743 1 MITH WANY IDENTICAL
PRI, o T T Ty

UNCLASSIFIED E M CLARKE ET AL DEC.?CN—CS—.‘-!.SS F/6 1277

——

aTwoF X 4 LR eTe s R 2™

AP

S TR)

PHOTOGRAPH THIS SHEET
<t !
I |
& -
= LEVEL INVINTORY
o |z
| 5
! o0 |=z ;
i = |z i
| <l |7 AFwWH/-TR-87-// 76
u 4
: ' ; DOCUMENT IDENTIFICATION :
| Q| pec /19287
; =
| < a2 ¢
! :
| e e ’
! Clidr Gdeeniad e L aopwoved | :
| Dl ity whoret o wd emis) M :
i SRR SRV RN o !
_if,
DISTRIBUTION STATEMENT i
i
VWOESSIONTOR])
NITS GRAKL :
e 1B D l l(:, ;
|
UNANNOLNCED .,
= NELECTE S f
PIUSHICATION 1 - :
S e C o e - LT ?
i A Froos o 4 i
: . 27« :",;'1 H
oo T T L '
. o] - }
BY o)] ko
DISTRIBUTION - l
WAL *x:;li'il'j}':()i)i's T] B l
Dist [AV AL AND OR SPECIAL i
e ——
DATE ACCESSIONDD “
|
i
A-l |
¥ A . B ,
} DESTRIBUTION STAMP |
| |
|
DATE REGTRNLD }
— S
_ Loy o !
v = o e |
| ;
f DAT: RECFINED IN DTIC REGISTFRED ORR LR PITHE L o ;
| :;
{
! PHOTOGRAPH THIS SHEE T AND REIURN TO DI DAL !
;

DOCUMENT PROCESSING SHIT

AFWAL-TR-87-1176

REASONING ABOUT NETWORKS WITH MANY IDENTICAT
FINITE-STATE PROCLESSES

E.M. Clarke, 0. Grumberyg and M.C. Browne

Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213-3890

AD-A188 743

Decemper 1987

Interim

Approved for Public Release; Distribution is Unlis-itod

e e 1
PN, N

s

AVIONTCS TABORATORY -
AR FORCE WRIGHT AERONAUTTCAL TABORATORIES ;
ATR FORCE SYSTEMS COMMAXND .

-

WRIGHT=-PATTERSON ATR FORCE BASE, OHIN ANAT3 -0

P S P B A - S P : ..

W . e . IR
LI S T T N T N T e T T T TN S T T e R WAL T
PR IR R V. 8 W P W N N T P R SR w R T R T T e T o U T YT N e N YU R S S P

s »
LI LN

o

Bl
[y

s
P

PP XX XA

iox 2 ¥
S LA

AT n T A (B TN VT E T T T S

NOTICE

When Government drawings, specifications, or other data are used for ary
purpcse other than in connection with a definitely Governrent-related
procurement, the United States Government incurs no resporsibility or any
obligatior whatsoever, The fact thet the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any marner corstruec, as licersing
the hclder, or any other person or corporation; or as ccrveying ary rights or
permission to manufacture, use, or sell any patented inventicr that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, ircluding foreign natione

This technical report has been reviewed and is approved for publicetion.

CHAHIR . HOPPER RI1ICEARD C. JONES .
Pru]oLL Engincer Ch, Advanced Svstems Research Gp
‘ Information Processing Technolegy Br

FOR THE COMMANDER

Wf/&m

EDWARD 1., GLIATTI
Ch, Information Processing Technology Br
Svetems Avienics Div

I[f your address has changed if you wish to be removed frorm our mailing
1ist, or if the addrecsee is no lorger emploved by your orgarnization please
notify arwar/asar , Wright-Pattercor AFB, (K 45432-4 00 to help us mairteir

a current mailing list,

Copies of this reprrt should not be returned ynlecs return is reguired by
security ceorciderations, contractusl obligaticre
docurent

, Oor notice on a specific

4' A .‘ "' ‘- ----.. - . ~'. . .> . .'-\.“4- -- v ' .n)‘-.ﬁ.l‘ .. N A i M - . o RN e
"
. Unclassified
SECURTY CLASS F.CAT-ON OF "o § DACE
-
A
.. Form Approved
'; REPORT DOCUMENTATION PAGE CIENG 0704 (188
N ta REPORT SECUR.™Y C.ASS =CAT-ON "o RESTR.CT D NM&ARr ACS
o Unclassified
P d
23 SECURTY CLASS A 'CAT.ON AUTWHOR TY 3 DSTRIBUTONcAVA LAB L.TY OF REPORT
N Approved for public releuse; distribution
£ FICAT.O! CW NGR e EDuL . ..
I 2b DEC_ASS'FICATION DCWSNCRAD WG SCHEDULE is unlimited.
N
:: & PERFORMING ORCAN Z&™«ON RIBQORT NUNMBER'S; S MONTORNG CRCANZATON FISORT N Wi ¢
2. .
> . . - AFWAL-TR-87-1176
: CMU-CS-86-155 ‘
62 NAME OF PLRIGANING ORGAN ZATI1ON Bh OFF.Ct SYMBOL | 72 NAWE OF MOn "0O8 NG OFcan A Gn 777
A . o X (If applicable) Air Forve Wirier AT Pos i o
P Carnegie-Mcllon University Al Fore l.‘! bt Acronantieal Laborgrorie:
AFWAT/AAAT=3
e 6C ADDRESS .City State, and ZIP Code) 70 ADDRLSS City State and Z2.F Code)
e Computer Science Dept Wright-Fatterson AFb OH 45433-A5.73
2 Pittsburgh PA 15213-3890
..‘_
= Ba NANE OF FUAND NG SPONSORNG Br OFF(E SYANEDL G ORPRDCURIENT ONSTRE N eNT DEr T s LT Dy SRR
T ORGANIZAT ON (If appiicabie) o i o
-, F33615-84-K-1520
o 8¢ ADDRESS (City, State and Z:P Code)
o
' Y1 TITLE (include Security Class:fication)
) < Reasoning About Networks With Manv Identical Finite=State Processes

