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ACCURATE EFFICIENT EVALUATION OF BESSEL

TRANSFORM; PROGRAMS AND ERROR ANALYSIS

INTRODUCTION

The method of Filon integration for Fourier transforms [1], [2; pages

408-409], [3; pages 67-75], [4; page 400], [5; page 890], [6; pages 62-66],

[7] +0

I dx exp(iwx) g(x) (1)

is well established and very useful for accurate numerical work. Instead of

the standard Simpson's rule, which would approximate the complete integrand

exp(iwx) g(x) by parabolas over abutting pairs of panels, Filon's method

approximates only the function g(x) by parabolas, and carries out the

corresponding integrals in (1) analytically. These closed form integrals

are then evaluated with computer aid. Since the exponential in (1) is being

handled exactly for all w, the hope is that the error of approximating (1)

by means of Filon's method will be substantially the same. for larger W as

for small w (where all the error arises from approximating g(x)). That is,

Filon's method is expected to be an error maintenance procedure, whereby the

absolute error does not increase significantly with w. Certainly that is

not the case for the Trapezoidal and Simpson rules, where significant

aliasing severely limits the accuracy of the results for larger .

1 ,'0, .,
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An alternative simpler procedure to Filon's method for Fourier

transforms is to approximate g(x) by straight lines over abutting panels,

and again to evaluate the resultant integrals in (1) analytically in closed

form. This (less-accurate) procedure is documented in [8; pages 418-419],

for example.

Here, we will extend these two procedures to a Bessel transform of the

form

G(W) f f dx Jo(Wx) g(x) , (2)

0

where g(x) is an arbitary given function, and J is the zeroth-order

Bessel function. One of the major differences we encounter, relative to

Filon's method, is that the resultdnt integrals cannot all be evaluated in

closed form. In order to circumvent this problem, we use a combination of a

downward recursion and an asymptotic expansion, which are limited in

accuracy only by the inherent round-off error of the computer utilized,

thereby obtaining an efficient useful procedure for numerical evaluation of

the pertinent integrals and functions.

To give a physical application where the Bessel transform arises,

consider that we are interested in two-dimensional Fourier transform

+40

Sjdx dy exp(iux + ivy) f2(x,y) , (3)

where function f2 has isotropic behavior. That is, suppose the dependence

of f2 is solely on the distance from the origin of coordinates:

f 2 (x,y) = fl(  x , Y (4)

04
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Then (3) becomes

ddy exp(iux +-ivy) f1(x

Go
21r dr J (wr) r f (r) ,(5)

00

where we changed to cylindrical coordinates and have defined

2 2 1/2

Thus, (5) is of the form of (2), upon identification of g(x) as x f1()

Suppose in (3) that the f 2 dependence on x,y is more general than (4),

namely of the form

f 2 ( ~ y =- ~ ) + Y ) 2 - x ( Y .~) ] ) 

which allows for a general center point of symmetry x0 ,Iy0  as well as a

tilted elliptical shape. Then substitution in (3) yields, after a

cylindrical coordinate chdige, the result

21rab epix ~ d

1/ 4-~ix ivy d rT (wr) r f1(r) ,(8)

where now

22 22 1/2
La u b v 2pabu]

3 p,
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Again, the fundamental Bessel transform of the form of (2) results, where

g(x) is x f1(x).

Ln the other hand, if G(w) is specified in (2) for w > 0, the

corresponding solution to this integral equation is

00

g(x) = x dw Io(xw) w G(w) , (10)

which is again a Bessel transform of the form of (2).

Thus, we have presented several instances where the transform given by

(2) is of interest and must be accomplished accurately for large as well as

small arguments of the transform variable .

I
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LINEAR APPROXIMATION

The integral of interest here is

X
r

G(W) dx Jo(wx) g(x) , (11)

where left-end point x, could be zero, and right-end point xr could be

taken so large that g(x) is essentially zero for x > x r (If 5tis

negative, the values of g could be folded over to the positive x-axis, using

g(x) * g(-x) as the new integrand, since Jo (wx) is even in x.) We break

interval x ,x into a number of abutting panels, each of the same width h,

and fit g(x) by straiyht lines over each of those panels. The fits for the

left-end point and an abutting (internal) point x n are depicted in figure

1, where it is temporarily presumed that the adjacent sample values of

ftabutng
end

F X 
"X

Figure 1. Linear Approximations to g(x)

@4 56ft&M.LW %M 6t bfluft U!
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function g(x) are zero; this allows us to isolate the contribution of each

sample of g(x) to to total desired in (11). The straight lines pass

through the function value gn = g(xn ) at sample value x n , and are zero

at the adjacent sample points. h is the sampling increment in x applied to

g(x). The situation at the right end is the mirror image of that at the

left end, depicted in figure 1.

If w is zero in (11), the approximation afforded to the integral by

means of figure 1 is obviously

G(O) h g l r 2

h g( ) g(x ) i-'"1 g(xr-7) + - g(xr  for

which is just the Trapezoidal rule. For w > 0, considerably more effort is

required; there is no need to consider w < 0, since Jo (x) is even in

Before we get into that derivation, we must introduce some auxiliary

functions.

SPECIAL FUNCTION DEFINITIONS

Define the integral

u

A(u) = 5dt o(t) (13)

0

6
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This function cannot be evaluated in closed form; a table of A(u) is

available in [5; pages 492-493]. On the other hand, the integral

U

S dt t J0(t) = u Jl(u) (14)

0

is immediately available by use of [5; 9.1.30]. And two integrations by

parts, coupled with (13), yields the result

u

0£dt t Jo(t) = u Jl(u) + u 3o(u) - A(u) (15)

0

We will also find use for the auxiliary functions

u

8o(u) E A(u) - u Jo(u) = dt t (u - t) Jo(t) , (16)

0

and

U

B (u)=- A(u) - J (u) dt (1 - -)0 t (17)

0

All of these functions, A, B0, Bit are zero at the origin and are odd.

Numerical evaluation of these functions is considered in appendix A.

7
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ABUTTING POINT

For an abutting (internal) point x in the interval (x ,Xr), as

depicted on the right-hand side of figure 1, the contribution to integral

(11), due to this single sample point g = g(xn ), is

x x +hn nA

I n dx J0(wX) gn (1 + y) + I dx Jo(Wx) gn (1 - y) , (18)

x n-h x n

where we have defined

X - X (g

y h n(19)

We now assume that the n-th sample point xn is taken such that

xn = n h for < n < r . (20)

This makes

x
x =. h, xr = rh, i.e. r -r - rational (21)

This constitutes a restriction on ratio Xr/r in (11); it has been adopted

here in order to minimize the number of calculations of the Bessel function

J 0 later, when we consider the multiple values of w desired for (11).

(The procedure presented here can be extended to the general case where

is arbitrary and x = x + nh, if desired.) If x is zero, then the
n .2 1

choice in (20) is no restriction at all.

H ISE
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APPROXIMATION TO INTEGRAL

An important parameter in this numerical integration procedure is the

quantity

a= h (22)

which is the product of "radian frequency" w and the sampling incremenL h.

As we shall see, values of 8 near w and 2w will constitute points of

considerable aliasing; see [4; page 400] for a discussion of the Fourier

transform case.

When the procedure in (18)-(19) is extended to include the left-end and

right-end points of integral (11), and the various integrals evaluated with

the help of (13)-(17), the total approximation is given by appendix B in

several alternative forms, one of which is (B-7):

Gc) -5 (A B, l) ( BC) - g Jl 4-)

+r gr-I- (r -)grJ B1(re) + gr J (r e ) +

r-l

+ :- n[ 1 n+l- 2gn + gn-l] Bl(ne) (23)
n=l +l

where

gn = g(xn) = g(nh) (24)

Reasons for this grouping of terms, including speed of execution and storage

requirements, are discussed below.

