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‘Filon's method is expected to be an error maintenance procedure, whereby the
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ACCURATE EFFICIENT EVALUATION OF BESSEL W,

TRANSFORM; PROGRAMS AND ERROR ANALYSIS

INTRODUCTION

The method of Filon integration for Fourier transforms [1], [2; pages

LCYER

408-409], [3; pages 67-75], [4; page 400], [5; page 890], [6; pages 62-66], st

‘; ‘J:ic.,e,"‘

SRGAK

(7] oo R
j‘dx exp(iwx) g(x) (1) ,

-

is well established and very useful for accurate numerical work. Instead of
the standard Simpson's rule, which would approximate the complete integrand
exp(lwx) g{x) by parabolas over abutting pairs of panels, Filon's method
approximates only the function g(x) by parabolas, and carries out the
corresponding integrals in (1) analytically. These closed form integrals
are then evaluated with computer aid. Since the exponential in (1) is being
handled exactly for all w, the hope is that the error of approximating (1)
by means of Filon's method will be substantially the same. for larger w as

for small w (where all the error arises from approximating g(x)). That is,

absoiute error does not increase significantly with w. Certainly that is
not the case for the Trapezoidal and Simpson rules, where significant 2

aliasing severely limits the accuracy of the results for larger o.
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An alternative simpler procedure to Filon's method for Fourier
transforms is to approximate g(x) by straight lines over abutting panels,
and again to evaluate the resultant integrals in (1) analytically in closed
form. This (less-accurate) procedure is documented in [8; pages 418-419],

for example.

Here, we will extend these two procedures to a Bessel transform of the

form
ol

G(w) = 5\ dx Jo(wx) g(x}) , (2)
0

where g(x) is an arbitary given function, and Jo is the zeroth-order
Bessel function. O0One of the major differences we encounter, relative to

Filon's method, is that the resultant integrals cannot all be evaluated in

X

closed form. In order to circumvent this problem, we use a combination of a

s, mo
o ¢/

downward recursion and an asymptotic expansion, which are limited in
accuracy only by the inherent round-off error of the computer utilized,
thereby obtaining an efficient useful procedure for numerical evaluation of

the pertinent integrals and functions.

To give a physical application where the Bessel transform arises,

consider that we are interested in two-dimensional Fourier transform

+ad
g}wdx dy exp(iux + ivy) fZ(X,y) , (3)
—o8

where function f2 has isotropic behavior. That is, suppose the dependence

of f2 is solely on the distance from the origin of coordinates:

f2(X.Y) = f]( X ty ) . (4)

|
|
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Then (3) becomes
+od
‘gg dx dy exp(iux + ivy) f1(vX2 ty) =
-®
0
= 2w \Y dr Jb(wr) r f](r) , (5)
o
where we changed to cylindrical coordinates and have defined
w = (u2 + vz)]/2 . (6)

Thus, (5) is of the form of (2), upon identification of g(x) as x f](x).

Suppose in (3) that the f2 dependence on x,y is more general than {4},

namely of the form

- x\2 Ay -y )y 172
_ 0 o 0 0

which allows for a general center point of symmetry Xo1Ygr @S well as a

tilted elliptical shape. Then substitution in (3) yields, after a

cylindrical coordinate change, the result

2wnab

2

od
172 exp(iuxo + 1vy0) X dr J;(ur) r f](r) , (8)
(1 - p7) °

where now

a2u2 + b2v2 + 2pabuyv 1/2
5 (9)

T -p

R OO OO e i o DNILELMNC AT LB O & B K oo 3 I i A DM SN O L (A DO OO Do)
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Again, the fundamental Bessel transform of the form of (2) results, where

g(x) is x f](x).

un the other hand, if G(w) is specified in (2) for w > 0, the
corresponding solution to this integral equation is

00

g(x) = x S‘ dw J'O(Xw) w G(w) , (10)
°

which is again a Bessel transform of the form of (2).

Thus, we have presented several instances where the transform given by
(2) is of interest and must be accomplished accurately for large as well as

small arguments of the transform variable w.
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LINEAR APPROXIMATION

The integral of interest here is

X
r

G(w) = S dx J (ex) 9(x) , (1)
2

where left-end point X could be zero, and right-end point X, could be

taken so large that g(x) is essentially zero for x > xr. (If % is

negative, the values of g could be folded over to the positive x-axis, using
g(x) + g(-x) as the new integrand, since Jo(mx) is even in x.) We break
interval QX into a number of abutting panels, each of the same width h,
and fit g(x) by straight lines over each of those panels. The fits for the
left-end point and an abutting (internal) point x, are depicted in figure

1, where it is temporarily presumed that the adjacent sample values of

abutting

left 9 9.

end

) )i+h x-h X x+h

Figure 1. Linear Approximations to g(x)
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function g(x) are zero; this allows us to isolate the contribution of each
sample of g(x) to tné total desired in (11). The straight lines pass
through the function value gn = g(xn) at sample value X and are zero

at the adjacent sample points. h is the sampling increment in x applied to
g(x). The situation at the right end is the mirror image of that at the

left end, depicted in figure 1.

If w is zero in (11), the approximation afforded to the integral by

means of figure 1 is obviously

1 1 -
G(0) = h[; 9 * 9;+1 AERERE PG g;] -

r

] .
= hLE 9({2) + g(f‘+]) L g(xr_?) + 5 g(xry for o 0. ()

which is just the Trapezoidal rule. For o > 0, considerably more effort is
required; there is no need to consider o < 0, since Jo(ux) is even in .
Before we get into that derivation, we must introduce some auxiliary

functions.
SPECIAL FUNCTION DEFINITIONS

Define the integral

u
A(u) = J‘ dt J(t) . (13)
0




-

This function cannot be evaluated in closed form; a table of A(u) is

available in [5; pages 492-493]. On the other hand, the integral

u
\y dt t Jo(t) =u J1(u)
0
is immediately available by use of [5; 9.1.30]. And two integrations
parts, coupled with (13), yields the result

u

2
j\ dt t Jo(t) =
0

u? 3yu) + u 3 (u) - ACu)

We will also find use for the auxiliary functions

u

Bo(u) T A(u) - u Jo(u) = .[ dt t (u - t) Jo(t) ,
0

and

u
B (L) = A(u) - I (u) = f dt ( - E) 3 (1)
0

A1l of these functions, A, Bo’ B]. are zero at the origin and are odd.

Numerical evaluation of these functions is considered in appendix A.

TR 8027

(14)

by

(15)

(16)

(17)
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ABUTTING POINT

For an abutting (internal) point X, in the interval (%l’xr)' as
depicted on the right-hand side of figure 1, the contribution to integral

(11), due to this single sample point gn = g(xn), is

X_+h
n n
In = bf dx Jo(mx) gn (V +y) + \}‘ dx Jo(wx) gn (1 -vy), (18)
xn-h xn
where we have defined
X = X
y =% - (19)

We now assume that the n-th sample point x, is taken such that

X, = nh for A<n<r (20)
This makes
r r
X =Ah, X, = rh, i.e. §-=1~=raﬁona1. (21)

This constitutes a restriction on ratio xr/ﬁ in (11); it has been.adopted
here in order to minimize the number of calculations of the Bessel function
Jo 1ater{ when we consider the multipie values of w desired for (11).

(The procedure presented here can be extended to the general case where %

is arbitrary and X = )fQ + nh, if desired.) If XI is zero, then the

choice in (20) is no restriction at all.
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APPROXIMATION TO INTEGRAL

An important parameter in this numerical integration procedure is the
quantity

@ = wh (22)

which is the product of "radian frequency" w and the sampling increment h.
As we shall see, values of © near » and 2~ will constitute points of
considerable aliasing; see [4; page 400] for a discussion of the Fourier

transform case.

