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A FRAMEWORK FOR EVALUATING COMPUTER ARCHITECTURES TO
SUPPORT SYSTEMS WITH SECURITY REQUIREMENTS,

WITH APPLICATIONS

1. INTRODUCTION

Many Navy embedded computer systems must satisfy stringent security requirements. To meet
these requirements while imposing minimal constraints on the operational environment, system
software and hardware must enforce appropriate controls on the system. Experience has shown that
building systems to meet these requirements is difficult and that the instruction set architecture (i.e. ,
the abstract machine visible to system programmers) of the chosen computer can be a significant fac-
tor in determining whether security requirements can be met [1]. In many cases, systems unable to
meet requirements have had to operate under waivers or substitute expensive and inconvenient physi-
cal controls and clearance procedures for controls lacking in the system.

The criteria presented here were developed for assessing a computer's instruction set architec-
ture rather than operating systems or application programs developed for it. Programs that operate on
a particular machine can to some degree compensate for deficiencies in the instruction set architecture
(e.g. , by careful design of interfaces), and even the best instruction set architecture can be perverted -"

through inappropriate or sloppy programming. Thus no analysis using this framework can by itself
guarantee the security of a system built on a particular computer, nor, conversely, can it prove that a
system built on a particular computer could never meet security requirements. Rather, an analysis of -
this sort should help those who build systems on a particular computer recognize those areas where
they must focus their attention in order to assure system security requirements are met.

Building on earlier work [2,31, this report describes the general problem of implementing secure
systems and discusses the likely effect of program verification technology on hardware architecture
considerations. Next, requirements are proposed for hardware to be used in implementing systems
that must meet security requirements. The structures of the AN/UYK-43, the AN/UYK-44, the DEC
VAX-I 1/780, the IBM 370-XA, the Intel 80286, and the Honeywell secure communications processor
(SCOMP) are described within this framework in the appendixes. No fundamental architectural prob-
lems are identified that would prohibit any of the machines from supporting systems that have security
requirements. However, the architectures of the AN/UYK-43 and AN/UYK-44 encourage software
designs in which large parts of the system operate in a privileged mode (i.e. , they have access to the
full machine instruction set and potentially can violate security policies they are intended to enforce).
Designers of secure systems based on this hardware should minimize these parts and adhere to
software engineering principles in organizing them. The architectures of the comi'mercial machines
provide somewhat better capabilities for system designers to restrict execution in privileged mode to
those programs that specifically require those privileges.

th%

The examples treated in the appendixes were chosen because they represent machines that are in
widespread use or are particularly relevant to military applications. They are included here in order
to provide examples that others can follow in applying the criteria to other architectures, as well as to
provide useful information about those specific architectures.

Manuscript approved June 26. !987.
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2. PROBLEM

Security requirements can be expressed as a set of assertions that a system must enforce. An
example informal assertion is, "No user can display information that has a classification higher than
his clearance." There are several ways to enforce such an assertion about a computer system:

• all classified information can be removed from the system,

• physical controls can deny access to computer terminals to any user not cleared for all of the I
information in the system,

" all users can be cleared to the highest level, or %

" the controls can be implemented in the computer so that it can compare the classification of
specific information with the clearance of a particular user and determine whether or not to
display the requested information.

The first three solutions can be imposed on any computer, regardless of its hardware architecture, but
they impose substantial constraints on the outside environment. The last solution constrains the com-
puter system, but leaves the environment relatively unrestricted. Solutions of this kind are of primary
interest here.

Other security assertions are possible, and lists have appeared elsewhere 14,5J. The question
addressed here is, "What hardware architectures simplify both the enforcement of assertions like
these and the demonstration to observers that these assertions are enforced?"

3. ROLE OF VERIFICATION TECHNOLOGY

One approach to answering this question is based on techniques for top-down design and pro--
gram verification. For systems developed using this method, the security assertions would be stated
formally as part of the top-level system specification, and as successively more detailed refinements of
the design were created, each one would either be proven to enforce the assertions directly or to
correspond to the previous refinement, which enforces the assertions. The final, most detailed refine-
ment could be the programs. Alternatively, this approach could be extended to the underlying
hardware; parts of the formal specifications for the Honeywell SCOMP correspond to functions
implemented by hardware 161.

If all the required security assertions could be proven about the system software, hardware struc-
ture might be of less concern. The remaining issues would be whether the compiler generates code
correctly and whether the hardware correctly implements the semantics assumed by the compiler.
since the programs would have been proven not to violate the security assertions. In theory, even if
the underlying hardware provided no more structure than a Turing machine, security violations would
be impossible. Some Burroughs systems have relied on a related kind of protection; programs written
in assembly language could cause security violations, but software controls allow users to program
only in higher order languages. That is, users can only load and execute code that has been compiled
by a certified compiler. The security of such a system depends on preventing users from creating
their own translators (or coercing certified compliers) to generate insecure assembly language pro-
grams. (Wilkinson 171 provides a description, with an example of how the controls failed). In prac-
tice. it is difficult to prevent users from generating. via a certified compiler, progranis Ihat ' iolatc
security, because compilers can often he subtly coerced into generating and initialing exccutllon of
arbitrary bit strings.

2, U.
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The approach to verification previously described (proving correspondence between specifica-
tions and implementation, down to the structures provided by hardware) is not yet feasible for systems
of substantial size. Even if one could verify a system's properties down to the chip level, the system
would still be open to attacks, such as those that exploit hardware malfunctions, based on gaining
access through paths other than the "proven" top level set of functions. Specifications and proofs are
also subject to errors, and in the end, increased confidence in the security of a system usually comes
from the presence of several independent controls that would all have to fail in order to cause a secu-
rity violation. Consequently, even with the benefits that program verification can bring, characteris-
tics of a machine's architecture are still important in determining its suitability as a base for building
systems that must enforce security assertions

4. REQUIREMENTS FOR HARDWARE ARCHITECTURES
TO SUPPORT SECURE APPLICATIONS

Past studies have developed general criteria for secure systems [8,91, and a few have focused
specifically on computer hardware considerations 110,111. The latter work, however, has been based
on requirements developed from a specific security model and the notion of a security kernel. The h,

National Computer Security Evaluation Center (NCSC) has developed a set of criteria for trusted

computing bases 1121 that mentions hard, are features but does not address hardware requirements
directly. Thus there is no generally agreed upon set of requirements for hardware to support secure
systems.

We seek to develop such requirements based on the structure of the problem rather than on a
specific security model and implementation approach. Secret is derived from a verb that means "to
distinguish" and whose components are se-"apart" and cernere--'to sift" [13]. Thus, secrets
represent information that is sifted apart from other information. For a computer to be able to keep
secrets, it must be able to separate sensitive from nonsensitive information and cleared users from
uncleared. This requirement leads to the concept of domains within the computer system. A domain
is a set of information and authorizations for the manipulation of that information within a computer
system.

There are many different ways domains can be realized within a computer. For example, an
instance of an abstract data type can define a domain, since it is a set of objects and a set of opera-
tions that are authorized to manipulate those objects 1141. Alternatively, in some systems the concept
of process is identified with that of domain: every resource (memory, file, device, processor. etc.) in
the system belongs to some process that is authorized to use it without restriction 1151. Although
hardware for systems based on the former view of domain may differ from hardware designed to sup-
port the latter, it is not necessary to choose among competing interpretations of the domain concept at
the level of abstraction addressed here.

Lampson uses the term domain to refer to an entity that has ac.ess rights to objects, which could
include files, processes, and other domains. These abstractions are rarely implemented directly by
computer hardware; the concern here is how to implement domains using the structures hardware
commonly provides. For this purpose, we view a computer as providing a name space, a va/lu
space, and a mapping function from the name space to the value space. and a set of ii.truciion. that 7
can affect the mapping function and the name and value spaces. The name space is the Net of'

addresses that a program can generate, the value space is the set of primarN storage locations
corresponding to these addresses, and the mapping function is defined by the tables or registcrs (if

any) used to translate program-generated addresses (names) to physical addresses (location,). The
value space refers only to primary storage: access to secondary storage is determined bv the domain'"s
instruction subset, mapping function, and authorizations. For puiposes of this anal,,is. "c delint, a

3.':?.::
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domain to be a subset of the instructions, a subset of the name space, a corresponding subset of the
value space defined by a particular mapping function, and a set of authorizations (sometimes called
access modes) that determine the instructions that the domain may apply to each element of the nane
space. The mapping function is sometimes referred to as a context, since it defines the environment
that gives specific meaning to a name.

The following identifies requirements for hardware structures that are to support secure process-
ing. These requirements are grouped according to whether they concern:

* the logical structure of the hardware and its ability to support software structures of secure
systems;

" the ability of the hardware to process these structures rapidly enough to he of' practical use, or,,.,

T the ability of the hardware to resist external physical attacks (e.g. eavesdropping, physical

removal of media). se

The requirements and their categorization are based on the sources already cited and on the history of"
efforts to develop secure computer systems II1. While we expect this set of requirements may be
augmented or revised in the future, particularly if additional constraints are imposed according to the
system to be implemented, we believe that the framework will remain a coherent vav to assess the
ability of a particular hardware architecture to support security requirements.

4.1. Requirements on Logical Structure

The abstract machine visible to system programmers defines the logical structure of the con-
puter. (The instruction set architecture of the machine defines this abstract machine.) There are
many ways to realize a given logical structure physically. In this section, we present five kinds of'
requirements on logical machine structure and then give examples of hov each can be ,net in actual

*, systems. I..,

Requirements •

Define and Separate Domains

Any computer system that allows concurrent operations must include provisions for defining
separate domains and protecting actions in one domain from improperly affecting those in another ,

domain. Rushby and Randell 1161 identify four ways to separate domains: physically. temporally.
cryptographically, and logically. Particular computer hardware may simplify one or another of these
approaches, but the requirement that the logical structure of the machine provides a wka for program-
mers to define and separate domains is fundamental.

Establish Initial Domain

The ability to define and separate dmuains in a imachine will be of' littletuse unlces, the is a
reliable way of getting started. This implics that the logical structure of( tie MN stei ImUs alhkm tile
programmer to distinguish the occurrence of a sy,,tel initiali/ation e~ciet and to c,,mh -h a conitientl j
state for the svsten -a slate from which additional domains can be initiated a t

' separated. It tihe ini

tial domain provides access to all of the information in the sxsteim. g reat ctm is nec'.sar\ in con-

structing progranis that operate in i1. Arbitrar, proerails should not be able to imokc \,stei initiali

/ation. 4

,4,, 4
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Link Users with Domains 16

Security requires that actions be attributable to individuals. This principle leads to a require-
ment for a link between a user and a domain. So that operations invoked in a domain can be traced
to a specific user, the logical structure of the hardware must support the creation and destruction of
links between users and domains. This link need not be interpreted as a physical entity; it merely
denotes an element of a mapping from users to domains.

Control Communication Between Domains

In most applications, absolute isolation of domains in impractical-some information must be
shared. The logical structure of the machine must support sharing with mechanisms that can limit
communication in accordance with application requirements. For example, one domain may need to
provide parameters to a function performed in a different domain. The hardware should support pass-
ing of these parameters without making additional information available to the recipient.

Detect and Handle Faults

Finally, the logical structure of the machine must reflect the possibility of machine faults. These
can never be eliminated entirely, and they can be a source of security breaches. If the occurrence of
hardware errors is concealed from programs, it will be impossible to protect them from the effects of
those errors. Consequently, it is required that the logical machine structure include fault detection
and fault handling mechanisms.

AZ

Examples

Definition of Domains

Techniques for segregating name/value spaces on the same computer include:

Segregating Spaces in Time-Programs in early batch processing systems used the same name
space (i.e., the entire address space of the machine) but were isolated in time. Programs did not
interfere with each other so long as they were not executed concurrently. The operating systems that
enforced this condition required mechanisms to keep themselves from being modified by user pro-
grams. Swapping systems are also based on this kind of isolation. Execution of different programs
can be interleaved, but each program's value space must be saved when its execution is suspended
and restored when it is reinitiated.

Segregating Spaces Through Mapping Functions- Different programs generate the same names,
but all names are interpreted by mapping them to values. If the ranges of the mapping functions are
disjoint, programs cannot interfere even if they are executed simultaneously. If the ranges of the
mapping functions for two programs overlap, interference (or communication) is possible. Mecha-
nisms for implementing mapping functions include relocation registers, base/bounds registers, and vir-
tual memory mapping registers and tables. The mechanisms that effect the mapping should not them-
selves be in the name space of user programs (otherwise users can directly alter the mapping). The
real address space of the machine need not be the same size as the name space available to a particu-

lar domain.

Segregating Spaces Through Access Permissions-Different programs can generate names that
map to the same value, but may have different access permissions for the value. For example, a pro-
gram may be allowed to read a certain part of physical storage but not to write it. Whether a given

50
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machine associates access permissions with the name space, the mapping, or the value space will
affect the flexibility of its protection system. If permissions are associated only with value space and
some part of that space is shared, all parties sharing it will necessarily have the same access rights to
it. Example of controls that usually associate permissions with the value space include hardware

read-only memory and storage keys; controls that can associate permissions with the name space
include tags on descriptors or capabilities.

Limiting a domain to a subset of the machine instruction set is accomplished through hardware-
defined modes of execution. The current mode of execution (e.g. "kernel mode," executive mode,"
"user mode") is defined by the contents of a hardware register and determines whether a particular
machine instruction is allowed. On some machines, the mode also imposes constraints on the name
and value spaces for the domain. At least two modes are required to control access to the map of
names to values-otherwise, the instructions for altering mapping tables would be available to all pro-
grams and there would be no way to prevent any program from altering its own mapping table (or
others) arbitrarily. Several other functions are normally controlled in this way, including the ability
to initiate input/output (I/O), handle interrupts and traps, and halt the machine. The instruction sub-
sets defined by different modes are usually hierarchical, so that each more privileged mode includes
all the instructions of its predecessors.

Table 1 exhibits some of the differences in the way domains are defined by several current com-
mercial systems and two Navy standard embedded computers.

Establishing and Initial Domain

On some computers, the initial domain is established by loading a state word from a predefined
location in response to a specific interrupt. This stateword places the machine in its most privileged
mode and defines the location from which the next instruction (normally the start of a bootstrap
loader) is to be fetched. Current medium scale and larger systems frequently include a separate pro-
cessor to handle the system console and other utility functions, including system initialization. Initial-
ization can include loading the microcode for the main processor itself as well as establishing its ini-
tial program load.

Linking Users with Domains

A user initially establishes a link with a domain through an exchange of passwords or some
other form of authentication data. The user must authenticate the machine as well as vice versa. The
user may be provided with the serial number of the processor, or he may arrange for an exchange of
questions and answers with a program operating in an initial domain to confirm that he is accessing
the intended machine.

Once the link is established, if a domain initiates a new domain in response to a user request,
the new domain is accountable to the same user. An exception occurs when the initial domain
(accountable to the system administrator) is executing the log-in procedure, and once a new user is
authenticated, a new domain is established for which the new user is accountable. Links can be de-
stroyed when the domain ceases to exist, or if accountability for the domain passes to another user.
The establishment and maintenance of these links are primarily under software control, but their
correctness depends on the hardware path between user and machine. Although this path can be made
resistant to physical tampering, the strongest nonphysical protection is provided by encryption.

