87	215.62	4		i
(I	260	TS-8	16.29	89.0	1.00	131.5	78.48	0.595	6.87	70.53	4		3
	261	TS-8	16.37	91.5	3.99	199.1	157.94	0.797	6.87	261.44	4		1
	262	TS-9	16.28	88.7	1.00	113.8		0.398	0.0/	73.77	4		1
IDEAL	263	TS-9	16.29	89.1	1.00		45.10	0.913	0	229.46	4		1
	203	13.3	10.29	07.1	1.00	112.8	103.00	0.913	Ľ	227.40	4		

TABLE 2 SUMMARY OF GENERAL CALIBRATION CHANBER CONDITIONS AFTER SAMPLE CONSOLIDATION

٠

÷

- -

.__ !

.

.

Test No.	BC	Membrane Type	Notes
237	B-1	Not protected	Modified arms + bushings
238	B-1	Not protected	Modified arms + bearings
239	B-1	Not protected	Arms + bushings
240	B-1	Not protected	Arms + bushings
241	B-1	Protected	Arms + bushings
242	B-1	Not protected	Arms trimed and rounded + bushings
243	B-1	Not protected	Arms + bushings
244	B-1	Not protected	Arms + bushings
245	B-1	Not protected	Arms + bushings
246	B-3	Not protected	Arms + bushings
247	B-3	Not protected	Arms + bushings
250	B-4	Not protected	Arms+bushings.5 lift-offs, Relaxation time=96 hrs
251	B-4	Not protected	Arms + bushings
252	B-1	Not protected	Arms+bushings. Relaxation time=71 hrs
253	B-3	Not protected	Arms+bushings. At 5 bar total pressure and 4% strain membrane ruptured
254	B-1	Not protected	Arms+bushings. At 5.5 bar total pressure membrane ruptured
255	B-1	Protected	Arms + bushings
256	B-1	Protected	Arms + bushings
257	B-1	Protected	Armes + bushings
258	B-1	Protected	Armas + bushings
259	B-1	Protected	Arms+bushings.After 1st loop manual expansion due to problems with SCU
260	8-3	Protected	Arms+bushings.After 3rd loop manual expansion due to problems with SCU
261	B-1	Protected	Arms+bushings.After 1st loop manual expansion due to problems with SCU

• . .

TABLE 3 SUMMARY OF PROBE AND CC CONDITIONS DURING SELF-BORED TESTS

......

_ -

	Test	^o ho	ARM 1	ARM 2	ARM 3	Average (p_)		
	No.	kPa	kPa	kPa	kPa	kPa		
	201	74.56	82.06	84.07	71.06	76.06	o s	
	207	64.75	150.53		65.05	65.05		
I	208	45.13	28.02		34.03			
D	209	51.99	42.03	49.04	43.03	45.04	•	
Ē	210	244.27	87.08		136.12	81.06		
A	211	242.31	65.02		90.03	56.04		
L	212	82.40	108.95		104.25	104.27		
	213	83.39	129.25	164.26	165.15	120.23		
I	214	53.96	49.23	61.19	63.25	49.21	A	
N	215	225.63	347.36	379.52	256.25	254.27	R	
S	216	56.90	139.26	97.28	80.22	73.23	M	•
T	218	59.84	85.22	117.29	165.64	80.22	s	
Â	219	101.04	179.27	173.29	145.24	131.28		
L	220	150.09	171.32	122.29	190.35	139.28		
Ĺ	221	81.42	68.26	93.26	152.30	68.26	Δ	
Ā	222	95.16	119.25	163.28	146.32	141.28	Ĩ	
T	224	93.20	116.70	162.30	136.02	124.84		
I	225	87.31	98.44	105.54	115.67	96.41		
Ō	228	215.82	200.81	274.79	222.09	207.90		
N	233	224.65	227.67	237.19	217.36	217.36	v 4	
	234	103.99	134.07	124.56	144.39	117.42		
	235	239.36	115.04	109.48	70.62	142.80	ļ	
	236	78.48	95.22	90.52	115.92	88.12	ł	
	237	88.29	88.26	148.18	86.10	86.05	M	
	238	89.28	177.50	309.01	50.01	50.01	0	
	239	92.22	86.78	146.42	300.68	67.15	D	
	241	92.22	80.39		356,82	80.39		
	242	55.92	30.99		27.26	30.33		
S	243	81.43	25.20		23.14	25.15	I	
E	244	100.07	37.27		22.07	24.58	Е	
L	245	61.81	59.82		44.62	40.95	D	
F	246	59.84	70.81	18.53	97.58	19.81		
	247	154.02	26.53	18.53	78.65	18.53	S	
B	250	226.61	82.06	84.07	71.06	76.06	Т	
0	251	57.88	13.15	8.49	18.33	15.09	1	
R	252	59.84	90.79	68.44	114.35	74.51	A	
E	253	59.84	12.47		29.12	10.85	I	
D	254	95.16	34.94		36.88	34.94	N	ĺ
	255	62.79	36.47		62.38	36.47		
	256	284.49	137.17		73.14	71.83	A	
	257 258	84.37	62.98		79.05	47.64	R	
}	259	233.48	122.34	122.34 37.34	53.53	50.67 43.17	M	
ļ	260	85.35		32.65	32.46 42.90			
	261	164.81	79.79			63.65		
	262	45.10	46.93				1	
IDEAL	263	103.00	134.38	125.64		125.64		
IDEAL INSTALLATION	P_ (A	V))7 ± 0.29	SELI	F-BORED	P_ (A'] .47 ± 0.28

.

.....

TABLE 4 SUMMARY OF LIFT-OFF PRESSURES OF INDIVIDUAL ARMS

. . .

- **

r	r					r -
Test	P'0	P _{lim}	Plim	ິຊ(0.5€)	G_cl∔	G I e
	.0	.1100	.1100	s	S	, i
No.	kPa	kPa	kPa	MPa	MPa	MPa .
201	76.06	1/ 11 50	1177.00			
201	76.06	1471.50	1177.20	14.81	11. 3	
207	65.05	882.90	784.80	13.73	10 10	
208	28.02	529.74	412.02	9.71	ь ··	
209	45.04	686.70	637.65		1 1 1 1	
210	81.06	2648.70 2844.90	2158.20 2158.20	70.02 58.25	42 - 39 3	
211 212	104.27	1402.83	1226.25	15.79	12 5	
212	120.23	1098.72	1079.00	17.16	12.55	
213	49.21	804.42	784.80	10.40	123	1
214	254.27	3678.75	2943.00	45.42	32.57	5 57
216	73.23	725.94	588.60	16.97	11.57	4 32
218	80.22	971.19		18.25	13.44	11 09
219	131.28	1599.03		27.57	19 32	15 ()
220	139.28	1236.06	981.00	20.01	14.22	11 18
221	68.26	1059.48	833.85	20.01	13.54	11 09
222	141.28	1206.63	981.00	17.46	12.35	10.29
224	124.84	1716.75	1373.40	21.48	16.97	14.42
225	96.41	1579.41	1275.30	20.70	15.99	13.93
228	207.90	2992.05		33.45	24.13	21.58
233		2992.03	2207.25	26.68		
233	217.36	1765.80	1373.40	26.66	22.17 18.54	20.21
234	142.80	1955.13	1373.40	33.54	25.89	21.38
236	88.12	1402.83		19.03	14.72	12.46
237	79.18			25.31	19.72	15.70
238	44.12	1220.36		39.34	27.37	20.99
239	61.26	1396.94		32.57	23.54	18.93
241	74.50	1818.77	1416.56	35.81	28.84	23.25
242	23.46	454.20	336.48	4.71	4.22	3.73
243	18.28			5.59	4.71	3.92
244	18.69		455.18	8.73	7.65	5.97
245	34.08	513.06	434.58	7.11	6.07	3.60
246	12.94	689.64	532.68	12.75	9.26	7.51
240	11.66	1611.78	1170.33	9.11	8.81	8.22
250	69.19		1906.08	53.06	32.03	24.08
251	8.22	326.67	238.38	4.28	3.58	3.12
252	67.64	1037.90	807.36	18.14	13.57	10.93
253	3.98	985.91	651.38	10.31	11.21	10.64
254	28.07	1248.81	630.78	11.60	13.33	13.30
255	29.60	1219.38	812.27	18.28	14.77	13.20
256	64.96	1629.34	1269.32	28.93	24.23	19.85
257	40.77	1098.62	822.96	21.72	17.37	14.41
258	43.80	3918.02	2667.24	38.98	33.59	30.65
259	36.30	2065.89	1269.32	37.32	31.38	26.26
260	20.93	1833.39	1254.60	22.57	17.62	15.03
261	56.78	3231.32	2262.09	42.59	37.04	32.25
262	54.54	1149.7	826.0	13.00	10.88	9.64
263	125.64	2047.3	1500.9	25.56	19.99	17.15
	123.04	2047.3	1.200.9	0, , , ,	13.33	11.13

