
A187 559 THEORY AND PRACTICE OF FAULT
TOLERANCE IN DISTRIUTED

t/l
SYSTEMS(U) TEXAS UNIV AT AUSTIN DEPT OF COMPUTER

I SCIENCES K M CHANDY ET AL 36 MAR 87 AFOSR-TR-87-1462
a UNCLASSIFIED AFOSR-85-0252 F/G 12/5 UL

7

111111.00

N1.8
111111.5 1111 41Iiii.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS _1963-A

011 Fu FILE CUE)AOS.h 871 6

Ln Air Force Scientific Report
In

CIO AFOSR 85-0252
6/15/85 through 10/14/86

I K. M. Chandy and J. Misra

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712
(512) 471-4353

March 30, 1987

DTIC
FELECTE
%.OCT 2 9 wt3

0, H

04 9

AppwkVedfrpblcrk

tc.ADDRESS (City, State, and ZfP Code) . 10 SOLJRCE OF FUNDING NUMBERS
A E1 S. R/,;, PROGRAM PROJECT TASK WORK UNIT

A FI D C 20332-6448 ELEMENT NO NO NO. ACCESSION NO
61102F 2304 A3

11 TITLE (Include Security Classification)

Theory and Practice of Fault Tolerance in Distributed Systems

12 PERSONAL AUTHOR(S)
Prof. K.M. Chandy & Prof. J. Misra

13a TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year Month, Day) S. PAGE COUNT
Final I FROM 6/15/85 TO 10/14/8p March 30, 1987

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP I SUB-GROUP

RESEARCH OBJECTIVES

Over the years 1981-1985, our research on distributed systems, supported by AFOSR
81-0205, resulted in a number of significant specific algorithms. These include dis-
tributed snapshots []1, conflict resolution [1], detection of quiescent properties [(j, dis-
tributed search etc. In addition, we pioneered some proof techniques for distributed
systems[.

As the field matured and our understanding of the basic issues deepened, we looked
into a unifying framework for studying all parallel programming problems. The sci-
entific benefit in unifying diverse areas is obvious: research in one area carries over
to the others, the issues that are fundamental to all areas-such as synchronization,
mutual exclusion-can be studied and solved in their full generality and the issues of
implementation on specific architectures can be separated from the scientific issues of
problem solving. The potential economic benefits are attractive: if problem solving
can be divorced from architectural considerations then a solution can be developed
independent of the architecture and then implemented on specific architectures with
modest amounts of effort.

Our work during 1985-1986 concentrated on developing such a unifying framework
under the name UNITY. This work has attracted considerable attention-in a recent
symposium on Concurrent Programming organized by C.A.R. Hoare (under the aus-
pices of the Year of Programming at the University of Texas), UNITY represented a
major share of the presentations and was featured largely during the discussions. We
are in the process of writing a book (Parallel Program Design: A Foundation), to be
published by Addison-Wesley later this year.

Our work in UNITY was to propose a simple model of computation and a logic
to reason about properties of such programs. The simplicity of the model-a program
is a set of assignment statements, whose execution consists of executing any arbitrary
statement at each step with the restriction that every statement gets executed infinitely
often-and the logic-the usual assertional style logic for sequential programs, proposed
by Hoare, augmented with two temporal operators to reason about nonterminating

* executions-is striking. In fact, by restricting ourselves to a simple model we have
managed to solve a number of thorny theoretical issues (dealing with fairness, for
instance).

Our success with UNITY far exceeds our initial expectations. We have managed to
study problems from a variety of problem areas--combinatorics, graph algorithms, ma-Or-
trix problems, operating system problems, communication protocols, fault tolerance,

,i~i circuit design, and show that our unified model of computing yields simpler and more
general solutions. We have developed a number of transformations which are appropri-,r
ate for implementations on a variety of architectures: sequential, asynchronous shared
memory, distributed message passing, synchronous parallel with shared memory, sys-
tolic arrays and VLSI chips. The diversity of the application areas and the architectures)'/-
studied lends credence to our hypothesis that there is a UNITY to programming. -Y' Coa ela

'and/or
2 pca

In the next section, we give a more detailed overview of UNITY and the current
status of research. Among the other work supported by the AFOSR grant is a paper
on Distributed Discrete Event Simulation which appeared in the Computing Surveys.
This work has excited enough interest that commercial packages for distributed simu-
lation are now available for the INTEL hypercube. We are told that a 128-processor
hypercube delivers an 80 to 100 fold performance improvement over a VAX-750, using
our distributed simulation algorithm.