Some hardware devices periodically reauthenticate the user to assure that the user has not
changed (e.g., if one user leaves his terminal running and is replaced by another user). and software

6,
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may be designed similarly. A hardware mechanism for implementing watchdog timers can help
enforce periodic reauthentications by software.

Controlling Communication Between Domains

Communication among domains can occur in several ways:

" one domain may request service from a less-restricted one,

" two domains may share part of the same value space directly, or

" domains may pass messages to each other. I

Unless links are set up when the domains are created, the first kind of communication is a prere- '

quisite for the other two: for two isolated domains to initiate address-space sharing or exchange mes-
sages, one of them must request that service from a domain that can alter mapping functions or pass
messages. X

Service requests can be decomposed into three parts:

" invoking the more privileged domain and passing arguments,

" servicing is performed by the privileged domain, and

" returning arguments and control to the requesting domain.

Protected entry points ("gates") and "supervisor call" interrupts allow a privileged domain to control
its invocation. Where hardware provides a hierarchy of three or more domains, it can limit the
number of levels an individual request can traverse. (Multics [171 introduced the concept of rings as
a generalization of privileged mode that defined a linear ordering of up to 16 domains. In this
scheme, a ring number is associated with each process and defines its privileges: each ring inherits
the privileges of all higher numbered rings. A ring bracket is an ordered pair of ring numbers that
can be associated with a region of memory (in Multics, a segment) and is used to determine whether
external requests to read, write, or execute portions of the segment will be permitted. A requested
access is permitted only if the ring number of the requesting process is within the interval defined by
the ring bracket of the target segment.) An addressing mode that limits the privileged domain to the
access rights of the requesting domain can help prevent the privileged domain from performing unau-
thorized operations on behalf of the requester. Such a mode is unnecessary in capability-based sys-
tems, since possession of a capability implies the right to use it. (A capability may he thought of as a
ticket that includes both the address of an object and a set of permissions that the presenter of a capa-
bility is authorized to exercise. In a capability-based system, one process may pass a capability to
another in order to have some desired operation performed on the object the capability addresses
118,191.) Mechanisms to protect a requesting domain from being entered at an improper location on
completion of a request are rarely implemented, since the more privileged domain is norniallh con-
sidered benevolent and reliable. This lack leaves the requesting domain vulnerable to having control
returned to an arbitrary location within itself, yielding unpredictable results.

When two domains share part of address space, changes made by one domain are directl isi-I

ble to the other. Control of address-space sharing is aided by acccss-mode tags on part, of the map-
ping function. For example, one-way communication between domains is possible if the shared space
is limited to read-only in the receiver's map but is read/write or writc-only in the ,cnkdcr', Rin,-
brackets can also be used to limit the ability of different domains to write in a sharcd space.

x1 L
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Communication via messages is less direct, so the need for authentication is greater. Mecha-
nisms that can label a message with an unforgeable tag identifying the sending domain allow the
receiving domain to authenticate its source. Encryption techniques can be applied to this prohlem. %
though they rarely have been within a single machine, and the use of encryption will likel\ require
solving a complementary key distribution problem.

Fault Detection and Handling .i

Hardware is subject to faults, and unless these are detected and compensated for. security can he
compromised. Some hardware mechanisms for fault tolerance, such as error detection and correction

codes on units of storage, can function without software assistance and may not be visible in the logi-
cal structure of the machine. Nevertheless, conditions will remain in which machine-detectable errors
cannot be recovered without software assistance. I

The logical machine structure should accommodate techniques for detecting, signaling, and
recovering from machine errors. Detection methods are based on redundancy; a stored check-sum is
compared with a newly computed version, a critical value is checked against stored boundary condi-
tions, or the same result is computed in two different ways. Programs that perform these functions
may require access to particular domains (e.g. the ability to read certain programs or storage loca-
tions), but do not impose specific requirements on logical machine structure. Once an error is
detected, a safe method to enter a domain where the error can be handled (perhaps by stopping the
machine) is needed. Standard interrupt and trap mechanisms can be used to handle this problem. ,
The error-handling domain may have access to special machine instructions for diagnosing problems e,
or reconfiguring the system. Because of these special privileges, special care is usually required in
designing and implementing error-handling domains.

4.2. Requirements for Efficient Processing of Logical Structures

In addition to supporting appropriate logical structures, the underlying hardware must be able to
process those structures expeditiously. Several efforts to develop secure systems have attributed their "- I
performance problems to the inability of underlying hardware to switch rapidly between domains. In
operational systems, if security checks cannot be implemented efficiently, they are likely to be omit-
ted. This section describes requirements based on the logical structures discussed above and gives
examples of mechanisms intended to satisfy them.

Requirements and Examples

Creating and Destroying Domains

Systems with stringent security requirements are likely to require a large number of small
domains. Consequently, the time and storage required to create or destroy a domain are important.
Relevant aspects of machine structure include the addressing structure, which determines the smallest
amount of storage that can be allocated to a domain, the size of the system state, which determines -S"
how many different registers and storage locations must be initialized, and the availability of special-
ized instructions to clear residues and manipulate system state information. If creating and destroying
domains is time-consuming, sometimes software can be organized so that the set ot domains is static.

"
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Switching Domains

The speed with which the processor can suspend execution of a program in one domain and ini-
tiate execution of a program in a different domain is important for the same reasons listed in the pre-
vious paragraph, but the effects of high overhead in this operation are harder to remedy. Domains
can be combined to reduce the need for switching, but this defeats the principles of least privilege and
isolation of domains. Mechanisms that facilitate domain-switching include multiple register sets.
which reduce requirements for saving and restoring registers, instructions that can save or restore the
machine state in a single operation, interrupt and trap mechanisms that automatically initiate a
domain-change when invoked, and a machine structure that minimizes or eliminates residual informa-
tion that must be cleared when a domain switch occurs.

Moving Information Between Domains

Hardware must be able to pass information efficiently between domains while endorsing security
constraints. Hardware that could automatically check the security levels associated with domains and
data to be passed between domains has been proposed but not implemented. Nevertheless, a variety 'V

of machines have included hardware that can assist in this task. For example, argument validation
can be assisted by automatically passing the mode (e.g., supervisor/user) of the sending domain to the
receiving domain, rings of protection can be used to control the domains from which information may
be passed, and gates can be used to control the locations in a domain to which control can be passed.

Security Checking on Operations Within a Domain

Security checks that are to be made on each reference to an object within a domain must either
be performed on each access with virtually no overhead or else a single check (e.g, when a file is
opened or a segment first referenced) must suffice for a large number of accesses. Hardware that
supports virtual memory (i.e., automates the mapping from name to value space) can be used to
check the legality of each reference according to the current mapping function; if the access authoriza-
tions (read, write, execute) are associated with virtual memory addresses, these too can be checked on
each reference. It is conceivable that hardware could support security level checking in the same way
as access authorization checking. Systems have been built that use software checks at the first refer-
ence to a segment or file as well. If the check succeeds, the information can then be mapped into the
user's domain, and the addressing mechanisms prevent references outside the domain. Base/bounds or
checks, virtual memory mapping mechanisms, associative stores, and data caches can help satisfy this
requirement.

Moving Information Between Levels of the Storage Hierarchy 0

I/O may involve moving information within a single domain or between two different domains.
It has frequently caused problems in secure system developments. Often the difficulties can be traced
to the logical organization of the 1/O subsystem, which may not mesh with the organization of
addressing within primary storage. Although these are difficulties in the logical structure, they can
cause performance and security problems-because of the logical structure, the IO must be handled
by a highly privileged domain, which increases the demand for domain switches and interdomain
communication. An I/O structure that uses the same kind of interface to primary storage as the cen-
tral processing unit (CPU) (i.e. , the same mapping mechanism) can limit these problems.
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;C p' IO -~~



NRL REPORT 9088

4.3 Requirements on Physical Structure .-.

Even if a computer provides the appropriate logical structures for building a secure s) stem and
it processes those structures efficiently, it may be subject to physical threats. In this section we
enumerate some needs for physical protection and methods for satisfying them.

Requirements and Examples

Prevent Unauthorized Physical Access to the Computer

Placing equipment in locked rooms, providing guards, and installing authentication systems do
not directly affect the system hardware. The hardware itself can contribute to meeting this require-
ment by providing console, terminal, and cabinet locks, and having covers for control panels and key-
boards. Protected usage meters can detect misuse of resources that occurs when physical controls are
defeated. 5J

Prevent Unauthorized Modification of Removable Media

Some removable media need to be protected against alteration (e.g. master copies of programs ..F
and data bases). Write-inhibit switches on disk drives and the physical rings on magnetic tapes
address this requirement. A tape drive used foa collecting audit data can be inhibited against rewind-
ing to assure that the information is not modified after it is written.

Assure Secure Communication with Remote System Components

Physical means can be used to secure connections between system components from wiretap-
ping, and encryption can help assure that information that a wiretapper obtains is still protected.

Prevent Unauthorized Viewing of System Output

Video display devices can be designed so that they are only visible head-on, to reduce visual U
eavesdropping. TEMPEST controls also address this requirement, since electromagnetic emanations
are a form (albeit unintended) of system output.

Assure Continuous Service "11

Reliability is associated with security for several reasons: (I) hardware failures may defeat
security checks, (2) a system is often more vulnerable to penetration while recovering from a failure,
since recovery may involve the use of highly privileged domains, (3) failures may be used to obscure
penetrations, since logs may not be written properly and removable media may be irretrievably altered
by a system crash, (4) when a system fails frequently, operators and managers become insensitive to
small changes in behavior that otherwise would give warning of attempted penetration. and (5)
managers of unreliable systems, trying to improve system performance, may take shortcuts that tdiminish system security. is.

Many hardware features that contribute to security are designed primarily to increase system
reliability. Some of them are:

* Redundant devices and modules, especially power supplies and memory modules. Sonic sys-
tems can be reconfigured in case of partial failure. Security measures must not be inadver-
tently bypassed when the system is automatically reconfigured.

'V "Nk
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" Protection of storage against power failure

" Coolant leak detectors

" Manual input devices designed to reduce human error (e.g. raised separators between
control-panel keys)

" Annunciator lamps to warn that protective features have been intentionally overridden ("battle
short").

5. SUMMARY AND CONCLUSIONS

Security requirements for a system depend on its functions, the kind of data it processes, the
other systems with which it communicates, and the environment in which it operates. There are few
specific properties that hardware must have if it is to support systems that have security requirements,
but we have tried to develop a framework that illuminates those properties of hardware that determine
how well it will be able to support such requirements. In constructing the framework, we have tried
to avoid assumptions about the specific security properties desired or the specific methodology used to
design the system that implements them.

The requirements identified concern the logical structure of the computer, its ability to process
those logical structures, and its physical structure. The logical structure should provide mechanisms
for

" defining and separating domains,

" establishing an initial domain,

* linking domains with users,

" controlling communication between domains, and

" detecting and handling faults.

Expeditious processing of logical structures requires mechanisms for

" creating and destroying domains,

" switching domains,

* moving information between domains,

" checking the security of operations within a domain, and

" moving information between levels of the storage hierarchy

Requirements on physical structure concern preventing unauthorized physical access to the computer,
unauthorized modification of removable media, and unauthorized viewing of system output while
assuring secure communication with remote components and continuous service.

In building systems that can meet these kinds of security requirements. it is helpful to have
hardware that supports partitioning of software into different domains with restricted capabilities and

12
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responsibilities. This property allows software that enforces critical requirements, such as security
requirements, to be isolated, protected from accidental or malicious modification, and thoroughly and Ii
independently tested for correct operation.
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Appendix A

NAVY SHIPBOARD COMPUTERS

OVERVIEW OF AN/UYK-43 AND AN/UYK-44 COMPUTERS

The AN/UYK-43 and AN/UYK-44 computers are scaled for different kinds of shipboard appli-
cations. The former, as an AN/UYK-7 replacement, is suited for relatively demanding applications,
potentially including control of databases, large sensor networks, and command and control systems.
The AN/UYK-44 is suited for tasks that require less storage and processing speed, such as controlling
a single sensor or communication link. Its smaller physical size makes it easier to embed directly in a
system it controls.

Requirements for "multilevel security," where the system must be able to protect information at
different classification levels from users with different clearances, are likely to occur in large-scale
applications using the AN/UYK-43. The AN/UYK-44 might be required to verify or append
appropriate classification labels on data arriving over a communication link or to enforce restrictions
on the classification level of data transmitted. It might also provide an interface to a sensor or
weapons system in which unauthorized disclosure of information is a lesser threat than denial of ser-
vice. .,..

As the following sections show, both the AN/UYK-43 and AN/UYK-44 support two kinds of
domains-task-mode domains, which can be restricted from exercising the full machine instruction set
and address space, and an executive-mode domain, which cannot be similarly restricted. Each
machine can support many separate task-mode domains, if the programs that run in its (single)
executive-mode domain correctly enforce this separation. In systems that must meet security require-
ments, any program that is executed in the executive-mode domain has the ability to sabotage those
requirements, consequently, it will be necessary to assure that only those programs intended to be run
in the executive-mode domain do so, and, moreover, that those programs are trustworthy. "
"Trustworthy" means that even though the hardware cannot prevent it from circumventing security 55. *.

controls, a program will not in fact do so.

Both machines also include features intended to speed switching between a task-mode domain
and the executive-mode domain: each has duplicate register sets for the different modes and some
instructions that should simplify loading and storing multiple registers. Performance of these
machines as components of secure systems is difficult to assess in the absence of a more detailed
study of a specific application, however.

A taniperproof program that mediates all accesses by subjects (users or programs) to objects
(files, devices, users, or programs) is called a reference monitor IAI.A21. On either of these
machines, a reference monitor would have to operate in the executive mode, and, to fulfill the
requirements that it be tamperproof and mediate all references, it must include all of the programs
that execute in executive mode. Further, since I/O programs initiated by the executive-mode domain
at the request of programs operating in task-mode could affect security, all I/O programs must either
be checked or generated by the executive-mode domain. These requirements are likely to yield
implementations with relatively large quantities of code that must he trusted and hence must be
closely scrutinized and thoroughly tested for potential security problems.
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ABILITY OF AN/UYK-43 TO MEET REQUIREMENTS

The AN/UYK-43 is a 32-bit main-frame computer [A31. In its B-enclosure configuration, it can
contain up to two central processing units (CPU), two power supplies, ten memory modules, two
input/output controllers (IOC) each containing two processors with a total of 64 channels, a computer
interconnection system (CIS), two display control units, and a remote operator's control unit. Up to
sixteen B-enclosures can be interconnected. The AN/UYK-43 has a bus architecture, and its proces-
sors are microprogrammed.

The hardware provides two basic kinds of operation-one, AN/UYK-7 mode, is designed to
execute software written for the earlier AN/UYK-7 computer virtually without changes, and the other,
AN/UYK-43 mode, is designed for programs written expressly for the AN/UYK-43 to exploit its
capabilities fully. The mode in which the machine is operating at any instant is determined by two
bits in the machine's state word (called the Active Status Register (ASR)). These bits can only be set
by instructions that are "privileged" in either of the modes. They affect the way addresses are calcu-
lated and the legality and interpretation of several machine instructions. The discussion below is lim-
ited to operation in the AN/UYK-43 mode. This simplifies the analysis but does not imply that the
presence of the two modes on the same machine has no effects on security.