9
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SAMPLING INCREMENT FOR ca

When output variable in integral (11) is restricted to multiples of a

sampling increment A, according to

= ka for 1 < K1 < k < K2 , (25)

then no = nkAh, meaning that the arguments of the Bl(u) function in (23)

are limited to integer multiples of ha, the product of the sampling increment

in input variable x and the sampling increment in output (transform)

variable w. The explicit relationship for G(w) = G(kA) is given by

specializing (23) to the values (24), thereby obtaining

k A G ( k ) ~J.q 1 - A) . )]B~ h) k A f kh)

+ [ gr-l - (r - l)gr] B1 (rkAh) + gr Jl(rk
Ah)

r-l

+ n[n+l- 2gn + gn-_j Bl(nkAh) for k Z 1 (26)
n=,R+l

COMPUTATION TIME CONSIDERATIONS

Thus, we need evaluate B1 (u) only at u = mAh, where m is an integer.

Furthermore, not all values of integer m will be encountered as n and k sweep

out their respective values given by (20) and (25). And since 8 (u),

defined in (17) and (13), is the most time-consuming aspect of the

computation of (26), it behooves us not to compute B (mAh) at values of m

that will not be encountered, and not to recompute B (mAh) at values of m

10
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that are encountered more than once. This latter situation arises when m is

highly composite; for example, m = 12 = 4*3 = 6*2 = 12*1 could be

encountered several times as n and k vary in (26).

In order to incorporate this time-saving feature into the Bessel

integral evaluations required by (26), the values of B1(nkAh) are computed

only once and stored in a one-dimensional array at linear location m = nk.

Unfortunately, this speed-up feature is achieved at the expense of

considerable storage, for if n and k range up to N and K, respectively, the

one-dimensional storage array must have NK cells, of which most are empty

when N and K are large.

When N and K are so large that storage is not feasible, such as when

xr in (11) is large, and large w is desired in (25), then the alternative

procedure of direct brute-force evaluation of (26) for B1 (nkAh), repeated

as often as necessary, but without storage, is employed. Recomputation of

B 1(mAh) for some m values occurs, but evaluation at unused m values never

does.

Thus we have two alternatives and two corresponding programs for (26):

one faster routine which may require considerable storage, and a slower

procedure utilizing very little storage. The former is recommended when

feasible, while the latter furnishes a back-up position. Programs for both

procedures are listed in appendix B.

1I
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BEHAVIOR FOR SMALL 0

When a is small, differences of functions w th similar values are

required in (23), as may be observed by the linear w dependence on the

left-side. The appropriate series development for this linear approximation

2approach to (11) is given in (B-ll)-(B-12), through order 8 . Additional

4 6terms to order f , 0 can be derived by extending the approach given

there; however, an easier technique will be developed in the next section.

Pon

0 12
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PARABOLIC APPROXIMATION

The integral of interest is again

XY.

G(W) = 5 dx Jo(wx) g(x) (27)

x

However, now we approximate g(x) by parabolas over abutting pairs of panels,

each of width h. The fits for a mid-point, an abutting point, the left-end

point, and the right-end point are illustrated in figure 2. Again, the

mid

x-h x, Y,,+ h -2 h xn xm2 h

6left 4right

" X 
" X

xA Vh V2h )-2h x-h x,

Figure 2. Parabolic Approximations to g(x)

13
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contribution of each sample value g = g(xn ) is isolated, by temporarily

presuming that the neighboring sample values of g(x) are zero. The variable

y in figure 2 is again the normalized quantity

" X - X
n

h (28)

where h is the sampling increment in x applied to g(x).

If c is zero in (27), the approximation afforded to the integral by

means of figure 2 is

G(O) + g + 4g+l 2g 2 +...+ 2g * 4 gr]

(29)

[g] ( ) f 4g(x,+i) + 2g(x . 2g(x ) 4g(x ) g(x3 1+2) r-2) r-l r]

which is Simpson's rule.

APPROXIMATION TO INTEGRAL

Since J in (27) is even in w, we only need to consider w > 0 in the
0

following. The derivation of the approximation to integral (27), by means

of the parabolic fits in figure 2, is carried out in appendix C, culminating

in (C-lO)-(C-12):

14
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2W G(w) - S, Bo(ae) - B1 (Ae) - 2g a. or e) -

l

- 1 S B (re) + Q B (re) + 2g J (re) +

2 r 1 r 1

r-2 r-2

+ -1 : Dn Bo (no) - R B1 (ne) (30)

n= +2 n=+2

The auxiliary sequences utilized in (30) are defined below:

s: 9. + - 2g1 + g

SA = g +2g 't

S r = gr - 2gr-1 + gr-2

Q 4- l)gU1 +2 - 21(, + 2)g+ 1 + (,R + 2)( - 1)g

Qr (r - 2)(r - I)g - 2r(r - 2)g r - r(r l)gr- 2  (31)

and

Dn g n+2 - 2gn+l + 2gn-I -'gn-2

F = gn+2 - 4gn+l + 6gn - 4gn-I +  n for n (32)

n n+2 n4-1 n 1 -2( 2)(2)(r -2)*()

R = n 2D + nFn n n -

The functions B (u) and BI(u) are those defined in (13)-(17), and

the slash on the summation symbol in (30) denotes skipping every other term,

after starting at n = 4 * 2. A shorthand notation that will be used here is

n 2 ?, + 4 ..... r - 4, r - 2 ( 2)(2)(r - 2) (33)

15
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Several important observations should be made about the result in

(30)-(32). The four quantities in (31) are evaluated only once at the end

points n =,t and r. The sequences in (32) must be evaluated at all the

points listed in (33), that is, at every other interior point. All of these

computations should be done once and stored, when given the function g(x),

the limits x x r , and sampling increment h, prior to ever considering

which w values will be of interest in (30). Input function g(x) must be

evaluated at all x = x = nh for n =k(l)r.

The time-consuming calculations of B (u) and Bl(u) in (30) are only

necessary at the values u = ne for n =I(2)r, and need not be evaluated at

any of the in-between points n = (1 l)(2)(r - 1). The Bessel function

J (u) need only be evaluated at end points u J and r4; however, this

quantity shows up as a free by-product of evaluating Bo(u) and Bl(u), by

the method indicated in appendi A.

SAMdLING INCREMENT FOR

When output variable w in desired integral (27) is restricted to

multiples of a sampling increment A, according to

t= k for 1 < K, < k < K2  , 
(34)

0 = wh = kAh , (35)

and (30) takes on the form

Q, 16
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2kA G(kA)

1

2 S1 BoGkAh) - 0 g Akah) - 2g J,(Pkah) -
(kAh) A

1 2 Sr Bo(rkAh) + Q) + 2gr J(rkAh) +

(kAh)r

r-2 r-2

2 a D n Bo(nkAh) - : Rn Bl(nkAh) (3B)

(kAh) n=,+2 n=R+2

At this point, the discussion in the sequel to (26) is directly relevant

and should be reviewed. The only change in the presentation is to replace

B 1l(u), there, by both B0 (u) and Bl(u) here. We again end up with two

alternatives and two corresponding programs for evaluation of (36): one

faster routine which may require considerable storage, and a slower procedure

utilizing very little storage. Programs for both procedures are listed in

appendix C.

BEHAVIOR FOR SMALL 8

When e is small, differences of functions with similar values are

required in (30), as may be observed by the linear w dependence on the left

side and the 1/02 dependence on the right side. This behavior is also

typical for Filon's method, and indicates the need for a series expansion in

powers of ( for the right-hand side of (30) when 8 is small; see

[5; (25.4.53)j, for example. The appropriate series development for this

parabolic approximation approach to (27) is given in (C-15)-(C-17), through

2 4 6order 0 . Additional terms to order e , e can be derived by an

obvio extension of the approach given there.

17
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EXAMPLES

Two examples will be considered in this section; the first is a Rayleigh

function,

g(x) = x exp(-x 2/2) for x > 0 , (37)

for which Bessel transform (11) is [9; 6.631 4]

G(cj) = exp(-w 2 /2) (38)

The second is a Gaussian function,

g(x) = exp(-x ) for x > 0 , (39)

leading to [9; 6.618 1]

G(u.) 1/21j'exp(-w /8) I(U 2/8) (40)

These two examples are very different, in that transform (38) decays very

quickly for large w, whereas (40) decays very slowly for large W. In fact,

for the latter case [5; 9.7.1],

G(w) - 1/w as w . (41)

18
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This difference will enable us to investigate both absolute and relative

errors of the approximate numerical integration procedures developed

earlier, over a wide range of values of w.