When the procedure in (18)-(19) 1s extended to include the left-end and
right-end points of integral (11), and the various integrals evaluated with

the help of (13)-(17), the total approximation is given by appendix B in

several alternative forms, one of which is (B-7):

o 6o = [Ray, - A+ 1g] B Ue) - g I @0) +

+[r 9.y ~(r - 1)9,.] B,(ré) + g J (re) +

: r-1
. > n['gm_] - 2q + gn_]] B,(ne) (23)
! n=2+1
where
9, = g(xn) = g(nh) . (24)

Reasons for this grouping of terms, including speed of execution and storage

requirements, are discussed below.




et i ideudie anendiendteih e Benalinbediee it

TR 8027

SAMPLING INCREMENT FOR w

When output variable o in integral (11) is restricted to multiples of a

sampling increment a, according to
w=ka for 1l <Ky<k<Ky, (25)

then ne = nkah, meaning that the arguments of the B](u) function in (23)

are limited to integer multiples of ha, the product of the sampling increment
in input variable x and the sampling increment in output (transform)

variable w. The explicit relationship for G(w) = G(ka) is given by

specializing (23) to the values (24), thereby obtaining

kA G(ka) s[,(gb] - (A 1)%] B, (Dkan) - % T, Rkan) +

+E‘ 9,y ~ (r - 1)9,] B,(rkah) + g _J, (rkah) +

r-1
* Z "[gnﬂ - 29n + gn_]] B](nkAh) for k > 1 . (26)
n=20+1

COMPUTATION TIME CONSIDERATIONS

Thus, we need evaluate B](u) only at u = mah, where m is an integer.
Furthermore, not all values of integer m will be encountered as n and k sweep
out their respective values given by (20) and (25). And since B](u).
defined in (17) and (13), is the most time-consuming aspect of the

computation of (26), it behooves us not to compute 8](mAh) at values of m

that will not be encountered, and not to recompute B](mAh) at values of m




-

TR 8027

that are encountered more than once. This latter situation arises when m is
highly composite; for example, m = 12 = 4*3 = 6*2 = 12*1 could be

encountered several times as n and k vary in (26).

In order to incorporate this time-saving feature into the Bessel
inteqral evaluations required by (26), the values of B](nkAh) are computed
only once and stored in a one-dimensional array at linear location m = nk.
Unfortunately, this speed-up feature is achieved at the expense of
considerable storage, for if n and k range up to N and K, respectively, the
one-dimensional storage array must have NK cells, of which most are empty

when N and K are large.

When N and K are so large that storage is not feasible, such as when
X . in (11) is large, and large w is desired in (25), then the alternative

procedure of direct brute-force evaluation of (26) for B. (nkah), repeated

1
as often as necessary, but without storage, is employed. Recomputation of
B](mAh) for some m values occurs, but evaluation at unused m values never

does.

Thus we have two aiternatives and two corresponding programs for (26):
one faster routine which may require considerable storage, and a slower
procedure utilizing very little storage. The former is recommended when
feasible, while the latter furnishes a back-up position. Programs for both

procedures are listed in appendix B.

"
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BEHAVIOR FOR SMALL @

When @ is small, differences of functions w th similar values are
required in (23), as may be obseryed by the linear » dependence on the
left-side. The appropriate series development for this linear approximation
approach to (11) is given in (B-11)-(B-12), through order 82. Additional

4

terms to order &, 96 can be derived by extending the approach given

there; however, an easier technique will be developed in the next section.

eI
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o o
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- e

PARABOLIC APPROXIMATION

The integral of interest is again

3 Xy
2 6w) = 5 dx T (wx) g(x) . (27)

X

‘0

;ﬁ‘ However, now we approximate g(x) by parabolas over abutting pairs of panels,
X each of width h. The fits for a mid-point, an abutting point, the left-end

point, and the right-end point are illustrated in figure 2. Again, the

> Ry gn (1- 10 (-181/2)
] . asbutting

x—h X, %th x-2h Xn x;+2h

g, 0-9)0-y52) g (#9142

Ieft'
- end

: X, xth xteh x—2h x-h  x

" Fiqure 2. Parabolic Approximations to g(x)

13

<v_,‘v.t,\'|di ) ;_’g.-'..r ‘.' DN L SN Ty 1.0y (N l. DA " A " ) (%R W M LS Y \" ')‘,\‘n
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.ﬁﬁ contribution of each sample value 9, = g(xn) is isolated, by temporanly
presuming that the neighboring sample values of g(x) are zero. The variable

y in figure 2 is again the normalized quantity

|
‘1‘ —
o y = —2, (28)

where h is the sampliing increment in x applied to g(x).

{é If w is zero in (27), the approximation afforded to the integral by

® means of fiqure 2 is

[

g h -
; G(0) =3 [91 F A9t 29,g+2 teeet 29, 5 F gy Y g;] B

W (29)

>
!

-:3@ ) + 4g( 2+]) + 29({'*2)+...+ 29(xr_2) + 4g(xr_]} + g(xra ,

:ﬁﬁ which is Simpson's rule.

‘ol APPROXIMATION TO INTEGRAL

AL Since Jo in (27) is even in w, we only need to consider w > 0 in the
4¥, following. The derivation of the approximation to integral (27), by means

i of the parabolic fits in figure 2, is carried out in appendix C, culminating

in (C-10)-(C-12):

& 14

L e 1y
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20 G(w) = —‘5 5, B,08) - § B (ke) - 2g, J.(Ae) -
e

ot 1
" _92 S. B,(re) +Q_ B,(re) + 29 J,(re) +

i,

" —; § 0, B, (ne) - E R B, (ne) . (30)
W . n£+2

) The auxiliary sequences utilized in (30) are defined below:

% T Ye2 "% a TG

w
]

o r gr B 2gr—1 * gr—2

-
o
"

REF NG, = RR+ DG+ (R DA+ G

Lo
"

{(r - 2)(r - 1)gr -2r{r - 2)gr_] + r(r - l)gr_2 (31)

KA and

-
o
1"
Yo

o~ . for n =
n-1 " 9n-2 b+ 2)(2)(r - 2)

-n
1
[I=]

(32)
1 2

R =n Dn + nFn

. The functions B (u) and B, (u) are those defined in (13)-(17), and
the slash on the summation symbol in (30) denotes skipping every other term,

‘ after starting at n = £ + 2. A shorthand notation that will be used here 1is

5 n=0+2, 2+4 ..., r -4, r-2=(F+2)(2)r -2). (33)

15

‘;' ‘Mf ".N h.u
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Several important observations should be made about the result in
(30)-(32). The four quantities in (31) are evaluated only once at the end
points n =& and r. The sequences in (32) must be evaluated at all the
points listed in (33), that is, at every other interior point. All of these
computations should be done once and stored, when given the function g(x),
the limits {P'Xr' and sampling increment h, prior to ever considering
which w values will be of interest in (30). Input function g(x) must be

evaluated at all x = x_ = nh for n =f()r.

The time-consuming caliculations of Bo(u) and 81(u) in (30) are only
necessary at the values u = n® for n = f(2)r, and need not be evaluated at
any of the in-between points n = (R + 1)(2)(r - 1). The Bessel function
J](u) need only be evaluated at end points u = fé and re&; however, this

quantity shows up as a free by-product of evaluating Bo(u) and 8](u), by

the method indicated in appendir A.

SAMALING INCREMENT FOR w

When output variable w in desired integral (27) is restricted to

multiples of a sampling increment A, according to

w=ka for 1 <Ky} <k <Ky, (34)

then
8 = uwh = kah , (35)

and (30) takes on the form
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2kA G(kA) =
1
= > %( BOLQkAh) - 91 B]LQkAh) - 2q£ J1LPkAh)
(kah)
1
- > Sr Bo(rkAh) + 0r B](rkAh) + 29r J](rkAh) +
{kah)
r-2 r-2
1
+ (kAh)2 5 Dn Bo(nkAh) - §£~ Rn B](nkAh) . (36)

n=2+2 n=Q+2

At this point, the discussion in the sequel to (26) is directly relevant
and should be reviewed. The only change in the presentation is to replace
B](u), there, by both Bo(u) and B](u) here. We again end up with two
alternatives and two corresponding programs for evaluation of (36): one
faster routine which may require considerable storage, and a slower procedure

utilizing very little storage. Programs for both procedures are listed in

appendix C.
BEHAVIOR FOR SMALL €

When ® is small, differences of functions with similar values are
required in (30), as may be observed by the linear « dependence on the ieft
side and the 1/82 dependence on the right side. This behavior is also
typical for Filon's method, and indicates the need for a series expansion in
powers of & for the right-hand side of (30) when 8 is small; see
[5: (25.4.53)], for example. The appropriate series development for this
parabolic approximation approach to (27) is given in (C-15)-(C-17)}, through
order 92. Additional terms to order 94, 96 can be derived by an

obvicus extension of the approach given there.
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EXAMPLES

CI
.~

Two examples will be considered in this section; the first is a Rayleigh

—.u?

-.‘.*_

function,

& a(x) = x exp(-x2/2) for x >0 , (37) -

e for which Bessel transform (11) is [9: 6.631 4] .

