
AD-A187 63 NU? /

UNCWIS!ID MJHUArVM

M -I

Lm

Ms.^.

/ !FItE COPY

(0
WE:

l Go
A Writing Environment for Profmional

Tec ical Report 86-025
I

John B. Smith
Stephen F. Weiss Gordon J. Ferguson

Jay D. Bolter Marcy Lansman David V. Beard

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill. N.C. 27514

DTIC
ELECTE

Augut, 1
NOV3 0 9 UD

Apwui ft p, IiI I

/

Introduction

Technical and scientific professionals are writers. Regardless of title or job description,

they write..Most spend 25-75% of their time doing something related to writing - gathering

and organizing information, writing per ae, revising, talking with others about something

they have written, giving oral presentations accompanied by documents, etc. They write

many different forms - letters, reports, specifications, plans of various sorts, proposals,

justifications, articles, oral presentations, to name some of the more prevalent forms. These

documents are important. They form the skeleton of the writer's organization. While

that skeleton must be fleshed out by other activities, the collection of written documents

forms the core. If new tools can lead to more effective documents and can help skilled

professionals work more efficiently, the payoffs will be substantial.

Current tools for writing and producing documents fall into four major groups: edi-

tors, formatters, checkers, and organizers. The first two are well- established and need no

additional comment. Checkers are less universal, but still wide-spread. The most common

are the spell-checkers, but style-checkers are also beginning to appear. While those that

use table lookup and limited pattern matching are of questionable value, checkers that will

eventually include full parsers may have more impact, when they appear. The final group

- the organizers - include structure editors and outline processors. The former tend to

be mainframe-oriented and are often experimental or demonstration systems; Nelson's hy-

pertext [1] and Engelbart's NLS [21 are early examples. More recently, the microcomputer

outline processor has become widespread, but the jury is still out on its value.

Current tools for writing were not designed for professionals. Most were designed

for technical writers concerned with layout and physical production or for microcomputerFo;,

hobbyists. What is needed are tools designed specifically for the sophisticated professionalntlfi
01

who use workstations within distributed environments. 0

We are developing a comprehensive Writing Environment (WE) for this application., -

Parts of this work are supported by IBM, NSF, and the Army Research Institute. Inn/

describing this system, we will emphasize five key concepts: i $d*@
I Avail and/or

I COp4

/ "' IDist i poial =

iqA C I

the system is basnd on a cognitive model for written communication

" the system is highly visual

" the system, wan prototyped in Smalitalk and then ported to Objective C,

" the system will be used a series of cognitive experiments

4 '1 tern can be extended to other applications.

~% The emphasis placed on cognitive aspects in this description probably needs more expla.

nation. WE is one instance of an increasingly important kind of software that provides

users with an environment in which to think or with functions that supplement human

cognitive skills. To be successful, these intelligence augmenting systems must reflect the

cognitive processes of the people using them. We suggest that a modified development cy-

cle is needed that begins with an explicit cognitive- model of the user interacting with the

system to perform specific high-level tasks, includes formal testing of the model as well as

the software, and ends (the first cycle) with systematic refinement of both. Therefore, our

discussion of WE will include not just a description of the system but also its underlying

rationale and the methods we used to develop and test it.

Cognitive Model for Written Communication

WE is based on a cognitive model of written communication. The model was derived

from a review and synthesis of the literature in cognitive psychology, composition theory,

human/computer studies, as well as our own experience. However, it is put frhmore as a

question than as an assertion. We are testing the model in a series of cognitive experiments

and will revise it accordingly. It stresses the structure of information, particularly the

transformations writers and readers produce as they write and read documents, and views

writing and reading as symmetrical processes in several important respects (Figure 1).

In this section, we describe the model, briefly, and then explain how we have used it in

t designing WE.

2

Whether readers read a document from beginning to end or jump from one place to

another, when they "settle down' to read a passage they do so linearly. That is, they

decode a linear sequence of words. However, they do not comprehend linearly. Rather,

they comprehend by relating bits and pieces of information to one another hierarchically.

