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1. Introduction
Consider a distributed mutual exclusion algorithm for processes arranged in a ring ntw% ork in M. hich mutual

exclusion is guaranteed by means of a token that is passed around the ring ([61, 1101. 1121). I low can we

determine that such a system of processes is correct? Our First attempt might be to consider a reduced System

with one or two processes. If we can show that the reduced s.,,tein is correct and if the indi idual processes are

reall, identical, then we are tempted to conclude that the entire system will be correct. In fact, this t pe of

informal argument is used quite frequently by designers in constructing sistems that contain large numbers of

identical processing elements. Of course, it is eas\ to contri\e an example in which some pathological be-

ha ior onl occurs when, say, 100 processes are connected together. ll\ examining a system w ith only one or

two processes it might even be quite difficult to determine that this beha\ior is possible. Nevertheless, one

has the feeling that in many cases this kind of intuitive reasoning does lead to correct results. The question

that we address in this paper is whether it is possible to provide a solid theoretical basis that will prevent

fallacious conclusions in arguments of this type.

In addition to providing a firm basis for a common type of informal reasoning, our results are crucial for the

success of automatic verification methods that involve temporal logic modcl checAmg ([41. 1111, [141. [16]).

These techniques check that a finite-state concurrent sstem satisfies a temporal logic formula by searching all

possible paths in the global state graph determined by the concurrent system. [hey ha~e been used success-

fully to find subtle errors in tricky self-timed circuits--errors that were apparentN unknown to the designers of

the circuits ( 13], 15]). Although model checking is linear in the siue of the global state graph, the number of

states in the graph may be exponential in the number of processes. We call this problem the state e.xplosion

phc nomo nmo. By using the results of this paper, model checking may become feasible for networks with large

numbers of identical processes, thus extending the usefulness of this verification method considerably.

The logic that we use for specification is based on computation trees and is called Indexed (TL. or IC I_ .

It includes all of CTL (141, [71) with the exception of the nexttime operator and can, therefore, handle both

linear and branching time properties with equal facility. Typical operators include AG f% which will hold in a

state provided that f holds globally along all possible computation paths stirting from that state and AF f0

which will hold in a state pro%,ided that feventually holds along all computation paths. In addition, our logic

permits formulas of the form A fli) and Vfli) wherefli) is i formula of our logic. [he subformulafli) is
I I

called a generic formula; all of the atomic propositions that appear within it must be subscripted by i. A

formula of our logic is said to be closed if all indexed propositions are within the scope of either a A or V .

A model for our logic is a labelled state transition graph or Kripke stncturc that represents the possible

global state transitions of some finite-state concurrent system. For a family of N identical processes this state

graph may be obtained as a composition of the state graphs of the individual processes. Instances of the same

.' .' , " ,. .." ." , " .'" ' ." - .2'- . i- .... . ..i .-'2 1.- . . . .-, 0
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atomic proposition in different processes are distinguished bv uiong the number of the process, Is, .1 suhscrjp!l

thus, A represents the Instance of atomic proposition I associated with process 5.

Sinc a losd trmua o ou loic cannot conitai n alP. atoi ic propositions wt iisatne lus ti

impossible to refer to a specific process by writing Such a formula. I fence, changing the 11.nher of' processes

in a family of identical processes should not effect thetmuth of a formjula in Ouir logic. We mailke this intuitive

idea precise by introduIcing a new, notion of bisin~iuuon [13] between two Kripke Structures wit th Oe sarnc Set

of indexed propositions but different sets of index \ alues. We then show that if t" (0 StruLctujres Lorrespond in

this manner. a closed formula of Indexed Cii. Will be true in the initial state of one if and onl\ if it is true in

the initial state of the other.

We illustrate these ideas by considering a distributed mutual exclusion alporithml like the one mnioned

above. We assume that the atomic propositon c, is true w&hen the i-th process is in its critical region, and that

the atomic proposition d, is true when the i-th piocess is dela-,ed waiting to enter its critical region. A typical

requirement for such a system is that a process waiting to enter its critical region Aill cxentuallv enter the

critical region. This condition is easily expressed in our logic by Udie formula

AAxG(d1  AFc).

By using our results it is possible to showk that exactly the same formulas Of our logic hold in a net\work wkith

1000 processes as hold in a network with two processes! We can use one of the temporal logic model checking

algorithms to automatically check that the abuve formula holds in networks of site two anid concIlude that it

w&ill also hold in networks of si.e 1000. Although this example is quite simple. it should suggest many

potential applications for the results of our paper.