G(w) = exp(—m2/2) . (38)

The second is a Gaussian function,

g(x) exp(-xz) for x > 0 ' ) (39)

leading to ([9; 6.618 1]

6(w) = 17297 exp(-w’/8) Io(w2/8) . (40)

o These two examples are very different, in that transform (38) decays very
X quickly for large », whereas (40) decays very slowly for large w. In fact,

; for the latter case [5; 9.7.1],

Glw) ~ 1w dS w > +ob . (41)

18
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This difference will enable us to investigate both absolute and relative
errors of the approximate numerical integration procedures developed

earlier, over a wide range of values of w.
ALTASING

The Bessel function JO is rather similar to a sinusoid; in fact, for

large z [9; 9.2.1],

1/2
Jo(z) ~ (ﬁ) cos( - %) as z » +o., (42)

Then when argument x in transform (11) is sampled at increment h, we

encounter the behavior

) 1/2 .
Jo(wxn) = Jo(whn) = Jo(en) ~ (%6;) cos(én - Z) (43)

for large ©n. Now when © = 2w, the cosine yields the same values as for
8 = 0; this leads us to expect larger errors for the numerical integration

procedure when © is near 2.

For a Fourier transform, this aliasing effect was studied quantitatively
in [10; appendix A] for both the Trapezoidal rule and Simpson's rule. The
former rule was shown to have a large aliasing lobe at ® = wh = 2v, while
the latter rule had an additional large lobe at & - «, due to the
alternating character of the Simpson weights; see [10; (A-6) and (A-8)].

This leads us to anticipate that the linear approximation procedure

developed here for Bessel transform (11) wil)l be subject to aliasing near
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® = 2v, while the parabolic approximation will be degraded earlier, namely

near 8 = w. This will be borne out by the numerical examples to follow.
GRAPHICAL RESULTS

The Bessel transform numerical integration rule for the linear
approximation to g(x) is given by (23) or (26), while the rule for the
parabolic approximation to g(x) is given by (30) or (36). The exact
transforms (38) and (40), and the absolute errors associated with these two
rules, are depicted in fiqures 3 and 4 for the Rayleigh and Gaussian
functions g(x) of (37) and (39), respectively, with sampling increment
h = .1. The ordinates in all fiqures are the logarithm to the base 10 of
the corre;ponding results, while the abscissas are linear in w or ©. The

upper limit, x ., of integration in (2) or (11) is taken large enough to

re
guarantee a negligible contribution (less than 1E-20) to the truncation

error.

In figure 3, the error for the parabolic fits is initially lower (for
small w) than for the linear fits; however, the linear error decays rapidly
with w, and stays below the parabolic error for larger w. Both absolute

errors flatten out and are not increasing with w, at least for this range of

w values. The maximum value of © is .8, as indicated in the figure.
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For the Gaussian function g(x), the parabolic error in figure 4 is
everywhere less than the linear error. Both errors near and at « = 0 are
extremely smail; this fortuitous result for the linear fits is fully
explained in [6; pages 92-93], especially in the paragraph under (3.4.5).

It has to do with the fact that the integrand in (11) for this Gaussian
case, namely Jo(wx) exp(—xz), has zero odd derivatives at the limits of
integration. This is not the case for the Rayleigh function; hence the much

larger errors at w = 0 in figure 3 result.
COMPARISON OF PROCEDURES

To demonstrate the benefits to be accrued from the fitting procedures
derived in this study, a compar&son of the absolute errors for four different
procedures is presented in figure 5 for the Rayleigh function (37). The
sampling increment in x is h = .03. The variable « now covers the range

(0,120); the point where 8 = « is indicated by a tic mark on the abscissa.

The Trapezoidal result is obtained by applying it to the complete
integrand Jo(wx) g(x) of (11). The error is essentially constant for all w,
including the region near ® = «; thus, as expected, aliasing is not

significant at @ = « for the Trapezoidal rule.

Application of the standard Simpson's rule to the complete integrand of
(11) yields a very small error near » = 0, but a rapidly increasing error
with w, and a very large aliasing lobe centered around ® - «. This confirms

the expectations presented earlier in this section.

22
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For the case of linear fits to g(x), rather than Jo(ux) g(x), the
error drops dramatically, by four orders of magnitude as w increases,

similar to figure 3. Furthermore, there is no aliasing at & = w.

The situation for the parabolic fits is that the absolute error starts
out small and remains so, for all o < 120, there being a slight aliasing
effect near ® = ». However, it is 5 orders of magnitude smaller than the

Simpson error in this region of w.

The results in figure 6 extend the abscissa to cover the range of
(120,240) in w; that is, these curves are an extension of those in figure
5. Now all rules suffer aliasing in the neighborhood of @ = 2¢. The
absolute error for the linear procédure increases By 2 orders of magnitude
near 8 = 2n, while the parabolic error is just slightly larger; however, the
latter is 6 orders of magnitude better than the standard Trapezoidal and
Simpson rules for numerical integration. All of these results confirm the

predicted presence and Jocation of aliasing discussed earlier.

ERROR DEPENDENCE ON SAMPLING INCREMENT

[n figure 7, we investigate the dependence of the error on increment h
employed to sample x in (11). Here we apply the linear fit procedure to the
Rayleigh function (37). The absolute error for small o (< 2) decreases by a
factor of 4 as h is halved; that is, the large error bump near w = 0

2 .
behaves 4s h for small increments h. On the other hand, for larger o (> %),
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the error decreases by a factor of 16 when h is halved; that is, the
"satuyration" Tevel of error behaves as h4 for small h. The slight flare
in the error curve near o = 50, for h = .1, is an indication of the
beginning of aliasing; that is, 8 = 5 here, which is near the 8 = 2«

location.

Still considering the Rayleigh function (37), but now switching to the
parabolic procedure, the results in fiqure 8 demonstrate that the error
drops by a factor of 16 as nh is halved; thus, the error dependence is h4
for all w. The wiggles in the h = .1 curve near w = 30 are due to aliasing,

since 8 = v for w = 10v = 31.4.

when the function g(x) is changed to the Gaussian example of (39), aﬁd
the linear fitting procedure is employed, the errors are depicted in figure
9. Here, the error dependence is according to h2 for all w, until
aliasing sets in. Aljasing is present in the h = .1 curve near o = 64,
since ® - 2w at w = 62.8 for that curve. Comparison of these errors with
the exact answer in fiqure 4 reveals that the relative error is constant in

the range 4 < w < 56.

When the paraboiic procedure is used instead on the Gaussian example,
the error dependence is aqgain according to h4, until aliasing becomes
dominant. The aliasing lobes in the h - .1 curve in fiqure 10 are centered
at @ = w and 2w, as before. The large increase in the error for the

h .02% curve, when w exceeds 50, is a feature not seen previously. It may

be due Lo the sum of distant aliasing of sidelobes which decay very slowly
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with w; in fact, from (41), the exact answer only decays as 1/w. The rapid
EN decay of the Rayleigh transform, (38), apparently precluded this type of
i error from appearing in any of the numerical cases considered here for the

Rayleigh g(x).
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SUMMARY

There is a marked difference between the form of these results and the
Filon equations; namely, the term multiplying sample value 9, = g(xn)
(in (B-3), for example) varies with n in such a fashion that no
simplification or factoring is possible. In order to better explain this
complication, let us investigate the evaluation of (18) when Jb(mx) is
replaced by exp(iwx); that is, consider evaluation of a Fourier transform,
rather than a Bessel transform, for the moment. When the linear fits to

g(x) in (18) are then integrated, there follows

. 2
I =g, h exp(ine) M} . (44)

n e/2

But the bracketed term here is a common factor (independent of n) that can
pe removed from the summation on n. This fortuitous simplification does not
hold for the corresponding result (B-3) here, because whereas exp(iu) is

periodic, Jo(u) and A(u) are not.

In an effort to recover some of this loss in execution time, we
therefore grouped the terms in (B-6) in an alternative form, pivoted around

B](ne) rather than gn; see (B-7). Perhaps another rearrangement of

terms would be more advantageous for some purposes.
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[t is possibie to extend the results here to other Bessel transforms.
by For example, suppose we are interested in the evaluation of first-order

' transform

o fdx Iy (wx) g(x) , (45)

RN and we approximate g(x) either by straight lines or parabolas. The

o integrals in (13)-(15) are then replaced by

u
i
2 5\ dt J,(t) =1 -3 (u) ,
.t s

o 4

faonm.

