
-at" 743 vOICE TECHNOLOGY USING PER=ORL COMPUTERS.U) AIR FORCE 1.12
INST OF TECH M9lGHT-PRTTERSOM AF8 OH G L TALBOT 19S7
AF IT/C I/NR-87-43T

UNCLASSIFIED F/G 25/4 M

EhhEEEEomhomiI
EhEEohEohEohhE

'F.0

~~136

1.02.0

1 .21111.11 .

ON kll-
Joe q~I, . -. r-e .

* OW

, . FILE COEY

VOICE TECHNOLOGY

0o
USING

PERSONAL COMPUTERS

by

Gary L. Talbot

A Report Submitted in Partial Fulfillment
of the Requirement for the Degree

of Master of Science
(Management Information Systems)

in The University of Arizona
1987

Master Committee:
Dr. Doug Vogel
Mr. Bill Saints

Ms. Kimlynn Middleton

S

DTIC
tu U tECTE

OT2 71987D

D ~IUTION STATEMO2T AH

Aproe fplilemefl

Ditiuin4niie

9 2 0

SELI iI I 1, A 11 1,A (1014 or I IlS PA GC (IS1hr.. Do A~I Fi~'stp 'i)

4REPORT DOCUMENTATION PAGE _________________________FOR

1 . REPORT P1110.1111ri 12. GOVT ACCESSION NO. 3. RECIPIEN T'S CATALOG I4UMOEfl

AFIT/CI/N1Z 87- 43T ALL2147a,
4. TI TLE (-,-1 5.TYEhF EPR APEIOCVEE

SVoice Technology Using Personal Computers TEIIDSETTO

6. PERFORMING 0 1G. REPORT NUMBER

*7. AUTHOR(i) S. CONTRACT OR GRANT NUMBER(s)

Gary L. Talbot

9. PERrOflMINj OGNATION NAME AND ADDRESS I0. PROGRAM FLEPNFlIIT. PRonJECT. TASK

A~iT TUDEN AT:AREA 6 WORK UNIT NUMBERS

University of Arizona

II. CONITROLLIN1G OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR 1987
WPAFB 011 45433-6583 13. NUMBER OF PAGES

263
IC. MONI TORING AGENCY. NAME & ADDRESS(I! different front Cotroting Office) IS. SECURITY CLASS. (of this r,,s,t)

UNCLASSIFIED __

IS5a. DECL ASSIFiCATION, DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (.1 this Report)

' APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, Il different from Report)

IS. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 N WOTAVFR AVr)
.I n for Research ~an V

Professional Development
AFIT/NR

19. KEY OVORDS (Continue on reverse side If necessary end Identify by block number)

20. ABSTRACT (Confintio on reveres side It necessary and Identify by block number)

DD j A N473 1413 FOIT1.DNO0 NOV 53 IS OB3SOLETE

%5.
SECURITY CLASSIFICATION OF THIS PAGE (117.en Dae Fnfoed)

- ~87 10O14 259

ABSTRACT

VOICE TECHNOLOGY USING PERSONAL COMPUTERS
by

Gary L. Talbot, Capt, USAF

A Report Submitted in Partial Fulfillment
of the Requirement for the Degree

of Master of Science
(Management Information Systems)

in the University of Arizona
1987

263 pages

My software project had two objectives in mind, thus my 4
report is divided into two parts.

The fir;t objective and subject of Part I was to develop a
-j Turbo Pascal procedure to drive the IBM Voice Communications
* Application Program Interface software which interfaces the

IBM Voice Communications Adapter hardware to synthesize
speech from text. The resulting Turbo Pascal procedure,
SPEAK.INC, was designed to allow any user the ability to
produce speech-from text from within any Turbo Pascal
program. In addition, three application programs that can
be applied for introductions, explanations, error messages,
etc. were developed using the procedure. SAY.COM allows a
user the ability to produce speech from the command line or
from within a batch file. SAYTEXT.COM verbalizes text from
within any text, file. REMIND.COM is a memory-resident
program that produces verbal messages at preprogrammed
times. Ujr guido- ,nd system documentation guides for the
proce(durt ind the three application programs are found in
Part 1, Chapter One through Chapter Four.VJ
The second ubjecLive, covered in Part II, explores voice
recognition tools through the IBM Voice-Activated Keyboard
Utility. This utility allows user-defined applications to
b bu iIt that free the user from the keyboard during [
interaction with group members in discussions,
presentat. i cns, etc. or in any situation where the user
requires mobility from the keyboard. In Chapter Five, a
user guide with an example user application is provided to

-.i ass i st s,-etting up applications incorporating the utility to,
use voice recogn it ion.

Av i ubiilty Codes

Stt~ Aval and/or
J~t~t Speoil

04)

ABSTRACT

VOICE TECHNOLOGY USING PERSONAL COMPUTERS

by

Gary L. Talbot

Chairman: Dr. Doug Vogel

My software project had two objectives in mind, thus my

report is divided into two parts.

The first objective and subject of Part I was to develop a

Turbo Pascal procedure to drive the IBM Voice

Communications Application Program Interface software which

interfaces the IBM Voice Communications Adapter hardware to

synthesize speech from text. The resulting Turbo Pascal

procedure, SPEAK.INC, was designed to allow any user the

ability to produce speech-from-text from within any Turbo

Pascal program. In addition, three application programs

that can be applied for introductions, explanations, error

messages, etc. were developed using the procedure. SAY.COM

allows a user the ability to produce speech from the

* .. command line or from within a batch file. SAYTEXT.COM

verbalizes text from within any text file. REMIND.COM is a

memory-resident program that produces verbal messages

at preprogrammed times. User guides and system

documentation guides for the .procedure and the three

application programs are found in Part I, Chapter One

through Chapter Four.

The second objective, covered in Part II, explores voice

recognition tools through the IBM Voice-Activated Keyboard

Utility. This utility allows user-defined applications to

be built that free the user from the keyboard during

interaction with group members in discussions,

presentations, etc. or in any situation where the user

requires mobility from the keyboard. In Chapter Five, a

user guide with an example user application is provided to

*" assist setting up applications incorporating the utility to

-. use voice recognition.

.-.

'O'

i -. -

04

VOICE TECHNOLOGY

USING

PERSONAL COMPUTERS

by

Gary L. Talbot

A Report Submitted in Partial Fulfillment
of the Requirement for the Degree

of Master of Science
(Management Information Systems)

in The University of Arizona
1987

Master Committee:
Dr. Doug Vogel
Mr. Bill Saints

Ms. Kimlynn Middleton

4

ACKNOWLEDGMENTS

I wish to express my most sincere thanks and appreciation

to Ms. Kimlynn Middleton, Ms. Kendall Cliff, and Mr. Bill

Saints for their time and support in helping me accomplish

this project.

4.

'"

S- o-'

.-..;

ii

042
. . -.-., -.. . . , w ,-., . , -. , , ., ,, .-.- . . -, . , .., , -? . . . -. -. -.-.. ,-.-.,,

TABLE OF CONTENTS

LIST OF TABLES .. 1v

LIST OF FIGURES ...vi

PART I: TEXT-TO-SPEECH INTERFACE AND APPLICATIONS 1

CHAPTER 1: TEXT-TO-SPEECH INTERFACE USER GUIDE 2

CHAPTER 2: PROGRAM SAY.COM 26

SECTION 2.1: SAY.COM USER GUIDE 27

SECTION 2.2: SAY.COM SYSTEM PROGRAMMER GUIDE 40

CHAPTER 3: PROGRAM SAYTEXT.COM 53

SECTION 3.1: SAYTEXT.COM USER GUIDE 54

SECTION 3.2: SAYTEXT.COM SYSTEM PROGRAMMER GUIDE.. .67

CHAPTER 4: PROGRAM REMIND.COM 85

SECTION 4.1: REMIND.COM USER GUIDE 86

SECTION 4.2: REMIND.COM SYSTEM PROGRAMMER GUIDE.. .104

PART II: VOICE RECOGNITION AND APPLICATIONS 169

CHAPTER 5: IBM VOICE-ACTIVATED KEYBOARD USER GUIDE..170

BIBLIOGRAPHY ... 189

APPENDICES: PROGRAM LISTINGS 190

APPENDIX A: PROGRAM LISTING FOR SPEAK.INC 191

APPENDIX B: PROGRAM LISTING FOR SAY.COM 199

APPENDIX C: PROGRAM LISTING FOR SAYTEXT.COM 201

APPENDIX D: PROGRAM LISTING FOR REMIND.COM 208

APPENDIX E: PROGRAM LISTING FOR TURBO.LAN 260

iii

-.°

.

LIST OF TABLES

Table 1.1 SPEAK Minimum Hardware Requirements 8

Table 1.2 SPEAK Minimum Software Requirements 9

Table 1.3 SPEAK Error Codes 14

Table 2.1 SAY.COM Minimum Hardware Requirements 30

Table 2.2 SAY.COM Minimum Software Requirements 31

Table 2.3 SAY.COM Error Codes 35

Table 2.4 SAY.COM Minimum Hardware Requirements 44

. Table 2.5 SAY.COM Minimum Software Requirements 45

* Table 2.6 SAY.COM Error Codes 48

Table 3.1 SAYTEXT.COM Minimum Hardware Requirements 58

Table 3.2 SAYTEXT.COM Minimum Software Requirements... 58

Table 3.3 SAYTEXT.COM Error Codes.......................62

Table 3.4 SAYTEXT.COM Minimum Hardware Requirements... .71

Table 3.5 SAYTEXT.COM Minimum Software Requirements 72

Table 3.6 SAYTEXT.COM Error Codes 75

Table 4.1 REMIND.COM Minimum Hardware Requirements 90

Table 4.2 REMIND.COM Minimum Software Requirements 91

* Table 4.3 REMIND.COM Error Codes 99

Table 4.4 REMIND.COM Minimum Hardware Requirements 109

Table 4.5 REMIND.COM Minimum Software Requirements 110

* Table 4.6 REMIND.COM Include Files 112

Table 4.7 REMIND.COM Error Codes I11

iv

-- , Tatle 5.1 Voice Recognitio:n Mmn Hardware Rqrnt 175

' Table 5.2 Voice Recognition Min Software Rgmts......... 176

,./Table 5.3 VCOM Command Keys............................. 179

i.1

..

-'

I'

.,

-°.

,i

LIST OF FIGURES

Figure 4.1 REMIND.COM Activate Screen 93

Figure 4.2 REMIND.COM Initial Data Screen 94

Figure 4.3 REMIND.COM Succeeding Data Screens 95

Figure 4.4 REMIND.COM End Data Input Screen 95

Figure 4.5 REMIND.COM Data Review Screen 96

Figure 4.6 REMIND.COM Change Data Screen 96

Figure 4.7 REMIND.COM Installation Screen 97

* Figure 4.8 REMIND.COM Revise/Terminate Screen 98

Fi-ure 4.9 REMIND.COM Activate Screen 113

Figure 4.10 REMIND.COM Initial Data Screen 114

Figure 4.11 REMIND.COM Succeeding Data Screens 114

Figure 4.12 REMIND.COM End Data Input Screen 115

Figure 4.13 REMIND.COM Data Review Screen..............11$

Figure 4.14 REMIND.COM Change Data Screen 116

Figure 4.15 REMIND.COM Iha llatio Screen 11
S.. Figure 4.15 REMIND.COM Installation Screen.............. 117

Figure 4.16 REMIND.COM Revise/Terminate Screen 117

iivi>5

'%, °.

,'P

evi

~1.

I

PART I

TEXT-TO-SPEECH INTERFACE

and

APPLICATIONS

4."

SO.,

-5. -1

"'5':'

* CHAPTER I

TEXT-TO-SPEECH I NTERFACE

USER GUIDE

~* ~-2

Text-to-Speech Interface

for the

IBM Voice Communications Adapter

'

Summer 1987

1.

* Gary L. Talbot

Management Information Systems Department

University of Arizona

,V Tucson, Arizona

.- - 3 -

"4.

TABLE OF CON4TENTS

Introduction................................... 5

*Hardware and Software Requirements............ 7

Installation Instructions...................... 9

Operating Instructions........................ 10

Input and Output Formats and Descriptions ... 17

Program Listing............................... 18

References.................................... 25

'44

-w

INTRODUCTION

".4.

The SPEAK procedure is written as an interface between

Turbo Pascal programs and the IBM Voice Communications

Adapter and allows the calling Turbo Pascal program to4..

produce intelligible speech from an ASCII text string.

This procedure was written using Turbo Pascal, Version

3.0, to execute commands of the IBM Voice Communications

. Application Program Interface (VC API) software or the

* Voice Communications Operating System software that drives

the IBM Voice Communications Adapter. This hardware device

consists of a specialized micro processor, memory, and

supporting hardware which allows text to be translated to

spoken language. The VC API software is called from the

SPEAK procedure by setting up registers and supporting

parameter blocks and then executing a DOS interrupt 14H.

To produce speech, certain base commands must be

executed to provide initialization, termination, and

- resource management. The text-to-speech function set
-

produces text-to-speech translation and is loaded into the

micro processor of the Voice Communications Adapter to

execute commands producing the actual text-to-speech

translation.

*4

.1'

o. '

Basic actions that are accomplished by the SPEAK

procedure are:

-obtain software resources using the open command;

-claim hardware resources using the claim hardware

command;

-connect devices to appropriate port using the

connect devices to port command;

-load the text-to-speech function set onto the

hardware and connect it to the appropriate port

using the connect function to port command;

-initialize the speech function;

-produce the actual text-to-speech translation;

-release all resources via the close command.

Each command requires different register and parameter

settings before the interrupt 14H is issued. On return,

each command will return command specific error codes if an
pan

error occurs.

The SPEAK procedure requires three parameters to be

* passed when it is called. The first is the name of a

string containing a sentence of up to 240 ASCII text

characters that is followed by an end of sentence

S.~o terminator, either a period (.), a question mark (?), or

an exclamation point (!), that the user wishes to be

-6-
0.

04

.' a.-* .V. .

translated into spoken language. The second parameter is

an integer specifying the desired voice pitch. The third

and final parameter is also an integer that specifies the

-" desired rate of speech.

This guide is intended to simplify the task of a user

wishing to produce speech from text from within a Turbo

Pascal program. The sections following will discuss

hardware and software requirements that are necessary to

use this procedure. Also, installation instructions for

using the speech-to-text procedure will be di.3cussed. An

* overview of using the SPEAK routine is covered under the

operating instructions section and an example is provided.

Next, input and output formats and descriptions are

discussed. Finally, references for additional information

are given.

._

HARDWARE AND SOFTWARE REQUIREMENTS

0 Hardware:

'.4.

Minimum hardware requirements are given in Table 1.1.

"'O.
4.

•4 •

-. 7.

/2:

O.

MINIMUM HARDWARE REQUIREMENTS

- IBM PC/AT/XT or compatibles

- 256 KB memory

- Two double-sided diskette drives

-' (360 KB / 1.2 MB) or one double-sided

diskette drive (360 KB / 1.2 MB) and

one fixed disk

- Monochrome or color monitor

- An IBM Voice Communications Adapter

* - Speaker (8-ohm, capable of handling two

watts of audio power with an attached

subminiature 2.5 mm (0.1 inch) ccnnector

Table 1.1

"p.

Software:

* Minimum software requirements are given in Table 1.2.

S¢

MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

*.:.. DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

Table 1.2

INSTALLATION INSTRUCTIONS

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

can be accomplished in 30 minutes or less by an

inexperienced person.

Installation Instructions for the Voice Communications

*. Application Program Interface (the software driver) may be

4- found in IBM Voice Communications Application Program

Interface Reference Vol 1 Chap 2, 6280743. The software
0;O, resides in a subdirectory, either on a hard drive or floppy

- ~ diskette named vcapi. The Voice Communications Operating

Subsystem Program diskette is self-installing and is a

-9-

o% %

fairly simple procedure. Different procedures exist for

installing the system on hard or floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

set vcapi = y:\vcapi\

(where y is the drive containing the vcapi directory and

vcapi is the name of the DOS directory containing the API

Acode.)

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to be

loaded when the API driver, vcapidrv, is loaded at boot

t i me.)

OPERATING INSTRUCTIONS

I.

Procedure SPEAK serves as an interface to the IBM

Voice Communications Applications Program Interface for the

text-to-speech (speech synthesis) function set. It can be

included within any Turbo Pascal program in which the user

wishes to have a passage of ASCII text translated to

10

-,'-.-l -:$K~K~~-.K

speech. The only required lines within the calling program

are:

-a type declaration,

-an include statement to include the SPEAK

procedure, and

-the call to the procedure.

- Parameters that must be passed to the SPEAK procedure

are:

- the name of the string containing up to 240

ASCII text characters forming a sentence and

followed by a sentence terminator, either a

* period (.), a question mark (?), or an

exclamation point C!).;

- an integer, p, giving the baseline pitch; and

- an Integer, r, which sets the rate of speech.

Pitch: the baseline pitch must be set to 0 or be an

integer in the range between 50 and 100, inclusive. Any

other value supplied that does not meet these

requirements will be defaulted to the normal pitch rate

0 of 85. The special pitch of 0 will produce a whispering

voice. Pitch may be adjusted dynamically by changing thif

- ~. parameter within any call to the SPEAK procedure at any

S.time. Resolution of baseline pitch is about 10 so

differences such as 103 and 107 may not be detectable.

Higher numbers produce higher pitches.

k00

Rate: the range for the speech rate parameter is

between 50 and 250, inclusive. Any integer not supplied

within this range will default to the normal speech rate of

150 words per minute. Again, maximum resolution is about

10 words per minute so values such as 123 and 130 may not

be detectable. Speech rate is also adjustable by changing

the parameter passed in the call to the SPEAK procedure.

Higher values produce faster rates of speech.

When using the SPEAK procedure within a Turbo Pascal

program, the user may wish to include the compiler option

4 {$V-} to relax checking of the length of strings passed to

the SPEAK procedure. That is, a string with length of 80,

128, etc. up to the maximum allowable length of 240

characters may be passed as the parameter to the

procedure. ** Note ** A string of type 'longstr' for the

VAR parameter definition used by the SPEAK procedure is

still required to be defined.

* An example user program follows:

Program CallingProgram;

{$V-} {optional compiler directive toI relax parameter string checking}

- 12 -

jIr

6

...............................

L' '.2-.' '-.' "- ° .- ".,".."-."..""..."".......""....".".-".."......•..."..,."..-"..""....."".....-........"........ ". " "- ° '-

type lorzqstr = 5tring [2401 (this 1must be

supplied since it

is declared as a

VAR parameter in

SPEAK}

{other user declarations, variables, functions, procedures,

etc.}

{$I speak.inc} {includes the SPEAK procedurel

begin [user program starts here}

{user code to set up the string to pass to the

SPEAK procedure goes here}

speak(stringname,p,r); {call the SPEAK procedure

to say the text in the

string designated by

* stringname at pitch, p,

and at rate, r.}

{an example of a real call might look like this:

speak(textbuf,85,150); I

- 13 -

:.-.

{more user code if desired}

end. {end of user program}

Error codes are returned directly by the SPEAK

procedure to the user console whenever an abnormal return

code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

1.3. For a more complete description, consult the IBM

Voice Communications Application Program Interface

Reference, Vol 1.

ERROR CODES RETURNED BY SPEAK
J..

Command Error Code Explanation

Open 0 Successful

2 API Inoperative

- 16 RCB not available

0 64 Invalid card number

Claimhdw 0 Successful

. 2 Card Inoperative

4 RCB invalid or not pen

(cont.)

- 14 -

..- *.*.. **

16 At least one resurce seized

32 Unsupported hardware

48 Combination of 16 and 32

above

Conndtop 0 Successful

2 Card inoperative

4 RCB invalid or not open

16 Port or devices not claimed

32 Unsupported devices

* 64 Unsupported connection

Connftop 0 Successful

2 Card inoperative

4 CID invalid

16 Port or partition not claimed

32 Function set not known

64 Function set not accessible

128 Insufficient storage

* 256 Port not specified

512 Function set already

connected to CID

O9 1024 Unsupported concurrency

(cont.)

'""- 15-

.4'

2048 Function set cannot be

held by partition

4096 Invalid configuration

Initialize 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

16 Function set not stopped

*Speak 0 Successful

*4 Function set not connected

-~8 Busy (re-entrant call)

16 Syntax error

32 Pause command received

64 Input buffered since no

sentence terminator

provided

128 No null found in text

256 Pause pending (must call

* resume first)

Close 0 Successful

02 Card Inoperative

4 RCB invalid or not open

Table 1.3

- 16 -

04

I.

If a return code other than 0 is returned when a

command is executed by the driver, then a message is

written to the console telling which command returned the

error and which error code was returned. The only ones

which a user might see are error codes 16 or 64 from the

speak command. This usually indicates that the end of

sentence punctuation was not provided when the SPEAK

procedure was called. A programmer may desire that the

procedure not notify the user if an error code is returned

and this logic is easily deleted from the procedure. It is

& basically incorporateQ as an aid in development when

first installing the speech-to-text software and hardware

*to track down errors that might occur. It can also be a

helpful reminder to the user to end sentences with

terminator punctuation, although user applications can be

written to default to a period, etc., if no punctuation is

provided.

* INPUT AND OUTPUT FORMATS AND DESCRIPTIONS

Input to the SPEAK procedure is in the form of strings

0:1 consisting of up to 240 ASCII text characters forming

sentences and followed by a sentence terminator (period

* . C.),question mark (?, or an exclamation point(

- 17 -

020

Additional inputs are two integer values, the f irst

providing the desired base pitch and the second setting the

-desired rate of speech. Output is in the form of

intelligible speech. Other output is written error

messages to the user console.