~— 12 PERSONAL AUTHOR(S;

. L. Mo Clarke, U, Grumbere, M, €. Brownce
“3a TYPE OF RIPORT 3b TN (OVERED TLODATE DOF RIFLRT (Year Montt Day) TRt ThoNT
- interin RN O 987 December R
6 SUPPLENMENTARY NOTATON
h ’
. *7 Cosa™ 8 OCLE LT TEENYS sContinue On tevetse (f noiessary dod Ject) by b momber)
--" - -
TN FiELD CROUP
) - ——
i 'S ABSTRALT /Continue on reverse if necessary and dentify by block number)
). -
:'r
Ty
"
20 DSTRBYTION . Lot W [A ¢ v
R ~ncoevsein
e e e e e —
Tia nAN OF Rt T
Ch.ahirs M. Hopper R } " T
TR AETVE WP WO UL 5B W WINPT (Y i T i de B WP Y 4 RACPTTUISE SR T DY T L ummed R TR e T K A e TR Y i v b AT pesimer oy o - Fpg—
DD Form 1473, JUN 86 Tresinas ot v gre abs v e R A I I . ~
y . - lI‘.\ll it ied

. P S S R P I i N P A i T T S A T T T A I i I T LT T T TS R LA WL T S

1. Introduction

Consider a distributed mutual exclusion algorithm for processes arranged in a ring network in which mutual
exclusion is guaranteed by means of a token that is passed around the ring ¢([6]. (101 {12]). How can we
determine that such a system of processes is correct? Our first attempt imight be to consider a reduced system
with one or two processes. If we can show that the reduced system is correct and if the individual processes are
really identical. then we are tempted to conclude that the entire system will be correct. In fact, this type of
informal argument is used quite frequently by designers in constructing systems that contain large numbers of
identical processing elements. Of course, it is casy o contrive an cxample in which some pathological he-
havior only occurs when, say, 100 processes arce connected together. By examining a system with only one or
wo processes it might even be quite difficult to determine that this behavior is possible. Nevertheless, one
has the feeling that in many cases this kind of intuitive rcasoning does lead to correct results. The question
that we address in this paper is whether it is possible to provide a solid theoretical basis that will prevent

fallacious conclusions in arguments of this type.

In addition to providing a firm basis for a common type of informal reasoning, our results are crucial for the
success of automatic verification methods that involve temporal logic model checking ([4].{11], [14]. {16]).
Thesce techniques check that a finite-state concurrent system satisfies a temporal logic formula by searching all
possible paths in the global state graph determined by the concurrent system. [hey have been used success-
fully to find subtle errors in tricky self-timed circuits--errors that were apparently unknown to the designers of
the circuits ([3], {5]). Although model checking is linear in the size of the global state graph, the number of
states in the graph may be exponential in the number of processes. We call this problem the state explosion
phenomenon. By using the results of this paper. model checking may become feasible for networks with large

numbers of identical processes, thus extending the uscfulness of this verification method considerably.

The logic that we use for specification is based on computation trees and is called /ndexed 7L or ICTL".
It includes all of CTL." ([4]. [7]) with the exception of the nexttime operator and can. therefore, handle both
linear and branching time properties with equal facility. Typical operators include AG f. which will hold in a
state provided that f holds globally along all possible computation paths starting from that state and AF f]
which will hold in a state provided that feventually holds along all computation paths. In addition, our logic
permits formulas of the form A f{i) and V fli) where f(7) is a formula of our logic. The subformula A7) is
called a generic formula; all olf the atomic, propositions that appear within it must be subscripted by . A

formula of our logic is said to be closed if all indexed propositions are within the scope of cither a /\ orV .
! {

A model for our logic is a labelled state transition graph or Kripke structure that represents the possible

global state transitions of some finite-state concurrent system. For a family of \V identical processes this state

graph may be obtained as a composition of the state graphs of the individual processes. Instances of the same

atomic proposition in different processes are distinguished by using the number of the process s subseript;

thus, A, represents the instance of atomic proposition A assoctated with process 5.

Since a closed formula of our logic cannot contain any atemic propositions with constant index values, it 1s
impossible to refer to a specific process by writing such a formula. Hence, changing the number of processes
in a family of identical processes should not effect dhie truth ¢f a formula in our logic. We raake this intuitive
idea precisc by introducing a new notion of bisindation [13] between two Kripke structures with the same set
of indexed propositions but different sets of index values. We then show that 1f two structures correspond in
this manner. a closed formula of Indexed CTL” will be true in the initial state of one if and only 1f it is true in

the initial state of the other.

We illustrate these ideas by considering a distributed mutual exclusion algorithm like the one mentioned
above. We assumc that the atomic propositon ¢, is true when the i-th process is s eritical region, and that
the atomic proposition dl is true when the ~th piocess is delayed waiting to enter its critical region. A typical
requirement for such a system is that a process waiting to enter its critical region will eventually enter the

critical region. This condition is casily expressed in our logic by the formula

/i\;\G(d‘.= AFc).

By using our results it is possible to show that exactly the same tormulas of our logic hold in a network with
1000 processes as hold in a network with two processes! We can use onc of the temporal logic model checking
algorithms to automatically check that the above formula holds in networks of size two and conclude that 1t
will also hold in networks of size 1000. Although this example is guite simple. it should suggest many

potential applications for the results of our paper.