ALIASING

The Bessel function J is rather similar to a sinusoid; in fact, for0

large z [9; 9.2.1],

J (z) (-) Cos (Z - as z -~+.(42)

Then when argument x in transform (11) is sampled at increment h, we

encounter the behavior

Jo(WX n (whn) - Jo(8n) - 2 cos n - (43)

for large on. Now when E = 2w, the cosine yields the same values as for

E = 0; this leads us to expect larger errors for the numerical integration

procedure when 8 is near 21.

For a Fourier transform, this aliasing effect was studied quantitatively

in [10; appendix A] for both the Trapezoidal rule and Simpson's rule. The

former rule was shown to have a large aliasing lobe at e = wh = 2w, while

the latter rule had an additional large lobe at 0= ii', due to the

alternating character of the Simpson weights; see [10; (A-6) and (A-8)].

This leads us to anticipate that the linear approximation procedure

developed here for Bessel transform (11) will be subject to aliasing near

19
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e = 2w, while the parabolic approximation will be degraded earlier, namely

near e = w. This will be borne out by the numerical examples to follow.

GRAPHICAL RESULTS

The Bessel transform numerical integration rule for the linear

approximation to g(x) is given by (23) or (26), while the rule for the

parabolic approximation to g(x) is given by (30) or (36). The exact

transforms (38) and (40), and the absolute errors associated with these two

rules, are depicted in figures 3 and 4 for the Rayleigh and Gaussian

functions g(x) of (37) and (39), respectively, with sampling increment

h = .1. The ordinates in all figures are the logarithm to the base 10 of

the corresponding results, while the abscissas are linear in w or f. The

upper limit, xr, of integration in (2) or (11) is taken large enough to

guarantee a negligible contribution (less than 1E-20) to the truncation

error.

In figure 3, the error for the parabolic fits is initially lower (for

small w) than for the linear fits; however, the linear error decays rapidly

with w, and stays below the parabolic error for larger w. Both absolute

errors flatten out and are not increasing with w, at least for this range of

W values. The maximum value of 0 is .8, as indicated in the figure.

20
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For the Gaussian function g(x), the parabolic error in figure 4 is

everywhere less than the linear error. Both errors near and at W = 0 are

extremely small; this fortuitous result for the linear fits is fully

explained in [6; pages 92-93], especially in the paragraph under (3.4.5).

It has to do with the fact that the integrand in (11) for this Gaussian

case, namely Jo (wx) exp(-x 2), has zero odd derivatives at the limits of

integration. This is not the case for the Rayleigh function; hence the much

larger errors at w = 0 in figure 3 result.

COMPARISON OF PROCEDURES

To demonstrate the benefits to be accrued from the fitting procedures

derived in this study, a comparison of the absolute errors for four different

procedures is presented in figure 5 for the Rayleigh function (37). The

sampling increment in x is h = .03. The variable w now covers the range

(0,120); the point where = ir is indicated by a tic mark on the abscissa.

The Trapezoidal result is obtained by applying it to the complete

integrand 3 o(wx) g(x) of (11). The error is essentially constant for all w,

including the region near 0 = w; thus, as expected, aliasing is not

significant at 0 = n for the Trapezoidal rule.

Application of the standard Simpson's rule to the complete integrand of

(11) yields a very small error near w = 0, but a rapidly increasing error

with w, and a very large aliasing lobe centered around E ) i. lhis confirms

the expectations presented earlier in this section.

22
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For the case of linear fits to g(x), rather than J0(wx) g(x), the

error drops dramatically, by four orders of magnitude as w increases,

similar to figure 3. Furthermore, there is no aliasing at a w.

The situation for the parabolic fits is that the absolute error starts

out small and remains so, for all w < 120, there being a slight aliasing

effect near e = w. However, it is 5 orders of magnitude smaller than the

Simpson error in this region of w.

The results in figure 6 extend the abscissa to cover the range of

(120,240) in w; that is, these curves are an extension of those in figure

5. Now all rules suffer aliasing in the neighborhood of 9 = 2w. The

absolute error for the linear procedure increases by 2 orders of magnitude

near 9 = 2w, while the parabolic error is just slightly larger; however, the

latter is 6 orders of magnitude better than the standard Trapezoidal and

Simpson rules for nulnerical integration. All of these results confirm the

predicted presence and location of aliasing discussed earlier.

ERROR DEPENDENCE ON SAMPLING INCREMENT

In figure 7, we investigate the dependence of the error on increment h

employed to sample x in (11). Here we apply the linear fit procedure to the

Rayleigh function (37). The absolute error for small w (< 2) decreases by a

factor of 4 as h is halved; that is, the large error bump near w = 0

behaves as h2 for small increments h. On the other hand, for larger ( 5),

24
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the error decreases by a factor of 16 when h is halved; that is, the

"saturation" level of error behaves as h4 for small h. The slight flare

in the error curve near w = 50, for h = .1, is an indication of the

beginning of aliasing; that is, 8 = 5 here, which is near the 8 = 21r

location.

Still considering the Rayleigh function (37), but now switching to the

parabolic procedure, the results in figure 8 demonstrate that the error

drops by a factor of 16 as n is halved; thus, the error dependence is

for all c. The wiggles in the h = .1 curve near c = 30 are due to aliasing,

since E = w for w = 1I = 31.4.

When the function g(x) is changed to the Gaussian example of (39), and

the linear fitting procedure is employed, the errors are depicted in figure

9. Here, the error dependence is according to h2 for all w, until

aliasing sets in. Aliasing is present in the h = .1 curve near w = 64,

since 0 2v at w = 62.8 for that curve. Comparison of these errors with

the exact answer in figure 4 reveals that the relative error is constant in

the range 4 < w < 56.

When the parabolic procedure is used instead on the Gaussian example,

4
the error dependence is again according to h , until aliasing becomes

Cdominant. The aliasing lobes in the h - .1 curve in figure 10 are centered

at o i r and 2w, as before. The large increase in the error for the

h 025 curve, when w exceeds 50, is a feature not seen previously. It may

be due to the sum of distant aliasing of sidelobes which decay very slowly
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with w; in fact, from (41), the exact answer only decays as l/w. The rapid

decay of the Rayleigh transform, (38), apparently precluded this type of

error from appearing in any of the numerical cases considered here for the

Rayleigh g(x).

28
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SUMMARY

There is a marked difference between the form of these results and the

Filon equations; namely, the term multiplying sample value g n = g(xn)

(in (B-3), for example) varies with n in such a fashion that no

simplification or factoring is possible. In order to better explain this

complication, let us investigate the evaluation of (18) when X (wx) is' 0

replaced by exp(iwx); that is, consider evaluation of a Fourier transform,

rather than a Bessel transform, for the moment. When the linear fits to

*g(x) in (18) are then integrated, there follows

In g h exp(ine) s in ( /2 (44)= L [ / 2 J44

But the bracketed term here is a common factor (independent of n) that can

be removed from the summation on n. This fortuitous simplification does not

hold for the corresponding result (B-3) here, because whereas exp(iu) is

periodic, J (u) and A(u) are not.

In an effort to recover some of this loss in execution time, we

therefore grouped the terms in (B-6) in an alternative form, pivoted around

B (no) rather than g; see (B-7). Perhaps another rearrangement of

terms would be more advantageous for some purposes.
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It is possible to extend the results here to other Bessel transforms.

For example, suppose we are interested in the evaluation of first-order

transform

f dx Jl(wx) g(x) , (45)

and we approximate g(x) either by straight lines or parabolas. Ihe

integrals in (13)-(15) are then replaced by

u

5 dt Jl(t) = 1 - Jo (U)

0

u

dt t J1 (t) = Bo(U)

0

u

, dt t2  11(t) = u J2 (u) - u 2 Jo(U) (46)

0

where we used [5; (11.1.6) and (9.1.30)] and (16). Since all of these terms

have already been encountered here, extension to transform (45) would not be

difficult.

