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INTRODUCTION

Short, predefined commands have always been the fastest and most accurate way
to issue instructions, assuming both parties have the time to memorize and practice the
commands. However, communications with a computerized system should be simple
and not require the operator to memorize lengthy instructions or even acronym lists.
Unfortunately, most system designers and programmers have their own ideas as to
what are simple operating procedures; in fact, some commands make sense only to the
person who wrote them. In cases where multiple systems and programs must be used
by the same person, individual command sequences for each system make learning
extremely difficult. Using a valid command, but on the wrong system, is a frequent
mistake and very difficult to find. An input processor for these advanced systems, that
could extract the meaning from an ordinary English statement and issue the correct
commands, would minimize the effects of these common problems. This is the main
reason for developing natural language (NL) understanding for computers; not to
replace the short, structured commands required to control a system under time critical
conditions, but to minimize the training requirement and operator error in all other
situations.

EARLY RESEARCH

Voice Synthesis

Systems to generate speech have made great strides within the last few years and
have become very popular and easy to integrate into existing systems. This is due
mainly to many units featuring standard serial RS232C interfaces and effective text-to-
speech algorithms (unplug a standard computer terminal and plug in the synthesizer).
Even in the lower priced units, such as ECHO-PC from Street Electronics, an extensive
rule base (400+ rules) is used to convert written English to a phoneme string used for
controlling the synthesizer. By coupling a built-in text-to-speech algorithm with a top-
of-the-line synthesizer, such as Speech Plus' CR-5050 synthesizer, outstanding results
can easily be obtained.

Voice Recognition

Computer recognition of the spoken word is still very crude when compared to
synthesis. The University of Pennsylvania has excellent on-going research in this area.
It presently uses an emulated connection network to recognize individual phonemes as
they occur in an input stream of spoken words that it has learned (ref 1). Speech
Systems is starting to market a unit that has a 2,000 word vocabulary. This huge
vocabulary is not trained by each operator but is accessible by sampling a preselected
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group of words from the speaker and then looking for phoneme groupings in all other
words. However, most systems take a simpler approach and try to match an entire
section of an input stream to an item in a stored data base. One variation compresses
the data in a decipherable format; an approach taken by the Texas Instruments system
for their personal computer. This technique allows reconstruction of the stored data.
Other systems, such as the CSRB-VOCALINK by Interstate Voice Products, merely
sample and analyze the input steam to arrive at several computed values. Both sys-
tems then reference the stored data when deciding which word was spoken. The major
problem with this technique is that, due to variations in accents, the equipment must be
trained by each user for every word. Unfortunately, until major computing power can be
profitably allocated to the speech recognition process, off-the-shelf units will never have
sufficient intelligence to function as the main data input or control device.

Natural Language Techniques

Early attempts at NL understanding were mainly limited to a simple pattern match of
several words from a sentence. A small matching list or template was used, and if
certain words were found, then the sentence meaning was assumed based solely on
that match. Famous early programs like ELYZA by Weizenbaum (ref 2) and many front
end modules to modern computer games use this technique. The concept is good
since much of our recognition of sensory data is a result of a memory search. However,
the problems with computers trying to emulate this procedure are small memory and
low search speed compared to the human brain. This results in a considerable number
of assumptions based on little data.

With greater processing power, the syntax of the input sentence can be examined.
In fact, most attempts at NL development use this method. Syntactic parsing uses
grammer rules to separate the sentence into units of meaning or groups called phrases.
In the early seventies, Winograd used this procedure to program a computer to simulate
an imaginary robot operating in the blocks world. After syntactically parsing the sen-
tence (gathering the words into phrase groups), the developed patterns were then
matched instead of the individual words as described above. The derived meanings
were then used to change information or obtain the answer to a question concerning
what the simulated robot was doing or had done (ref 3). The successful implementation
of Winograd's program (SHRDLU), stirred many researchers to use and perfect
methods for syntactic parsing.