PROGRAM LISTING

- Procedure Speak serves as an interface to the IBM Voice
* Communications Applications Program Interface for the Text-

to-Speech (speech synthesis) function set. It can be
included in any Turbo Pascal program in which the user
wishes to have a passage of text spoken. The only required
lines within the calling program are a type declaration, an
include statement to include the procedure, and the call
to the procedure. Parameters that must be passed to the
speak procedure are the name of a string containing a
sentence of up to 240 ASCII text characters that ends with
a sentence terminator(' .', ?',or '!'), an integer, P,
giving the baseline pitch (the range for pitch is 0 or
between 50 and 100), and an integer, r, which sets the
speech rate (the range for speech rate, r, is between 50
and 250) . A pitch of 0 will produce a whispering voice

-- while other values not between 50 and 200 will default to
the normal pitch rate of 85. Pitch may be adjusted at any

2 time by replacing this value and speach will remain at this
A, same pitch until another value is input. Resolution of

* baseline pitch is about 10 so differences such as 103 and
111 may not be detectable. Higher numbers produce higher
pitches. If a value outside the range of 50 and 100 is not
used with the speech rate, r, then the default is to the
normal rate of 150 words per minute. Again, maximum

V resolution is about 10 words per minute so values such as
@9123 and 127 may not be detected. Speech rate is also
-'adjustable by changing the value passed and this rate

remains in effect until a different value is supplied.
Higher values produce faster rates of speech.

- 18 -

,0,

when using Turbo Pascal, the compiler option {$V-} may be
used to relax checking of the length of the buffer passed
to the speak procedure. That is, a buffer with length of
80, 128, etc may be passed. However, it is still required
to define a string of type 'longstr' for the var parameter
used in the speak procedure.

An example user program follows:

Program CallingProgram;

{$V-} {optional compiler directive to relax
parameter length checking}

type longstr = string[240]; {this must be supplied
since it is declared
as a Var parameter in
Speak }

* {other user declarations, variables,
functions, procedures, etc.}

{$I speak.inc} {includes the speak interface code}

begin {user program starts here}

{user code to set up a buffer to send to speak
procedure}

speak(string,p,r) {call the speak procedure to speak
text in the string at pitch, p,
and at rate, r}

[more user code if desired}

end. {end of user program}

Reference: IBM Voice Communications Application
Program Interface Reference Vol 1 & 2

For additional information on error codes returned,
see the above reference or consult the Text-to-Speech
Interface for the IBM Voice Communication Adapter
Guide, Talbot, Summer, 1987.

- 19 -

.4°

Procedure Speak(Var talk:longstr; p,r: integer);

label loop,99,fini;

type result = record
ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;

end;

plist = array(O..51 of integer;

shortstr = string(16];

var reg :result; (record type to call
interrupt}

rcb :integer; {storage for the resource
control block}

bid :integer; {storage for the base id}
cid :integer; {storage for partition 2

connection id}

pb :plist; [the parameter block}
* k :integer; {length of text}

pitch :string[3]; [voice pitch string}
rate :string[3]; {voice rate string}
setbuf :shortstr; {set pitch and rate

buffer}

begin

{setup pitch, p, and speech rate, r}

if p in (0,50..200]
then str(p,pitch) {convert pitch to string}
else pitch:= '85'; {default to normal pitch}

if r in (50,250)
then str(r,rate) {convert rate to string}
else rate:= (150'; default to normal rate}

setbuf:=^[+'['+pitch+.p'+^[+'['+rate+'r'+^@;

(setup the pitch and rate buffer}

{open command to obtain a resource control block and

connection ids}

reg.ax:=$1111; (function code for open
-.' command}

reg.dx:=$021f; (board I/O address}
4 reg.es:=seg(pb); {parameter block segment}

reg.bx:=ofs(pb); (parameter block offset}
intr($14,reg); (call interrupt 14}

-20-

04

Vif pb(O] <> 0 then {zero if no errorl
V begin

wrlteln('An error occurred in open.');
goto 99;

end;
rcb:=pb~lJ; [save resource control

- bid:pb(2];block I
bid:=p(21;(save base idl

cid:=pb[4]; {save partition 2
connection idl

(claim h/w resources for the rcb using claimhdw
command}1

reg.ax:=$llla; (function code for
claimhdw commandl

reg.dx:=bid; (need base id in dx}

reg.es:=seg(pb); (parameter block segment}
-p..reg.bx:=ofs(pb); (parameter block offset}

pb[2]:=S2602; {claim port 2, partition
2, spkr, microphonel

*pb(31:=$0000; {no base interrupti
intr($14,reg); (call interrupt 141
if pb(0] <> 0 then (zero if no error)

begin
p. writeln('An error occurred in claim.');

goto 99;
end;

{connect devices to the port using conndtop command}

reg.ax:=$1121; (function code for
conndtop i

reg.dx:=bid; (need base id in dx}
reg.es:=seg(pb); (parameter block segmentl
reg.bx:=ofs(pb); (parameter block offset}

4pb[2]:=2; (connect to port 21
V.pb(3]:=$0600; (connect microphone and

speaker}1
*intr($14,reg); (call interrupt 141
4'if pb[0] <> 0 then {zero if no error)
* begin

writeln('An error occurred in connect devices.');
goto 99;

end;

- 21 -

{load function set into a port and connect it using
the connftop command}

reg.ax:=$lllf; (function code for
connftop commandl

. reg.dx:=bid; [need base id in dx}
reg.es:=seg(pb); (parameter block segment}
reg.bx:=ofs(pb); {parameter block offset)
pb[l]:=cid; {need cid in the

parameter block)
pb[21:=2; (connect to port 21
pb[31:=1O; {connect text-to-speech

function}
intr($14,reg); (call interrupt 141
if pb[O] <> 0 then [zero if no error}

begin
writeln('An error occurred in connect

function.');
goto 99;

end;

[(the initialize text-to-speech function set data
structures}

reg.ax:=$1113; {function code for
initialize data
structures}

reg.dx:=cid; {need connection id in
dx}

reg.es:=seg(pb); {parameter block segment)
reg.bx:=ofs(pb); (parameter block offset!
pb(l]:=cid; {need cid in parameter

block also)
intr($14,reg); (call interrupt 14}
if pb(0J <> 0 then {zero if no error}

begin
writeln('An error occurred in initialize speech

function.');
-' goto 99;

end;

{the text-to-speech speak commandl

{set the pitch and rate by outputting setbufi

• :,reg.ax:=$111e;
function code for speak

command }
reg.dx:=cid; {need connection id in

dxI
reg.es:=seg(pb); {parameter block segment)
reg.bx:=ofs(pb); (parameter block offset)

- 22 -

04

-- -- -- - - --- - -- --- -- - - - -

pbll :=cld; ineed cid In paramieter
block also)

pb(2]:=2; [32 bit address for
buffer setbuf)

pb(31:=ofs(setbuf)-1; Isetbuf address offset,
offset 1 for length)

pbf4]:=seg(setbuf); (setbuf address segment)
intr($14,reg); [call interrupt 141
if pb(O] <> 0 [zero If no error)

then
begin

writeln('An error occurred in speech
function.');

goto 99;
end;

(say the text line that was passed as a parameter}

reg.ax:=$llle; (function code for speak
command}

reg.dx:=cid; [need connection id in
* dx)

reg.es:=seglpb); {parameter block segment}
reg.bx:=ofs(pb); {parameter block offset)
pb(l]:=cid; (need cid in parameter

block also)
pb[2] :=2; (32 bit address for

buffer talk)
k:=length(talk); (find the length of the

buffer}
talk[k+ll:=1(; (put inan ESC}
talk~k+2]:='['; (and a left bracket)
talk (k+3 = ' i '; (and an i to create

interrupt)
talkfk+4]:=~@ (add a null at the end)
pb(3]:=ofs(talk)+l; (use the buffer passed in

talk, offset 1 for
length}

pb[4]:=seg(talk); (segment for talk)
0 intr($14,reg); (call Interrupt 14)

if pb(0] <~> 0 (zero if no errorl
then

begin
writeln('An error occurred in speech

function.');
goto 99;

end;

goto fini;K 99: writeln('Return Code is ',pb(OJ); (tell the user
what code was
returned)

- 23 -

@4r

(close command to release resources}

fini: {come here always to
release resources}

reg.ax:=$1112; (function code for close)
reg.dx:=bid; {need base id in dx}
reg.es:=seg(pb); [parameter block segment}
reg.bx:=ofs(pb); {parameter block offset)
pb~l]:=rcb; (resource control block

to release resourcesl
intr($14,reg); {call interrupt 141
if pb[0] <> 0 then {zero if no error}

begin
writeln('An error occurred in close.');
writeln('Return Code is ',pb[0]); {tell the user

what code was
returned}

end;

end; {procedure speak}

-"24 -

a.

REFERENCES

1. IBM Installation and Setup voice

Communications, 6280711

2. IBM Voice Communication Applications
Program Interface Reference, Vol 1&

* 2, 6280743

22

EX

CHAPTER 2

PROGRAM SAY.COM

02

Program SAY.COM

User Guide

Summer 1987

Gary L. Talbot

4.- Management Information Systems Department

University of Arizona

Tucson, Arizona

~Is- - 27 -

045
"p

TABLE OF CONTENTS

V Introduction 29

* Hardware and Software Requirements 30

Installation Instructions 32

Operating Instructions 33

Input and Output Formats and Descriptions .38

References 39

-C O;

J-i.

..

- 28

04

1r -%. -A.L . r r

I.-

INTRODUCTION

SAY is a program written in Turbo Pascal, Version 3.0,

that allows a user to input text that (s)he wishes

translated into intelligible spoken language. The program

N provides a quick and easy way of producing speech from a

text string entered from the DOS command line.

For example, within a batch file, or at any other time

when control is at the DOS command line, if the user wishes

the sentence, "Please enter your name now.", to be spoken,

then all (s)he has to enter is: say Please enter your name
.

now. This command will activate the SAY program and cause

the text that is passed on the command line as parameters

to be voiced over a speaker. A user must ass .ure that the

IBM Voice Communications Adapter (hardware) and the IBM

Voice Communications Operating System (software) are

installed on the machine at which they are working for the

SAY program to work correctly.

Text-to-speech translation is made possible by use of

the SPEAK procedure which serves as an interface to the IBM

Voice Communications Operating System which in turn drives

the IBM Voice Communications Adapter that produces

intelligible speech from text.

- 29 -

S~.

This guide is intended to simplify the task of a user

wishing to produce speech from text from the DOS command

line. The sections following will discuss hardware and

software requirements that are necessary to use this

program. Also, installation instructions for using the SAY

program will be discussed. An overview of using the SAY

command is covered under the operating instructions section

and examples are provided. Next, input and output formats

and descriptions are discussed. Finally, references for

additional information are provided.

HARDWARE AND SOFTWARE REQUIREMENTS

Hardware:

Minimum hardware requirements are given in Table 2.1.

MINIMUM HARDWARE REQUIREMENTS

- IBM PC/AT/XT or compatibles

- 256 KB memory

-Two double-sided diskette drives

(360 KB /1.2 MB) or one double-

(cont.)

-30-

sided diskette drive (360 KB /

1.2 MB) and one fixed d1ok

Monochrome or color monitor

.,An IBM Voice Communications Adapter

- Speaker (8-ohm, capable of handling

two watts of audio power with an

attached subminiature 2.5 mm (0.1

inch) connector)

Table 2.1

Software:

-, Minimum software requirements are given in Table 2.2.

MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

(for compilation purposes only)
- SAY.COM

Table 2.2

- 31 -

e-

'°

' ,,.- ,, ,,- ",r". z '4,",,',.*,-
•

- ',,....-......'.,.-.,,,,-..." -..... .-.......-.-........-.-.-..-.-..-.-...... ,,-...",.'.,..,.".",,..' p,,-,,

INSTALLATION INSTRUCTIONS

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

can be accomplished in 30 minutes or less by an

inexperienced person.

Installation instructions for the Voice Communications

[• Application Program Interface (the software driver) may be

found in IBM Voice Communications Application Program

* Interface Reference Vol 1 Chap 2, 6280743. The software

resides in a subdirectory, either on a hard drive or floppy

Sdiskette named vcapi. The Voice Communications Operating

Subsystem Program diskette is self installing and is a

fairly simple procedure. Different procedures exist for

installing the system on hard or floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

set vcapi = y:\vcapi\

- 32 -

-p-

04

1k %

(where y l the drive containing the vcapi directory and

vcapi is the name of the DOS directory containing the API

code.)

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to

be loaded when the API driver, vcapidrv, is loaded at

boot time.)

OPERATING INSTRUCTIONS

The SAY program will produce intelligible speech from

the text entered as parameters on the command line. Input

is limited to 127 total characters due to Turbo Pascal

limitations. Text to be spoken should be followed with the

desired end of sentence terminator, either a period (.), a

question mark (?), or an exclamation point (!). If the

4 user forgets to provide the end of sentence terminator,

then the default is a period. Sentence intonation varies

according to the terminator provided. Pitch and rate of

."4 speech are set at 65 and 170 words per minute within the

SAY program. If the user desires to change these rates,

(s)he may change the parameters passed in the call to the

m . - 33 -

Iq :..

SPEAK procedure within the program and recompile the

program. When recompiling, make sure that the option to

produce a .COM file has been selected from within Turbo

Pascal. For additional information on the SPEAK procedure

and pitch and rate, see reference 3 given at the end of

this guide.

Example uses of the SAY program follow:

* A>say This is a mighty fine computer system!

A>say Do you want to delete all files?

A>say It is now time to have a coffee break.

Error codes may be returned directly by the SAY

command to the user console whenever an abnormal return

* code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

2.3. For a more complete description, consult the IBM

SVoice Communications Application Program Interface

Reference, Vol 1.

- 34 -

-. 4%

ERROR CODES

Command Error Code Explanation

Open 0 Successful

2 API inoperative

16 RCB not available

64 Invalid card number

Claimhdw 0 Successful

2 Card Inoperative

4 RCB invalid or not open

16 At least one resource seized

32 Unsupported hardware

48 Combination of 16 and 32

above

|.4;

Conndtop 0 Successful

2 Card inoperative

4 RCB invalid or not open

16 Port or devices not claimed

04

.

:"4...

%

32 Unsupported devices

64 Unsupported connection

Connftop 0 Successful

2 Card inoperative

4 CID invalid

16 Port or partition not claimed

32 Function set not known

64 Function set not accessible

* 128 Insufficient storage

256 Port not specified

512 Function set already

connected to CID

1024 Unsupported concurrency

2048 Function set cannot be held

by partition

4096 Invalid configuration

Initialize 0 Successful

[Ile 4 Function set not connected

8 Busy (re-entrant call)

_ 16 Function set not stopped

(cont.)

- 36 -

.

Speak 0 successful

4 Function set not connected

8 Busy (re-entrant call)

16 Syntax error

32 Pause command received

64 Input buffered since no

sentence terminator

provided

128 No null found in text

-~256 Pause pending (must call

I resume first)

Close 0 Successful

2 Card inoperative

4 RCB invalid or not open

Table 2.3

If a return code other than 0 is returned when a

command within the SPEAK procedure is executed by the

I driver, then a message is written to the console telling

which command returned the error and which error code was

returned. The only ones which a user might see are error

- 37 -

codes 16 or 64 from the speak command. This usually

indicates that the end of sentence punctuation was not

provided when the SPEAK procedure was called. A programmer

may desire that the procedure not notify the user if an

error code is returned and this logic is easily deleted

from the SPEAK procedure. It is basically incorporated as

- an aid in development when first installing the speech-to-

text software and hardware to track down errors that might

occur.

INPUT AND OUTPUT FORMATS AND DESCRIPTIONS

Input to the SAY program is a text string of up to 127

characters that form a logically complete sentence that

ends with a sentence terminator, either a period (,a

question mark (?), or an exclamation point ()

Output Is in the form of intelligible spoken

translation of the text that is input. Other output is in

Sthe form of error messages directly to the user console.

-38-

.".2
7" , .'

REFERENCES

1. IBM Installation and Setup Volce
Communications, 6280711

* 2. IBM Voice Communication Applications
Program Interface Reference, Vol 1 & 2,
6280743

3. Text-to-Speech Interface for the IBM Voice
Communications Adapter, Talbot, Summer
1987

% -%

4
.%

. - 39 -

Vt-"

Program SAY.COM

System Documentation Guide

Summer 1987

Gary L.. Talbot

Management Information Systems Department

University of Arizona

I Tucson, Arizona

-40

• W"

TABLE OF CONTENTS

Introduction................................. 42

*System Specifications......................... 43

Hardware Requirements......................... 44

Software Requirements......................... 45

0Design Details................................ 46

Implementation Details........................ 46

Program Listing............................... 51

References.................................... 52

4.1

1§1

INTRODUCTION

SAY is a program written in Turbo Pascal, Version

3.0, that allows a user to input text that (s)he wishes

translated into intelligible spoken language. The program

provides a quick and easy way of producing speech from a

text string entered from the DOS command line.

For example, within a batch file, or at any other time

when control is at the DOS command line, if the user wishes

* the sentence, "Please enter your name now.", to be spoken,

then all (s)he has to enter is: say Please enter your name

now. This command will activate the SAY program and cause

the text that is passed on the command line as parameters

to be voiced over a speaker. A user must assure that the

IBM Voice Communications Adapter (hardware) and the IBM

Voice Communications Operating System (software) are

installed on the machine at which they are working for the

"- SAY program to work correctly.

Text-to-speech translation is made possible by use of

the SPEAK procedure which serves as an interface to the IBM

Voice Communications Operating System which in turn drives

.-. the IBM Voice Communications Adapter that produces

- intelligible speech from text.

- 42 -

@I4L

SYSTEM SPECIFICATIONS

Both the IBM Voice Communications Operating System and

the IBM Voice Communications Application Program Interface

software are required for operation of the SAY.COM

program. Details on installation are provided below.

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

can be accomplished in 30 minutes or less by an

* •inexperienced person.

Installation instructions for the IBM Voice

Communications Application Program Interface (the software

driver) may be found in IBM Voice Communications

Application Program Interface Reference Vol 1 Chap 2,

6280743. The software resides in a subdirectory, either on

a hard drive or floppy diskette named vcapi. The Voice

Communications Operating Subsystem Program diskette is self

installing and is a fairly simple procedure. Different

* procedures exist for installing the system on hard or

-' -floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

- 43

Z..I

04

.............. V. --

set vcapi = y:\vcapi\

ha

(where y is the drive containing the vcapi directory and

vcapi is the name of the DOS directory containing the API

code.)

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to be

loaded when the API driver, vcapidrv, is loaded at boot

* time.)

HARDWARE REQUIREMENTS

Minimum hardware requirements are given in Table 2.4.

a2 MINIMUM HARDWARE REQUIREMENTS

- IBM PC/AT/XT or compatibles

- 256 KB memory

- Two double-sided diskette drives

41 (360 KB / 1.2 MB) or one double

-sided diskette drive (360 KB /

-, 1.2 MB) and one fixed disk

(cont.)

a" - 44 -

N.

I " " "5 ," " • " " ' ' " % ° ' ' " % " " " '""" -" " " ' - " ' ' ' ' "

IO

Monochrome or color monitor

An IBM Voice Communications Adapter

* - Speaker (8-ohm, capable of handling

"-" two watts of audio power with an

attached subminiature 2.5 mm

(0.1 inch) connector)

Table 2.4

SOFTWARE REQUIREMENTS

Minimum software requirements are given in Table 2.5.

MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

.," - IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

(for compilation only)

4.- SAY.COM

Table 2.5

-45 -

0~z

DESIGN DETAILS

The SAY.COM program uses the SPEAK procedure (see

references) to interface the IBM Voice Communications

Interface Program to issue commands to the IBM Voice

Communications Adapter. Words are passed as parameters on

the command line and are placed into a string buffer which

is passed to the SPEAK procedure to be translated into

speech.

IMPLEMENTATI ON DETAILS

The SAY program will produce intelligible speech from

the text entered as parameters on the command line. Input

- is limited to 127 total characters due to Turbo Pascal

limitations. Text to be spoken should be followed with the

" desired end of sentence terminator, either a period (.), a

question mark (?), or an exclamation point (.). If the

user forgets to provide the end of sentence terminator,

then the default is a period. Sentence intonation varies

according to the terminator provided. Pitch and rate of

speech are set at 65 and 170 words per minute within the

SAY program. If the user desires to change these rates,

(s)he may change the parameters passed in the call to the

*SPEAK procedure within the program and recompile the

- 46 -

• 1 ° .

program. When recompiling, make sure that the option to

produce a .COM file has been selected from within Turbo

*Pascal. For additional information on the SPEAK procedure

and pitch and rate, see reference three given at the end

of this guide.

Example uses of the SAY program follow:

A>say This is a mighty fine computer system!

* A>say Do you want to delete all files?

A>say It is now time to have a coffee break.

Error codes may be returned directly by the SAY

command to the user console whenever an abnormal return

code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

2.6. For a more complete description, consult the IBM

4.Voice Communications Application Program Interface

Reference, Vol 1.

~~47

04.

.4.O

ERROR CODES

Command Error Code Explanation

Open 0 Successful

2 API inoperative

16 RCB not available

64 Invalid card number

Claimhdw 0 Successful

2 Card Inoperative

* 4 RCB invalid or not open

16 At least one resource seized

32 Unsupported hardware

48 Combination of 16 and 32

above

Conndtop 0 Successful

2 Card inoperative

4 RCB invalid or not open

16 Port or devices not claimed

32 Unsupported devices

+'°" 64 Unsupported connection

Connftop 0 Successful

2 Card inoperative

(cont.)

:' ' - 48 -

04

1NY

4 CID inval1 id

16 Port or partition not claimed

32 Function set not known

64 Function set not accessible

128 Insufficient storage

256 Port not specified

512 Function set already

connected to CID

1024 Unsupported concurrency

2048 Function set cannot be held

* by partition

4096 Invalid configuration

Initialize 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

16 Function set not stopped

Speak 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

16 Syntax error

032 Pause command received

64 Input buffered since no

sentence terminator

provided

(cont.)