THE UNITY OF THE PROGRAMMING TASK

Our work is about parallel programs; however, it is primarily about programs and
secondarily about parallelism. The diversity of architectures and consequent program-
ming constructs (send and receive, await, fork and join...) must be placed in the proper
perspective with respect to the unity of the programming task. By stressing the differ-
ences, we are in danger of losing sight of the similarities. Our central thesis is that the
unity of the programming task is of primary importance; the diversity is secondary.

The basic problem in programming is managing complexity. We cannot address
that problem as long as we lump together concerns about the core problem to be solved,
the language in which the program is to be written, and the hardware on which the
program is to execute. Program development should begin by focusing attention on
the problem to be solved and postponing considerations of architecture and language
constructs.

Some argue that in cases where language and hardware are specified as part of a
problem, concerns about the core problem, language, and hardware are inseparable.
For instance, programs executing on a distributed network of computers must employ
some form of message passing; in such cases concerns about message passing appear
inseparable from concerns about the core problem. Similarly, since the presence or
absence of primitives for process creation and termination in the programming language
influence the program, it appears that language issues are inseparable from others.
Despite these arguments, we maintain that it is not only possible but important to
separate these concerns; indeed it is even more important to do so for parallel programs
because parallel programs are less well understood.

Twenty-five years ago, many programs were designed to make optimum use of
some specific feature of the hardware. Programs were written to exploit a particular
machine language command or the number of bits in a computer word. Now, we
know that such optimizations are best left to the last stages of program design or left
out altogether. Today, parallel programs are designed much like sequential programs
were designed in the 1950's: to exploit the message passing primitives of a language
or the network interconnection structure of an architecture. A quarter century of
experience tells us that such optimizations are best postponed until the very end of
program development. We now know that a physicist who wishes to use the computer
to study some phenomenon in plasma physics, for instance, should not begin by asking
whether communicating sequential processes or shared-memory is to be used, any more

'il " i r"r r ,. 3

than whether the word size is 32 or 60 bits. Such questions have their place, but
concerns must be separated. The first concern is to design a solution to the problem;
the later concern is to implement the solution in a given language or for a particular
architecture. Issues of performance on a specific architecture should be considered, but
only at the appropriate time.

Programs outlive the architectures for which they were designed initially. A pro-
gram designed for one machine will be called upon to execute efficiently on quite dis-
similar architectures. If program designs are tightly coupled to the machines of today,
program modifications for future architectures will be expensive. Experience suggests
that we should anticipate requests to modify our programs to keep pace with mod-
ifications in architecture-witness attempts to parallelize sequential programs. It is
prudent to design a program for a flexible abstract model of a computer with the
intent of tailoring the program to suit future architectures.

An approach to exploiting new architectural features is to add features to the
computational model. However, a baroque abstract model of a computer only adds to
the complexity of programming. On the other hand, simple models such as the Turing
Machine do not provide the expressive power needed for program development. What
we desire is a model that is simple and has the expressive power necessary to permit
the refinement of programs to suit target architectures.

The emphasis on the unity of the programming task is a departure from the current
view of programming. Currently, programming is fragmented into subdisciplines, one
for each architectural form. Asynchronous distributed computing, in which component
processes interact by messages, is considered ir.-elevant to synchronous parallel comn-
puting. Systolic arrays are viewed as hardware de-ices and, hence, traditional ideas of
program development are deemed inapplicable to their design.

Our goal is to show how programs may be developed in a systematic manner
for a variety of architectures and applications. A criticism of this work is that its
fundamental premise is wrong because programmers should not be concerned with
architecture--compilers should. Some styles of programming-e.g., functional and
logic programming-are preferred precisely because architecture is not their concern.
Our response to this criticism is two-fold. First, programmers who are not concerned
with architecture should not have to concern themselves with it-they should stop
early in the program development process with a program which may or may not map
efficiently to the target architecture. Second, there are some problems in which pro-

0 grammers have to be concerned with architecture either because the problem specifies
the architecture (e.g., design a distributed command and control system) or because

performance is critical; for these problems the refinement process is continued until
efficient programs for the target architectures arr obtained.