The simplest forms of syntactic parsing are top down, bottom up, and deterministic.
Top-down parsing is the most popular. It looks at the sentence as a whole and most
often uses an augmented transition network (ATN) to parse by separating the sen-
tences into phrases and then into words. A simple transition network groups phrases
by looking for links between words. For example: links for a noun phrase would be
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between the article, intervening adjectives, and the noun itself. Backtracking and
regrouping improperly parsed phrases are practical if the network is augmented with
registers. This ATN is the most common method for top-down parsing of natural lan-
guage statements. Assuming the sentences are grammatically correct, top-down
parsing works well. For fragmented sentences, however, regrouping of phrases may go
on indefinitely if not stopped due to unrecognizable structures. Spoken English fre-
quently contains imperfect grammer; therefore, bottom-up parsing, which first looks at
the words and then builds every possible phrase to form the sentence, is more efficient.
Unfortunately with large sentences, many more phrases are grouped than are needed;
this takes considerable processing time. There is also deterministic parsing which
starts at the front of a sentence and builds the phrase groups as they are encountered.

This technique does not allow for backtracking; it looks ahead to attempt correct phrase
grouping the first time.

Very few people attempt to analyze the parts of speech while listening to someone
talk. At the start of hearing a statement, listeners create a general mental image as the
words are received. Additional input serves to reinforce the original image, modify, or
change it completely. Emulating this procedure, for anything longer than a short sen-
tence, requires extensive memory searches; this is still not possible to implement in real
time with desk top computers.

With a very large NL text to understand, extracting the proper data and making the
correct inferences becomes very difficult. Roger Schank, having noticed that people
are not overwhelmed by irrelevant inferences but tend to make the right ones at the
right times, postulated that people use cultural knowledge in their inferencing process
and called this knowledge structure a script (ref 4). Once the correct script is chosen,
only specific items of interest need be selected from the text, with the rest of the in-
formation accurately assumed.

Many other outstanding artificial intelligence (AI) researchers have also gone
beyond simple, straight-forward grammar parsers. The University of California has
developed a program that "reads" short politico-economic editorials and answers ques-
tions about the editorial contents (ref 5). In the NL lab at the University of Pennsylvania
(LINK lab) the researchers have been focusing their attentions on the design of
cooperative systems and the computational properties of grammatical formalisms for
expressing the syntactic, semantic, and pragmatic meanings of NL utterances (ref 6).
However, the greatest percentage of NL research is devoted to accessing data base
management systems with very little effort to developing a way for users to access and
control computer programs. But despite the popularity of NL processing in the Al
community, it has not yet achieved technical credibility or market acceptance (ref 7).



Despite the scarcity of commercially available software for NL understanding,
several capable programs exist. Two very well known systems are Language Craft by
the Carnegie Group and INTELLECT by Artificial Intelligence Corporation (AIC). Both
systems can be configured as required and are reported to perform remarkably well.
Language Craft requires the power of a minicomputer or stand alone LISP processor.
INTELLECT, an older system, was designed to run on a mainframe; however, it was
considered one of the best commercially available systems for NL processing and
requires only the development of a custom data base for each application (ref 8).

MODULE EVALUATION SYSTEM

A test bed was conceived for use in validating NL design methodologies (fig. 1).
This was to consist of a robotic arm being told, in common English statements, how to
move or arrange a group of items on a table. Additionally, a simulated cannon with
projectiles (developed in-house for another project) would be used to determine what
problems might be encountered by using a natural language module in a simulation of a
real system. In this test, the speech system would be used to initiate a process required
by a second computer (a VAX/VMS-1 1/750 from Digital Equipment Corp). This VAX
was the primary controller but would rely on data from the voice controlled system to
complete its required task.