Brookes and Rounds [2]. Hennessy and Nlilnric[r9]. and Graf and Sifakis [8] have all in'estigated the

relationship between temporal logic and various notions of bisimulation aiong concurrent programs.

However, none of the fogies in their papers have operators that permit assertions about large numbhers, of

similar processes: consequently,, their results are not directly useful in sol\ving the problem that wke address in

this paper. Kurshan 110] has studied the state explosion problem in the context of an autonmic protocolA

verification system being developed at Bell Labs. In his system,. protocols are serified b showing inclusion

between two finite-state machines, one representing the protocol uinder studv and one representing its .

specification. The state explosion problem is handled bv uIsing1 a homomnorphisms, to collapse a large state -

machine into a much smaller one while preserv ing those properties that are IimoTI01.int for %critic~ition. Since

Kurshan does not use temporal logic formulas for specification. he hlas no A1,1,i2InIC of our indexed f'ormiulas

oroorcorrespondence theorem. i-i [151 Reiffand Sistla de,-,rihe Ilogic hilm, I \c 1 clpoa

,. :. , . ,,, ,., ,,., ,. ,. ,. .. { , . . ,. -. , ',., --, .:,. . , .> . :- . . . , * }" -,' " • " ' ' ' ".-S,
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operators. I'he spatial operators can range oxer the processes inI a coI lir I IIrrenIIt p , I tx Im) i dp' pIt )pClicS

similar to those expresed b% our indexed 1OnuL'iS, l ox. ,e\cr. the\ do mot pro ide ,i I.,.% n" n irgc

machines into smaller ones, and excn tie propostional \Cision of their logic is undecidhle. W(uper also

considers a similar logic for reasoning about progr, mas that ar. data- ndependen 17]: h(cxer. his indexed

variables range over data elcmenLs, Ahile ours range over processes. Also, there 1s no notion of .orrespon-

dence between structures in his work. Some limitations on the t pe of reasoning tdiit \wc propose are

discussed in Apt and Kozen [1].

Our paper is organized as follows: In Section 2 we introduce the basic temporal logic CI C. In section 3 we

state the notion of correspondence or bisimulation that we use between two finite-state machines. We also

prose that this notion of bisimulation preser\es the truth of CTI. formulas. In section 4 %e extend CII. to

include formulas of the fonn Af(i) and Vf(i) as explained above. We also extend our notion of correspon-

dence and show that corresponding structures satisfy the same indexed CII. formulas. Section 5 illustrates

how the ideas in this paper can be applied to a concrete example, the distributed mutual exclusion algorithm

discussed earlier. 'he paper ends in Section 6 with some suggestions for possible extensions.

2. The Logic CTL
There are two types of formulas in CII.' state finpulas (which are true in a specific state) and path

formulas (which are true along a specific path). Let AP be the set of atomic proposition names. A state

* formula is either:

o A, ifAE AP.

* If f and g are state formulas, then -f and fvg are state formulas.

I 1ff is a path formula, then E(f) is a state formula.

.4 A path formula is either:

* A state formula.

* If f and g are path formulas, then -f fvg, andf U g are path formulas.

C-T1 is the set of state formulas generated by the above rules.

We define the semantics of CTl. with respect to a structure M= <S, R,. L, s>, where

* S is a set of states.

* RC.S'xS is the transition relation, which must be total. We write s- s. to indicate that (ss, )E R.

* .: . 9(AP) is the proposition labeling

* s ms the initial state.0
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We define a puih in A to be a sequence of states, w = s s .... uch that for C\Cr) z>0. s' - , will0i
dcnote the sUfi7 V of 7r starting at s,.

We use the standard notation to indicate that a s..ito formula f holds in a strtirire: 1I.s 1=f'm eans that f

holds at state s in structure At. Similarl. if f is a path formutld l.7r A = fmein, that f holds along path 7T in

structure 1. The relation 1= is defined inductisely as follows (assumill that! and f, are state formulas and

g and g are path formulas):

1. s A AEL(s).
s:.1

3.sSvj s ors .

4. s = E(g1) - there exists a path 'r starting with s

such that ir g,.

5. 1 =f sis the first state ofir and sl=f.

6. i g1-- gI.

7.=g i vg 2 7, 1:==gIorvrI= g2.

8. it g g, there exists a k_> 0 such that .,

and forallO!j<k, 7r== g,.

We w ill also use the following abbresiations in writing CFL formulas:

OfAg -'(-'JV-'g) eFf true Uf

0 (f) -E(-f) * Gf F -'Ff.

