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1. INTRODUCTION

Given a controlled dynamical system with states x(r) € R ", control
u(t)e R ™ .output y(r) e IR ¥ and disturbances Et)e R ", we define the out-
put aiming process specifications as a pair {‘¥,t}, where WcIiR P is the domain to
which the outputs v (¢) should be confined and t is the period of the confinement, i.e.,

vit)e, v relt, .z, +tl,t,eR, .

For a given pair {‘V,t}, the problem of output aiming control is formulated as the
problem of choosing a feedback control law so as to force the average duration of y(¢)

in ¥ to be larger than 1, in spite of the disturbances &(¢) that are acting on the system.

An analogous problem, conceming the aiming of the states x(¢), rather than the
outputs y(tr), has been formulated and analyzed in [1]. In particular, it has been
shown that the existence of a desired aiming controller for linear systems with small
additive, white noise depends on the relationship between the column spaces of the
control and noise matrices. If the former includes the latter, any precision of aiming is
possible (strong residence time controllability). If this inclusion does not occur, the

achievable precision of aiming is bounded (weak residence time controllability).

The purpose of the present paper is to analyze the fundamental capabilities and
limitations of output aiming control for linear systems with additive perturbations.
Specifically, we show that a linear SISO system which is weakly residence time con-
trollable in states may, in fact, be strongly residence time controllable in the output if
its nonminimum phase zeros satisfy a certain property. As far as the design of aiming

controllers is concerned, we show that H 2-minimization of the closed loop transfer

; 5T TRt g
W, ) T O
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function leads to maximization of the accuracy of output aiming whereas unweighted
H*-minimization leads to its minimization.

) The structure of the paper is as follows: in Section 2 the notion of an output

defined and analyzed; in Section 4 output aiming controller design techniques are

R e
-

given; in Section 5 examples are considered and Section 6 is devoted to conclusions.

i
residence time is introduced; in Section 3 output residence time controllability is a
The proofs are given in the Appendix. a

g 2. OUTPUT RESIDENCE TIME

D %
" Consider a linear stochastic system
i dx = Axdt + eCdw
‘ 2.1)
" y =Dx
where x € R ", y € R P ,w(t) is a standard r-dimensional Brownian motion and

L UR S

O<e<! is a parameter.

Let W<IR © be an open bounded domain containing the origin and whose boun-

dary d¥ is smooth. Assume that xy=x(0) € Qoé{xeﬂ?' ly=Dx € ¥} and denote as

r2s S

y(t.xy) the output y(r) defined by (2.1) with the initial condition x,. Introduce the

T in

first passage time of the output y(f,xq) from W as follows:

T(xo)=inf{r20:y (1 xo) € I¥ |y (to,xg) € W} (2.2)

-
pLIRIA IR ¥

and its mean

o T¢ (xg) = Et (xg) I xo) - 2.3)

LA B 4 . R \ DNCANANE )
e, ,',,f,a.., P N A N v it LR NUPLRNE
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The calculation of T° (xy) is, in general, a difficult task. To alleviate this
difficulty, asymptotic approximations with respect to small € can be used. For the spe-
cial case v(t)=x(¢) these approximations have been extensively discussed in the litera-
ture (see, e.g., [1] - [3] and references therein). An extension to the more general case
of y(t) = Dx(t) is given below (it is assumed, without loss of generality, that rank
D =p).

Theorem 2.1: Assume

(i) A is Hurwitz,

(i) (A,C) is completely disturbable, i.e.,

rank [C AC - - - A™""IC)=n.

Then uniformly for all x, belonging to compact subsets of

Q={xpe R " IDeA xq e W, 120} we have

lim €2 In T (xg) = |i
lim £ InT" (xo) = W(¥) , (2.4)
where
. 1 7
¥) = - yINy | )
(') ;2‘3,, 5y Ny (2.5a)
N = (DXDTyt (2.5b)

and X is the positive definite solution of

AX +XAT +ccT =0 . (2.5¢)

Proof: See the Appendix.