TABLE 5 SUMMARY OF LIMIT PRESSURE AND SECANT SHEAR MODULUS

**** (PA	53	Pc	•	•				FAT		1	n .	
% o		sř.	474	1				1					-; .
					-	- · ·	+ ·	† ·	+	<u>†</u> .	t	ţ	1
201	143-20	259.36	266 63	1.218	1.101			C	123 4		1 • ° • •	1	
207	175 10	210 1	254 78	1 185	: 97:	1 943	0 212		34 17	1			
228	56 55	113	120 51	3 990	1. 4	2 +20	0 212		5 66		1.1.12	1	1 *
-19	47 13	135 95	143 23	2	0 811	3 422		0 110	55 21			13	
211	×38 *3		140 53	3 510	7 (2) 1 (42	1 473 3 72			213	C	1 1	4	
212	207 50	405 23	2"8 64	3	1 14		8 132 9 138		1.12				
213	132 90	262 10	268 19	2 525		- •c	1	1	1.2.	1			
	19 3	33 49	1.44 21	3 4.6			1	0	47				
215	412 96		**2 30	1 . 12			1			Ъ.,			, '
		2.6 2	255 42	2	1	3	3 : 4	0 .00	1		1		•
2.0	.97 41		263 98	3 492				0			i		
21.8	260 24	161.95	311 20	2 ***		1.144	10 . ++	10 124	- · •	1	1	· · · · •	:
223	263 38	20.25	119 43	1.197			5 124	0 11:	1 1 1	de 1.4		dan sia	1 20
22:	206 72	264 45	273 20	3 . 82	1. 201	1 233	0 :20	4 498	111 44	- i -	1	120 100	
222	247 59	310 94	321 77	3 142	7 24*	2 331	0 :26	0 .0.	1:22 H);s - 10	1 22 823	1 4	:1 -
22.	237 30	316 80	328 44	3 526	3 588	a 	0 130	0 391	128 +1	C	91 11	53 241	L +5 -
225	228 46	3:8 27	325 59	0 004	2 997	0 193	0 196	0 378			1 48 556		
226	352 67	442 36	456 17	* 506	ניי כן	5 +93	0 134		237 1				
233 -	335 01	•33 15	++3 +1	0 517	0.500	0.518	0 146	£	1238 5	- · · ·	4		1.
23+	243 77	317 28	122 '5	0.530		0 507	0 1+0						
235	327 58	414 52	+22 41	2 100	1.556	3 • *	8 : 36	0 503	2+6 +		- 43 - 961		1.
236	151 24	231 91	233 48	3 451		0 317	0 1.2				1	51 530	1
237	252 12	305 31	314 30	3 732		8 158	0 110		116 5			62 740	
238	323 '3	3.6 .5	383 57	0 920	2,278	0 344 0 329	0 110		120 11			137 '60 6 66 581	
230 241	302 15	362 37	360 B4	3 977	1 242		0 130						
242	84 37	107 31	100 80	1 710	1 776	5 77	6 132		50 1				· • •
243	52.07	73 54	78 52		. 762	L 745			57 4			114 813	
244		1 17 12		0 107	3 344	5	1 154	17 ° 7	79 7				
245	72 36		105 75	0 476	0 557	1 779						1 14 839	
246	47 90	:20 36	132 14	0 683	0 192	3 320			63 8	10 :01	1 10 610	1 1 1 100	a 50 -
247	128 86	161 77	160 34	0 935	1 334	0 201	0 150		121 1	0 273	26 13	2 26 732	1 m .
256	401 20	567 31	661 64	8 829	1 200	1 136	0 142	8 442	270 20	a 244	61.50	1 35 56 1	6 112 -
251	40 18	63 36	86 99	1 000	1 135	0 161	0 102	6 672		2 6 262	12 710	12 710	6 50
252	142 56	227 58	242 83	8 836	9 916	1 200		1.					
253	144 62	201 30	206 71	0 985	1 378	-	1					• 26 +61	
254	161 00	222 79	229 02	0 686	8 765	0 962					,	5 25 .80	- 1
255	150 78	214 54	210 33	0 784	0 072							5 31 110	
256	258 48	342 97	351 30	0 611	0 696							0 00 100	
257	130.60	216.90	222 13	0 463	0 552					8 8 379		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
256	362 64	+03 39		74	0 557		F	r -		-			
250	323 44	410 00	432 30	0 628	0 776		+	- · · ·					
260	100 04	254 47	361 16	• 771		8 8 7						22	
261	332 16	434 70	436 76	8.447	0 529	8 330 8 371			1			· · ·	
262	1 183 88	1 106 10											

TABLE 4

 θ_{The} - unload-reload modulus corrected for stress level (σ_{the})

0 - mentanen dynamic shoar modulus from reconant column texts

			TABLE ?		
17	*	200	JULCOND LING	NELONG : SIG	TYCLE

	***'	P.	25	₽c	•	٠,		4 . AB	e e	- Pa¥	2 ° 4¥	· n	[; ₃₀]	•
1	% o			170	1	1	1			? .	1		wi e	
1		t 1				•	+	t ·	- ·	t -			t - 1	
f	201	23 26	+20 26	+38 51	2 ***	÷ • •	2 437			126 22	2	11 II	• • • •	•
	221	1.0 .0	365 72	NC8 32	2 243	3 . 2	3 183		a 171		3 : .	16 199	23	
1	414		.47.61	1.54 02	1 11	• •	1. 25	0	3	2	2 44		23 - 4	· · · •
1		20 18	48 SA	114 42	1 62	- • <u>•</u>]	• •	1 1 1	3 • 1 *		5.5	16 -44		•
	211	152 24		M60 21	1 211		1 2 3 3		0 +43		6	19.193	'z ••	
	211	113 .2 231 23		665 12 377 68	1 °2'			0 130	B 415 B 335	122 17 127 13	9 250	1 1 44	1. 197	
i	212	185 281 176 861	167 37	357 30					0 12		0 65 5 16	1: • 0	• •	
i		31 36	16	394 24			•		0 152					
		• • 2	27 83				- 441	4						
						•	141		Г			1		
									13 .					
								0			.			• •
		21.44						3 22	0					
	22.			130 50			2 184		0 16:					•
	. 2.2		24 - 2	426 13							l		ja,	•
	220	29 24	•11 30	+27 12	. 20:		11 116		- · · ·		0 60	52	1 1	
- [225	·•2 .6	• • • •	426 77	1 64 5		1 110			1	0 55	12 145		
1	220		1.17 55	555 25	5 878	3 .3				•	0 160	1 24 242	42 J. 44 J.4	
	233	++4 30		597 21	5 9 90	2 44:	0 001	5 126			8 190 8 151	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	12	
-í	234	37 45		533 66	1 144	2			-		8 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	235	11 43	446 41	610 22	2 22		1 175		G •		0 .00		51 - 2	
-i	236	172 39	105 21	+87 12	1 826	2	1	1 · · ·			0 119	4: 195		
	237	164 33	•34 10	++9 20	1 131	1 22	1 963	F	a 200		C . 69		40 111	•••
- {	238	+24 17		+90 35	2 : #3	2	12 127	0 1.0			0 67	1; 293		
-1	230		125 22	128 91	2 234	2 .24			0 283		0 01			
1	241	544 46	532 58	459 23	2 344	2	2 301	0 150	. 2+2		0 368	62 200		
	242	1 118 85	144 21	133 04	3 536					1 53 35		10 341		
1	243	10 25	113 76	122 63	2 340	2 431				13 03	0 925	15 580		12 22
	244	134 40	167 75	176 62	1 370	1 445	r		la 344	m 12	0.066	14 157		27 42
-1	24.5	116 15	150 32	165 49	1 1 1 1	1 250				70 44		17 111		
1	244	1.42 54	179 72	100 40	2 214	2 128		8 172	1 105		. 517	22 112		58.65
- {	247	238 +6	300 68	310 68	2 286	2 300		in in	0 132	165 26	0 384	13 856		34 29
	230	656 72	750 27	798 28	2 .13	2 312		0 150	0 305		8 971	42 300		112 24
	231	78 56	82 78		2 985	2 741	F 1		0 333	54 74	8 044	14 990		54 96
ļ	232	271 00	320 14	341 27	2 136	2 210			0 271			35 051		
1	253	247 31	200 /:	312 71	2 230	2 176			2 2 4 5			34 051		-3 21
1	254	271 00	328 14	425 60	1 305	2 371	–		0 325	138 43		42 300		91 4
1	255	240 95	100 52	321 10	2 127	2 297			214	83 77	0 072	37 553		12 21
1	236	100 25		384 44	1 716	1 196	F		5 307	285 88		14 103		142.34
1	257	200 71	195 22	370	1	1 141	1			2.00 22		12 300		65 66
	250	338 34	670 82	685 62	1 141	1 223	1 210		5.35	208 21	6	73 701		150 64
1	230	1	300 45	300 05	1 441	1 711			5 34			53 847		126 96
	386	284 39	in ii	1 100 10	1.00	1 971	1 113		5 321					87 45
J	201	340	710 24	715 55	1 200	1 376			5	240 30		78 873		:33 55
	2442	1 mm mm	383 23	311 27	1 730	1 844	1	F	L 257		8 995	30 000		10 52
	-	300 10	307 77	517 15	1	1 300			5 313				41 407	113 01
		1	1 17	1			1 -	г	г ···	···· · · ·	F		1	