We ha.e omitted the nexttime operator, since it can be used to count the number of processes. For

example, consider a ring of processes that pass around a token. If t is true , hen process 1 has the token, then

using the nexttime operator X,

AG(,= (XXXt1 ))

says that whenever process 1 gets the token it will receixe it again in exactly three steps. This is only true if the

ring has exactly three processes.

3. Correspondence of Structures
We want to be able to define a correspondence (or bisimulation) between two strictures, , and Af 2 such

that if the structures correspond, then one structure satisfies a CIT . formula if and only if the other satisfies it

as wcll, There may be a portion of a path along which several consecutive states are all labelled by the same

set of propositions. We will call such a sequence of states a block. Since CI'I. has no nexttime operator, it is
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impossible to differentiate hewcen a single state and a block with the same labeling as the state. t lowever,

when we correspond a state with a block. we must insure that the block is finite. Iherefore, ,wc define a finite

correspondence relation, NCS' xS' ×IN which is total for both S and S,. Intuiti,,l\, (s.s'.,k) is in L if state s

behaxes like state s' and k is an upper bound on the sizc of the block that will correspond to s' (or s). We will

call k the degree of the correspondence.

We will write sl -S, to denote (s.s',k)E F. Also, we will say that two structures, M, and i,, correspond if

there is a correspondence relation F between the two structures. Formally. l is a correspondence relation if

the following conditions are satisfied:

1. sj Ek s2 for some k E IN. (The initial suites should behave similarly.)

2. For every sE S and s'E S such that sE ks" :

a. For every A E AP,sl A s' A. (The proposition labelings are the same.)

b. 3' Is' s, As E 's' ]v

Vs s- si = (s E's' vly' Is'- s' A s Ews 1)]

where O< v< k and wO.

C. s ' s-- sA s Evs1]v
Vs, Is'-- s = *(sE's' A~s s--+ s^ As Vvs 1)]

where 0< v < k and w_0.

We will write s E s' to indicate that there exists a k such that (ss',k)E F.. Furthermore, if B and B' are

sequences of states, we will write BEB' to indicate that every state in B corresponds to every state in B'.

We will sav that two states exactly match if for every successor of one state, there is a corresponding

successor of the other and vice versa. The above definition insures an exact match between two states if they

correspond with degree 0. For example in Figure 3-1, state sI exactly matches state ?" so these states can O

correspond with degree 0. If two corresponding states don't exactly match, then the degree of the correspon-

dence sets an upper bound on the number of transitions until an exact match is reached. In the figure, state S..

can reach an exact match with s within 2 transitions, so these two states can correspond with degree 2.

We use this intuition to prove the following lemma:

Lemma i: Let A! and A2 be two structures that correspond. Then, fir even' (s.s') E F and for even- path 7T in

AfI that starts in s, there is a path 7r' in Al2 that starts in s'. a partition of wr (B B,...). and a partition of

Ir'(B' B.. . ) such that for allj. B F B' and either

J. J
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A S4 s-

BCA s '

B C

Figure 3-1: An Illustration of Corresponding Structures

1.8 B lIand Bj is finite or

2 LBJ' = Iland B i-is finite

Mforeover, for every path ir' in M,. there is a path -ff in Yt, and partitions of both paths that satisfy, similar

condition&.

Proof: We will prove this by induction on the length of 17.

Base: 1T is of length 1, so 7Y s. Let B,=<s>, 7T'= s', and B' <(s'>.

Induction: Let 7r= sis2 .. *, By the inductive hypothcsis. there is a partition of 7r, B B, .. B. a path iT'mn

M. and a partition of ir', B' B' . .. Bl such that B E B' for 1 :5j 1. Now we want to show that if we
eI

lengthen 7r by adding some s ,1 such that s 7- 5 , the lemma still holds.

Since s is the last state of 7r, it must be in the last block B, so therc must be a k such that s E last(B'

We will prove by induction on k that it is possible to extend ir' as required.

The basis for the second induction is s. FI" list( B ). Oicth definition of E', there exists a el such that

Iast(B9 s-. A s E *s' for some vv> 0. We can extend the parlitions of 17 and 7' b defining .

Bl+=(s > and B'j =<s' X. Therefore, the basis case is true.

n+1
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For the inducti\e step. the dInmition of L' has three cases:

1. ] "s' [Iast(B ) S' A S P" ] for some w 0.

[his case is the same as the base case.

2. :Is' [ast(B ) s' A s l"s' ] for some Os v< k.