System Configuration

The robot selected for the testing was a PUMA 560 robotic arm by Unimation, and
its NL interface was through an IBM-PC programmed in an interpreted LISP from
Integral Quality. LISP was chosen because of the ease in configuring functions which
can simulate a custom high-level language. All robot commands generated by this
computer would be sent to the PUMA 560 controller through a serial RS232 port operat-
ing at 9600 baud. Operator interface to the PC would be by both a standard keyboard
and display, and by a voice recognition and synthesis system (CSRB-VOCOLINK and
ECHO-PC, respectively). Since the speech recognition system had a limited
vocabulary (240 words) and was speaker dependent, keyboard input would be used to
supplement the spoken words. However, the synthesizer contained text-to-speech
capability and would require no supplemental hardware or software. Finally, a standard
NTSC video camera and a Data Translation frame grabber (256 x 240 pixels) would be
used to gather data to supplement the robot's position sensors.
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Communication Procedures

Several programming choices were available for transferring the robot commands
from the PC to the PUMA. The simplest method was to compute each command and
send them, one at a time, to the PUMA controller in monitor mode. This method closely
emulated a human operator typing at the robot console and allowed any variation of
VAL commands to be sent to the robot. However the PUMA controller has a poor input
buffer, so the characters in each command had to be sent slowly with each one read
and checked for accuracy. This method worked but took too much time for long
commands.

The second method involved modifying only individual parameters of
preprogrammed commands within an existing robot program and then executing it.
Unfortunately, even though fewer characters needed to be sent, there was considerable
overhead required for communicating with the robot in the programming mode. This
again delayed the actual execution of the desired command.

The third method was to write predefined VAL programs and just execute them by
the processor. Since this was workable but allowed little control, it was used in a couple
cases but was viewed as useless if full control of the robot by the PC was to be imple-
merited. An additional problem with all three methods was that once each move com-
mand was started, it could not be interrupted except by hardware. To alleviate these
problems, a memory resident, high level, interactive program was written for the robot
controller. This allowed Unimation/VAL-Il "signal" commands to interrupt the robot's
actions the same way that hardware signals do, and still permitted full use of the

• hardware interrupts by external sensors. These software signal commands simulated
subroutine calls. They were formed by short ASCII strings, such as "signal 1002,1001 ,"
a carriage return, followed by any possible data required by the called routine, and
finally ended with another carriage return. The PUMA control program constantly
looped, checking each signal status, and allowed any move command to be interrupted
by any other. This permitted the operator to use a serial port command to alter a pre-
vious instruction (programmed as multiple small steps in the desired direction) if a
collision appeared eminent. One additional plus is if the robots controller were to be
replaced, or a new type of robot arm used, all the required programs to operate the
robot would be known. These routines would be proven and ready to code into the new
controller. Since the communication between the processors was not VAL dependent,
minimal changes in the communication program, in the processor calling the robot,would be required.
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PR("GRAM DESIGN CONFIGURATION
w

The actual natural language program accepted the input steam as defined words
which were assumed to contain a valid and complete command in English. The input
sentence was then converted to a software image which represented speed, gripper
status, and position as related to the PUMA's sensors. This procedure was chosen in

an attempt to emulate the mental imaging process people use when listening to a
sentence. For example, when someone acts as an interpreter he does not translate
word for word between languages. Instead, a mental image, formed from hearing the
sentence in the first language, is simply described in the second. The NL interface
program was therefore structured as follows:

ENGLISH COMMAND-->INTERMIDIATE SENSORY IMAGE-->TARGET LANGUAGE

The development of this program was simplified by viewing the translation process
in reverse. First examined were the capabilities of the PUMA and the commands to
perform those actions, then the conversion requirements of a parsed sentence to an .5

intermediate image stage, and finally the grouping of the sentence into units of
meaning.

Basic Robot Commands
4.

The VAL-Il PUMA control language, like languages for all computerized systems,
does not contain ambiguous words; English does. As a result, the domain of discourse

,.(area of interest) was kept narrow so the conversion could be completed within a
reasonable amount of time. Fortunately, when the PUMA is operating in its world
coordinate system, only three functions need to be addressed: changing the location of
the gripper, changing or storing a new coordinate transformation for a location, and
opening or closing the gripper's toggles. External to world operations, each joint may
be rotated individually; whereas, in the world mode, the joints are automatically control-
led so the gripper orientation remains constant to the robot axes.