Gun - answered unload releast modulus

 \mathbf{G}_{the} - unload reload modulus corrected for strong level $\{\mathbf{r}_{he}^{+}\}$

6 . . maximum dynamic showr modulus from resonant column tests

TABLE 8

SUPPORT OF SRD UNLOADING RELOADING TYCLE

est.	PÁ	PB	Pċ	۲ <u>۸</u>	′ в	10	47AB	e	PAT	57 ₄₈	3. R	1.75	٦,
No	#Pa	*Pa	kPa	1	T	1	1		47 8	τ	MEL	- * 7.	MPA
231											· · · · · ·		32.5
237										-			12.6
229			-				1.1	· -					16.
20.3	158 98	223 68	225 63	2 550	2 613	2 600	0 135	3 343	1 4 40	2 32		34	
210	519 36	761 90	179 30	2 332	2 395	1 973	0 132	3 +21	124 (S	5, 153	23, 263	69 - T	1
212	205 25	810 +2	827 36	2 982	2 349	2 815	0 134	0 +:2	332 ÷8	0 (60)	01 121	71 .34	1.17
21.2	+33 54	313 +6	493 44	3 124	3 198	3 177	0 148	0 235	143-53	0 161	52 287	41 ⁽ ***	
213	133 54	A06 38	421 33	2 3:3	2 971	2 829	0 136	2 718		2 261	51 -34	•: ···	1.4
214	119 26	234 15	244.21	2.4.34		2 426	0 :*e		-13 •1	• • • • •	16 444	'· ·.	• : .
211	°-5 ÷1	383 *5	911 35	1 - 28	1 - 34	1 594	0 114): ÷:	128-21	t sa s	11 -	•	
.: :	251 22	303 (6	314 92	2 623	2 699	2 667	ביי כ	1: 1:	: in is	1. I.A.	• • •	192 - AN	
21 9	313.44	367 13	375 67	2.365	2.429	2 . 11	() 12 5	<u> </u>	• • •	3	•	10 A.M.	i
::)	*** *3	536 55	554 21	2 : 57	2 258	2 30 *	0 :62	12, 23, 24	196.90	1.			
22.2	35.21	455 []	676 42	3 354	3 + 31	3 364	0 114	2.424	222 22	2 262	14 151	4.7	1
221	112 37	371 59	300 45	3 219	3 321	3 293	0 124	3 120	128 50	0 016	•4 A18	1.3 4	
- 22	423 25	468 14	487 15	3 254	3 329	1 117	0 : 10	0 3.6	114 14	la ∶ra	1: 431	41 . 15	
224	357 36	+59 21	423 79	2 240	2 154	2 218	0 228	0 337	1+2 52	0 103	18 664	45 **6	35
225	+27 37	498 52	513 05	2 169		2 638	0 136	0 287		0 161	54 249	43 . 15	,,
228	537 44	529 58	655 31	1 309		1 281	0 :22	3 .27		0 255	K. 11	69 154	123
233	546 16	653 +0	676 39	1 373	1 ++2	1 363		0 +29	2.90 19	0 062	75 615	70 •17	1.44
234	578 41	561 +3	684 74	3 546		3 587	0 : 30		193 14	0 159	67 100	52 515	2.12
235	109 56	507 58	547 58	3 . 92		3 559	0 1+2	[0] 3 T	128 91	0 063	22 . 190	52 344	121
236	135 99	515 58	535 63	3 564	3 552	3 623	0 : 36	0 251	129.93	0 388	64 550	50 338	39
237	453 22	536 61	554 27	2 377		3 031	0 158	0 242	145.08	0 275	51 305		30
238	++8 32	545 44	579 ??	3 250	3 350	3 276	0 200	0 219	1.49 .71	0 190	50 420	39-257	÷:
239	427 37	603 32	629 30	3 672	3 130	3 737	0 236	0 212	157 67	0 106	46 .34	36 .16	•-
2+1	569 04	778 91	013 25	3 962	3 956	3.891	0 188	0 211	171 39	0 :45	61 607	45 315	1.13
242	133 42	173 54	186 39	5 905	5 922		0 234	0 360	.0 98	0 105	18 443		57
Z4 3	1.10 70	145 :9	154 02	a 39a	6.477	1 · · ·	1	0 536	52 54	(* * * *	16 775		1.2
Z44	198 16	237 40	249 17	3 396	3 483	3 452	0 168	0 469	116 95	0 076	24 231	22 :15	27
245	149 31	204 83	224 16	2 3 96	2 561	2 558	0 330	0.358	30 Z1	0 149	17 285	14 579	÷0
246	170 99	224 26	245 54	A 390	4 214	4 151	0 248	0 336	52 56		22 279	18 199	13
247	364 64	432 91	450 28	4 134		4 162		0 +33	195 07		38 299		34
250	825 22	928 26	978 45	4 432		4.468		0 346		0 076	63 128		:12
251	97 61	123 31	129 03	5 125	5 209		0 168	0 + 50	51 35		16 079		58
252	350 07	413 20	436.94	3 951		3 963	0 156			0 010		27 534	24
253	333 64	396 72	416 92	3 473	3 562	3 550	0 178	a 236	99 32	0 080	36 610	27 313	73
254	· ·	•	· ·	1 ·	· ·	· ·	-	· ·	· ·	-		1 -	91
255	338 23	403 39	•21 22	3 968			0 168		: 23 35			30 ++7	12
256	536 31	633 04	657 36	3 356	3 443	3 357	0 174	0 +34	324 36	0 378	57 428		:42
257	398 58	471 96	493 23	4 081		1	0.180		134 32		42 409		95
258	796 83	931 95	\$56.75	2 114			0.174	0 331	337 00			65 758	1 50
250	630 98	739 97	754 21	2.837			0 190		227 23			47 771	126
266	402 98	481 08	503 57	3 184			0 186		136 35			33 782	97
261	963 . 67	962 66	1012.51	2 667		2.747	0.170	0 271		0 077	71 956		133
262	354.43	437 62	450.97	3.615				0 202				23 200	90
263	536.31	677 48	692.97	2.656	1 2 771	12 784	10 230	0 262	282 35	10 :01	62 970	40 492	1113

Gun - measured unload reload modulus

 $G_{\rm URe}$ = unload-reload modulus corrected for stress level (σ^+) ho

G - maximum dynamic shear modulus from resonant column tests

TABLE 9

SUBDARY OF STR UNLOADING-RELOADING CYCLE

Test.	P	Ĺ.	P		P	ċ	۲,	' 3	°c	AT AB	x	PAV	47 AV	G.m.	S.Ro	G _o
Na	1	Pe -	×	Pa	k	Pa	1	1	1	1	· ·	kPa	τ	MPa	MPa	MPa
243	144	. 13	178	54	191	30	7 878	7.975	7.779	0 :34	0 +77	91 22	0 287	17 462	16 011	70 229
244	264	87	304	. 11	319	. 81	6.625	6.709	6.547	0 168	9.437	:30 14	0 076	25 114	21 353	77 828
245	188	65	252	. 51	270	. 07	5.798	5.997	5.953	0 155	0 325	86 47	0 179		14 004	60 600
246	244	07	288	. 32	303	.91	7.317	7.411	7.256	0 188	3 294	89 38	0 085	25 +37	20 312	59 556
247	489	62	489	62	592	. 03	6 476	6.573	6.496	0 134	0 158	218 08	0 087			94 291
250	1013	08	1112	. 65	1163	56	6 389	7.069	6.900	0.150	0 313	361 26	0 072	66 236	53.526	112 291
251	121	. 84	150	. 30	154	82	7 307	7.995	7.999	0 1'5	0.433	67.11	0 079		15 493	
252	445	. 47	504	. 33	529	70	6 541	6 626	6.508	0 170	5 2:3	1:07 51	0 377	36 315	27.139	74 303
253	1	-	-		- 1		1 •		1 -	•	•	•	1 ·	1 ·	1 -	73 239
2.54		-	- 1		•		1 ·	· ·	- 1	· ·		· ·	[·		{ · }	91 633
255	437	33	500	. 90	525	+3	5.328					1:11 23			32 573	
256	674	34	774	.01	845	. +3	5 612	5,702	6 213	0 180	2.+31	353 11	0 191			142 340
257	501	. 39	570	. 35	598	. 32	5. 285	7.076	7 320	0 132	2 241	1:44 :4	0 192		31 235	25 496
258	1052	. 81	1192	. 60	12+0	01	3 421	3 504	3.489	0 166	្រាះដ	372 65	0 375	87 054	75 291	150 685
253	786	. 76	387	. 61	323	61	6 344					245 26				126.388
260	520	. 71	500	47	625	. 91	4 754	4 554	4 307	0 190	0 235	147.54	lo per	46 401	35 370	97 450
251	1132	. 96	1246	. 75	1336	. 83	4.437	4 517	4 755	0 150	3 227	303 41	0 072	74 252	56.078	133.554
262	498	64	566	. 63	584	68	6.531	6 618	6.543	0 174	0 170	39 13	0 078	41 460	24 . 297	60 523
263	716	.03	842	. 58	857	. 98	A 206	į 4.311	4 313	0 213	0.228	195 81	0 095	52 910	40.049	113 808