Brookes and Rounds[2]. Hennessy and Milner [9], and Graf and Sifakis [8] have all investigated the
relationship between temporal logic and various notions of bisimulation among concurrent programs.
However, none of the logics in their papers have operators that permit assertions about large numbers of
similar processes: consequently, their results arc not directly useful in solving the problem that we address in
this paper. Kurshan [10] has studied the state explosion problem in the context of an automatic protocol
verification system being developed at Bell Labs. In his system, protocols are verified by showing inclusion
between two finite-state machines, one representing the protocol under study and one representing 1is
specification. The state explosion problem is handled by using a homomorphisms to collapse ¢ large state
machine into a much smaller one while presening those propertics that are important for ventication. Since
Kurshan does not use temporal logic formulas for specification. he has no analogue of our indexed formulas

or of our correspondence theorem. In [15] Reif and Sistla describe a logic that has spatial as well as temporal

. & = - - e . T - s~
P, . . R . -~ .
. - kS

CO S

oA : Y . - e L
- P A S L e W S B A PR P L ey
IS NI I AT PV R Y, V. P P PRV LY A PRP RN SPLE W W STV W AT 0 P

v
»

L S U N B
o', l':. DR

PR

R

.
« 4.
.
s 0.
tat et e

e
« e .

Lt
e
N

.
Lt
b’

e e
S
0
£ A

P . .
, » AL . -
. . s . L) N
v @ AN O e

Lo el

ol tal el By S ol 0y g Al

operators. The spatial operators can range over the Processes 1 CORCUITent program and express properties
similar to those expresed by our indexed tormulas, However, they do not provide @ way of collapsimg large
machines into smaller ongs, and even the propositional sersion of their logic s undecidable, Wolper also
considers a stmilar logic for reasoning about programs that are data-mdependent [17]: however, his indexed
variables range over data elements, while ours range over processes. Also, there is no notion of correspon-
dence between structures in his work., Some limitations on the type of rcasoning that we propose are

discussed in Apt and Kozen [1].

. g ® .
Our paper is organized as follows: [n Section 2 we introduce the basic temporal logic CI1. . In section 3 we

P ¥ F & AN R 6 ¥ V., wEESs v ¥ ¥ ¥ " T 77

state the notton of correspondence or bisimulation that we use between two finite-state machines. We also

. . - . T vry "
prove that this notion of bisimulation preserves the truth of CTL formulas. In section 4 we extend CI1. o
include formulas of the form A f(i) and V(i) as explained above. We also extend our notion of correspon-
¢ I

. . . wygy ¥ . .
dence and show that corresponding structures satisfy the same indexed CT1. formulas. Sccuion 5 illustrates

s CT T S

how the ideas in this paper can be applicd to a concrete example, the distributed mutual exclusion algorithm

2

discussed carher. The paper ends in Section 6 with some suggestions for possible extensions.

2. The Logic CTL"

There are two types of formulas in CIL": swate Sormulas (which are true in a specific state) and path
Jormulas (which are truc along a specific path). Let AL be the set of atomic proposition names. A state
formula is either:

e A, if Ae AP.
o If fand g are state formulas, then —f and fVvg are state formulas.
e If fis a path formula, then E(f) is a state formula.

A path formula is either:

e A state formula.

o If fand g are path formulas, then =~ f fvg . and fU g are path formulas.
CTL" is the set of state formulas generated by the above rules.

We define the semantics of CTL.” with respect to a structure M = <S, R, L, 5>, where

® Sis a st of states.
o RC 5SS is the transition relation, which must be total. We write s, s o indicate that (s,.5,)e R.
o L: S —P(AP) s the proposition labeling

o5 1 the initial state.

W—."vv
I RS R AR A
DO
A

RAAAL

We define a puth in Mt be a sequence of states, o = 5,5, - such that for every 12 0. S, 7S, - ' wil

i

denote the suffix of o starting at 5,

We use the standard notation o indicate that a state formula f holds in a structure: M s fmeans that f
holds at state s in structure M. Similarly, if £ s a path formula, M. = fmeans that f halds along path 7 in
structure M. ‘The relation B= s defined inductively as follows (assuming that / and j are state formulas and
g and g L dre path formulas):

l.s&=4 = AeL(s).

LsEf = st#fl.

LsEfV e sr=florst=f2.

4. 5sF=E(g) = thereexists a path 7 starting with s
such that 7 = 8

5.vrk=fl = 5isthcﬁrststatcofwandsk=f1.

6.aF-g e whg

".-ﬂhglv‘g2 = 1r¥=g10r11¥=g2.

S nk giL'g2 = there exists a k>0 such that k= 8,
and forall0<j<k, vk 8,

We will also use the following abbreviations in writing CTL" formulas:

o Ay = ~(—fVyg) ebkf = 1ruelUf
e A(f) = —F(—f) e Gf = -F~f.

We have omitted the nexttime operator, since it can be used to count the number of processes. For

example, consider a ring of processes that pass around a token. if 1,15 true when process 1 has the token, then

using the nexttime operator X, K
AG(1, = (XXXt) e

says that whenever process 1 gets the token it will receive it again in exactly three steps. This is only true if the

I Sy

ring has exactly three processes.

3. Correspondence of Structures J
We want to be able to define a correspondence (or bisimulation) between two structures, ”1 and M2 such
that if the structures correspond. then one structure sausfics a CTL." formula if and only if the other satisfies it -
as well. There may be a portion of a path along which several consecutive states are all labelled by the same
set of propositions. We will call such a sequence of states a block. Since CTL" has no nexttime operator, it is _ .
e

N TN AN S

o e S e e e RTINS S N - NPy
‘—'.‘-"-- P Y AR B N B JC I W .'-':'\ A T TR A I R V. VR VN TV VN WA Ve DS WL Y o -

. . A VAT . [T T

A e e T . -n.'-.'-_ o e
ERC L oA R L, N Y P R o

impossible o differentiate between a single state and a block with the same libeling as the state. However,

when we correspond a state with a block. we must insure that the block is finite. Theretore, we define a finte
correspondence relation, £7CS x5 xN which is total for both S”and S Intuitively, (s.5”.k) is in [7if state s
behaves like state s” and & is an upper bound on the size of the block that will correspond to s° (ors). We will

call & the degree of the correspondence.

We will write s£¥s” to denote (s.57.k) e . Also, we will say that two structures, M. and M., correspond if
there is a correspondence relation /7 between the two structures. Formally, [is a correspondence relation if

the following conditions are satisfied:
1. s} EX s; for some keN. (The initial states should behave similarly.)