For the evaluation of the alternative transform

S a, J1 (c"x)
dx g( (4)

04 30
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we need the additional result [5; (11.1.1)]

dt 1 J (u0 Jt - u k 2 k(u)
0 k=l

SuE12 (u) 
+ 2 34(u) + 3 J6(u) 4.... (48)

But this type of term is easily evaluated by means of the downward

recurrence technique given in appendix A. In fact, immediately following

the single line Se = Se + E, we have merely to add the line Sx = Sx + Se;

when the downward recurrence is completed, the bracketed term in (48)

results in storage location Sx (after the scaling correction).

31 /32
Reverse Blank

,4f
- ._ ,'
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APPENDIX A

NUMERICAL EVALUATION PROCEDURE FOR BESSEL INTEGRALS

The three fundamental Bessel integrals that must be evaluated are given

by (13)-(17) as

U

A(u) = £ dt J0 (t) , (A-1)

0

u

Bo(u) = A(u) - u J (u) = dt t (u - J Jt) (A-2)

0

U

Bl (u) = A(u) - Jl(u) = 5 dt(l- OJo(t) (A-3)

0

By expanding 0 in a power series [5; (9.1.10)], and integrating term by0

term, there follows from (A-i),

A(u) - 2 (_u2/ k /4)'-u3 + 5 (A-4)

1  1-u 1 320 ... .
k=O k! k! (k+2)

When this result is coupled with the series expansions of J and l in

(A-2) and (A-3) respectively, there follows

S A-1
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3  (u 2/4) k 3 5 7
o(U) - 4 . 3 - 6 80 2688 (A-5)
n 4k= k! (k , 1)! (k 6 0)

and

B"(u) = (1u 2 /4)k -u 23 u5 (A-)
1(U) 4 k k! (k 1 l)! (k 2 48 1920

Although these power series could be used for small and moderate values

of u, they are not useful for large u, due to the loss of significant digits

caused by the alternating character of series (A-4)-(A-6). In fact, we

will find that a downward recurrence will yield all the values of A, 80

Bl , J , and J very efficiently for small u, while an asymptotic expansion

is equally attractive for large u.

DOWN'.*ARD RECURRENCE

We start with (5; (11.1.2)] and (A-l):

SA(u) z 2[J I (u) + J 3(u) + Js5(u) + .. ](A-7)

Tus it we can evaluate all the odd-order Bessel functions, we can get A(u)

-* m their sum. Also, 80(u) and 81 (u) follow immediately from (A-2) and

it 4 P ,kin id]ditional ly ,jet J 0(u).

0

0.



TR 8027

Jm(u) = 2 (m + I) Jm+l(U) - Jm+2(u) (A-8)

for m > 0. This recurrence can be started by guessing at JM(U) = 0,

JMl(u) = lE-250 for example, and evaluating downward via (A-8) to m = 0.

Since the error increases much slower than the size of the terms in (A-8)

[5; table 9.4], the relative error of the terms is very small for the

smaller values of m, if M is chosen large enough to start with. In order to

accurately establish the absolute level of the sequence of lJml values, we

then use the check sum formula [5; (9.1.46)]

Jo(u) + 2[J 2(u) + J4 (u) + ... ] = 1 (A-9)

In order to realize 15 decimal accuracy in A, B Bl , J Jl' it has been

found sufficient to choose even integer M as

M = M(u) = 2 INT( 0 + .56u 1 ) + 12 for 0 < u < 45 (A-10)M Mu)=2 NT0+ 56 12 + u

While conducting the downward recurrence on m in (A-8), an even sum of

JM + JM-2 b .... and an odd sum of JM-1 + JM-3 + ... are maintained.

After completion to m = 0, the even sum is subject to constraint (A-9), in

order to establish the scale factor that must be applied to all the desired

outputs; this is to correct for the initial arbitrary (incorrect) guess of

JM- (u) m IE-250. With this scale factor in hand, the odd sum in (A-7)

can then be modified by means of one multiplication for the correct absolute

level for A(u). Since the last two quantities yielded by recurrence (A-8)

A -3
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are 31(u) and J0(u) (after scaling), we then have all the necessary

ingredients to determine B (u) and B (u).
01

No array declarations or array storage is necessary in this procedure,

since there is never any need to "go back up" the recurrence and correctly

scale the {Jm(u)l terms. This has been guaranteed (through numerical

investigation) by the choice of M in (A-lO). A further economy in the

program for this two-term recurrence (A-8) has been achieved by splitting it

into even and odd versions, thereby avoiding the usual temporary storage of

the left-hand side of (A-8) until the right-hand side is updated. This

compact program is listed below as subroutine SUB Besj. For given u, it

outputs values for 3o(U), J(u), A(u), Bo(U), Bl(u), provided that 0 : u < 45.

ASYMPTOIIC EXPANSION

For large u, the starting integer M in (A-lO) gets too large to make

downward recurrence a viable procedure. Instead, we resort to the

asymptotic expansion [5; (11.1.11)]

u

A(u) = f dt J0(t) - 1 -

0

L, u os2k- l - i - 4 2kA

( uL / 2k+ 4 2k
akO uk=O J

as u + OD; here, we also used the definite integral result that A(oo) I

[5; (11.4.11)). The values of the coefficients are [5; (

II A -4
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k

a k ~ k i2s (A-1 2)k s l s

and are conveniently obtained by recursion

1

T 1 _2 s -- for s > 1 (A-13)
s\ 2 ~2ssi 2s Ts-i f

The number of terms required in the summations in (A-il) depends on the

value of u and the desired accuracy. For u > 45 and 15 decimal accuracy, it

has been sufficient to terminate (A-l) at k = INT(u/2).

Since (A-li) yields only A(u), it is necessary to calculate J (u) and
.0

31(u) additionally; this has been accomplished by use of [11; section 6.8].

All of these quantities are evaluated by means of subroutine SUB Bessel

listed below. For input u > 0, this subroutine yields values of J (u),
0

J (u). A(u), B (u), B (u).

* A-5
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10 SUP. Be sie I K :, JO, J 1,A, Bo,BE1 A = I HT E G RL'i o,: J.:
28 DOUBLE K,I INTEGERS
38 IF X>45. THEN 60
40 CALL Besj(X,JO,JI,A,B0,B1) DOWN4WARD RECURRENCE 9.1.27,1
50 SUBEXIT
60 I=INT(X)/2 IASYMPTOTIC SERIES 11.1.11 &12
70 Rzl./X
so F=.5*Rx

98 T=.25
188 A=1.25
110 Re=.625*Rx
120 Irn=P=1.
130 FOR K1l TO I
140 P=-P
150 Sn=K+K
168 F5S-ri-.
170 F=F*F5*Rx/
180 T= T*F5/' kSritSfls
190 AAf+T
208 Be=F*A
218 Im=Im+P*Be
220 Sn=Sn~1.
238 F5=Sn-.5
2148 FF*F5*Rx
258 T=T*F5/'Sn+S,)
268 AAR+T
270 Bo=F*A
288 Re=Re+P*Bo
~90C IF Be*BetBo*Bo<,.1.E-26- THEN 318
300 NEXT K
310 F=X-. 78539816339744828
328 T=.'79788456080286541
3,30 R=1 . -T*SOR .Rx * (Re *COS F ~I r-SI1Nr F',
340 JO=FNJo(X) .JO =

350 J1=FNJI(X) 31 = JI:
30 BO=Al-":*3 DO O A AX.) - :J: JoX

3170 BI=A-J1 B l A AxS - JI-
30 SUDEND

390
4 08 SUB BejKU, JO, J1I,AF, BO, BI I JO = Jo U., 31 JI' L
4 107 IF U.,;0. THEN 450 A = A-' I I T E 1:PAL l,U dtJ Jo't
4 20 J81l. Bo = A.U) U JoU)
430 J1=Ai=BO=B1=0. B1 Dl = AU) Jl.u
440 SUBE:K'.I T