Within AN/UYK-43 mode, there are two submodes: task mode and executive mode (described
in the following subsection). In addition to the ASR, the AN/UYK-43 CPU includes a 16-bit P-
register (program counter), eight 32-bit arithmetic (A) registers (accumulators), seven 16-bit (B) index
(B) registers, eight 16-bit stack pointer registers, and eight 32-bit segment (S) registers, that are of

* primary concern to those who write programs to be executed in task mode. An additional set of eight
A-registers, seven B-registers, eight stack pointer registers, and eight S-registers are provided for
each of the machine's four interrupt levels. Operating system programs that operate in executive
mode will need to manipulate all of these register sets and also the eight storage protection registers
(SPR) and segment identification registers (SIR) that are used to control the access modes user pro-
grams have to storage segments. The IOC subsystem, also primarily of interest to operating system
implementors, is quite complex.

The analysis of the AN/UYK-43 hardware below follows the order in which the requirements
were developed.

Requirements on Logical Structure

Define and Separate Domains

There are two instruction subsets defined for the AN/UYK-43: those available in task mode
(called nonprivileged) and those available in executive mode, which include both the nonprivileged %
and privileged instructions. Privileged instructions comprise those that load the segment base and %
protection registers, manipulate the ASR, communicate with IOCs, read and activate the CPU monitor
clock, and maintain interprocessor timing compatibility. In the executive mode. the machine executes
at one of four prioritized interrupt levels, some instructions access different register sets depending on
the current interrupt level, but the same set of instructions is available to all executive-mode domains.

The name space available to a task-mode domain consists of the register sets previously
described and primary storage addresses that can be generated by manipulating those registers. Since
instructions for loading the segment registers are privileged, the name space of a task-mode domain is
limited by the values in those registers. There are eight segment registers, each of which can he
indexed by a 16-bit register, so the name space (in addition to the registers) available to a task-mode
domain is 8 x 64K 512K names. .-
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The value space to which a task domain's name space is mapped consists of 32-bit words. The
mapping from name to value space is determined by the values of the segment registers, and operates
as follows for operands: a 13-bit instruction operand (displacement) is zero-extended to 16 bits and
added to the low-order 16 bits of the index register selected by the 3 b-field bits of the instruction to Zi
produce a 16-bit relative address. The relative address is zero-extended to 18 bits and added to the
32 bits of the segment S register selected by the three s-field bits of the instruction to form the final
address. Instruction address generation is accomplished by adding the low-order 16 bits of the 20-bit
P register (program counter) to the S register selected by bits 19-17 of the P register. For both
instructions and operands, the final address is checked against the constraints specified by the SPR
register paired with the S-register used in the address generation. The SPR defines a limit address
and the modes of access (read operand, store operand, execute instruction, permit indirect addressing,
or use executive state base and index registers) permitted for references within this limit. A reference
that violates these constraints or that exceeds the limit address causes an interrupt. Since an SPR can
restrict access to as little as a single word of the segment, the smallest conceivable task-mode domain
has a value space consisting only of the contents of the registers and a single word of storage.

The name space for an executive-mode domain is equivalent to the name space for the entire
machine, since the executive mode instruction set includes instructions for manipulating the segment St
registers. Thus there are 232 different names that can be generated in executive mode.

The size of the corresponding value space is limited by the amount of physical memory that can
be attached to the machine, currently 2,621,440 32-bit words. (This number may quadruple with the %
use of higher density memory chips.) A value space equal in size to the name space can be obtained
by accessing storage in other enclosures via the Computer Interconnection System (CIS). Address
generation for instructions and operands is identical in task and executive modes, except that physi- .1"
cally separate sets of registers are provided for each of the four interrupt levels within executive
mode, and the SPR constraints do not apply in executive mode. The control memory locatioiis that
contain the values of internal registers are also accessible in executive-mode, as is the breakpoint
register set (or sets)* and the optional P-history file.

The appropriate way to segregate task-mode domains in the AN/UYK-43 is through the mapping
functions. Programs operating in an executive-mode domain must manage storage and assure that
segment base and protection registers are loaded properly before initiating programs that operate in
task-mode domains and when responding to memory management requests from such programs. As
long as these registers are managed properly, task-mode domains can be isolated from each other.

Executive-mode domains cannot be isolated from each other, since every such domain can gain
access to every storage location. This interrupt level cannot be altered directly by software, but the S
contents of the registers loaded on occurrence of the interrupt can be altered and the programs
invoked in the occurrence of an interrupt cannot he protected against modification by programs
operating in cxccutive-node. The one exception to this is the code for processing Class I interrupts.
which is held in hardware nondestructive read-only memory. So, there can be only one executive-
mode domain."-*

*The hreakpoint facility alloww detecting when arbitrar, physical locations are read, written, or executed or when arhtrar"
hit patterns are fetched or stored The instructions to load the breakpoin: registers are privileged, and the occurrence of a
breakpoint cau,,c,, a Class II interrupt. Although this, mechanism i, intended for debugging. it could concei\ahl\ kN used to
enforcc ,orne kind, i1 secur' Constraints
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Establish Initial Domain

To initiate operation of the AN/UYK-43, an operator is expected to press the Stop, Master
Clear, and Start buttons in sequence on the Display Control Unit (DCU). From available documenta-
tion 1A41, it is difficult to determine exactly how the system responds to these button pushes, but
what appears to be the intended behavior is listed below. S

* The microprocessor that operates the DCU halts the CPU in response to the Stop button.

* In response to the Master Clear button, it propagates a Master Clear signal, which causes the
following actions to take place when the processor is in the stopped mode: in the ASR, the
compare designator, overflow, bootstrap, interrupt lockout, and compatibility mode bits are
cleared, and load base enable, memory lockout inhibit, and Class I-ill lockouts are set. The
ASR is also set for Class IV register selection, interrupt state, and State IV. Active repeats.
interrupt requests, breakpoint control bits, hardware fault, and program fault indicators are
cleared, as are cache memory. the P-History file (which is also disabled), the macro I regis-
ter, and any CPU error message currently displayed by the DCU. The CPU monitor clock is
disabled, and the clock count is reset to 1024 Hz. The CPU is placed into macro mode
(macro step mode, if it was already in that mode, or macro run mode if it was in any micro
step mode). Presumably, the Master Clear will be propagated to the IOCs as well when the
system is initialized; their response to Master Clear is analogous to that of the CPU.

* In response to the Start button, the DCU presumably initiates execution at a location in the
nondestructive read only (NDRO) memory that contains a bootstrap loader.

Thus if the DCU programs and microprocessor operate as intended, the system can apparently
establish an initial domain that has access to all the system resources and can create domains with
more restricted access. The contents of NDRO memory will determine whether or not the initial
domain in fact functions as intended. The complexity of the fault tolerance and system reconfigura-
tion features of the AN/UYK-43 (and their description [A5] place precise determination of the initial
domain of the machine when restarting after a failure of some sort beyond the scope of this analysis.

Link Users with Domains

Operators will communicate with the AN/UYK-43 through its DCU, Remote Operator's Control
Unit (ROCU) and the Power/Temperature Panel (P/TP). The P/TP is located in the door of the main
enclosure; the DCU and ROCU may be mounted up to 150 cable-feet away. Both the DCU and
ROCU can be connected to two independent CPUs and IOCs via serial maintenance interfaces and
include built-in microprocessors. These devices are primarily intended to allow operators to initiate

" system operation, monitor its behavior, and perform diagnostic and maintenance procedures. There

are no provisions in the hardware for authenticating the operators of these devices. A program exe-
cuting in a domain that responds to requests from a DCU must rely on the electrical connectivity of
the DCU and on the program running on the DCU's microprocessor to assure that the request it

receives corresponds to the buttons the DCU operator is pressed.

, Users of the system (as well as sensors and peripheral devices) will gain access to the CPU
through an IOC. The link between a user and a domain potentially depends on programs executed by
his terminal and by the IOC. Programs executed by the IOC are constructed by the CPU and reside
in main memory; the IOC executes them in response to privileged instructions executed by the CPU.

There are no significant hardware aids for authenticating users or devices beyond the existence of
* clocks in the CPU and IOC that might be used to implement watch-dog timers for reauthentication.
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Central processors are identified by bits 22 to 20 of the ASR, but this identification merely allows up
to eight CPUs to be distinguished; it is not a CPU serial number.

The CIS allows computers in different enclosures to communicate with each other and so it can
be part of the path between a user and a domain. Although its operation is described as "transparent
to the software," it has the capability to generate requests to external processors and memory and to
permit access to local processors and memory, so it could affect the link between a user and a
domain. The CIS has two modules: the requestor extension interface (REI), which forwards requests
to other enclosures, and the direct memory interface (DMI), which responds to external requests.
Each DMI has a factory-wired identifier for itself and for all the CPUs and IOCs in the system; these
are used to recognize requests received from external REIs. These requests are limited by the con-
tents of the four sets of DMI memory protection registers. Each set includes an access mode authori-
zation (execute, read. and/or write) and 32-bit lower and upper bound memory addresses. I.,
tection registers can be loaded only via privileged CPU instructions. When a system is startec' its
CIS is brought up in a "locked out" state so that a foreign CPU cannot gain control of it during ini-
tialization.

Control Communication Between Domains

Task-mode domains communicate with executive-mode domains via interrupts g&,nerated either
as requests for service or as traps. Communication between task-mode domains car. occur through
sharing of primary storage and through the intervention of executive-mode domains to pass messages.

There are four prioritized classes of interrupts in the AN/UYK-43; task-mode domains request
service from an executive-mode program by issuing the Enter Executive State instruction, which gen-
erates the Executive Return class IV (lowest priority) interrupt. This causes the hardware to enter
executive mode, in which the entire machine instruction set is available. Parameters can thus be
obtained from the calling domain and any necessary communication can be performed. Class III
interrupts are those related to I/O processing, while Class II interrupts occur primarily as a conse-
quence of program faults-attempts to execute privileged instructions, exceed memory bounds, and so
on. Class I interrupts include loss of power, parity errors, failure of a module to answer, and others. P
Although different kinds of processing can be initiated in response to different classes of interrupts
and the priority mechanism allows nested handling of interrupts, from the standpoint of security there
can be only one executive-mode domain.

The extent of primary storage sharing is determined by how the executive-mode memory
management software sets the segment base and protection registers. Different task-mode domains
may share from a single word up to their entire memory spaces, depending on the contents of those
registers. Segment protection registers can also provide one domain read-only access to a region of
storage while another domain has read/write access and a third has execute access. Since segment
registers are associated with a CPU and not with memory modules, different CPUs can define dif-
ferent access modes to the same physical storage. CPUs in different enclosures can share primary
storage via the CIS.

Messages can be passed between task-mode domains directly by the executive-mode domain or
indirectly by allowing two domains to share access to secondary storage. Access to secondary storage
is available only through an IOC, and the instructions to initiate 1/O are privileged. ..-

CPUs. IOCs, and the CIS within an enclosure have independent access to the same storage, so
coordination of 1/O with memory management is crucial. IOC accesses are governed by two kinds of
memory protection. One kind applies to its Command Address Registers (CARs). which
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memory protection. One kind applies to its Command Address Registers (CARs), which communi-
cate with CPUs, and the other applies to its Command Address Pointers (CAPs), which communicate
with peripheral devices. The IOC can protect a segment with any combination of execute, read, or
write permission for each of its 6 CARs, and it can protect a segment with any combination of exe-
cute, read, or write permission for each of 128 CAPs. The commands that load the IOC protection
registers are privileged CPU instructions; the IOC cannot modify its own protection registers. In this
sense, IOC programs are constrained in a way similar to CPU programs operating in task mode. IOC
operation is discussed further in the subsection on moving information between levels of the storage
hierarchy.

Within a CIS, the DMI can protect four segments of memory with any combination of execute,
read, or write permission for each of the four remote REIs with which it can communicate (as
described in the preceding section). Like those in the IOC, the DM1 memory protection registers can
only be modified by privileged CPU instructions.

Detect and Handle Faults

The AN/UYK-43 includes a variety of mechanisms for detecting and recovering from hardware
faults. Parity bits, timers, bounds checks, and other forms of redundancy are used to detect errors.
Different mechanisms are applied in each of the functional modules (CPU. IOC. CIS, DCU. and
memory). Built-in Test Equipment (BITE) runs continually while the machine is powered up. Detec-
tion of a hardware error that cannot immediately be corrected causes a Class I (highest priority) inter-
rupt; the specific kind of interrupt will depend on the fault detected. Class I interrupts cause the
Fault Tolerant Systems Reconfiguration Module, which is stored in read-only memory, to be invoked.
This firmware attempts to diagnose the problem and to reconfigure the system to bypass failed com-
ponents.

Parity is checked at all functional module interfaces. Semiconductor memory provides seven

parity bits for each 32-bit word to allow correction of single-bit errors and detection of two-bit errors.
Core memory provides parity detection of single-bit errors. Parity errors in cache memory cause the
failed portion to be by-passed. CPUs have access via the memory bus to memory interface adapters
(MIA) that reflect the status of each memory module.

Detection of a momentary power failure may cause an automatic re-boot. Detection of a sus-
tained power failure causes a power tolerance interrupt that allows 250 is to store volatile data.
Enough energy is stored in the power supply to retain volatile storage for 130 is. A battle short
switch allows operation to continue even if the machine is overheated.

Requirements for Efficient Processing of Logical Structures

Creating and Destroving Domains

Creation of a task-mode domain requires the allocation of storage addressable to that domain and
the associated system control structures. As described above, the AN/UYK-43 addrcssing structure
provides the user with access to eight segment base registers that can each address up to 64K words.
Creation of a domain does not require all of these to be allocated, however, and by setting the seg-
ment protection register appropriately, the effective length of a segment can he limited to a single
word. If domains are implemented as processes, the minimum storage for an inaclive domain will
have to accommodate the contents of the following registers: P, ASR. arithmetic (eight). index
(seven). segment base (eight). storage protection registers (eight), and stack pointers (eight). In addi-
tion, the system will require pointers to keep track of this storage. To destroy a domain, this storage
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must be deallocated and other activities may be necessary if the domain has been allocated secondary
storage or has input/output operations pending.

Creation and destruction of executive-mode domains would involve some additional state infor-
mation but is likely to be infrequent, since executive-mode domains cannot be isolated from each 1
other.

Switching Domains

To switch from one task-mode to another, an executive-mode domain must gain control, save
the complete register set just described, locate the saved registers of the target domain, restore them,
set up the 8 segment identification registers, and transfer control to the target domain. If breakpoint
registers are in use by one of the task-mode domains, they will have to be saved and restored as well.
In the original specification [A61, there was no single instruction that would load or store all of these
registers (or even a single set) at once, but subsequent documents JA5J indicate that two instructions
are to be added that will permit a designated set of registers, including A, B, S, SP, Q, SPR, and SIR
registers to be loaded or stored in a single privileged operation. A designator in the instruction deter- '
mines whether the task register set, one of the four interrupt sets, or all five sets are to be loaded or
stored. The LBMP instruction will load a segment base register and the associated segment protec- .,,
tion and identification registers. Since there are separate sets of arithmetic, index, base, and stack 2
pointer registers for each of four possible interrupt levels within executive mode, it should not be
necessary to save and restore the executive-mode register state during a domain switch. These addi-
tional register sets should also facilitate rapid switching among interrupt levels.* Interrupts initiate an
automatic domain change by saving the interrupt status code, saving the current ASR and P register,
and loading new values into P and ASR.