The subset of VAL-Il commands, used for the programs within the PUMA to allow
control by an external NL driven processor, is shown in figure 2. Only five of these
commands were needed to change the location of the gripper. MOVE permitted the
location to be changed to a named location. APPRO told the robot to move the gripper
to a spot above the target location in millimeters. DEPART, the converse of APPRO,
withdrew the gripper a specific distance above its present location. The speed for
executing these instructions was controlled by a simple SPEED command followed by a
number to indicate a percentage of the robot's maximum speed.
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Within the PUMA controller, locations of objects are stored and addressed symboli-
cally. Therefore, to tell the robot to memorized its present location, the word HERE,
followed by a symbolic name, was all that was required. SET duplicated the location
transformation or address of a point and applied it to another. Finally, SHIFT allowed a
given location address to be offset in millimeters.

Control of the gripper was the last requirement, and its status was remembered by
the operator controlling the robot. The commands used for opening and closing the
gripper were simply OPEN and CLOSE.

The above VAL-II commands formed the primary instruction set that was required to
operate the robot within the confines of the world coordinate system. Additionally,
individual joint angles were changed with the DRIVE command.

Control of path planning sensors was not placed under control of the NL module but
were polled directly by the robot and interfaced using a hardware parallel port. This port
was accessed by REACTI commands (react immediate), which caused the robot to
quickly branch within the main control program as lines within its parallel port were
pulled true. Two other commands ADC and DAC, used for controlling the analog input
and output ports on the robot, were also not placed under operator control but again
dedicated to internal robot use. Program control commands such as FOR, IF, CASE,
etc., which operate the same way as their counterparts in other computer languages
were of great help. These commands, together with computational functions like SIN,
ATAN, ABS, etc., were coupled with the parallel and analog input values and used for
building intelligence into the robot.

Robot Command Sequences

The next step was to develop a means to select and arrange the VAL commands
for position, speed, gripper status, and joint angle. For a simple MOVE, if the destina-
tion is not predefined as in the statement "move left," it is computed by using the VAL
command DECOMPOSE on a reference or starting location and modifying the values
for the x, y, or z axis. Once this axis is altered, a new location is generated using the
command TRANS. The robot is then told to move to this new location. After moving
there, BITS are used to check if any new "signal" sequence was received from the
IBM-PC; if not, the same sequence is repeated. Also, if the initial command from the
operator had indicated a continuous motion, such as "move left," the robot would con-
tinually repeat the sequence till a new command is issued. Once a new command is
received, the robot is halted, its present position is memorized for future reference, and
the new command is executed.

7



Again grouping the motions into more complex sequences, a final set of signal
commands were generated. If the robot is instructed to pick up an object, the gripper
must depart vertically from the table; to prevent bumping into other items, move to a
point directly above the chosen object, then travel straight down to grasp it. That item
could then be placed on another spot by reversing the last procedure with new location
parameters. Speed was also important not only when moving around or near other
objects, but also to limit the stress developed at each joint while transporting a heavy
load. The maximum a PUMA can handle at full speed is about 5 lb. These procedures
were then coded into a series of signal commands within the PUMA control program
and appended to the simpler, primary routines discussed earlier. This approach min-
imized the number of characters sent from the PC to the robot. Therefore, all required
commands to move the robotic arm were coded as signal commands and formed the
target language for the translator.

External Sensor Integration

Restricting the instruction domain to the robot's perception of the real world, the
PUMA controller was able to perform all the computation required to maintain constant
gripper orientation, and the IBM was able to concentrate on language conversion. A
video camera was then added to aid in finding selected objects for the robot to access.
Before this vision sensor could be used, it needed to be mapped into the robot's
workspace so that the visual coordinates translate into robot coordinates. This mapping
was done in the PC with all the image processing primitives written in PASCAL to
maximize speed. Since voice control of vision processing was not required, the
routines to integrate, calibrate, and map the sensor image to the robot's coordinate
system, as well as finding the location of a predefined object, were all coded by hand
and simply executed when needed. These procedures are described in the appendix.