The constant (V) is referred to as the logarithmic residence time in ¥. The pro-

perties of this constant, as stated in Theorem 2.1, constitute the mathematical founda-
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tion for the analysis in Sections 3 and 4.

If v and w are scalars, the logarithmic residence time can be expressed in a more

traditional form. Indeed, since in this case ‘¥ is an interval, say,

Y=(-ab)ab>0 and G,(s) 2 D (sl — A)! C is a scalar, from (2.5) it follows that

iCP) = < (minta b)FN,

-1 -1

N = |f De#CCTe**DTdr| = |f (Det*C Yt
0 0
-1
1 P | . -1 |2 -2
= |5 L DGl —AYIC [aw| =1IG, 13
Therefore,
- (min(a b))?
) =— 2.
: 211G, 1} (2.6)
3. OUTPUT RESIDENCE TIME CONTROLLABILITY
Consider now a controlled linear stochastic system
dcx =(Ax +Bu)dt +eCdw ,u e R™ a0 1

y =Dx .

Definition: (i) The output y(¢) of system (3.1) is said to be weakly residence
time controllable (v-wrt controllable) if for any bounded domain WcIR P with 0 in

its interior, there exists a control u = Kx such that ﬁ(‘I‘,K })> 0.

(i) y(¢) i1s said to be srongly residence time controllable (y-srt controllable) if
for any bounded ¥ < R P (Oe ¥) and u>0 there exists u = Kx such that

APK) 2 p.



)
X 2
", -
Wl
Y
:.Q u“r
R i Here, W(W.K) is the precision of aiming in ¥,
.-
§ _ L(P.K) = lim €n T (xo.K) , (3.2)
:\' =0
. _\:
". "~ where T° (x,K ) is the mean first passage time in ‘¥ of the closed loop system

1 -
L
% )

W dx = (A + BK)xdt + £Caw
;Ea, 5 (3.3)
y=0ox ,

with initial conditions xg = x(0) € Qg = (x € R" | De® +BK) x ¢ ¥ >0}

o
‘ -~
[ ;J'.

- -
] '_’f \ In [1] we have discussed wrt- and srt-controllability of the state vector x(¢), i.e.,
s

-‘h

- W X-wrt and x -srt controllability. The main result is the following:

’h ﬁ

v: Theorem 3.1: Assume (3.1) has no modes that are both uncontrollable and
[ \j ‘:'
::j undisturbable. Then

s ! (i) (3.1) is x-wnt controllable if and only if (A, B) is stabilizable.

:33 iy (i) (3.1) is x-srt controllable if and only if (A, B) is stabilizable and
" ImC < ImB.

e [

‘ ’ Remark 3.1: The assumption that (3.1) has no modes that are both uncontroll-
K¢

" :j: able and undisturbable, i.e. (A,[B C]) is a controllable pair, is made to rule out some
K

9 mathematical degeneracies. Methods for relaxing this assumption are discussed in [1].
:\:; The following theorem characterizes the class of y -wrt controllable systems.
o

@ ) .
e 7 Theorem 3.2: Assume that (A,[B C]) is controllable. Then (3.1) is y-wrt con-
Bas %

Ty e trollable if (A ,B) is stabilizable. If (D ,A) is detectable then stabilizability of (A ,B) is
e
SSE
a a also a necessary condition for y -wrt controllability.
Iy