Moving Information Between Domains

Two task-mode domains may share information directly if the executive mode domain assigns
them overlapping value (physical address) spaces. Different operations may be permitted to each of
the sharing domains by maintaining different values in their respective storage protection registers for
the shared region. The possible values include execute, read, write, and permit-indirect-addressing.

Moving information between task-mode domains that do not share primary storage requires the
intervention of an executive-mode domain. A possible approach is for the sending domain to issue an
Enter Executive Mode instruction after setting up the message to be transmitted and the identification
of the recipient in some predefined format. A program running in the executive-mode domain would
be able to gain access to both the sending and receiving domains and could move the information
requested. This kind of communication would require more overhead than the shared storage
approach but would allow the executive-mode programs to implement more flexible controls on com- r.-
munication than the storage protection registers permit.

Any program operating in an executive-mode domain can move information between any two
domains simply by setting the base registers to the necessary values and copying the data of interest.
There are no facilities to allow executive mode programs to restrict their access to arguments pro-
vided by user mode programs to that permitted to the calling program..

•'[here is apparently space in control storage for three spare SPR.'SIR register sets. Microcode changes could allowk these to

provide a separate SPR!SIR set for each of the [our interrupt levcls as well. eliminating the need to sase and restore them on - .
change- to the interrupt priority level.
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Security Checking on Operations Within a Domain

The addressing mechanisms already described can be used to enforce security checks if software
structures are defined appropriately. For example, security levels could be defined for users, for seg-
ments and for domains. When an executive-mode program initializes a base register so that a particu-
lar task-mode domain gains read access to data, it could check that the security level of the data
covered by that base register does not exceed the security level of the domain, or the user linked to it.
Checks could also be made as to whether other segments in the same domain are writable, and
whether their security levels are lower than that of the new segment. If these checks are successful,
then the segment register is set up for the task-mode domain. Accesses made to that segment will
then be controlled by the address mapping hardware.

Moving Information Between Levels of the Storage Hierarchy

1/O is under the control of the IOCs: each IOC contains one programmable and one hard-wired
processor. IOCs and CPUs communicate through privileged instructions and interrupts, so programs
running in task-mode domains can be prevented from moving information directhN from primary
storage to a secondary storage device. The IOCs have direct access to all of primary storage, but 1,
references are made relative to base and protection registers loaded under CPU control A CPU can
communicate with IOCs in remote enclosures via the CIS.

An IOC provides one CAR per attached CPU; there are six CARs in an IOC. There are four
CAPs f)r each of 32 1/0 channels: one CAP is associated with each of the follox Ing function,,: input
data, output data, external commands, and external inter-upts.

To perform an 1/O operation, the CPU constructs a program in main memory to be executed by
a particular CAP and signals the IOC to start the operation by executing an Initiate I/O instructicn.
This causes the CAR for the IOC to be loaded with the main memory address of the I/O program to
be executed. On detecting a new address in the CAR, the IOC sets up the appropriate CAP (accord-
ing to the channel and function requested) to perform the transfer. While the CAP is executing. the
CAR can accept additional requests from the CPU.

If security labels are to be reliably associated with data transmitted from main storage to an out-
put or auxiliary storage device, it is clear that the I/O programs generated for the IOCs by the CPU
are security-critical. If, for example, a program operating in task-mode supplies an 1/O program to
an executive-mode domain for execution, that I/O program must be checked to be sure it represents a
valid request (from the security standpoint) before the executive-mode domain initiates its execution.
Because this checking will be difficult to specify algorithmically, it will probably be necessary for all..
device drivers to operate in the executive-mode domain. All programs operating in the executive-
mode domain have unlimited access to the machine, so the requirement that large quantities of code
execute in executive mode increases the problem of certifying that these programs in fact do not i
Requirements on Physical Structure

Prevent Unauthorized Ph vsicc.l Access to the Computer I
The AN/UYK-43 does not have keyboard, cabinet or terminal locks. All active components

have built-in nonrcsettable usage meters.
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Prevent Unauthorized Modification of Removable Media

Prevention of access to removable media is a function of peripheral equipment not addressed
here. The system has no specific hardware support for it.

Assure Secure Communication with Remote System Components.. IN

Provision of encryption or protected distribution systems is a facility concern. There is no U
hardware support for it.

Prevent Unauthorized Viewing of System Output

Control panels, which incorporate video display. are recessed, but not for this purpose. The
system is not yet TEMPEST approved.

Assure Continuous Service

The AN/UYK-43 includes extensive measures for fault detection and handling, as described pre-
viously. Some of these depend on system software to use hardware features properly. Specific
features include:

* The AN/UYK-43 hardware can be highly redundant. The type B enclosure can contain up to
two CPUs, two power supplies, two IOCs, a CIS, two DCUs, and a ROCU. Sixteen such
enclosures can be interconnected.

" The AN/UYK-43 can be provided with any desired combination of magnetic-core (nonvola- 4
tile) or semiconductor (volatile) memory. Core memory modules are smaller (32K vs 64,

256, or 512K) and their read-write cycle time is longer (900 vs 450 ns).

* There is a power-tolerance interrupt feature and a 250 tis power down cycle for the CPU to I
accommodate an emergency power down. Each semiconductor memory module has sufficient
energy storage to maintain its contents for 130 ms during a power interruption.

* Although there are no coolant leak detectors on the water-cooled models, both the B enclo-
sures and the smaller A enclosure, which is a direct replacement for an AN/UYK-7, can be I
air cooled.

" The control panels (DCUs and ROCU) have raised separators between keys to reduce the S
oLcurrence of operator error on manual input.

" The battle short, which bypasses the thermal overload protection, has a warning lamp that is
lit if it has been activated.

" The AN/UYK-43 is designed to the sheltered controlled environment requirements of MIL-E-
16400. It has an operating temperature range from 0 to 50' C and humidity tolerance up to
95%.
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ABILITY OF AN/UYK-44 TO MEET REQUIREMENTS

The AN/UYK-44 is a 16-bit, microprogrammed minicomputer with a bus architecture [A71. Its
instruction set extends and modifies that of the AN/UYK-20 computer: it can emulate an AN/UYK-20
and specified operations of the AN/AYK-14 computer as well. It is available in three physical con-
figuratior . As a militarized reconfigurable processor (MRP), it consists of a set of hardware
modulc called Standard Electronic Modules (SEMs). As a militarized reconfigurable computer
(MRC), it consists of a set of SEMs in a cabinet along with a power supply, memory, control and
maintenance panel, and cooling system. As a microcomputer development system (MDS). it consists '.

of an MRP housed in a cabinet with memory and power supplies, a keyboard-display, and, optionally.
a printer. ,,,

This discussion centers on the MRC. We assume the presence of one or more IOCs and non-
destructive read-only NDRO memory. We also assume the "user growth" option, which provides
additional microprogram read-only memory (ROM) for user-defined instructions, is not present.
Addition of new instructions to the machine would affect the following analysis: any microprograms
added would have to be carefully examined to assure they do not sabotage security.

The state word for the machine is held in two 16-bit status registers (SRI and SR2). Like the

AN/UYK-43, the AN/UYK-44 status registers define whether the machine is operating in one of two
modes, task or executive (described in the following section). In addition to the state word, the
AN/UYK-44 CPU includes a 16-bit P-register (program counter) and 16 16-bit general-purpose regis-
ters that are accessible to programs operating in task mode. A second set of 16 general-purpose
registers is available to programs operating in executive mode. Programmers who implement operat-
ing system functions will need to manipulate the four sets of 64 16-bit page-address (base) registers
that implement memory mapping. The IOC subsystem, also primarily of interest to operating system V
implementors, can use the three page-address register set numbered 0, 2, and 3; the central processor
can use all four of the page-address register sets. For debugging, there is a single breakpoint register
and an eight-word P-history file. The breakpoint register can only be loaded manually from the sys-P.
tem console: programs cannot alter it.

The analysis of the AN/UYK-44 hardware below follows the order in which the requirementswere developed. %

Requirements on Logical Structure ,U

Define and Separate Domains

Like the AN/UYK-43, the AN/UYK-44 defines two instruction subsets: those available in task
mode (called nonprivileged) and those available in executive mode, which includes both the"%
nonprivileged and privileged instructions. Privileged instructions include those that load the page-
address registers, perform direct addressing, manipulate the status registers, initiate I/O. read and
activate the CPU real time and monitor clocks, stop and initialize the computer. transfer data between
executive and task-mode general-purpose registers, execute diagnostics, and load the breakpoint regis-
ter.*

The name space available to a task-mode domain consists of the register sets prcviousl,
described and primary storage made available by the currently active page-address register set. The

*iBreakpoints, are less flexible in the AN/UYK-44 than in the AN/IJYK-43. Occurrence of a read. %.%rite. ti ee'ttc

reference to the address that matches the nTIlltnt.' Of the breakpoint register cai. , the I R(" to stop
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name space of a task-mode domain at any one time is thus limited to 64 1024-word pages, a total of
65,536 names.

The value space to which a task-mode domain's name space is mapped consists of 16-bit words.
The mapping from name to value space is determined by the contents of the active set of 64 page- E
address registers and operates as follows for 16-bit operands: status register I bits 4 and 5 select one
of four page-address register sets and bits 15 to 10 of the 16-bit relative address select one of 64 16-
bit page-address registers. Bits 11 to 0 of the selected page-address register become the 12 high-order i
bits of a 22-bit absolute address. Bits 9 to 0 of the relative address become the 10 low-order bits of
the absolute address. Bits 14 to 12 of each page-address register specify the access privileges to be
locked out on the page: exevute, read, or write. (Bit 15 is a "modified" bit.) A reference that
violates these constraints causes an interrupt. The smallest conceivable value space for a task-mode
domain comprises the contents of the registers and a page of storage (1024 16-bit words). The opera- .
tions that can be applied to this page are restricted by the lockout bits just described; indirect
addressing words are exempt from execute lockout.

As in the UYK-43, the name space for the executive-mode domain is equivalent to the name
space for the entire machine, since the executive-mode instruction set allows the page address regis-
ters (including the lockout bits) to be altered. The maximum number of names (in this case, absolute
addresses) that an executive-mode domain can generate is 222 or 4,194,304. The size of the e
corresponding value space is limited by the amount of physical storage that can be attached to the
machine, currently 512K 16-bit words of semiconductor memory or 256K 16-bit words of magnetic
core memory per cabinet. Expansion cabinets with 512K or 256K of storage, an lOC, and a power
supply can be added on the bus. Address generation for instructions and operands is similar in task

and executive modes, except that the status registers may select physically separate sets of general-
purpose and page-address registers.

The appropriate way to segregate task-mode domains in the AN/UYK-44 is to assign different
domains non-overlapping sets of (absolute) page addresses. Programs operating in the executive-
mode domain must manage memory and assure that page address registers are loaded with appropriate
absolute addresses and lockout bits before initiating programs that operate in task-mode domains and
when responding to memory management requests from such programs. As long as these registers
are managed properly, task-mode domains can be isolated from each other.

Establish Initial Domain

The initial actions of the AN/UYK-44 when power is applied depend on the state of the console
switches and the contents of the NDRO memory. To start the system ("cold %tart") an operator
moves the Load/Stop switch on the Control and Maintenance Panel momentarily to the Load position.
This causes the MRC to execute a Master Clear, select Run mode, and begin executing instructions
from NDRO memory address 002. The Master Clear clears the P-register, the status registers, and
bits 8-15 of each page register, and sets bits 0-7 of each page register set to its own register address.
It also initializes all 1/O channels, and generates a bus initialization signal. Clearing SRI places the
computer in executive mode, using general register set 0. causes it to select NDRO memory, page
register set 0, and to lock out all interrupts. In this state, the program starting at NDRO address W02
gains control of the machine. This state allows that program to have unlimited access to the machine
and its i/O devices, and, potentially, to create domains that are more restricted. The actual program
in NDRO will determine whether these domains are in fact set up properly; the NI)RO is expected to or
contain a bootstrap loader starting at address 002 which will load code from a specitied device.

V N...
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If the computer stops because of a power failure, a similar sequence is initiated when power is
restored if the Auto Start/Start switch is in the Auto Start position. In this case, however, the Master
Clear signal also causes Run mode to be selected, and execution begins at NDRO location 000. This
location is expected to contain a jump to the instruction located at the address specified by the con-
tents of memory location 177 octal. Presumably, system software will have placed at this location the
address of a restart routine that will attempt to recover from the power failure. Again, from a security
standpoint, this routine will have to establish that the domains of the restarted system are properly
defined.

Link Users with Domains

Operators will communicate with the AN/UYK-44 through the Control and Maintenance Panel, ...
which is mounted on the door of the cabinet. An operator can access any register or storage location

and single-step through any resident program or enter one himself a byte at a time. There is no pro-
vision in the hardware for authenticating an operator.

Users of the system (as well as sensors and peripheral devices) will gain access to the CPU

through an IOC. The link between a user and a domain is established and authenticated using much
the same mechanisms as used in the AN/UYK-43.

Control Communication Between Domains

Task-mode domains communicate with executive-mode domains via interrupts generated either
as requests for service or as traps. The privileged instructions Load/Store Inter-Register (LIR/SIR)
permit an executive-mode domain to exchange the contents of a task-mode general-purpose register
with an executive-mode register. Communication between task-mode domains can occur through
sharing primary or secondary storage and through the intervention of executive-mode domains..-.

There are three prioritized classes of interrupts in the AN/UYK-44; task-mode domains can
request service from an executive-mode program by issuing the Executive Return instruction, which
generates the Executive Return Class II interrupt, or by simply attempting to execute an executive
mode instruction, which causes an Executive Mode Fault Class II interrupt. In processing any inter- -.

rupt. the hardware causes the executive mode bit to be set, so the entire machine instruction set is ,
available and, consequently, all storage as well. Parameters can thus be obtained from the calling
domain and any necessary communication can be performed. Class III interrupts are those related to -

I/O processing, while Class II interrupts occur also as a consequence of program faults. Class I inter-
rupts are loss of power, parity errors, and failure of a module to answer.

The extent of primary storage sharing is determined by how the executive-mode domain
manages the name-value space mappings, as in the AN/UYK-43. Access to secondary storage is
available only through an IOC* and the instructions to initiate I/O are privileged, so sharing of sec-
ondary storage space among task-mode domains is also under the control of the executive-mode 3
domain. IOCs address primary storage through page-address registers, and these references are sub-
ject to the lockout bits associated with those registers. The CP can protect main storage from way-
ward accesses from an IOC through this mechanism as well as by controlling the programs it requests
the IOC to execute.
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Detect and Handle Faults

The AN/UYK-44 includes less extensive mechanisms for detecting and recovering from P".
hardware faults than the AN/UYK-43. It uses the same basic memory modules as the AN/UYK-43
with the same kinds of parity and error detection/correction capabilities. Unlike the BITE in the
AN/UYK-43, the Built-In Test (BIT) in the AN/UYK-44 does not run continuously. BIT is
microprogrammed and is invoked by the privileged IM (Initiate Microdiagnostic) instruction or
through switches on the Control and Maintenance Panel. An error log is automatically maintained.
Unlike BITE, BIT only detects trouble; there is no automatic reconfiguration. However, in case of a
parity, resume, or power fault, a Class I (highest priority) interrupt is generated; programs that ser-
vice these interrupts are responsible for saving or restoring the machine state and treating the reported
problem.