They see that several points do, indeed, add up to the conclusion the writer has drawn,

or that a general point is supported by the evidence or examples cited. As the process

continues, readers relate what they are reading to what they already know. This process

is particularly active as new information is integrated into the network of associations

that underlies long-term memory. Thus, readers read, comprehend, and remember what

they read by transforming information in one structural form into another: from linear

sequence, to hierarchy, to network.

The key to the reading process, however, is the hierarchical step. If a document signals

its hierarchical structure through features included in it - such as a system of headings,

overviews, topic sentences in paragraphes, etc. - readers use these clues to advantage. That

is, they read and comprehend the document more quickly and the structure they infer for

the document will match more closely that intended by the writer 13]. If such features

are omitted from the document - no headings or inconsistent headings, fiat narrative, few

topic sentences, etc. - to the extent readers understand what they are reading, they wini

construct their own hierarchy for the document. However, the hierarchy they construct

may or may not resemble that intended by the writer, and it takes time! Consequently,

organizing expository information into a hierarchical structure and then signaling that

structure is a particularly effective strategy for writers to follow.

Writing involves a similar series of transformations, but in reverse order. Writers

normally begin with a need to write. The content is likely be scattered through the writer's

long term memory or through various external sources, such as books, databases, or other

people's heads. The "structure" of that information is likely to be a very loose associative

network, derived as the information is brought to consciousnes. A key step for the writer,

then, is to gather information and to organise it. Most writers do so by constructing a

hierarchy, in the form of an outline or a tree. Once the hierarchy has been constructed,

3

-- -- -- --- --

Cogii elt vl-C1i
Proccss

Or ~ ~ Fgr 1:I II o ieIs tdii
Cogniive Mdel o i

Write Comuncaton

the task of writing becomes a traversal of the hierarchy during which the writer encode.

the concepts into prosea, graphics, or other form. Thus, writing involve, a similar but

opposite sequence of transformations: net work, to hierarchy, to linear sequene.

Several conclusions can be drawn. First, writing involves both networks (directed

graphs) and hierarchical structures but at different stages of the proces. All earlier struc-

ture editors with which we are familiar have adopted one principle or the other, but not

both. The hypertext family of editors - such an Nelson's hypertext system [1] its Brown

University derivatives 141, and NoteCards 16), - support directed graphs. A similar group

support hierarchical structures - such as Engelbart's NLS 121, Thinktank [61 and the other

outline processors, and XS-2 171. While users can construct a hierarchy within a directed

graph environment, they may find the environment more supportive when they can volun-

tarily relinquish some function during certain stages of the process in exchange for greater

discipline. Consequently, we have constructed an environme nt that includes both, permit-

ting writers to develop graphs and hierarchies separately but also to transfer conceptual

structures from one mode to the other.

Another key conclusion is that writing requires a number of different cognitive skills

- not just linguistic encoding skills. Writers think associatively, hierarchically on a small

scale (individual inferences and deductions), hierarchically on a large scale (constructing

a single large hierarchy), analytically (as they revise), etc. For many writers, particularly

those in scientific and technical fields, these stages also include visual and spatial reasoning.

This is particularly true during early exploratory thinking and during the organizational

stage. Consequently, we have built our environment around the notion of an abstract space

in which users can represent and manipulate concepts visually.

A third, and related, implication is that writing includes both bottom-up and top-

down thinking. During early exploration, writers often think bottom-up as they trace

paths of associations, gather information, explore various relations, etc. While an entire

document can be organized hierarchically by continuing a bottom-up strategy, it cannot

be "aimed" eaily or reliably using this approach. To focus a document and to insure

that it achieves a clearly recognize goal, experienced writers often begin with a single large

4

objective and derive the hierarchical structure from that point. Thus, writers also need

tools that let them work top-down. The point is not that one form of thinking or the

other is best; both are needed but at different stages of the process. Consequently, the

environment we are developing is strongly multimodal.

While cognitive psychology has had a strong impact on human factor. studies and the

design of computer interfaces, it has had less impact on the underlying architecture and

function of systems. In WE, the cognitive model has influenced not just the interface; it is

central to the entire design and is a concept that will be evaluated experimentally. Thus,

the system itself and the theoretical basis on which it is built emerge as a question: How

do users write and think while working within this particular computing environment? A

substantial part of our effort is directed at answering this question, as we explain below in

the section on Cognitive Experiments.