v
27
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Rty :
Proof: See the Appendix.
;'. -
h;-‘f Thus, y-wrt controllability of a detectable output is equivalent to x-wrt controlla-
:': bility. Finding conditions which ensure y-srt controllability is a more difficult prob-
P
YAl lem. To simplify the situation, in the remainder of the paper we assume that y .u and
B
_ vy w are scalars and address the following problems:
AN
Problem 1: Under which conditions is a stabilizable system (3.1) y -srt controli-
Iy
N able?
N
)
W Problem 2: What is the fundamental bound on the achievable precision of out-
- put aiming of an output which is not y -srt controllable?
L
3:_‘; Problem 3: How to design a controller which results in a desired precision of
-
‘ o output aiming?
We give the solutions to Problems 1 and 2 in this Section and to Problem 3 in
N
‘ Section 4. The assumption of Theorem 3.2 will be assumed to hold in the remainder
NG
) of the paper.
2
'.:,. The following theorem solves Problem 1.
)
.:": Theorem 3.3: Assume (A .B) is stabilizable. Then (3.1) is y-srt controllable if
2
10
! and only if all the nonminimum phase zeros of G, (s) 2 D(sl - AY"'B are also zeros
‘ of G,(s)=D(sl - AYIC.
2
X ; Proof: See the Appendix
) L
T,
Remark 3.2: If the open right half plane zeros of G;(s) and G, (s) are disjoint,
.‘;ﬂ
1y
h) then (3.1) is y-srt controllable if and only if G,(s) is minimum phase. On the other
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hand, if (3.1) is x-srt controllable, i.e. Im C ¢ Im B, then G,(s) is proportional to

G, (s) and, therefore, by Theorem 3.3 any output is y -srt controllable.

Let K denote the class of all stabilizing controllers for systems (3.1), i.e.

K = {K A + BK is Hurwitz)

and define the maximum achievable precision of aiming in ‘¥ by

(V)= sup ¥ .
Ho( K EPK H(¥.K) 34)
Obviously, u" (W) = = for an srt-controllable output. Let z,, - - - ,z; be the open right

half plane (rhp) zeros of G, (s).
Theorem 3.4: Assume (A,B) is stabilizable. Then p* (¥) is given by

_ (min(a b))?

*

‘¥)
ko 211Gt} 3-3)
Go(s)=-—qL ’
(3.6)

!
Iz +5)
i =1
where Z; is the complex conjugate of z; and g(s) is the unique polynomial of degree
less than / determined by the interpolation constraints: At each rph zero z of G,(s) of

multiplicity m, G (s ) satisfies

d* d*
~ o) |, = £ Gats) |, k=0, m—1. 3.7)

Proof: See the Appendix

Remark 3.3: If (3.1) is y-srt controllable then the interpolation constraints

(3.7) become

\J

o 03

O ¥ \ Dk OO e REHMENAIICE R R\ T Rt
%X .,.:5;‘.'..,n"4,M‘?h_.x‘_,ﬁh"'é‘g”:' ; A L) R AN

MEINCTUEICOOKIRN
[N e




K

1"
-_:: %1_ Gos) . =0 k=0.....m-1.

:' The unique polynomial ¢ (s) of degree less than / which satisfies these constraints is
it the zero polynomial. Therefore, Gy(s) = 0 as should be expected.

;_ Remark 3.4: The function G(s) defined by (3.6) is the rational function of
‘ minimum A *-norm which satisfies the interpolation constraints (3.7) [4], [5]. Thus,
K. the problem (3.4) is equivalent to the problem

:
E; min{1G Il, : G(s) € H? G(s) rational}
subject to the constraints (3.7). On the other hand, the H™-optimal function which
satisfies the interpolation constraints (3.7) is an all pass function, i.e., constant in mag-
{: nitude on the jw-axis. Thus, an unweighted H ~-optimal controller leads to zero preci-
h sion of aiming.
;: The formula (3.5) for p* (¥) simplifies considerably when the thp zeros of G, (s)
.. are distinct. Define an /x/ matrix Z by zij = (g + z‘j)"l,ISi ,J<l, and an /X1 column
: vector g by g, =G, (zj).j =1, - A

N

Theorem 3.5: Assume that the rhp zeroes of G (s) are all distinct. Then

. s
x (min(a ,b))
W)= —-7 (3.8)
28727
: where g/ is the Hermitian transpose of g, i.e. g” = g—T.

a ) .
b Proof: See the Appendix
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4. OUTPUT AIMING CONTROLLER DESIGN

In this section we give a method for selecting a controller which results in any

admissible precision of aiming it < " (\P).