Detection of a momentary power failure could cause an automatic "re-boot" if appropriate code
were stored in the 192-word NDRO memory. Detection of a sustained power failure causes a power
tolerance interrupt that allows 250 14s to store volatile data. A battle short switch allows operation to
continue even if the machine is overheated.

Requirements on Processing of Logical Structures %

Creating and Destroying Domains

The AN/UYK-44 addressing structure provides the user with access to 64 page-address registers
that can each address up to 1024 words. Creation of a task-mode domain requires these registers to
be initialized, though they need not all contain different values. If domains are implemented as
processes, the minimum storage for inactive domain will have to accommodate the contents of the fol-
lowing registers: P, SRI, SR2, 16 general-purpose registers and the contents of the 64 16-bit page-
address registers. In addition, the system will require some additional pointers to keep track of this
storage. To destroy a domain, this storage must be deallocated, but other activities may also be
necessary if the domain has been allocated other resources, such as secondary storage, or if it has I/O
operations pending.

Switching Domains

To switch from one task-mode domain to another, an executive-mode domain must gain control,
save the complete register set just described, locate the saved registers of the target domain, restore
them, and transfer control to the target domain. The (LMR) instruction will load multiple registers
from sequential storage locations; its complement is the (SMR) instruction. The (LARM) instruction
will load the contents of sequential page-address registers from sequential storage locations, and its
complement is the (SARM) instruction. Interrupt processing initiates a domain change by saving the
contents of the P, SRI, SR2 and real-time clock (RTC). P, SRI, and SR2 are then loaded from con-
trol memory locations that depend upon the class of interrupt. Bit 15 of SRI is set, putting the com-
puter in executive mode. Because there are additional sets of general purpose and page address regis- ,

ters for use in executive mode, it should not be necessary to save and restore them when switching
between domains of different modes.

Moving Information Between Domains

Two task-mode domains may share information directly if the executive-mode domain assigns
valtu.s to their page-address registers that allow their value spaces (physical address space) to overlap.
Di fcrcnt operations may be permitted to each of' the sharing dlomains by maintairning different values
in their respective lockout bits. The possiblc values include cxccutc, read. and wri:',..
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Moving information between task-mode domains that do not share primary storage requires the
intervention of an executive-mode domain, as in the AN/UYK-43. Approaches similar to that
described for the AN/UYK-43 apply to the AN/UYK-44 both in this case and in moving information
between a task-mode domain and an executive-mode domain.

Security Checking on Operations Within a Domain

The addressing mechanisms already described can be used to enforce security checks if software
structures are defined in a way similar to that described for the AN/UYK-43, but pages, rather than
segments, would be the unit of storage to which labels would be applied. When an executive-mode
program initializes a page-address register so that a particular task-mode domain gains read access to
data, it could check that the security level of the data covered by that page does not exceed the secu-
rity level of the domain, or the user linked to it. Checks could also be made as to whether other
pages in the same domain are writable, and whether their security levels are lower than that of the
new page. If these checks indicate that the appropriate security model has been observed, then the
page-address register is set up for the task-mode domain. Accesses made to that page will then be
controlled by the address mapping hardware. The hardware assures that the task-mode domain cannot
gain access to storage except via a page-address register; the executive-mode programs that load these
registers must assure that they are consistent with security requirements.

Moving Information Between Levels of the Storage Hierarchy

The IOC controls input/output and, thus, transfers of information between levels of the storage
hierarchy. The CPU communicates with the IOC by issuing the privileged (IOCR) (start I/O) instruc-
tion. This causes the IOC to begin executing at a specific location. The IOC program selects one of
32 IOC command chains resident in page-address register set 0. The CPU suspends operation until
the IOC completes processing the I/O instruction. The Memory Address Expansion option provides a
duplicate set of page address registers slaved to those in the CPU in order to reduce contention.

As in the AN/UYK-43, I/O programs generated for the IOC by the CPU are security critical,
particularly if security labels are to be stored with data on auxiliary storage devices. Because of the
difficulty of analyzing the security implications of user-generated I/O programs, these programs will
have to be created by software that can be relied on not to sabotage security requirements. This
requirement for intervention by programs operating in the executive-mode could lead to substantial
bottlenecks or increased certification requirements in some applications.

Requirements on Physical Structure

Prevent Unauthorized Physical Access to the Computer

The AN/UYK-44, like the AN/UYK-43, does not have keyboard, cabinet or terminal locks, but
the CPU does have a built-in nonresettable usage meter.

Prevent Unauthorized Modification of Removable Media

Prevention of access to removable media is a function of peripheral equipment not addressed
here. The system has no specific hardware support for it.

Assure Secure Communication With Remote System Conponents

Provision of encryption or protected distribution systems would be a facility concern. There is
no hardware support for it.
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Prevent Unauthorized Viewing of System Output

Control panels are recessed to inhibit someone from viewing displays from over the operator's
shoulder. The .ystem has been designed to meet standards tOr TEMPEST but testing has not been
complete.

Assure ontinuous Service

The ANJ1YK-44 includes the macsures for fault detection described pre\ iousl\. They are less
extensive than for the ANJYK-43. Some of these depend on the operator and the system software
to use hardware features properkl. Specific l.aturcs include:

" The AN L'YK-44 hard\ are can he redundant- Meior, expansion InodulC, can he attached to
the bus: each is a cabinet containing up to 256K (magnetic core) or tIp to 512K Senliconduc- r
toi Mernor\ (S(M 1 of storage- MCeror Modules are connected to the bus h, Memory Inter-
face Modules (MIMs,. Like the MIAs in the AN'UYK-43. the MIMs permit mixing mag-
nelic core and SCM. but they do not allow faulty modules to be bypassed. The power sup- .,
plies can operate t'roni any ot six diflcrent kinds of' AC sources. :.,*

The AN/l!YK-44 can be provided with any desired combination of inagnetic-core (nonvola-
tile) or semiconductor (volatile) memory. Core memory modules are smaller (32K vs 64K)
and their read-write cycle time is longer (900 vs 350 ns).

" There is a power-tolerance interrupt feature and a 250 its power down (energy storage of'
SCM) to allow an emergency power down.

" Although there are no coolant leak detectors on the water-cooled models, water-cooling is an
option: the standard equip- " air-cooled. .

" The battle short, which bypasses the thermal overload protection, has a warnin, lamp that is
lit if protection has been bypassed. If the overload sensor isn't bypassed, it sets off an audi-
ble alarm when actuated.

* The AN/UYK-44 is designed to the sheltered controlled environment requirements of MIL-E-
16400. It has an operating temperature range from -54' to 65' C and a humidity tolerance
up to 95%.
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Appendix B

DEC VAX-11/780

OVERVIEW

The VAX-I1/780 is a 32-bit computer with a virtual memory space of up to 4G-bytes IBI].
The physical memory can be as large as 64M-bytes, with the rest on mass storage devices. It,, pro-
cessor can execute instructions in either the native mode or compatibility mode. The native mode

instruction set is an extension of the PDP- II instruction set with variable length instructions, some
that correspond directly to high-level language constructs. The conpatibility mode executes a set of
nonprivileged ?DP-I I instructions. Both modes are governed by the VAX memory management
hardware.

The VAX-I1/780 provides four hierarchical privilege modes to control access to memory and
execution of privileged instructions. These access modes are (from most to least privileged): kernel.
executive, supervisor, and user. Unprivileged instructions can be executed by a process in any access
mode, while privileged instructions can only be executed by a process in the kernel mode. Memory
is protected at the page level granularity (512-bytes), where a page may be read only. read and write.
or no access, for each of the access modes. Any access given to a less privileged mode is implicitly
given to all more privileged modes.

There are 16 32-bit general registers. Most can be used as accumulator,. index registers, and
base registers, some are used implicitly for special purposes, and two are used for the stack pointer
and program counter. There are 42 registers in the privileged register space. These registers are
either accessible only by kernel mode processes or by the microcode, and arc used primarily for
address translation, interrupt servicing, and bus controlling. The execution state of the processor is
encoded in the processor status longword (PSL). The low-order bits are exception flags: the high-
order bits define the access mode i.formation, the interrupt priority level, and the current instruction
set. .,

REQUIREMENTS ON THE IO(;Il'AI, STRUI'TUJRE 'S.

Define and Separate Domains

The name space consists of- 4(i-bvtes of' irtual nieniorN, divided into a 26-k te process space %
and a 2G-bvte system space. The general registers can be accessed in any v mode, but the privileged
registers are protected from all nonkernel mode processes- the move to and from privile ed register
instructions are privileged. The physical meiiiory unit initially can contain tip to 4M-hb tes: it can be
.ncreased to 64M-bytes by adding mcmory controllers and interlea.ing the memor\. The meniior\
management hardw.are maintains ihe \ irtual address space and memory protection.

The \,irtual address is composed of a 23-bit virtual page number and it )-hit b\te offset. The
rtual page number is an index into the page table. Page tahh_ cltric. are 'i inipt ed (i'o a 21 -hit page

frameC numnber (page phy sical nienlor\ addht',,,, ,. valid hit V). i modified hit tM., protectim infor--_
thation, and five unused bits (reserved fbr )1 II AI.). The page frame ntutmbier I, concatenated \ith.'
th h\Ic offset to determine the -h te physical menmnor address. (See Paizc lbz/h, ti tr\"
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V protection M Unused (5-bits) Page Frame Number]

Page Table Entry

The process space is divided into two regions: P0 (program region) and PI (control region).
Each user mode process has a page table for each of the PO and PI regions. These page tables are
maintained in the system's virtual address space (they are not always resident in physical memory).
There are also per-process base and length registers for both the P0 and PI regions. The base regis-
ters point to the process's page tables for those regions, and the length registers determine the sizes
(number of page table entries) of the page tables.

Ali processes share a system page table that is located in physical memory. Physical page
addresses in the system space are calculated in the same way as those in the process space. The sys-
tem base register points to the system page table; the system length register determines the size of the A

system page table.
%.

A domain consists of memory described by a process's page tables, the register set (general and
possibly privileged registers), and the instruction set (depending on the privilege mode). User mode
domains can be isolated by the operating system if no two processes have page table entries 5'

corresponding to the same page. The page table base and length registers are privileged registers and
therefore protected from nonkernel mode processes. The operating system must protect the page
tables so that only authorized software has access to the entries. This can be achieved by isolating the
page tables (giving page table entries that point to the page tables only to authorized processes), and
also with the page protection mechanism (for example, setting the protection bits to allow writing only
in the kernel mode).

Establish an Initial Domain

After a power-down or machine halt, the VAX-I 1/780 is initialized by the bootstrap sequence.
The bootstrap sequence can be initiated by either setting switches on the front panel to automatically
reboot or entering the boot command from the console terminal. In either case, the bootstrap
sequence performs the following series of actions: micro-verify code tests processor data paths, the
general and most privileged registers, the cache memory, and the boot path (failure of a test halts the
machine and gives a diagnostic error message); the PSL is initialized from ROM (the processor is
placed in kernel mode and at a high interrupt level); the bootstrap code is loaded into physical
memory and executed. The machine executes the bootstrap code with memory management off. In %
this state, there are no access checks on memory and no virtual addressing. The bootstrap code must
load the map enable (MAPEN) register to turn on memory management. This sequence establishes
an initial kernel mode domain that can then create other domains with more restricted access.

Link Users with Domains

Operators communicate with the VAX-I 1/780 via the console terminal an.d switches on the front - S
panel of the cabinet. The processor receives commands from the console through a special interface.
preventing other devices from invoking the console's privileged commands. There is a console key
switch that can be set to disable communication between the console and the processor. '.

Users. peripheral devices, and some storage devices communicate with the processor through
UNIBUS adapters, mass storage devices communicate through MASSBUS adapters. The bus adapters T
interface to the synchronous backplane interconnect, which controls I/O and memory transactions.
There is no significant hardware mechanism for authenticating users or d ices. ,
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Control Communication Between Domains

Messages can be passed between domains through the intervention of a kernel mode process.
either at domain creation or at run-rime. Message passing can be accomplished by adding an entry
for the message to the recipient domain's page table (and then removing the entry for the sender, if
necessary), or by copying data between domains. Sharing can be accomplished if the sharing
domains have entries to a common page. Since page protection information is recorded in the page
table entries, access rights can be assigned per domain. Since processes running in the system space
share the system page table, page protection is the only hardware mechanism that can control access
to memory.

When a process calls a more privileged domain, the processor maintains system integrity by -.

controlling the entrance to and the exit from the privileged domain. When a service routine is called.
the access mode of the calling process is stored in the previous mode field of the service routine's
PSL, allowing the privileged process to determine the access rights of the calling process. The suc-
cess of any read or write instruction depends on the calling process's access mode, not that of the
more privileged service routine. In this way, areas of memory originally protected from the calling
process remain protected. At the completion of the service routine, the old processor state is restored
and a check is made to insure that the access mode of the process regaining control is equal or less
privileged than the access mode of the processor when the privileged routine was called. This means
a program cannot increase its privilege by altering the processor state to be restored. Software inter-
rupts and exceptions are handled in a similar manner.

Detect and Handle Faults

The VAX-I 1/780 features several mechanisms for fault detection and recovery. In physical
memory, error correcting code detects double-bit errors and corrects single-bit errors, Parity is

"' checked on bus transactions (both processor internal and external) and in the cache memory. Timers
-" are included to test time-dependent functions and hung machine conditions. There are several

(privileged) maintenance registers that can be examined to help determine the causes of parity errors .
and bus faults.

On power-up, boot, or reset, microverify routines test internal processor paths (specifically the
boot path), the general registers, most of the privileged registers, and the cache memory. Failure of "
any of the tests causes a machine halt and generates a diagnostic error message. In case of a power
failure, a battery back-up unit can maintain the contents of physical memory for up to l0 minutes. If
the power failure lasts longer, the memory is over-written with zeros on power-up.

REQUIREMENTS FOR EFFICIENT PROCESSING OF LOGICAL STRUCTURES

Creating and Destroying Domains

All information relevant to the hardyarc context of a process is stored in its process control
block (PCB). The PCB contains images of the PSI.. page table base and length registers, program.
counter, general registers, and stack pointer,, a total of 24 32-hit words. The proceN., control block
base register points to the phs,,ical 1cm1r1 ,, ,,,lc Space location of the current process's PCB. To
create a domain, a PC13 Must be created in ph,,ic al iieinor\ and loaded to privileged registers (load-
ing a P('B is handled with a single inrtilion). ] t dcstro\ a doimain. at systen process must take
control of the processor and clear the inlcnor\ iai.igc oh the domain's PCB.