 $G_{\rm URo}$ = unload-reload modulus corrected for stress level $(\sigma_{\rm ho}^{*})$

G = maximum fyrmamic shear modulus from resonant column tests

		TABLE 10		
SUPPARY OF	1ST	RELOADING	UNILGADING	CYCLE

fest	P	Å	P	B	P,	ċ	۱ ·	A		°в	ļ	'c	1	"AB		4	P,	ÁV	2.	'AV	;	i :		•	:	
No.	k.	Pa	k	Pa	a l	Pa		1		1		1		1				P.a.		1		ti a	ĺ.	77 A	1 -	'i •
201		36	582		575		13	604	13	731		731				241					6 1	313		• 1	[
207	206		306		306		9	376	-	502	9					333					*3	24.8	34	1,40	12	-
208		50	127		127			238		340	9					451		۰6		:32	21	۰`۰	20	•	: 14	•
209	100	-	152		152		(· ·	232		299		299				443			(-	040	. 8	•••	124	• • •	1-1	•
210	605		671		671			177		218	9	218		192	3		337	99	0	237	- 4	• • •	i÷1	،		
11*	:164	-	1287		1287			638		705	9	-	1 -	134	12		336	24	0	.*2	125	1.0	141	-24		•
11**	554		658		658			089		155		155	12				301	17	0	:**	- #	124	1.4		: < :	4
212	577	81	652		552	. 37		625		696	9	636	12	141	13	238	1.14	19	0	163	1.8	- 54		1.94	1	
213	454	39	556	23	533	28		555	9	541	9	541	j.	115	:	267	1.47	18	$ \gamma $	1.14	14			٠.	1 -+	
214	312	34	380	63	380	63		910		- 68	3	- 14 4	2	111	2	297	37	.,	12	÷ • •	• •	1 ° •	: •	- 14 0	1 e 1	
2:5	:+22	. 45	1579	. 41	1580	39	9	543	9	/11	3	213	12	141	1		• 25	et.	1.	÷ .		•	•••	·	• •	
2:6	336	. 48	401	23	401	23	3	515	3	491	3	۰»:	5	152			110	° 6	1	• •	•					
18	441	45	507	19	509	14	10	0.95	19	161	jı÷		12	1.1	·	225	1:15	2.1	·)	· • •	i •		- 1		۰.	
219	507	. 18	619	38	619	39	9	133	3	395	3	341	2	124		282	1.13	43	0	. 1 •	19	. • · ·			1	
220	368	. 86	439	43	439	43	9	398	10	042	12	16.2	Ì۶.	1.4	1	443	: 94	* +	15	: 14	• •	+12	1.1	• •		
221	273	. 70	335	50	335	. 50	9	311	3	979	Э	3,5	12	1.10	٠,	∋€z	121		e			. +*	l	4.4	1 .	
222	+60	. 09	534	. 55						095			ls.	13+	. *	685	159	33	10	164	۰.	144	152	. 34	1 12	
224	658	. 25	752	43	750	. 47	13	315	10	382	1:0	182	e.	134	2	235	1 '6	16	0		14	101	1.4	•4	- • •	
225	- 1		- 1		- 1			-		-			1			· .			ļ.						1 #3	
228	1186	. 03	1320	43	1320	. 43	10	405	10	474	10	474	5	138	2	261	370	72	0	262	: 16		94	424	1:39	
233	1189	. 95	1319	45	1319	. 45		619		684	3	684	5	130	1:	256	379	38	3	2.59	109	243	8.	171	1:44	
234	552	. 30	663	17	663	15	8	221	8	306	3	116	<u>ار ا</u>	:	17	213	141	∋2	3		1:	4.1		111	1: 2	
235	•		-		-			•			1			-	!					ļ					121	
236	470	. 88	573	39	571	92	,	110	,	176						250				. 59	- 14	۰×÷	161	1.14	49	
237	526	. 60	596	.45	594	49	1	655	,	719	2	715	0	126	12	250	148	74	C	:59	• 3	124		1:3	1.0	
238	470	. 88	527	78	526	90	1	544	1,	604	12	534	5	121	ζ3.	275	144	52	2			۰:	j i a	. 4 5	1 .	
239	475	. 79	589	. 58	587	52	10	101		217	8	2:7	20	232	5	262	153	93	0	134	53	: 12	4:		42	۰,
240	- 1		- 1		- 1			•				-			Ĺ		ļ								: 36	
241	1 771	. 07	863	. 28	863	. 28	9	201	9	272	9	212	0	142	0	203	175	37	6	664	21	221	1.2	511	103	
242	137	. 34	174	. 62	174	62	9	810	9	892						385								342		
• 1							I		Ľ		L.		L.						L				[* '	242	1	

 G_{RUo} = reload-unload modulus corrected for stress level $\{\sigma_{h}^{+}\}$

G = maximum dynamic shear modulus from resonant column tests

TABLE 11 SUMMARY OF CALCULATED ANGLES OF FRICTION AND DILATANCY

(\$ - 34" } $\begin{array}{c|c} PS \\ P(1) \\ P(2) \\ P(3) \\ P($ 1 Testi S .i ø *****P Ĺ No а э¹¹

 No
 \cdot \cdot . . •• 1 . 1 ÷ à . . 1 1 1 N • 8) 5 . 1 Ť 13 2 • 2 1 4 **.** •.` ٠ • ? L • 2 A

 222
 0
 39
 36
 3
 +0 0 36 1 2 8 0 2 6 1^{-5} 7 6 1^{-5} 9 109

 224
 0 46 41 2 38 42 4 13 9 10 7 4 4 0 208

 225
 0 47 +1.9 44 3 2 5 10 9 46 0 209

 228
 0 47 +1 9 44 3 3 9 10 13 5 12 7 52 2 0 188

 233
 0 49 43 3 45 5 47 0 11 8 1^{-7} 62 2 0 188 234 0 43 42 3 42 3 42 3 4 3 4 3 4 3 4 4< T 2 .9 3 1 . 8 2 n 48 3 v .8 9

 235
 0
 $\cdot 2$ 38
 4
 1
 5
 39
 3
 7
 9
 5
 6
 6
 49
 \cdot 0
 088

 236
 0
 $\cdot 48$ 42
 6
 45
 0
 $\cdot 4$ 8
 10
 9
 14
 2
 13
 9
 47
 9
 0
 212

 237
 0
 45
 40
 5
 43
 1
 $\cdot 4$ 8
 2
 11
 9
 12
 0
 43
 3
 0
 210

 238
 0
 34
 32
 6
 37
 6
 32
 \cdot 1 ' 4
 8
 1
 6
 35
 3
 0
 209

 239
 0
 38
 35
 6
 39
 4
 36
 1 -7 1 2 4 3 0 209

 239
 0
 38
 35
 6
 39 4 6 1 7 1 2 4 3 0 209
 .1 7 .9 6 .9 4 49 3 49 3 50 2 41.9 42 0 S 41 9 E

 245
 0
 52
 45
 3
 47
 4
 14
 6
 16
 6
 0
 093

 246
 0
 39
 36
 3
 39
 9
 2
 8
 7
 8
 0
 094

 247
 0
 67
 55
 3
 55
 3
 48
 6
 29
 0
 19
 2
 9
 1
 0
 082

 250
 0
 43
 39
 1
 42
 0
 43
 0
 6
 4
 10
 5
 11
 4
 46
 1
 0
 068

 42 0 L F 42 1 41 4 8 41 0 41 9 44 3 42 0 10 0 13 5 10 1 62 1 0 097 0 251 0 47 42 2 **252** 0 42 38 4 41 6 39 0 5 5 10 2 6 2 39 3 0 215 **253** 0 59 50 0 51 8 44 7 21 2 21 9 15 0 45 0 0 203 **254** 0 56 48 0 49 8 51 3 18 3 19 3 23 1 54 4 0 197 50 3 R 50 n E 48 , 255 0 47 41 9 44 3 47 0 10 0 13 5 16 9 42 4 0.181 48 5 38 4 3 5 10 2 5 4 65 8 0 147 36 9 10 9 14 2 3 6 39 9 0 251 256 0 42 38 4 41 6 +> 0 257 0 48 42 6 44 3 32.5 52 7 38 7 . 25 2 83 3 0 218 258 0 76 61 4 61 4 49 0

 44
 7
 10
 9
 14
 2
 13
 1
 45
 0
 0
 259

 53
 0
 9
 1
 13
 0
 25
 6
 46
 1
 0
 262

 43
 8
 13
 7
 16
 0
 12
 5
 42
 6
 0
 252

 49
 4
 15
 5
 17
 2
 20
 3
 46
 0
 0
 271

 259 0 48 49 1 42 6 44 3
 259
 0
 48
 42
 6
 4
 1

 260
 0
 46
 41
 2
 44
 0

 261
 0
 51
 44
 6
 46
 7

 262
 0
 53
 46
 0
 48
 1
 50 4 49 1 52 3 49 1 263 0 55 47 3 46 8 17 4 19 0 16 7 44 2 -0 256 IDEAL 50 0

> Hethods: 1: Hughes et al. (1977) 2: Robertson (1982)