Recall that i(‘\¥,K) is given by

A L.
HCEK) = - (min(a b)’N(K) . 4.1)
Thus, the maximization problem (3.4) is equivalent to the minimization problem
inf DX(K)DT .
Kek &) (4.2)
Since the equation which X{(K) satisfies is linear in K, it is easy to see that the
infimum (4.2) is not attained at any K € K. Thus, u*(¥) is not attained for any

K € K. We now construct a sequence of controllers whose precisions of aiming con-

verge to w' (‘¥). Let K be a stabilizing feedback for (3.1) and define a regularized

‘‘cost’’
JAK) = DX (Ko+K)DT+yKX (K, +K)KT >0 . (4.3)
Obviously,
. 2
RO + k) 2 @O g g 4.4)

ZIY(K )
It is well known from the theory of optimal control that J Y(K ) is minimized by

1
K'= - S BTQ, (4.5)

where Q. is the positive semi-definite solution of

(A+BK )T Q. +Q 4A +BK0)+DTD-; QBBTQ,=0 . (4.6)

oo (\8 OO COONBNGRI AN NGAOEERDEE
2 R T K OO K X OROOSAHO 00 SRR
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The following Theorem can be proved using the results of [6].
Theorem 4.1:  Assume (A B) is stabilizable. Then
(i) ii% AP Ko+ KN = 1" (P) ;
(ii) R(¥, Ko+ K") is nondecreasing as y—0.

Thus, Theorem 4.1 provides an iterative method for finding a controller which
results in any admissible precision of aiming. Indeed, for any desired i < u* (‘) one

simply iteratively finds a y, > 0 such that

(min(a b ))?

DX(K, + K™DT < -
2u

Furthermore, the iterative process is simplified by the monotonicity of i(\¥, K, + K")
n Y.
5. EXAMPLES

Example 5.1: In [1] we considered the problem of designing a roll attitude

regulator for a missle disturbed by random torques. The system is described by

S 0 0 0] |8 1 0
d; = 110 -1 0] o} + [olu+ec ] w (5.1)
¢ o 1 0] [e 0 0

where 9 is the aileron deflection, w is the roll angular velocity, ¢ is the roll angle, u is

a command signal to aileron actuators and w is white noise.

Clearly ImC ¢ImB so (5.1) is not x-srt controllable. However, as was indicated
in [7] the main objective of the control is to maintain the roll angle ¢ within desired

limits during the operation of the missle. Thus we choose an output v = ¢ and

10
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A3 n investigate the residence time controllability of this output. A simple calculation
:" shows that the transfer function from u to y is
e
-

B G,(6) = -
s¥3s + 1)

e L
\" Thus, since G;(s) has no zeros the output y is srt-controllable and any precision of
N
SR aiming is achievable.
asdiDey Example 5.2: Consider the problem of controlling the tip position of a flexible
N
2 robot arm using control torques applied at the robot arms hub [8]. A finite dimen-
'.: " sional approximate model for a robot arm which is flexible in the horizontal plane but
j:Z: - not in the vertical plane or in torsion was described in [8]. The model is described by
l'-if the following set of equations
V ! 5
N 0 [«n <L)}

--" - X; = -5 : + +
- K -0 -2G; 0 & 1 de ©0) o 5 (5.3)
:::: g IT dz
_-

[ yi=[o;,L) O); ,i=0,1,...,n ,

p. where L is the length of the arm, {;,®; and ¢;(z) (z € [0,L]) are the damping

' ’ .

'- . coefficient, pinned-free frequency and modal gain, respectively, of the i-th mode of
'3::; - oscillation, /1 is the total moment of inertia, u is the control torque, § is a random
el torque acting on the tip, and y = Y y; is the tip position.

L i =0
ey

':'k ” Assume that it is desired to maintain the tip position within the bounds —a <y <b
N
“ E during a specified time-interval T, and assume that the disturbance § can be modelled
&Y as a small white noise ew .

