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ABSTRACT
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outputs. Necessary and sufficient conditions for output residence time controllability
in linear SISO systems with small, additive noise are derived. Controller design tech-

. niques are developed and applied to aircraft and robotics control problems. The
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I. INTRODUCTION

Given a controlled dynamical system with states x(t) I JR , control

m p ru(t) E/R D output y(t) e IR and disturbances 4(t) E we define the out

put aiming process specifications as a pair f',r}, where 'PcR p  is the domain to

which the outputs v (t) should be confined and T is the period of the confinement, i.e.,

v(t)C=V, V tr[to,to + 1, to6l?

For a given pair ('P,' ), the problem of output aiming control is formulated as the

problem of choosing a feedback control law so as to force the average duration of y (t)

in 'P to be larger than t, in spite of the disturbances 4(t) that are acting on the system.

An analogous problem, concerning the aiming of the states x (t), rather than the

boutputs y(t), has been formulated and analyzed in [1]. In particular, it has been

shown that the existence of a desired aiming controller for linear systems with small

additive, white noise depends on the relationship between the column spaces of the

P control and noise matrices. If the former includes the latter, any precision of aiming is

possible (strong residence time controllability). If this inclusion does not occur, the

achievable precision of aiming is bounded (weak residence time controllability).

The purpose of the present paper is to analyze the fundamental capabilities and

limitations of output aiming control for linear systems with additive perturbations.

Specifically, we show that a linear SISO system which is weakly residence time con-

trollable in states may, in fact, be strongly residence time controllable in the output if

its nonminimum phase zeros satisfy a certain property. As far as the design of aiming

controllers is concerned, we show that H 2-minimization of the closed loop transfer

'K
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function leads to maximization of the accuracy of output aiming whereas unweighted 4
H'-minimization leads to its minimization.

The structure of the paper is as follows: in Section 2 the notion of an output

residence time is introduced; in Section 3 output residence time controllability is

defined and analyzed; in Section 4 output aiming controller design techniques are

given; in Section 5 examples are considered and Section 6 is devoted to conclusions.

The proofs are given in the Appendix.

2. OUTPUT RESIDENCE TIME

Consider a linear stochastic system

dx = Ardt + WCdw

(2.1)
v = Dx

where x E flR n, y flR ,w(t) is a standard r-dimensional Brownian motion and

O<F4.,l is a parameter.

Let 'PcJR P be an open bounded domain containing the origin and whose boun-

dary a"P is smooth. Assume that xo=x(0) e fZ-{xelR" ly=Dx r= '} and denote as

y(tr o) the output y(t) defined by (2.1) with the initial condition x0 . Introduce the

first passage time of the output y (tr o) from P as follows:

xT(xo)=inf{t>O:v(t,x o) r al y(tojxo) e ) (2.2)

and its mean

T6 (x o) = E [r '(Xo)IXo] . (2.3)

2
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g The calculation of f (xo) is, in general, a difficult task. To alleviate this

difficulty, asymptotic approximations with respect to small c can be used. For the spe-

cial case y (t)- (t) these approximations have been extensively discussed in the litera-

ture (see, e.g., [1] - [31 and references therein). An extension to the more general case

of y (t) = Dx (t) is given below (it is assumed, without loss of generality, that rank

D =p).

Theorem 2.1: Assume

(i) A is Hurwitz,

(ii) (A ,C) is completely disturbable, i.e.,

rank [C AC ... An-IC ]  n .

Then uniformly for all x0  belonging to compact subsets of

= (x0  I? n ADeAtx0 r , t ,>O} we have

lim E2 In Te (x0) = p(I) , (2.4)

where

t(C') m min YTNy , (2.5a)

N = (DXDT)-l (2.5b)

and X is the positive definite solution of

AX+XAT +CCT= 0 (2.5c)

Proof: See the Appendix.

The constant 4() is referred to as the logarithmic residence time in 'V. The pro-

perties of this constant, as stated in Theorem 2.1, constitute the mathematical founda-

3



tion for the analysis in Sections 3 and 4.