2: Robertson 3: Menassero

(1987)

FIG 1 SCHEMATIC CROSS-SECTION OF ENEL CRIS CALIBRATION CHAMBER

FIG. 2: SCHEMATIC OUTLINE OF CC LOADING SYSTEM AND OF DATA ACQUISITION SYSTEM FOR SBPT IN SAND

CC LOADING SYSTEM

DATA ACQUISITION SYSTEM

÷

FIG.3: SCHEMATIC OUTLINE OF SELF BORING PRESSUREMETER PROBE-CAMKOMETER MARK VIII

SAND	1-TICINO	2-HOKKSUND
DOMINANT MINERAL	QUART Z (30%)	QUARTZ(35%)
ANGULARITY (LEES' CHART)	8+9	6+8
MICA	~ 5%	~10%
) [*] max (t/m ³)	1700	1.759
f_{min} (t/m ³)	1391	1.438

FIG.4 : CHARACTERISTICS OF THE TESTED SANDS

1

FIG.5 : SCHEMATIC OUTLINE OF SAND SPREADER

FIG.6: SCHEMATIC OUTLINE OF IDEAL INSTALLATION IN CC

FIG.7: SCHEMATIC OUTLINE OF SELF-BORING INSTALLATION PROCEDURE IN CC

CC TEST 234 - SBP **TICINO SAND TS-4;** $D_R = 76.1$ %; OCR = 5.34 CONSOLIDATION PHASE, BC3

Vertical StressRadial Stress K_o Tangent Constrained Modulus τ'_v σ'_h M_o^t $v_{sg/cm}^2$ $[kg/cm^2]$ $[\cdot]$ 0.12 0.08 0.613 0.34 0.15 0.443 0.441 0.15 0.443 1.19 0.52 0.433 794.3 891.3 912.0 1047.1 1.71 0.75 0.439 2.20 0.97 0.439 2.71 1.19 0.440 1047.1 1122.0 3.70 1.62 0.439 4.21 1.82 0.439 1225.9 138.3 5.76 2.53 0.439 2.76 0.439 1242.0 1224.3 4.73 2.08 0.439 1242.0 1225.9 5.24 2.30 0.439 138.3 1349.0 6.28 2.76 0.439 1242.5 σ'_v σ'_h κ_o Secant $Constrained$ Modulus σ'_v σ'_h κ_o $Secant$ $Stress$ $Stress$ δ_{12} (kg/cm^2) $[kg/cm^2]$ $[-]$ $[kg/cm^2]$ $[kg/cm^2]$ 6.05 2.71 0.448 2884.0 3890.5 363.2 0.567 2.47 0.567 2.56 0.426 388.4 16.2 0.538 $2.60.3$ 2816.4 <th></th> <th></th> <th></th> <th></th> <th></th>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Ko	Constrained	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· ·	1		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.	[kg/cm]	PHIMARY LOADING
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.34	0.15	0.445	524.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.71	0.52 0.75	0.433	794.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.71 3.19	1.19 1.40	0.440 0.439	1047.1 1122.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.21 4.73	1.82 2.08	0.439 0.439	1225.9	v Mò
Vertical StressRadial StressK oSecant Constrained Modulus σ'_v σ'_h M_o^S $[kg/cm^2]$ $[kg/cm^2]$ $[-]$ $[kg/cm^2]$ $[kg/cm^2]$ $[-]$ $[kg/cm^2]$ $[kg/cm^2]$ $[-]$ 6.05 2.71 0.448 2884.0 3890.5 5.84 2.66 0.456 5.63 2.61 0.464 5.43 2.56 0.473 5.22 2.52 0.482 3188.4 3162.3 4.18 2.25 0.538 2.69 2.11 0.572 2290.9 318 3.18 1.95 0.611 2089.3 2.70 1.78 0.657 2.16 1.56 0.722 1513.6 1.60 1.30 0.812 1176.0	5.76	2.53	0.439		
Stress Stress I_0 Constrained Modulus σ'_v σ'_h M_0^S I_0 $[kg/cm^2]$ $[kg/cm^2]$ $[-]$ $[kg/cm^2]$ I_0 6.05 2.71 0.448 2884.0 890.5 5.84 2.66 0.456 3890.5 3890.5 5.43 2.56 0.473 3630.8 3388.4 5.22 2.52 0.482 3162.3 3162.3 4.72 2.39 0.507 2818.4 4.18 2.25 0.538 3.69 2.11 0.572 2290.9 3162.1 2290.9 3181.4 2.70 1.78 0.657 1862.1 113.6 1176.9 1.60 1.30 0.812 1513.6 1176.9 90.812 1176.9	[Г	<u> </u>		$\sigma_{\mathbf{v}}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		ĸ	Constrained	
6.05 2.71 0.448 2884.0 5.84 2.66 0.456 3890.5 5.63 2.61 0.464 3890.5 5.43 2.56 0.473 3630.8 5.22 2.52 0.482 3388.4 4.72 2.39 0.507 3162.3 4.18 2.25 0.538 2630.3 3.69 2.11 0.572 2290.9 3.18 1.95 0.611 2089.3 2.70 1.78 0.657 1862.1 1.60 1.30 0.812 1513.6	1 · ·			~	Ev 1
	[kg/cm ²]	[kg/cm ²]	[-]	[kg/cm ²]	MS
5.63 2.61 0.464 3630.8 5.43 2.56 0.473 3388.4 5.22 2.52 0.482 3162.3 4.72 2.39 0.507 2818.4 4.18 2.25 0.538 2630.3 3.18 1.95 0.611 2290.9 2.70 1.78 0.657 2889.3 2.16 1.56 0.722 1862.1 1.60 1.30 0.812 1513.6	5.84	2.66	0.456	3890.5	
5.22 2.52 0.482 3388.4 4.72 2.39 0.507 3162.3 4.18 2.25 0.538 2818.4 3.69 2.11 0.572 2630.3 3.18 1.95 0.611 2290.9 2.70 1.78 0.657 2089.3 2.16 1.56 0.722 1862.1 1.60 1.30 0.812 1513.6	, ,				
4.72 2.39 0.507 2818.4 4.18 2.25 0.538 2630.3 3.69 2.11 0.572 2290.9 3.18 1.95 0.611 2089.3 2.70 1.78 0.657 1862.1 1.60 1.30 0.812 1513.6	5.22				
4.16 2.25 0.338 2630.3 3.69 2.11 0.572 2290.9 3.18 1.95 0.611 2089.3 2.70 1.78 0.657 1862.1 2.16 1.56 0.722 1513.6 1.60 1.30 0.812 1517.6				- · ·	
3.18 1.95 0.611 2290.9 2.70 1.78 0.657 2089.3 2.16 1.56 0.722 1862.1 1.60 1.30 0.812 1513.6				2630.3	
2.70 1.78 0.657 1862.1 2.16 1.56 0.722 1513.6 1.60 1.30 0.812 1513.6	3.18	1.95	0.611		
1.60 1.30 0.812 $\frac{1513.6}{1176.9}$, ,	,	,		
	1.60	1.30	0.812		

1. Stresses at mid-height of sample (75 cm)

2. No lateral strain $\Delta \epsilon_{h} = 0$

i

FIG.9 : AVAILABLE BOUNDARY CONDITIONS IN CC

FIG 10 TYPICAL TEST RESULT FROM SBPT IN CC

CC TEST Nº 234 SBP TICINO SAND TS 4, DR=76.1%. OCR=5.34 PRESSUREMETER TEST, BC1

FIG. 11: COMPARISON OF MEASURED LIFT-OFF STRESS AND APPLIED HORIZONTAL STRESS FOR IDEAL INSTALLATION IN CC

1-D STRESSING OF THE CAMBRIDGE KO CELL IN CC

TIME (min)

FIG. 13

FIG. 14: EXAMPLE OF PRONUNCED MECHANICAL COMPLIANCE DURING EXPANSION

FIG 15: DETAILS OF ORIGINAL AND MODIFIED SBP STRAIN ARMS

ORIGINAL DESIGN

MODIFIED DESIGN

Material: Stainless steel AISI 420 F

FIG. 16: COMPARISON BETWEEN MEASURED AVERAGE LIFT-OFF PRESSURES AND APPLIED STRESSES FOR SELF-BORED INSTALLATION

-

FIG.17: SCHEMATIC OF SHEAR MODULI FROM SBP TESTS

(*) ACCORDING MANASSERO (1987)

FIG. 18: SCHEMATIC OF EFFECTIVE STRESS PATH OF SOIL ELEMENT ADJACENT TO AN EXPANDING PRESSUREMETER

FIG. 19: SCHEMATIC OF UNLOADING-RELOADING CYCLE DURING SBPT IN SAND ,

a) RESULTS OF SIMPLE SHEAR TEST (AFTER STROUD 1971)

6) SIMPLIFIED MODEL ASSUMED BY HUDGES ET AL (1977)

FIG 20 : STRESS-STRAIN AND VOLUMETRIC STRAIN-SHEAR STRAIN CURVES FOR a) SIMPLE SHEAR TEST RESULTS (STROUD, 1971), b) IDEALIZED BY HUGES ET AL (1977)

FIG.21: Stress / strain relationships from test N 222 (D_R =46.2 %) MANASSERO (1987)

a)Volumetric strain vs shear strain

• -

t

18 12 14 16

70%

1.6

. 2 6

c) Stress ratio vs shear strain

FIG.22 Stress / strain relationships from test N.228 (D_R =77.0 /) MANASSERO (1987)

a)Volumetric strain vs shear strain

FIG.23: ANGLE ,3 . DEVIATION OF THE ESP FROM ISOTROPIC ELASTIC BEHAVIOUR (FOR WHICH ,3 = 90") MANASSERO (1987)

FIG. 24: $\varrho_{\rm CV}$ OF SANDS USED IN CC TEST

APPENDIX I

EXAMPLE OF COMPUTER GENERATED PLOTS

FOR TYPICAL SBPT RESULT

l

.