?’d =
e

;.-

e 11
v, s
o,

"'j‘ AF Ny B 2 N () RRCTN ) » et : 0008000800
1)‘ Y .‘6‘0. ..l‘, K] ;'A'g,". () ‘.v\'-"' ’ ‘1;*6'}"0“"' I".,C ] l'g "‘-"h !';IYfl_e‘ "p,i_gﬁ.o‘lgul‘.l,' ST
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The system transfer function for (5.3) is

dQl‘ (0)

n i ( "
Gor=d § _ d_ (5.4)
IT 1 =0 S~+2§,‘(I),’S + -

t

and the noise transfer function is

n ¢‘2(L )(S+2 l‘(l),')
G,s)= 3 — : . (5.5)
=0 S“+2§i0),~s +(Di

It was indicated in [8] that taking n = 3 gives a good approximate model and the
values of the constants {;,; .0, (L),d9;(0)/dz and I; were determined experimentally.
The resulting system has three right half plane zeroes at z; =12.04 and
7;3=21.5%; 253. It is easily checked that G,(z,) # 0. Thus system (5.3) is not

y-srt controllable. However, it is controllable and, thus, y-wrt controllable and the

maximal achievable precision of aiming can be obtained from (3.8) to be
b))
uCP) = (mmifa _1))
287278 (5.6)
(min(a b ))? : 2 '
= 10.87 b))
2(0.046) 87(min(a b))
Here,
0.167 -0.014-j0.136  —0.049+,0.136
Z~!= [~0.049+;0.136 74.178 -31.150+;38.462
~0.049-;0.136 -31.150—;38.462 74.178
and

0.181
g = [0.092 - j0.057
0.092 + j0.057

Thus, any specified time-interval [0,T] has to satisfy the bound
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' inT < 10.87(min(a b)) 5.7)
g2
6. CONCLUSIONS
! In this paper we have discussed the problem of aiming control, introduced in [1],
” for linear Ito-type systems with outputs. Among the results, the following are of
E importance:
;— (@) y-wrt controllability of any detectable output is equivalent to x-wrt controlla-
.. bility:
& (b) A stabilizable SISO system is y-srt controllable if and only if
\ H(s)=G,(5)G, (s) is minimum phase;
i (¢) A system which is not x-srt controllable can be y-srt controllable.
= The y-srt controllability was discussed only for systems with scalar outputs. The
|-

results can be extended to muyltivariable systems with fewer outputs than inputs in a

™

quite straightforward way. However, all proofs become considerably more involved.

For systems with fewer inputs that outputs the problem is much more difficult and

I
(J.'l,'&

results are only known for the special case y = x.
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APPENDIX

Proof of Theorem 2.1:  First note that it follows from the definition of €, that

inf{¢201y(t) e oV} = inflz 20lx(2) € IQy)} . (A.1)

We will show that the first exit of x(¢) from Q takes place on the boundary of Q.

Thus, for xy = x(0) € Q the first exit of yv(¢) from ¥ is equivalent to the first exit of

x(r) from Q. Then we will show that the logarithmic residence time in Q (and, thus,
in ‘¥) is given by (2.5).

Let X be the positive definite solution of (2.5¢) and let M = X~!. Consider the

sets

S, = (x e R I—;xTMx<m} . (A2)
For sufficiently small m, S, < €. Furthermore, S, =IR" as m-—eo. Thus, there
exists a largest m such that S, < €. Note that S- is an invariant set of the system
X = Ax. Furthermore, Q is the largest invariant set of x = Ax contained in Q.
Therefore, S. < €. Next note that the mean first passage time

?f(xo) = E[inf{r 201x(t) € dQ)} lxg e Q]
of

dx = Axdt + eCdw

from Q satisfies, uniformly for x, belonging to compact subsets of €2 [1],

. - - 1
lim €2 In%,%(xg) = &(Q) = min - x! Mx . i
eg’no nT) (xg) = §(£2) xrgg‘\) 5 X x (A.3)