*450 DOUBLE Mc, Ms I INTEGERS
4 60 Mc2=:* I NT<O 2. +.S5prl*J- 175. 12.+U,+12
470 T=2. 'U

*480 Se=E=.
49 0 So=O=1.E-250
500 FOR Ms=Pc TO 2 STEP -2
510 E=T*t.MstI)*O-E 912.
520 SeSe+E
530-' O=T*Ms*E-O 9.1.27,1
548 ,=: Sozz+O0
558 NEXKT Ms
568 E='T*0O-E
5710 F=1 (Si,E+E' 9.1.46
580 JO=E*F
5.9 0 J1=OtF

0 At= k So * F '11.1.2

10 BO3=A-U*Jo
0 B1 U iA-Ji1

30 SUDEND
@4 640

A-6



TR 8021

650 DEF FNJo(X) Jo X) via Hart *5845, 6546, arid 6946
660 Y=ABS(X")
6.10 IF 'I8 THEN 770
'Eio T=Y*Y -

P=22149C 4 39 . 9536j3 3- T- 5951 1'35:34. 596 477079 52-T92 -, :_' 5 1
7 00 =233 4489 1 718 77-311. 7 - T'* 4-776 55994 42 67. 38'S- T* 46217 2'259031:. 713:0 3- T -P'
710 P=18996231716211397304. -T*'4414582939,,1815932. -T.P,
7 2 0= 2 04 2514 83. 52 1343957t +T*'49 40'3 0.79 4 918 13 9 7 2+T*384. 72C03 S:7956 17550 4 + T

Q=0 23447500 13653,996.38+T*(150 15462449769. 752-,+*t.64396499 3256-rTicb)
740 Q=18596I231762189?733.+T*Q
7 50 Jo=P'Q
76IS0 RETURN Jo
770 Z=S. -(
780 T=Z*Z

P0 Pr=2 204.950 10 439 69518 04 +T t128,. 6 7 795857438714 19+ T.0 0 47934 74:3 02880 3
800 Pn=8554.82254158666t-17+T*(8894.435329606t-194+TtPnh)
810 Pd=21214.0488519147104+T*(130.88490049992383+T-

20Pd=8554.822541506662-,48+T*t8903.83614170959954+TtPd)
80 Qn=13.990976P-865960680.T*(1.0497327 9823:45548tT*.0092925-19 932-'94 0319%

840 OrIS7.510534954957112+T*(46.0943826814625175+T*O)
*890 Q)d=92-1.56697552653090+T*(74.42-83189741411179tT.

:360 d = 24 00. 6 742 3 71 1 72675+T*29 71.9 837 49520384';20u+ T.0tu
870 T=Y-. 78539816339744828

30 j 3o. 286209 4 791773387 820*'B QRK C'.O'S, T ) Pn -Pi+BINH T :*-COn C d
390 RETURN Jo
900 FNEND
910
? 20 DEF FNJI(X) i at10" H art * 6 C495, 647 and 7 147

940C IF Y 8. THEN 1040

16 = 10 739 2,224 495-7306E -10 -T -. 631 ;l4 103-:1 74 411 1E -14
7 F1P-. 4;10 059927695 51 -4E -9-T. .93193691 4Vi7 4 49E-T >F,

F =. 3 9 83310 7 9:3 3952 3T 17 09769:l26 43496111 E - 2-VT-P
P = 5873S. 7 877 6 665 6;3 2 0 0- T 6 1.1837699 7 .'569 4:- T *
1~~~~~ 48h 7=9 -642g :, AiT..397$947414 3-T - 2, 3092. 7 463 394: 7.5 -T-F

11 =1 3907 2349. 269 5 679+ Tt 6 70934.6 943229 + T- 12:34 .95 34 53;9630C19*T
1010 J=I.P, Q

* 1030l RETURN 31
10Q4 0 Z=8.Y

* 100 T=2.
P: '3132 792996 : C 6,94069+.Tt 174. 1 4S -: 7- - 05t+ T * 1 L2>150517643c59z0 43

~=1270111. 1 _:4 71:3'46 1 S31t+Tt I3C140.4 2,C5 L i.l5l C 0 5 + T -F '

CC )r,=51.7 69P: 1:_ 3 9 1P:+ T 3 79:';44 47c;, Q7 + T.C .016>1146647104 71 1

lml ~ ~ ~'.1 1 191 09,927 Ci4 74:-7+T.:c _ : -41-.

--4 7,2 3:5.140449019I2I344::
T5 11 1 .20491 V 1:330 1CR;

I Ipw I1F 0. THEN J I J

PE T _I N j

A -7/A-8
Reverse Bldnk
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APPENDIX B

DERIVATION OF INTEGRATION RULE FOR STRAIGHT LINE FITS TO g(x)

The situation of interest here is represented in figure 1, where

straight lines are fit to g(x) between adjacent samples of g(x), taken at

sample points 1xn1. In particular, the contribution to integral (11) of

an (internal) abutting point xn was set up in (18)-(19). By letting t = Qx

in (18), and using (19), (20), and (22), namely

~x - xn
y n , n = nh 0= ch , (B-1)

there follows, for the n-th contribution to the integral,

no

- dt Jt 1 - n +

f )

-- dt Jo M ) I + n - ,(B-2)

no

where gn 7 g(xn) = g(nh). By reference to the auxiliary functions defined

in (13)-(17), the sum of these two integrals can be expressed in the compact

form

n f {(n + 1)Bl(n + 1) ] - 2n B1 [nO] * (n - I) Bl[(n 1)8

for < n < r (B-3)

B -I
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The procedures in appendix A are now directly applicable to the evaluation

of (B-3) for any n.

For the left-end point xf depicted on the left side of figure 1, the

corresponding contribution to desired integral result (11) is, using (B-l)

again,

x+h

I dx 30 (Wx) g, (1 - y) =

(2+1 )e

_ A dt J0 (M)(+ 1

- + I ) B - 1)O3 - l) BI[+O1 - Jl (B-4)

The corresponding contribution to integral (11) for the right-end point

xr is given by

x
xr

I r S dx J 0 (wx) gr (1 4- y)=

x -h

r

gr - dt J (t) - r + 1)
~0
( r-I )0

-r 1) B [(r - I)4 -r - 1) B1 [re] J [roll (B-5)

B-2
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(As a check, combination of (B-4) and (B-5), upon replacement of Rand r by

n, yields (B-3), as it should. The "end correction terms" in J1 cancel

out for all internal points, n.)

The resultant approximation to desired integral (11) is given by the sum

of (B-3)-(B-5):

Xr r-l

G(M) dx Jo(wX) g(x) + Ir + (B-6)

This particular grouping of terms is according to the function sample values

gnl = jg(nhl. An alternative grouping, according, to the samples of

function B1(u) instead, is given by

[ gr-I - (r - l)g j Bl(re) + gr J 1 (re) +

r-l

+ :5 n1 n+l 2gn g n-1 B,(ne) (B-7)
I n=t+l

Whereas B1 (ne) must be evaluated for all < n < r, the JI function need

only be evaluated at the end points Qe and re.

B -3
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When w is restricted to be multiples of a sampling increment A, that is

w= kA for k = 1, 2, ... (B-8)

then (B-7) yields, for k > 1, the approximation

kA G(ka) 9 (,Q+ I )g B1CRjk~h) - g~ Jl~Gkah) s

+ [ gr-I- (r - l)gr]Bl(rkAh) + gr J1 (rkAh) t

~r-I1

+ n n+l - 2gn + gn- Bl(nkAh) (B-9)

n =,k+l

where

gn = g(nh) (B-10)

Since n and k are integers (see (20) and (8-8)), the evaluatibn of

Bl(u) in (B-9) is confined to integer multiples of Ah, i.e. u = mAh.

Further discussion on how to take advantage of this feature of (B-9) is

given in the sequel to (26). The end result is that we have two alternative

procedures for evaluation of (B-9) and two corresponding programs: one

faster routine which may require considerable storage, and a slower

procedure utilizing very little storage. Programs for both procedures are

listed below.