ENEL-CRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N.234 - SBP TICINO SAND TS-4; Dr-76.10; OCR-5.34 PRESSUREMETER TEST, BCI (All fata referred to the average strain of the three strain arms)

ENEL-ORIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN OC TEST N.234 - SEP TIDINO SAND TS-4; Dr=76.14, DCR=5.34 PRESSUREMETER TEST, BOI (All data referred to the average strain of the three strain arms)

•

1

.

1

i

ENEL URIS F MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N 234 - SBP TIGINO SAND TS-4; Dr=76 14; OUR=5 34 PRESSUREMETER TEST; BC1 CALL data referred to the average strain of the three strain arms; ENEL ORIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N 234 - SBP TICINO SAND TS-4, Dr=75 1%; DOR=5 34 PRESSUREMETER TEST, BC1 (All data referred to the average strain of the three strain arms)

. . .

1 **x** - 1 - 1

.

.

•

ENEL-TRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N.234 - SBP TICINO SAND TS-4; Dr=76.1%, OCR=5-34 PRESSUREMETER TEST, BC1 (All data referred to the average strain of the three strain arms)

ENEL-CRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N.234 - SBP TICINO SAND TS-4; Dr-75.14, OCR-5.34 PRESSUREMETER TEST, 301 (All data referred to the average strain of the three strain arms)

> . . .

• •

ENEL-GRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N 234 SBP TIGINO SAND TS-4, Dr=76 16, OCB=5 34 PRESSURENETER TEST, BC1 (All data referred to the average strain of the three strain arms)

â

 a contract of the second second

ź.

APPENDIX II

COMPLETE LISTING FOR EACH

SBPT RESULTS

APPENDIX III

CALCULATION OF AVERAGE STRESS ON HORIZONTAL PLANE IN PLASTIC ZONE AROUND EXPANDING CAVITY

AVERAGE STRESS ON HORIZONTAL PLANE IN PLASTIC ZONE

 $\mathbf{s} = \frac{\mathbf{r}' + \mathbf{\sigma}'_{\theta}}{2} = \frac{\mathbf{p}'_{c}}{1 + \sin \mathbf{\sigma}'_{FS}} \left(\frac{\mathbf{R}}{\mathbf{r}}\right)^{1-\mathbf{K}_{a}}$... 11, where: $\sigma_{\mathbf{r}}^{*}$ = radial effective stress at a generic radial distance $r \leq R_p$ = circumferential effective stress at a generic radial 04 distance r ≤ Rp = effective cavity stress at which unloading-reliating p_{c}^{\prime} loop starts = radial distance r R R = radius of plastic zone = current cavity radius $= \frac{1-\sin \frac{1}{2}}{1+\sin \frac{1}{2}}$ ĸa

$$P_{AV} = \frac{R_{p}^{R_{p}} s dr}{R_{p}^{R_{p}}} \qquad \dots \quad (2d)$$

or:

ļ

1

٢

þ

Ģ

$$\mathbf{p}_{AV}^{\prime} = \frac{\frac{\mathbf{R}_{p}}{\mathbf{s} \cdot 2 \mathbf{r} \cdot d\mathbf{r}}}{\frac{\mathbf{R}_{p}}{\mathbf{r}}} \dots (2b)$$

Due to the tentative and preliminary nature of the proposed approach, the more simple solution \dots (2a) integrating s along the radius r is the only method considered here.

Introducing the value of s from equation ... (1) into equation ... (2a) one obtains:

$$P_{AV}' = \frac{p_{C}'}{1 + \sin \phi_{PS}'} \left(R \right)^{1-K_{a}} \frac{R^{p}(r)^{K_{a}-1} dr}{R_{p} - R}$$

$$P_{AV}' = \frac{p_{C}'}{1 - \sin \phi_{PS}'} \cdot \frac{\left(\frac{R_{p}}{R} \right)^{K_{a}} - 1}{\frac{R_{p}}{R} - 1} \dots (3)$$

Also;

$$\frac{R_{p}}{R} \approx \left(\frac{\frac{P_{c}'}{\sigma_{ho}}}{1 + \sin \phi_{pS}} \right)^{\frac{1}{1-K_{a}}} \dots (4)$$

Introducing the ratio $\frac{R}{R}$ from equation ... (4) into equation ... (3) one obtains:

.

$$\frac{P'_{AV}}{p'_{C}} = \frac{p'_{C}}{p'_{C}} \frac{\left[\frac{P'_{C}}{2h_{O}}\right]^{-1}}{\left[\frac{p'_{C}}{2h_{O}}\right]^{-1}} = 1$$

$$\frac{p'_{AV}}{p'_{C}} = \frac{p'_{C}}{p'_{C}} \frac{p'_{C}}{p'_{C}} = 1$$

where:

$$\omega_{1} = \frac{K_{a}}{1-K_{a}} = \frac{1-\sin\phi_{PS}}{2\sin\phi_{PS}}$$
$$\omega_{2} = \frac{1}{1-K_{a}} = \frac{2\sin\phi_{PS}}{1+\sin\phi_{PS}}$$

From equation ... (5) the following two formulae allows the evaluation of p_{AV}^{\prime} in the plastic zone around the expanding cavity

$$p'_{AV} = \sigma'_{ho} + \alpha \left(p'_{C} - \sigma'_{ho} \right) \qquad \dots \qquad (6a)$$

or:

5

$$\mathbf{p}_{AV}^{\prime} = \mathbf{x} \ \mathbf{p}_{C}^{\prime} \qquad \dots \tag{6b}$$

where:

$$x = \frac{1}{(1-\sin \phi_{PS})} \cdot \frac{\left[\frac{P'_{C}}{\sigma'_{ho} (1+\sin \phi_{PS})}\right]^{-1} - 1}{\left[\frac{P'_{C}}{\sigma'_{ho} (1+\sin \phi_{PS})}\right]^{-2} - 1} \dots (7)$$

$$a = \frac{\frac{P'_{c}}{\sigma'_{ho} (1-\sin \phi'_{PS})}}{\frac{p'_{c}}{\sigma'_{ho} (1+\sin \phi'_{PS})}} \cdot \frac{\left[\frac{P'_{c}}{\sigma'_{ho} (1+\sin \phi'_{PS})}\right]^{\omega_{1}} - 1}{\left[\frac{P'_{c}}{\sigma'_{ho} (1+\sin \phi'_{PS})}\right]^{\omega_{2}} - 1} \dots (8)$$

•

Equations (6a) and (6b) are valid only if a plastic zone exists which means:

 $p_{C}^{\prime} > \sigma_{ho}^{\prime} (1 + \sin \phi_{PS}^{\prime}) \qquad \dots (9)$

Otherwise one has to assume $p'_{AV} = o'_{ho} \approx p'_{o}$

III.3

APPENDIX IV

DETAILS ON MANASSERO (1987) HETHOD

FOR DETERMINATION OF \$ FROM SBPT IN SAND

STRESS-STRAIN RELATIONSHIPS

FROM DRAINED SELF BORING PRESSUREMETER TESTS IN SAND

by

MARIO MANASSEFU

DIPARTIMENTO DI INGECHERIA STRUTIVRALE DEL POLITE NICO DI TORINO

ATTO Nº 6675910

ABSTRACT

A numerical method is presented in order to obtain the complete stresses and strains path during a self boring pressuremeter test (SBPT) in sand. Plane strain conditions and a material behaviour according to Rowe's /23/24/ dilatancy theory are assumed. The obtained results have been checked using a large number of SBPT in sand performed in a calibration chamber (CC).

RIASSUNTO

Viene illustrato un procedimento di calcolo numerico che permette di ottenere gli andamenti completi delle componenti di tensione e deformazione durante una prova di espansione esegui ta con il pressiometro autoperforante (SBPT) in sabbia. Si ipotizzano condizioni di deformazione piane ed un comportamento del materiale in accordo con la teoria della dilatanza di Rowe /23/24/.

I risultati ottenuti sono stati controllati usando numerosi SBPT in sabbia, eseguiti in camera di calibrazione (CC).