Since m is the largest m such that S, cq it follows that -;xTMx =m at some

14
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points x € 9€2,. Furthermore. since S; < Q < € it follows that these points also
belong to the boundary of Q. It follows from (A.3) that &)(Q)Sl;l. If (i)(Q)<n3 then the
points where the minimum (A.3) is attained belong to the interior of S’;l which con-
et tradicts S < Q. Therefore,. &)(Q) =m and the points where the minimum (A.3) is
attained belong to the boundary of €. Also, as € — 0 the points of exit of x(¢) from
Q converge to the points where the minimum (A.3) is attained [9]. Therefore, it fol-
- lows that x(¢) exits € at a boundary point of € in the limit E-0. Thus from (A.1)

N and the above discussion we have

e . 3
N lim €° InT = §(Q)
N e (x0) = & (A4)

uniformly for x, belonging to compact subsets of Q.

B! Next we show that t{)(Q) = ﬁ.(‘P). Let x =Txbea nonsingular change of coordi-

RO
4

hTh)

nates that maps (2.1) into the form

l‘.;I'l-l s

X -
d -r; = T-ATxdt + eT~'Caw

" Ay Apl| ¢,
=i 2z ~|dt+e|= | d
2 [Am An| & G|

. %
=DTx=Dx=[ 0]} -
y [ 1[,,[2]

IRt L= (i
AN
S

"'.

':v’.

R ]

RRARL

AR LEREY

.
“~

(such a T always exists because rank D=p). Under this change of coordinates M is 1

Ox
4

Pl
J
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mapped into M = TT MT and the domains Q, and Q become
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g i Q=R |y =De¥xye ¥, 1 20)

The logarithmic residence time in Q(and Q) is now given by

> - = .1
R Q)= min -
N o e o, 2

e

'14
;;

e cAum
g

We minimize first with respect to the unconstrained variables x, giving

» .l" -"'

fov X, =-Mz ML X, (A7)

Substituting (A.7) into (A.6) and rearranging gives

l&..l; .

o . N S
s ¢(Q)=‘mg\1y—2 oMy, - My M3} MDD (A.8)

€

The matrix M, -M;, Mz; MJ, is exactly X[ where

- M'I=X= 8“ ‘gl:]

XL Xn

- Therefore,

- - l - - -
o ®Q)= min - WXy (A.9)
o, " w -

Ko However, X;; = DXD' and ther. ore

ﬁ i oQ) = min - ] (DXDFy 'y, (A.10)
$:_- e MW 2

; Finally. substituting back the onginal coordinates gives D X DT

s =DIT'X(T")' TTDT = DXDT  Thus

M

T r. 1
oQ) = W) = 3 min viny . (A.11)

Q.E.D.
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Proof of Theorem 3.2: The sufficiency part of the theorem follows directly

from Theorem 3.1 of [1].

To prove the necessity note that y-wrt controllability implies that there exists a
control « = Kx such that DX (K T > 0. Assume, without loss of generality, that

the closed loop system has the Kalman canonic form, ie.,

[ -
_ A Ay Ay Ay
A+BK=A= |, Ay 0
0 0 Ay A (A.12)
B, C,
g = |52 - (¢ =[D,0D
=] ¢c= c. ,D=[D,0D;0] .
0 Cq

Ay 0 B
i _ _ 1 . e
The subsystem [AQI Azz] . le is controllable and the detectability of (D ,A)

.

implies that A, is Hurwitz. If we can show that A;; is Hurwitz the proof is com-

plete.
Note that
DXKDT = (DD [ %13 il pipT (A.13)
AT Xas | DT '
where X, ,1<ij<4, is a decomposition of X(K) compatible with (A.12). Also,
X satisfies the Liapunov equation
AX +XAT +CCT =0 (A.14)

where
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SN A=l a5 ¢= Cs;

; : The pair (LS,A) is observable. Therefore, by [10, Corollary 1] all eigenvalues of AA

_.