B -4
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BEHAVIOR FOR SMALL e

When e is small, the differences of like quantities in (B-3)-(B-5) can

be circumvented by expanding B and J1 in power series in 8. Using the

facts that

3
B1 (U) u asu 0

'I 3

31(u) - - u as u 4 0 , (B-li)

the above results reduce to

In g gn h [-4 n

9 h 2(r2 21)

r -gh 1 3 (r r + (8-12)r 2gr 4,

as e 4 0. By use of the power series expansion developed for B (u) in

appendix A, these results could be extended to order e , e if desired.

The total contribution to (11) is given by the sum in (B-6). As 8 4 0,

this reduces to the Trapezoidal rule, (12).

* B-5
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10 1 ZERO-TH ORDER BESSEL TRANSFORM USING LINEAR INTERPOLATIOH.
20 1 INTEGRLHAL X , X dX Jo W,) g(X) FOR W1 :=W. =W2 IS STORED Iit
-0 , s , '.uhere N = K:stDE Iw. F ast e r h ,i h-j t or-a, .
40 DE1 =. 025 IHCREMENT kh IN
50 L=O XI=L*Del, L, =0
60 R=400 Xr=R*Del , R .::L
70 Del1=.2 INCREMENT (.4) IN W
80 K1=0 WI=KI*Delw, K.=
90 K2=40 W2=K2*l- Iel , 7,k2.= 1
100 DOUI:LE L, P 1I.k2,k.,L1,R1,Nt--s,K-, I I INTEGER'-:
:10 IM1 ,- 500 , 500, ,Bl, 500 ', ,1 1 100', 31I r 100 ','-,>' 100'
120 0=f 1
130 I = r1 Fi ,: K I , I.
140 LI=L+1
150 R1=R-1
160 REDIM G.- ( L: R, Dg L : R', B I (L*K 1: R*K--')
170 RED I M 3 11 , 1: I K- 2 , 31 r.K : K2) , Gw, KO: K2
180 FOR Ks=KO TO K2
190 GwkK)=O.
200 NE-T k:E
210 FOR Ns=L TO R

0 , N. =FNGtN *De 1 SEE DEF FNG,:1: = g,
U NE:,T Ns

40 GI=G,(L)
50 Cr=G R)

201:0 IF K0,0 THEN 320
270 F=.5*(GI+Gr
80 FOR Ns=L1 TO Ri

29 '0 F = F + I N.:-, (I H
c00 NEXT H=
1 i0 Gw ,:Oj =F*DEI 1
-10

2 FOR Ns=L1 TO R
'o Dgti =G i; 1- N S
4 0 NEXT Ni
-:0 D2=Delw*DE]

60 IF L=O THEN 410

70 FOR K.=,1 TO .-
oU0 I =L*I

CA FLL Be.-.E1, I-D2, .0, ill , E, B 1
* 400 NEXT .: L

410 FOR 1;K1 TO ,2
420 I=R-:
430 A-LL Be-Ie I D ,2, j30, _1 H,EO,B1 I'1
440 t uE:-: T Fs
450 FOR H=L1 TO RI
460 FOR =Kl TO 2.
470 I=tI-"F
4 :_- IF BlI ' . THEn 00
4 1 I- L L E: : 1 I - D i 0 , J1, , E0, B 1' I

o 0 t NEXT
I Q rNE.T N;

B _
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520 TI=L*Dg(L)-G1
530 T2=R*Dg(R)-Gr
540 IF L=O THEN 580
550 FOR K;s=V1 TO K2

5P0 Cu.1- r; ,=T 1 B1 L.,-tk- 1: 1t-Jl 1I -.:,
570 NEXT Ks
5: 0 FOR Ks=K1 TO K2
5-90 FT2*B I,: R L -Cr *J I r KL)

1:-0 uk ' F; 'Gu4a;-F
6i0 NEXT Ks
6 2 FOR N;=L1 TO R1
6 -: 0 F =tl- - , D-g, ti-=+ 1,-ig, -

640 FOR [,==K1 TO .2

650 :,1,,,: K ; ;Gu,: .s, + F * B 1 ,. N s *K.;
660 NEXT Ks
670 NE' T N;
680 FOR Ks=K1 TO K2
690 Gw (Ks) =Gw( K)/( Ks*De I u)
700 I E,,:: T K;
710 PRINT Gwu
720 PAUSE

7 74:0 E I
7 4'0

750 DEF FNtGJlIg,

760 1: =:*EXP,.-.5**X) I RAYLEIGH EXAMPLE
770 RETURN Gx

70 FNEND

IP

,%

04 8-7I,
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10 I ZERO-TH ORDER BESSEL TRANSFORM USING LINEAR INTERPOLATION.
20 INTEGRAL(QI,Xr) dX Jo(WX) g(X) FOR W1<=W=W2 IS 'STORED IN
30 Gw(Ks), where W = Ks*Delw. Slower low-storage.
40 Delx=.025 INCREMENT (h) IN '
50 L=O Xl=L*Del x, L>=O
70 R=400 Xr'=R*Del::, R>L
70 DeI w=. 5 NINCREMENT t W,) IN18 . KI=0 W1=KI*Delw, I1>0
90 K2=100 W2=K2*Del w, K2;=K1
100 DOUBLE L. R, K1, K2, K0, LI, RI., Ns, KI I N TEGERS
110 DIM Gx(%0,Dg(500,,out20o
120 KOK1
1 30 K I=rlIX,,K1, 1)
140 L1=L 1
150 RI=R-1
160 REDIM
170 FOR Ks=KO TO K2
180 Gw(Ks>)=.
190 NEX T Ks
200 FOR Ns=L To R
210 G x ( N.s> F N G ( N * D e 1 : SEE DEF F '. = 9 :<

0 NEXT Ns
.".0 1 1 = G L -' L
4 Gr=G. (R)
l50 IF .0>0 THEN :310
0 F. 5* G I +r

A.7 FOR Ns=L1 TO Ri

280 F=F+Gx4 Ns)
-.90 NEXT Ns
00 Gw(,O=F*Del.Kx
I 0 FOR Ns-:LI TO

-;l NEXT Hs
410 D2=DE1 IJtDe1A.E .i :50 TI=L-*DgILI1...Gl

]:0 T2=PtDg, :-Gr.

0 IF L=o THEH 4:30
-:2U T=L*D.

Ct FOR Ls=K1 TO K2
400 ']FILL '.E , T 30, 11 BOFI

420 NlET lw

43So T=R*D2
440 FOR F:=KI TO Y2

C 0 ' F L L BE -. T -h 1 1 FO , J I B - , E: I

460 F=T2*B1-Gr*J1
470 Gw .I.s F G -F
4;:0 N4E:<T fs

4 FOR'F s=IL1 TO R1
4500 F = t I Ds ' t js :F-jg, -
1,NE0 T = F D

FOR = 1 TO 25 -: F L I'.e=- l'T "I -,jO, j I ., Ci, E: 1B
540 l,,w G. to G , . +F*EI

H HE.% T t 4-
570 F F Ci P = 1 TO iD Z

N''u fEXT F .
FFI T .. I

I ~ H TM
1i END



TR 8021

APPENDIX C

DERIVATION OF INTEGRATION RULE FOR PARABOLIC FITS TO g(x)

The situation of interest here is depicted in figure 2. where parabolas

are fit to the samples of g(x), a pair of adjacent panels at a time. The

derivation of the resultant approximation to integral (27) is broken down

into the four cases illustrated in that figure.