2. Forevery s¢ S1 and s’ ¢ Sz such that sE* 57

a. Forevery A€ AP skE= A= s’ = A. (The proposition labelings are the same.)

b. A/ s’ = 5| ASEs| v
Vsl[s—» s, =(sll:"'s’v:‘lsJl [s"—s] /\le“'s(DI

where 0 < ve kand w2 0.

c. 33}[5—§ sAsEYs' v
Vsl — s =(sEs] vas[s—sAs E*s)])]

wherc0<v<kand w20.

We will write s £ s’ to indicate that there exists a k such that (s.s”.k)e £, Furthermore, if B and B’ are

sequences of states, we will write B E B’ to indicate that every state in B corresponds to every state in B”.

We will say that two states exactly match if for everv successor of one state, there is a corresponding
successor of the other and vice versa. The above definition insures an exact match between two states if they
correspond with degree 0. For example in Figure 3-1, state s, exactly matches state s}” |, so these states can
correspond with degree 0. If two corresponding states don’t exactly match. then the degree of the correspon-
dence sets an upper bound on the number of transitions until an exact match is reached. In the figure, state s}

can rcach an exact match with 5, within 2 transitions, so these two states can correspond with degree 2.
We use this intuition to prove the following lemma:

Lemma 1: /et Ml and M2 be two structures that correspond. Then, for every (s.s’)€ I” and for every path w in
M, that starts in s, there is a path n’in M, that staris in s’, a partition of = (BB,...) and a partition of

n' (B B ...) such that for all j, B} E B} and either

st e T A" e '.-'~'~' T e =L - S T T . .
SRS L N T S T T ST o
PR L o P P P T o T T S Y T T T T T Y e,

P
I
CRP

l‘.'A"l' .
P ‘e

Figure 3-1: An [Hustration of Corresponding Structures

1 (Bj! = I and Bj is finite, or

2 [le = land Bj is finite. "
o

Moreover, for every path w’in M, there is a path m in M and partitions of both paths thai satisfy similar o~
conditions. ;“"
Proof: We wiil prove this by induction on the length of . :t:-‘
o
-.",‘J

Base: m isof length 1, som = 5. Let B =<s>, #'=5', and B =<s">. 2
-..‘1_
Induction: Let = §5,. -5, By the inductive hypothests, there is a partition of w, B B, . .. B;’ apath #’in f
M, and a partition of #’, B] B ... B} such that B £B] for 1<j</ Now we want to show that if we . i:‘_:

lengthen o by adding some Spe) such that Sy Sy the lemma still holds.

Since s, is the last state of 7, 1t must be in the last block B, so there must be a & such that s, E* last(B7).

We will prove by induction on & that it 1s possible to extend # as required.

The basis for the sccond induction is snf;“ last(#%). By the definition of £°. there exists a] such that
last(B]) —s{ As,, E™s; for some w20. We can extend the parutions of o and 7'by defining

B

- r S .
101 =5$5,,, 2 and Bi,, =<5 >. Therefore. the basis case 1s true.

A Dol

For the inductive step. the defimition of £ has three cases:

1. 33’ fast(B}) — sy A5, £ 57] for some w20,

This case is the same as the base case.
2 A last(By) — 5” A s, I] for some 0 < v< k.

lf]B[[5£ 1, we can remove the last state, s, from B, Let 731 be B with s removed. B, =<s .
and By, , =<s;>. On the other hand, if | 8| =1. we can simply add s{ to 8]. In both cascs, since

the degree of correspondence between S, and s/ is less than &, by the inductive hypothcsis, we can

extend =/ appropriately.
3.5 F'Vlast(B}) forsome 0< v< k.
n+l}

To begin with, if | B} | # 1, we can remove the last element of B} and put it into a new block of the
partition. Let B be B/ without the last element, B/, , =<last(B})>, and B, =<s, > These
partitions satisfy the lemma.

On the other hand, if | 87| =1, we can simply add 5, , | to B,. Therefore, the lemma holds for this
case.

[t is also necessary to show that all of the blocks in this construction are finite. This problem may arise in
the second and the third case, where we might add an infinite number of states to B (or B,). However, since
the degrec of the correspondence between the states in B} (B,) and the state in B, (B}) is decreasing and
cannot be less than zero, these constructions will only apply a finite number of times. Hence, only a finite

number of states will be added to the last block. so it must be finite.

Given #'in Mz, we can use the same argument to show the existence of 7 in /t[1 and the corresponding
partitions. Therefore, the lemma holds. [J

*
We now prove the CTL correspondence theorem:

Theorem 2: Let M‘ and M2 be two structures that correspond. Then forall he C TL',
Ml,s(’) = he Mz.sf, = h.

This thcorem is a consequence of the following lemma:

R
Ill .

ey e Y

R

. . TS LAl
":.': ':'- AN

L4

',
A

e s o0
st

-

s
NP
@

Fa

~

-
=
_4’
S

~
N
N
-

PRSI A

T WO

b SR A Ll g

Lemma 3 Leo Moand M be two structures thet corrospond. et ihe cilicr @ staie formula or a path formula,
Let be a path in M starting wuh s and w’ be a path o0 M stariy wile 70 [t there 1s a particon of @

(BB .. yandapartiion of w’ (B B0) such that & of the biocks are fimte and /5’, LB forall j, then
skE= he 3" = Lot ks astate formula and
m = hes /= Aof Bos a path formula.

Proof: Since s B and s”< 87 . sI7s’. We will now prove the lemma by induction on the structure of A.
Base: i = 4. By the defimuon of £ s des s/ = A,

Induction: There are several cases.
1. h=—h astate fonnula.
skE=h = skEh
= s’ B i {induction hypothesis)
s’ F=h

The same recasoning holds if 4 is a path formula.
2. h= h‘vh2~ a state formula.

Without loss of generality,
sFEh =»sk=hlorsl==h2
=sF= hl
=5 k= hl (induction hypothesis)
=s'kF=h
I'he argument is the same in the other direction. We can also use this argument if A is a path

formula.
3. h=F(hl), a state formula.