- If y and w are scalars, the logarithmic residence time can be expressed in a more

traditional form. Indeed, since in this case 'P is an interval, say,

'P (-a,1,) a,b>O, and G',(s) -2 D (sI - A )-1 C is a scalar, from (2.5) it follows that

A(T - (min(a ,b ))2N,
2

".~N f [ De ACC~e A T Ddt] f[ (DeAtc )2d:]

f ID (j W AI-IC 2dw] 11G 11G2'

Therefore,

=(rnin(a ,b ))2 (2.6)
2GH112

2*G 2~

3. OUTPUT RESIDENCE TIME CONTROLLABILITY

Consider now a controlled linear stochastic system

*dx = (Ax + Bu )dt + sCdwur=fn

y =Dx

Definition: (i) The output y(t) of system (3.1) is said to be weakiv residence

time controllable (y -wrt controllable) if for any bounded domain 'IcIR? w ith 0 in

its interior, there exists a control ui = Kx such that ikeP,) > 0.

S (di) y (a) is said to be srrongly residence time controllable (y -srt controllable) if

5~9for any bounded '1 fl JR (0 e TI) and g±A> there exists u =Kx such that

LivK -'ai
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Here, i(I,K) is the precision of aiming in T,

L,('PK) = lim E21n Y' (xoK) , (3.2)

where T 6 (xoK) is the mean first passage time in T' of the closed loop system

dx = (A + BK)xdt + eCdw
(3.3)

y =Dx

with initial conditions x0 = x(0) E f1 = (x E N" IDe(a +BK)lx E TI, t>O}.

- In [1] we have discussed wrt- and srt-controllability of the state vector x (t), i.e.,

x -wrt and x -srt controllability. The main result is the following:

Theorem 3.1: Assume (3.1) has no modes that are both uncontrollable and

undisturbable. Then

(1) (3.1) is x-wrt controllable if and only if (A, B) is stabiizable.

(ii) (3.1) is x-srt controllable if and only if (A, B) is stabilizable and

ImC g ImB.

Remark 3.1: The assumption that (3.1) has no modes that are both uncontroll-

- able and undisturbable, i.e. (A ,[B C ]) is a controllable pair, is made to rule out some

mathematical degeneracies. Methods for relaxing this assumption are discussed in [1].

The following theorem characterizes the class of y -wrt controllable systems.

O:Z Theorem 3.2: Assume that (A ,[B C]) is controllable. Then (3.1) is y-wrt con-

troilable if (A ,B ) is stabilizable. If (D A ) is detectable then stabilizability of (A ,B ) is

also a necessary condition for y -wrt controllability.

'
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Proof: See the Appendix.

Thus, v -wrt controllability of a detectable output is equivalent to x -wrt controlla-

bility. Finding conditions which ensure y -srt controllability is a more difficult prob-

lem. To simplify the situation, in the remainder of the paper we assume that y ,u and

w are scalars and address the following problems:

Problem I: Under which conditions is a stabilizable system (3.1) y -srt controll-

able?

Problem 2: What is the fundamental bound on the achievable precision of out-

put aiming of an output which is not y -srt controllable?

Problem 3: How to design a controller which results in a desired precision of

output aiming?

We give the solutions to Problems I and 2 in this Section and to Problem 3 in

Section 4. The assumption of Theorem 3.2 will be assumed to hold in the remainder

of the paper.

The following theorem solves Problem 1.
0

Theorem 3.3: Assume (A ,B ) is stabilizable. Then (3.1) is y -srt controllable if

and only if all the nonminimum phase zeros of G, (s) = D (sl - A )-'B are also zeros

of G,(s) D (sI - A )'C.

Proof: See the Appendix

Remark 3.2: If the open right half plane zeros of G s (s) and G (s) are disjoint,

then (3.1) is y-srt controllable if and only if G,(s) is minimum phase. On the other

.m'. 6



hand, if (3.1) is x-srt controllable, i.e. Im C c- Im B, then Ga,(s) is proportional to

G, (s) and, therefore, by Theorem 3.3 any output is y -snt controllable.