It is again presumed, as in (20), that. sample points of g(x) are taken

at increment h, namely

Xn = nh for < n < r , (C-i

and that, in addition,

r -J is even (C-2)

That is, the total number of panels employed in interval x x must be

even. A breakdown of all the sample points -Xn1 into the four categories

of figure 2 is depicted in figure C-l, where we have used the abbreviations

L M A M A M A M A M R

-- 4--- -4 X--+-f-- -

panel panel
pair pair

Figure C-1. Cat~goriiation ') aimple PointV

C -1

C I :I -
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M = mid-point (of a panel pair),

A = abutting point (between two panel pairs),

L = left-end point,

R = right-end point. (C-3)

It is presumed in the following that w > 0; the case for = 0 is given by

(29), while ( < 0 is immediately covered by observing that 3 is even.o

Mid -Point

The contribution of a mid-point xn to integral (27) is (see figure 2)

x +h

n

Mn = dx J o('x) gn (1 - 2=

x -.hn

(n+l)e

gndt Jo) M - , (C-4)

(n-i1)O

where we utilized t = wx, (C-l), (28), and (22). Upon expansion of the

square in (C-4), and use of (13)-(17), (C-4) reduces to the rather compact

form

C-?
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Mn = !n (n2 - 1) (Bl[(n-l)e] - Bl[(n+l)@]) -

1 (Bo[(n-l)e] - [(n+l)e]) (C-5)

This type of term is yielded for n = 1 1, + 3, .... r - 3, r - 1, as

reference to figure C-I will verify. Here, and in the following, for the

sake of brevity, we do not document the rather detailed machinations that

lead to the compact form (C-5) from the integral definition (C-4). The

reader will have to reconstruct those nonprofitable manipulations, if

interested.

At this juncture, instead of treating an abutting point with its

associated 4 panels (see upper right of figure 2), we split it up into a

panel pair with a left-end point and another panel pair with a right-end

point. We thus have to consider a general left point and a general right

point.

* IEFI POINI

This case is obtained by looking at the bottom-left diagram in figure 2

O* and replacing 9 by n everywhere. The contribution of this type of panel

pair is

0C -3
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x n+2h

L dx J 0(c.,x) gn (1I y) (1 - y/2)=

xn

(n +2)0eSn dt J M(t ) + \e

no

-{(n+l)(n+2)(B1 [(n+2)9] - B,[ne]) -

-1- (Bor(n+2)e] - B0 [ne]) - 2 J,[n@]J .(C-6)

e

This type of term is yielded for In + 2, .. ,r - 4, r -2, but not

In = r; see figure C-i.

RIGHT POINT

This case pertains for the bottom-right diagram in figure 2 when r is

replaced by In everywhere. The corresponding contribution to integral (21) is

R nR= dx J0(wx) gn(1 *- y) (1 +- y12)

x n-2h

Ion - dt J Mt + In2

(n -2)0

- f(n -IIn -2) (8, n8I B n -2)8)-

- ~(Bino] B n -?)OJ) 2 J1Lnof (C-I)

04 C-4
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This type of term is yielded for n = + 2, ; + 4, ... r - 2, r, but not

n =; ; see figure C-i.

ABUTTING POINT

We can now immediately obtain the integral contribution for an abutting

point (top-right diagram of figure 2) by adding (C-6) and (C-7):

An = Ln + Rn =

g- (nil)(n+2) Bl[(n 2)8] - - Bo[(n*2)e] - 6n Bl[ne] -

- (n-l)(n-2) Bl[(n-2)0] + B Bo[(n-2 (C-8)

which holds only for n = + + 2, ) + 4, ... , r - 4, r - 2; see figure C-I.

As a notational shortcut, we say n --- (- 2)(2)[r - 2) are the allowed

values of n.

At this stage, we have succeeded in evaluating all the types of terms

that have been depicted in figures 2 and C-i. The total approximation to

integral (27) is therefore

r-l r-2

0 G(W) q:5 Mn A + L * R (C-9)
0-. n n r

n=l+l n=,-+ 2

in terms of the contributions in (C-5)-(C-8), where the slash on the

summation symbol denotes skipping every other term.

- f C -5
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However, this grouping of terms in (C-9) is according to sample valves

g = g(nh) of function g(x). It is advantageous to re-arrange this sum,

grouping terms instead according to sample values of functions Bo(u) and

BI(u ) , defined in (16) and (17). After considerable manipulations, the

following alternative to (C-9) is obtained:

2w G() 1 - Q1 B (.e - 2 R

SI :1 0 re
1 S (r o + Q B(r) + 2gr Jl(re) +

r-2 r-2
o  B°(no) - R  81 (no) (C-l0)

+ 2 .-Z,- 
0n o R n9 n=A+2 n=A+2

The auxiliary sequences utilized in (C-l0) are defined below:

- 2g +, g
L gt42 'I- ~

S = gr - 2gr-l + gr-2

O = ( g 2 - 2J( 2 i- 2)g.+l (,* 2)(. l)It

Or (r - 2)(r - l)g r  2r(r 2)gr-l + r(r - l)gr-2 (C-1)

and

n gn+2 2g n+ 2g n-l gn-

4g4for n

n n+-? n+-I n 4gn-1 gn- 2  ( + 2)(2)(r 2)

R 20 nn n rl

C-6



IR 8027

It is important to observe from (C-lO) that the Bessel integrals Bo(u)

and B (u) need be evaluated only at u = ne for n =)(2)r, and need not be

evaluated at the in-between points n = (k + l)(2)(r - 1). Of course, the

input function g(x) must be evaluated at all x = x = nh for n =)(l)r.n

The quantities in (C-1l) and (C-12) do not depend on 9 = wh, and can be

computed just once and stored, in preparation for use in (C-lO).

If we are interested in evaluating integral G(ca) in (27) at values of

equal to integer multiples k of some increment A, then we must substitute

= kA and e = wh = kAh (C-13)

into (C-10). Then interest centers on computation of B (u) and Bl(u) at

u : mAh for certain integers m. This consideration has been discussed in

the sequel to (26).

BEHAVIOR FOR SMALL 9

When o is small, differences of functions with similar values are

required in (C-1O). This same behavior obtainsfor Filon's method; see

[5; (25.4.53)]. Accordingly, it is useful to have a series expansion

for G(w) about o = 0, to be used for small 0.

Since [5; (9.1.12)]

1 2
o( U) I 2 as u 0 , (C-14)
04

C-7
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substitution in (C-4), along with the change of variable y = t/O - n, yields

the mid-point contribution

1

-1

r 1 2/2\

2nh (2 +) as 0 0 (C-15)

A similar procedure for left point and right point contributions (C-6) and

(C-7) gives

Ln Rn fgnhl - 02(n2 )) as E -, 0 (C-16)

The total asymptotic contribution to G(w) in (27) is therefore given by

(a modified version of (C-9))

r-2 r r-

G(W) - Z Ln + : Rn + - Mn as 4 0, (C-17)
n= n=,A+2 n=,I+l

using (C-15) and (C-16). For 0 = 0, this reduces to Simpson's rule, (29).

Additional correction terms involving 4 , e could be derived by using

additional terms in expansion (C-14).

When w is specialized to values w = kA in (C-10), the result is as given

in (36). Programs for both a faster high-storage procedure and a slower

low-storage procedure are listed below.

C-8
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10 ZERO-TH ORDER BESSEL TRANSFORM IJSING PARABOLIC INTERPOLRTION.
20 INTEGRAL'X1-:r dX Jo(X) g(X) FOR WI=N<=2 IS STORED IN
-:01 Gw' f.s.), where N = K *Delw. Fas.ter. high-=t, -g.
4 0 Del.=.03 INCREMENT .h.:, IN X
50 L=O Xl =L*Delx,, L ,=0

0 R=300 Xr=R*Del:.:: , R-L MUS..::T BE EVEN , >=4
70 Delw=l. INCREMENT kA IN W

80 K1=0 Wl=K1I*Delw, VI>=0
90 K2=40 W2=K2*Delw, K2>=K1
100 DOUBLE L,PKI.:2,V0,LI,L2RI,R2,NsqV ., I i INTEGERS
S110 D I M G,.: 0.2 , G : '), ,.U' 5-' . T 500 ., 1 i r ,: 500'
120 DIM BOt20000',B120000.
1:30 K=K1
140 K1=MAX(K1,1)
150 LI=L+I
160 L2=L+2
170 RI=R-1
180 R2=R-2
190 RED I M G>:. L : R ),,, (K 0 K2. , Sq K I : K2), J1. : K I K 2 , J I ' : I :K:'

200 RED IM BOL*K1:R,2 , BI,:.L*K1:R*K2':
ha1 FOR Ks=KO TO K2

u Gw(K)=O.
30 NEXT Ks

240 FOR N=L TO R
250 Gx(N s)=FNG(Ns*Delx) ' SEE DEF FNG,' = g(-,.
4 260 NEXT Ns

S.;l=Gx L)
280 GrG R
290 IF I<0>0 THEN 380
300 51 =92=0.