Suppose that sk=A. Then there is a path, 7 =S5, .. starting with s such that = F=h. By

a_sx aa

[.emma 1. there is an partition of this path, B B, and a path #{ in M with a partition,

atals

B! B} ... such that the blocks of both partitions are finite and B] I By forall j21. So by the
induction hypothesis, # = h e a{ &= h. Therefore, sE=F(h) = s’ = E(h). We can use the

RV NN

2 a_dy

same argument in the other direction, so the lemma holds.

DACNERE LN
‘el 2

"
>

4. h=h_ where his a path formula and £ is a state formula.

«

P
‘e gy ‘,':‘
L P I

. T O T . -
ERIE - AR Tl
. . -

" MRS - EEASN ST .'-._ S
Bl e PP A AR AU IS NI o U A . TP N

Although the Iengths of Aand A are the same, we can imagine that 71 = pathtio) where path s an

operator which converts a state formula into a path formala. Theretore, we are simphitinng i by

dropping this path operator. So now:
TEh = sk h1
= s’ F=h (induction hypothess)
=g’ = h

T'he ceverse direction is similar.
5. h=hUh_, apath formula.

Suppose that o= A Uk By the defimton of the unul operator. there s o A such that 75 = h

and for all 0 << &k 7= 4. Suppose that 5, 15 1 block B.. Then. B.B, ... where B, is the
. { ' i i

partof B starung with s, 15 a partition of % So BBy ... s the partiton of 4 path in M _such

that B 17 B s true for all j> £ Therefore. by the inducuon hy pothess,
BB, ... Eh,.

Now,any state s, betore first(89) on the path 7715 1n some block />’J’,. 1<l 1f /_)’/’, ts the partof B
starting with +/. then 735 ”}*; ... iy aparution of /7. Also, /fj.ls’l-. Cs 4 paruton of asuffix
of o such that b’n I8 s true forall n2 4. Since we know j </, we know that this path starts with
a state before S SO B}B}*: ... F h;. Therefore. by the induction hypothests.

n'"Eh
for any 1 before first(). Therefore n” = h.

W e can use the same argument in the other direction. O

4. Applying CTL" to Networks of Processes

In order to reason about networks of identical processes, we need to be able o distnguish hetween the
atomic propositions of the different processes. Therefore, we introduce the notion of wide ved atomie
propositions such that A is the value of proposition A4 process i et /77 be a et of proposition names which
will be indexed by a set of index variables, /1, and let A be a set of atomic propositions as betfore. The logic

indexed CT1." is an extension of CTL.” where

. ,41 15 a state formula if Ae IPand ie V.

o If fis a state formula that has exactly one free index variable ¢, then V 118 astate formula. (We
i

will write f17) to indicate that fhas a free index vanable i)

vz P
Indexed CT1. s the set of closed state formulas generated by these rules and the rules in Section 2,

P
» Sy T

‘A A

‘e

AL
&

.

D
s dalaale

s a’a’a’a

s
a

.‘.

el -

e W .

We define the semanues of Indaved CHT i Y AIVE S CCEVENNI INTICIRY SRR F A AN ZON AR SR
o 1715 the setof atemic formulas.
e /P1s the set of atomuc formulas indexed ™y waiues from /
e /1s the sctof index values (4 subsct of N).
e Sis asct of states.
o R 5x S is the wransiton relauon.
o L: S —HALYJP(IPxI)1s the proposition labelmg. We will wive 1 instcad ot (4.0),

L is the iniual state.

We extend the relation = to deal with indexed CTL formulas as well:

l.skE= Ac = AceL(s).
LsEVL) = there exists a ¢ € / such that s = f(c).

We will use Af1i) as an abbreviation for =V =),
! :

Figure 4-1: Example to [lustrate Resurictions on IcTL”

Even without the nexttime operator, this logic is too powerful: by nestng the ~perators A and Vit might
suli be possible to count the number of processes in a concurrent system. Suppese we take as our Knipke

.

structure the global state graph for the concurrent program i Frgure 4-10 e tollowing formula sets a lower
bound on the number of processes:

\I/(AI/\ EF(3 A \/(,»1/ NEF(B, A\{(Ak)
Once B: becomes true, 1{ remains true. Therefore. of \{Ak 19 e, we know that tas ks different from all of
the preceding indices mentioned 1n the formula. For this reasor. we will use d restnicted form of ICTL . The

additional restrictions are:

/R

PP

v

P , .
P

@

Bk e a4

N
o V s a permissible state formula only if £does notcontaim .y V operators. ',:_":
. g LU g is a permissible path formula onls if neither ¢ nor g mnl;jsins any VvV ooperators, ?,‘T'
i practice. many of the most interesuing propertics of networks of identical processes can be expressed in the X
restitcted logie. One important property that cannot be expressed is that an indesed proposition holds for o
cvacthy one index value, smee this involves nesting of Vooperators. Nevertheless, we can hundle such a ‘
!
property within the framework that we have deseloped by mcans of a shght extension 1o the lunguage and 1ts :“,:
semantics. We add a speaial atomic tormula, EB/’ o AP for every P in [P, The proposition lubeling is then K
catended as tollows: @/’(€ Lis)nitand onhy lr there is exactly one ce /such that £ ¢ £(s). In the remainder [
ot the paper, we will r\;r‘cr to the restricted logic with this extension as ICTT" unless u(hcrmsc stated.

We can use the noton of correspondence defined in Section 3 to define an mdexed correspondence. Since .
e restrictions o 1CTT T do ot permit the use of two different indices with an unul operator, it is impossible
w reter to the behavior of two different processes along a specific path. Thus, the notion of indexed
<o rrespondence between structures only needs to refer to one index from cach structure at o time. Because of {-_ -
this we will define a set of correspondence relations, I;‘“,, that relate the behavior of an index /in I: to the
hehavior of anindex 7 in L. g

I et M be astructure and ¢ be an index value from /. The reduction of M 1o i (denoted by .\Ill) 1S a structure .
sdenucal to M oexcept that the new prupus'nion labeling L 15 defined as follows: i

L(Y)‘{4|i: 1PA e L(s)} 1|1CII’/\1ELS)}
In ather words. all of the indexed atomic formulas are omitted except those that are indexed by i :

Now, we say that two structures. V/ and .\I; with the same set of indexed and nonindexed atomic formulas, .
(r.i")=correspond if and only if‘”;': I ‘”zi/' We will write this as Ml E”/ Mz‘ : .‘-

We can prove an analogous result to L.emma 1 for (ii’)-corresponding structures, where the correspon- ‘.':
dence between states is now an (i./”)-correspondence. Using this result. we can prove the following lemma
concerning unquantified formulas; .