» dt t ](t) = Bo(u) ,
] ]

ey u
2
Sdtt J (1) = u

4

\} 2
'? 0

)

2

Jz(u) =20 J,(u) - um J (u) (46)
WYy where we used [5; (11.1.6) and (9.1.30)] and (16). Since all of these terms

e

:' have already been encountered here, extension to transform (45) would not be
¥
b
3

v difficult,

oo For the evaluation of the alternative transform

T, (wx)
M dx ———— g(x) , (47)
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we need the additional result [5; (11.1.1)]
oD
RSN
S‘ dt n =7 k I2k(u) =
0 k=1
4
=;]®2(u) + 2 J4(u) + 3 J6(u) +...] . (48)

But this type of term is easily evaluated by means of the downward
recurrence technique given in appendix A. In fact, immediately following
the single line Se = Se + E, we have merely to add the line Sx = Sx + Se;
when the downward recurrence is completed, the bracketed term in (48)

results in storage location Sx (after the scaling correction).

-4

e

31/32
Reverse Blank

Nt e
by ' ‘?‘a‘!'a't-‘fi":'n'



TR 8027

APPENDIX A

NUMERLCAL EVALUATION PROCEDURE FOR BESSEL INTEGRALS

The three fundamental Bessel integrals that must be evaluated are given

by (13)-(17) as

u
A(u) = Y dt 3 (t) , (A-1)
0

u
A(u) - u Jo(u) = ‘y dt t (u - t) Jo(t) , (A-2)
0

o
—
[
~
U

Jo(t) . (A-3)

e+
~—”

u
B](u) = A(u)_— J](u) = J‘ dt(] -
: 0

By expanding JO in a power series [5; (9.1.10)], and integrating term by

term, there follows from (A-1),

o0
(—u2/4)k _ u u (A-4)
] — e

k=0 k! k! (k+-2-)

A(u) =

N e

When this result is coupled with the series expansions of Jc and J1 in

(A-2) and (A-3) respectively, there follows
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-]
3 5 7
u (~u /4 ) u u u
B(u)=—z == - = b - L (A-5)
0 < KD (k +1)! (k + %) 6 80 2688
and
)
8 _u ;EE (-u2/4_)k o gi N u5 _ A-6)
(U =4 , Y. "2 a8 Y920 - (
oo K0 (K& D (K + 5)

Although these power series could be used for small and moderate values
of u, they are not useful for large u, due to the loss of significant digits
caused by the alternating character of series (A-4)-(A-6). In fact, we
will find that a downward recurrence will yield all the values of A, Bo'

B], Jo‘ and J] very efficiently for smal) u, while an asymptotic expansion

is equally attractive for large u.
DOWNWARD RECURRENCE

We start with [5; (11.1.2)] and (A-1):
(u) + JS(U) + ...] . (A-T7)
Thus 't we can evaluate all the odd-order Bessel functions, we can get A(u)
trom their sum.  Also, BO(u) and B](u) follow immediately from (A-2) and

CA e vt e cgn additionatly get Jo(u).

st the Hessel tynotony Salicty the 10wDwdrd recagrrence Sh oy 1 27y
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Jm(u) = % (m+ 1) Jm+](u) -~ Jm+2(u) (A-8)

for m > 0. This recurrence can be started by guessing at JM(u) =0,

JM_](u) = 1£-250 for example, and evaluating downward via (A-8) tom = 0.
Since the error increases much slower than the size of the terms in (A-8)
[{5; table 9.4], the relative error of the terms is very small for the
smaller values of m, if M is chosen large enough to start with. In ordef to
accurately establish the absolute level of the sequence of {Jm} values, we

then use the check sum formula [5; (9.1.46)]
Jo(u) +v2[J2(u) + J4(u) +...]1=1". (A-9)

In order to realize 15 decimal accuracy in A, Bo’ B], Jo' J], it has been

found sufficient to choose even integer M as

175
12 +u

M= M(u) = 2 INT(20 + .56u - ) + 12 for 0 <u < 45 . (A-10)

While conducting the downward recurrence on m in (A-8), an even sum of

JM + JM_2 + ... , and an odd sum of JM—] + JM-S

After completion to m = 0, the even sum is subject to constraint (A-9), in

+ ... , are maintained.

order to establish the scale factor that must be applied to all the desired
outputs; this is to correct for the initial arbitrary (incorrect) guess of
JM—I(U) = 1£-250. With this scale factor in hand, the odd sum in (A-7)

can then be modified by means of one multiplication for the correct absolute

level for A(u). Since the last two quantities yielded by recurrence (A-8)
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are J](u) and Jo(u) (after scaling), we then have all the necessary

ingredients to determine Bo(u) and B](u).

No array declarations or array storage is necessary in this procedure,
since there is never any need to "go back up" the recurrence and correctly
scale the {Jm(u% terms. This has been guaranteed (through numerical
investigation) by the choice of M in (A-10). A further economy in the
program for this two-term recurrence (A-8) has been achieved by splitting it
into even and odd versions, thereby avoiding the usual temporary storage of
the left-hand side of (A-8) until the right-hand side is updated. This
compact program is listed below as subroutine SUB Besj. For given u, it

outputs values for Jo(u), J](u), A(u), Bo(u), B](u), provided that 0 < u < 45.
ASYMPTOTIC EXPANSION

For large u, the starting integer M in (A-10) gets too large to make
downward recurrence a viable procedure. Instead, we resort to the

asymptotic expansion [5; (11.1.11)]

u
A(u) = J~ dt Jo(t) ~1 -

0
00 k ) k
] (;)”2(}03(“ 03 CD 2 Sin(u AP (D" ay ] (A1)
U 4 2k +1 4, 2k '
k=0 Y k=0 Y J

as u » +@; here, we also used the definite integral result that A(e) = 1

[5%; (11.4.17)]. The values of the coefficients are [5; (1).1.2)]
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1 k 1 1
4 = (E)k ;ZE (é)s 2Sg (A-12)
s=0 ’
and are conveniently obtained by recursion
-1
1 1 2
T. = (—) ——— = T._ for s > 1 . (A-13)
S 2 s 25! 2s s-1

The number of terms required in the summations in (A-11) depends on the
value of u and the desired accuracy. For u > 45 and 15 decimal accuracy, it

has been sufficient to terminate (A-11) at k = INT(u/2).

Since (A-11) yields only A(u), it is necessary to calculate Jo(u) and
J1(u) additionally; this has been accomplished by use of [11; seétion 6.8].
A1l of these quantities are evaluated by means of subroutine SUB Bessel
listed below. For input u > 0, this subroutine yields vaiues of Jo(u),

3w, A(u), B (u), B (u).
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SUE Beszel i, J0,J1,A,BO, Bl ' A = [HTEGFAL:@," d3r Jart .
DOUBLE K, I } INTEGERS
IF X>45., THEN 698
CALL Besj(X,Jo@,Jt,R,B8,Bl1> ! DOWNKWRRD RECURRENCE 9.1.27,1
SUBEXIT
I=INTC(X)» 72 ! ASYMPTOTIC SERIES 11.1.11 & 12
Rx=1, /X
F=,5%Rx
=,29
A=1,2%5
Re=.625+Rx
Im=P=1,
FOR K=1 T0O 1
P=-P
Sn=K+K
FS=sn-.5
F=F*FS+*Rx
T=T2FS - (Sn+Sn>
A=R+T
Be=F#*A
Im=Im+P#*Be
Sn=Sn+1,
F$=Sn-.5
FaF#FS%*Rx
T=T+FS/(Sn+Sn>
A=A+T
Bo=F+A
Re=Re+P*Bo
IF Be#Be+Bo*Bo<1.E-26 THEN 3198
NEXT K
F=X-.785393816339744828
T=.79738456080286%541
A=1,-T#SOR(Rx)* Re#C0S Fi1=Im*SIHF)

JO=FNJo(X> ! Ja = Jood

JI=FHIL (R ! J1 = Jt (s
Bo=A-%x+J0O ! BO = Ay - 0 Joona
Bl=R-J1 ! Bl = Aoxy» = Jrixo
SUEEND

]

SUB Bezjil,JO,J1,A,E9,E1" ! T = Joouo, TLo= J1eun
IF U3, THEMN 499 ' A= Ay = THTEGFAL- @, 0 dt JTaot
Ja=1. ! B9 = AWU - U Jo L
J1=A=EB=B1=0. ! Bl = AvUs - Jluu
SUBEXIT

DOUBLE Mc,Ms i INTEGERS

Me=2+xIHT (20, +,Se=U-1PS, 712, +Uru+12

T=2.-U

Se=E=8.