Language Translation

Conversion from the natural language input to the intermediate concept state had to
be completed before the correct signal commands could be selected (fig. 3). As ex-
plained earlier, there were several ways this could be accomplished. Since the com-
mands were to be spoken and since the whole processing power of an IBM PC was
dedicated to understanding English, a variation of bottom-up parsing was selected.

8
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Statement Rewrite

The first step taken to understand a sentence was to simplify the structure by
rewriting the statement in an easier to understand format. This was done by looking for
complex word groups, and replacing these groups with a simpler word, or phrase that
means the same thing, such as replacing the compound preposition "on top of" to
simply "on." Also, words may be eliminated if they are superfluous and used to em-
bellish sentences either for social reasons (e.g., please) or just to sound impressive.

Pattern Matching

The pattern matching procedure is very straightforward. The input sentence is
first formed into a list (L1). Then, a second list (L2), which contains sublists of patterns
and the replacements, is matched against the first. L2 has the following structure:

[((pattern 1 )replacement 1 )((pattern2)replacememnt2)... ((pattern N)replacementN)].

The first sublist from L2, ((patternl)replacementl), is initially removed. The first sublist
from that sublist, (patterni), is then compared, one word at a time to the front of L1. If
no match is made then the first word of Li is removed and the matching is attempted
again. After all words are removed from L1, they are then reassembled; the second
main sublist from Li is extracted, and the matching process is repeated. This process
is repeated until L2 is exhausted. If a pattern matched, then the matched phrase is
replaced in Li by the corresponding replacement from L2. The matching then con-
tinues with the same pattern until Li is exhausted. The process is deliberate and slow,
but since the domain of discourse was limited, this matching served to speed the
parsing process. For expanded domains, other matching techniques may be required.
If done efficiently, matching might be used to entirely replace the syntactic parsing
procedure and still extract all the information from a sentence. For this procedure to be
practical, however, memory size and processing speed must both be greatly increased.

Phrase Grouping

The simplified sentence was parsed based on a subset of grammer rules. All
the words were grouped to find all possible phrases. Simple noun phrases (NP), which
consist of any number of adjectives followed by a noun, may be preceded by a preposi-
tion to form a prepositional phrase (PP). An NP may also contain a PP as a modifier.
An example would be the NP "the large book on top of the white table." "The white
table" forms a simple NP (NP1). The compound preposition "on top of" forms a PP with
NP1 as it object. "The large book" forms NP2 which is modified by the PP. Verb
phrases (VP) that may be formed by verbs and adverbs or adverbial phrases were also
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parsed. Conjunctions, like "and," form a dual idea and may double a location or action
or even split the entire sentence to form two individual concepts. Far more complicated
structures exist in the English language but should not occur for this type of application.

The individual phrases were then examined by following rules to find their
meanings. The VPs described the actions and formed the address or name of a func-
tion to evaluate. The NPs contained information pointing to location names; the nouns
referring to a general group of locations with the adjectives and modifying phrases
narrowing the selection. The prepositions were used to indicate an offset from the
evaluated locations. The subject of the action determined whether the robot was to
move or just modify location transformations. Conversion from this format to signal
commands was then completed by rules specific to the type of application.

For the initial parsing, a dictionary, which contained a description of each word,
was all tnat was required. These words and definitions formed sublists within one major
list. For example:

[(a (article indefinite))... (zebra (noun..))].

Because of this list formation, adding additional words was a simple matter; adding
more rules, however, was far more complex since an understanding of "what must be
done" is required before it can be determined "how to do it." As a result, additional
information for computer use had to be presented by the operator and not simply
derived by the computer. If a computer system had full control of external sensors, the
sensor data might be able to be used as a source of knowledge to help the computer
evaluate a changing environment, and ultimately add new rules to adapt for these
changes. Before this can occur, development of a separate module is required that can
use sensor drivers and primitives to gather data in a intelligent manner. For this project,
a data base of phrases was used as a simple updatable method for the system to learn
other means of verbally representing its knowledge (ref 9).