-10 FOR N.=L1 TO RI STEP 2
0: 1 0=S 1 +G,. k Ns .)
1 NEXT Hs

SC40 FOR NL=L2 TO R2 STEP 23 50 52,"=524+G. A(NS),

"60 NEXT Ns
U G 'o 1= 1G+l+Gr +4. S1+2.*'2 + De . 3.

£ 1 GI I=G, LI
0 G I12.C L2U- 400 Grl=G,(R1I

410 G,Q-- R2
420 S 1 = 12-2. * -1 1 +G
43U S,'.'r-2. *Gr I +Gr-2
442 cI1'l=L*LI*I;,12-2.t*L*L2*C l11+L2*L 1.Cl

450 r R2*R 1 *G,-2. *PF'*-"Gr 1 RR 1 *Gr2
460 'il 2:Gl *2.
470 Gr 2iGr *2.
4.0 D2=De 1 wDe 1
490 FOR F-= 1 TO 2
500I F=I.--D2

510 Scp =1.' F-F
0 NEST [ s

C-9
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530 IF L=O THEN 580
540 FOR Ks=K1 TO K2
550 I=L*Ks
560 CFLL B, SI' .Se 'I* 12, .O,.T1:KS.,A, '-. I ,E: 1 I
570 NEXT l.z
5:0 FOR Ks=Kl TO K2
590 1 =R*Ks
600 CALL Be sel,:I*D2,.J0,Jlr.K-.,A,B : I::,E B '
610 NEXT Ks
6,20 FOR Hs=L2 TO R2 TSTEP 2
630 FOR Ks=KI TO <K2
640 1 = t>s*Ks
650 IF B0G)',>. THEN 670
660 CALL Besse1'.I*D2,JO,JI, A, BO(I ',B1' ,'I.)
670 NEXT Ks
680 NEXT Ns
690 IF L=O THEN 740
700 FOR Ks:K1 TO K2
710 I =L*Ks
720 GIKKs)ScKs '*Si *B0 1 '-.1 0 I ,-i, 12*3 1 1
730 NEXT Ks
740 FOR Ks=K1 TO K2
750 I:RtKs
760 F:Sc (Ks )*Sr*BO fI ,-Qr*B K I -Gr2* J I Kr ,sg
770 Gw(Ks)=Gw(Ks)-F
780 NEXT Ks
790 FOR Ns=L2 TO R2 STEP 2-
800 G2=G (Ns+2
'., 10 Gl1=Gt7 (N Hs+ I

0 H 1 =I× ( Ns- I

*40 Dr,='2-2. *G1 +2. *HI -H2
50 FnG2-4. *G 1 +6. .N=: -4. +H I +H2

:0 Rr=Ns* ( Nstr,+Fn' :

$70 FOR Ks=K1 TO K2
:330 I Ns-f:s

w0. _..i . +s Fs G D r- 0, I ' -F' rE
900 NEXT H
IclO t IlEX T Ns

* 20 F=De I w*2.
?30 FOR 1I TO K2
;40 Gw( S)=Gw "
950 NEXT Ks
960 PR INT Gww

END
9?90 I

1000 DEF FNG,. ,
O 0 =*E.:F 5- , FLEEH E-IIF5LE

102 0 RE TURFN i, .> ,

10 0 FNEND

*C-1



TR 8021

I 1 ZERO-TH ORDER BESSEL TRANSFORM USING PARABOLIC INTERPOLRT IOn.
20 I N TE GR P L (.XlI, Xr dN Xo W X) g (X., FOR Wi I K =W.:' =142 IS STORED I H
0 to 1. ' wh- ." E N = K *f le I tow. 1 ower 1 o -_-t -,r =,BL,.

40 Del =0:3 INCREMENT ,h' IN N.
50 L=O X1I=L*Del1, L;=0

R=:300, Xr=R*DeI I R-1 L P UST BE E',,'EN =4
70 Delul. INCREMENT Ia IN N
80 K1=0 1=KI*Delu, KI=0
9 C 2120 W2K2* Deiw, .2I: 1
100 DOUBLE L, R, 1 , K2, K0, L 1 ,L2., R1 , P2, N-., I I NTEGER.S
I 11 0 D I r' 00 , , ' ,, ,. 500', Sq.,. , 0 ,

120 K 0= 1
130 KI=MAX'KKI,
140 L1=L+1
150 L2=L+2
160 R1=R-1
170 R2=R-2
1:30 REDIM ..C.L:R),'4,(K.:K2 ,Sq(K<I:K2

19o FOR Ks=KO TO K2

1U NEXT Ks
..0 FOR Ns=L TO R

u N- =FN ,t : t +D 1 '.EE DEF Ft' , :.
40 NEXT Ns

G I =Gx L.)
260 - r ,'G .R

270 IF KO:O THEN 360
31)'SI=S2=0.

FOR Ns=L1 TO Rl STEP 2
-.00 ~ ~~ :-1=- +G H .Ls

1 NE::T Ns
FOI' =L2 TO P2 STEP 2

C40 NEXT t1s
--C' G1 -r + 4.S 1 +2. S- *2, l 3 .

$:60 Cl i=C-.'Li ,
::TO ' 1 = ., L21

4 0 ]= 1 2 -2,*G1 1+G}
4 .r 10~ r -2. *Gr 1 +Gr" 2

42 ..l = L- L 1 +11 -'-2. -tL+L 2 G 1 1 +L - LI1 1
4 P; Pir = 2 * 11 * r - .- R-.- 1;r 1 + ,-I+'I ',,Gr

440 GI 2=G"l*2.'
40 Gr 2=G 2.

4,1:o D2=-D 1LJ*De I.C,7 FOR' uf TO 2
4:C F1=12

* 4? 'Sq4 .CS=- . ,- F,,F,

C-1 I
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510 IF L=O THEN 570
520 T=L*b2

530 FOR Ks=Kl TO K2
54 C, RLL Bes se 1," T * K - ., .T 1Ti , E:O, BI'
550 uKs 1 6wSq k£) *S 1 *E- 01 *BI -'1 2."1
560 NEXT K.
57-0 T=R*D2
580 FOR Ks=K1 TO V2
590 CALL Beh1 T ,T- iJ J.1O,,,OB ,
P; U F -q ,: - *Sr* B8 - ,B 1 -Cr 2 J 1

10 Gw'. Ks w, Ks )- F
620 NEXT. Ks
630 FOR Ns=L2 TO R2 STEP 2
640 G2=Gx(Ns+2)
650 GI=Gx(Ns+1I
660 HI=GxkNs-1 
670 H2=Gx(Ns-2)
680 DnG2-2.*G +2.*H1-H2
690 Fr=12-4. *G 11+ 6. T-, N '-4. -H I +H2

700 Rn=Ns*t.NsrI.n+Fr,
710 T=Nst*D2
720 FOR Ks=K1 TO K'

CRLL Je..Qel ' TI,, F, J ,BO,B1
7-4 C ' G s; Cg K k K :Sq V. Ks) *r, IBO-Rn* B I

NEXT Ks
760 NEXT Ns
770 F=re lw*2.
780 FOR KsK I TO ': 2
7".O L.t.', £-);=I w,f s' F 'F>

::N0 HE:-T .£
:-,I1 P I T Gwtkt -

C,;2 F' H U,'-. E
;5 0 E 4D

50 DEF FNGC ' '
G =: E:F' - . 5P::.:: ' I PALEI GH E:HfIPLE

D.7¢J RETURN G,
:- .:0 FNtIEHt4D

C-12
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