IV.:

1. INTRODUCTION

The first closed form solution of an expanding cavity problem has been obtained considering a linear elastic material and small deformations (Lamé /18/). By using this solution it is possible to find the elatic shear modulus. G both from the first part of the SBPT and from an unload-related cycle. Solutions for a linear elastic-perfectly plastic material have been presented later by Biship et al. 6/ for a pure cohesive soil, and by Hill, Menard , 19 /20/, Cassan /8/, Salengen /25/ and Vesic (26/ for a frictional and cohesive soil. On the basis of the above mentioned solutions, Gibson et al. /10/, Ladanyi /13/14/15/16/, Palmer /21/,Baguelim et al. . . . , Wroth et al. /27 ', Hughes et al. 12/and Robertson /22/ have presented procedures for the interpretation of pressuremeter tests, allowing the derivation of the stress-strain relationships of a soil element at the inner boundary of the expanding cavity. The interpretation method for a pure frictional material presented in this paper is closely related to Wroth's et al. /27/ and Hughes's et al. /12/ analyses

and it is based on Rowe's /23/24 dilatancy theory.

2. BASIC ASSUMPTION

54 4

The basic assumptions, used in the here presented approach, are briefly summarized in the following points a) The particulate material surrounding the infinitely long expanding cavity deforms in plane strain conditions, i.e. the vertical strain $c_{\perp} = 0$.

IV.2

- IV. 3
- b) The principal stresses c_1, σ_2, σ_3 are coincident with radial, vertical, hoop stresses around the cavity, $\sigma_{\mathbf{r}}, c_{\mathbf{z}}, \sigma_{\mathbf{0}}$, the same applies to the strains $\varepsilon_1, \varepsilon_2, \varepsilon_3$ and $\varepsilon_{\mathbf{r}}, \varepsilon_{\mathbf{z}}, \varepsilon_{\mathbf{0}}$. In the following either subscript notations can be used.
- c) Stresses and strains are positive in compression.
- d) All stresses and strength parameters are in terms of effective stress.
- e) The strains are considered to be completely plastic. Elastic strains are not considered.
- f) Only frictional forces act at the contact points of particles (sand grains).
- g) Strains due to particle crushing or plastic yield at contact points are supposed not affecting the soil behaviour in the case of the contemplated sand.
- h) The hypothesis of small strains is adopted.

3. CONSTITUTIVE RELATIONSHIP

According to Rowe's /23/24/ theory, the behaviour of a particulate medium may be described by the following equation:

$$\frac{c_1 dc_1}{(\sigma_2 dc_2 + \sigma_3 dc_3)} = - K_p^{CV}$$
(1)

where:
K^{cv}_p = 1+sin;
Cv : constant volume principal stress racv tio coefficient;

cv = constant volume friction angle

Taking into account for plain strain conditions $(de_2 = 0)$ the eq. (1) reduces to:

$$\frac{\sigma_1}{\sigma_3} = -\kappa_p^{cv} - \frac{dc_3}{dc_1}$$
(2)

17.4

Shear (y) and volumetric (c) strains are defined by the following:

$$\gamma = \varepsilon_1 - \varepsilon_2$$
 (3)

$$\varepsilon_{v}^{z} \varepsilon_{1}^{z} + \varepsilon_{3}^{z} \tag{4}$$

Using this last set of equations the stress ratio (τ_1/τ_1) can be expressed also as follows

$$\frac{z_1}{z_3} = \kappa_p^{CV} \qquad \frac{1 - \frac{\Delta z_v}{\Delta v}}{1 + \frac{\Delta z_v}{\Delta v}}$$
(5)

The introduced relationships of the adopted constitutive model are qualitatively shown in Fig. 1.

4. CAVITY EXPANSION RELATIONSHIPS

The equations of equilibrium and compatibility of strains all around the cavity are: (see also Fig.2)

$$\frac{dz_r}{dr} = \frac{z_0 - z_r}{r}$$
(6)

$$\frac{d\varepsilon_{2}}{d\mathbf{r}} = \frac{\varepsilon_{r}^{2} - \varepsilon_{2}}{\mathbf{r}}$$
(7)

where:

 $\sigma_r, \sigma_{\mathfrak{S}}$: principal stresses (MAX and min) around the cavity (corresponding to σ_1 and c_3)

 $\boldsymbol{\varepsilon}_{\mathbf{r}},\boldsymbol{\varepsilon}_{\mathfrak{I}}$: principal strains around the cavity (correspon-

ding to ε_1 and ε_3)

r : radial distance.

This last set of equations with eq. (2) described in

IV.5

chapter 2 allows to obtain the solution of the expanding cylindrical cavity problem (See 5th Sect.).

5. PROPOSED METHOD

Expressing the equations (6) and (7) as function of $\frac{r}{dr}$ and referring them to a generic radius r around the expanding cavity, one can write:

$$\frac{z_{2}^{-\sigma}\mathbf{r}}{d\sigma_{\mathbf{r}}} = \frac{\varepsilon_{\mathbf{r}}^{-\varepsilon_{1}}}{d\varepsilon_{2}}$$
(2)

Introducing into eq. (8):

$$\sigma_{3} = -\frac{\sigma_{r}}{\kappa_{r}^{cv}} - \frac{d\varepsilon_{r}}{d\varepsilon_{3}}$$

given by eq. (2) and rearranging it, one gets

$$\frac{d\sigma_{\mathbf{r}}}{d\varepsilon_{0}} = -\frac{\sigma_{\mathbf{r}}(1+\kappa_{\mathbf{a}}^{Cv} - \frac{d\varepsilon_{\mathbf{r}}}{d\varepsilon_{0}})}{\varepsilon_{\mathbf{r}}^{-\varepsilon}\varepsilon_{0}}$$
(9)

being : $K_a^{CV} = \frac{1}{K_p^{CV}}$

This equation of general validity can be solved for a soil element at the cavity wall where the $r_{\rm r}$ = p and $r_{\rm g}$ = c are measured. To do this analitically, a relationship $r_{\rm r}$ = f(r_{\rm c}) is required (see Highes et al. /12/), nevertheless knowing p = F (c) one can solve eq. (9) using numerical techniques, like finite difference.

6. NUMERICAL ANALYSIS

With the aim to assess the ε_r at the cavity wall through a numerical procedure, the following equations at the points (i) and (i-1) can be setup (see also Fig. 3).

$$\frac{dp}{d\varepsilon} = \frac{p(i) - p(i-1)}{\varepsilon(i) - \varepsilon(i-1)}$$
(10)

$$\frac{d\varepsilon_r}{d\varepsilon} = \frac{\varepsilon_r(i) - \varepsilon_r(i-1)}{\varepsilon(i) - \varepsilon_r(i-1)}$$
(11)

Introducing eqs. (10) and (11) into eq. (9), using ave rage criteria between forward and backwards interpolations tecniques and making appropriate arrangements it is obtained:

$$\varepsilon_{r}(i) = \frac{p(i) [\varepsilon(i-1) + K_{a}^{cv} \varepsilon_{r}(i-1)] - p(i-1)\varepsilon(i)}{2 [p(i) (1 + K_{a}^{cv}) - p(i-1)]} + \frac{p(i) [\varepsilon(i-1) - \varepsilon_{r}(i-1)] + p(i-1) [\varepsilon_{r}(i-1) (1 + K_{a}^{cv}) - \varepsilon(i)]}{2 K_{a}^{cv} p(i-1)}$$
(12)

Moreover knowing that $\varepsilon_r(0) = 0$, equation (12) allows to compute step by step the unknown values $\varepsilon_r(i)$ from i = 1 to i = n.

Once $\varepsilon_{r}(i)$, $\varepsilon(i)$, p(i) and $\sigma_{p}(0) = p(0)$ are known, one can compute from eqs. (3) and (4) the deformation components $\gamma(i)$, $\varepsilon_{v}(i)$ and solving equation (2) or (5), once more with finite difference technique, the complete stress-strain curve and stress-path for the soil element at the cavity wall can be assessed.

IV.6

AKNOWLEDGEMENTS

The author wishes to aknowledge Dr.P.Bertacchi and in a local lotti of ENEL-CRIS - Milan, who made available the result of SBPT's performed in the CC, used to validate the interpretation method exposed in the paper.