Restatement

Following the phrase parsing and identifying stages, a rule base was accessed
to decide how the sentence could be restated in the target language. Appending
additional rules to this data base enabled the system to understand, or at least respond
to, new methods of describing actions to the robot. The final output from this stage was
also a list. The first element pointed to a function which took the remainder of the list as
its' data. When evaluated, this function output the proper s'qnal commands to the robot
to carry out the action requested by the operator.

-7.
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MODULE DESIGN EVALUATION

Test Design

All words that might be needed for the test demonstration were grouped. The
operator then spoke each word into the voice recognition system to train the unit to his
voice. Since a carriage return was needed to signal the system that a complete sen-
tence was input, the system was trained to insert a carriage return (Ctrl-M) when hear-
ing the word "enter;" the word "now" was also permitted to allow for smoother sounding
commands. The robot was then verbally instructed to move its gripper in different
directions, pick up objects, and then placed them down or on top of other objects.
Finally, the robot was told to insert an aluminum shell into a simulated cannon when a
command to load was received from the VAX computer.

Results

Generally, if all the spoken words were accurately recognized, the correct signal
commands were generated. However, the complete parsing procedure took between
ten seconds to over a minute, especially for longer sentences or poorly phrased state-
ments. Since the code was operating in interpreted mode, this was not suprising; if the
program was compiled, it could be expected to run over ten times faster. An even
greater speed increase would be possible if the code were run in a system that was
specifically designed to execute LISP commands. Since the NL translation worked well
for this test, a small section of the developed NL design module was recoded in com-
plied PASCAL (the same language used to control the robot's vision) in a effort to
maximize the speed of the translation without using a LISP machine. For simple robot
commands, the conversion process was reduced to real time. This simplified the testing
of the coordination and control of the voice recognition system, the voice synthesis
system, the vision sensor, and the robot itself.

The voice synthesizer messages were initially difficult to understand. Therefore, the
ECHO-PC was replaced with the CR-5050, which resulted in dramatic improvement.

The only real problem encountered was with voice recognition. The system used
was fully programmable, but in the normal operating mode, there was a significant
difference in the recognition accuracy between testing the unit while alone in the lab
and while demonstrating it before visitors. In the latter case, due to slight changes in
voice quality apparently from nervousness, the correct word selection occurred only
about 60% of the time. When the operator was alone and relaxed the recognition rate
was over 90%.
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CONCLUSIONS

Voice/natural language control of robotic systems is definitely possible; however,
there are problems.

1. Unless a very large computer is available and allowed to dedicate most of
its processing time to NL understanding and access to a data base is the only require-
ment, there is very little software available for the researcher.

2. An adaptable voice recognition system must be used to ensure accuracy
during stressful times. In a combat situation, the user will be under considerable stress
so the voice recognizer must adapt, perhaps not for different users but at least for the
same person, whether he is tense or at ease.

3. Fixed routines for sensor operation are too limiting. For efficient operator
use of sensors, each system should be able to be verbally "taught" how to use them to
simplify integration and operation.

4. To ensure efficiency, system communication must be minimized by requir-
ing each sensor to process its own data with all cognitive processes, such as NL under-
standing, relegated to a single supervisory computer.