If I BI 1, we can remove the last state, sn from B1. let f/ be BI with sn removed. B I I = <s >'

and Bj =(<s' X On the other hand, if B, = 1, we can simply add s', to B'. In both cases, since

the degree of correspondence between sn and s' is less than k, by the inductive hpothcsis, we can

extend 7r' appropriately.

3. s  Ei• Iast(B') for some O: v< k.

To begin with, if [B' [ = 1, we can remove the last element of B' and put it into a new block of the

partition. Let B be B' without the last element B'+ =<Iast(B')>, and Bt+ =<s + >. These

partitions satisfy the lemma.

On the other hand, if 1B' I = 1, we can simply add s n+1 to B1. Therefore, the lemma holds for this

case.

It is also necessary to show that all of the blocks in this construction are finite. This problem may arise in

the second and the third case, where we might add an infinite number of states to BI (or B1). However, since

the degree of the correspondence between the states in B' (B,) and the state in B, (B) is decreasing and

cannot be less than zero, these constructions will only apply a finite number of times. Hence, only a finite

number of states will be added to the last block, so it must be finite.

Given 7T in AfM, we can use the same argument to show the existence of 7r in Al and the corresponding

partitions. Therefore, the lemma holds. 0

We now prove the CTL correspondence theorem:

Theorem 2: Let Al and Al be two structures that correspond. Then for all h E CTL ,

,f 'd ,s h,= ,Af .'o  h.

This theorem is a consequence of the following lemma:

- , ...
....... ........~~~~~~~~...... .... ......... .....-.. .,.,-.... .-..-.-. '.
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Iet ii be a p h i i taring with s 1:d A /s' 1- A . if Iiru:/', H / .. /a r . a [ari: :,, (I .T
(B B. . ... ) (I'll a part/,,,t Tn /f ' I? I. .. ) aaih thi ,,.' ,,'l/ ,/,c 1< ,A a n ,Th :u d I/ 1B' fir a!l!J: then

/i h V ' h= . if"/: is a ate rorniula and -~

1= h 17 / 1= ;. f/ h is a path firm u la. ".

Proor: Since ,ii ad s' B' . s'. We lI nO) pro\ e the lemnma h induction on the structure of h.,,'

,,asw: h .,I. Ih the definitio)n or tF. s .. A s' I A. i!

Induction: l[here are se eral cases.

I . -h z, a state formula.

s' W h (induction hypothesis)

_s' h .d.

Fhe same reasoning holds if h is a path formula.

" h=h v h, a state formula.

Without loss of generality,

s) h s) h, or s h 2

s h (induction hypothesis)
s' At""

lhe argument is the same in the other direction. We can also use this argument if h is a path

formula.

3. h z= Hh ) a state formula.

Suppose that s0h. Then there is a path. 7r7 ss 1s2 ... starting with s such that 7 1h. By

Lemma 1, there is an partition of this path, B B .... and a path 7r' in 1f, Awith a partition,

B' B' ... such that the blocks of both partitions are finite and B F B' for all j? 1. So by the

induction hypothesis, w 0- Ail A, Therefore, s EAh,) s' It= l(h,). We can use the

same argument in the other direction, so the lemma holds.

4. h= h,, where h is a path formula and h, is a state formula.

0

% 79- . .%7-
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Althouizh th de lcIMIhS Of It and hi are the samc, we cain imid nne Ltt h mh paii ).Awh,:& [)Jil is an

operator "hich converts a state fornUli int1o a pit 1 UII ali,. 11I irefre %e jC I pI. i

dropping this path operator. So nowk:

7 h czs h,

-s 17 I (indcion0 ll potheISIS)

~ h.

Fhe cc\ erse direction is similar.

. It U It. a path for-mula.

Suppose that -n = h L1 It,. 11 the decfiniton Of tie until opcrator. there Iis a ,uch tha 71 h,

and for all 0 ~ < k, 774= It. Suppose that kis in hlick B.. [hen. B,, . whcre B, is the

p irt of B, starting wkith s , i a partition ofT i. So B', BR, I the pirti n it a path in .11 such

that B 11 B" i,, tni c For , I Ij21. 1Ihere f0re. hb the Induction K. pothesis,

Now., an\1 statv S, before first( B') on the paith 77' is in sornie block 8';., < 1. 1If B' is t-he pa rt o f B'

starting wAith . then W' B' .. .i, a partition Of 7' AU lso. B B 1, d s partition1 of a suffix

o f 7T such tha B1 U I is tru fr all n2!j. Since we know J < 1,we knowA that1 th1i pah starts with

ai state before Y-, so 131 B . ic hreforc. h. the induction li.pothesis.

for an. ?In hefore firsO Bi). Fherefore 7T' h.