REFERENCES

1

- /1/ BAGUELIN, F., JECÉTUEL, J.F., MIMER, E., 18 M. "Expansion of Cylindrical Process in Contestive Collabor Journal of the Soil Mechanics and Flundations I.C. American Society of Civil Engineers, Volumes, Not. M012 Proc. Paper 9377, (1972) November, pp. 119-1140.
- /2/ BAGUELIN, F., JÉZÉQUEL, J.F. and SHIELD, C.H., "Interpretent suremeter and foundation engineering", Series on COLL and Rock Mechanics, Vol. 2, No.4, Trans Tech Publication, (1978).
- /3/ BALIGH, M.M., "Cavity Expansion in Sand with Curved Envelopes", Journ. Geot. Eng. Div. ASCE, GT. 11, (1976).
- /4/ BALDI ET AL., "Laboratory Validation of in-Situ Tests", Published by A.G.I. on the occasion of the ISSMFE Golden Jubilee, (1985a).
- /5/ BELLOTTI,R., BRUZZI G. and GHIGNNA V., "Design, Construction and Use of a Calibration Chamber", Proc. ESOPT 11, Amsterdam, Vol. 2, (1982), pp. 439-446.
- /6/ BISHOP, R.F., HILL, R., and MCTT, N.F., "Theory of indentation and hardness tests", Proc. Phys. Soc. 57, 147, (1945).
- /7/ CARTER, J.P., BOOKER, J.RandYEUNG., S.K., "Cavity expansion in cohesive frictional soils", Geotechnique 36,No.3, (1986), pp. 349-358

19.2

- A set of the set of
 - na de la construcción de la constru La construcción de la construcción d
- :
- lit is spontation of the second scope in the second scope in the second scope in the second scope is the second scope is second scope in the second scope in the second scope is second scope in the second scope
- 14 LADANYI, B., "Evaluation of Frenkuremeter Tests in Granular Scils", Proceedings of the Second Fan Americas Conference on Soil Mechanics and Foundation Engineering, Brasil, Vol. 1, (1963), pp. 3-20.
- 15 LADANYI, B., "Expansion of a Cavity in a Saturated Clay Medium", Journal of the Soil Mernanics and Foundation Division, Proceedings of the American Society of Civil Engineers, Vol. 90, No SM4, Fred. Paper 3577, (1963), July, pp. 127-161.
- /16/ LADANYI, B., "In Situ Determination of Undrained Stress-Strain Behavior of Sensitive Clays with the Pressuremeter", Canadian Geotechnical Journal, Vol. 9, (1972).
- /18/ LAMÉ, G., "Leçons sur la théorie mathématique de l'elasti cité des corps solides", Bachelier, Paris, France, (1852).
- /19/ MÉNARD, L., "Mesure in situ des proprietés physiques des sols", Annales des Ponts et Chaussées, Paris, No. 14, (1957), Mai-Juin, pp. 357-377.
- /20/ MÉNARD, L., "An Apparatus for Measuring the Strength of Soils in Place", Thesis, University of Illinois, (1957).

-ĥ

- /21/ PALMER, A.C., "Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test", Géotechnique 22, No. 3, (1972), pp. 451-457.
- /22/ ROBERTSON, P.K., "In Situ Testing of Soil with emphasis on its application to liquefaction assessment", PhD Thesis Department of Civil Engineering, Vancouver (Canada), (1982).
- /23/ RCWE, P.W., "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proc. Royal Soc., Vol. 269, (1962), pp. 500-527.
- 24 ROWE, P.W., "Stress-Strain Relationship for Particulate Materials at equilibrium", Proc. of the specialty Conference on Ferformance of Earth and Earth-supported Structures. Purdue University, Lafayette (Indiana). Published by ASCE, (1972).
- /25/ SALENÇON, J., "Expansion quasi-statique d'une cavité à symétrie sphérique ou cylindrique dans un milieu élasto plastique", Annales des Ponts et Chaussées, Paris, Vol. III, (1966), pp. 175-187.
- /26/ VESIC, A.S., "Expansion of cavities in infinite soil mass.", J. Soil Mech. Fdns Div. Am.Soc. Civ. Engrs 98, SM3, (1972), pp. 265-290.
- /27/ WROTH, C.P. and WINDLE, D., "Analysis of the pressuremeter test allowing for volume change", Technical Note, Geotechnique 25, (1975), pp. 598-610.

• 1

IV.9

		TICINO	SAND	<u>.</u>						
	D _R	\$ ^{TX}	α	R ²						
	(8)	` (°)	(°)	(-)						
	45 65 85	38.2 40.2 42.9	4.2 6.5 8.1	0.67 0.78 0.89						
(*)tg :	(*) tg $\Rightarrow_{p}^{TX} = \frac{\tau_{ff}}{\sigma_{ef}} = [tg \cdot \phi_{0}^{TX} + tg \alpha (\frac{1}{2.3} - \log_{10} \frac{\sigma_{ff}}{\sigma_{0}})]$									
where: ϕ_{p}^{TX} :	11	c friction and			riaxial					
σ _{ff} =	effective : failure	ss on the fail normal stress stress, assume	on the fa	ilure surfa						
- 2	98.2 KPa	tion angle f			al					
	Compression test at $\sigma = 2.72 \sigma$									

IV. 20

TAB. 1 - TESTED SAND SHEAR STRENGTH

Å.,

1 i

ž,

compression test at $\sigma_{ff} = 2.72 \sigma_{O}$ a = angle which describes the curvature of the failure envelope.

Rd	- c	р	R _d	-ε	p	Rd	-ε Γ.Γ	p
Ν.	[8]	[MPa]	N.	ر 8]	[MPa]	24.	[%]	[MPa]
1234567890123456789012345678901233455789	2.22200 .20350 .20700 .21225 .21225 .21575 .22100 .22625 .22625 .22625 .226274 .23849 .24199 .24724 .25649 .27174 .26649 .27174 .26649 .27174 .26649 .27174 .26649 .27174 .26049 .27174 .28049 .29399 .12573 .11548 .12598 .13473 .14348 .15398 .12572 .19527 .20997 .22007 .22007 .22007 .22007 .22007 .22007 .22007 .22007 .22007	. 2080 . 2131 . 2131 . 2232 . 2282 . 2343 . 2363 . 2444 . 2524 . 2555 . 2625 . 2555 . 2625 . 2715 . 2757 . 2807 . 2927 . 2927 . 2927 . 2929 . 3019 . 3079 . 3079 . 3179 . 3229 . 3251 . 3351 . 3351 . 3451 . 3552 . 3652 . 3753 . 3652 . 3753 . 3884 . 3924 . 3984 . 3984 . 3984 . 3984 . 3984 . 4034 . 4064	4444444445555555555566666666667777777777	. 34545 .36219 .37794 .42534 .42534 .42169 .43383 .45143 .45993 .45143 .45993 .45143 .55956 .52115 .58966 .62115 .58966 .62115 .58939 .72613 .76463 .80312 .84511 .95884 1.04109 1.08132 1.12507 1.16801 1.21255 1.25824 1.43321 1.53299 1.53773 1.74971 1.65933 1.58265	4124 4164 4266 4312 4266 4312 4395 4506 4543 4506 4543 4755 4801 4847 4893 4948 5050 5036 5036 5234 5050 5234 5050 5234 5050 5234 5005 5006 6108 5005 6006 6310 5411 6502 6006 6310 5727 7337 7565 9015	7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 2 1 2 3 4 5 5 7 9 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.11714 2.24836 2.38134 2.55953 2.80826 2.88174 3.03221 3.19143 3.35055 3.51336 3.67958 3.84929 4.02950 4.21146 4.39517 4.56588 4.28129 5.18425 5.61289 5.18425 5.61289 5.83584 6.25924 5.83586 7.01430 7.27498 7.552617 6.76586 7.01430 7.27498 7.552617 6.76586 7.01430 7.27498 7.552617 6.76586 7.01430 7.27498 7.55216 7.60334 8.07602 8.36144 8.65186 9.95103 9.26594 9.58785 9.91325 5.02555	.8243 .8462 .9572 .991 .9118 .9337 .9446 .9377 .9446 .2901 .0109 1.0558 1.0777 1.0996 1.1216 1.1444 1.1883 1.2111 1.2339 1.2558 1.2795 1.3032 1.3755 1.3686 1.3923 1.4140 1.4584 1.4584 1.5256 1.5215 1.5950 1.5551 1.5551 1.5551

TAB. 2 : Experimental readings from Test N. 228

 R_{d} : number of the experimental reading

.

5 : heep strain at the cavity wall

p : radial stress at the cavity wall

.

بطقيب ال

\$

÷

IV. 12

n,

.

IV. 13

Ŧ

ĩ

Equilibrium equation _

 $\frac{d\sigma_r}{dr} = \frac{\sigma_0 - \sigma_r}{r}$

FIG.3: Use of pressuremeter curve for numerical analysis

17.14

.

-E = 5/180

·		
1.2-TICINO		
QUARTZ(30		
8÷9		
~5%		
1] 1.705 2] i.700		
1] 1.398 2] 1.391		

IV. 15

FIG. 4: Characteristics of the tested sand

27.25

f

F

1

3

FIG.6 : Curve fitting results with 7th polynomial degree in original p vs ϵ plot

IV. 17

ł

ί

į.

1

FIG.7: Stress ratio - strain curve for 5th, 7th and 9th degree polynomials (Test No 228)

IV. 18

FIG.8: Stress / strain relationships from test No222 (D_R =46.2%)

4

IV. 19

i

FIG.9: Stress / strain relationships from test No 228 ($D_{B^{\pm}}77.0\%$)

a)Volumetric strain vs shear strain

 σ_r/σ_{θ} (MPa)

(or) oo Max

c) Stress ratio vs shear strain

12.6

....

18.8 9.8

... 7.8

6.8

5.8 4.8

3.8 2.8

1.8

...

. 2 ٠ 6

d) Shear stress vs mean normal stress

1. 1 ĺ