-49-

128 NO null found in text

256 Pause pending (must call

resume first)

Close 0 Successful

2 Card inoperative

4 RCB invalid or not open

Table 2.6

If a return code other than 0 is returned when a

command within the SPEAK procedure is executed by the

driver, then a message is written to the console telling

which command returned the error and which error code was

returned. The only ones which a user might see are error

codes 16 or 64 from the speak command. This usually

indicates that the end of sentence punctuation was not

provided when the SPEAK procedure was called.

A programmer may desire that the procedure not notify

the user if an error code is returned and this logic is

easily deleted from the SPEAK procedure. It is basically

incorporated as an aid in development when first installing

the speech-to-text software and hardware to track down

errors that might occur.

"'" - 50 -

04

N N. P.*A)L~k - A

PROGRAM LISTING

program say;

{This program will say the text entered as parameters on
the command line. Input is limited only to 127 total
characters (due to limitation of Turbo Pascal). To use the
program, enter the command 'say' followed by the text you
wish spoken. Remember to end the text with a sentence
terminator, either a period(.), question mark(?), or an
exclamation point(!). Examples:

say This is a mighty fine computer!

say Do you want to delete all files?

say It is now time to have a coffee break.

{$V-} {compiler directive to
relax

length of strings}

type longstr = string[240]; [size of buffer for text
-. input}

word = string[80]; {size of buffer for a word
input}

var passage :longstr; {buffer for text that is input)

param :word; (buffer for word that is input}
numparam :integer; {number of parameters (words))
i :integer; [an index for words)

{$I b:speak.inc) {interface procedure for
speech}

begin
* fillchar(passage,240,' '); {clear the buffer)

numparam:=paramcount; {find number of words passed}
for i:= 1 to numparam do (create the text buffer}

begin {to be spoken)

param:=paramstr(i); {get each word from the command

0:, passage:=passage+' '+param; {and add it to the text

• .'-bufferl

end; {end for i:=1 to numparam}
i:=length(passage); {find the text length}' '']) then... if not (passage[i] in theno,

-passage:=passage+'' {default to period if not
punctuated)

speak(passage,65,170); {speak the text in buffer,
pitch 65, rate 170)

end.
" - 51 -

Apt,

C-'o .,,

* REFERENCES :

1. IBM Installation and Setup Voice
. Communications, 6280711

2. IBM Voice Communication Applications
Program Interface Reference, Vol 1 & 2,
62807430

3. Text-to-Speech Interface for the IBM Voice
Communications Adapter, Talbot, Summer
1987

252

'Op

0

5:

CHAPTER 3

PROGRAM SAYTEXT.COM

- 53 -

.v

Program SAYTEXT.COM

User Guide

Summer 1987

Gary L. Talbot

Management Information Systems Department

University of Arizona

O:9 Tucson, Arizona

4.45

.04 -54-

04..'

TABLE OF CONTENTS

Introduction56

0 Hardware and Software Requirements57

Installation Instructions..................... 59

Operating Instructions........................ 60

Input and Output Formats and Descriptions ... 65

References.................................... 66

04 P.A

.. .. .°WI .Id %

I TRODUCTI O

SAYTEXT is a program written in Turbo Pascal, Version

3.0, that allows a user the option of having the text

within a file to be be translated into spoken language.

The user enters the program name, SAYTEXT, followed by a

parameter givinq the filename of the text file that

contains text that is desired to be spoken. The text file

can be composed of an unlimited number of sentences each

• having up to 240 regular ASCII characters. Each sentence

must end with a period (.), a question mark (?), or an

exclamation point C!).

As an example, the user would enter 'saytext

words.txt' to have the text in the file words.txt

translated into spoken language over an attached speaker.

Text-to-speech translation is made possible by use of

the SPEAK procedure which serves as an interface to the IBM

Voice Communications Operating System which in turn drives

the IBM Voice Communications Adapter that produces

intelligible speech from text. A user must assure that both[U.- the IBM Voice Communications Adapter (hardware) and the IBM

, Voice Communications Operating System (software) are

installed on the machine at which they are working for the

SAYTEXT program to work correctly.

- 56 -

04

i', : * .j j

6

This guide is intended to simplify the task of a user

wishing to produce speech from text contained within a

given text file. The sections following will discuss

hardware and software requirements that are necessary to

use this program. Also, installation instructions for

using the SAYTEXT program will be discussed. An overview

of using the SAYTEXT command is covered under the operating

instructions section and an example is provided. Next,

input and output formats and descriptions are discussed.

Finally, references for further investigation are provided.

HARDWARE AND SOFTWARE REQUIREMENTS

Hardware:

Minimum hardware requirements are given in Table 3.1.

MINIMUM HARDWARE REQUIREMENTS

IBM PC/AT/XT or compatibles

256 KB memory

Two double-sided diskette drives

(360 KB / 1.2 MB) or one double-

sided diskette drive (360 KB /

1.2 MB) and one fixed disk

(cont.)

- 57 -

.. ..' ..'. : .. " - •' . -- • ... "_*. -. . - - . "

Monochrome or color maonitor

An IBM Voice Communications Adapter

Speaker (8-ohm, capable of handling

two watts of audio power with an

attached subminiature 2.5 mm (0.1

inch) connector)

Table 3.1

Software:

Minimum software requirements are given in Table 3.2.

MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

(for compilation purposes only)

- SAYTEXT.COM

Table 3.2

., - 58 -

[e,

-2 INSTALLATION INSTRUCTIONS

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

can be accomplished in 30 minutes or less by an

inexperienced person.

Installation instructions for the IBM Voice

Communications Application Program Interface (the software

driver) may be found in IBM Voice Communications

Application Program Interface Reference Vol 1 Chap

6280743. The software resides in a subdirectory, either on

a hard drive or floppy diskette named vcapi. The Voice

Communications Operating Subsystem Program diskette is self

installing and is a fairly simple procedure. Different

procedures exist for installing the system on hard or

floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

set vcapi = y:\vcapi\

(where y is the drive containing the vcapi directory and

vcapi is the name of the DOS directory containing the API

V. code.)

-a"" - 59 -

i %.

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to be

loaded when the API driver, vcapidrv, is loaded at boot

time.)

OPERATING INSTRUCTIONS

The SAYTEXT program will produce intelligible speech
,?¢

-.. .from the text within the file whose name is entered as a

* parameter on the command line. Any number of sentences may

be included in the file but each is limited to a maximum of

." 240 regular ASCII text characters and must end with either

a period (.), a question mark (?), or an exclamation point

M. If a sentence of more than 240 characters is entered

or if termination punctuation is omitted, then a default

period (.) is added either as the 240th character or at the

end of the sentence.

Sentence intonation varies according to the terminator

.- provided so the user should stress adding the desired

termination punctuation. Pitch and rate of speech are set

4'.. 0at 65 and 170 words per minute within the SAYTEXT program.
S;t

If the user desires to change these rates, they may change

the parameters passed in the call to the SPEAK procedure

within the program and recompile the program. When

- 60 -

0-4h itV .i

recompiling, make sure that the option to produce a .COM

file has been selected from within Turbo Pascal. For

additional information on the SPEAK procedure and pitch and

rate, see reference 3 given at the end of this guide.

An example use of the SAYTEXT program follows:

if the file named HELLO.DAT contains the following text:

" ~Hello all! It is so nice of you to visit. Will you

come in and stay for awhile?

o. then to have the passage spoken, enter the following at the

DOS command line:

A saytext hello.dat

Error codes may be returned directly by the SAYTEXT

program to the user console whenever an abnormal return

code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

3.3. For a more complete description, consult the IBM

Voice Communications Application Program Interface

Reference, Vol 1.

- 61 -

" 4.-

.. • !

ERROR CODES

Command Error Code Explanation

Open 0 Successful

2 API inoperative

16 RCB not available

64 Invalid card number

-. , Claimhdw 0 Successful

2 Card Inoperative

* 4 RCB invalid or not open

16 At least one resource seized

32 Unsupported hardware

48 Combination of 16 and 32

above

Conndtop 0 Successful

2 Card inoperative

4 RCB invalid or not open

.1, 16 Port or devices not claimed

32 Unsupported devices

64 Unsupported connection

Connftop 0 Successful

2 Card inoperative

(cont.)

- 62 -

04

4 CID invalid

16 Port or partition not claimed

32 Function set not known

64 Function set not accessible

128 Insufficient storage

256 Port not specified

512 Function set already

connected to CID

1024 Unsupported concurrency

2048 Function set cannot be held

* by partition

4096 Invalid configuration

Initialize 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

16 Function set not stopped

Speak 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

16 Syntax error

32 Pause command received

64 Input buffered since no

sentence terminator provided

(cont.)

- 63 -

So

128 No nIullfon LUIn text

256 Pause pending (must call

resume first)

Close 0 Successful

.1*~.2 Card inoperative

4 RCB invalid or not open

'a.'..,-Table
3.3

0

If a return code other than 0 is returned when a

V. command within the SPEAK procedure is executed by the

driver, then a message is written to the console telling

which command returned the error and which error code was

returned. The only ones which a user might see are error

codes 16 or 64 from the speak command. This usually

- indicates that the end of sentence punctuation was not

provided when the SPEAK procedure was called.

0 A programmer may desire that the procedure not notify

* .~,the user if an error code is returned and this logic is

-k-easily deleted from the SPEAK procedure. It is basically

incorporated as an aid in development when first installing

the speech-to-text software and hardware to track down

errors that might occur.

- 64 -

L4
or~. AJ

a a- a-- L..

4- -'F.

INPUT AND OUTPUT FORMATS AND DESCRIPTIONS

.

Input to the SAYTEXT program is a text file consisting

of any number of sentences composed of 240 or fewer ASCII

text characters that end with a sentence terminator, either

a period (.), a question mark (?), or an exclamation point

Output is in the form of intelligible spoken

translation of the text that is input. Other output is in

the form of error messages directly to the user console.

1W

S"

.65

S V,L.
m,J

.e

4 ..

.€; - 65 -

rO

1.. IB ntlain n eu oc

Communications, 6280711

2. IBM Voice Communication Applications
Program Interface Reference, Vol 1 & 2,
6280743

3. Text-to-Speech interface for the IBM Voice
Communications Adapter, Talbot, Summer
1987

-66-

Program SAYTEXT .COM

System Documentation Guide

Summer 1987

Gary L. Talbot

Management Information Systems Department

University of Arizona

Tucson, Arizona

-67 -

4

TABLE OF CONTENTS

Introduction................................. 69

0System Specifications......................... 70

Hardware Requirements......................... 71

Software Requirements......................... 72

Design Details................................ 73

Implementation Details........................ 73

-- Program Listing............................... 78

References....................................834

J.8

04

INTRODUCTI ON

SAYTEXT is a program written in Turbo Pascal, Version

3.0, that allows a user to have text in a file translated

into intelligible spoken language. The program provides a

quick and easy way of producing speech from a text file

entered at the DOS command line as a parameter to the

program.

For example, to have the text in the file text.fil

translated into voice, the user would enter "saytext

text.fil" at the DOS command prompt. This command will

activate the SAYTEXT program and cause the text within

text.fil to be voiced over a speaker. A user must assure

that both the IBM Voice Communications Adapter (hardware)

and the IBM Voice Communications Operating System

(software) are installed on the machine at which they are

working for the SAYTEXT program to work correctly.

Text-to-speech translation is made possible by use of

the SPEAK procedure which serves as an interface to the IBM

Voice Communications Operating System which in turn drives

the IBM Voice Communications Adapter that produces

intelligible speech from text.

- 69 -

- •.-

SYSTEM SPECIFICATIONS

Both the IBM Voice Communications Operating System

and the IBM Voice Communications Application Program

Interface software are required for operation of the

SAYTEXT.COi program. Details on installation are provided

below.

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

can be accomplished in 30 minutes or less by an

inexperienced person.

Installation instructions for the IBM Voice

Communications Application Program Interface (the software

driver) may be found in IBM Voice Communications

Application Program Interface Reference Vol 1 Chap 2,

6280743. The software resides in a subdirectory, either on

a hard drive or floppy diskette named vcapi. The Voice

Communications Operating Subsystem Program diskette is self

installing and is a fairly simple procedure. Different

procedures exist for installing the system on hard or

floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

07

set vcapi - y:\vcapi\

(where y is the drive containing the vcapi directory and

vcapi is the name of the DOS directory containing he API

code.)

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to

to be loaded when the API driver, vcapidrv, is loaded at

* boot time.)

HARDWARE REQUIREMENTS

Minimum hardware requirements are given in Table 3.4.

MINIMUM HARDWARE REQUIREMENTS

- IBM PC/AT/XT or compatibles

- 256 KB memory

- Two double-sided diskette drives

(360 KB / 1.2 MB) or one double-

sided diskette drive (360 KB /

1.2 MB) and one fixed disk

(cont.)

- 71 -

04

,.. S %*~ *

Monochrome or color monitor

An IBM Voice Communications Adapter

,,Speaker (8-ohm, capable of handling

two watts of audio power with an

attached subminiature 2.5 mm

(0.1 inch) connector)

Table 3.4

SOFTWARE REQUIREMENTS

Minimum software requirements are given in Table 3.5.

MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

(for compilation purposes only)

- SAYTEXT.COM

Table 3.5

....

- 72 -

@4%

DESIGN DETAILS

4.

The SAYTEXT.COM program was developed to allow a user

to produce speech from any ASCII text file. The filename

of a file which contains an unlimited number of complete

sentences is passed to the program as a parameter on the

command line. The file is then read in sentence-by-

sentence and stored in a linked list. Next, each sentence

is passed to the SPEAK procedure, which serves as an

interface to the IBM Voice Communications Adapter which

*translates text into speech.

IMPLEMENTATION DETAILS

.

..

The SAYTEXT.COM program uses the SPEAK procedure

(see reference 3) to interface the IBM Voice Communications

Interface Program to issue commands to the IBM Voice

Communications Adapter. The filename of a file which

0 contains sentences composed of up to 240 standard ASCII

text characters is passed as a parameter on the command

line. The text file can have an unlimited number of

sentences and each sentence must end with a period (.), a

-." question mark C?) or an exclamation point !). If an
4. invalid filename is passed as the parameter, then the