Let K denote the class of all1 stabilizing controllers for systems (3. 1), i.e.

K = (K IA + BK is Hurwitz)

and define the maximum achievable precision of aiming in TP by

* (Tf) = sup j ('PK) (3.4)
7~K e K

Obviously, g* (') = for an srt-controllable output. Let z 1, z,. be the open right

half plane (rhp) zeros of G5 (s).

Theorem 3.4: Assume (A B) is stabilizable. Then R* ('1) is given by

(,F) -(min(a ,b ))2 (3.5)

G0 (s) - g(s)
1II(~ s (3.6)

where Fis the complex conjugate of zi and q (s) is the unique polynomial of degree

- lessthan Ideterined by the interpolation constraints: At each rh zero z of G~ (s) of

multiplicity m, G0 (s) satisfies

-. dk
kOs I, = ,- (3.7)

V, *.~ ds kds kas =

Proof: See the Appendix

Remark 3.3: If (3.1) ts y-srt controllable then the interpolation constraints

(3.7) become

7



dk -iGo(s),~ =0 k =0 ... n- l

The unique polynomial q (s) of degree less than I which satisfies these constraints is

the zero polynomial. Therefore, Go(s) = 0 as should be expected.

Remark 3.4: The function Go(s) defined by (3.6) is the rational function of

minimum H 2-norrn which satisfies the interpolation constraints (3.7) [4], [5]. Thus,

the problem (3.4) is equivalent to the problem
.0t

min( IIG 112: G(s) e H2 , G(s) rational)

subject to the constraints (3.7). On the other hand, the H*-optimal function which

satisfies the interpolation constraints (3.7) is an all pass function, i.e., constant in mag-

nitude on the j c)-axis. Thus, an unweighted H*-optimal controller leads to zero preci-

sion of aiming.

The formula (3.5) for jt* (TI) simplifies considerably when the rhp zeros of Gs (s)

are distinct. Define an xl matrix Z by zij = (zi + F)-1,l-i,j-l, and an Ixl column

vector g by gj = GR(z) ,j - 1,"',

Theorem 3.5: Assume that the rhp zeroes of G, (s) are all distinct. Then

t (min(a ,b ))2 (3.8)

-±*Q{) 2g Zlg

*O where gH is the Hermitian transpose of g, i.e. gM = -T

ig

Proof: See the Appendix

8



4. OUTPUT AIMING CONTROLLER DESIGN

In this section we give a method for selecting a controller which results in any

admissible precision of aiming j < gt (T).

,1,' Recall that t(IK) is given by

.,~

.' (TgK)=- (min(a,b ))2N(K) (4.1)
5,. 2

Thus, the maximization problem (3.4) is equivalent to the minimization problem

inf DX (K)D T (4.2)
KeK

Since the equation which X(K) satisfies is linear in K, it is easy to see that the

infimum (4.2) is not attained at any K E K. Thus, g* ('T) is not attained for any

i K e K. We now construct a sequence of controllers whose precisions of aiming con-

verge to g* (T). Let K o be a stabilizing feedback for (3.1) and define a regularized

N "cost"

J K) = DX (Ko+K)D T +yKX (Ko +K)KT,y>O . (4.3)

Obviously,

*(,K o  (min(a,b))2  X K (4.4)
p.(''K0 K) 211K)

.1 ,-, It is well known from the theory of optimal control that J(K) is minimized by

KY= -. BTQy (4.5)
Y

'4' , where Q.is the positive semi-definite solution of

(A +BKo)T Q Y+Q 4A +BKo)+DTD - I QrBBTQy=O (4.6)

*4f 9



The following Theorem can be proved using the results of [6].

Theorem 4.1: Assume (A .B) is stabilizable. Then

(i) limn t (, K0 + K^ =*(TP);

(ii) 4(Ti, K0 + K7) is nondecreasing as y- 0 .

Thus, Theorem 4.1 provides an iterative method for finding a controller which

results in any admissible precision of aiming. Indeed, for any desired 4 < i* (T) one

simply iteratively finds a yi > 0 such that

* DX(K, + KY')DT . (min(a,b))2

24

Furthermore, the iterative process is simplified by the monotonicity of 4i, K, + KT)

-' ~in.