c~ can use the same Argtument in the other direction. 0

4. Applying CTL* to Networks of Processes

In order to reason about networks of identical processes. we need to be able to dinehbetween the

atomic propositions of the different processes. Therefore, Ae introduce thc notiion o'': ait'n'ic 0

proposiutis such that A is the \alue of proposition .1 in process i. I et II'he a st'prop. situt~ iiants Ahich

will be indexed by a set of index \ ariables. I V, and let AIP he a set of atomic pro)poitlions as bforc. [he lovic

idexed (TI. is an extension of CTL where

" A isa ste formula if AElP and iElIV.
* If/fis a state formula that has exactly one free index variabhle I, then V (tis a state fonnula. (We

w ill write fl ) to indicate that/fhas a free index xariable i.)

Indexed CH.I is the set of clo~sed state formulas gecnerated h. these rules and the rules in Section 2,

%S
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We dcfine the scmantics of IndexdC I.. ihc4: :..:. - !.:: Ti '. P.L.;' .C 11.*

* IP is the set ofatomic formulas.

a 1P is the set of atomic formula,, indced" '.,cs r-m I-

* I is the set of index %alues (,I subset of N).

* ' is a set ofstates.

e RQSxS is the transition relation.

* L: S-. 9AP)UY(IPx I) is the proposition !abe'.i,,. We ., II v r:te I ncied ot .. :).

* s is the initial state.
0

We extend the relation = to deal A ith ndexed CIl fonnulas as well:

1. s A , A EL(s). SC C

2. sl V.j(i) = there exists a cE I such that s f(c).

We will use Afli) as an abbreiauion for -V-,i).

A.

B1  B ,'7.

Figure 4-1: Example to Illustiate Restrictions on ICTL

Even without the nexttime operator, this logic is too povcrfu: b. nest:l t pe ,cia'ors A and V it might 9

still be possible to count the number of processes in a concurrent "s'tem Sc'-',c .e take as our Knpke

structure the global state graph for the concurrent program n Fgure 4-1. i :-c :,.. ne 'rtrmula sets a lower

bound on the number of processes:

V(A A EF(B A V(., A EFRAVk... ))))) S
I I J j

Once B, becomes true, it remains true. I-herefore. if Vk is tn;e. ve k::+ i. W. Wos k :s different from all of
k

the preceding indices mentioned in the formula. For this reson. '.k.c se ,A illrod :t-orm of ICTL. The

additional restrictions are:

- .: " ' I I -" I .- -' , .- " , ." -., ...-. ." .-." • -.' , " , .-, . , -, --,
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e V f is perrnlishle state tOrinuila oi if fdocs net coiltainti II V Operaitor-s.
I

U L is a pCnisxbl path C011111.1la oi1l1 if' neither g~ nor c ontl (Ain aii V Operato rs.

ap rictice. manl% of the mosxt ii tcxct inc p ropcities 4 Inetxk ork s of, identical pro cexcx t-in ht' Cc scd inl thle

ict)icted logic. One impel taut prl'pe:rtx that cannot he expressed is that an indexe\d propOsition holds for

s/ uI' index VaILue. Since this In elvs nesting of' V operators. Ne'. rtheless. Ae can haindle such a

pr T)pertN " oh in the fi..me'.. o rk that xxc e has dcx eloped h% meanls of a sligh11 e \lsten l 10 i thle 1a n1'uge and its

scmaintics. We add at special atomic itirinlula, P to AP' for c\ er P in II'. Hic propositon Libeling is then

I x Iended as f 0lbIx..' s: E P c 1, ()if an d onx I \If there is e ic tl \ one c E I such thait P) E .L( . I n the remla in de r

the 11 paper. %ke %kill refer to thle resticted hic .Zk ith11 this extension as ICI! IUnless otEher.. ise stated.

Ce canl use the notion of correspondence dlefinted in Section 3 to define an inklexcd corrcsponidence. Since

.c restinctiotis to I do iii t permit the use of two different Indices with anl LUntil operator. it is impossible

t, iv-tr to the behax icr of two differetnt processes aloing a specific path. IuS, the notion of indexed

itcspxindenc.e between structures) onily needs to refer to one index frotfl each structtie at a time. Because (of

wh,, ,e will define a set of correspondence relations, F: , that relate the behax icr of an index i in I to the

bea.or of anl index i' in 12

I ct Al he a strtucture and i be an index xaluc From 1. [he reduction ef.'.l to i (denoted b Af ,) is a structure

:Je-itical to .1l except that the newk propoisitioin labeling L, is defined as follows:

it x JAJ AE APA. IcI') 1,j EA IPA A, E L(s)}

In other words, all of the indexed atomic fo(rtnulire omitted except those that are indexed by i.