So=0=1{,.E-259

FOR Ms=Mc TO 2 STEP -&

E=T+(Ms+1)+0-E ! 3.1.27,1

Se=3Se+E

J=T+Ms+E-U ! 9.1.37,1

So=50+0

HEXT Ms

E=T=0-E

F=1. (Se+Se+E i 9.1.4¢

JO=E+~F

J1i=0=F

R=iSo+SoroF ! 11.1,&

Eo=R-U=~J0O

Bl=R-J1

SUBEND

|
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59 DEF FNJo(X> ! Joc¢X> via Hart #5845, 6546, and 6946
&0 Y=RBS (XD
7’9 IF ¥,8. THEN 779
39 T=v*Y
B F=22714904323,9%38022-T=0951 3534, S247 74 3 :
XTx] P=233442321713773e3, —Tf~4.7655594426?3. = 33=-T+F 2
i P=185S9€2317821397304.-T+(431458293231315932,~T«F>
z G=2042S51433.921 24 95 +T=0 43439, 73491213972+T+ 334, 7235758175504 +T 0
e R=2334700013693996,.3+T+(19015452449769.,. 752+ T» 53332874535, 133256+T»0 0
3 Q=185952317621897733.+T=*Q
S Jo=P-
[ FETURN Jo
- T 2=3, %
T=2#%2
Pr=2294,5010433651204+ T 123,67 753073571413+ T+, 900479347450 25303

Pn=85354.8225415866517+T#(8894.4375329606194+T«Fn.
Pd=2214,08488519147104+T#(130.38384938049992323+T
Pd=38554.3225415965628+T+#039093.8361417Q95954+T»P g
En=13.990975865360630+T*(1,.0497227382324554€+T+,00335259532349319)
Qn~3?.51053495495?117+Tf<46 DIS82631452S51T79+T=0n
Nd=321.56597952653890+T#(74.428359741411179+7
Qd=2400.6742371172675+T2(2971,9837452034920+T =014
T=Y-.78539815339744 8”
Jo=,282834793177 387
RETURN Jo

FNEMD

DEF FHI1LOX ! JUCH wva Hary #5045, 747, and T147

[ (I N
[
(L
» G
w

SURAVZ e COS  TY«Pri - FPI+SIH- ToeZen 03

DOV CREVOR v 'Y s VIR VIO v I O COREY AU v S O T BN TN TN R Bt T I IR I SO FU o P o 1O <))
L0 I TN B Wk OO

ST I AN Y. 3

(o VR O = O o o WO o O WO o O U O O U OB U o O WO O U VW WO

A Y=RBI XD

3 IF v:8., THEN 10409

3 T=YeY

SN F=,11873:S¢ 4T IOCE- 1D -T+-, 5213421021744 2101E~14

ST "=, 3310535%2789591 = 13RS ANTIISE-S-T=F .

RN F=,233310733393%23 S=TF0

30 P=9373.73778eESE: . : E =T=F:

1) P=e3S5n4. P TN Ve 3 =T Zaaal, :
1l =107 SIET TR+ T« 6T 0S 34, 6329452299+ T = 1224, 57

1wulo Ji=eP

IS IR RETURN

ludo 2=8.Y

1oSw T=2+2

Laes Prizil s, TSe35e 399035+ T+ 174, Z1 27374027305+ T+1, 2.2S0S3T8d 29309 2
(SIS : 18909, 124712921 U0, 42091 10:S0

ISR 103 S141e7700 e 4TIV TSNS

1wra) 1 134713951 3 LTRTAST IS0

L1 ?1 SIomlees 434S IT IR0

HE Y T4 93S : :

11l ST I

Llw f:=3055.?‘. ERE R

1140 Tz =2, 288124430142 344

LISy M= 23203479177 28Tl 0Rk 2 e D03 ToeFr FPI=-Z00 T «Zemy, 030
112y [F 7 g, THEN J1=-7J1

NS FETURMN J1

11w FHEND

A-1/A-8
Reverse Blank
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APPENDIX B

DERIVATION OF INTEGRATION RULE FOR STRAIGHT LINE FITS TO g(x)

The situation of interest here is represented in figure 1, where
straight lines are fit to g(x) between adjacent samples of g(x), taken at
sample points {fnl' In particulér, the contribution to integral (11) of
an (internal) abutting point X, was set up in (18)-(19). By letting t = wx

in (18), and using {(19), (20), and (22), namely

y = , X _=nh , 8 = wh , (B-1)

there follows, for the n-th contribution to the integral,

ne
g
n t
In = g“ dt Jo(t) (1 -n o+ 9) +
(n-1)8

{n+l1)8

2 )
+ dt Jo(t) <1 +n - e/ (B-2)
ne

where gn = g(xn) = g(nh). By reference to the auxiliary functions defined

e ls

in (13)-(17), the sum of these two integrals can be expressed in the compact

form

In

- 2+ 1) 8 [n v 1)8] - 2n 8 (6] + (n - 1) 8[(n - o]

for < n<r . (B-3)
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The procedures in appendix A are now directly applicable to the evaluation

of (B-3) for any n. i

For the left-end point X depicted on the left side of figure 1, the

corresponding contribution to desired integral result (11) is, using (B-1)

again,

Xq +h

1) = S dx Jo(wx) % (1 -y) =
%
R+1)e

9 t

= = S dt Jo(t)<,Q+1 -5>=

Ae
g
i _f,{(,P +1) 8 {4+ 18] - 4+ 1) 8 [R6) - 31[19]} : (8-4)

The corresponding contribution to integral (11) for the right-end point

X, 15 given by

—
n

X
r
5 dx Jo(ux) 9, (1 +y) =

x _-h
r

re
gr‘ S‘ t
= dt Jo(t) (5 -r o+ 1) =
-1)8e

(r

—;{(r - 1) B,[(f’ - 1)8]— (r - 1) 8][r9] + J][re-]} . (B-5)

B-2
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(As a check, combination of (B-4) and (B-5), upon replacement of f and r by
n, yields (B-3), as it should. The "end correction terms" in J1 cancel

out for all internal points, n.)

The resultant approximation to desired integral (11) is given by the sum
of (B-3)-(B-5):

X

r r-1
G(w) = S dx Jo(wx) g(x) = Il + Ir + E In . (B-6)
Xy n=2+1

This particular grouping of terms is according to the function sample values
sgnl = {g(nhﬂ . An a]ternatiye grouping, according to the samples of

function B](u) instead, is given by
o 6w =[La,,, - (&4 + g BUe) - g J1e) +
f[rapy - (r =g, 8 (re) + g, 3 (re) +

r-1
+ E n{?n+] - 2gn + gn_] B](ne) . (8-7)

n=f+1

Whereas B](ne) must be evaluated for all 1 <n<r, the J] function need

only be evaluated at the end points g8 and re.

B-3
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When » is restricted to be multiples of a sampling increment A, that is

w=kA fork =1, 2, ... (B-8)

then (B-7) yields, for k > 1, the approximation

; ka G(ka) ELleH - (Q+ 1)g'Q B](,QkAh) -9 J1(2kAh) +

¥

4 +E g,y - (r- 1)gr]B](rkAh) r g, 3 (rkan) +

I r-1

+ Z_n[gnﬂ - 29, +q ] 8 (nkan) , (8-9)
. n=2+1

& where

o

' g = g(nn) . (B-10)
]

. Since n and k are integers (see (20) and (B-8)), the evaluatibn of

.E 81(u) in (B-9) is confined to integer multiples of ah, i.e. u = mah.

E Further discussion on how to take advantage of this feature of (B—é) is

‘8|

i given in the sequel to (26). The end result is that we have two alternative
; procedures for evaluation of (B-9) and two corresponding programs: one

h faster routine which may require considerable storage, and a slower

% procedure utilizing very little storage. Programs for both procedures are

; listed below.

- G X e

CaAt A ARG ARy R SRR TR AN
- " - » r ¥ a4 v -
PRI SO G PR

’
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BEHAVIOR FOR SMALL ©

), When © is small, the differences of like quantities in (B-3)-{(B-5) can
be circumvented by expanding B] and J1 in power series in ®. Using the

o — facts that

o By (u) ~ % - = asu->0,

F-Y
@

,.
[ =
w

as u >0, (B-11)

. Ly
W J ()~ 3

p—
[a}

the above results reduce to
'3 :
" In gn hE
S
hT2 Y

&
R o~ 9,n

p—)

|

ez(n2 + ]g)l ,
2
92(1 + % * %S} ,
ez(rz L +]g)] (B-12)

2 as ® » 0. By use of the power series expansion developed for 8

¥,
y appendix A, these results could be extended to order 84, 86

p—

-3

& |-

r

](u) in

if desired.

The total contribution to (11) is given by the sum in (B-6). As & » 0,

e this reduces to the Trapezoidal rule, (12).