Description of WE

Three aspects of WE distinguish it from other writing support systems: the visual

interface, its multimodal architecture, and an underlying relational database.

Visual Interface

The interface for WE is based on three major factors derived from the cognitive model:

" writers use a number of different cognitive skills in writing

" writing involves a series of transformations in which information in one structural

form is changed into another

" structures can be more easily comprehended, constructed, and manipulated when they

are represented visually (e.g., in a tree) than when they are represented linguistically

(eg., in an outline, an in 1.3.2.4).

Consequently, the user interface is distinctly visual and graphical, as opposed to language-

oriented.

The default layout for the screen shows five tiled windows (Figure 2). The two largest

are a graph window and a hierarchical window. The first supports operations that conform

to the rules of a directed graph embedded in a Euclidean space. The second obeys the

rules of hierarchies. A smaller window is available for either a text or a graphic editor used

to write or draw the content of the document, associated as blocks of data with individual

nodes. The fourth window in used to search the relational database for other structures

or nodes that might be inserted into the current document. The last window is a control

panel for managing the environment. Each window in described in more detail below in

relation to its corresponding mode.

User. can easily change the default configuration by rasing and moving the various

windows. Thus, the entire screen can be used for the directed graph window during, say,

the early brainstorming stage of writing. Or the entire screen can be used to show a tree

in hierarchical mode during organization. Another option is to split the screen between a

directed graph and a hierarchical window so that small hierarchical substructures can be

copied from one mode to the other. (See Figures 2-6, below.)

Modes

A seond key architectural feature of WE is its multimodal structure. While the tide

of opinion in currently running against such designs, separating the function of the system

into separate domains is desirable for this particular application. Since writing involves

several different kinds of thinking, we support each with functions specific to that cognitive

mode. An hypothesis we will test experimentally is that use!rs will prefer to "drop into"

different modes of thinkring for different activities, gaining flexibility in some cases, giving

it up in others in exchange for greater rigor and consistency.

We expect most writers to begin a project by working in a directed graph window.

This mode is particularly well suited for bottom-up thinking. Using a mouse, users can

6

fAl sot W

thmm* a lNmhtmmm

Figure 2:
WE Default Screen

open a window to cover the entire screen. They can then create nodes at any spot in

the windows simply by pointing with the mouse, clicki" g for a menu, and selecting the

"create node' option. (Since the last option selected on a particular menu is retained as

the default, subsequent clicks produce additional nodes without further selection.) They

can labe each with a word or phrase, either when the node is created or later as an editing

operation. Users can also move nodes into clusters of related concepts (Figure 3.1) and

can join pairs of nodes with directed links to denote specific associations (Figure 3.2).

A second mode/window provides functions that conform to the ruls for hierarchies

(Figure 4). Users begin in this window by creating a root node and labeling it, as in graph

mode. They can then create child nodes under the root, indicating the major divisions of

the document. The process of division can be continued until the nodes represent sections

that can easily be written, usually a few paragraphs, or represented in a single graphic.

A number of structure editing functions are also provided. These permit users to move

node or branches around in the hierarchy, add and delete both leaf and interior nodes,

etc. User. may also import nodes or structures from graph mode into tree mode. That

is, they can go back to a directed graph window created earlier and select a node that is

a root for a small hierarchical relation; when they return to the hierarchical window, they

can point to the pla ce where the branch should be placed and the system will insert the

subtree into the tree at that point.