() L in Re s 20 are undisturbable. However, since [A.[B C]) is controllable, we can
.\ assume that (A + BK,C) is a disturbable pair (otherwise an arbitrarily small change
.r-‘* ::j in K, say 0K, will render (A + B(K + 0K ),C) disturbable [11]). Therefore,

s (A4.C) is a disturbable pair and, thus, A is Hurwitz. Q.E.D.
= Proof of Theorem 3.3: We know from (2.6) and Theorem 4.1 that
(ke X (K)DT G, I}

inf D D =1imlIG,Il5 |
% gox b 16yl (A.15)
)
-\ where
b __:"
Y r.

a G(s) = Gy(s Ky) = D(sI-A-BK,)'C, K=Kk . (A.16)
3::- Assume first that l?u[i)( ﬁ(K )= (ie., (3.1) is y-srt controllable). Thus, by (A.15)
< ,.‘- €
- and (4.1, lim1IG,ll =0 or equivalently LimG.(s)=0. Note that G(s) can be

0 -0

Nt rewritten as

LoD .-

D) ) ..\

B Gs) = D(sI-A-BK,y"'C
[ ] —

o o =D ~(sl-A)'BK ] \(s-A)'C
& ‘-:" -d" _

ol = D [IHsI-A-BK )"'BK )(sI-AY"'C

Vg - -1 Z -lpi -1
i =D (sI-A)"C+D(sI-A-BK )" BK.(s[-A)"'C
CAd —

::-; =G,(s )+G,(s,Ky)TY(s) : (A.17)

) -_E:. Let
$ - G, (s) = L) (A.182)
BT " d(s) '

-~

B2
o RY]

LI I8

LA
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(A.18b)

m.
TY(S) = S (A.18¢c)

. and note that d(s)=det(s/ - A —BI_(—Y) is Hurwitz for all y>0 and

.
J'\ _
j_f ms)=Kyadj(s/ —A)C is a polynomial of degree less than n. Write
‘.\
L .’\
& n(s) = n;(s)n,(s) where n;(s) has zeroes only in Re s<0 and n,(s) has zeroes in
W Re s>0 only. It can be shown that Vyd.(s)—n(s)n(=s)asy—0 [12] and
s
v —
f_‘:.: VY K,—>K as y>0 [6]. Thus,
5
0= Go(s) = imG.(s) = G, ( 7 mol) (A.19)
a = s)=lmG.(s) =G,(s H+ .
S 0 y—0 o T (s )n, (=s)d(s)
::,: where my(s) = K adj(s] - A)C. Equation (A.19) can be rewritten as
A Gys)=G,(s)+G,(s)Ty(s)=0 (A.20)
I
e where T(s) = my(s)/n;(s)n, (~s). Evaluating Gy(s) at a right half plane zero of
G,(s) gives Gy(z)=G,(z) =0 (because n;(z) n,(-z)# 0). Similarly, if z is a
(.. E rhp zero of G.(s) of multiplicity m, then it follows from (A.20) that the first m-1
d
N -
; Ny derivatives of G,(s) are zero at z, ie., G,(s) has also zero of at least multiplicity
"
d m at z. This completes the proof of the necessity part of the theorem.
e
) _: Sufficiency: Consider a controller u = F(s)y, where F is a proper rational
rad
o
A function. Furthermore, assume the matrix A is Hurwitz (otherwise, apply a stabilizing
A
M
2'-".: prefeedback uy = Kox). A simple calculation shows that the precision of aiming of
N
:‘ (3.1) with this control is
e - (min(a b))
‘g WWF)= ——= A2l
2 211Gg 113 (A1)
i
4l 19
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where

Gr(s)= (1 + G, (S )F(sN'G,(s) (A.22)
We will construct a family ot controilers {F 4(s)} which internally stabilize (3.1) and
such that (I('¥.F ,)—e as a—eo. Also, it follows from the theory of optimal control

that

inf HGgll, 2 Inf IGg |1,
F F2 KeK k™2
stabilizing

where
Gg(s)=D(sI —A - BK)"\C

Thus, since lim I1Gg I, = 0 we have inf [IGg i1, =0, ie., (3.1) is y-srt controllable.
a—so0 ° KeK