program aborts and notifies the user that the filename

-73

~~~ . k~ '



does not exist. For valid filenames, the file is read in

one sentence at a time into a linked list to reduce disk

access time. Once the entire file is read in, then each

sentence is passed to the SPEAK procedure to be spoken.

Pitch and rate of speech are set to 65 and 170 words

per minute within the SAYTEXT program. If the user desires

to change these rates, they may change the parameters

passed in the call to the SPEAK procedure within the

* * program and recompile the program. When recompiling, make

' sure that the option to produce a COM file has been

selected from within Turbo Pascal. For additional

. information on the SPEAK procedure and pitch and rate, see

the reference 3 given at the end of this guide.

An example use of the SAYTEXT program follows:

if the file named HELLO.DAT contains the following text:

Hello all! It is so nice of you to visit. Will you

come in and stay for awhile?

then to have the passage spoken, enter the following at the

DOS command line:

A>saytext hello.dat

p - 74-

'.....,



Error codes may be returned directly by the BAYTEXT

program to the user console whenever an abnormal return

code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

3.6. For a more complete description, consult the IBM

Voice Communications Application Program Interface

Reference, Vol 1.

ERROR CODES

* Command Error Code Explanation

Open 0 Successful

2 API inoperative

16 RCB not available

64 Invalid card number

Claimhdw 0 Successful

2 Card Inoperative

4 RCB Invalid or not open

* 16 At least one resource seized

32 Unsupported hardware

48 Combination of 16 and 32

above

(cont.)

i-S.. - 75 -



Conndtop 0 Successful

2 Card inoperative

4 RCB invalid or not open

16 Port or devices not claimed

32 Unsupported devices

64 Unsupported connection

Connftop 0 Successful

2 Card inoperative

4 CID invalid

. 16 Port or partition not claimed

32 Function set not known

64 Function set not accessible

128 Insufficient storage

256 Port not specified

512 Function set already

connected to CID

1024 Unsupported concurrency

2048 Function set cannot be held

by partition

4096 Invalid configuration

Initialize 0 Successful

4 Function set not connected

, 8 Busy (re-entrant call)

16 Function set not stopped

(cont.)

- 76 -
041



speak 0 successful

4 Function set not connected

8 Busy (re-entrant call)

16 Syntax error

32 Pause command received

64 Input buffered since no

sentence terminator provided

128 No null found in text

256 Pause pending (must call

-, resume first)

Close 0 Successful

2 Card inoperative

4 RCS invalid or not open

Table 3.6

If a return code other than 0 is returned when a

command within the SPEAK procedure is executed by the

driver, then a message Is written to the console telling

which command returned the error and which error code was

returned. The only ones which a user might see are error

codes 16 or 64 from the speak command. This usually

indicates that the end of sentence punctuation was not

provided when the SPEAK procedure was called.

-77-



"0

A programmer may desire that the procedure not notify

the user if an error code is returned and this logic is

easily deleted from the SPEAK procedure. It is basically

incorporated as an aid in development when first installing

the speech-to-text software and hardware to track down

errors that might occur.

PROGRAM LISTING

* The SAYTEXT program causes the text in the file, whose name
is passed as a parameter, to be spoken. The file should be
in regular ASCII characters similiar to this passage
following all rules of normal punctuation. The length of
the input file is unlimited. The text is first read into a
linked list then each node of the linked list is spoken.

Example:

if the file named HELLO.DAT contains the following text:

Hello all! It is so nice of you to visit. Will you
come in and stay for awhile?

then to have the passage spoken, enter the following
command:

saytext hello.dat

program saytext;

{$V-} {compiler directive to relax length of parameter
* strings passed}

.*type longstr = string[240]; {length of text string to
speak }

filname = string[66]; {file name passed}
buffer = array[l..240] of char; {temporary buffer

storage}

-78-

Ot.



~ RECORD FOR LINKED LIST NODE
Ll13tNod = ^SNode;
SNode = record

* txt: longstr;
next: LlistNod;

end; prior: LlistNod;

{**** RECORD FOR LINKED LIST HEADER
Slist = ^SHead;

* SHead =record
* length: integer;

first: LlistNod;
Last: LlistNod;

end;

var data :filname; (buffer- to hold file name
that is passed I

datafile :text; {assigned to the filenamel
i,3 :integer; (counter for nodes and

chars I
*LList :Slist; [the head nodel

node :LListnod; {pointer to keep track of
current node}

Str24O :longstr; (buffer for stringl
chin :char; {char read in}
buf :buffer; [used to manipulate datal

function to test for existence of a file

Function Exist(filename: filname): boolean;

var fil :file;

begin
assign( fil, filename);

reset( fil);
($I+}
exist:= (IOresult =0)

end;{function existi

*Node Ptr; RETURNS A PTR TO CURRENT NODE OF LINKED LIST

Function Node Ptr(pos: integer): LlistNod;

Var
i: integer;
nd: LlistNod;

-79-

a'



Begin
nd Llist-.first;
for i 2 to pos do

nd nd- .next;
Node Ptr ri d;

End;

*CreateLst; CREATES HEADER FOR LINKED LIST FOR TEXT LINES*

Function CreateLst: Slist;

Var
thishead: Slist;

Begin
new( thishead);
thishead- .length 0;
thishead-.first nil;

1 thisheadA.last :=nil;
CreateLst := thishead;

End;

*Make Node'CREATES NEW NODE FOR LINKED LIST

-. Function MakeNode(dat: longstr; prey, nxt: LlistNod):
LiistNod;

Var
thisone: LlistNod;

Begin
new( thisone);
thisoneA.txt := Copy(dat,1,,Length(dat));

*thisonet.prior prey;
thisone'tnext :nxt;

CMake_-Node :=thisone;
End;

*APPLuist; APPENDS A NODE ONTO LINKED LIST*

Procedure AppLlist(dat: longstr);

Var
thisone: LlistNod;

- 80-

A.

po .w



Beg in
If Llist^.first =nil then

begin
thisone :=MakeNode(dat,nil,nil);
Llist-.last := hisone;

end
else

begin
thisone :=MakeNode(dat,Llist-'.last,nil);

Llist^'. last :=thisone;
end;

Llist^.length :=Llist^.length + 1;
End;

*DelHere; DELETES A NODE FROM THE TEXT LINKED LIST AND
- - * RETURNS THE TEXT STRING FROM THAT NODE*

Function DelHere(pos: integer): longstr;

Var
temp: LlistNod;

Begin
temp :=Llist^.first;
if pos = 1 then
begin

Llist^.first := temp^.next;
if Llist-. first <> nil then
Llist-.first^.prior := nil;

end
else

begin
temp := Node_-Ptr(pos);
temp-.prior-.next := temp-.next;
if temp- .next =nil then
Llist-.last :=temp^.prior

else
:4 temp^.next^.prior := temp^.prior;

end;
DelHere :=temp- .txt;
Dispose(temp);
Llist^.length :=Llist-.length -1;

End;

- 81 -

A.&



{ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -w *******************************

* DEALLLIST;*

Procedure DeallList;

Var
Tx :String(80J;

Begin
while Llist-.length > 0 do

Tx :=DelHere(1);
Dispose (Li ist);

End;

{$I b:speak.inc} (speech interface procedure}

begin
data:=paramstr(l); [get the file name passed as

a parameter}
if exist(data) then (see if the filename is

valid }
begin {do this if filename valid

else tell user}
asslgn(datafile,data); {assign var datafile to the

string name}
reset(datafile); {get the file ready to read)
LList:=CreateLst; (create a head node)
while not eof(datafile) do

- .begin (begin while not eof.. }
1; (initialize char counter}

repeat
read(datafile,chin); {read char in)
buf[J]:=chin; (put it in an array}
j:=J+l; (increment the index)

until (chin in V ','''')or i > 240) or
eof (datafile);,

(stop for end of sentence or
buffer full or end of filel

Str240:=copy(buf,l,j-1); (creates a complete
.~ ~ sentence I

APP _LList(Str24O); (add it to the array)
-~end; (while not eof(datafile)}

close(datafile); (remember to close the file}
node:=LList-.first; (set pointer to first node}
for l:=l to LList^.length do

begin (for i:=1 to LList .. I
speak(node txt,65,l75); (speak the current line}
node:=node^.next; (move the pointer up)

end; [for i:=1 to LList.. }
DeallList; (delete all the nodes)

end (while not eof .. I

-82 -

pN.



else
writeln(data,' does not exist.');

{error message if file does not
exist}

end. [program SAYTEXT}

Vr .o

-. 83 -

;.

0l

" 0". ',, .e ; " ,'" '," " ,,e € ,,., ,,, *', • ,'% "" %, ," ." '9,", '% ",.- • . , .,' . , . ', , ,/'



REFERENCES

1. IBM installation and Setup Voice
Communications, 6280711

2. IBM Voice Communication Applications
Program Inter face Reference, Vol 1 & 2,
6280743

3. Text-to-Speech Inter face for the IBM Voice
Communications Adapter, Talbot, Summer
1987

'F. -"84

a:-,

pop,

%~ 
. .

. . . . . .



wrrswvwtxr.~~~CHA TE 4-~rr- .-- . , - - -

PROGRA -.. NDC

-A85



-AiSG 743 VOICE TECNOLOGY USING PERSONAL COMPUTE3SI(U) alit FORCE 212
INST OF TECH MRIGJ4T-PATTERSON RFB ON G L TALBOT 1987
AFIT/CI/UR-87-43T

UNCLASSIFIED F/G 25/4 W



12.

1.0 m--*
~2.2

a

40

Obd

- .....

041,o. • • • • • • • • •uO .-



Program REMIND. CON

User Guide

Summer 1987

'U Gary L. Talbot

Management Information Systems Department

University of Arizona

Tucson, Arizona

- 86 -



TABLE OF CONTENTS

Introduction................................. 88

IHardware and Software Requirements .......... 89

Installation Instructions.................... 91

operating Instructions....................... 92

Input and Output Formats and Descriptions..102

References.................................. 103

68

kl M .. t



INTRODUCTION

REMIND Is a program written in Turbo Pascal, Version

3.0, that provides the user with the ability to have

prepared messages spoken at desired times. When the

program is first started, the user is prompted for messages

and the time when each message should be spoken. Once the

user's desired schedule is correct, the program blecomes

memory resident and any other normal activity may be

0resumed. At the designated times, each message will be

spoken.

The user can review/revise the schedule or terminate

the REMIND program at any time by entering the keystroke,

ALT/F7. Messages are limited to 127 regular ASCII text

characters and must end with termination punctuation,

either a period (.), a question mark (?), or an exclamation

point (!). Times are input using a twenty-four hour clock

in the format hh:mm. For example, ten o'clock a.m. is

entered as 10:00 while three thirty-four p.m. is entered as

15:34.

Text-to-speech translation is made possible by use of

the SPEAK procedure which serves as an interface to the IBM

VieCommunications Operating System which i undie

the IBM Voice Communications Adapter that produces

intelligible speech from text. A user must assure that

- 88-

rim

**q4 e y* y 0.)f* i~ r ' ,



both the IBM Voice Communications Adapter (hardware) and

the IBM Voice Communications Operating System (software)

are installed on the machine at which they are working for

the REMIND program to work correctly.

This guide is intended to simplify the task of a user

wishing to produce speech from text at designated times.

The sections following will discuss hardware and software

requirements that are necessary to use this program. Also,

installation instructions for using REMIND will be

discussed. An overview of using the REMIND program is

covered under the operating instructions section and an

example is provided. Next, input and output formats and

descriptions are discussed. Finally, references for

further investigation are provided.

HADAEADSFWAERQIEET

Hardare

Miiuardwareeureet:aegie n ale41

S8



MINIMUM HARDWARE REQUIREMENTS

- IBM PC/AT/XT or compatibles

- 256 KB memory

- Two double-sided diskette drives

(360 KB / 1.2 MB) or one double-

sided diskette drive (360 KB /

1.2 MB) and one fixed disk

- Monochrome or color monitor

- An IBM Voice Communications Adapter

- Speaker (8-ohm, capable of

handling two watts of audio

power with an attached

subminiature 2.5 mm (0.1 inch) connector)

Table 4.1

V.

Software:

Minimum software requirements are given in Table 4.2.

- 90 -

I
S...,^ ie

.A0.



MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

(for compilation purposes only)

- REMIND.COM

* Table 4.2

INSTALLATION INSTRUCTIONS

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

N can be accomplished in 30 minutes or less by an

inexperienced person.

Installation instructions for the IBM Voice

Communications Application Program Interface (the software

driver) may be found in IBM Voice Communications

Application Program Interface Reference Vol 1 Chap 2,

6280743. The software resides in a subdirectory, either on

.- a hard drive or floppy diskette named vcapi. The Voice

-91-

4M f. I



ACommunications Operating Subsystem Program diskette is self

installing and is a fairly simple procedure. Different

procedures exist for installing the system on hard or

floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

set vcapi = y:\vcapi\

* (where y is the drive containing the vcapi directory and

- vcapi is the name of the DOS directory containing the API
S.-

code.)

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to be

loaded when the API driver, vcapidrv, is loaded at boot

time.)

OPERATING INSTRUCTIONS
.O

To activate the REMIND program, enter remind at the

DOS command line then follow the instructions provided. Up

to fifteen separate messages and designated times may be

- 92 -

3--.
04

44L,



input. If less than the fifteen messages are desired, then

the user may enter 'q' or 'Q' to quit at any time. When

all desired messages have been entered, the schedule will

be displayed for the user to review and revise as desired.

Once correct, the program and schedule become memory

resident and control returns to the DOS command line. The

program begins checking the time every 15 seconds and

compares this time to the times within the schedule. If

the times match, then the associated message is voiced

through an attached speaker. The user may enter an ALT/F7

at any time, even from within other programs, to

review/revise the schedule or terminate the REMIND program.

An example session using the REMIND program follows.

User input is italicized.

The user enters remind to activate the program in

Figure 4.1.

IA>remlnd

iI

Figure 4.1

- 93 -



The infc:mation in Figure 4.2 appears in a window to

the screen.

I Enter the time (hh:mm) then the message you wish spoken.

I Time range is 00:00-23:59. Message is a maximum of 127 1

1 characters. 15 different messages may be entered.

I Time 1? (hh:mm) Q to quit.

-O 10:30

-. I Messaqe 1? Punctuation required.

I Time is ten-thirty. It's coffee break time.

I

Figure 4.2

The screen for second and succeeding entries appears

in Figure 4.3.

- 94 -

kev



A.

I Time 2? (hh:mm) Q to quit.

A-1 16:00

1 Message 2? Punctuation required.

I Four o'clock. Time to go home.

Figure 4.3

Figure 4.4 demonstrates when the user has completed

inputting entries.

-.:

I Time 3? (hh:mm) Q to quit. I

I I q 

Figure 4.4
a. -Ai

Next, in Figure 4.5, the user is allowed to review

information that has been input.

.--

- 95 -

op



I Entry #i 10:30 Time is ten-thirty. It's coffee break I

time.

I Entry #2 16:00 Four o'clock. Time to go home.

Jb I Correct? (Y/N)

Figure 4.5

* If the user enters 'N' or 'n', then the screen in

Figure 4.6 is displayed, if 'Y' or 'y', then Figure 4.7 is

shown.

I Enter the number of the entry to change or

I enter FF:FF In an entry's time field to delete the

I entry or

I enter 3 to add a new entry or

I enter 0 to reaccomplish the entire table or

I enter 99 to return with no changes.

Figure 4.6

-96

e- e L e



Once the schedule is correct, the user enter 'Y'or 'y'

and the program becomes memory resident and the user sees

the screen in Figure 4.7 before the DOS command line is

returned.

Remind System is now resident

Enter ALT-F7 to review/revise schedule

* **or terminate program.

I A>

Figure 4.7

If at any time thereafter, the user enters ALT/F7, the

screen in Figure 4.8 is displayed.

- 97 -

I"-



Ve

.~ J-

IEnter R to review/revise schedule or T to terminate.

Figure 4.8

Error codes may be returned directly by the REMIND

5/.~ program to the user console whenever an abnormal return

code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

4.3. For a more complete description, consult the IBM

'.Voice Communications Application Program Interface

Reference, Vol 1.

09

11 1



4 CID invalid

16 Port or partition not claimed

32 Function set not known

-64 Function set not accessible

*128 Insufficient storage

256 Port not specified

512 Function set already

connected to CID

1024 Unsupported concurrency

2048 Function set cannot be held

-. by partition

4096 Invalid configuration

Initialize 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

*1-16 Function set not stopped

0Speak 0 Successful

4.4 Function set not connected

8 Busy (re-entrant call)

16 Syntax error

32 Pause command received

64 Input buffered since no

sentence terminator provided

(cont.)

.4. - 100 -

04

a .~ %



REFERENCES

1. IBM Installation and Setup Voice
Communications, 6280711

2. IBM Voice Communication Applications
Program Interface Reference, Vol 1 & 2,
6280743

.4 3. Text-to-Speech Interface for the IBM Voice
Communications Adapter, Talbot, Summer
1987

.150

5.

V5or5

, .

-o°° ~ *.;*. ~ V4 ~~~' **~"~>



°p.

Program REMIND.COM

System Documentation Guide

Summer 1987
'p

Gary L. Talbot

Management Information Systems Department

University of Arizona

Tucson, Arizona

"p - 104 -

I". ".

'pd



TABLE OF CONTENTS

Introduction ................ 106

System Specifications........................ 107

Hardware Requirements........................ 108

Software Requirements........................ 109

Design Details............................... 110

Implementation Details....................... 111

Program Listing.............................. 121

References................................... 168

-105-

04



Communications Operating Subsystem Program diskette is self

installing and is a fairly simple procedure. Different

procedures exist for installing the system on hard or

floppy disks.

To load the operating system and the required speech-

to-text function, the following commands should be placed

in the autoexec.bat file:

- i set vcapi = y:\vcapi\

* (where y is the drive containing the vcapi directory and

.- vcapi is the name of the DOS directory containing the API

. code.)

y:\vcapi\vcapidrv /o 10

(the /o 10 option allows the text-to-speech function to be

loaded when the API driver, vcapidrv, is loaded at boot

time.)

04

HARDWARE REQUIREMENTS

o° Minimum hardware requirements are given in Table 4.4.

. . - 108 -

04
--



MINIMUM HARDWARE REQUIREMENTS

* ~. -IBM PC/AT/XT or compatibles

-256 KB memory

-Two double-sided diskette drives

(360 KB / 1.2 MB) or one double-

sided diskette drive (360 KB/

1.2 MB) and one fixed disk

-Monochrome or color monitor

-An IBM Voice Communications Adapter

* - Speaker (8-ohm, capable of handling

two watts of audio power with an

attached subminiature 2.5 mm

(0.1 inch) connector)

A', Table 4.4

SOFTWARE REQUIREMENTS

Minimum software requirements are given in Table 4.5.

-109-

01'



MINIMUM SOFTWARE REQUIREMENTS

- DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- Turbo Pascal, Version 3.0

(for compilation purposes only)

: .4... - REMIND.COM

0 Table 4.5

DESIGN DETAILS

The REMIND.COM program uses a memory resident shell

and the SPEAK procedure (see reference 3) to interface the

• - IBM Voice Communications Interface Program to issue

commands to the IBM Voice Communications Adapter. A

message that is entered to be spoken at a specific time is

spoken when the internal machine time matches the desired

time for speech.

-110-

d,-O',

*Si Cj ,, 
9
b** C . C



I MPLEMENITAT ION DETAILS

To activate the REMIND program, enter remind at the

DOS command line then follow the instructions provided. Up

to fifteen separate messages and designated times may be

input. If less than the fifteen messages are desired, then

the user may enter 'q' or IQ' to quit at any time. When

all desired messages have been entered, the schedule will

be displayed for the user to review and revise as desired.

0Once correct, the program and schedule become memory

resident and control returns to the DOS command line. The

program begins checking the time every 15 seconds and

compares this time to the times within the schedule. if

the times match, then the associated message is voiced

.Yq through an attached speaker.

The user may enter an ALT/F7 at any time, even within

other programs, to review/revise the schedule or terminate

the REMIND program.

Several variables may be changed within the program.

First, the time that the program goes out to check the

current time is set to 15 seconds. This may be changed by

changing the variable TIMER TIME to the desired time in

seconds. Next, the hot key, ALT/F7, may be changed by

k changing the constant OurHotKey to the desired scan code.



Third, the constant MaxMsg may be set to the maximum number