The system provides four different visual representations for hierarchies. The first is a

conventional horizontal tree in which parent/sibling relations are indicated by left to right

relations (Figure 4). The second is a vertical tree that extends from top to bottom (Figure

5). Zoom and roam functions are provided for each. In fact, since users can open several

different windows on the same structure, they can show a small schematic view of the

whole tree in one, an enlarged view of a section in a second, and a still larger image of the

particular branch being worked on in a third. This is particularly useful for large structures,

for team development efforts, or other projects where managing technical complexity is an

issue. A third view presents a Chinese box representation of the hierarchy in which child

nodes are shown as small boxes inside the larger box representing the parent node (Figure

7

O"T aa oKn fte

to a

Ntemos

Int

Figure 3:
WE Spatial Graph Mode

TT40L PAsIM mf met a
Us

Umm UUO

TS a or 94

mactv..

bt1te

Figure 3.1:
WE Spatial Graph Mode,

Conceptual Clusters

BM W ORwo Ow

Figure 3.2:
WE Spatial Graph Mode

Conceptual Clusters with
Associative Links

Figure 4:
WE Hierarch y Mo Pe

Hort hee Tre

mm OW. O

Figure 5:
WE Hierarchy Mode

Vertical Tree

6). Since the system shows only three levels of depth with this view, it provides a form of

information hiding. The last view is a standard outline view.

At any point, in either graph or hierarchical mode, the user can open a node and insert

content. This in done by invoking either a conventional text or graphic editor. Typically,

users write a paragraph or several paragraphs or create a single visual image. In this mode,

the function provided in that of the particular editor. When users finish with a content

unit, they close the node and the content is saved in a file system Thereafter, whenever

a node is moved using any of the structure editor functions, the associated content is also

moved along with it. Since a node is a typed object bound to a particular editor/display

program, the kinds of data that can be associated with a node can be extended simply by

extending the set of types and associated editor/display programs. We describe several

planned extensions, in the section on Future Work.

A fourth mode helps user saearch the relational database in which nodes, links, and

structures are stored. We explain its purpose and function in the following section. Here,

we merely call attention to its existence.

All four modes - graph, hierarchy, content, and search - are "held together" by a

control panel. The control panel includes two major fields: a mode tree and a pair of

stacks. The mode tree represents the different modes, as first-level children, and the

specific named instances of each (i.e., windows), as second-level children. It provides a

variety of management functions. For example, to move a buried window to the forefront,

users merely point to it in the mode tree and select the appropriate operation. Thus,

users can quickly get an overview of the entire "screen space" they have created, including

windows covered by other windows. The stacks receive the nodes and structures created by

the yank operation explained earlier. They permit users to make copies of several different

nodes or structures while working in one mode/window and then selectively move them at

their leisure into the structure being created in another.

8

Figure 6:
WE Hierarchy Mode

Chinese Box

Database

A third major innovation in WE in the use of a relational database system as the

store for a11 structural information. The database holds three kinds of entities: structuares,

nodes, and links. Structures are typed, named sets of links (and, by implication, associated

nodes). The type indicates whether the structure is a graph, hierarchy, or path; this

information is used by the system to determine the operations that can be performed on

the particular structure. Each node is also viewed as a typed object. Associated with it

are various attributes that identify the type of content "within' that node and, thus, bind

it to an editor/display program; its spatial dimensions in graph-mode space; and both its

associative and hierarchical links. Links are attributed pairs of node identifiers. The node

identifiers define the directed arc; and the attributes indicate the kind of link (e.g., graph),

the structure of which the link is a part, and other system information.

Users can search the database for a structure, node, or link by its identifying label

or by its attributes. This is done through the search window/mode, mentioned in the

preceding section. In the current system, the database is confined to a single project,

but we will extend its definition to permit teams and departments to store collections

of documents and other kinds of data. Thus, future users will be able to search the

database for information relevant to the current project. Once a usable node or structure

is found, it can be imported into the environment and included in the structure currently

being developed. A longer term goal is to merge another system we are developing -

MICROARJIAS [81, an advanced full-text retrieval and analysis system - with WE to

support content-based searches, as well.

Implementation

We have followed an unusual path in implernentiaig WE. First, we designed and im-

plemented a prototype system in Smailtalk running on a SUN-3 workstation. Smatalk

provides an object-oriented environment that encourages information hiding and hierarchi-

cal modular design in which each level of the system is implemented in terms of the tools

defined at lower levels. It also provides a complete development environment including

a sophisticated system browser, extensive graphic tools, and access to the full Smalltalk

source. Since Smailtalk is an interpreter, changes can be made and tested quickly and eas-

ily. The prototype system, shown in figures 2 - 6, provides full functional capability and

can support documents up to about fifty nodes. Using it, we were able to test our original

design by actually using the system to see how various features worked in conjunction with

one another. However, since Smalltalk is not suited for large, high performance applica-

tions, we planned from the beginning to port the system to other software and hardware

environmenta.