Lemma 4: /et A\I. und .\l be two structures that (i.i’ J-correspond. Let h(i) be an indexed 71’ Sformula
without any \/ operators and with one free index variable. [et w be a path in \I starting with s and 7' be a s
path in 'll smr/mg with s'. [fthere is a partition of m (Bl B: .. and a partition of w’ (B7 B5 ...) such that all .
of the blocks are finite and BJ E 4 B for all j then : .

sk= ()= s" = M17). if his a state formula and _;,T
n = Mi)es o’ = Ki'). if his a path formula. \.‘
.".:

i

;:;

N

e

.'"l

Ty

o

R e e e e e
AI_J‘I_-'_-’_J'_I_‘J_ -L-f;‘._‘.‘l__l_l_.i-‘

Dl

.y e .~ . ~ ~ 7 . .
The proot follows the same lines as the proof of the CTT. correspondence theorem except that there is an

extra base case for indexed atomic propositions. By the definiton of (7" ycorrespondence, s&= 4 <

¢ = 1, is immediate.

.. - . - . I .
Using this lemma. we can prove the major result of this paper, the [CTT correspondence theorem:

Theorem 3: /et Ml and M be two structures and IN be a relation over 1 <1 that 1s twtal for both 1 and I If

for every (117)€ IN, the two structures (i.i”)}-correspond, thenM s, &= he= M v = h for even T’ Sormula
h

Proof: We prove this theorem by induction on the structure of A The only interesting case s the hase case,
when A= \/h (). If s, b= Vh (i), then there is some L such that 5, = # A1) Since [V s total, there s an g
such [hd[(l(),lo Ye N, Ihcrcforu since 1/ and \[(1 {)u»rrcsp(md. Lemma 4 gives s;J =i,). Therefore,

sf) = VA.(i). Thereverse argument is similar,
AR

The proof of the remaining cases (-wh1 and hI Vv h) are straight forward. Thercefore, the 1CTT h correspon-

dence theorem is true. (J

5. Distributed Mutual Exclusion Example

In tus section we itustrate how our ideas might be applied to the distnibuted mutual exclusion example
mentioned in the introduction. We assume that r processes are arranged in a ring. Each process P: is always
in onc of three states: A neurral state {(denoted by ":)‘ a delay state (denoted by J[). or a crereal state (denoted
by ¢) Exactly one process will have the token at any given time: if process has the token this will be
denoted by l,. The global state graph for the case of two processes is shown in Figure 5-1. In the casc of 7> 2
processes, there may be more than one delayed process. Whenever this occurs, the process /’[with the token
should cventually give the token to the closest neighbor to its left that is in a delay state; we denote the closest
necighbor to the left by cln(i).1 We next define the state transition graph in the case of r processes:
G :<AI’,II’,1r,Sr.Rr,Lr,sg >, where

o AP=0

o [P={dcni}

1 ‘ A
{t1s assumed that the token will be transferred through consecutive processes from P to P Trih However the ovact mechanism of ths
transfer will not be exphicitly represented 1n our model at this level of abstracuon Thus, the transier of the foaen onlv requiics one
global transiion.

R . . JU
- . e St e

N
£

AT N Coa T

| el e S e A 0 L A b R e S 0t Rl b R A A

MANLE e B a sl i A Rl T R

-

T T Y Y W

°S = {s{s=<D.N.T.C.O>}, where
o D={i|sk=d}
o N={i[sF=nA-t}
o T={ilsk= nz'Ali}
o C={i|si=ci/\ll.}
0 0=1 -(DUNUTUC)
We will refer to the sets D, N, T, C and O as the paris of state s.

. R’: {(s,sl) Is= <D,N.T.C.O>/\S.‘ =<D1'N1'T1’C1’Ox>/\

[3[[[6)‘/’/\ Dl=DU{i}/\N1=N—{1'}/\7'1:T/\ C.ZCJV

3[3][1'60/\]5 TUC A i=cln() A DI:D—{1} A A’V‘A:,VU{J}
AT =T={}AC =(C={HU{illv

JlieTAD =DAN SNAT =T= {1} AC = CULIV

JieCAD=BAD =DAN =NAT =T} A C =C= ()]}

)
y
b
3
'l
!

Nt

FAV N GO G e L‘.

In the first wansition some process meves from ity neutrdl state s delay state. In the second e

-3

[Y

. A

': 3

\ X

] =

2 ®

’r r..
'«

‘
R S R A AU N A e S -
E"n.-_.-‘.-.-.—,~_~'.,\'-_ R P UERPUEIPULL BV S R Y .. .)
5 VIRV SR PR, . S PE.OV. PE ./ PV PR P P Ty e e Tt LT T T
> e W e mh AT At at et ot

WW" ol ek 8a8 fah Al Ah a s Snfed At el Al i ial Ach g Aa A0 A St oAt Sl el A Sull il Sl R it ad
v - (S 108 Sl Al] . oot N ST) CT) : :

|
)
]
]
'
'
]
)
)
Y
v
'
'

WO AT P A L O W & s s SeT

14

transition a token 1s transterred from a process 2t aprocess 22 owhere = e, n the third ransitiion
) :

a process with a tic token moves from s neutral state to s eritical states In the st transiion a process

with a token moves from aty critical state 1o s neatral state: sice no other process wanis the token, it

remains with the same process.

oLr(s):{(/,];eI)}U{v e N 1 /sfze('}

o =B .. 1 {1}.9.8>

Ulumately, we want to ¢stablish . correspondence between the mutuad exclusio i program with r processes
and the program with 2 processes. (10 s impossible o establish g correspondence between the roprocess
version and the one process Sinee no process cdn enter s delay state m the one process verstony) [tis casier to
prove the correctness of the correspondence if we first show that certan smpiv mvartanis hold of our mutual

exclusion program:

1D, N T and C form a partton of 1 1e. they are disjomtand O s alwavs emipty.,

-
2. Once a process has requested the token, it will not stop requesting until the token is received.
NAG(L = ~F[d U=d A=)
, :

3. There is exactly one process with the token at any time. \G@I}
!l

To establish these invariants. it is sufficient to show that they hold imually 1in 37 and every transiton in R

preserves them. In this case, the prools are trivial, so we omit them.