RECOMMENDATIONS

Since bit level manipulations are required for direct sensor control, dedication of a
large computer to handle natural language translations, as well as all required transfor-
mations for each sensor, would be too demanding on one system. This would also
produce a communication nightmare with volumes of raw data being transferred be-
tween computers. Therefore, built-in intelligence for each sensor is necessary if real-
time natural language control of sensor-based systems is to be realized. With this low
level built-in intelligence, a top level supervisory computer would only be required to
instruct the control processors on how to modify and coordinate their actions based on
English commands. These processors would each consits of a low level computa-
tionally oriented computer, with each performing its own individual task of either control-
ling motors (robotic positioning) or processing sensor data. Single board computers
might be adequate for simple tasks, but for more complicated procedures, specialized
processors or even parallel architecture systems like connection machines (ref 10) or
neural networks (ref 11) might prove to be the best choice. Above these modules, a
high level symbolic oriented computer would supervise the processors and make
decisions based on knowledge it has accured either from preprogrammed data, past
history, or from information derived from polling its sensors. Since Texas Instruments is
now supplying LISP chip sets, and Symbolics just announced their single chip LISP
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processor, small inbedable symbolic oriented processors are now available and are no
longer limited to laboratory use. A standardized high level intersystem communication
protocol (the target language for the NL conversion module) will need to be developed.
This language must be capable of handling commands to and from all required position-
ing devices and sensors. Very high speed would not be necessary since each module
will have its own built-in intelligence, only transfer of processed data and minimal
operational instructions will be required. Applying this approach to system design
should allow the creation of a full voice/natural language environment. This system
could then replace or enhance current push button, dial, and display environments
which are currently the only method of control available to robotic system operators.
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Figure 1. Development and evaluation system
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Figure 2. Robot command subset
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55,

5*

5%



The orientation and scaling between the robot's and camera's coordinate systems
was computed first. The aspect ratio of the camera, CamAspRatio (a fixed value deter-
mined by the camera manufacturer), was obtained from the camera by measurement
and found to be 1.24 pixels vertical/horizontal. Two markers placed at known locations
on the table by the robot within the field of view of the camera were used as calibration
points. The PC determined the visual centers of the markers from a grabbed frame and
the actual centers, in robot coordinates, from the PUMA controller. The visually
measured centers of the two markers ([Xlv,Ylvj and [X2v,Y2v]) and the robot
measured centers ([Xlr,Ylt] and [X2r,Y2r]) were then used to determine the scaling
(SclAxs), rotation (RotAng), and translation (TransX and TransY) values for converting
from vision to robot position coordinates.

The visual origin was shifted and centered at the first marker. Therefore, the origin
coordinates were then computed, in PASCAL.

XOrgVis Xlv*CamAspRatio

YOrgVis Ylv

Likewise, the translation values were determined.

TransX Xl r

TransY Y1 r

The rotation angle was then computed.

RotAng := ArcTan ((Y2r - Y1 r)/(X2r - Xlr)) - ArcTan ((-(Y2v - YOrgVis))/

(X2V'CamAspRatio - XorigVis))

The scaling value (the same for both axes since the aspect ratio was measured eariler)
was then derived.

SO Axs := Sqrt(Sqr(X2r - Xl r) + Sqr(Y2r - Y1 r))/Sqrt(Sqr(X2v*CamAspRatio -

XorigVis) + Sqr(-(Y2v - YOrgVis)))

After the translation, scaling, and rotation factors were computed, the vision sensor
was then able to be used for positioning the robot. The visually measured coordinates
of points ([Xv,Yv]) and rotation angles (ObjAng) were converted to the robot coordinates
and angles. First, the camera aspect ratio and the new origin were used to scale and
compute the new visual coordinates from the measured frame grabber coordinates.
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Xv:= Xv*CamAspRatio - XOrigVis

Yv := -(Yv - YorgVis)

The robot coordinates for the point (RbtPtX,RbtPtY) were then computed.

RbtPtX = ((Xv*SclAxs)*Cos(RotAng) - (Yv*SclAxs)*Sin(RotAng)) + TransX

RbtPtY = ((Xv*SclAxs)*Sin(RotAng) - (Yv*Scl Axs)*Cos(RotAng)) + TransY

Finally, the ture angle in the robot system (RbtPtAng) was determined.

RbtPtAng := ObjAng - RotAng

As with the primitives, all higher level operations involving vision were hand coded
for use by the NL module. These operations were also written in PASCAL and involved
the development of the following procedures:

Quickly finding objects by intensities

Finding object edges within defined spaces

Determining angles of edges

Screen drawing routines, such as bordering the object of interest and sketch-
ing the object, by gray level intensities, on the PC screen.
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