To facilitate this move, we developed device-independent toolkits for drawing and

for managing user interaction with the system. Both toolkits were designed as Smalltalk

classes. In Smailtalk, they were implemented directly using methods provided by the

system. To port them to other environments, we are writing drivers that use the graphics

and window management facilities providad by the target system. We have completed the

porting of both toolkits to Microsoft Windows for the IBM PC/AT, and we are currently

moving them to X Windows for the SUN workstation.

Finally, we are porting the entire system from Smalitalk to Objective C, a synthesis

of SmaIltalk and C developed and marketed by Productivity Products International, Inc.

Objective C provides a large-grain structure of classes, methods, and inheritance charac-

teristics nearly identical to Smailtalk. But, it also provides the small- ain capability to

repalace system primitives with C functions for greater speed and processing efficiency.

While we can foresee the possibility of translating Smaltalk classes into Objective C auto-

matically, for the present we must still rewrite the syntax manually. This is largely a direct,

line-for-line translation that requires virtually no changes to overall system architecture.

Cognitive Experiments

As we noted earlier, WE was designed in accord with a cognitive model of the writing

process. We are using the system as an observational instrument in a series of formal

experiments to evaluate that model as well as other cognitive hypotheses and to test

I0

specific system features and representation schemes. In this section, we will not describe

thieperqiments in detail, but rathier the technical features of the system that support

them.

A built-in tracking facility permits us to record the actions of users at a functional

or operational level. Thus, we can observe the sequence of operations employed to create

nodes, move them into spatial clusters, link them into associative relations, etc. Each

operation is recorded along with the time it was performed and its associated parameters

and stored in the same relational database as the document. These data constitute a high-

level concurrent protocol of the session, collected unobtrusively and in a machine-readable

form ready for analysis.

Traditional approaches to concurrent protocols have employed video recordings of

users interacting with a system, "thinking aloud" protocols in which users attempt to

narrate the thinking processes they are using, and keystroke records. All three result in

enormous volumes of data. Both video tape and thinking aloud protocols also require ex-

tensive encoding to produce machine-readable data that can be analyzed. Thinking aloud

protocols present further theoretical problems for situations where verbalization is not an

integral part of the task being performed, such as tasks in which users manipulate spatial

forms [gj. This is exactly the situation presented by our system - writers, particularly

during the exploratory and organizational phases of writing, often think spatially and ab-

stractly, rather than verbally. For these reasons, we believe the relatively large-prained

record produced by the tracker, representing the operational history of a sesion will pro-

vide more usable and reliable data for our purposes than more traditional protocols.

The cognitive model on which the system was built is expressed as a grammar. While

it superficially resembles the GOMS model of Card, Moran, and Newell [101, it goes beyond

their framework. One distinction is the extension to a qudsi context sensitive grammar.

Context free productions are not powerful enough to handle user operations for this ap-

plication. More importantly, the grammar can be used to develop a parser to analyze the

protocols generated by the tracker. The trees that result from parsing the sequence of

operations performed by a user during a session constitute a formal representation of that

user'@ strategy for the session. Thus, we have a concrete way of comparing the strategies

of different group. of users, such as those of experts and novices. Additional display and

statistical analysis techniques will permit us to play back a user's session, graph distribu-

tions of specific operations over time, look for "cognitive rhythms", and note combinations

of functions frequently used together.

On the basis of this information, we will revise the cognitive model, as appropriate, and

then refine the system. Thus, we hope to set-up a development loop in which the system is

designed in accord with a weD-efined model of the user's interaction with the system at a

cognitive level, implemented in a fast prototype environment for initial testing, ported to

an actual-use configuration for more extensive experimentation, and then systematically

revised in accord with empirical results.