The state transition graph given above 15 not a Kripke structure sinee some states may not hdave any
transitions (i.c. the state where all processes are delayed and no process has the token). However. if we restrict
(1 to be defined over the set of states reachable from 57 we do obtain a Knipke structure which we denote by
.Ur. Since we have shown that every reachable state has a process with the token, this process can always

transition to and from its critical section; therefore Rr is total.

Once we have established the correspondence using the invariants, we can apph the CH model checking
algorithm [4) to the two process mutual exclusion algorithm in order to establish the tollowing properties:
1. A token is transferred only upon request.
—'VEF(“dl/\"'ll./\l“,["*dl/\—'l,UliD
i
2. Only the process with a token may get into its critical state.

AAG(c,=1)
i U

ST AT
‘. -~
ol -

BRI -“"-"". L S PN .‘._";" R L - o o -
A:‘.A:':L‘-!C‘.n._'.a‘gx_'.f I N Oy, U TPL I . O 0 NP SR N O OO W BN S PV R

PR AA.A!AL—.

.
"
a s

i

TR s * ' ... TS S s S A - E TR e e T

15

3.Once o process has requesied the token, it conunues to request the token unul the token s
received.

ANGE = A[dUL])

4. Every procoss that wants to enter its eritical state. eventually does.

A \G(d = AFc)
1

In order o define the bisimulaton between M, and M we must first detine the relation £V I x1 that
determines the correspondence between mdex values in the two structures:
IN={Lui)lie] ={1}}
Next we must define the correspondence betw een states I:"H,Q.S'EX.S'IXIN forevery (ni’yelh:

LoTwo states. sin M_oand s in M (")-correspond if 115 in the same part of s as ¢ is i s” andf
teCthen D=@ = D'=@.

2 b etan sidle transttion he g transition which does not have any effect on /. 1.e. r belongs to the same
part of the state before and after the transition and if 7€ C and D 1s empty. then) remains empty.,
We detine the rank of s, ris1). W be the maximal number of consccutive ~idle transitions possible
from s, 1t this number s fimte. Otherwase, the rank of 515 0. The degree of the correspondence
between sand 87 is defined to be r(s.e) + r(s7.i).

Note that the only case in which the number of consccutive /~idle transitions from s is infinite is when
sE=n . Also note that if s 1s reachable from s by pursuing ~idle transitions only and if r{s:) 720, then

ris) < ris.r).

First we show how to compute rsr). There are 4 number of cases. depending on which part of the state ¢

1S In.

1.0 N In this case. there are an intimite number ot consccutive midle transitions starting from s, so
ris.)=0.

t2

ce D Tet process 7 be the one with the token. There are four sources of ~idle transitions in this
case:

a. Processes that are imitially neutral may hecome delaved. (V] transitions.)
h. The process with the token may enter s critical sechion. (| 77 transitions.)

¢. The token may be transferred to a delaved process between ;7 and & (G=dmodn—1
transitions.)

d. The processes that gave up the token 1in the previous step may become delaved.
((y— ymod — 1 transitions.)

Therefore, r(s.t)= |V +|7T|+2y-Dmodn—=2.

e o bheonly sidle ransitions are neutral processes becoming debaved. So i) =1 V]|

doeCand D=@. Since Wb transtions cther move ©nto o dirterent part of the state or add
processes o D, ris.y=0.

S0 and D =@ The only midle transiions are neutral processes becoming debaved. Pherefore,
r{so)y=|N|.

Now, we must check that £71s a correspondence relation.

Clause (1) Because all of the processes are neutral in the ainitial states of Aoand M ond process Thas

wken i cach mminal state. these stites correspoand for every (/) e [N with a degree &= r(s 1) « rish i),

Clause (2a): Immediately from the detintion of 1:',1/ Cfor every two states s’ that t-correspond witd

any degree, s A = §' = A forevery Ae [P

Clause (2b): Assume slff‘l/ s where k=r(s.i)+ r(s”.¢"). There are five cases. one for cach of the clauses in

the definition of r(s.7). We check the first two cases; the others are similar.

l.ieNand ‘e MV,

Fromabove, r(s.i)=r(s"4")=0.s0 k=0. From s, two kinds of transitions are possible:

a. Process ican become delaved in state s Since 1/ € N, process 7 can also become delaved in
some state 7. These two next states are £/ related, since 1< D and i/ € Df.

b. Some process can make an ~idle transition o state s In this case. some process in M can
also make an ¢’-idle transition to s7. Since rand (7 are sull in the same part. these o next
states are £/ related.

Since every transition from s has a corresponding transition from s’, clause (2b) holds in this case.
oieDand ‘e D’
There are three cases:

a. Some process can make an ridle transition to a state s Since e/, s E st for
v=r(s.)+ (s’ C). r(sd) measures the maximum possible number of 1dle transitions
from s. Because an ridle ransiton from s has been made, ris. 1)< risi)so v <k soclause
{2b) holds. ‘

b. Process ¢ receives the token trom process j and process i/ can receive the token from process
7. After these transitions, both 1 and 7 are in C, so the successor states carrespond.

c. Process @ recenves the token from process j, but process 7 cannot receive the token from
process ;” (17 5% cln(y”)). Thus, there must be a delaved process between ;7 and ¢/ which 1s
the closest neighbor of j/. Therefore, there 1s an ¢/ -idle transivon i which this closest

A L T s T T e e e

T T a3 S e s e e s adead adadedndelad

Py

r
P

P
s
"

P
'

O
[y NS LT 1

.
L]
.,‘

o

AP PR VLY. {

neighbor recenes the token. The rosulung state, 87, corresponds 1o s with degree
vErOa) st o) Since an ¢ adle transiton from s7 has been made. 757 b < (3" so
V<A so clause (2D) holds.