A controller F(s) internally stabilizes (3.1) if Gg(s) and the noise-to-output transfer

function

Gr(s)=F ()1 + G, (s)F ()G, (s) (A.23)

are stable. Select a proper controller

Fols) =G Ns) [————‘f—-k ] (A.24)
(s+0)" - o

where k& 2 deg[d(s)] — deg[n(s)] and a > 0. With this control (A.22) and (A.23)

become
K _ ok
Gr (5) = Gols) = Gys) EXL -2
(s+a)” (A.25)
Gr (5) = Gols) = G ()G s) ——
(s+a)

By assumption G, (s) is stable, thus G (s) is stable. Furthermore, since G,(s) has

zeros at all the rhp zeroes of G, (s) it follows that Gy(s) is stable. Thus, F (s) is a




.....

stabilizing controller for (3.1).

Next note that

o £
G, o |G, o1 - |— |
|Gaio <G, ] | [jw]
<2|G,jw|?
and
HG, 11, < oo .
Therefore, by the dominated convergence theorem [13]
lim HG 17 = Illim G,112=0 ,
O ~—yo0 OL—)c0

iLe., WWF,)—o as oo .
Q.E.D.
Proof of Theorem 3.4: We will show that G.(s) given by (A.16) converges to

Go(s) as y=0.
From (A.17) and (A.18) we have

a(s)dY(s) +n(s)my(s)
d(s)dy(s)

Also, we know that dY(s) is the denominator polynomial of GY(s), thus d(s) divides

GY(s)=

a(s )d.{(s) +n(s )mY(s) for all y > 0. From the proof of Theorem 3.3 we have

a(sn,(=s)+n,(smpyls)

G =
ols) d(s)n, (=)

Thus, a(s)n, (=s) + n,(s)my(s) = q(s)d(s) where q(s) is some polynomial. Further-

more, since the degrees of a(s) and mgy(s) are less than n and n,(s) has degree / it

follows that q (s ) has degree less than /.
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u: Note that Gy(s) satisfies, at each nonminimum phase zero of G,(s) of multipli-

city m, the constraints

a d
— Go®) [z =— G|, - (A.26)
ds ds
'R
- Therefore,
a q(s)d(s) q(s)
M Gols) = =
ot d(sn,(~s) n.(=s) (A-27)
T and ¢ (s) is uniquely determined by (A.26)
- Q.E.D.
-
Proof of Theorem 3.5: By assumption, the nonminimum phase zeroes of G, (s)
are distinct. Therefore, we can rewrite G(s) as
Gos) = — (A.28)
N = Zj + s
: where t;, j =1,..., ! are some constants. At each z; we have (from (3.7))
| ol
A Gozi)= X = =G,G) =g (A.29)
j=1 Z; + Zj
:‘_’,: Thus, (A.29) gives ! equations which can be written in matrix notation as
5_ Zt =g , (A.30)
\'!
where t7 =(¢,....,#) and Z and g are defined as in Section 3.
~
» Next we calculate 11Gql1#

oa

[ 16y ?d

—oo

|~

NGoll = o

! t

=71j$ dw

+j(0 i=1 < —Jm




? -
? K
U [N
S *
L 0o —_
{ .,.
K = Y 2 J' — ' dw
. ij=1 n -, (C; +jw) (z; - jo)
: { 1 joo [jtT- i
=y — ds (A31) ‘
'( ij=1 2mj J —joo (‘. +5)( —5)
S Using the calculus of residues to evaluate the integrals appearing in (A.31) gives 4
b j — ds =2mj — (A.32)
: —joo (Zj- +S) (Zt- —S) Zi +Zj N
. Thus, Q
] 1 - n
t [}
¥ WGol2= Y —L =2t . (A33)
< ij=1 Zi t2j
A
- Substituting, ¢ = Z7!g from (A.30) (note that Z is an invertible Hermitian matrix) 3
. gives 0
\
b NGy} =gH Z71g (A.34)
: and (3.8) follows from (A.34) and (3.5). 2
K
; e
< s
n \J
l
J !
- Y
X '
. {
¢
; h
[ ' [
. o
b i\
¢
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