UNITY

We introduce a theory-a programming notation and proof system--called UNITY.

4

We choose to view our programs as Unbounded Nondeterministic Iterative Transfor-
mations-hence the term UNITY. In the interests of brevity, the phrase "a UNITY
program" is preferred to "a program in unbounded nondeterministic iterative trans-
formation notation." We are not proposing a programming language. We adopt the
minimum notational machinery to illustrate our ideas about programming.

A UNITY Program

A program consists of a declaration of its variables and their initial values and a set
of multiple assignment statements. Computation proceeds by executing any assignment
st'tement selected nondeterministically. Nondeterministic selection is constrained by
b .. ollowing "fairness" rule: every statement is selected infinitely often.

The state of a program is given by the values of its variables. A fixed-point of a
program is a state in which, for all assignments in the program: values on the left
and right sides of the assignment are equal. A program execution does not terminate;
if, however, a program is at a fixed-point then continued execution leaves the state
unchanged, and in this sense, continued execution at a fixed-point has the same effect
as ceasing execution.

Representing Programs for Various Architectures In Our Computational Model

Our model of programs is simple; in fact it may appear too simple for effective
programming. We find that our model is adequate for the development of programs
in general and parallel programs in particular. Now, we give an informal and very
incomplete description of how different kinds of programs are represented in our model.

Our computational model is a nondeterministic state transition system. The state
of a program is given by the values of its variables. A state change is effected by
assigning values to one or more variables by executing a multiple assignment statement.

A synchronous system is one in which there is a global clock variable that is in-
cremented with every state change. Multiple assignments model parallel synchronous
operations.S

A statement of the form await B do S in an asynchronous shared-variable program
is encoded as a statement in our model which does not change the value of any variable
if B is false and otherwise has the same effect as S. A Petri net, another form of asyn-
chronous system [], can be represented by a program in which a variable corresponds

to a place, the value of a variable is the number of markers in the corresponding place,
and a statement corresponds to a transition. The execution of a statement decreases
values of variables corresponding to its input places by 1 (provided they are all positive)
and increases values of variables corresponding to its output places by 1 in one multiple
assignment.

Asynchronous message-passing systems with first-in-first-out error-free channels
may be represented by encoding each channel as a variable whose value is a sequence of

6

messages (representing the sequence of messages in transit along the channel). Send-
ing a message is equivalent to appending the message to the end of the sequence and
receiving a message to deleting its head.

We cannot control the sequence in which statements are executed. However, by
introducing variables (and using them in conditional expressions) we can ensure that
the execution of a statement has no effect (i.e., does not change the program state)
unless the statement execution occurs in a desired sequence.

Programs and Mappings

The UNITY notation is a mathematical notation to describe unbounded nondeter-
ministic iterative transformations of the state of a system. A UNITY program describes
what should be done in the sense that it specifies what the initial state and the state
transformations (i.e., the assignments) are. A UNITY program does not specify pre-
cisely when an assignment should be executed-the only restriction is a rather weak
fairness constraint: every assignment is executed infinitely often. Nor does a UNITY
program specify where, i.e., on which processor in a multiprocessor system, an assign-
ment is to be executed, or to which process an assignment belongs. Also, a UNITY
program does not specify how assignments are to be executed or how fixed-points are
detected in an implementation.

UNITY separates concerns between what on the one hand and when, where and
how on the other. The what is specified in a program, whereas the when, where and
how are specified in a mapping. By separating concerns in this way, a simple program-
ming notation is obtained that is appropriate for a wide variety of architectures. Of
course, this simplicity is achieved at the expense of making mappings immensely more
important and more complex than they are now. This separation of concerns is a point
of departure of UNITY from the imperative programming style.

Though the mappings described here are from UNITY to architectures, the map-
pings could just as well be to programming languages-for instance mappings could be
proposed to PASCAL, CSP, and MODULA.

Mappings are illustrated here by proposing one from UNITY to von Neumann
machines. The goal of this illustration is to give the reader some idea of what mappings
are.

A mapping to a von Neumann machine specifies the schedule for executing as-
signments, the manner in which fixed-points are detected, and the manner in which

* multiple assignments are executed. We propose a mapping in which an execution sched-
ule is represented by a finite sequential list of assignments in which each assignment
in the program appears at least once. The computer executes this list of assignments
repeatedly. The list is executed infinitely often (or equivalently, until a fixed-point is
reached). We are obliged to prove that the schedule is fair, i.e., that every assignment
in the program is executed infinitely often. Since every assignment in the program
appears at least once in the list, and since the list is executed infinitely often, it follows

i8
S: "

that every assignment in the program is executed infinitely often.