Noew. Ae sax that twoi structures. Al, and Alf with the satne set of indexed and nonindexed atotnic formulas.

z' ) - corre.spond if and only if .1f F M , We \A, il w kri te th is as Al E , Al
1i 211 2

We can prose an analogotis result to Lemma I for (0i' )-corresponding stRuctures, where the corrc:spon-

denice between states is now an (i0' )-correspondence. Using this result- we can prose the followAring lemma

concerning unquantifted formulas:

ILemma 4: Let Al and Al be two structures tat (O ')-correspond. Let h( i) N, an indexed ( iL_ formnula

wt i/bout an)- V operators and with one free index variable. Let 7T be a path in Al, starting withi s and 7r' be a
pat/i int If starting with s'. Ijihezre is a partition of 7T (B? B ... )and a partition of 7' (WB' ... ) such that all

of Mei blocks arc finite antd B I-, B for all] then

s =h(i) -* s hi') if/h is a state formula and

7? hit) 7Tr' h( hi). if h is a path formula. '
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-1 he proof follo, s the same lines as the pioof of the CI orre,,p( ,,cnc.' ih,.rcm except that there is an.

extra base case for indexed atomic propositions. Bl the dctin iun I, (i )-Lorrcspondence. S A ,

s' =. I! is immediate.

Ling this lemma, we can prose the major result of this paper. the I( TI. thpn' hnce theorem:

Theorem 5: l.et. *f antid Af be two stnctures and il.\ be a relat w o 'r I x I that !.s itota Or )t/ih I and I II

f)r ciers (i.i')E IN, the two structures (i.i')-correspond, then.Al .-s h '., 1 .tur ci n I(T. formula

h.

Proof: We prove this theorem by induction on the structure of h. The oul,, tnrcstim. .ae the base case,

when h= Vt(i). If s:, Vh(i), then there is some i such that s- i; . ince .I\ is total, there is an I'
1 0

such that (i, J') E IN. Therefore, since ., and Al, (G(,i)-correspond, I emma 4 -i\ es = h(' Therefore,

r= Vh.(i). The reverse argument is similar.
I

The proof of the remaining cases (-h and h vh) are straight forward. Iherefore. the IClI.* correspon-

dence theorem is true. I0

5. Distributed Mutual Exclusion Example

In this section we illustrate how our ideas might be applied to the distributed mutual excluSion example

mentioned in the introduction. We assume that r processes are arranged in a ring. c ich process P, is always

in one of three states: A neutral state (denoted by n ), a delai, state (denoted b I ). or a ci:t:ca.! state (denoted

by c). Exactly one process %kill hase the token at any gisen time: if process has the token this wsill be

denoted by t. The global state graph for the case of two processes is shown in Figure 5-1. In the case of r> 2

processes, there may be more than one delayed process. Whenever this occurs, the process 1, %kith the token

should eventually gise the token to the closest neighbor to its left that is in a dela\ state: sse denote the closest

neighbor to the left by cln(i).1 We next define the state transition graph in the case of r processes:

G <AP, IP, R,SR ,s >,where ".

" AP="

* IP={dc,n,t}

lIt is assumed that the token will be transferred through corsecuie processes from Pn In' ,,,A \ 1he c' me iam of this
transfer %i ll not he esphtcit, reprented in our model at this levcl of abstracuon [h:,\. 1.c ,, ol te ' v,, \c: rcqmu es one

global transition.

. --
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.~ r}

" S,={sls=(D.,T,0>}, where

o D={ijs =di}

o T={Ii)s 0--n A f.

o C={filso- c.A I}

o 0O= 1,-(DYN UCU)

We will refer to the sets D, N, T, C and 0 as the parts of st'ate s.

*R,=(ss)s=(D,N,TC,0)As =(D N1 ,T,,C,,,O, >A

[]ifiENA D D ulA N N-fij A T TA C (V

]1]jiE DAjE TU)CA i=c~n(j) A D, D-{,1 AN V N1j}

A T=T- {j}A C, (C- j})U{4V

]I[ETAD,=DAN Z:-.\A T=T-{1}AC,=CJji}]V

]/[fiECA D=OAD. =D ,N NA T Ti' C, =C-i]}

In the First transition some process *m',( es firm its neutrail so to its dcli\tae In the second0

Lp 0
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transition a to ken 1is trans Ierred trout I pr(kess P, to 't piocess I whre 'ti(~ I),1n ie dt;-"I tan~io tn

a1 process with a tile tokenI 11o(1cs tI I It Iit UI F Ij I ~ti to ii C ctI~ ' UI LitC, [ l it t I, ist tr,ji I Iiin J IM K ess

\ uth a token rnomes tfiu It ritiaL, stile 10 its riciitrsI state:l iui ( tin nhL1f j)I0i CC>> iti the kenri It

rema..ins w ih tile saMeC process.