of messages desired. It is currently set to 15. The

program is written in Turbo Pascal, Version 3.0. The

memory resident shell was taken in part from The Hunter's

Helper, by Lane Ferris, et. al. When resident, the program

takes approximately 34K of memory.

The main program, REMIND.PAS, requires several include

files for compilation. These are given in Table 4.6.

J. FILES REQUIRED FOR REMIND.PAS COMPILATION

-SPEAK.INC: Interface to IBM Voice Communications

Adapter

- STAYWNDO.341: Used to create popup windows

- STAYXIT.420: Used in program termination

- STAYSUBS.420: Common subroutines

- STAYI16.410: Handles interrupt 16 calls

- STAYI13.410: Handles interrupt 13 calls

- STAYI21.410: Handles interrupt 21 calls

[ - STAYI8.420: Handles interrupt 8 calls

- STAYI28.410: Handles interrupt 28 calls

- STAYSAVE.420: Saves OS system structures

- STAYRSTR.420: Used to terminate and remain resident

- CLKI8.410: Provides the timer

Table 4.6

- 112 -

4,



The program should be compiled as a COM file with

minimum dynamic memory set to 100 and maximum dynamic

memory set to 200. This ensures enough memory is allocated

to the heap to avoid collisions while limiting the amount

of memory reserved for the heap.

An example session using the REMIND program follows.

User input is italicized.

-_'..

The user enters remind to activate the program in

-- Figure 4.9.

°°'.

IA>remind

Figure 4.9

The information in Figure 4.10 appears in a window to

the screen.

%'.

- 113 -

04

16r~~n-. *d e .01'



* ...?:

I Enter the time (hh:mm) then the message you wish spoken.1

I Time range is 00:00-23:59. Message is a maximum of 127 1

I characters. 15 different messages may be entered.

I Time 1? (hh:mm) Q to quit.

1 10:30

1 Message 1? Punctuation required.

I ' Time is ten-thirty. It's coffee break time.

.-

Figure 4.10

The screen for second and succeeding entries appears

in Figure 4.11.

. "

I Time 2? (hh:mm) Q to quit.

1 16:00

I Message 2? Punctuation required.

I Four o'clock. Time to go home.

• .. '.

Figure 4.11

- 114 -

I","2



Figure 4.12 demonstrates when the user has completed

inputting entries.

I Time 3? (hh:mm) Q to quit.I

* q

Figure 4.12

Next, in Figure 4.13, the user is allowed to review

information that has been input.

I Entry #1 10:30 Time Is ten-thirty. It's coffee break

t ime.

I Entry #2 16:00 Four o'clock. Time to go home.

I Correct? (Y/N)

Figure 4.13

-115-

I~~~~~~~~~~ ~ %......................



I£ the user enters 'N' or 'n' then the 5screen in

Figure 4.14 is displayed, if 'Y' or 'y', then Figure 4.15

is shown.

I Enter the number of the entry to change or

I enter FF:FF In an entry's time field to delete the

I entry or

I enter 3 to add a new entry or

I enter 0 to reaccomplish the entire table or

I enter 99 to return with no changes.

Figure 4.14

Once the schedule is correct, the user enter 'Y'or 'y'

and the program becomes memory resident and the user sees

the screen in Figure 4.15 before the DOS command line is

returned.

- 116 -



q ,.'

-- **Remind System is now resident

S**** Enter ALT-F7 to review/revise schedule

S**or terminate program.

A>

Figure 4.15

If at any time thereafter, the user enters ALT/F7, the

screen in Figure 4.16 is displayed.

I. Enter R to review/revise schedule or T to terminate.

.. *,

A:'.

ki'- Figure 4.16

117

.. .. . . . . . . . . . . . . ... . .
0' ' ,,-..,. ' ' ',.. / .-.. . ' ' .- ',- ' -.- -, ',. '""'.;. ''''''' "'L ., '_, % .., ',' .., -""'- ,, . ... . ,



Error codes may be returned directly by the REMIND

program to the user console whenever an abnormal return

code (one other than 0) is returned from the Voice Driver.

A quick synopsis of these error codes is given in Table

4.7. For a more complete description, consult the IBM

Voice Communications Application Program Interface

Reference, Vol 1.

ERROR CODES

*Command Error Code Explanation

YOpen 0 Successful

2 API inoperative

16 RCB not available

A'64 Invalid card number

Claimhdw 0 Successful

2 Card Inoperative

4 RCB invalid or not open

0 16 At least one resource seized

32 Unsupported hardware

48 Combination of 16 and 32

-, above

(cant.)

-118 -

% -o



Conndtop 0 Successful

2 Card inoperative

4 RCB invalid or not open

16 Port or devices not claimed

32 Unsupported devices

64 Unsupported connection

Connftop 0 Successful

2 Card inoperative

4 CID invalid

16 Port or partition not claimed

32 Function set not known

64 Function set not accessible

128 Insufficient storage

256 Port not specified

512 Function set already

connected to CID

1024 Unsupported concurrency

1 2048 Function set cannot be held

by partition

. 4096 Invalid configuration

Initialize 0 Successful

4 Function set not connected

8 Busy (re-entrant call)

16 Function set not stopped

(cont.)

-119-

0o,



Speak 0 successful

4 Function set not connected

8 Busy (re-entrant call)

16 Syntax error

32 Pause command received

64 Input buffered since no

sentence terminator provided

128 No null found in text

256 Pause pending (must call

'I resume first)

Close 0 Successful

2 Card inoperative

4 RCS invalid or not open

Table 4.7

If a return code other than 0 is returned when a

command within the SPEAK procedure is executed by the

driver, then a message is written to the console telling

which command returned the error and which error code was

V'V returned. The only ones which a user might see are error

codes 16 or 64 from the speak command. This usually

V" indicates that the end of sentence punctuation was not

.N. provided when the SPEAK procedure was called.

- 120 -

o4



A programmer may desire that the procedure not notify

the user if an error code is returned and this logic is

easily deleted from the SPEAK procedure. It is basically

incorporated as an aid in development when first installing

the speech-to-text software and hardware to track down

errors that might occur.

PROGRAM LISTING

0 {$R+}
{$C-}
{$V-}

PROGRAM REMIND;
{This program is a memory resident program that drives the
IBM voice applications software and hardware board. When
first loaded, it allows input of messages to be spoken and

A. the time when they should be spoken. Interface to the board
is made through the procedure speak. After the user is
prompted for input (messages and times), the program

terminates and becomes memory resident. Access to the
schedule for review/revision or to terminate the program
can be made by entering ALT-F7.}

{ * * * * * CONSTANTS * * * * * * * * * * * * * * * * * * }
* const

[the next field is needed for the windo.inc routines }
MaxMsg = 15; {maximum number of messages to

be in schedule}
MaxWin = 10; [Max number of windows open at

one time I
Esc = #27; [character equivalent of Escape

i, , , Key)

Alt =08; {Shift bits at 40:17 1
v.'-"Ctrl = 04;

, ,LeftShift =02;

Rght Shift = 01;

- 121 -

04

N.-,

• .4 ".



BIOSI8 = 8; (Bios'Timer Initerrupt)
BIOSI16 = $16; (Bios Keyboard Interrupt}
BIOSI13 = $13; (Bios Disk interrupt)
DOSI21 = $21; {DOS service router interrupt)
DOSI28 = $28; {DOS Idle interruptl

--------------- T Y PE D E CL AR ATIO NS---------I
Type

Regtype = record
Ax,Bx,Cx,Dx,Bp,Si,Di,Ds,Es,Flags:integer

end;

HalfRegtype = record
Al, Ah, Bi,Bh, Cl,Ch, Dl,Dh byte

end;

filename-type = stringC64];
Vector =record f Interrupt Vector type I

IP,CS :integer;
end ;

longstr =string(24];

------------------------ T Y P E D C 0 N S T A N T S-------------I
Const

OurHotKey byte = 110; {scan code for ALT-F7}

~~ scan code can be changed to make *********

{****** another key active as the hot key. *~

{This table marks those INT 21 functions which must
be passed without modification. They either never return,
fetch parameters from the stack, or may be Interrupted by a
TSRI

Functab arrayfO. .S6F] of byte=
(1,,,1,1,1,1, 1,1,1,1, 1,0,0,0, (0-C1

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,0,1, (26,2F}
0,1,1,1, 1,1,0,0, 0,0,0,0, 0,0,0,0, {31-35)

*0,0,0,0, 0,0,0,0, 1,1,1,1, 1,1,0,0, {48-4D}
1,1,1,1, 0,1,0,0, 1,0,0,0, 0,1,1,1, {50-53,

55, 58,5SD-SFI
1,11,1 1,,1,, 11,11,1,1,1,1); (60-621

IntrFlags byte =0; {Active interrupts flags)
INT13_on =04; (Disk interrupt is activel

*INT21_-on =08; (DOS Service router is active)
Status byte =0; [Status of current TSR activity)
Hotkeyon =01; (Received the HotKey}
Inuse =02; (TSR is active}
Foxs =$FF; {workaround for inline hex FF1
DosVersion byte =0; [Current Version of DOSI
WaitCount byte =0; (Wait to activate count)

-122-



UserProgram :integer = 0; {Offset to Users Program Code)
OurDSeg: integer = 0; {Turbo Data Segment Value }
OurSSeg: integer = 0; [Turbo Stack Segment Value I
DosDSeg: integer = 0; {Dos Datasegment value }
DosSSeg: integer = 0; {Dos Stack Segment Value }
DosSPtr: integer = 0; {Dos Stack pointer value I
DosSsiz: integer = 0; {Dos Stack size in words }
UsrDSeg: integer = 0; (Interrupted Datasegment Value)
UsrSSeg: integer = 0; {Interrupted Stack Segment

Value)
UsrSPtr: integer = 0; {Interrupted Stack pointer

Value I
OurPSP : integer = 0;

{ The following constants *MUST* remain in the IP:CS
order. StaySave uses them as JMP targets}

BIOSINT8 : vector = (IP:0;CS:0); (BIOS Timer Interrupt
Vector I

BIOS INT16 : vector = (IP:0;CS:0); {BIOS Keyboard
Interrupt Vector)

BIOSINTl3 : vector = (IP:0;CS:O); [BIOS Disk Interrupt
DOS_ =Vector }
DOSINT21 : vector = (IP:O;CS:O); {DOS Sevice Interrupt

Vector)

DOSINT28 : vector = (IP:O;CS:0); {DOS idle Service
interrupt Vector)

DOSStatl : vector = (IP:O;CS:0); {Pointer to INDOS
byte}

DOSStat2 : vector = (IP:O;CS:0); (Pointer to CRITICAL
byte)

Version :string[4] = '4.151; f Current Version number I
{NEEDED FOR SETTIME}

TIMERHI: INTEGER = 0; (used to set timer}
TIMERLO: INTEGER = 0; (used to set timer)

* TIMER_ON = 4; (timer mask bit)
FROMTIMER = 8; {timer mask bit)
TIMERTIME = 15; {check every 15 seconds)
{ f* CHANGE TIMERTIME TO THE VALUE (IN SECONDS) TO THE*****}
{** YOU WANT THE PROGRAM TO CHECK FOR TIME EXPIRATION ****}

-------------- V A R I A B L E S-----------------------
Var

Regs : regtype;
HalfRegs halfregtype absolute regs;
Keychr : char ;
Bytecount : integer;
SavedPSP integer; I Program Segment Prefix

pointers I
Error integer; 1 I/O results I

- 123 -



Good boolean; { I/0 results switch )
Terminate boolean; { Exit stayRes Flag )

OurDTA :Array [1. .2] of integer; {Local DTA pointer}
SavedDTA :Array 1. .2] of integer; {Interrupted DTA

pointer)
{NEEDED FOR REMIND PROGRAMI
HICLOCK: INTEGER ABSOLUTE $40 :$6E;
LOCLOCK: INTEGER ABSOLUTE $40 :$6C;
TICS : REAL;
times :arraytl. .MaxMsg] of string(51;
mesg :array(1. .Max~sg] of string(127];
said :array(1. .MaxMsg] of boolean;
line :string[127];
i,J,k :Integer;
chin :char;
punct :char;

W WIN DO0W RO0UT I N E
{-----------------------------------------------------------
{$I b:STAYWNDO.341}
{-----------------------------------------------------------

S ST AY E XI T}
{-----------------------------------------------------------
{$I b:STAYXIT.420}

----------------------------------------------------------I
[THE FOLLOWING ARE THE USER INCLUDE ROUTINES
----------------------------------------------------------------------I

[$I b:STAYSUBS.420}
{-----------------------------------------------------------

PROCEDURE SETTIME NEEDED TO INITIALIZE
{-----------------------------------------------------------

----------------------------------------------------------------------I
{ D o u b 1 e to R e a 1 number conversion

* function double-to_realCI,J : integer):real;
var temp :real;
begin

temp I; IF temp < 0 THEN temp temp + 65536.0;

temp :=temp * 65536.0;
IF J < 0 THEN temp :=temp + 65536.0 + J ELSE temp

double to real temp;
END;

-124-



---------------------------------------------------------
R Real1 t o D ou blIe number conversion

PROCEDURE Real -to -double(R :real; VAR I, J :integer);
var It, Jt :real;
begin

It Int(R/65536.0);
Jt R - It*65536.O;
IF It > Maxlnt THEN I trunc(It - 65536.0) ELSE

I:= trunc(It);
IF Jt > Maxlnt THEN J trunc(Jt - 65536.0) ELSE

J:= trunc(Jt);
END;

{ S e t T i m e Turn timer on
--------------------------------------------------------
PROCEDURE SetTimer(the _time :integer);
begin

tics double -to -real(HiClock, LoClock);
tics tics + the _time*18.206481934;

0 real _to-double~tics, timer-hi, timer 10);
Status :=status or Timer _On;

END;

PROCEDURE BeBeep; {makes a nice beep, beep sound)
VAR N :byte; {called before message is spoken)
begin

nosound;
FOR N :=1 to 3 do

begin
sound(800); delay(50);
sound(400); delay(50);

END;
nosound;

END;

procedure changetable; {allows user to change schedule
table)

label 10,out; {label 10 writes schedule and
begin label out gets out of changetable

*clrscr; {clear the screen)
10:for 1:= 1 to J do {JiIs number of table entries)

begin
Writeln('Entry #',1:2,' ',timesli],' ',mesg[i]);

[write table out)
end;

-125-



Writein; {skip a line}
Writeln('Correct? (Y/N)'); {ask If the

entries are correct}
Writein; (skip a linel
Repeat {read input until valid}

Read(kbd,chin); {do a fast readl
Until chin in ('y','Y',J'n't'N']; (the valid entries)
If chin in ('n','N'] then (take action if table is

not correct}
begin

writeln('Enter the number of the entry to change

writeln('enter FF:FF in an entry''s time field to
delete the entry or');

If j < MaxMsg then [if number of entries is less}
begin (than maximum availablel

writeln('enter ',j+1,' to add a new entry to
the table or');

end;
writeln( 'enter 0 to reaccomplish the entire table

or' ) ;
* writeln('enter 99 to return with no changes.');

repeat (see what the user wants}
readln(i); {get input}
if (i > j4-1) and (i <> 99) then
writeln('Value too high.');

{make sure user enters)
if I < 0 then wrlteln('Value too low.');

(a valid Input)
-~ until i in (0. .j4-l,991; [the valid entries)
*if i = 99 then (user doesn't want any}

begin (changes, go back to
relistl

i:=l;(reinitialize 1)
clrscr; {clear the screen}
goto 10; (go back to relist schedule)

end;
If I = 0 then goto out; {user wants to rebuild,

exit with i=O1
if i > j then j:=i; (wants to add an entry,

increase table size)
clrscr; (clear the screen)
gotoxy(15,l0); (set the cursor)

* Writeln('Time ',i,'? (hh:mm)'); (get new entry or
* change the old onel

gotoxy(15,12); (set the cursor)
Readln(tlmes[I]); (get the time)
gotoxy(15,14); (ask the user for the

message}
Writein('Message ',i,'? Punctuation required.');
gotoxy(15,16); (go to end of line)

-126-



Readln(mesg[i]); {read the message}
k:=length(mesg[i]) {check to make sure

punctuated}
line:=mesg[i]; [change to string}
if not (line(k] in (''' , ''']) then
begin [tell the user to add

go"2punctuation}
gotoxy(15•20) {set the cursor}
writeln('Punctuation (''.'', ''?'' ,or ''!'')

required. ');

delay(1500); {delay to let user read}
gotoxy(15,20); {reset the cursori
writeln( ' '

gotoxy(15+k,16); {reset the cursor at end}
readln(punct); {get punctuation}
mesg(i]:=mesg[i]+punct; {and add it to the

message }
end;

.'C said[i]:=false; {haven't said this yet}
-" ClrScr; {clear the screen}

goto 10; (go back, print the table,
• -and see if its correct nowl

out: (label to exit procedurel
end;

end; {procedure changetable}
.*** }

{ G E T D AT A

Procedure Getdata; {initializes table on
entry or if user wants to
reinitialize)

label go,10;

begin
go: {label to start getting data}
.i: =1; {initialize variables}

clrscr; {clear the screen}
gotoxy(10,3); {position the cursor}
writeln('Enter the time (hh:mm) then the message you wish

spoken.');
gotoxy(10,4); {position the cursorl
writeln('Time range is 00:00-23:59. Message is a maximum

,-4. of 127');
gotoxy(10,5); {position the cursor}
writeln('characters. ',MaxMsg,' different messages may

be entered.');
writeln; (skip a line}

- 127 -

..



for I:=1 to MaxMsg do {read in all message
entr les }

begin
gotoxy(15,lO); {time to get user inputl
Writeln('Time ',i,'? (hh:mm) Q to quit.');
gotoxy(15,12); {set the cursor)
Readln(times(il); {get time desired for

message I
If (timesti]='q') or (times(i]='Q') then

{see if user wants to quit}
begin

j:=i-1;{user wants to quit, set
up number of)

clrscr; (valid entries in J then
call change-1

goto 10; (table procedure to list
: ~: out the entriesl

-v end;
gotoxy(15,14); {get the desired message

nowl
Writeln('Message ',i,'? Punctuation required.');

0gotoxy(15,16); (read the user's input)
Readln(mesg( i]);
k:=length(mesgfi1); (check to see if

punctuated)
line:=mesg(il; (change to string}
if not (linefk] In '.'','1)then
begin (no punctuation, tell the

user)I
gotoxy(15,20); (position the cursor}
writeln('Punctuation 1'.', '1'1r

required.');
delay(1500); (give user time to read}
gotoxy(15,20); [set the cursor)
writeln( '

gotoxy(15±k,16); (set the cursor at the end)
readln(punct); (get the punctuation)
mesgli]:=mesg~l4punct; (and add it to the

* message)
end;

said[iJ:=false; (haven't said this yet}
ClrScr; (clear the screen)
j:=i; (entered max entries, so

can equal il
end;

*w10: changetable; (procedure changetable lists the
entr ies and let user changel

if i=0 then goto go; (if i=0 on return from
changetable, user wants to
reinitialize)

end; (procedure getdata}

-128-

04 4



- -- - - - - - - - - -- - -

{ NOW BEGINS THE REAL PROGRAM

{----------------------------------------------------------

{----------------------------------------------------------

PROCEDURE check;
type

twostr -String[2];

var
tirnestr Stringf5];
hrstr twostr;
mlnstr twostr;
buffer String[127];

Procedure gettime(var hrl,mnt:twostr);
* {gets the time in hour and min)

begin

tics:=double-to.-real(HiClock,LoClock)/18. 206481934;
[current time ticks)

str(trunc(tics/3600.0) MOD 24,hrl); {get hours)
str(trunc(tics/60) MOD 60, mnt); (get minutes}

end; {procedure gettime}

($I b:speak.inc} (voice interface procedure)

begin
While Keypressed DO read(Kbd,KeyChr); {clear any waiting

keys)I
IF (status AND timer-_on) = timer-_on THEN (If our timer is

ticking ..

begin
IF (status AND from-timer) = from-timer THEN (and the

timer f inished. .I
begin [then clear the

timer requestI
status := status and not (timer _on + from timer);
gettime(hrstr,minstr); (get the current

time);
if (hrstr(1]= ' then hrstr(11:='01; (change

blank to zerol
If (minstr(1J = 1) then minstr(1]:='0'; (change

* blank to zero}
timestr:=hrstr+':'+minstr; (concatenate hr

and mini
for i:= 1 to jdo (chec-k all entries

for a time matchl

-129-



beg In
if (t rI etr=t Irnes1] ) the n f(If t Ime matches- a

time I
beg in

if not said~i] then {did we tell the
user already?}

begin [no, tell the
user }

bebeep; fan attention
qetter I

speak~mesgtl,65,180); {say the
messagel

said~i]:=true; [set a flag that
we said the msgl

end; (if not saidl
end; {if Ctimestr .. I1

end; (for i:=l to j. .. .1
set-timer(timer_time); tissue another

time call}
end

else (user must have
entered ALT-F7}

begin
MkWin(1,1, 80, 25,bright4-cyan,black, 3);

(make a window}
gotoxy(10,12); (set the cursorl
writeln( 'Enter R to review/revise schedule or T

to terminate.');
repeat {get user input}

' read(kbd,chin); [do fast read}
until chin in ['r','R','t',J'T']; (valid inputs}
if chin in ('t','T']

then terminate:=true (user wants to cancel}
else (user wants to

review/revise table}
beg in

i:=l;(initialize i}
changetable; (user wants the

entriesl
if i=0 then getdata; [if i=0 is returned,

then user wants}
end; (to reinitialize the table!

R mWi n; (remove the window}
end; (if chin in ('t'...}

*end; tend else)
end; (procedure check}

I THE ABOVE ARE THE USER INCLUDE ROUTINES

-130-



S P R O C E S S I N T E R R U P T }
{ ---------------------------------------------------------}
i PURPOSE:

The following procedures displace standard

interrupts.

Do not put Variables or Constants in this Procedure.
It will cause registers to be clobbered during the
Interrupt routine when Turbo attempts to allocate storage
for local variables or parameters.}

PROCEDURE STAYINT16; {Keyboard Interrupt 16 Service
Routine}

{If anything but "OurHotKey" is pressed, the key is
passed to the standard keyboard service routine. B_U_T,
when Our HotKey is recognized, a hotkey bit is set.)
begin
{$I b:Stayil6.410}
End; {STAYINT16}

PROCEDURE STAYINT13; [BIOS Disk interrupt Routine)
begin [Sets a flag while disk is activel
($1 b:Stayil3.410}
End; {STAYINT13}

PROCEDURE STAYINT21; {DOS interrupt 21 Service Routine}
begin (Sets a flag while INT 21 is activel
{$I b:Stayi2l.4101
End; {STAYINT21}

PROCEDURE Stay_INT8; {Timer Interrupt 8 Service Routine)
{Activates Stayres during pgm execution}

begin {when safe to do so.}
[$I b:ClkI8.410}

{$I b:Stayi8.420}
End;{StayInt8}

0 PROCEDURE Stay_INT28; [Idle Interrupt 28 Service Routine}
begin {Unvokes Stayres from the DOS prompt)
{$I b:Stayi28.410} {and allows background activity to I
End;{Stay_Int28} (continuel

PROCEDURE StaySave; {Prolog to Resident Turbo Code}
begin
{$I b:StaySave.420}

GetDTA(SavedDTA[1],SavedDTA[2]); (Save callers DTA
addressf

- 131 -

-. 'Y



GetPSP(SavedPSP); {Save callers PSP

.'.' 4'Segment }
SetPSP(OurPSP); (Set our 252 Segrnent}

SetDTA(OurDTA[l],OurDTA[2]); (Set our DTA address}

4..NewCtlc[2] : CSeg;
NewCtlc(1] :=Ofs(IRET);

GetCtlC(SavedCtlc); SetCtlC(NewCtlc);{Get/Save the users