0-
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Switching Domains

For a process to get control of the processor, the process's PCB must be loaded into the
appropriate privileged and general registers. The two instructions that implement domain switching
are privileged. The save process context instruction, SVPCTX, stores the current PCB from the regis-
ters to the system space location pointed to by the PCB base register. The load process context
instruction, LDPC7X, loads the registers from the PCB pointed to by the new PCB base.

Moving Information Between Domains

Information can be passed between user mode domains only through the intervention of a system
process (either at domain creation time or at run time). That process must modify the page tables of
the communicating domains so that some communication is possible (for example, shared pages), or
copy the data from one domain to another. This requires a call and context switch to the system pro-
cess, a modification to the page tables or a message passing function, and a return.

Pages can be given system-wide access (limited by page protection) if they are placed in the sys-
tem space. Message passing can be accomplished by passing memory pointers to the recipient
(assuming the recipient has rea permission to the page).

Security Checking on Operations Within a Domain

Virtual address translation involves a microcode protection check at the page level granularity. I"

Repeated references to memory pages is sped up by the translation buffer, a fast memory that records
the results of recent address translations. There are five bits in the page table entry that can be used
by software (two are used by VAX/VMS as ownership bits, the other three are 'DIGITAL reserved'), %
possibly for extended security checks.

Moving Information Between Levels of the Storage Hierarchy

The upper half of physical memory in the system space is the I/O space. The I/O space con-
tains memory-mapped control, data, and status registers of the I/O drivers. I/O space is accessed and
protected like the rest of main memory: non-I/O related processes can be prevented from modifying
the contents of the I/O space by assigning appropriate page protection. I/O device protection is
assigned per page of devices (512 register locations). Different pages of devices can be given dif-
ferent protection.,

REQUIREMENTS ON PHYSICAL STRUCTURE

" Prevent Unauthorized Physical Access to the Computer

The VAX-I 11/780 has a cabinet lock. There also is a console key switch that can be set to) '
disable communication between the console and the processor.

" Prevent Unauthorized Modification of Removable Media

There is no hardware support for this. I
* Assure Secure Communications with Remote Systen Components

The console terminal is linked through a special interface to the processor. There is no
hardware support for verifying any other remote device.

td'w
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" Prevent Unauthorized Viewing of System Output

Tempest enclosures are available for certain processors and peripherals. I
" Assure Continuous Service

The VAX-I 1/780 has fault detection and recovery mechanisms as described above. Other
features that affect reliability are:

" In case of partial failure, the operating system can modify the system configuration until
maintenance is performed, such as disabling defective memory modules, the cache
memory, and nonresponding peripheral devices.

" An optional battery back-up can maintain 4M-bytes of physical memory for at least 10 It
minutes. The power controller has sensors that detect power loss and temperature out of f
the normal operating range.

,.-.

" The cabinet is air cooled.

REFERENCE

BI. Digital Equipment Corporation, 1980. VAX Hardware Handbook.
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Appendix C

IBM 370-XA

OVERVIEW

The IBM 370-XA is a computer architecture IC I], implemented in computers such as the IBM
308X, 4381, and 3090. Its 31-bit addressing mode allows for up to 2G-bytes of physical memory in
a 2G-byte virtual address space. The computer can be configured with one or more processors, a
channel subsystem for 1/0 processing, 1/0 devices, and physical and secondary storage units. Two
modes of operation are provided: System/370 mode and 370-XA mode. System/370 mode is a 24-bit
addressing mode compatible with System/370 operation. 370-XA mode utilizes the extended-
architecture features, such as 31-bit addressing, an enlarged instruction set, and a more flexible chan-
nel subsystem. There are two states of operation: the problem state and the supervisor state. Users'
programs should run in the problems state, while the operating system should run in the supervisor
state.

.4,

The instruction set is divided into three privilege-based categories: 158 unprivileged, 11 -.

semiprivileged, and 39 privileged instructions. Unprivileged instructions include general computing
instructions; semiprivileged include address space translation, subsystem-linkage, and authority control
instructions, and, privileged include processor control, 1/0, and diagnostic instructi,,rns. Privileged

instructions can only be executed by processes operating in the supervisor state. Semiprivileged p,

instructions can be executed in the problem state only if certain authority checks pass, and some ,,
semiprivileged instructions even require that supervisor state processes pass the authority checks.
Semiprivileged instructions are divided into four groups, each with its own required authority check.
Therefore. it is possible to allow a process the execution of some semiprivileged instructions and to I.N
prohibit the execution of others. Unprivileged instructions can be executed when the processor is in
either the problem or the supervisor state. .

The register set of each processor includes 16 32-bit general registers, four 64-bit floating point
registers. 16 32-bit control registers, a 32-bit prefix register, the 64-bit program status word (PSW),
time-of-day clock, clock comparator, and CPU tiner. Because the instructions that load the PSW.
prefix register, control registers, time-of-day clock, clock comparator, and CPU tinier are privileged. 
processes operating in the problem state can directly access only the general and floating point regis-
tcrs. The PSW contains state and mode tof operation. interrupt masking, access permissions to
storage, address space, and instruction address information. The control registers contain authorit, I
address translation, program-event recording. tracinn,, and interrupt processing control information.

Real memory is protected at the page (4K-byte) level. Key-controlled protection is implemented
by associating a 4-bit storage key with each page. When a process attempts to write to real nemory. .
the process access key in the PSW is compared to, the 4-bit storage access key: access is allowed only
if the keys match. The fetch protection bit determines whether the key check must also be made for
virtual memory reads. Key-controlled protection also applies to accesses by the channcl subsystem.

Access to virtual pages is controlled by page-protection. Each virtual page has an associated
" page-protection bit that, when set, allows only fetch operations on the page. Otherwise, when the bit

is not set. both fetch and store operations are allowed. .,-.
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Low address protection prevents system information from being modified by unauthorized
processes. It applies to effective (virtual) addresses from 0 to 511 decimal. These addresses correlate
to a processor's first real page. and contain interrupt service and initial program load information.

Low address protection is enabled by a bit setting in a control register, and applies to processes
operating in both the problem and supervisor states, but not to processor and channel subsystem
accesses.

An access to memory is permitted only if all three of these controls permit the access.

REQUIREMENTS ON THE LOGICAL STRUCTURE

Define and Separate Domains

Memory is partitioned into IM-byte discrete segments and further into 4K-byte discrete pages,
both assigned on integral boundaries. The smallest addressable unit is the 8-bit byte. In System/370
mode, the 24-bit address allows for a name space and value space of 16M-bytes. The absolute
addresses in this mode point to the first 16M-bytes of memory. 370-XA mode allows for a 2G-byte
name space and value space. Virtual addresses are translated into real addresses by dynamic address
translation (DAT), and real addresses are translated into absolute addresses by prefixing. Prefixing
allows each processor in a multiprocessor configuration to have its own first page (real addresses 0 to
4095 decimal) for interrupt save area and other control information, minimizing interprocessor
interference. Real addresses are filtered through the prefix register. When the rea! address page
number is zero (corresponding to the processor's control area), the prefix is added to the address,
thus mapping the processor's first page to a page other than the first absolute page.

When DAT is disabled, addresses generated by processes are considered to be real addresses,

and the current prefix value determines the relation between real and absolute memory.

When O.AT is enabled, addresses generated by processes are considered to be virtual addresses.
Virtual addresses are translated into real addresses by hardware through a series of table look-ups.
The address space number (stored in a control register). determined by two address space tables, in
turn determines the process segment table, page table, and authority table designations. Once these
designations are initially determined for the address space and the control registers are loaded (by
hardware) with the necessary address control information, virtual address translation is performed by
the hardware using a segment table and a page table look-up. Each process has a primary and a
secondary address space, as defined by primary and secondary segment tables. The segment table's
origins and lengths are loaded into control registers.

Virtual addresses contain an Il-bit segment table index, an 8-bit page table index, and a 12-bit
byte offset. The segment table index selects the segment table entry. The entry contains a page table
origin and length. The page table index selects the page table entry, which contains a 19-bit page-
frame real address. The byte offset is concatenated with the page-frame to develop the 31-bit real
address.

Page-Table Origin (25 bits) I I C I Page-Table Lcngth (4 bits)

Se'ment lilhhe Entry

The invalid (I) bit determine, whether the segment can be used. and the conmmon (Ct bit is set for
shared segments for use bv the translation look-aside buffer (a hardwkare iechanism used to speed
successive addrc,,s translations).
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Page-Frame Real Address (19 bits) I I P

Page Table Entry

The page table entry also includes a page protection (P) bit. If set, store access to the page is pro-
hibited.

A domain consists of memory described by the primary and secondary address spaces, and the
instruction set determined by the operation state and any authority granted by settings in the control
registers.

Address space control is determined by settings in the PSW, prefix, and control registers.
These registers are directly accessible only by supervisor-state processes. A supervisor-state process
can change the prefix and control registers to access any absolute address. These programs must be
written so as not to corrupt the address translation process or memory values.

Problem-state domains can be overlapping or disjoint. An overlap can occur at different levels:
domains can share segment tables, page tables, or individual pages. Any overlap occurs in integral
units of 4K-byte pages. Memory protection is implemented at the page level (both virtual and real
pages). Access to virtual pages is controlled by page-protection. When a store to real memory is
attempted, the processor compares the process access key to the storage access key: store access is
allowed only if the keys match. The PSW key mask (control register 3, low half) is used to control
what keys a process can use with the move instructions that supply an access key as an operand.
When the fetch protection bit on a page is set, fetch accesses are also key-controlled. The operations
that set storage and process access keys are privileged,

Establish an Initial Domain

The IBM 370-XA has four mutually exclusive processor states: the operating, load, stopped,
and check-stopped states. When in the operating state, the processor execution is described by the
PSW and control registers. The processor enters the load state to perform the initial program load. A
In the stopped state, the processor does not respond to any instructions or interrupts except a restart
interrupt. The check-stopped state is entered as a result of certain machine faults.

The IBM 370-XA is initialized with an initial program load (IPL) sequence. The operator
begins the sequence by specifying the IPL input device and then activating a load key on the control
panel. The load operation resets the processor and channel subsystem, puts the processor in the load
state, resets any other processors in the system, and starts the IPL channel program with the supplied
channel-command word. When the IPL operation has ended successfully. the new PSW is loaded
from absolute addresses 0 to 7 and execution continues at the location specified by the program I
counter in the PSW. If any machine checks are generated or the IPL is not successful, the processor
remains in the load state.

The initial domain is determined by the outcome of the IPL and the new PSW. The initial pro-
gram and the operating system start-up routine are responsible for leaving the processor in a secure
state. , ,
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Link Users with )omains

Operators communicate with the IBM 370-XA through the console terminal and the control ,.-

panel. The control panel includes the following (model-dependent) controls and indicators: icnmorN
and register display and alteration, operation mode, machine state, load operation, power, and system V
reset. The console terminal may implement some or all of the control panel facilities. The domain
access through the panel and console consists of the entire address space: no fetch or store permis-
sions are checked. There are no significant hardware features to authenticated the operator.

Users and devices communicate over subchannels of the channel subsystem. There are no signi-
ticant hardware features to authenticate users of peripheral devices.

Control Communication Between Domains
"5..

Messages can be passed between problem-state domains only through the intervention of a
supervisor-state process (either at domain creation or at run-time). The supervisor-state process can
copy the message between domains, or set up overlapping domains by assigning common segment
tables, page tables, or table entries. Domains can be disjoint or made to overlap to any degree down
to a single page.

Supervisor state processes share a domain that consists of the entire address space and instruc-
tion set. Each supervisor-state process can be engineered to operate in a self-restricted subdomain of
the system domain. Such a process would not alter address space information unless that operation
were part of its task. By arranging a communication protocol, supervisor-state processes can directly
communicate between each other's sub-domains.

Problem-state domains can communicate with supervisor-state domains using the supervisor-call
instruction. This instruction generates a supervisor-call interrupt and the service routine specified in
the instruction code gets control of the processor. The old PSW is saved in real address 32 decimal
and the new PSW is loaded from real address 96 decimal.

Program-call and program-transfer are semiprivileged inter- or intra-domain branch instructions.
When either of these instructions is executed, the value of the problem-state bit in the new PSW is set
to one, indicating operation in the problem-state. This allows called processes to restrict their access
to that of the calling problem-state process.

For secure operation, segment tables, page tables, and other address space information should be
protected by storage keys available only to authorized supervisor-state processes. and located only in
the domains of processes that manage the address spaces.

Detect and Handle Faults

The IBM 370-XA has several hardware features for detecting and recovering from faults. Error
correcting code in the memory system detects double-bit errors, and detects and corrects single-bit
errors. Machine checks may be recovered from with a CPU retry, which restores a previously ..r

check-pointed state. The channel sibsystem has an analysis and recovery procedure for restoring I/O
processing after a subsystem rror is detected. The IBM 370-XA na, also be reconfigured to bypass

certain malfunctioning modules and devices.

Interrupts arc handled by saving the old PSW and the register set in lowk real niiclor\ (the
processor s low address space), and then loading the new PSW fbr the appropriate service routine.
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During a machine-check interrupt, an interrupt code is also available for use in the diagnosis and
recovery.

The privileged diagnose instruction can be used to test for the locate faulty components. The
trace facility can be used to audit branches, address space changes, and other program events.

REQUIREMENTS FOR EFFICIENT PROCESSING OF LOGICAL STRUCTURES

Creating and Destroying Domains

The creation of problem-state domains requires initializing segment and page tables that define
the domain address spaces. The domain state is defined by the images of the 8-byte PSW, the 16
general registers, the four floating-point registers, and the 16 control registers. Domains contain an
integral number of pages. The destruction of a domain requires that the domain address spaces be
invalidated. There is no single instruction that creates or destroys a problem-state domain.

The supervisor-state domain is created by the IPL sequence. Subdomains for supervisor-state
processes can be handled in the same manner as are problem-state domains, although these sub-
domains are less likely to be dynamically created and destroyed.

Switching Domains

Domain switches can occur as a result of the following: program, I/O, restart, external, and
machine-check interrupts, and supervisor-call, program-call, and program-transfer instructions. The
interrupt service hardware saves the necessary state information in, and loads the new PSW from,
predetermined low real addresses. The operating system must maintain the hardware and software
contexts of processes in a multi-tasking environment. The address space translation of the program-
call and program-transfer instructions is hardware controlled.

Moving Information Between Domains

Information may be passed between problem-state domains only through the intervention of a
supervisor-state message program (either at domain creation or at run-time). The supervisor-call
instruction generates an interrupt, allowing the message program control of the processor. The con-
trol transfer is handled by the hardware interrupt procedure. The message program could copy the
message between disjointed domains or set up an overlap in the two domains.

Information may be passed directly between supervisor-state processes. The recipient needs to
know the location of the message and have read access to the appropriate pages.

Security Checking on Operations Within a Domain I
Address translation includes a storage key/access key comparison, page-protection, and low

address protection. The translation look-aside buffer maintains the results of recent address transla-

*i tions, speeding up subsequent references to the same page or segment. There are also eight unused
bits in the page table entry that could be used by software to encode information relating to a
domain's access permission to that page.
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Moving Information Between Levels of the Storage Hierarchy

The channel subsystem handles all I/O processing. Access to memory by the channel subsystem
is controlled by key-controlled protection. The subchannel key is set when the subchannel is pro-
grammed for an operation. The processor and the subsystem communicate using privileged I/O
instructions and interrupts. Problem-state processes are therefore unable to move information directly " -Z

between memory and a secondary device. Once an I/O process has been initiated, the processor is"NV
freed by the subsystem to attend to other tasks. NJ

REQUIREMENTS ON PHYSICAL STRUCTURE

" Prevent Unauthorized Physical Access to the Computer

The control panel and console terminal may have locks that disable the functions of those de-
vices. Certain models can be equipped with extra controls and barriers that limit access to".6
various components.