5. EXAMPLES

Example 5.1: In [1] we considered the problem of designing a roll attitude

regulator for a missle disturbed by random torques. The system is described by

(0 = 10-1 ] [] + [ju + E [1w (5.1)

- where 8 is the aileron deflection, o is the roll angular velocity, is the roll angle, u is

a command signal to aileron actuators and w is white noise.

Clearly ImC VImB so (5. 1) is not x -srt controllable. However, as was indicated

in [7] the main objective of the control is to maintain the roll angle within desired

limits during the operation of the missle. Thus we choose an output y = 4 and

II'



investigate the residence time controllability of this output. A simple calculation

shows that the transfer function from u to v is

G (s) 2 10

s2 (s +1)

Thus, since Gs (s) has no zeros the output y is srt-controlable and any precision of

aiming is achievable.

r- Example 5.2: Consider the problem of controlling the tip position of a flexible

robot arm using control torques applied at the robot arms hub [8]. A finite dimen-

sional approximate model for a robot arm which is flexible in the horizontal plane but

not in the vertical plane or in torsion was described in [8]. The model is described by

the following set of equations

:?2 /" + -2 i (oi 1 d1 0 (5.3)

[ Yi = [0 i (L ) O1x i ,i =0, 1, .. .n,

where L is the length of the arm, i,o, and dj (z) (z e [0,L l) are the damping

r coefficient, pinned-free frequency and modal gain, respectively, of the i -th mode of

oscillation, IT is the total moment of inertia, u is the control torque, is a random

torque acting on the tip, and y = yjY is the tip position.
Si =o

, Assume that it is desired to maintain the tip position within the bounds -a <y:b

during a specified time-interval T, and assume that the disturbance can be modelled

as a small white noise Ew.

. •I

. i ,, I
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4q.4
The system transfer function for (5.3) is

,(L )
''I n dzi (504

aG s)=- X
i =o s" + 2 iois + wl"

and the noise transfer function is

, * 2 (L )(s +2,c oi)
Gn(s) ,(5.5)

i =0 S+2 wis +01

It was indicated in [81 that taking n = 3 gives a good approximate model and the

values of the constants j ,0, ,4,(L ),d4j(O)[dz and IT were determined experimentally.

The resulting system has three right half plane zeroes at z = 12.04 and

.. 2.3 = 21.5 ± j 25.3. It is easily checked that G,,(z 1 ) 0. Thus system (5.3) is not

y -srt controllable. However, it is controllable and, thus, y -wrt controllable and the

maximal achievable precision of aiming can be obtained from (3.8) to be

(min(a ,b ))2
2gHZ-g (5.6)

:":.- " _(min(a ,b ))2 (56
-" "." = = 10.87(min(a,b)).

2(0.046)

* Here,

'-. [ 0.167 -0.014-j0.136 -0.049+j 0.136""Z-t= I--.049+j 0. 136 74.178 -31.150+j 38.462

:-0.049-.0.136 -31.150-j38.462 74.178

and

.0.181

S0.092 + jO.057]

g= 10.092 - jO.057|

Thus, any specified time-interval [0,T] has to satisfy the bound

12



InT 10.87(min(a ,b ))2 (5.7)
E-

6. C()NCLLSI()NS

p, In this paper we have discussed the problem of aiming control, introduced in [I],

for linear Ito-type systems with outputs. Among the results, the following are of

importance:

(a ) v -wrt controllability of any detectable output is equivalent to x -wrt controlla-

bility:

(b) A stabilizable SISO system is y-srt controllable if and only if

, H(s) = G,(s)G,-'(s) is minimum phase;

(c) A system which is not x -srt controllable can be y -srt controllable.

The y-srt controUability was discussed only for systems with scalar outputs. The

results can be extended to mgltivariable systems with fewer outputs than inputs in a

quite straightforward way. However, all proofs become considerably more involved.

For systems with fewer inputs that outputs the problem is much more difficult and

results are only known for the special case y = x.