Ctrl-C vector}

INT24On; (Trap Dos Critical
Errors }

------------------------------------------------------------------}
{ INVOKE USER PROCEDURE HERE

---------------------------------------------------}

begin
KeyChr #0; {Clear any residual
check; [go execute the program}

0 end;

---------------------------------------------------}
{ END USER PROCEDURE HERE}

I. {----------------------------------------------------

SetPSP(SavedPSP); {Restore Callers PSP
Segment)

SetDTA(SavedDTA[l],SavedDTA(2fl;{ Restore the users DTA}

SetCtlC(SavedCtlC); i Restore the users Ctrl-C
Vector }

INT24Off; (Remove Our Critical
Error routine I

If (Terminate = true) then Stay Xlt;( If exit key,
restore Int VectorsI

---------------------------------------------------------
{BEGINNING OF THE STAYRSTR ROUTINE

-------------------------------------------------------------------- I
{$I b:Stayrstr.420} RETURN TO CALLER

{ END OF THE STAYRSTR ROUTINE
--------------------------------------------------------------- J

End ;{StaySave}

1% 4 % 

1 3 2 -

del.



{M A I N }

{ The main program installs the new interrupt routine }
[ { and makes it permanently resident as the keyboard }
{ interrupt. The old keyboard interrupt Vector is I
{ stored in Variables , so they can be used in Far I

A>'. { Calls. }

i The following dos calls are used: I
{ Function 25 - Install interrupt address }

v { input al = int number, }
{ ds:dx = address to install }
{Function 35 -get interrupt address }

{ input al = int number }
{ output es:bx = address in interrupt I
{ Function 31- terminate and stay resident }
{ input dx = size of resident program I
{ obtained from the memory

N { allocation block at (Cs:0 - $10 + 3] 1
{ Function 49 -Free Allocated Memory I

{ input Es = Block Segment to free I
--------------------------------------------------------

begin {**main**l

OurDseg:= Dseg; { Save the Data Segment Address for
Interrupts I

OurSseg:= Sseg; { Save our Stack Segment for
Interrupts

GetPSP(OurPSP); { Local PSP Segment }

GetDTA(OurDTA[1],OurDTA[2]); { Record our DTA address I

-. UserProgram:=Ofs(Staysave); {Set target of call
A. instruction}

Regs.Ax $3000 {Obtain the DOS Version
number}

Intr(DosI21,Regs);
DosVersion := Halfregs.Al; { 0=1+, 2=2.0+, 3=3.0+ }

[Obtain the DOS Indos status locationl
-P Regs.Ax := $3400;

* O Intr(DosI21,Regs);
DosStatl.IP := Regs.BX;
DosStatl.CS := Regs.ES;
DosStat2.CS := Regs.ES;
DosSSeg := Regs.ES;

-133--.

A.,



Bytecount 0; (Search for CMP (critical flag],00
instruction I

While (Bytecount < $2000)
( then Mov SP,stackaddr instruction I

and (Memw(DosStat2.CS:Bytecount] <> $3E80)
do Bytecount :=Succ(Bytecount);

If Bytecount = $2000 then begin {Couldn't find
critical flag addr

Writeln('StayRes incompatiblity with operating
System');

Writeln('StayRes will not install
correctly. .Halting');

Halt; end;

(Search for the DOS Critical Status Byte address.
I Bytecount contains offset from DosStatl.CS of the I

{ CMP [critical flag],00
JNZ ....

{ Mov SP,indos stack address}

If MemtDosStat2.CS:Bytecount-7] = $BC (MOV SP,xxxx}
then begin
DosStat2.IP :=Memw[DosStat2.CS:Bytecount+2];

DosSptr MemwfDosStat2.CS:bytecount+81;
{INDOS Stack address}

END
else begin

writeln('Cannot Find Dos Critical byte... .Please
Reboot. ');

Halt;
end;

Inline($FA); {Disable interrupts}

(Setup Our Interrupt Service Routines I

p SetupInterrupt(BIOSI16, BIOS_Intl6, Ofs(StayINTl6) );
{keyboard I

0 SetupInterrupt(BI0518, BIOSInt8, Ofs(StayINT8));
(timer I

SetupInterrupt(BIOSI13, BIOS_Intl3, Of5(StayINTl3));

V, {disk I
SetupInterrupt(D05121, DOSInt2l, Ofs(StayINT21));

(DOSfunction I
SetupInterrupt(D05128, DOSInt28, Ofs(StayINT28));

{DOS idlel

Inline($FB); (Re-enable interruptsl

-134-



, { INITIALIZE YOUR PROGRAM HERE }
{ ---------------------------------------------------------

{ Initialize Program Here since we will not get control
*' again.}

Terminate false; {Clear the program exit flags }
MkWin(l,l,80,25,bright+cyan,black,3); {make a window}
clrscr;
getdata; {set up initial times and msgs}
RmWin;
writeln;

writeln('*** Remind System is now resident.
writeln('*** Enter ALT-F7 to review/revise schedule ***');
writeln( *** or terminate program.

settimer(timer_time); (start the timeri

{ END OF INITALIZE PROGRAM CODE }

S{-----------------------------------------------
{ Now terminate and stay resident. The following Call
utilizes the DOS Terminate & Stay Resident function. We
get the amount of memory by fetching the memory allocation
paragraphs from the Memory Control Block. This was set by
Turbo initialization during Int 21/function 4A (shrink
block), calculated from the minimum and mAximum options
menu. The MCB sits one paragraph above the PSP.}

{ Pass return code of zero }
. Regs.Ax $3100 ; { Terminate and Stay Resident I

Regs.Dx MemW [Cseg-1:0003]+l ; { ProgSize from
Allocation Blk}

Intr (DosI21,Regs);

{ END OF RESIDENCY CODE }
end.

Files that are included in the above program are listed
below. The procedure SPEAK.INC can be found in the IBM
Text-to-Speech Interface for the IBM Voice Communications

.- Adapter, Talbot, Summer 1987.

- 135 -

w,%"2

.," ." 4" •,..",,' | . " ',w" ." " ," • ... w , . 2 . ."- . .-- . ,. . '.'. '.. . . . .- w " .,% % ,



{S T A Y W N D . 3 4 1 }
{ ". ..but I dont do floors !" }{****************************************** ****************

{ Kloned and Kludged by Lane Ferris }
': { -- The Hunters Helper -- }

. Original Copyright 1984 by Michael A. Covington I
* { Modifications by Lynn Canning 9/25/85 }

{ 1) Foreground and Background colors added. }
{ Monochrome monitors are automatically set }
- to white on black. I
{ 2) Multiple borders added. }
. 3) TimeDelay procedure added. }
{ Requirements: IBM PC or close compatible. }

--------------------------------------------------------
{ To make a window on the screen, call the procedurel

{MkWin(xl,yl,x2,y2,FG,BG,BD);
{ The x and y coordinates define the window placement and
are the same as the Turbo Pascal Window coordinates. The
border parameters (BD) are 0 = No border 1 = Single line
border 2 = Double line border 3 = Double Top/Bottom
Single sides I

The foreground (FG) and background (BG) parameters are the
same values as the corresponding Turbo Pascal values.}

{ The maximum number of windows open at one time is set at
five see MaxWin=5). This may be set to greater values if
necessary.)

{ After the window is made, you must write the text desired
from the calling program. Note that the usable text area
is actually 1 position smaller than the window coordinates
to allow for the border. Hence, a window defined as
1,1,80,25 would actually be 2,2,79,24 after the border is
created. When writing to the window in your calling
program, the textcolor and backgroundcolor may be changed
as desired by using the standard Turbo Pascal

commands. }

{ To return to the previous screen or window, call the
procedure RmWin; I

{ The TimeDelay procedure is invoked from your calling
program. It is similar to the Turbo Pascal DELAY except
DELAY is based on clock speed whereas TimeDelay is based on
the actual clock. This means that the delay will be the
same duration on all systems no matter what the clock
speed. The procedure could be used for an error condition
as follows:

- 136 -

p.



.. . . . .

I MkWin - make an error message window
I Writein - write error message to window

I TimeDelay(5) - leave window on screen 5 seconds I
I RmWin - remove error window

I continue processing
----------------------------------------------------

Const

InitDone :boolean = false ; i Initialization switch)

On = True;
Off = False;
VideoEnable = $08; { Video Signal Enable Bit I
Bright =8; { Bright Text bitl
Mono = 7; {MonoChrome Model

Type
Imagetype = array (1. .4000] of char; IScreen Image

WinDimtype = record i h ep
0 xl,yl,x2,y2: integer

end;

Screens =record {Save Screen Information}
Image: Imagetype; ISaved screen Image I
Dim: WinDimtype; ISaved Window

Dimensions I
.4.x'y: integer;{ Saved cursor position I
P end;

Var

Win: IGlobal variable packageI
record

Dim: WinDimtype; {Current Window Dimensions
Depth: integer;

* f MaxWin should be Included in your program
{and it should be the number of windows
saved at one timeI

{It should be in the const section of your program
Stack: array(1..MaxWinJ of ^Screens;

end;

Crtmode :byte absolute $0040:$0049;
{Crt Mode,Mono,Color,B&W..}

Crtwidth :byte absolute $0040:$004A;
{Crt Mode Width, 40:801

Monobuffer :Imagetype absolute SBOOO:$0000;
{Monochrome Adapter Memoryl

-137-

4n '. .4 ,4 , '- P 1



Colorbuffer :Initacetype abeolute $B800:$0000;
[Color Adapter Meniory}

CrtAdapter :integer absolute $0040:$0063;
( Current Display Adapter I

VideoMode :byte absolute $0040:$0065;
f(Video Port Mode byte

*TurboCrtMode: byte absolute Dseg:6;
{Turbo's Crt Mode byte I

VideoBuffer:integer; {Record the current Videol
Delta,
x.-y :integer;

(---------------------------------------------------------I
{ Delay for X seconds

procedure TimeDelay (hold :integer);
type
RegRec f The data to pass to DOS

record
AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags :Integer;

end;
var

regs regrec;
ah, al, ch, cl, dh:byte;
sec :string[2J;
result, secn, error, secn2, diff :integer;

begin
ah := $2c; {Get Time-Of-Day from DOSI
with regs do (Will give back Ch:hours I

{Cl:minutes,Dh:seconds
ax :=ah shi 8 + al; {Dl:hundredsI

intr ($21, regs);

with regs do
str(dx shr 8:2, sec); (Get secondsI

A".. (with leading nuilll
* if (secil] 1 ) then

sec[1]:= '0';
val(sec, secn, error); (Conver seconds to integer}
repeat { stay in this loop until the timel

ah := $2c; (has expired 1
with regs do

ax := ah shi 8 +4 al;
7.;intr(S21,regs); (Get current time-of-dayl

with regs do (Normalize to Chari
str(dx shr 8:2, sec);

if (sec(l] '' then
sec[l):= '0';

-138-

L KA-;1 ----



val(sec, secn2, error); {Convert seconds to integer}
diff := secn2 - secn; {Number of elapsed seconds}
if diff < 0 then { we just went over the minute }

diff := diff + 60; 1 so add 60 seconds }
ft." until diff > hold; { has our time expired yet }

end; { procedure TimeDelay I

-------------------------------------------------------
{ Get Absolute postion of Cursor into parameters x,y }

" Procedure GetAbsCursor (var x,y :integer);
Var

Active-Page byte absolute $0040:$0062;
{ Current Video Page Index}

CrtPages array[0..7] of integer absolute $0040:$0050 ;

Begin
X CrtPages[activepage]; {Get Cursor Position }
Y : Hi(X)+1; { Y get Row}
X Lo(X)+I; { X gets Col position}

- End;

{-----------------------------------------------------------I
I Turn the Video On/Off to avoid Read/Write snow
{-----------------------------------------------------------
Procedure Video (Switch:boolean);

Begin
If (Switch = Off) then
Port(CrtAdapter+4] := (VideoMode - VideoEnable)
else Port(CrtAdapter+4] := (VideoMode or

VideoEnable);

-"f End;

-------------------------------------------------------
InitWin Saves the Current (whole) Screen }

ft~fft*I------------------------------------------------------------I

Procedure InitWin;
f'- { Records Initial Window Dimensions I

Begin
with Win.Dim do

begin xl:=l; yl:=l; x2:=crtwidth; y2:=25 end;
Win. Depth:=0;
InitDone := True ; { Show initialization Done I

end;
---------------------------------------------------------

* { BoxWin Draws a Box around the current Window

procedure BoxWin(xl,yl,x2,y2, BD, FG, BG :integer);

{Draws a box, fills it with blanks, and makes it the
current Window. Dimensions given are for the box; actual
Window Is one unit smaller In each direction. I

-. 139 -

-"'9;

0'.

f*.-.-. .-..-.. .. -.,'% V_ ,' . . ,.. ,,." ,,.W .~'.. . . . . . '. . . -. - -f-t-. .
-

.. - t-ft-'. - " ,..-.



TB,SID,TLC,TRC,BLC,BRC :integer;

begin
if Crtmode = Mono then begin
FG := 7;
BG 0;
end;

Window(xl,yl,x2,y2); {Make the Window}
TextColor(FG) ; [Set the colors}
TextBackground (BG);
Case BD of (Make Border characters}

0:; (No border option}
1:begin {Single line border option}

TB := 196; [Top Border}
SID : 179; {Side Border}

TLC := 218; (Top Left Corner}
TRC 191; {Top Right Corner}
BLC := 192; (Bottom Left Corner}
BRC := 217; {Bottom Right Corner}
end;

2:begin (Double line border option}
TB := 205;
SID := 186;
TLC := 201; TRC := 187;
BLC := 200; BRC := 188;

* - end;
3:begin {Double Top/Bottom with single sides}
TB := 205; {'deary and dont spare the lace"}
SID := 179;
TLC := 213; TRC := 184;
BLC := 212; BRC := 190;
end;

End; {Case}

IF BD > 0 then begin I User want a border? }

I Top I
* gotoxy(l,l); { Window Origin

Write( chr(TLC) ); { Top Left Corner I
For I:=2 to x2-xl do { Top Bar

Write( chr(TB));
Write( chr(TRC) ); { Top Right Corner I

{ Sides I
for I:=2 to y2-yl do begin

gotoxy(l,I); f Left Side Bar }
.P-'. write( chr(SID) );

gotoxy(x2-xl+l,I) ; { Right Side Bar I
write( chr(SID) );

end;

- 140 -

4 C ...



I Bottom I
gotoxy(l,y2-yl+l); I Bottom Left Corner
write( chr(BLC) );
for I:=2 to x2-xl do {Bottom Bar

write( chr(TB) )

{Make it the current Window I
Window( xl+l,yl1, x2-1, y2-1);
write( chr(3RC) );{Bottom Right Corner

end; {If BD > 0);

gotoxy(1,1);
TextColor( FG) ;{Take Low nibble 0.-15

v TextBackground (BC); f Take High nibble 0. .9 1
ClrScr;

end;
I----------------------------------------------------------
IMkWin Make a Window
I----------------------------------------------------------
procedure MkWin(xl,yl,x2,y2, FG, BG, BD :integer);

I Create a removable Window

begin

If (InitDone =false) then { Initialize if not done yet I
InitWin;

TurboCrtMode :=CrtMode; {Set Textmode w/o ClrScr}
If CrtMode = 7 then VideoBuffer :=H$OQO [Set Ptr to

Monobuffer I
else VideoBuffer := $B800; [or Color Buffer I

with Win do Depth:=Depth+1; IIncrement Stack pointer I
If Wln.Depth>maxWin then

begin
writeln('G,' Windows nested too deep )
halt

end;
-- - - - - - - - - - - - - - - - - -

-' ISave contents of screen I
---------------------------------------

With Win do
Begin
New(StackfDepthl); IAllocate Current Screen to Heap
Video( Off);
If CrtMode = 7 then
Stack(DepthV^.Image monobuffer {set pointer to it I
else
Stack[DepthV-.Image colorbuffer
Video( On);
End

-141-

@4



with win do
Begin {Save Screen Dirnentions}
Stack[DepthlP.Dim :=Dim;
Stack(Win.DepthP-.x wherex;{ Save Cursor Position)
Stack(Win.DepthV-.y wherey;
End ;

{Validate the Window Placement)
If (X2 > 80) then {If off right of screen}

begin
Delta :=CX2 - 80); (overflow off right margin)
If X1 > Delta then

X1l: X1 - Delta ;{Move Left window edge I
X2 := X2 - Delta { Move Right edge on 80
end;

If (Y2 > 25) then {If off bottom screen
begin
Delta :=Y2 - 25; { Overflow off right marginI
If Y1 > Delta then

Y1l: Y1 - Delta ;{Move Top edge up}
Y2 :=Y2 - Delta ;{Move Bottom 24 1

end;
(Create the New Window

BoxWin(xl,yl,x2,y2,BD,FG,BG);
If BD >0 then begin [Shrink window within borders)

*Win.Dim.xl xl+l;
Win.Dim.yl y1+1; (Allow for margins
Win.Dim.x2 x2-1;
Win.Dim.y2 y2-1;

9 end;
end;

9 (--------------------------------------------------------------I
{Remove Window I

(------------------------------------------------------------
{ Remove the most recently created removable window I
{ Restore screen contents, Window Dimensions, and
( position of cursor. I

N Procedure RmWin;
Var

IL ~Tempbyte :byte;

Begin
Vldeo(Off);
With Win do

Begin (Restore next Screen
.4 If crtmode -7 then

monobuffer Stack[DepthV . Image
else
colorbuffer Stack[DepthP.Image;
Dispose(Stack[Depth]); {Remove Screen from Heap
end;

* - 142 -



Video (On)

With Win do I Re-instate the Sub-Window }
Begin [ Position the old cursor }

Dim := Stack[Depth]^.Dim;
Window(Dim.xl,Dim.yl,Dim.x2,Dim.y2);

gotoxy(Stack[Depth]^.x, Stack[Depth]^.y);
end;

GetAbsCursor(x,y) ; {New Cursor Position I
Tempbyte { Get old Cursor attributes}

Mem[ Video _Buffer:((x-1 + (y-l) * 80 ) * 2)+l ];

TextColor( Tempbyte And $OF );{ Take Low nibble 0..151

TextBackground ( Tempbyte Div 16); { Take High nibble

0..91
Depth := Depth - 1

end;
end;
---------------------------------------------------------' { **********************************************************

S T A Y X I T 4 2 0
i'-I ******************************************************** *

-------------------------------------------------------
{Stay_Xit Check Terminate Keys I

[ Clean up the Program ,Free the Environment block, the
program segment memory and return to Dos. Programs using
this routine ,must be the last program in memory, else ,a
hole will be left causing Dos to take off for
Peoria.

--------------------------------------------------------
Procedure StayXit;
[

This code reinstates those interrupts that will not
be restored by DOS Interrupts 22,23,24 (hex) are restored
from the Current PSP during termination.)
VAR

* PSPvector22: vector absolute Cseg:$OA;
PSPvector23: vector absolute Cseg:$OE;
PSPvector24: vector absolute Cseg:$12;

DOSvector22: vector absolute 0:$88;
DOSvector23: vector absolute 0:$8C;

* DOSvector24: vector absolute 0:$90;

N Begin [ Block
wr iteln;
Writeln ('Remind program Terminated')
WRITELN;
WRITELN ('Enter <CR> to continue');

- 143 -



I n1 mne ($FA); fDisable lnterrupts}

I Restore Disk Interrupt Service RoutineI

Regs.Ax $2500 + BI05113;
Regs.Ds BIOSINT13.CS;
Regs.Dx BIOS_INT13.IP;
Intr ($21,Regs);

I Restore Keyboard Interrupt Service Routine

Regs.Ax $2500 + B105116;
Regs.Ds BIOSENT16.CS;
Regs.Dx BIOS_-INT16.IP;
Intr ($21,Regs);

I Restore Timer Interrupt Service Routine}

Regs.Ax $2500 + BIOSIB;
Regs.Ds BIOSINT8.CS;
Regs.Dx BIOS_INT8.IP;
Intr ($21,Regs);

IRestore DOS 21 Interrupt Service RoutineI

Regs.Ax $2500 + DOSI2l;
Regs.Ds DOS-INT21.CS;
Regs.Dx DOSINT21.IP;
Intr ($21,Regs);

{Restore DOS 28 Interrupt Service Routine

Regs.Ax $2500 + D05128;
Regs.Ds DOS_1NT28.CS;
Regs.Dx DOSJINT28.IP;
Intr C$21,Regs);

IMove Interrupt Vectors 22,23,24 to our PSP from where
* DOS will restore I

PSPvector22 DOSvector22; {Terminate vectorI
PSPvector23 DOSvector23; { Cntrl-C vector I
PSPvector24 DOSvector24; { Critical vector

Inline($FB); [Re-enable interruptsl

Regs.Ax $49 shi 8 + 0 ;IFree Allocated Block
functionl

Regs.Es MemW(Cseq:S2C]; IFree environment
block

MsDos( Regs

-144-



' Regs.Ax $49 shl 8 + 0; { Free Allocated Block
function)

Regs.Es Cseg ; { Free Program}
MsDos( Regs ) ;

End { StayXit };

SS T AY S U B S 420 }
{ ***~**A~ ******* **************** }
(-----------------------------------------------------
{ SETUP I N TER R UP T

--------------------------------------------------
Msg # *48 Dated 07-07-86 16:54:36
From: NEIL RUBENKING
To: LANE FERRIS
Re: STAY, WON'T YOU?

Lane,
Here's what I did:

PROCEDURE Setup_Interrupt(IntNo :byte; VAR IntVec
, :vector; offset :integer);

BEGIN
Regs.Ax := $3500 + IntNo;
Intr(DosI21,Regs); (get the address of interrupt I
IntVec.IP := Regs.BX; I Location of Interrupt Ip I
IntVec.CS := Regs.Es; [ Location of Interrupt Cs }

-. *~ Regs.Ax := $2500 + IntNo; { set the interrupt to point
to our procedure}

Regs.Ds := Cseg;
Regs.Dx := Offset;
Intr (Dos121,Regs);

END;
(********C 0 M M E N T *

[in the main part of the programl
SetupInterrupt(BIOSIl6, BIOSIntl6, Ofs(Stay_INTl6));
{keyboardl

* Setup_Interrupt(BIOSI10, BIOSIntlO, Ofs(StayINTl0));
(video I

Setup_Interrupt(BIOSI8, BIOS_Int8, Ofs(Stay_INT8));
{timer}

Setup_Interrupt(BIOSI13, BIOS_Intl3, Ofs(Stay_INTl3));
{diskl

Setup_Interrupt(DOSI21, DOS_Int2l, Ofs(Stay_INT21));
{DOSfunctionl

Setup_Interrupt(DOSI28, DOS_Int28, Ofs(Stay_INT28));
(DOS idle}

******C 0 M M E N T *******************)

0? - 145 -



S E T D T A
{ ---------------------------------------------------------

Procedure SetDTA(var segment, offset : integer );
BEGIN

'.regs.ax $1A;{ Function used to get current DTA
address)

regs.Ds segment; { Segment of DTA returned by
DOS I

regs.Dx offset; { Offset of DTA returned }
MSDos( regs ); { Execute MSDos function request I

END;
-----------------------------------------------------

G E T D TA }
{ --------------------------------------------------

Procedure GetDTA(var segment, offset : integer );
BEGIN

regs.ax := $2F00; { Function used to get current
. DTA address I

MSDos( regs ); { Execute MSDos function
request I

0 segment := regs.ES; { Segment of DTA returned by
DOS

offset regs.Bx; { Offset of DTA returned }
END;

S E T P S P
--------------------------------------------------

Procedure SetPSP(var segment : integer );
BEGIN

{ A bug in DOS 2.0, 2.1, causes DOS to clobber its
standard stack when the PSP get/set functions are issued at
the DOS prompt. The following checks are made, forcing DOS
to use the "critical" stack when the TSR enters at the
INDOS level.)

,. {If Version less then 3.0 and INDOS set I
If DosVersion < 3 then {then set the Dos Critical Flag}

If Mem(DosStatl.CS:DosStatl.IP] <> 0 then
7- Mem[DosStat2.CS:DosStat2.IP] := $FF;

regs.ax := $5000; { Function to set current PSP address }

regs.bx := segment; I Segment of PSP to be used by DOS I
MSDos( regs ); { Execute MSDos function request I
[If Version less then 3.0 and INDOS set I

0: If DosVersion < 3 then {then clear the Dos Critical Flag I
If Mem(DosStatl.CS:DosStatl.IP] <> 0 then

Mem[DosStat2.CS:DosStat2.IP] $00;
END;

- 146 -

04

,p ,



I

{-------------------------------------- ------ I
S( G E T P S P