*s' =<0,2. r),{ I }.0Z0>

Utirnatelr we w-ant to estahljsh I :,)rre,,poiidenc hiwkt~ CCenWeI th, Ia[Iil e:\ 1Hs. I po 2rm r flt( KCs5CS

and tihe prok-raril with 2 processes. 0I tIs Impo'ssihe to esItbish .1 cpnceht e Lt.e r pr-. ess

sersion and the one process since no prkCess L.a1 enterI it, delar Kate InI [Ilk ml,,r e' %iln.) It Is, eaisier toI ~ ~prove the correctness of the correspcindeuice it' we tirst showA thait CI,11 IaF) op M . A V h~l Oi f Mir mita

exclusion program:

1 1), N, T. and ( formn a partition ott.r i.e. lhey are disjoint and (0 is, flw tas empty .

2.Once at process has requested die token. it wIll not stop requesting Until the token is recesedl.

3. There is exactly one process with the token at anr time. AG®

To establish these insariantS. it is Sufficient to show that ther hold initLiall InI and e~er% transition in R,

preserses them. In this case, the proolfs are tri iai. so we omit them.

The state transition graph given above is not a Kripke stnicture siC SOMe states, I% not hawe any

transitions (i.e. the state where all processes are delared and no process has the token). I lowcser. if we restrict

Gi to be defined oser the set of states reachable from s' we do ohtain a Kripke stnicinre which we denote by

Afr.Since we have shown that esery reachable state has a process with the tokeni, this proce-ss can always

transition to and from its critical section-, therefore R is totw.r

Once we have established the correspondence using the insariants, we cain appl\ tite Cl I model checking

algorithm [41 to the two process mutual exclusion algorithm in order to estabhlish the tflbiw. ing properties:

1. A token is transferred only upon request.

2. Only the process with a token may get into its critical state.

AAGsc,~ I
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3. Once a process, has requeste-,d the token, It 0111LIie to reqUest the tIkeuI iJtil the: hken is,
recei\ ed.

4. I % en proeeN\ that w ants) t r It' LItICi ',t,1t0. C\etahdoes.

A \G(G1 AFc)

In order to define the bisimo lation101 bcccri l I:anid I Air we ust tn1-t definle [lhe relation IA Xl x 1, that

deternleS Lhe corresponIdecIe beCtwkeen Index a ILus In tle twAo structures:

Next, wec must define thc correspondence between sl..tes L:'C xS xN for eser (iit' c N

1. 1'\&o states. s in If: ind s' in If i )-correspond if iis in the sdme part of sas ,'is in s' and if
i E then D =0 -D' =0.

2I et an !-iJlc tritisiliu he a transit iin w hich does not ha\ e anm effect on i, i.e. i helongs to the same
pairt ot the state before and af'ter the tranisition atnd If i E Cand 1) is empt\. then I) remains empty.
We define the rank of s. r( svi ), to be the maximal number of consecutise i-idle transitions possible

froml o, it' this number is, flinite. Otherwkise, the rank oif s is 0. [he degre, of' the coirrespondene
betw een sand s' is defined toi he r(s,i ) + r(s',i'.

Note that the onl\ ease in which the number of conSeutli\ e i-idle transitions from s is in finite is when

s n . \lso note that if s is reachable from S by pursuing i-!dle transitions onl\ aind if r( S0) 0. then

'i rs[, wxe show ho%% to computeI~ r( vi) [here are a numbher if cases, dependJing1 onl wk hch part of the state

is in.

1. 1 A. In this casec there are an in finite number of consec un e i-idle trainsitions starting from s, so
r(s.i) 0.

2. D let process 1 be the one with the token. ['here are four s0Urces, of' :-idle transitions in this
case:

a.Processe,,s that are initiall neutral nao, become del~i\ ed. (A tranisiuons.)

b. ]'he process w ith the token masi enter Its L ri1tIQa seti.11 ( Tj transitions.)

c. Fhe token mar be t-rnsferred to a delared prokcss between /and L((j - i) mnod nl- 1
transitions.)

d. [hz- processes that gase up the token in the pre\ otis step marX become delared.
(Qj- t) mod - I trdnsitions.)