* Prevent Unauthorized Modification of Removable Media

There is no significant hardware support for this.

" Assure Secure Communications With Remote System Components

A cryptographic subsystem is available to interface with some devices.

" Prevent Unauthorized Viewing of System Output

There is no significant hardware support for this.

" Assure Continuous Service

Design features include:

(1) Redundant hardware may be configured in this system. :%

(2) An I/O device may have as many as eight channel paths available to it. The channel
subsystem may allocate a maximum of 256 paths. Path management is handled by the ,.,o

channel subsystem. %

REFERENCES

Cl. IBM System/370 Extended Architecture-Principles of Operation. SA22-7085-0. IBM. 1983.
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Appendix D

Intel 80286

OVERVIEW

The Intel iAPX286 (80286) is a 16-bit microprocessor built into a 68-pin very large scale
integration (VLSI) chip [DI,D2]. It can address up to IG-bytes of virtual memory, with up to 16M-
bytes in physical memory. There are two operating modes: real-address mode and protected virtual-
address (protected) mode. In the real-address mode, the 80286 operates with a I M-byte physical

address space and is object code compatible with the 8086 and 8088 microprocessors. In the pro-
tected virtual-address mode, the microprocessor operates with a IG-byte virtual-address space. The
processor has the same base instruction set, register set, and addressing modes in both operating
modes. The protected mode implements four hierarchical privilege levels (PL) that control access to
memory and execution of privileged instructions. PL 0 is the most privileged; PL 3 the least.

There are fifteen 16-bit, program addressable registers: four general registers (that can also be
addressed as eight 8-bit registers), two index registers, a base register, a flag register, a stack pointer,
an instruction pointer, four segment registers (code, data, stack, and extra segment selectors), and the
machine status word (MSW). The current operating mode is recorded in the MSW.

The 80286 is a VLSI microprocessor chip. The memory, clock generator, interrupt controller, -,

and bus arbiter and controller are external chips. Systems can be configured for specific applications.

REQUIREMENTS ON THE LOGICAL STRUCTURE %

Define and Separate Domains

In the real-address mode, privilege levels are not implemented and there are no access controls
on physical memory: segments are visible as 64K-bytes of consecutive memory and can be read, IN

written, and executed by any task. There are 168 instrucions available in this mode: the 8086/8088
instruction set plus 22 additional instructions for the 80286. The 20-bit real address is generated by
adding the 16-bit byte offset to the 20-bit segment base address. Thus the name space is IM-bytes in
the real-address mode. The value space is limited by the 20-bit address: it is also IM-bytes.

In protected virtual-address (protected) mode, memory is maintained and protected by hardware I
data structures called descriptors that are stored in the global or a local descriptor table. Information ,3'
recorded in the 8-byte memory descriptors includes a 24-bit segment base (real memory location), a

16-bit limit field (segment size, from I byte to 64K-bytes), and an access rights byte. The access
rights byte contains the 2-bit descriptor privilege level (DPL), the present (P) (physical memory
residency) bit, the descriptor type (code or data), usage permissions, and an accessed bit (A). The
usage permissions and the segment type are encoded in the 3-bit type field.
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Intel Reserved (16 bits)

Access Rights Byte j Base (high 8 bits)
Base (low 16 bits)

Limit (16 bits)

Memor\' D)escriptor ,,

P V DPL I S I Type IAI

Access Rights Byte

A segment can only be accessed if a task has a descriptor for it and the task passes privilege and
usage checks. The task's current privilege level (CPL) must be (numerically) less than or equal to the
DPL for the task to have access. In addition. a sement's use can be restricted to specific operations
by setting the usage permission bits in the descriptor's access rights byte: data segments can be
read-only, or read and write, code segments can be execute-only, or read and execute.

The global descriptor table (GDT) contains descriptors available to all tasks,. )escriptors listed
in the GDT offer all tasks identical usage permission to a given segment. but the DIPL can still be .,,

used to restrict access from tasks running at less privileged levels. Each task also has a local descrip-
tor table (LDT) that contains descriptors to private (and shared) segments. The local descriptor table
register selects the LDT, and is loaded by the microcode task switch routine from the task state seg-

ment (the hardware context of a task) or can be loaded explicitly. The task register points to the base
of the current task state segment.

Other descriptor types are system control descriptors. These include gate descriptors, task state
segment descriptors, and LDT descriptors. Gate descriptors include a destination selector, destination
offset, argument count, valid bit, DPL, and type (task gate, call gate, interrupt gate, or trap gate)
information. Task gates control task switches, call gates provide controlled inter- and intra-privilegc
level changes in the execution stream, and interrupt and trap gates point to interrupt sers ice routines.
Task and call gate descriptors are recorded in LDTs or the GDT, interrupt and trap gates are
recorded in the processor's interrupt descriptor table (IDT). Task state segment and LDT descriptors
are special system data descriptors that are recorded in the GDT and point to system data structures.
They contain the same fields as do data segment descriptors.

Intel Reserved
Access Rights Byte j Argument Count

Destination Selector

Destination Offset

Gate Descriptor

A virtual address is composed of a 16-bit segment selector and a 16-hit segment offset. The
segment selector contains a descriptor table indicator (I.DT or GI), a 13-hil index into thal table.
and a selector privilege level. The physical memory address is obtained by the tidlol ing steps. The
selector index is loaded into a segment register. Microcode then copies the selector index, scales it
by 8, and adds it to the descriptor table base. This value is the physical nienlor, location of the
descriptor for the desired segment. The descriptor is then loaded into a hidden part of the segment
register (not directly accessible to any task: it is loaded by the microcode). The segment base is then
read from the segment register, added to the offset from the virtual address, and placed on the
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address bus. The 24-bit address bus allows for 16M-bytes of physical memory in this mode. The
name space available is IG-bytes. Although any task can load the visible part of' a Segment register
directly, if the value loaded does not correspond with a descriptor entry within the base and limit ofThme sk avaLl is debtene byltheug DPL of k ha the urreblyeeecutig cod segment ThegLise

the descriptor table, a trap will be generated.

The task CPL is determined by the DPL of the currently executing code segment. The DPL is
recorded in the hidden part of the code segment (CS) register and not directly accessible to any task.
The CPL can only be changed when the microcode loads a new code segment descriptor into the CS
register. If the descriptor tables are protected (for example, protected from being modified by tasks
not in PL 0) and descriptors are created properly, then a task cannot change its privilege level in an
uncontrolled or insecure manner.

There are three instruction subsets in protected mode: unprivileged, trusted, and privileged.
The 155 unprivileged instructions can be used by all tasks. The II trusted instructions can be used
only when a task's CPL is (numerically) less than the I/O privilege level (IOPL) for that task. The
IOPL is assigned by the operating system per task, and is recorded in the flag word. Trusted instruc-
tions deal with I/O and interrupt management. The eight privileged instructions can be executed only
by tasks running with a CPL equal to zero. Privileged instructions are used to manage descriptor table
registers and the machine status word and to halt the processor. The protected mode instruction set
includes those instructions in the real address mode (although in the real address mode, no instruc-
tions are privileged), plus eight instructions for manipulating descriptor table registers and the task
register, and for access rights checking.

A domain consists of memory described by an LDT and the GDT, the register set, and the
instruction set (the instruction set depends on the CPL and the IOPL). A task is a stream of execu-
tion that operates within a domain. Gates can allow a task to switch domains. Domains can be
separated by providing LDTs with no common segments. Since access rights to a segment are
encoded in the descriptor and not the segment itself, several tasks can have different access permis-
sions to the same segment. The descriptor tables themselves should be accessible only by specific
authorized tasks, with descriptors for the tables labeled at DPL 0. Instructions that load descriptor
table registers, the task register and the MSW are privileged, preventing modification of these system
registers by tasks not operating in PL 0. 0

Establish an Initial Domain

The 80286 is initialized by triggering the RESET line. The MSW, instruction pointer, flag
word, and the segment registers are set to predefined values, and the machine becomes active in the
real address mode. The CS register is set so that there is an initial 64K-byte segment provided for -.
initialization code. To initialize the protected mode, the task register and descriptor table registers
must be loaded with descriptors for the protected mode initialization routine and then the MSW must
be loaded to enable protected mode operation.

Link Users with Domains -e
.* q

Operators, users, and peripheral devices communicate to the 80286 through external chips. .'S.

There is no hardware support to authenticate users or devices. A user must rely on the electric con-
nectivity of the processor to memory chips and the I/O device to be assured that the processor is
receiving the instructions that he is entering. 0-.
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Control Communication Bet-ween I)onains

There are tvko structures in tile 80286 that control comlunication hetk een tasks: gates and

descriptors. Gates prox ide point of entrN control of all processor control transfers. descriptors can he

constructed to allow message passing and memory sharing, or the complete isolation of segment,,.

Gates provide the capabilitN to trans er control to another task. For a call or jiump to succeed.

the task must pass privilege checks ('PI. vs DPL) using a \alid descriptor fOr the destination.

Message passing and segment sharing can be accomplished h- setting segment descriptors

appropriately. Messages can he passed b- calling a process that can cop\ data from one domain to

another. The process must have a common segment with both the originating (at least readable) and r

target domains (at least writahle). A segment can he given universal access b placing the scEment

descriptor in the (l)1T. All tasks will then hae the same access rights to the seleiett and access A ill

be limited only by the task's CPI and the DPI.. Tasks can also be made to share l.DTs. Thus the

cooperating tasks call have access to a group of segments and universal access need not be granted.

Again, the CPL and the DPL c-m limit accesses if necessary. A third method is to have emultiple %

descriptors for the same segment, one for each sharing task. Access rights can then be assigned per ,

task.

The selector privilege level pro, ides a mechanism to prevent a more privileged called procedure

from gaining access to data at a more privileged level than the calling task. A task's eflective

privilege level is the maximum (numerically) of the current privilege level and the selector privilege

level. The selector privilege level is also known as the requested privilege level (RPL). The RPL

can be generated by any task that generates its own virtual addresses, but service calls can use the

adjust RPL. instruction to force the RPL of selectors passed as parameters by less privileged callers to

the CPL of the caller. This would prevent the service call from accessing segments on behalf of the

caller that tile caller normally would not have permission to access.

Detect and Handle Faults

An error detection and correction unit (8206) can be used to interface the phN sical memor,, ith

the processor. It checks all memory transfers. correcting single hit errors and detecting double hit

errors. Up to 256 interrupt vectors can be defined using the IDT. The IDT entries are pointers to

the proper interrupt service routine. Interrupts numbered 0 - 31 are used for instruction exceptions or

are 'Intel reserved.* The remaining 224 interrupts can be defined in any way. even fr security error ,

* handling. When an interrupt occurs, the current task's instruction pointer and machine state llags are

pushed onto the interrupt stack to permit a return to the interrupted task. Besides the interrupt request

input (INTR). a nonmaskable interrupt request input (NMI) is included.

REQUIREMENTS FOR EFFICIENT PROCESSING OF IOGICAL STRUCTURES"N

Creating and )estroying Domains

A task state segment ('SS) is a 44-byte hardwhare-niaintained context that. along with the )T.D"

characterizes a task. It includes an image of the register set, stack pointers and selectors lor P. 0. I .

and 2. and the LDT selector. The creation of a domain requires the allocation and initiali/ation of'

the TSS. LDT. and associated menory. The mininmum aniount of memnorv that can be allocated is a

I -byte segment The destruction of a domain requires the deletion of the ISS fron memiorv and the

TSS descriptor froti the GI)T. There is no ote instruction that A ill create or destro\ a domain.
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Switching Domains I
As described above, task gates define the tasks to which the current task can branch. All P

requests for task transition, therefore, require a descriptor table look up. The task switch itself is d
handled by a single instruction (load task register) that saves the current execution state and loads a
new execution state. The back link selector in the new TSS points to the previous TSS, allowing a
possible return to a calling task. Task switches are handled in about 22 its.

Moving Information Between Domains

Communication between domains involves manipulating the descriptor tables (either at domain
creation or at run-time) or copying data between segments. To share memory, a call must be made to
a task that has write access to the descriptor tables, the descriptor tables must be updated, and then
control must be returned to the calling task by means of the back link selector. Once tables are set
up, communication only involves changing data in the shared segments. Copying data requires that a
service task has read access to a segment in the originating domain and write access to a segment in
the target domain.

Security Checking on Operations Within a Domain

In the protected mode, all memory references and gate transitions require a descriptor table
look-up. Privilege level, access type, and limit checks are made by the microcode; failure of a check ,-
generates a trap.

,!

Segment, task gate, and call gate descriptors have two 'Intel reserved' bytes that could be used
by software as security labels. Tasks could have associated clearances stored in the software exten-
sion of the TSS. Segments could be assigned classifications to prevent unauthorized access; task gates
could be locked unless the task clearance dominates the gate classification. Call gates, used for intra-
domain branching (eg., to another privilege level) and interdomain branching, could be similarly
locked. 

%WN

Moving Information Between Levels of the Storage Hierarchy

1/O flows over the 16-bit data bus to peripheral chips. The 64K-byte I/O space is in addition to
the physical address space; it is not in the virtual address space of any task. The I/O space is pro-
tected and accessed with segment descriptors like other memory. The space is divided into 8-bit or
16-bit ports. A descriptor must be available in the LDT or GDT for any port that a task is to access,
devices can be protected on a per task basis. The I/O instructions are trusted instructions; a task may
only execute an 1/0 (or any of the other trusted instructions) if the CPL is (numerically) less than the
IOPL. The IOPL is protected from unauthorized modification, the flag word can only be loaded by
the microcode.

REQUIREMENTS ON PHYSICAL STRUCTURE _

" Prevent Unauthorized Physical Access to the Computer
5 d%

There is no hardware support for this.

" Prevent Unauthorized Modification of Removable Media

There is no hardware support for this.
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" Assure Secure Communications with Remote Svstem ('omponents %

There is no hardware support for this.

" Prevent Unauthorized Viewing o ' vstem Output

There is no hardware support for this.

" Assure Continuous Service

Error detection and correction must be implemented by other devices. Software routines must
be provided to service any interrupts.

REFERENCES
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Appendix E

Honeywell SCOMP

OVERVIEW

The Secure Communications Processor (SCOMP) is a Honeywell DPS 6 minicomputer that has
been converted to a certifiably secure communications processor by the addition of the security pro-
tection module and changes in the standard processor firmware [ElI]. The SCOMP system (hardware
and software) was awarded an At accreditation by the DoD Computer Security Center in December
1984. This analyls, though, deals only with the hardware elements of the SCOMP; no consideration
is given to existing SCOMP software.

The Honeywell 6/75 is a 16-bit minicomputer with a maximum address space of 2M-bytes [E2].
There are four hierarchical privilege levels that are used to control access to memory and execution of
privileged instructions. The privilege levels are arranged in a ring structure, with ring 0 (the inner-
most) the most privileged and ring 3 (the outermost) the least privileged.