@ B-5

t¢:<'- X, ,; ‘ & ! :

™ " - - w W - “ - Ll « X - % - - ”
y U I OIRO ) m ) ; 3 Cu bR - i a7 ‘
¥y lﬁl’ﬁl’:‘u“‘-;i’-’#\‘t'@.‘Q, ¥ -|?I oo Ve aﬁ" by ‘h)j‘n‘! ‘% ’C'L 5~1 D LM LMy .-—,l.‘n.t ") ‘l'.: ‘.n.t"_l’n.(’-.l'. ~‘;'!,'. t‘ ‘.‘i':.l'n‘k.“
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. 18 ' ZERO-TH ORDER EESSEL TRANSFORM USING LINEAR INTERFOLATICON.
oy 2B 0 INTEGRALOXI,®rs dx JolMWd) gexd FOR Wl1<{=W<=WZ IS STORED IN
B s B CQwikzy, where W = Ks+Dalw. Fazter high-ztorage.
. 4@ Del.=.92% I THCREMENT <h IN
" <o L=0 I ¥l=L#Delx, L:>=0
h 50 R=400 | Xr=R#Delx, R:L
70 Delw=.,2 ' INCREMENT <&’ IN W
o 30 Kl=@ ! W1=K1#Delw, K1.=0 .
¥ el K2=43 ! 2=K2+Delu, k2. =kl
3] 108 DOUELE L,P, K1, k2, k0, L1, Rt Hs, k=, ] - IMTEGEFS:
K 118 DIM G.vSaa, Dg 5o, , Bl Saaad , TI1o1ads, Tlr 100, Gur 103 -
Wy 120 K=t
o 130 K1=MAXCKL, 1
. 149 Li=L+1
N 150 R1=R-1
) 168 FEDIM GuCL:R+,DgcL1:R>,BlCL*K1:tR*KE)
o 178 REDIM J11eK1sK2y, TIrdkKlsk23,0wikKB:tK2)
. 130 FOR Ks=K® TO K2
{ 190 Gwikzr=0.
g It HEXT ks
oy 213 FOR HMz=L TU R
b 2Iu G~ ¢Hz=FNGiHz+Delw | SEE DEF FHGiis = g0
u 230 MEXT Ns
b ERY G1=GacL)
i 259 Gr=Gx (R
ke 259 " IF K8>8 THEN 329
. g F=.5+«(G)+Gr>
W 280 FOR Ms=L1 TO R1
o 238 F=F+dacHs)
B 300 MEXT Mz
g’ EPRY Gui@s=FxDel .
"ot EpIY FOFR Hz=L1 TO R
n 330 DgiHz2=GxtHz =5 +Hz-11
e 340 MEXT Mg
N S0 D2=Delw=Del
') 359 TF L= THEN 41
g il FOR kz=hl TO kZ
Sy EE-15) I=L=ks
¢ Rl CALL EBeszzel  I«Da, 7O, T 1tz (A EO,EL T
@ 490 NE=T K3
g 410 FOR b3=k1l TO b2 ’
e 420 I=R=2k 2
W 430 CALL EBezzs) IeDZ, To, Tlr btz A EQ,E1 1
» 440 HE-T Vs
a 450 FOR Mz=L1 TO RI
. 4c0 FOR kz=K1 T k2
470 [=Mzep:z
. 430 IF El: 1+ o, THEN <o
V5 440 CALL Eezzsel IeLZ, T, T1, A, B0, BL 1
: S0 HENT bz
I S0 ME.'T MNs
‘l
WY
*
L4
"
v
]
o B-6
1]
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i?
“'0,3
W 5%? T}=L*Dg(Ll):Gl
..:‘ ) T2=R#Dg¢R>-Gr
P 540 IF L=9 THEN S&@
‘ 1Y FOR ks=k1 TO K2
( S50 Swebs =T1sBlilehzi-GlsJllokzs
i Sva MEAT ks
S50 FOR Ks=K1 TO K2
w: 530 F=T2+«BliRxkz3-Gr+Jlrikzo
3ﬁ gy Guwiks»=Guwekso-F
4y £14 MEXT ks
o 520 FOR Hz=L1 TO R1
o £z FatzeDgrHz+l o =DgoHz o
. 540 FOR hz=k1l TO K2
| =50 Buwiks)=Guik s )+F+ElcHs=kz0
[ £50 MEXT Ks
1 570 MEXT N3
‘ £30 FOR ke=K1 TO K2
i 590 Gui(ks>=Guw(Ks)/(Ks*Delw>
W 780 MEAT Ks
T1e PRINT Gui+)
L) FAUSE
- T30 END
"‘J BTN '
W 750 DEF FHG{HS booge
A TEY IS 1 1 S L Nt S ' RAYLEIGH EXAMFLE
W il RETURN Gx
] TEE FHEND
)-4
=
3
K
)
 /
e
)]
A
}‘.
vt
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-
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ZERO-TH ORDER BESSEL TRANSFORM USING LINERR INTERFPOLATION.
INTEGRALCXT, Xr) dN JoCWX> Q(X) FOR Wl<=W<=W2 5 STORED IH
Gw(ks), where W = Ks*Dely. Slouwer louw-storage.
Delx=.029 [HCREMENT <h> IN X

1
L=v ! X1=L#Delsx, L>=9
R=4ag ' Kr=R#Delx, RIL
Delw=.5S ! IMCREMENT <o) IM W
Ki=g ! Wl=K1#Delw, K1 =8
K2=199 ! W2=K2+Delw, KZ =Kl
DOUELE LeR,KL,K2Z,EB,L1,R1,Hz,Ks ! INTEGERS
DIN GxiS285,D09(508, Gui 209 )
Ke=K1
K1SHAXKL, 1)
LisL+1
Ri=R-1{
REDIM Guwel:RY,DgullsRY, GucKBrKZ
FOR Kz=K® TUO K2
Guw(Ks3>=0.
HEXT Ks
FOR HNs=L TO R
Gx(Hza)=FMG(Nz=*Ds1x) ! SEE DEF FHG(Hd = D R
HE#XT Hs
GIsg<oly
Gr=Gx(R)
IF k9 9 THEM 219
F=.9% (1 +Gr
FOR Hz=L1 TO RI
F=F+Gx¢(Ns)>
NEXT Nz
Guwi@sr=F+Delx
FOR MHz==L1 TO R
DgrHzY=G0xeNs s -G cHs=-1>
HEXZT Hz
DZ=DelwxDel x
Ti=L=*DgilL1l:-G)
T2=FP«Dg R-Gr
IF L=0 THEH 439
T=L=Dl
FOR bz=kl TO k2
CALL Eegzzel Tebt:z, 1o, J1,A,E0,E1 "
LGwibzs=T1#B1~G1=T1
HE=T k3
T=R+[2 v
FOR Kz=K1 TO K2
CALL BezzaeloTeko, 1a, J1,A, B3, EL
F=TZ+B1-Gr+1l}
Guwib z=Guik 3y ~F i
HEZT t =
FOR Hz=Ll TD RI
F=tz+1 Jg3cHa+l-Dg Hz.
T=H:z+DZ
FOR bz=F1 TO k2
CHLL BezzelTeb:, J0, J1 A, B0, B1
Guw' bz 1=Gui b z 1 +F+E1
HEXT k=
HE T M=
FOF yz=t 1 TO 2
wth 2 =Guwet 20 b zeDe o
HEXT ¥ 32

FRINT Gu e

Y Prey P ARG ; RN 4 YOO AN T NY, Tl YT R A
.ﬂf'f%%%wmﬁm“%mﬁn@MMQW%%MJMAMMMVMMmemuumﬂmmuwwhmmvw
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B APPENDIX C

DERIVATION OF INTEGRATION RULE FOR PARABOLIC FITS TO g(x)

2, The situation of interest here is depicted in figure 2, where parabolas
are fit to the samples of g(x), a pair of adjacent panels at a time. The
e derivation of the resultant approximation to integral (27) is broken down

N into the four cases illustrated in that figure.