;.,

13%



APPENDIX

Proof of Theorem 2.1: First note that it follows from the definition of Q() that

infft>OIv(t) c- = inf(t > 01.r(t) c aDo) . (A.I)

We will show that the first exit of x (t) from K2 takes place on the boundary of Do.

Thus, for xo =x (0) E Q the first exit of y (t) from T is equivalent to the first exit of

x (t) from Q. Then we will show that the logarithmic residence time in fQ (and, thus,

in '1) is given by (2.5).

k - Let X be the positive definite solution of (2.5c) and let M X- 1. Consider the

sets

S X fl? IR hI XTMX<Mn (A.2)
2

For sufficiently small m, S.m Do. Furthermore, Sm -+R" as m -4-. Thus, there

exists a largest mi such that S,; c 0. Note that S,; is an invariant set of the system

x = Ax. Furthermore, Q is the largest invariant set of x = Ax contained in Do .

Therefore, S,, - 2. Next note that the mean first passage :irne

fe(x0) = E[infIt _ 01Ix(t) e x0 E 1

of

dx = Axdt + ECdw

from Q satisfies, uniformly for xo belonging to compact subsets of Q [1],

lim E2 lnrc (Xo) = T(fl) = min x .041 = nun -"2 Mx (A.3)

1 T

Since m is the largest m such that S,, 20 it follows that -xrMx = m at some
2

14



points x E A 2 . Furthermore, since S,.; c 0 c .o it follows that these points also

belong to the boundary of Q. It follows from (A.3) that O(Q) m.,. If 0(92)<m then the

points where the minimum (A.3) is attained belong to the interior of S,, which con-

tradicts S,;, c Q. Therefore,. 0() = t and the points where the minimum (A.3) is

attained belong to the boundary of Qo . Also, as F -4 0 the points of exit of x (t) from

Q converge to the points where the minimum (A.3) is attained [9]. Therefore, it fol-

lows that x (t) exits Q2 at a boundary point of K2o in the limit £->O. Thus from (A. 1)

and the above discussion we have

lir E2 ln-ie(xo) = O(n) (A.4)

uniformly for x o belonging to compact subsets of Q.

Next we show that 042) = kP). Let x = Tx be a nonsingular change of coordi-

nates that maps (2.1) into the form

d = T-'ATxdt + cT-'Cdw

Lt22
1d 

] t r-"d

k11 A22  X2

) =ODTx = Dx = [I ]

(such a T always exists because rank D =p). Under this change of coordinates M is

mapped into M = TTMT and the domains CIO and Q become

"N.O 0 = Ix r f? IR" E "F)

and

15



R~~~~r=~- fl? -. rlt .-q r- rt2!

The logarithmic residence timne in W2and L-2) is now given by

X aC4 2
- ~ I - fT] [ )ffM~1 (A.6)

xfree 7 

We minimize first with respect to the unconstrained variables x2 giving

X2 2 f12 XI(A.7)

Substituting (A.7) into (A.6) and rearranging gives

1- -T
04)= _min X- - M12 Mi'' M121I (A.8)

The matrix Af11I -M12  12~It is exactly kXjI' where

X12X,

Therefore.

* ) min xX IX (A.9)

However, X,1 I DXiI) and the r. sore

*4NU) = Mn1,- f XDfx

SFinally, substituting back the oniginal coordinates gives f( 51)~

=D7TIX (T T )-T TD T DXDT Thus

4I(~)=Min)= m -VT NY (A.l11)
2 yee~y 2

Q.E.D.

4t~, 16



Proof ofi Theorem 3.2: The sufficiency part of the theorem follows directly

fro)m Theorem 3.1 of [1].