S--------------------------------------------------

Procedure GetPSP(var segment : integer );
BEGIN

{ A bug in DOS 2.0, 2.1, causes DOS to clobber its
standard stack when the PSP get/set functions are issued at
the DOS prompt. The following checks are made, forcing DOS
to use the "critical" stack when the TSR enters at the
INDOS level. I

{If Version less then 3.0 and INDOS set }
If DosVersion < 3 then { then set the Dos Critical Flag}

If Mem[DosStatl.CS:DosStatl.IP] <> 0 then
Mem(DosStat2.CS:DosStat2.IP] := $FF;

regs.ax := $5100;{Function to get current PSP address }
MSDos( regs ); { Execute MSDos function request I
segment := regs.Bx; { Segment of PSP returned by DOS }

{IF DOS Version less then 3.0 and INDOS set }
If DosVersion < 3 then {then clear the Dos Critical Flag I

If Mem[DosStatl.CS:DosStatl.IP] <> 0 then
Mem[DosStat2.CS:DosStat2.IP] := $00;

END;
{-------------------------------------------------------I
I G e t C o n t r o 1 C (break) V e c t o r
I-------------------------------------------------------I

Type
Arrayparam = array (1..2] of integer;

Const
SavedCtlC: arrayparam = (0,0);
NewCtlC : arrayparam = (0,0);

Procedure GetCtlC(Var SavedCtlC:arrayparam);
Begin [Record the Current Ctrl-C Vectorl

With Regs Do
Begin
AX:=$3523;
MsDos(Regs);

* SavedCtlC[l]:=BX;
SavedCtlC[2]:=ES;
End;

End;

.0{}
S e t C o n t r o 1 C Ve c t o r
-------------------------------------------------

Procedure IRET; {Dummy Ctrl-C routine}
* Begin

inline($5D/$5D/$CF); {Pop Bp/Pop Bp/Iret}
end;

- 147 -

a"

4"



Procedure SetCtlC(Var CtlCptr:arrayparam);
Begin {Set the New Ctrl-C Vector}

With Regs Do
Beg' r,
AX: =$2523;

-[. DS :=CtlCptr [ 2];
DX:=CtlCptr ( 1];
MsDos(Regs);

End;

End;
S{ ------------------------------------------------------

{ K e y i n : R e a d K e a b o a r d I
.-- { ------------------------------------------------------

Function Keyin: char; { Get a key from the Keyboard
Var Ch : char; { If extended key, fold above 127}
Begin { ------------------------------- I

Repeat until Keypressed;

Read(Kbd,Ch);
if (Ch = Esc) and KeyPressed then

Begin
Read(Kbd,Ch);
Ch := Char(Ord(Ch) + 127);
End;

Keyin := Ch;
End; {Keyinl

,J.J {-------------------------------------------------------------I
{B e e p : S o u n d t h e H o r n
{------------------------------------------------------------ I

- Procedure Beep(N :integer); { }----------------------------I
Begin { This routine sounds a tone of frequency I

Sound(n); { N for approximately 100 ms I
Delay(100); {-----------------------------
Sound(n div 2);

-4 Delay(100);
Nosound;
End {Beep} ;

S {---------------------------------------------------
I N T E R R U P T 24

{-------------------------------------------------
{ Version 2.0, 1/28/86

- Bela Lubkin
CompuServe 76703,3015

Apologetically mangled by Lane Ferris

"-'- For MS-DOS version 2.0 or greater, Turbo Pascal 1.0 or
greater.

Thanks to Marshall Brain for the original idea for these
routines. Thanks to John Cooper for pointing out a small

-148-

-. ~ ,02



flaw in the code. These routines provide a method for
Turbo Pascal programs to trap MS-DOS interrupt 24 (hex).
INT 24h is called by DOS when a 'critical error' occurs,
and it normally prints the familiar "Abort, Retry,
Ignore?" message.

With the INT 24h handler installed, errors of ti-is type
will be passed on to Turbo Pascal as an error. If I/O
checking is on, this will cause a program crash. If I/O
checking is off, IOResult will return an error code. The

, global variable INT24Err will be true if an INT 24h error
has occurred. The variable INT24ErrorCode will contain the
INT 24h error code as given by DOS. These errors can be
found in the DOS Technical Reference Manual.

It is intended that INT24Result be used in place of
IOResult. Calling INT24Result clears IOResult. The simple
way to use INT24Result is just to check that it returns
zero, and if not, handle all errors the same. The more

* complicated way is to interpret the code. The integer
returned by INT24Result can be looked at as two bytes. By

0 assigning INT24Result to a variable, you can then examine
the two bytes: (Hi(<variable>)-1) will give the DOS

critical error code, or (<variable> And $FFOO) will return
an integer from the table listed in the INT24Result
procedure (two ways of looking at the critical error);
Lo(<variable>) will give Turbo's IOResult. A critical
error will always be reflected in INT24Result, but the
IOResult part of INT24Result will not necessarily be
nonzero; in particular, unsuccessful writes to character
devices will not register as a Turbo I/O error.

INT24Result should be called after any operation which
might cause a critical error, if Turbo's I/O checking is
disabled. If it Is enabled, the program will be aborted
except in the above noted case of writes to character
devices.

* Also note that different versions of DOS and the BIOS
seem to react to printer errors at vastly different rates.
Be prepared to wait a while for anything to happen (in an
error situation) on some machines. These routines are
known to work correctly with:
Turbo Pascal 1OOB PC-
DOS; Turbo
Pascal 2.OOB PC-DOS; Turbo Pascal 2.OOB MS-
DOS;
Turbo Pascal 3.01A PC-DOS. Other MS-DOS and PC-DOS
versions should work.

Note that Turbo 2.0's normal IOResult codes for MS-DOS DO

- 149 -

.'°

°o" ..



NOT correspond to the I/O error numbers given in Appendix
I of the Turbo 2.0 manual, or to the error codes given in
the I/O error nn, PC=aaaa/Program aborted message. Turbo
3.0 IOResult codes do match the manual. Here is a table
of the correspondence (all numbers in hexadecimal): Turbo
2.0 IOResult Turbo error, Turbo 3.0 IOResult-------------

00 00 none
01 90 record length mismatch
02 01 file does not exist
03 F1 directory is full

.. 04 FF file disappeared
- 05 02 file not open for input

06 03 file not open for output
07 99 unexpected end of file
08 FO disk write error
09 10 error in numeric format
OA 99 unexpected end of file
OB F2 file size overflow
0C 99 unexpected end of file
OD FO disk write error
OE 91 seek beyond end of file
OF 04 file not open
10 20 operation not allowed on a

logical device
11 21 not allowed in direct mode
12 22 assign to standard files is not

allowed
-- F3 Too many open files

- Bela Lubkin
CompuServe 76703,3015 1/28/86}

Const
INT24Err: Boolean=False;
INT24ErrCode: Byte=0;
OldINT24: Array (1..2] Of Integer=(0,0);

h Var

RegisterSet: Record Case Integer Of
1: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags:

Integer);
2: (AL,AH,BL,BH,CL,CH,DL,DH: Byte);

End;

Procedure INT24; { Interrupt 24 Service Routine }
Begin

Inline( $2E/$C6/$06/ Int24Err
$Ol/$50/$89/$F8/$2E/$A2/ Int24ErrCode

/$58/$BO/$OO/$89/$EC/$5D/$CF);

- 150 -

i..r 
-

l. ..



{ Turbo: PUSH BP save caller's stack frame
MOV BP,SP Set up this procedure's stack

frame
PUSH BP ?

Inline:
MOV BYTE CS:[INT24Err],I Set INT24Err to

True
PUSH AX
MOV AX,DI Get INT 25h error code
MOV CS:[INT24ErrCode],AL Save it in

INT24ErrCode
POP AX
MOV AL,O Tell DOS to ignore the error
MOV SP,BP Unwind stack frame
POP BP
IRET Let DOS handle it from here

.. End;

---------------------------------------------------I
{I N T 24 ON }

S{ ------------------------------------------------
{ Grab the Critical error ptr from the previous user}

Procedure INT24On; { Enable INT 24h trapping }
Begin

INT24Err : =False;
With RegisterSet Do
Begin
AX: =$3524;
MsDos(RegisterSet);
If (OldINT24(l] Or OldINT24[2])=O Then
Begin
OldINT24[11 :=ES;
OldINT242 ] :=BX;

End;
DS: =CSeg;
DX: =Ofs ( INT24);
AX: =$2524;

* MsDos(RegisterSet);
End;

End;

I N T 2 4 OF F }
I-----------------------------------------------------

{Give Critical Error Service pointer back to previous user}
Procedure INT24Off;

- 151 -,a.

0..

,''v.,-a'°" - . ..o.. .,< , . 3 " " " "v "'""-,-""" '-"-,, . . , .-' ' .'" 'v ", ,-".,".," "



Begin
INT24Err:=False;
If OldINT24[Il<>O Then
With RegisterSet Do
Begin
DS:=OldINT24(1];
DX:=OldINT24 21;
AX:=$2524;
MsDos(RegisterSet);

End;
OldINT24[I]:=0;
OldINT24[2]:=0;

End;

Function INT24Result: Integer;
Var

I:Integer;

Begin
I:=IOResult;
If INT24Err Then
Begin
I:=I+256*Succ(INT24ErrCode);
INT24On;

End;
INT24Result:=I;

End;

{ INT24Result returns all the regular Turbo IOResult codes
if no critical error has occurred. If a critical error,
then the following values are added to the error code from
Turbo:

256: Attempt to write on write protected disk
512: Unknown unit (internal dos error]
768: Drive not ready [drive door open or

bad drive]
1024: Unknown command (internal dos error]
1280: Data error (CRC) [bad sector or drive]
1536: Bad request structure length (internal dos error]
1792: Seek error [bad disk or drive]
2048: Unknown media type (bad disk or drive]
2304: Sector not found [bad disk or drive]
2560: Printer out of paper (anything that the

printer might signal]
* 2816: Write fault (character device not

ready]
3072: Read fault (character device not

ready]
3328: General failure (several meanings]

If you need the IOResult part, use
I:=INT24Result and 255; [masks out the INT 24h code]

- 152 -

0%': . -. - . ., . . , - . * - . , - - - - , . . , . % . . . , . ,



For the INT 24h code, use
I:=INT24Result Shr 8; [same as Div 256, except faster)

INT24Result clears both error codes, so you must assign
it to a variable if you want to extract both codes:

J :=INT24Result;
WriteLn('Turbo IOResult ',J And 255);
WriteLn('DOS INT 24h code ='J Shr 8);

Note that in most cases, errors on character devices (LST
and AUX) will not return an IOResult, only an INT 24h

4. error code. I
{Main program. Delete next line to enable}

------------------------------------------------------------------- }
G GET ER RO0R CO0D E

-----------------------------------------------------I
Procedure GetErrorCode;
Begin
Error := Oresult; {Read the I/O result}
If INT24Err Then
Begin
Error: =Error+256*Succ( INT24ErrCode);
INT24On;

End;
Good :=(Error =0); {Set Boolean Result I

End;

S ST AYI116 .4 1 0

Inline(

{;P RO0C ES S I NTE R R UPT 1 6

f; Function:}
{;Provide a Keyboard trap to allow concurrent processes to
run In the background while a Turbo Read is active.

6 1; Copyright (C) 1985,1986}
Lane Ferrisl

{; - The Hunter's Helper -

1; Distributed to the Public Domain for use without
profit. original version5.15.85}

V ;On entry the Stack will already contain: ;
1; ; 1) Sp for Dos

;2) Bp for Dos
I; ; 3) Ip for Dos
I; ; 4) Cs for Dos

;5) Flags for Dos

-153-

4-k



SI {Pop Bp1

Is5D{Pop Bp

Restore Original Bp}
/$80/$FC/$OO

{Cmp Ah,OO
If Char request,}

/ $74/ $2A
f Je FuncOO

loop for character}
/$80/$FC/$Ol

-'{Cmp Ah,O1
If character availability testi

/$74/$05
{ Je FuncOl

go check for char}
{GoBiosl6: I

/$2E
{CS:

I'- $FF/2E/>IOSN~l6 Go to Bios Interrupt 16)

f Jmp Far [>BIOSIntl6]I
(Func0l: I

/$E8/$3F/$OO
{ Call KeyStat
Look at Key bufferl

/$9C { PushF}
/$74/$16

IJz Fret~l.
Return if no keyl

/$2E
I CS:

Test for HOT KEY)
/$3A/$26/>OURHOTKEY

ICmp Ah,[<Our_-HotKey]}
/$75/$OF Jne Fret~ll
/$B4/$00

* { Mov Ah,O
Remove the HotKey}

/ $2E
CS:

flags are removed by BIOS returnil
/$FF/$lE/>BIOSINT16

I Call Dword [>BIOSINT16]}
/$2E

CS:
Say we saw the HOT Keyl

/$80/SOE/>STATUS/<HOTKEYON
{ Or by (<Status],<HotKey__JN}

-154-

04



/$EB/$E4
Jmp FuncOl
{Fret~l:l

/S9D {POPF}
/$CA/$02/$OO

{ RETF 2
-Ky:Return to user)

{FuncOO: I
/$E8/$lF/SOO

I Call KeyStat
Wait until character available)

/$74/$FB { Jz FuncOO}
/$B4/$00 Mov Ah,O

Get the next User Key}
/$9C

{ PUSHF
/$ 2E {CS:)
/$FF/S1E/>BIOSINT16

{ Call Dword (>BIOSINT16]}
/$9C

{ PushF
Save Return Flags)

/$2E ( CS:)
/$3A/$26/>OURHOTKEY

{Cmp Ah,K<OurHotKey]; Our HotKey ?)
/$74/$04

{ Je GotHotKey
yes. .enter Staysave code)

/$9D

{ POPF
else Restore INT 16 flags)

*/SCA/$02/$OO RetF 2

Return W/Key discard original INT 16 flags)
{; ".give it to Mikey. .he'll eat anything")

{GotHotKey: I
/$9D fPOPF ; Discard INT16 return flags}
/$2E (CS: ; Say we saw the HOT Keyl
/$80/$OE/>STATUS/<HOTKEYON { Or by [(Status],(HotKeyON)
/$EB/SDE {Jmp FuncOC; Get another Key)

I; Call the Background task if no key is availablel

{KeyStat: I
/$B4/$01

Mov Ah,O1
Look for available key)

/$9C
Pushf
Call the keyboard function)

A/52E { CS:)

-155-

04

*% I



/$FF/$1E/>BIOS _INT16
{ Call dw (<BIOSINT16])

/$4/$ 01
{ Jz ChkDosCr

No Character available from Keyboard)
/$C3

RET
else return with new flags and code)

{ChkDosCr: }
/$06

t Push ES
Check if DOS Critical error in effect)

/$56 { Push Si}
/$2E CS:)
/$C4/$36/>DOSSTAT2

Les Si,[>DOSStat2)}
/$26

{ES:
;Zero says DOS is interruptable)

/$AC
Lodsb

0. FF says Dos is in a critical state}
/$2E {CS:}
/$C4/$36/>DOSSTAT1

{ Les Si,[>DosStatl]
If INDOS then INT $28 issued by DOS}

/$26
ES:
so we dont have to.)

/$OA/$04 { Or A1,[SI]}

/S2E { CS:

Account for active interrupts}
/$OA/$06/>INTRFLAGS

{Or A1,E<IntrFlags];
Any flags says we dont issue call)

/ $5E
Pop Si

to the background.)
/$07 {Pop Es}
/5 3C/S 01

Cmp A1,01
0Must be INDOS flag only)

/$7F/$02
A JG Skip28

DOS cannot take an interrupt yet)
/$CD/$28

INT $28
Call Dos Idle function (background dispatch).)

{Skip28: )

-156-



/$3/$C

/$3 [/$CO

------------------------------------------------- I

S ST AY 113 .4 1 0

Inline(
{STAYI13.400}
----------------------------------------; I

{Routine to Set a Flag when INT 13 Disk I/O is active}
$5D Pop Bp;

Remove Turbo stack frame}I
/$5D I Pop Bpi
/$2E I CS:}

6 /$80/$OE/>INTRFLAGS/<INT13_ON
or by

[(Intr _flags],<INT13_on ;Say INT 13 is Active}
/$9C

I Push ;Invoke Original Disk INT 13}
/$ 2E {CS:}
/$FF/$lE/>BIOSINT13

I Call dw [(BIOSINT13IJ
/$9C

I Pushf
Save Return Flagsl

/ $2E ICS:}
/$80/$26/)>INTRFLAGS/<FOXS-INT13_-ON

T And by [<Intr flags],<Foxs-INT13 on;
Clear INT 13 Active flagi

/$9D
I Popf

* Retrieve results flaqgs}
/$CA/$02/$0O 

E~

-~ Throw away old flags}I

I;.........................................................

-157-

o.



S ST AY1 2 1.41 0*

Inline(
{; STAY121.400}

{Routine to Set a Flag when certain INT21 functions are
active. Functions to be flagged are identified in the main
Stayres routine. Cf. Functab array.}

$5D
{ Pop Bp ;Remove Turbo Prologue}

/$5D
Pop Bp}

/$9C Push1F,
/$FB

I STI
Allow interrupts}

/$80/$FC/$62
1Cmp Ah,$62

Verify Max function!
/$7F/$28 {Jg Skip1211
ISome Int 21 functions must be left alone. They either

never return, grab parameters from the stack, or can be
interrupted. This code takes account of those

* . possibilities.1

/$50
f Push Ax

Skip functions marked 1 in}
'$53

{ Push Bx
in the function table.}

/$86/$C4
I Xchg Ah,Al}

/$BB/>FUNCTAB
IMov Bx,>FuncTab

Test Int 21 function}
* /$2E ICS:}

/$D7 IXlat}

/$8/COWatfo Or Al,Al
Waitforfunctions marked zero}

/$5B
IPop Bx

in the function table.1
/$58 IPop Ax}

/$5/1 Jnz Skip1211
Set1 21:1

-158-



/$2E { CS: }
/$80/$OE/>INTRFLAGS/<INT21_ON

Or by [<Intr _flagsi,<INT21lon ;
Say INT 21 is Active)

/$9D { PopF}
/$9C { Pushf}
/$2E { CS:}
/$FF/$1E/>DOS_INT21

S{ Call dw [<DOS_INT21]

Invoke Original INT 211
/$FB

"e : STI
; Insure interrupts enabledl

/$9C
Pushf

Save Return Flags}
/$2E

{.cs':
Clear INT 21 Activel

/$80/$26/>INTRFLAGS/<FOXS-INT21 ON
And by (<Intrflags],<Foxs-INT21on}• /$9D

/$9D {Popf

Retrieve the flags}
/$CA/$02/$00 { RETF 2}

{SkipI21:
; Invoke Int 21 w/o return}

/$9D { PopF}
/$2E { CS:}
/$FF/$2E/>DOS_INT21

-{ Jmp dw [>DosINT21]}

I;...........................................................}

. Q' { *********************************************************}
[* C L K I 8 . 4 1 0 Clock Interrupt Service
{ ********************************************************* }

(* CLOCKI8.INL *)

(* Fm: Neil J. Rubenking [72267,1531]
On each call to INT 8, this routine checks if the

timer is "running". If it is, it checks if the activation
time has been reached. If it has, the STATUS byte is set
to include the "HotKeyOn" and "FromTimer" bits. After
that, control passes on to the STAYI8.OBJ code *)

(*NJR*)

INLINE(
' .. $9C/ {PUSHF}

$2E/$F6/$06/>Status/<TimerOn/
[TEST BY CS:status, timeron)

$74/$29/ {JZ nothing}---

o4



$ 50/ [PUSH AX}
$1E/ (PUSH DS)
$B8/$40/$00/ {MOV AX,40h}
$8E/$D8/ {MOV DS,AX)
$A1/$6E/$00/ [MOV AX,E6E]}
$2E/$39/$06/>timer hi! {CMP CS:timer _hi,AX}
$75/$16/ (JNZ not~yet)
$A1/$6C/$00/ {MOV AX,[6C]}
$2E/$39/$06/>tlmerLo/ ICMP CS:tlmer _Lo,AXI
$7D/$OC/ {JGE Not_-Yet)
$2E/$80/$OE/>Status/<HotKeyOn/

{OR BY CS:status, hotkeyon}
$2E/$80/$OE/>Status/<fromTimer/

{Not etl(OR BY CS:status, from-timer}

$1iF/ (POP DS)
$58/ [POP AX}

{nothing)
$9D);{POPF)

(*NJR*)

------------ E nd Cl1o ck 8 8----------------------I

S STA Y18. 4 2 0

Inlin(; STAYI8.413}
* { ;------------I

I;Routine to Await Outstanding 1/O, then post Stayres
Active)I

$5SD
{ Pop Bp

Remove Turbo Prologue)
4./$5D { Pop BPI

/$9C 1 Pushf}
/$2E ( CS:}

* /$FF/$lE/>BIOSINT8
{ Call dw D.BIOSINT81
Invoke Original INT 81

/ $2E { CS:}
/$F6/$06/>STATUS/<HOTKEYON

{Test by [<Status],(HotKeyon;
*Have we received the HOKEY1

/$74/$39 { Jz NoGol
/$2E ( CS:1
/$F6/$06/>STATUS/< INUSE

I Test by ((Status],<Inuse
If Inuse. . then No go)

/$75/$31 I Jnz NoGo}

-160-

6A10



Is 2E { CS:

/$80/$3E/>WAITCOUNT/$OOHveteHo~y
I Cmp by ((WaitCount],OO
If waiting, check time)

/$75/$22 1 Jnz Waiting)
{If Not already waiting 1/O, not already in use, and

HotKey received see if DOS is now interruptablel
{ChkIo:}

/$06
I Push ES

Save registers)
/$56 { Push Si}
/$50 I Push Ax)
/$2E I CS:}
/$C4/$36/>DOSSTAT1

I LES Si,(>DOSstatll
Fetch Dos status 1)

/$26 I ES:1
/$AC

I Lodsb
Fetch Status byte from dosl

/$2E I CS:)
/$C4/$36/>DOSSTAT2

{ LES SI,[>DOSstat2]
Add second status byte}

/$26 1 ES:)
/$OA/$04 I Or Al,(SI1}
/$ 2E I CS:1
/$OA/$06/>INTRFLAGS

{ Or Al,[<Intr-Flags]
Add Interrupt active flags)

/$58 I Pop AX)
/ $5E I Pop SO)
/$07 1 Pop ES}
/$74/$OE

I Jz Go
Wait for Inactivityl

/$2E I CS:)
/$C6/$06/>WAITCOUNT/$l0

Mov by [<WaitCount],$lO
Set Walt count)

[Waiting:}

/$74/$D7 { Jz ChkIO)
{NoGo:l

/5 CF I IRETI

-161 -

4A.



(GO: ;Enter the User's Turbo Procediure)
/ $2E ( CS:1
/$FF/$16/>USERPROGRAM I Call (<UserPrograml}
/S CF { IRET)

................................................................... }

Inline(
{STAY128.4001
( ------------- I

{Routine to Invoke User Code When HotKey or DOS idle}
$5D

Pop Bp
Remove Turbo Prologue)

1$ 5D {Pop Bp}
* /$9C (Pushf}

/$ 2E ICS:)
/$FF/$1E/>DOSINT28

ICall dw (>DOS_1NT28]
;Invoke Original INT 281

V /$2E {CS:)
/$F6/$O6/>STATUS/<HOTKEY_-ON

I Test by (<Status,HotKeyon
Have we received the HOKEY1

/$74/$25 {Jz NoGo)
/$2E {CS:}
/$F6/$06/>STATLUS/<INUSE

I Test by [(Status],<Inuse
If Inuse. . then No go)

/$75/SiD IJnz NoGol
IIf Not already waiting 1/O, not already in use, and

HotKey received see if DOS is now interruptablel
V {ChkIo:)

-~ /$06
{ Push ES

Save registers)
/$56 IPush Si}
/$50 {Push AxI
/$2E ICS:)
/$C4/$36/>DOSSTAT2

~ -"Fetch DOS Critical status byte)
/$26 {ES:)
/$AC {LodSbl

Z,/$ 2E ICS:)

-162-

04

'.p



or

/$OA/$06/>INTRFLAGS
.1*.~. IOr A1,[<Intr..Flags]

Add Interrupt active flags}
/$58 1 Pop Ax)
/$5E IPop SI}
/$07 {Pop ES}
/$5/$ 09

IJnz NoGo
Walt for inactivity}

/ $2E
I CS:

Have the HotKey}
/$80/$3E/>WAITCOUNT/$00

I Cmp by (<WaitCount],00
If timer waiting, go}

/$E9/$01/$00 IJmp Go)
{NoGo: I

/$ CF IIRET)
{GO:

,Enter the User's Turbo Procedure}

0/$2E {CS:}
/$C6/$06/>WAITCOUNT/$00

I Mov by (<WaitCount],00
Kill INT8 wait countl

/$2E {CS:}
/SFF/S 16/ >USERPROGRAM

I Call [<UserProgram])
I/$CF I IRET}

.. . . . . .. . . . . .. . . . . .. . . . . .. . . . .

Inline(

S ST A YS A VE .42 0

[;Version 4.15)

IThis Inline routine will save the regs and Stack f or
41 Stay resident programs. It restores DS and SS from the

previously saved integer constants "OurDseg" and
"OurSSeg". DS is restored from the Turbo InitializationI Savearea.1
{Author: Copyr. 1985, 19861

I; Lane Ferrisl
I; - The Hunter's Helper -1

{;Distributed to the Public Domain for use without profit.)
Original Version 5.15.851

-163-

@4



N- $FA
CLI ;

Stop all interrupts}
/$2E { CS:}
/$80/$OE/>STATUS/<INUSE

{ Or by [<Status],<InUse
Set Active bit}

{; Switch the SS:Sp reg pair over to ES:Si}
{; Put Turbo's Stack pointers Into SS:Sp}

/$2E { CS:)
/$8C/$1E/>USRDSEG

Mov [>UsrDSeg],DS
Save Usr DataSegment}

/$2E { CS:}
/$8C/$16/>USRSSEG

{ Mov [>UsrSSeg],SS
Save Usr Stack Segment)

/$2E { CS:)
/$89/$26/>USRSPTR

{ Mov [>UsrSPtr],Sp

Save Usr Stack Ptr}
{; Stack User interrupted pgm regs for Exit.)

{; These are the original interrupt process regs}
{; that must be returned on interrupt return}

/$2E I CS:)
/$SE/$1E/>OURDSEG { Mov DS,[>OurDseg] ;

Get Turbo Stack pointer from DataSegment)
A,. /$2E { CS:}

° /$8E/$16/>OURSSEG
E1E{ Mov SS,[>OurSSeg]}

/$8B/$26/$74/$01
Mov Sp,[$174]

Sp set by code at $B2B in Turbo initialization)
/$55 { Push Bp}
/$50 { Push Ax)
/$53 { Push Bx}

% /$51 { Push CX}
/$52 { Push Dx}

[ /$56 { Push Si}
/$57 Push D11
/$06 { Push Es}

; Save the InDOS stack to avoid recursion crashes
(Writeln).}

.; Setup destination to Turbo Stack)
/$89/$E7 { Mov Di,Sp

Dest is our stack)
/$4F { Dec Di

Back off current used word}
/$4F ( Dec Di}
/$2E { CS:}
/$8C/$DO { Mov Ax,SS

A' - 164 -

LA



Turbo stack is destination}
/$8E/$CO { Mov ES,Ax}

{; Setup source from DOS Indos primary stack}
4 /$2E I CS:}