The SCOMP instruction set is a modified 6/75 instruction set. Changes in the firm.ware include
the removal of 6/75 instructions to validate access rights (VLD) and activate segment descriptors
(ASD), and the addition of SCOMP-unique instructions to control cross-ring movement and argument
validation.

The security protection module (SPM) mediates all memory accesses and I/O operations. It
takes a virtual address from the processor and translates it using indirect or direct descriptor table
look-ups. The SPM consists of three major components: a processor (register Arithmetic/Logical
Unit (ALU) and virtual memory interface unit (VMIU)), bus interface (BSI), and descriptor store
(DS). The VMIU lies between the processor memory address register and the address bus, and medi-
ates all processor memory requests. The BSI mediates all I/O transactions, and the DS manages the
SPM images of the descriptors used in the address translation.

The processor has 26 registers available to programs: seven 16-bit general, seven 20-bit
address, a 20-bit program counter, system status, indicator, stack address, mode control, two scien-
tific mode control, and five unused (reserved for future use). The processor execution state is
encoded in the status register and contains the current right number, processor identification number
(for multi-processor systems), and interrupt priority level. The smallest addressable memory unit is I
the 8-bit byte; most instructions involve the 2-byte word.

REQUIREMENTS ON THE LOGICAL STRUCTURE

Define and Separate Domains
The SPM translates a 21-bit virtual address received from the processor into the physical

memory address, allowing for 2M-bytes (IM-words) of memory (the byte-bit is passed unchanged).

The virtual address is translated through a series of descriptor table look-ups. Each process has an
associated descriptor base root (DBR) that establishes the set of descriptors the process will use. The
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DBR is a four-word data structure: two words select the base (16-bit) and limit (I l-bit) for the
memory dcscriptors. two words select the base and limit for the 1/0 descriptors.

Memory descriptors are also four-word structures. They include access control, usage, type,

and base and limit information. The 16-bit base address and the Il-bit limit field describe the
location and size of the resource pointed to by the descriptor. The type field specifies whether the
descriptor is direct or indirect. A direct descriptor points to data; an indirect descriptor points to
another descriptor. Depending on whether the DBR is direct or indirect, a memory reference may
use from one (DBR direct) to three (DBR indirect) descriptors to locate the data.

Using descriptor structures, the SPM can view memory as up to 512 discrete segments from one
word to 2K-words in length. The descriptors also allow for pages of length from one word to 128 ,:
words. The type (direct or indirect) of the DBR and subsequent descriptors determines the interpreta- .
tion and number of descriptors used. -f

Access control information is encoded in all descriptors, but only one descriptor's protections
apply to a given memory reference. The A bit in a descriptor determines if the access information of
that descriptor applies. If more than one descriptor encountered in the translation has its A bit ON,
then the access information from the first descriptor with active protection is used, controlling access % e
to the largest resource. All subsequent access information is ignored. If no descriptors are found
with the A bit set, the SPM generates a trap. "

Access control is implemented through the read (R), write (W), and execute (E) bits and ring
brackets in the descriptors. There are three 2-bit ring brackets (RI, R2. and R3) that are used to re-
strict the access granted by the read, write, and execute bits to processes operating in certain ring
numbers (with certain privilege). The values in these brackets correspond to a ring number 0 though
3. The process's effective ring number Rn. (usually the process's current ring number R,.ur as
recorded in the processor status register) is compared to the values in the brackets to determine if the
access desired is allowed. Write permission is granted if and only if the W bit is ON and R,,, < RI;
read permission if and only if the R bit is ON and Reff :5 R2; and execute (instruction fetch) permis-
sion if and only if the E bit is ON and RI < Ret. :5 R2. Crossring movement (call) permission is
granted if and only if the E bit is ON and R I Reff :5 R3.

A RI R2 R3 IR W E Y DT Type

Base Address (16 bits)

000000 Limit (II bits)
Usage bits 0000000000 1/OStatus

Memory Descriptor

I/O descriptors are similar to memory descriptors. They are four-word structures containing
address and access information used by the SPM for I/O mediation. The access control information
is the same as that for memory descriptors. There is a I10-bit channel number (de\ ice address) and a

12-bit function table base address. A process has control permission of a device if the F bit is ON
and R,., :s R3.

E~ncoded in the status register is tile current ring number R ,,. specifying the pri\ ilege level (ring

number) in which the current process is executing. Processes running in rings 0 and I are termed
privileged processes. while those in rings 2 and 3 are termed user processes. There are six privileged
in,,ructions: HLT. LEV, RCTN. RTCF. WDTN, and WTCF. (The three privileged IPS 6 1/O
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commands are not privileged on the SCOMP). Only privileged processes can execute privileced
instructions: a trap will be generated it a user process attempts to execute one )f these ,ix instruc-
tions.

A domain consists of memory described by a process's I)BR, the register set, and the instruction
set (depending on the privilege level). Domains can be separated using descriptors. The operating
system can segregate domains completely or can permit shared memory by assigning ring numbers
and DBRs properly. The descriptors and DBR must be protected from modification by unauthorized
programs. This can be accomplished by giving only the authorized programs descriptors that point to
the DBR table and descriptor tables.

When a process becomes active, its DBR and associated descriptors are copied from the proces-
sor to the descriptor store. The SPM has a back-up descriptor cache (BUDC) to contain images of
the DBR. and memory descriptors and I/O memory descriptors (memory descriptors used in I/O
transactions) used repeatedly.

The status, program counter, stack address, and indicator registers are not directly accessible to
processes. They are modified by processor firmware, using values stored in process context areas

-- p.

and descriptor tables. There are also three registers only accessible from the control panel: the .r
memory address, memory data, and instruction registers.

Establish an Initial Domain

The SCOMP initialization procedure has two components: processor bootstrap and SPM initiali-
zation. By pressing a sequence of buttons on the control panel, the halted machine can be put into
continuous mediation operation. Depressing master clear, load, and execute buttons in series causes
the ft'llowing to occur: the program counter, mode control, and instruction registers are zeroed:
pending interrupts are cleared; the real-time clock and watchdog timer are reset: the interrupt priority
level is set to zero; the ring number is set to zero; and the processor enters quality logic tests (QLT).

When the processor starts its QLT, the SPM firmware begins initialization. SPM initialization
involves stalling the processor, clearing the descriptor cache, running the SPM QLT, redirecting
memory requests to BSI Programmable Read Only Memory (PROM), and loading an initial DBR and
descriptor set from the BSI PROM. The processor is then unstalled.

The processor QLT exercises logic paths in the processor, memory, and controllers. Failures
are indicated by blinking lights on the panel and on failed boards. The SPM enters no-mediation
mode as the processor loads the bootstrap code from processor PROM and executes it. When the @1
processor changes the execution point from the processor PROM to memory, the SPM enters continu-
ous mediation mode.

An initial domain is set up encompassing the memory allocated by the initial PROM DBR. The

process ring number is zero.

link Users with I)omains

Operators communicate with the processor using the control panel. A full panel includes a %
register display, system control switches and buttons, and condition indicators. There is a panel secu-,
rity lock that disables all panel controls except the power switch. There are no hardware features to 0
authenticate operators. -j-
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Users and peripherals communicate with the processor through multiple device controllers over
the Megabus. There is no significant hardware support to authenticate users or peripheral devices.

Control Communication Between Domains

Communication between domains occurs in two forms: memory sharing and controlled transfer
of the processor execution point. For memory to be shared, a process must set up descriptors and set
access controls, either at domain initialization or run-time, to facilitate the communication. To do
this, the process must have write permission to the descriptor tables.

Cross-ring movements are controlled by SCOMP-unique instructions and descriptor access inlor-
mation. The call (LNJR) instruction is used to transfer the processor execution point to an equall. or
more privileged process: return (RETN) is used by the called process to return control to the calling-
process: and the argument addressing mode (AAM) instruction permits argument validation bN the
called process at the privilege level of the calling process.

A process's memory descriptors determine what other processes it may call. If a descriptor for
a certain process is present in the domain's descriptor set, then call permission is granted if and only
if the E bit in the memory descriptor is ON and RI _< R .n _< R3. The only valid entry point into a
process is at the zero offset location in the segment. The SPM checks these conditions before allow-
ing the call to occur.

When the call instruction is executed, the SPM validates the caller's access to the called process
via descriptor look-ups, verifies that the offset into that resource is zero, and computes the new Rcur.
The return address is stored in an address register (B5) and the ring number of the calling process is
stored in a general register (R5). Then the program counter is loaded with the entry point to the
called process and execution begins. The called process must preserve the return address in another
location if the B5 register is used (failure to maintain this value could result in a return to a different -,-

location). The return instruction restores Rcur and the execution point to those of the calling process.
The SPM allows calls only to rings of equal or greater privilege (equal or lesser ring number), and
returns only to rings of equal or lesser privilege (equal or greater ring number).

The AAM instruction allows for argument validation by a called process. The SPM uses the
maximum value of the ring number of the calling process and that of the called process to determine
Rcf f in the mediation of the next assembly language instruction executed, validating thc caller's access
rights to the arguments. The AAM instruction inhibits interrupts until the next instruction has fin 11
ished executing. If the next instruction is another AAM, a trap is generated.

Detect and Handle Faults

On power-up and bootstrap, the processor and SPM run logic tests, exercising processor and
SPM data paths, registers, memory boards, and device controllers. Failures iii the QLTs are indi-
cated by a warning light on the failed board and on the control panel. Memory is equipped x\ ith error
detection and correction capabilities. Single bit errors are corrected, double bit errors are detected.
Parity is checked on all bus transfers. A

Traps and interrupts are serviced by processor firmware. When a, trap or interrupt occurs. the
handler stores a partial processor state in a save area (one pcr interrupt and trap t\pe,. The processor
execution point is then switched to the service routine. SCrvice routines operate at R,, () (fortced
b\ the SPM). Returning from i trap )r- ilntcrru.lpt restorCs the proccssor M.atc from the sac alea. It
th, trap is SPM initiated, the SPM fauIt register (4-word') is also stored in the ,ae arct. There are
24 defined traps and 64 interrupt levels.
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Memory can be an interleaved combination of magnetic and MOS modules. In case of power
failure, semiconductor memory can be maintained with battery units: up to 64K-words for 2 hours
per unit.

REQUIREMENTS FOR EFFICIENT PROCESSING OF LOGICAL STRUCTURES

Creating and Destroying Domains V

The minimum hardware context of a domain (privileged or user) consists of a DBR and images
of the 26 registers. To create a domain, the context must be allocated in a context save area. To
delete a domain, the context must be removed from the save area. There is no single instruction that
creates or deletes a domain.

Switching Domains -.

Domain switches can be initiated two ways: by a dispatch from the processor or by using call
and return instructions. By using the dispatch function, the processor notifies the SPM that a new
process will gain control of execution. The SPM blocks the processor, reads the new DBR off the
bus, and invalidates all memory descriptors (I/O memory descriptors are not invalidated) in the
BUSC. In the processor, the current context must be saved and the new context loaded. There is no
single instruction that performs this type of domain switch.

Cross-ring movements are initiated by the call and return instructions. The SPM performs
descriptor look-ups to determine if the current process has access to called process. If access is ,,-.granted, the calling process' ring number and return address are saved in registers, the program""

counter is loaded with the new execution point, and execution continues.

Moving Information Between Domains

Information can be passed between domains if descriptors are constructed (either at domain crea-tion or run-time) to allow the domains to share a memory space. At run-time, this requires issuing a €'

call or domain switch to a message procedure that modifies the descriptor tables in memory, invali-
dates the SPM images of modified des-riptors, and returns to the calling process. The SPM then C,
loads the new descriptors into the descriptors into the descriptor store. A combination of access pro- V
tection could be ust.. inhibiting the sender or receiver read, write, and execute permissions as ..

desired, or even removing the sender's descriptor to the message. There is no single instruction that
performs a message passing function.

Security Checking on Operations Within a Domain -

All memory references are mediated by the SPM. Access checks are performed during address
translation by SPM firmware.

Moving Information Between Levels of the Storage Hierarchy

The SCOMP supports two forms of 1/O: premapped and mapped. Premapped I/O allows the
SPM to program an 1/O device for direct memory access. After completing address translation and
protection checks as it wo uld for normal memory accesses (using the effective ring number and a".:.]

descriptor of the initiating process). the SPM supplies the 1/O device with an absolute address and
range of memory. The memory range is limited to memory described by a single descriptor. The

52

%*



NRI. REPORT 9088

I/O device then accesses the memory with no further mediation by the SPM. The device must not
modify the absolute address or range passed to it from the SPM: the SPM must not modit* the

descriptor until the 1/0 is complete.

Mapped I/O requires SPM mediation for each memory reference of the lI() dc ,ice. The SPM
supplies the device with a virtual address, and uses the effective ring number and descriptors of the
initiating process (stored in the BUSC) in the address translation and protection checks.

Premapped 1/0 uses less overhead than mapped 1/. but is limited to ,ncnmor\ described by a
single direct descriptor. Mapped I/O allows for segment and page crossing during the i 0. hut each
reference requires SPM cache look-ups.

REQUIREMENT ON PHYSICAL STRUCTURE

e Prevent Unauthorized Phyvsical Access to the Computer

The control panel has a panel security lock. When locked, the panel ,,itches. push but-
to s (except for the powcr switch). and register displa are disabled. There is no other
hardware mechanism to authenticate the operator. There are no usage meters.

e Prevent Unauthorized Modifcation of Removable Media

There is no hardware support for this.

9 Assure Secure Communications with Remote Svstem Component""

There is no hardware support for this.

e Prevent Unauthorized Viewing of System Output

The SCOMP has been targeted to meet Tempest criteria. The display on the control panel
is visible only from certain angles.

e Assure Continuous Service

The SCOMP has fault detection and handling mechanisms as described a.hoe. Specific
* features include:

* The SPM, processor, memory, and controller boards contain firmware to conduct QLTs on
boot strapping and power recovery.

* There is no redundant hardware. If the SPM or the processor should fail. the s, stCn \%ill
shut down to prevent a security compromise. The SPM is designed for a mean time between
failure of greater than 20.0X) hours and a probabilit\ of' less than ()0(X)I per hour that a-
hardware Failure will result in the Undetected loss of secure data protection ftuctions. The
SPM is designed for an effective life of 1() years. ,

* Memory boards are available with citlhcr standard parity ( 16-bit words ith 2 parit. hits) or
error correcting parity (16-bit words with 6 parit. bit,,. A hatter\ backup can maintain 64K-
words per unit for 2 hours.
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* Power losses longer than three cycles and power out of tolerance conditions are treated as v
long-term power failures. The power-down cycle time is 1.5 us.

* The machine is air cooled. The operating temperature ranges from 0 to 50 degrees centigrade
in a range of 5% to 95% relative humidity. The SPM is designed to operate in up to 100%
humidity.

REFERENCES

El. Detail Specification, Parts I and II, The Security Protection Module. DS34025843, Honeywell
Incorporated, 1978.

E2. Series 60 (Level 6) Minicomputer Handbook, Addendum A. AS22A, Rev. 2, Honeywell Incor-
porated, 1978.

r

-. -1

545

Q



F.F-