To prove the necessity note that v -wrt controllability implies that there exists a

control u = Kx such that DX(K)D T > 0. Assume, without loss of generality, that

the closed loop system has the Kalman canonic form, i.e.,

All 0 A13 0

A-2 A22 A23 A,-4
A +BK =A= 0  A3 0

0O 0 A443 A44 (A. 12)

[A 0 1 4B

The subsystem 1422] LB1] is controllable and the detectability of (D .4
t 2 [

implies that A is Hurwitz. If we can show that ;33 is Hurwitz the proof is com-

plete.

a Note that

T ~ [ 11 X13] [1f = T (A. 13)DX(K)D T =[D PD3 1 Ty X3 JD T

*where X,1 , I1 i.1S4. is a decomposition of X(K) compatible with (A.12). Also,

X satisfies the Liapunov equation

X+X T +C = 0 (A. 14)

where

17



,11 A13
IA

,, .-. A33] 3

The pair (D ,) is observable. Therefore, by [10, Corollary 1] all eigenvalues of A

in Re s _ 0 are undisturbable. However, since [A ,[B C I) is controllable, we can

assume that (A + BK,C) is a disturbable pair (otherwise an arbitrarily small change

in K, say SK, will render (A + B(K + SK),C) disturbable [11]). Therefore,

(A ,C) is a disturbable pair and, thus, A is Hurwitz. Q.E.D.

. Proof of Theorem 3.3: We know from (2.6) and Theorem 4.1 that

inf DX (K)DT = limlIlG 1115
S KEK y-- Y (A.15)

where

G/s) G, (sX) D=D(sl-A-BKy)- C, Ky=Ko+KY. (A.16)

• -" .-. Assume first that gsu ( K) = cc (i.e., (3.1) is v-srt controllable). Thus, by (A.15)

and (4. 1), limlSn I =I I 10 or equivalently limG Is) 0. Note that GP) can be
I,-o ;-

rewritten as

"a L.Is) = D(si-A-BKd-C

', = [t-(sl-A )-'Bk-'(sI -A )-'C

":-" = D [I +(sI-A-BKy)-'BK.(sI-A )-'C

D (sI-A -C +D (si-A -BK y)-'BK si-A )-'C

a. = G,(s) +G,(sKyT Is) (A. 17)

Let

Q G"().= a(s) (A. 18a)
d(s)
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- 11(s)

Gn(S Xs) - d(s ) (A.18b)i T (s -d m ,(s )

m.(s)
T )= d(s) Y>(A.18c)

and note that dr(s) = det(sI - A - BMy.,) is Hurwitz for all y> 0 and

r.m,(s) = K. adj (sI - A)C is a polynomial of degree less than n. Write

I n(s) = nt (s)nr(s) where n1(s) has zeroes only in Re s<0 and rr (s) has zeroes in

Re s> 0 only. It can be shown that Fyjd,(s)-.nfl(S)nr(-S) as y--O [12] and

2 vy K,-- K as y-O [6]. Thus,

'- 0 = GO~) = liGP) = G,(s)+-n (s)mo(s) A 9
"" '! i, G o(S ) "---o0 nt (s )n, (-s )d (s i G ( )=Gs4( .9

where mo(s) = K adj(sl - A )C. Equation (A.19) can be rewritten as

G o(s) = G,, (s) + G, (s) To(s) = 0 (A.20)

-!i where To(s)= mo(s)/nj(s)nr(-s). Evaluating Go(s) at a right half plane zero of

G,(s) gives Go(z) G,,(z)= 0 (because nl(z) nr( -z 0). Similarily, if z is a

rhp zero of G (s ) of multiplicity m, then it follows from (A.20) that the first m -I

derivatives of G, (s) are zero at z, i.e., G, (s) has also zero of at least multiplicity

m at z. This completes the proof of the necessity part of the theorem.