Therefore, r(s,i 1,V +~ I TI + 2(j-i) mod n- 2.
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3. iE . I lhe ,ml, :-idle transition, irC n utral prce'..cs b,:cc'in dcl.i',_d So r ') 1VJ

4. !EC( ind /) ,.. Sincc ill t111 ".ltul" c.ihcr me into a djdcenrt pa1t it ,1 t ie (t .r dd
prcescs to 1). r( .) =0.

5. c ( ind ) 0 0. lhe inl\ i-idle tr ,itions nie neutral prOescs ',,in.: d,:i. icfaare.
r s i , N .

N,, wc must check that L" is a correspondence relation.

ClauSe (1): Because all of the proccs,,ses are neutral il the initiad stes (1 ,If .id V, ind fl. ., I has

token in cach initial state. these states correspond for e~er, (u')t 1A, ,%lth a degree k= r s. i) r(h" i).'

(lause (2a): Immedlatel, from the detinition of 1i /. for e' err two "tates vs' tat I'1-crre~pa'nd st:1

nr degree. s = A '= .. for eery A.E /P.

Clause (2b): Assume S 1, s' where k =r(s.i)+ r(,i ). There are fise cases. ,ne ,r eati ,t-he clauss in

the dcfinition, of r(s.i). We check the first tmo cases- the others are similar.

1. I E Nand i'E .

From aboe, r(si) =r( .' ) = 0. So 0. From s, two kinds of transitions are possible:

a. Process t car hecome delayed in state s. . Since i' E N. process i' can also become delaed in
some state s, . l-hese t o next states are F'/ related, since i cI) and i' E DI'.

b. Some process can make an i-idle transition to state s. In this case., some process in if can
also make an i'-idle transition to V. Since i and i' are still in the same part. the,,e two next
states are/1,, related.

Since eserv transition from s has a corresponding transition from s'. clause (2b) holds in this case.

2. E Dand i'E D'.

here are three cases:

a,. Some process can make an i-idle transition to a state s.. Since ia D., s, 12i , V for
v Is. .a) - r(s'.a'), r(.a) measures the maximum possible number of I-ldle tram>itions
from s. Because an i-idle transition from s has been made, r(s,,i)< r(s.,) so 1 < k. so clause
(2b) holds.

b. Process i reccises the token from process.1 and process i' can receie the token from process
}.After these transitions, both i and i' are in C so the successor states correspond.

c. Process ! receies the token from process /, but process t' cannot receise the token from
process .1' (W77 c/,t(' )). Thus. there must be a delaed process betwCen J' and I' which is

the closest neighbor of l. [herefore. there is an i'-idle transition in h ich this closest

n0

,.-' -'. .-.. > . ,. -,- .- ,-, . .-.- : . .. . . . . . . - . . . •-
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nciLhbor rcccl\c,, the t,kcn lit ,c',ltinI ,tate. ,. c rrcsp tids to s Aih decree

t - r( %,i ) 4- r(,5' i' Si lC in <' il tran, fition t' l s' has been m idc, r( i' < '( t 1' so0
i < k. so, CJLsC 42h) holds.

(lausc (2c): is procn similari, to clause (2b).

Ihis completes the pruoot ofthe bisimulation 4" ' and At.

6. Directions For Future Research

lhe notion of bisimulation introduced in Section 4 currentl. requires some represention for the global

states of a product machine. When the indiN iduaKl processes in such a product are more complicated than the

Ones in the ring nctAork example of Section 5, it mnay be difficult to find such a representation. Pcrhaps. an

appropriate notion of bisimulation can be found that applies direct,, to the indis idual processes rather than to

the global state graph. More work clearly needs to be done on this problem. Another problem concerns the

restriction on nestng of A 's and V 's given in Section 4. We showed hoy, nesting of these operators could
1 1

he used to count the number of processes in a concurrent program, so some restriction is clearly necessary.

We conjecture that with formulas having at most k operators of this type, it is impossible to distinguish

betv een programs that have more than k processes. In other Aords, if f is a formul" With k le els of A and

V operators and ,I is a Kripke strcture obtained as a product of n identical processes, then f) ill hold in

A for n > k if and only if fholds in .'1 It is easy to prove this result when the product of the individual

processes is a free product, i.x. when there is no s. nchronization between the individual processes. When the

processes are synchron/ed the conjecture seems much more difficult to prove, however.

We would like to ackno% ledge Prasad Sistla's insightful comments on an earls version of this paper.
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