The implementation of multiple assignments on sequential machines is straightfor-
ward and is not discussed here.

To evaluate the efficiency of a program executed according to a given mapping,
it is necessary to describe the mapping-the data structures and the computational
steps-in detail. We shall not do so here because our goal is merely to emphasize
the separation of concerns: programs are concerned with what is to be done whereas
mappings are concerned with the implementation details of where, when, and how.

A description of a mapping from a UNITY program to a multiprocessing computer
includes a specification of which processor is to execute a given assignment. There are
implementations in which assignments-considered to be separate tasks-migrate from
processor to processor. However, we restrict attention to a static allocation of assign-
ments to processors. Thus the problem is one of partitioning the set of assignments of
a UNITY program among a static set of processors. A mapping to a multiprocessing
computer also specifies where the variables of a program are to be stored. In some
architectures all variables reside in a common shared memory. In other architectures,
each processor has its own local memory; it is more expensive for one processor to
access a variable in another p-ocessor's memory than to access a variable in its own

N.local memory-for such architectures the problem is that of partitioning variables and
assignments among processors.

Descriptions of architectures and mappings can be made extremely detailed. Mem-
ory caches, I/O devices and controllers should be described if it is necessary to evaluate
efficiency at that level of detail.

SUMMARY

*We propose a unifying theory for the development of programs for a variety of

architectures and applications. The computational model is unbounded nondetermin-
istic iterative transformations of the program state. Transformations of the program
state are represented by multiple assignments. The theory attempts to decouple the
programmer's thinking about a program and its implementation on an architecture;
we attempt to separate the concerns of what from those of where, when, and how. De-
tails about implementations are considered in mappings of programs to architectures.
We hope to demonstrate that we can develop, specify and refine solution strategies

: _'iindependent of architectures.
The utility of a new approach is suspect, especially when it is a radical departure

from the conventional. Therefore, we have madea conscientious effort to apply our
ideas to a number of architectures and application domains. Our experience, while not
conclusive, is encouraging.

A' 7

:.. ..: _ _l~m11 _II 11 1 -1 , .

..

LIST OF PUBLICATIONS

[1] (with K. Mani Chandy) "An Example of Stepwise Refinement of Distributed Pro-
grams: Quiescence Detection," ACM Transaction on Programming Languages and
Systems, Vol. 8, No. 3, July 1986, 326-343.

[2] "Distributed Discrete-Event Simulation," Computing Surveys, Vol. 18, No. 1,
March 1986

"0

- - - - - - - - - -

LIST OF PROFESSIONAL PERSONNEL

Name K. Mani Chandy
Title Co-Principal Investigator
Department Faculty, Department of Computer Sciences, UT

Name Jayadev Misra
Title Co-Principal Investigator
Department Faculty, Department of Computer Sciences, UT

'-'p..

INTERACTIONS (Invited Lectures Given on Topics Related to Wrok Per-
formed Under This Grant)

, University of California at San Diego
November 25, 1985

" Computer Measurement Group XVI Conference, Dallas
December 10, 1985

* California Institute of Technology, Los Angeles
March 4, 1986

" Microelectronics and Computer Technology Corporation (MCC)
Spring 1986, 3-lecture series

" Lake Arrowhead (CA) Workshop on High Performance Computing

September 9, 1986

" M.I.T. Workshop on Distributed Algorithms in Communication and Computation, Camb

October 23, 1986

" Workshop on Design and Implementation of Concurrent Programs, The Netherlands
November 18-20, 1986

gun

I
10

ADVISORY FUNCTIONS

Dr. Chandy serves on the Committee on Recommendations for U.S. Army Basic

Scientific Research, National Research Council, July 1, 1984 to June 30, 1987.

i

_ 11

a

~Ja

a.

V F'
-a

*4f

4.?

)ps-

a~*.

V...

4

b

iv
iv,

4

S

4'
a,

0.1 ~rw~
V..

i
04

~~%*a*.* - ~ 'aX' 'a~'a 'a *aJ"~" .~a
a -. - ., .--. ~.

I,.