& It is again presumed, as in (20), that.sample points of g(x) are taken

at increment h, namely
I xq = nh for g<n<r, (C-1)

W and that, in addition,

r - is even . (C-2)

That is, the total number of panels employed in interval ft'xr must be
b even. A breakdown of all the sample points sxn} into the four categories

+ S of figure 2 is depicted in figure C-1, where we have used the abbreviations

R L M A M A M A M A M R

L] —“— . . + . + + + + 4 X
N — Xp

& L panel pane] %‘h'i

e pair pair

Figure C-1. C(Categorization ot Sample Points

DAt A .I.”Q HOSOR) vy e, L A Y LN l.'.l" N
PR (R '

& ]
LAY B SR | AR R KRS ;
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M = mid-point (of a panel pair), ;
A = abutting point (between two panel pairs), i
L = left-end point,

R = right-end point. (C-3)

It is presumed in the following that « > 0; the case for w = 0 is given by

(29), while w < 0 is immediately covered by observing that Jo is even.
Mid-Point

The contribution of a mid-point Xn to integral (27) is (see figure 2)

X +h

M, = ‘Y dx Jg(wx) g, (1 -y

X -h
n

2) -

(n+1)e

—2 S dt J t)[ (——n ] (C-4)

-1)

where we utilized t = wx, (C-1), (28), and (22). Upon expansion of the

square in (C-4), and use of (13)-(17), (C-4) reduces to the rather compact

form




R
9,

D v T T S AR RN NI DS TR A
SN AR N Rt <, RNk

1R 8027
M -g—"{ 2 _ 9y (8 1 B |
n- e (n®™ - 1) ( ][(n- )e] - ][(n+ )e]) -
- = (8 [(n-1)e] - B _[(n+1)e])}
e2 o 0 ) (C-5)
This type of term is yielded forn= g+ 1, R+3, ... , r -3, r -1, as

reference to figure C-1 will verify. Here, and in the following, for the
sake of brevity, we do not document the rather detailed machinations that
lead to the compact form (C-5) from the integral definition (C-4). The
reader will have to reconstruct those nonprofitable manipulations, if

interested.

At this juncture, instead of treating an abutting point with its
associated 4 panels (see upper right of figure 2), we split it up into a
panel pair with a left-end point and another panel pair with a right-end
point. We thus have to consider a general left point and a general right

point.

LEFT POINT

This case is obtained by looking at the bottom-left diagram in figure 2

and replacing A by n everywhere. The contribution of this type of panel

pair is

o W W LT LA LA LN L
e W e T e T

R Sam P t l i P b N P T R b g W e o X Mol BN T AN K

W

IO NOUBCALGAD
'.,..Q?.ﬂ’?.' X ~,“' l.‘y‘,l“z) 5‘;:

C-3

: (] i 8
'k?. ‘lu "".',k:;'
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xn+2h
L, = S\ dx J (wx) g (1 -y) (1 - y/2) =
X
n
(n+2)8
9, 3/t 1/t 2]
= — y dt J (t) [1 —g(g-é +5(5" ) =
ne
9n
= Z{(n+1)(n+2)(81[(n+2)8] - B.,[ﬂe]) -
1
"3 (Bo[(n+2)e] - Bo[nG]) -2 J][nel} : (C-6)
_ This type of term is yielded for n =A, A+2, ..., r -4, r -2, but not

n=r; see figure C-1.

RIGHT POINT

This case pertains for the bottom-right diagram in figure 2 when r is

replaced by n everywhere. The corresponding contribution to integral (27) is

X
n
Rn = SN dx Jo(wx) gn (1 +y) (1 +y/2) =
x_ -2h
n
ne
9 S 3t 1/t )2_}
= —w— dt Jo(t) [] +5((_3 - ) +§(6 - =
(n-2)8

g
. ?ﬁ{(nd)(n-Z)(B][n@] - B,[(n-2)8]) -

] :
-3 (B,Ln®] - B [(n-2)81) + 2 J,[ne)}. (C-1)

C-4
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This type of term is yielded for n = 0 + 2, A+4, ..., r -2, r, but not

n=4,; see figure C-1.
ABUTTING POINT

We can now immediately obtain the integral contribution for an abutting

point (top-right diagram of figure 2) by adding (C-6) and (C-~7):

q
= 52{(n+1)(n+2) B,[(n+2)8] - ;% B,[(n+2)8] - 6n B,[ne] -

- (n=1)(n=2) B][(n—2)8] + ;% Bo[(n—Z)G]} , (C-8)

which holds only forn = f+2, 2+4, ... , r -4, r - 2; see figure C-1.
As a notational shortcut, we say n = (0 + 2)(2)[r - 2) are the allowed

values of n.

At this stage, we have succeeded in evaluating all the types of terms
that have been depicted in figures 2 and C-1. The total approximation to

integral (27) is therefore

r-1 r-2
G(w) = g Mn + An + L} + Rr s (C-9)
n=0+1 n=+2

in terms of the contributions in (C-5)-(C-8), where the slash on the

summation symbol denotes skipping every other term.
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However, this grouping of terms in (C-9) is according to sample valuves
9, = g(nh) of function g(x). It is advantageous to re-arrange this sum,
grouping terms instead according to sample values of functions Bo(u) and
B1(u), defined in (16) and (17). After considerable manipulations, the

following alternative to (C-9) is obtained:

1
20 G(w) = — S, B_(R@) - Q, B,(8) - 2q, J.(R®) -
o2 A o 2 1 $ %

]
- ;E Sr Bo(re) + Qr B](re) + 2gr J](re) +

r-2 r-2
] .
+ ;5 EE Dn Bo(ne) - EE Rn B](ne) . (C-10)

n=2+2 n=2+2

The auxiliary sequences utilized in (C-10) are defined below:

X T Y2 T Y Yy

Sr - gr B 2gr—1 ¥ gr—2

OX = (R + 1)9)Z+2 - 28R+ Z)QJLH (R 2)(AR+ 1)91

Or = (r - 2)(r - l)gr -2r(r - ?)qr“] + r(r - l)gra2 (C-11)
and

Dn - gn+? i 2gn+1 ¥ 2gn—] ) gn—£~>

E 4 6 A . for n - (C 12

n gn+? ) qn+l ’ gn gn—l gn-? (A 23(2)(r - 2) : )

?

Rn n Dn +nFn

C-6

X S L L S N L O S AT ORN
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[t 1s important to observe from (C-10) that the Bessel integrals Bo(u)
and B](u) need be evaluated only at u = ne for n = _f(2)r, and need not be
evaluated at the in-between points n = (R + 1)(2)(r - 1). Of course, the
input function g(x) must be evaluated at all x = xn = nh for n = f(1)r.
The quantities in (C-11) and (C-12) do not depend on 8 = wh, and can be

computed just once and stored, in preparation for use in (C-10).

If we are interested in evaluating integral G(w) in (27) at values of w

equal to integer multiples k of some increment A, then we must substitute
w=kA and O = wh = kah (C-13)

into (C-10). Then interest centers on computation of Bo(u) and B](u) at

u = mAh for certain integers m. This consideration has been discussed in

the sequel to (26).

BEHAVIOR FOR SMALL 8

When © is small, differences of functions with similar values are
required in (C-10). This same behavior obtainsfor Filon's method; see
[5; (25.4.53)]). Accordingly, it is useful to have a series expansion

for G(w) about & = 0, to be used for small 8.

Since [5; (9.1.12)]

u as u » 0, (C-14)
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substitution in (C-4), along with the change of variable y = t/8 - n, yields
the mid-point contribution

1

e e §ay s o -
-1

=
1]

]

~g,h de [1 - % 92(n+y)2] (1 y2) =
-1

o192
=39, h{] g0 +z | as e

A similar procedure for left point and right point contributions (C-6) and

¥
o

(C-15)

(C-7) gives
1 ] 2
Ly = Rn ~ 39, h{i -39 (n~ - 37} as e >0 . (C-16)

The total asymptotic contribution to G(w) in (27) is therefore given by

(a modified version of (C-9))
r-2 r r-1
G(w)~ZLn+ ERn+ E M, as & » 0, (C-17)
n=4 n=4+2 n=4+1

using (C-15) and (C-16). For & = 0, this reduces to Simpson's rule, (29).
Additiona) correction terms involving 84, 86 could be derived by using

additional terms in expansion (C-14).