Future Work

While the system we have described is intended as an aid for professionals who write,

it can be extended to other applications. Basically, the system provides a general visual

interface for creating, editing, and diplaying directed graphs of abstract nodes that can

be associated with typed data. A number of other applications can be modeled in these

terms. We plan to extend our work into three other areas.

First, we want to extend the system from a single user system to a multiple user

system for distributed environments. The central database underlying the system can

facilitate team development of a structure and collaborative efforts. We also want to add

a simultaneous teleconferencing facility in which several team members can view the same

display on their respective workstations while they work on the same underlying data

structure. This will be done in an environment in which switch~sble voice and video can

be added to permit them to discuss their work and to see one another. We will also try

to extend the cognitive model to characterize the cognitive/communication acts of a team

of individuals working together to construct a single, integrated conceptual structure and

then test that model, analogously.

12

Second, we will extend the system to include other forms of data. Since a node is

an abstract, typed entity, other forms of content can be included by extending the set of

node types and by providing the necessary display and edit functions. The system can,

thus, include sound and video sequences from conventional video disks as well as emerging

cd/roms by including in the nodes the instructions necessary for the bound function to

display that data.

A third application will extend the system to form a vertically integrated environ-

ment for software development. The primary extension necesary is to make the graph

multi-dimensional. In this way, one two-dimensional plane can be assigned to functional

specifications, a second to source code, a third to executable modules, a fourth to test

results, etc. While each level represents a large field of research, we will limit our work to

a small subset of tools in each - such as Objective C and C in the source level - so that

we can concentrate on issues of interaction between levels.

Acknowledgments

A number of people have contributed their ideas and their labors to this project. We

wish to thank the following graduate students: John Walker, Valerie Kierulf, Greg Berg,

Paulette Bush, Yin-Ping Shan, and Katie Clapp. We also wish to thank Myra, Reaves for

her help in preparing the manuscript for this report.

13

References:

11) Nelson, T.H. (1981). Literary Machines, Swarthmore, PA: Nelson, T.H.

[21 Engelbart, D., & English, W. (1968). A research center for augmenting human

intellect. Proceeing. of1968 FJCC, 33, Part I, Montvale, N.J.: AFIPS Press, pp. 395-410.

131 Meyer, B.J.F., Brandt, D.M. & Bluth, G.J. (1980). Use of top-level structure in

text: key for reading comprehension of ninth grade students. Reading Research Quarterly,

1 pp. 72-103. Kieras, D.E. (1980). Initial mention as a signal to thematic content in
technical passges. Memory and Cognition, 8(4), pp. 345-353. Williams, J.P., Taylor,

M.B. & Ganger, S. (1981). Text variations at the level of the individual sentence and the

comprehension of simple expository paragraphs. Journal of Edueation Psychology, 73(6),

pp. 851-865.

[4] Feiner, S., Nagy, S. & van Dam, A. (1982). An experimental system for creating
and reporting interactive graphical documents. ACM Transactions on Graphics, 1(1), pp.

59-77.

15] Trigg, R., Suchman, L. & Halasz, F. (1986). Supporting Collaboration in Note-

Cards. In Proceedings of CSCW '86, Austin, TX: CSCW '86 Conference Committee.

[6] Thinktank (1984). Palo Alto, CA: Living Videotext, Inc.

[7] Stelovsky, J. (1984). XS-2: The user interface of an interactive system. Ph.D.

Dissertation, Zurich: Swiss Federal Institute of Technology.

[8] Smith, J.B., Weiss, S.F. & Ferguson, G.J. (1986). MICROARRAS: An Overview.

Technical Report #86-017, Chapel Hill, NC: UNC Department of Computer Science.

[9] Nisbett, R.E. & Wilson, T.D. (1977). Telling more than we can know: Verbal
reports on mental processes. Psychological Review, 84, pp. 231-259. Ericsson, K.A. &

Simon, A.S. (1980). Verbal reports as data. Psychology Review, 83(3), pp. 215-251.

[10] Card, S., Moran, T., & Newell, A. (1983). The Psychology of Human-Computer

Interaction. Hillsdale, NJ: Erlbaum Associates.

14