Sufficiency: Consider a controller u = F(s )y, where F is a proper rational

function. Furthermore, assume the matrix A is Hurwitz (otherwise, apply a stabilizing

V prefeedback u o = Kox). A simple calculation shows that the precision of aiming of

(3.1) with this control is

('IF) - (min(a ,b ))2
211G F 1121
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where

GF(S)=(I + G,()F (s)r-'G, (S) (A.22)

We will construct a family of controllers jF,(s )j which internally stabilize (3.1) and

such that kT(,Ja)-* as c-o.Also, it follows from the theory of optimal control

that

inf IIGF 112 inf II GKII,
F ICEK

stabihzing

where

GK (S)D (sI -A - Bk7)-lC
* Ths, sncelirnIIGF112= Owe have inf IIGK12=0 i.e., (3.1) is v-srt controllable.

a-*ooKEK

A controller F (s ) internally stabilizes (3. 1) if GF (S ) and the noise-to-output transfer

function

GF(s) = F(s)(l + Gs(s)F(s))f'Gn(s) (A.23)

are stable. Select a proper controller

F~s G -(s) (A.24)

where k : deg[d (s )I-deg~n (s )Jand a > 0. With this control (A.22) and (A.23)

become

GF.(S) = Ga(s) G, G(s ) (S +a)* -a

-F Tk (A.25)
GF.(s) = Ga,(s) G,,(s )GS I(s ) a

By assumption G,1 (s) is stable, thus Ga,,(s) is stable. Furthermore, since G, (s) has

*zeros at all the rhp zeroes of Gs (s ) it follows that Ga,(s ) is stable. Thus, F (,(s ) is a

20



, C. W V C.' .. ' 'r .rr F ' -. - r F , ,: . ,, .r - 'P .r F r ' .- 7 . 2 ' - , ,- J. r' ; W -.

stabilizing controller for (3.1).

Next note that

[Ga(Io3) 2< G.(jo3) 21li - ___ IjO ]k 12

_<2 Gjo(j o)-

and

IIGn 112 <

Therefore, by the dominated convergence theorem [13]

lir IIGal2 11 l= m G 2=
a--oo c--Goa

i.e.. ke(,Fa)--->- as a--*O

Q.E.D.

Proof of Theorem 3.4: We will show that Gis) given by (A.16) converges to
d"

Go(s) as y--O.

From (A.17) and (A.18) we have

a (s)d(s) + n (s)ms)
GUs) d(s)da s)

Also, we know that d~s) is the denominator polynomial of G.$s), thus d(s) divides

* ..i a (s)d (s) + n (s)mls) for all y > 0. From the proof of Theorem 3.3 we have

a (s)n, (-s) + nr (s)m o(s)Go(S ) =
d (s)n7 (-s)

Thus, a(s )n, (-s ) + nr(s )mo(s ) = q(s )d(s ) where q(s ) is some polynomial. Further-

more, since the degrees of a(s) and mo(s) are less than n and n(s) has degree I it

follows that q (s) has degree less than 1.
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Note that 0 s) satisfies. at each nonmininium phase zero of Gs (s) of multipli-

* city m. the constraints

d G0 (s s d G,(S)I 5 .: (A.26)
ds k - dS k

* Therefore,

G0 (s) d (s )nr (-S) nr (-s) (A.27)

and q (s) is uniquely determined by (A.26)

Q. E.D.

Proof of Theorem 3.5: By assumption, the nonm-inimum phase zeroes of G5 (s)

are distinct. Therefore, we can rewrite G0 (s) as

GOs J (A.28)
j=1 Zj + S

where tj, j 1, 1....I are some constants. At each zi we have (from (3.7))

[,I 1"t.

%G 0 (z1)= ..... L. G.(Zi) = gi(A.29)
j=1 Zi +

Thus, (A.29) gives I equations which can be written in matrix notation as

Zt =g ,(A.30)

where t T (t G ) and Z and g are defined as in Section 3.

Next we calculate IIGo1

00

IGO 2 f I G s  dA.26o

dsk ~ ~ ~ -- d : d Cs=

,2n 
f
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1 tid

f _____ ds (A.3 1)

Using the calculus of residues to evaluate the integrals appearing in (A.3 1) gives

jti f21. tj ti

J s= r](A.32)
-j. (Fri + s)(:j -s) + +J

Thus,

IIG 0 II. 2 tl = "t . (A.33)
i~j=j Zi + zj

Substituting, t Z- Zg from (A.30) (note that Z is an invertible Hermitian. matrix)

grives

IIG 0 II 2 H ~ (A.34)

* and (3.8) follows from (A.34) and (3.5).
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