When o is specialized to values o = kA in (C-10), the result is as given

in (36). Programs for both a faster high-storage procedure and a slower

low-storage procedure are listed below.
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' 1@ | ZEROD-TH ORDER BESSEL TRANSFORM USING PARABOLIC IWMTERPOLATION.
M 286 1 INTEGRALCH1, s,y dX Jo(W®) g(X> FOR Wl<=W<{=WZ IS STORED IM
!:o:' 0 GuwiEszs), where W = Ks+Delw, Fazter high-sztaorage.
FF 44 Del.=.983 I IHCREMENT «hy IH X
wh =15 L=0 ! Xl=L#Dels, Lo=o v
R 59 R=350 ! Xr=R#Del:, R-L MUST EE EYEM & »=9
BN 70 Delws=t., {  IMCREMEMWT (&) IN W
X 20 K1=0 | W1=K1#Deluw, K13=9
i&? - 99 K2=48 | W2=K2#Delw, Kzr=Kl
s 199 DOUELE L,F,K1,K2,k8,L1,L2,F1,R2,Ns. Kz, 1 | INTEGERS
yak 11@ DIM 50800, GuiSanr, SquSa@ ., J11050a0, T1r Saa .
1o 129 DIM BO(20000.,E17 20000
e 130 K@=k 1
149 K1=MAKCKL, 1)
4 15 Li=sL+1t
K 160 L2=L+2
‘ 170 R1=R-1
N 156 rR2=R-2
ot 1343 REDIM Gu(LiR),GuiKBiKZy, Sq0K1sK2), J11CK1tK2s, J1rikiskaD
-t Zaa REDIM BOCL+K1:R#K25, Bl iL*K1:iR*K2 )
oy 1@ FOR Ks=K@& TO KZ
'#‘l ‘ 220 Gwiks)=9,
Qe z3a MEXT Ks
kwa 240 FOR Ms=L TO R
RO 5@ Gx(Nsy=FNG(Ns#Delx? | SEE DEF FHGix) = geio
it 260 NEXT Ns
270 G1=GxCL>
b 23 Gr=G R
e 230 IF K850 THEN 3350
e 300 31=52=0,
N 310 FOR Hz=L1 TO R1 STEP 2
ot 120 S1=31+GacNsD
L 33a HEXT Hs
J ERYY FOR Nz=LZ TO RI STEP 2
' 250 22524 GAiHE
W 1Y) NEAT Ns
i £l Guwil = Gl+Gr+d, «S1+2, 232 #De a3,
e 350 S11=GacLls
o 339 GlIsgauLao
> 40 Gri1=G iRl
f‘: . 410 Gr2=Ga(R2)
FONS 429 S1=512=-2.+511+051
) 430 SreEgr-2.%Gri+Gra
Wiy 344 Dl =LalleG1 =2, +LaL 2251 14L25L1+G]
" ‘ 450 OrzaRZeR1aGr -2, *R2f2+Gr 1 +R«R12Gr 2
e 450 5122G1+2,
L 470 Gri=irel,
St 120 Di=Dlelu=rDel
N 430 FOR hz=k1 TO b2
ey S00 FhzsD2
S S19 Sqiksi=l,. (FaF .
Y S20 HEST bz
'
‘I;.'l
igk
»:"’
5
i
.l'_
C-9
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O R I PR I ool LI Y O ¢ BV s PR I SRV VI RV ¢ N I SO B SR URR AR\~ SRV VRN I S I AR
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O N N N e U (RO USRI U O ORI ¢ O Bt RN IV IV I U I S I B BT A3 3o TN P PR RS O SO PR TR, I G IR IR Y

U OO OO B P S VN O e
A A A AR

Lo
101
1o
193¢

o

TP C TY Y

IF L=@ THEN 588

FOR Ks=Kt TO K2

[=L#*Ks

CALL BesseslOl#D2, TG, J11 (K
HEXT ks

FOR Ks=K1 TQ K

[=R%ks

CALL Bessel{I#DZ,JO,Jiriksz:
NEXT K=z

SyA,BEL T EL D

m
)

LEQCT s, BLi T

FOR Hz=L2Z TO R2 STEP 2
FOR kz=K1 TO K2

IF B3ily{,B. THEN 679

CALL Bes:sel I1#D2,JO,J1,RA,BOCI ,Blilsn
NEXT Ks

HEXT Ns

IF L=B THEH 7409

FOR kz=K1 TUO K2

I=L#*ks
GuwiKs=Syqikas %31 BB I o0 «B1CIo-G1 2T ukz.
NEXT Ks

FOR Kz=K1 TOQ K2

I=R#*Ks
FeSqCK3)#5r#BOCl i —Gr«B1 (] -Gr2eJlroks
Cwiks)=GuwiKz)-F

HEXT Ks

FOR Ns=L2 TO RZ STEP 2

G2=Gx(Mz+2 >

Gl=G(Ha+1

H1=G<(Hz-13

HZ=5x(Hs=-20

Dn=5Z-2,+51+2, xH1-H2
Fri=G2Z-4,*G1+8, +GxiNs 1 -4, sH1+H2Z
Rr=MHz+*(Nz*Dr+Fr

FOR k=z=K1 TO kK2

I=Nz»ks
Guikzi=Guwibkar+Sgqibz veDr=Ed e To=FrsEL: [
HEST K=
HEXT Ms
F=Delw=*2,
FOR ks=kKl TO K&
Cwik3I=Gwih ¢
HEXT Ks
FRINT Guoxo

PALLE
END
1
DEF FNG. 7 Coge
G o 2lleENP o~ Selisl ' FARATLEIGH B ANFLE

RETURH Gx
FHEMD

W At e, 8 0 Ty B T T R UM U SO O iy
KO ‘),v s BT G ﬁ_“v,‘.x.f‘a"‘ 'ﬁ"?m“'t‘.et‘l!"’#?“ﬁt“".“s"

) T 9% V' %
XA N OO
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18 ! ZERD-TH OFRDER BESSEL TRAMNSFORM USING PARAEOLIC INTERPOILATION.
g I THTEGRALCRY ,Wrd dX JodWK) gidy FOR Wli=WIi=WZ I3 STORED IN
I Guwikzr, where W = Ks#lelw, Zlower law-ztorage.
39 Del«=.03 ! IHCREMENT vhoy IN
S0 L=9 I ¥l=sL#Delx, L:=9
=i k=308 I ®r=Rs*Dels, E-L MUIT BE EYEM % =3
va Delw=1. I IMCREMENT &) IN W
=15 K1=9 ' W1=K1+Delw, ki =0
i 28 K2=128@ | W2=KZ#Delw, k2i=kl
16 DOUELE L,R,EL1, K2, ¥B, L1, LS F1,R2Z,Nz,kz ! INTEGEFRS
11 DIM G290, Guw SaD, o S99
. 120 K=k 1
138 K1=MRAXK(KL, 1)
140 Li=L+1
150 L2=L+2
1£0 R1=R-1
179 rR2=R-2
139 REDIM G.fL:R>»,Gw(KB:k2,5q(KIsK2>
130 FOR Ks=kg TO K2
299 Guwikz i =9,
HEXT Ks
FOR Mz=L TO R
SxvMHz =FHG Hz+De 1 . 2 ! SEE DEF FHG. v = gviid
MEXT Hs
Gl=GxL2
ZED . Gr=G..R:
oTa IF K3:98 THEN 3¢9
230 51=82=0.
2Hg FOR Ms=L1 TO K1 ZTEP 2
EsTe S1=21+0xCHz
1o ME=T Hs
o FOR Hz=LZ TO Rz ZTEF 2
I SIRE R o PP X -
40 HE~T Hs
=S [P s IO I P o S TR S I SRS R 2 (ISR
Iey Glti=G- L1
FaY Lla=G~Lay
AN Gri=gsiRL
30 Gro=g - tRa
400 S1=512-2,2G11+G)
] 410 SrsGer-2,.xGr1+Gr
4o Dl=Lsllentla-2.=sLeLo+Gl1+LZ>»L 123
350 Oprskl+FlxGr=2,«F+RZ2Gr 1 +R«F1»Gr 2
340 Clz=51=2,
i 451 "
Yol Di=Delw=+Del .
470 FOR tz=F1 TO k2
R F=bz+D2
440 Syqebse=1. FxF
Sy HE.'T b3
"
b
ni
n:.?t
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TR TSN R AT N ..

IF L=9 THEHM S7O

T=L+*b2
FOR ks=Kt TO k2
CHLL =, I8, JL,A,BQ, B

bz Ok s *BO-D1+B1-G12+J1

1T

22217 T L, Je, J1, A B, EL

r*Sr+BO-0r-Bl-Grax]Jt
GwiKz))=Gwikss-F

NEXT. Ks

FOR Hsz=L2 TO RZ STEP =

G2=Gx(Ns+2)

G1=Gx(Hs+1>

H1=Gx{(HNzs~-1>

HZ2=Gx(Ns-2>

Dn=G2-2.,#G1+2.+«H1-H2

Fr=G2-4,+«G1+E5, xGiCHz =4, *Hl +H2

Ern=Mz* NzxIn+Fr>

T=Hs=D2

FOR Kz=K1 TQ kZ

CALL Bezzel)lrTekz, o, 71, A,EH,BL

Guiks ) =Guwiks»+39 Ks)>#DIn+BB-Rn+E1

HEXT Ks

NEXT Ns

F=Delu=2.

FOR Ka=K1 T

Gurb 2z 3=Guwh

HEST k3

FRINT Quu=:

FRHUZE

EnD

|

DEF FHNG:.:» !
Szl xEF BN

FETURM G-

FHEND

C
4
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