Clause (2¢): s proven similarly to clause (2b).

his completes the proot of the bisimulation of M and Mr.

6. Directions For Future Research

The notion of bisimulation introduced m Section 4 currently requires some represention for the global
states of a product machine. When the individual processes in such a product are more complicated than the
ones in the ring network example of Scction 5, it may be difficult to find such a representation, Perhaps. an
appropriate notion of bisimulation can be found that applics directly to the individual processes rather than to
the global state graph. More work clearly needs to be done on this problem. Another problem concerns the
restriction on nesting of/\ s and \/ s given in Scction 4. We showed how nesting of these operators could
be used to count the numbcr of proccsscs in a concurrent program, so some restriction is clearly necessary.
We conjecture that with formulas having at most & operators of this type. it 1s impossible to distinguish
between programs that have more than & processes. In other words, if fis a formulz: with & levels of A and
\/ operators and A s a Kripke structure obtained as a product of n identical processes, then f \u]; hold in
\[for n > k1if and only if fholds in ll It is casy to prove this result when the product of the individual
processes s a free product, i.e. when there is no synchronization between the individual processes. When the

processes are synchronized the conjecture seems much more difficult to prove, however.

We would like to acknowledge Prasad Sistla’s insightful comments on an early version of this paper.
References
1. K. Aptand D. Kezen. 1imits for Automatic Program Verification. unpublished memo.

2. S. D. Brookes and W. C. Rounds. Behavioural Equivalence Relations Induced by Programming logics.
I NCS Vol 154, 10th ICALP, 1983.

3. M. Browne, E. Clarke. D. Dill. B. Mishra. Automatic Verification of Sequential Circuits. CHIDI 85,
I'okyo. August, 1985.

4. EM. Clarke, EA. Emerson. AP. Sisda. Automatic Verification of Finite-State Concurrent Systems using
Temporal Fogic Specifications: A Practical Approach. Tenth ACM Symposium on Principles of Program-
ming | .anguages. Austn, Texas, 1983, pp. 117-126.

5. David [.. Dill and Edmund M. Clarke. Automatic Verification of Asynchronous Circuits using Temporal
Logic. 1985 Chapel Hill Conference on V1.SI, May, 1985.

"' .l' -“ -."',l‘ .4". .'.

LY

WEPrEF ST AN TRESTRON Y A R T e e e
eghiad tad bl Gk Gk Sl L) - Sad LA LA ba et e A ML g U st A S Al A

18

.Il- 7, ')';f. ;

6. F. Dykstra. Invariance and non-determmacy. In Moadiemaical Toge and Programming [anguages.
C.A.R. Hoare And J.C.Shepherdson. Eds., Prentice-Hall, 1985, pp. 157-163.

Viase
ﬁ\:.\‘

7. EA Emerson. LY. Halpern. ""Someumes” and "Not Never™ Revisited: On Branching versus Linear
Time Temporal Logic”. Proceedings of the ACM Symposium on Prinaiples of Programming | anguages.
Association for Computing Machinery. Ausun, | exas. January, 1982, to appear in JACM.

8. S. Grafand J. Sifakis. From Synchronization Tree 1 ogic 1o Acceptance Model 1 ogic. 1.NCS Vol. 193,
Logics of Programs, 1985.

9. M. Hennessy and R. Milner. On Observing Nondetermimism and Concurrency. 1.NCS Vol. 85, 7th
ICALP, 1980.

10. R.P. Kurshan. Modelling Concurrent Processes. Proc. of Symposia in Applied Mathemates, 1985.

I1. O. Lichtenstein and A. Pnucli. Checking that Finite State Concurrent Programs Sausty Their Linear
Specification. Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming
Languages, New Orleans, La., January, 1985,

12. A Martn, The Design of a Self-Timed Circuit for Distributed Mutual Exclusion. Proc. 1985 Chapel Hill
Conf. un VLSI 1985, pp. 247-260.

13. R. Milner. Lecture Notes in Computer Science. Volume 92: 4 Caleulus of Communicating Systems.
Springer-Verlag. 1979.
14. J.P. Quiclle. J. Sifukis. "Specification and Verification of Concurrent Systems in CESAR”. Proceedings
of the Fifth International Symposium in Programming, 1981, pp. 337-350.
15. J. Reifand P. Sistla. ™ A Multiprocess Network [ogic with Temporal and Spatial Modalities™. JCS'S 30,
1 (February 1985). o
16. A.P. Sistla and E.M. Clarke. "Complexity of Propositional Linear Temporal Logics™. JACM 32,3 (July ‘:-::::
1985). -
S
17. P. Wolper. Expressing Interesting Properties of Programs in Propositional Temporal 1.ogic. Thirteenth e
ACM Symposium on Principles of Programming [.anguages, 1986. . .
'.1
]
e
.9
o
. e

-

R . N
ot L T S
T - - St e e YT N
e gt e i et o o Smdemd i ad ol ot e A adadd
N

- .

T W W -

- -

FW W WD S R e

.\‘.._."_-:‘.._,.. A e AN e e T e e T e T et Tttt ~ s - - -
‘..‘..\-\‘.'-.".'.‘"-.'.. S T : . . L
A NI R T e e, e e e S T e e A K

LA R R AT IS RCIRL IR S S N ".","..'_".",‘-, e N A
a (o AL A A s e et ala{s (o Y. P PR P VA S T A PP PN PG AT A ' vy
B W PP V. LR VR YT DY PN