/$8E/$1E/>DOSSSEG { Mov DS,[>DosSSeg]
Source is DOS Indos primary stack}

/$2E I CS:}
/ /$8B/$36/>DOSSPTR

DI Mov Si,[>DosSptr]

DOS primary stack offset}
/$B9/$40/$00 I Mov Cx,$40}
/$2E I CS:1
/$89/$OE/>DOSSSIZ { Mov [>DosSsiz];

remember the stack word sizel
/$4E { Dec Si

point last word on stack}
/$4E { Dec Si}
/$89/$EO

{ Mov Ax,Sp
Get stack pointer higher to avoidl

/$29/$C8
* { Sub Ax,Cx

;overwriting during enabled REP functions}
/$29/$C8 { Sub Ax,Cx}

S. /$89/$C4 { Mov Sp,Ax}
/$FD { STD

Move like Pushes on stack}
/$F2/$A5

Rep Movsw
Move users stack to our own}

/$89/$FC
Mov Sp,Di ;

Update our stack pointer to available word.}
/$FC { Cld}
/$2E { CS:}
/$8E/$1E/>OURDSEG

.". { Mov DS,[>OurDSeg] ;
Setup Turbo Data Segment Pointer}

/$FB
.{ STI
Enable Interrupts}

.- {;................................................................}

- 165 -



Inline(

S T A Y R S T R 4 2 0 0
. This is the StayRstr.Inc file included above 0

{;Version 4.151
{ Inline Code to restore the stack and regs moved; to the
Turbo Resident Stack which allows Turbo Terminate & Stay
Resident programs.}
S{ ; Copr. 1985, 1986)
{ ; Author: Lane Ferris}
{ ;- The Hunter's Helper -}
{ Distributed to the Public Domain for use without profit.)

{ ; Original Version 5.15.85}
;---------------------------------------------------------;

.; Restore the Dos (or interrupted pgm) Regs and Stack ;}

;---------------------------------------------------------;
.; Replace the Users Saved Stack)

{; Note that pushes on the stack go in the opposite
direction of our moves. Thus we dont worry about REP stack
activity overlaying the enabled REP fuction.}

$FA { CLI}
-/$2E

{ CS:
Avoid stack manipulation if never "StaySaved"}

/$A1/>DOSSSIZ { Mov Ax,[>DosSsiz]}
/$09/$CO { Or Ax,Axl
/$74/$20 { Jz NotinDosl
I$8C/$DO

• Mov Ax,SS
Source is our Stack}I

/$8E/$D8 { Mov DS,Ax}
/$89/$E6

{ Mov Si,Sp
Point to Last used USER word on our stack)

/$46 { Inc Si}
/$46 { Inc Si}
/$2E { CS:}
/$8E/$06/>DOSSSEG

Mov ES,[>DosSSeg] ;
Dest is Dos indos primary Stack)

/$2E { CS:)
/$8B/$3E/>DOSSPTR I Mov Di,[>DosSptrl}
/$2E { CS:)
/$8B/$OE/>DOSSSIZ

{ Mov Cx,[>DosSsiz)
Saved words}

/$29/$CF
Sub Di,Cx

- 166 -

0,

-~~~~~ % % - '



point to last used word of Dos stack)
. /$29/$CF I Sub Di,Cx}

/$FC I CLD}
/$F2/$A5

I Rep Movsw ;Careful!
Interrupt are enabled here}

* /$89/$F4
I Mov Sp,Si
Skip over moved words}

- {;--I

{NotinDos:}
/$07 { Pop Es}
/$5F I Pop Dil
/$5E { Pop Si}
/$5A { Pop Dx}
/$59 { Pop Cx}

/$5B { Pop Bx}
/$58 { Pop AxI
/$2E { CS:}
/$80/$26/>STATUS/<FOXS-INUSE-HOTKEYON

{ And by [<Status],<Foxs-Inuse-HotKeyon
Clear INUSE flag}

/$2E { CS:;
4:, .. and HotKey}

/$8E/$1E/>USRDSEG { Mov DS,[<UsrDSeg]}
/$2E { CS:}
/$8E/$16/>USRSSEG { Mov SS,[<UsrSSegl}
/$2E { CS:}
/$8B/$26/>USRSPTR { Mov SP,[<UsrSPtrl}
/$5D

Pop Bp
Remove Bp,Sp from Procedure entry}

/$5D { Pop Bp}
/$FB

{ STI

enable interruptsl
/$C3 { RETI

;... . . ................... ......... ...... .................

16



4i.

, .

S..

REFERENCES

1. IBM Installation and Setup Voice
Communications, 6280711

2. IBM Voice Communication Applications
0 Program Interface Reference, Vol 1 & 2,

6280743

3. Text-to-Speech Interface for the IBM Voice
Communications Adapter, Talbot, Summer
1987

- 168 -



* PART I I

0 VOICE RECOGNITION

and

APPLI CATIONS

-169-



IBM Voice-Activated

Keyboard Utility

User Guide

Summer 1987

Gary L. Talbot

Management information Systems Department

University of Arizona

Tucson, Arizona

-170-

04



TABLE OF CONTENTS

Introduction................................ 172

* Hardware and Software Requirements.......... 174

Installation Instructions................... 176

Operating Instructions....................... 178

Input and Output Formats and Descriptions. .187

References................................... 188

-171-



INTRODUCTION

The IBM Voice-Activated Keyboard Utility lets a user

speak DOS commands or the commands that run application

programs on a personal computer. The user talks into a

microphone or a telephone attached to the computer through

the IBM Voice Communications Adapter (a hardware board) and

commands that have been trained to the individual's voice

are executed. The action is like typing the actual

0 commands on the computer's keyboard. This utility may be

used transparently within any application.

As an example, once the user-def ined vocabulary has

been trained to a person's voice, they may speak "directory

alpha enter" Into the microphone or telephone and the

directory command on the a: (alpha) drive will be

executed. The command words are arranged such that only

certain words are active at a particular time. That is,

many of the DOS commands could be active initially but once

0 one Is voiced then only certain other words become ctIve.

For example, once the directory command has been voiced,

then only the parameters wide, pause, enter, or cancel

become active. This simulates the same order that is

common to DOS commands entered through the keyboard.

-172 -



In order to use a command vocabulary, each word must

be trained to the individual user's voice. Words must also

be trained to each individual user's voice in different

environments. That is, if the vocabulary is trained by one

user and a second person wishes to use the utility, then

the second person has to retrain the words to their unique

voice patterns. Also, if the original person trains the

words with a quiet background and moves to a more noisy

-, background, then the vocabulary may have to be retrained

for full voice recognition. Care should be taken when

0 training the words in the vocabulary since it is the most

important factor in recognition accuracy.

This guide is intended to simplify the task of a user

wishing to use the IBM Voice-Activated Keyboard Utility to

voice their commands to the computer. The sections

following will discuss hardware and software requirements

that are necessary to use this program. Also, installation

2 instructions for using this utility will be discussed. An

overview of using the utility is covered under the

operating instructions section. Next, input and output

formats and descriptions are discussed. Finally,

references for further investigation are provided.

-173-



HARDWARE AND SOFTWARE REQUIREMENTS

The IBM Voice-Activated Keyboard Utility works in

conjunction with and through the IBM Voice Communications

Operating System software and the IBM Voice Communications

Adapter hardware board. Therefore, the user must ensure

that both the software and hardware are installed on the

computer at which they are going to use the IBM Voice-

Activated Keyboard Utility. A microphone or telephone that

* is attached to the IBM Voice Communications Adapter to

,. communicate to the computer is also required.

Hardware:

Minimum hardware requirements are given in Table 5.1.

- 174

e4.



MINIMUM HARDWARE REQUIREMENTS

. IBM PC/AT/XT or compatibles

- 160 KB memory

- Two double-sided diskette drives

(360 KB / 1.2 MB) or one double-

sided diskette drive (360 KB /

1.2 MB) and one fixed disk

- Monochrome or color monitor

-. - An IBM Voice Communications Adapter

0 - A high impededance microphone with

an attached subminiature 2.5 mm (0.1 inch)

connector or an FCC approved telephone set

Table 5.1

Software:

Minimum software requirements are given in Table 5.2.

0

- 175 -

ee



rwrW j.. .. . . . r . .. . w- = rw r-w www , fi v - - wrwfl r n -r fi r- C. r9 fl W nr U- - • - w' fir r

N

MINIMUM SOFTWARE REQUIREMENTS

• ' - DOS 2.10 or higher for IBM PC/AT or

DOS 3.00 or higher for IBM XT

- IBM Voice Communications Operating

Subsystem Program

- IBM Voice-Activated Keyboard Utility,

6489831

Table 5.2

INSTALLATION INSTRUCTIONS

Installation instructions for the IBM Voice

Communications Adapter may be found in IBM Installation and

Setup Voice Communications, 6280711. Basic installation

can be accomplished in 30 minutes or less by an

inexperienced person.

Installation instructions for the IBM Voice

Communications Application Program Interface (the software

driver) may be found in IBM Voice Communications

Application Program Interface Reference Vol 1 Chap 2,

6280743. The software resides in a subdirectory, either on

V a hard drive or floppy diskette named vcapi. The Voice

- 176 -

e,

* hi



Communications Operating Subsystem Program diskette is self

installing and is a fairly simple procedure. Different

procedures exist for installing the system on hard or

floppy disks.

To load the operating system and the required discrete

-r utterance recognition software, the following commands

should be placed in the autoexec.bat file:

set vcapi = y:\vcapi\

* (where y is drive containing the vcapi directory and vcapi

is the name of the DOS directory containing the API code.)

y:\vcapi\vcapidrv /o 11

(the /o 11 option allows the discrete utterance recognition

function to be loaded when the API driver, vcapidrv, is

loaded at boot time.)

To setup the IBM Voice-Activated Keyboard Utility,

place the utility diskette in drive A and enter keysetup.

A series of questions appear which should be answered

according to the particular user's configuration. More

specific installation procedures can be found in the IBM

Voice-Activated Keyboard Utility, 6489838, Chap 2.

- 177 -

I,-.



The IBM Voice-Activated Keyboard Utility is based on

ovetlays, executable code segmrents that are loaded into

memory only when needed. Once the operating system has

been installed, the particular overlay that is desired to

be used must be loaded. For example, each particular

application may have a specific overlay that is setup for

that application only.

Each overlay when developed is entered into a plain

text file with the extension .lan according to the rules

found in the above reference. It is then compiled using

the Voice Command Language Compiler (VOCL) to create an

0 executable overlay or a language description file with the

extension .ldf.

OPERATING INSTRUCTIONS

To start the utility and load the console and DOS

overlays, enter the batch file name keyinit.bat. This

batch file executes a sequence of Initialization commands,

ie., sets up the specified path, turns the microphone or

telephone on, Installs the selected overlay, etc. Initial
P1 0

training must be accomplished at this point. An excellent

tutorial is given in Chap 3 of reference 3 found at the end

of this guide. once the initial training is accomplished,

then the vocabulary remains trained for the next and

succeeding user sessions.

-178 -



After the commands have been trained, they are now

ready for use. If at any time, the user desires to see the

available commands, they may voice the command "voice-menu"

or enter ALT-M. A list of active words appear. Trained

words are marked with an asterisk prefix and may be used at

any time. Other keystrokes can also be set to activate

special commands. Table 5.3 lists common VCOM command

keys.

VCOM COMMAND KEYS

Keys Voice Command Associated VCOM command

ALT-C Voice Console vcom console

ALT-M menu vcom menu/permanent

ALT-L vcom microphone on

ALT-O vcom microphone off

ALT-T vcom microphone momentary

ALT-R vcom remember

ALT-D vcom define

-. Table 5.3

ALT-C activates the voice console and allows several

i.2r actions to be performed on the vocabulary such as defining

words, training words, etc.

- 179 -

.V

04



ALT-M displays the menu of current active words.

ALT-L turns the microphone on.

ALT-C turns the microphone off.

ALT-T turns the microphone on momentarily until someone

speaks at which time it's turned off again.

ALT-R starts the remembering of a sequence of keystrokes.

ALT-D stops the remembering of a sequence of keystrokes and
"S'.

works in conjunction with the ALT-R command.

VCOM commands are commands that may be entered from

the DOS command line and which are then passed via the

program vcom.com to the utility. The ALT key combinations

are shortcut ways to execute these same commands. These

VCOM commands and others may be entered at any time from

the DOS prompt.

Other overlays that have been created may be loaded

using the VCOM command:

vcom overlay flename

- 180-

04



The special overlay, console.ldf, is included within

the utility that allows the user to speak the Voice Console

commands. This overlay may be loaded to remain resident,

trained, then another user overlay may be loaded. The

console.ldf remains activated so the user can speak the

Voice Console commands such as "yes" or "no" and other

training commands when using the second overlay.

In summary, the IBM Voice-Activated Utility runs in

the background using trained voice commands to generate

preprogrammed keystrokes that DOS or an application needs.

-. Each application may have its own unique program or

overlay. A special overlay, console.ldf, allows the user a

way to voice commands to the Voice Console.

Training the vocabulary is one of the most critical

aspects of using the Voice-Activated Keyboard Utility.

*Training options allow words to be trained in any order,

varying the number of training instances (up to nine

different samplings or instances of a word may be

remembered; as the number of instances increases, the

quality of voice recognition increases), and listing all

words associated with a particular overlay. A speech test

procedure is provided to assure that trained words are

recognized and produce the desired keystrokes.

- 181 -

04
N.



~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I o OW W M ... .. -, ,,WW 7 T W W-F WN I P 1 -4 = -, - , P :- ;,

Each application's grammar may vary. For example, in

DOS, only certain parameters can be input after one command

is given as in the command "directory" followed by the

parameter "wide". The user can establish their choice of

active words whose keystrokes can be redefined at any time

using the Voice Console. Different word groups can be

activated when they are needed such as when the word

"macro" is voiced. This command will activate an entire

new set of voice selectable commands that have been

previously defined. Finally, each user may establish and

* •load unique overlays designed for their application.

The VCOM.COM program passes utility keyboard commands

" . (VCOMs) entered at the DOS command prompt to the utility

program. Various commands exist to do such things as

loading and unloading overlays, selecting input device

:. (microphone or telephone), selecting the number of training

instances, turning the microphone/telephone on or off,

.- etc. An example follows:

A>vcom overlay dos

a.€ which loads and activates the overlay dos.ldf into memory.

•; VCOM commands available for use may be found in Chapter 5

of the IBM Voice-Activated Keyboard Utility manual.

- 182 -



A user may design an overlay specific to their

application. An overlay tells the Voice-Activated Keyboard

Utility the names of the words that can be spoken, the e
-e

order in which the words can be spoken, the keystroke y

d
sequences generated by the words, the name of the word 1

groups, and a list of commands (VCOMs) to be executed when s

the overlay is loaded. The following steps should be taken

to create an overlay:

9 .

1. Create a text or language file (.lan) that defines

the overlay.

2. Run the VOCL compiler to create an executable

language definition file (.ldf).

3. Train the vocabulary using the Voice Console.

4. Test the overlay by using the speech test.

SI Specific rules and syntax for generating an overlay can be

found in Chapter 7 of the IBM Voice-Activated Keyboard

'-"."Utility manual.

An example of a simple user developed overlay follows:

..

-183

PN P

[.%

04.. ............................................



menu "'ia-rn l;

voice console " a-cfll;
line -up "'esc'H";
line-down "'lesc'P";
scroll-up "'c-W'"I;
scroll down "'c-Z'";
page-up "'lesc 'I";
page down "'esc'Q"I;
delete-line "'c-Y'";
delete character "'lesc'S";
begin~block "'c-K'b";
end-block "'c-K'k"I;
copy block "'c-K'c";
move block "'c-K'v"I;
hide block "'c-K'h";
delete 'block "'~c-K'y"I;
read block "'c-K'r";
write block "'c-K'w"I;
end "'c-K'd";

2: top of _file "'c-Q'r";
end of file "'c-Q'c";
left "'lesc'K";
right "'esc'M";

-. -,word-left "' 1c-A'";
word-_right "'c-F'"I;
beginningof_line "'lesc'G"I;
end of line "'lesc'ol";
find I"'c-Q'f"I;
replace "'c-Q 'a"l;
quit "q";
edit "e"l;
compile "lc";
options "lo"l;

-. run "r"l;
save "Is";
escape "'lesc'"l;

K /* The root sentence definition follows *

Root (enter menu voice _console cmdl cmd2 cmd3 cmd4 cmd5
crnd6 cmd7 cmd8 cmd9 cmdlO)

(lineup,
line-down,

* scroll up,
scroll-down,
pageup,
page-down,
delete _line,
delete-character,
begin_block,

-185-

lJ~t



REFERENCES

1. IBM Installation and Setup Voice
Communications, 6280711

-2. IBM Voice Communication Applications
Program InterfEace Reference, Vol 1 & 2,
6280743

3. IBM Voice-Activated Keyboard Utility,
6489838

4

-188 -

r r



BIBLIOGRAPHY

IBM Installation and Setup Voice Communications,
6280711

:8 IBM Voice Communication Applications Program Interface
Reference, Vol 1 & 2, 6280743

IBM Voice-Activated Keyboard Utility, 6489836

46

% "r0aAZ



-At"6 741 VOICE TECHNOLOGY USING PERSONAL COMPUTERS(U) AR FORCE 1/1
INST OF TECH WRIGHT-PATTERSON RFB OH 6 L TALBOT 1987
AFIT/CI/NR-87-43T

UNCLASSIFIED F/G 2514 MEEEEEEEEAhii



"1.0 LAI
-2 11 L112-2- IlIII

a IllI 140l Il L.V
2..1.

1 5 n.-

II'

4'%



*1

-p.

-. .-
-- A

A.
A-

K:. APPENDICES

'--p

of
0

PROGRAM LISTINGS
-/.
A-..

A-

A'

I

S

-A

S.
-p

A-

-p

- 190 -

~2
(P

04

A *A-~A~ ~ ~



{SPEAK.INCI

Procedure Speak serves as an interface to the IBM Voice

4.. Communications Applications Program Interface for the Text-
to-Speech (speech synthesis) function set. It can be

4: included in any Turbo Pascal program in which the user
wishes to have a passage of text spoken. The only required
lines within the calling program are a type declaration, an
include statement to include the procedure, and the call
to the procedure. Parameters that must be passed to the
speak procedure are the name of a string containing a
sentence of up to 240 ASCII text characters that ends with
a sentence terminator('.','?'. ,or .!.), an integer, p,
giving the baseline pitch (the range for pitch is 0 or
between 50 and 100), and an integer, r, which sets the
speech rate (the range for speech rate, r, is between 50
and 250). A pitch of 0 will produce a whispering voice
while other values not between 50 and 200 will default to
the normal pitch rate of 85. Pitch may be adjusted at any

* time by replacing this value and speach will remain at this
same pitch until another value is input. Resolution of

baseline pitch is about 10 so differences such as 103 and
111 may not be detectable. Higher numbers produce higher
pitches. If a value outside the range of 50 and 100 is not
used with the speech rate, r, then the default is to the
normal rate of 150 words per minute. Again, maximum
resolution is about 10 words per minute so values such as
123 and 127 may not be detected. Speech rate is also
adjustable by changing the value passed and this rate

remains in effect until a different value is supplied.
Higher values produce faster rates of speech.

When using Turbo Pascal, the compiler option {$V-} may be

used to relax checking of the length of the buffer passed

to the speak procedure. That is, a buffer with length of
80, 128, etc may be passed. However, it is still required
to define a string of type 'longstr' for the var parameter

D used in the speak procedure.

An example user program follows:

Program Calling Program;

{$V-} {optional compiler directive to relax
- parameter length checking}

- 192 -

O8M



type longstr = string[240]; {this must be supplied
since it is declared
as a Var parameter in
Speak}

[other user declarations, variables,
functions, procedures, etc.}

{$I speak.inc} {includes the speak interface code}

begin (user program starts here}

{user code to set up a buffer to send to speak
procedure}

speak(string,p,r) {call the speak procedure to speak
text in the string at pitch, p,
and at rate, r}

(more user code if desired}

end. {end of user program}

-* ***** ** ***** ** *********************** ************ *** *

Reference: IBM Voice Communications Application
Program Interface Reference Vol 1 & 2

For additional information on error codes returned,
see the above reference or consult the Text-to-Speech
Interface for the IBM Voice Communication Adapter
Guide, Talbot, Summer, 1987.

* ***** ************** ****************** ********* *** ** **

Procedure Speak(Var talk:longstr; p,r: integer);
e

label loop,99,fini;

type result = record

ax, bx, cx,dx, bp, si,di,ds,es,flags:integer;.} end;

"- plist = array{O..51 of integer;

shortstr = string(161;

- 193 -

04osr



vat reg :result; (record type to call
interrupt)

rcb :integer; (storage for the resource
control block)

bid :integer; {storage for the base id}
cid :integer; {storage for partition 2

connection id)
pb :plist; {the parameter block}
k :integer; {length of text}
pitch :string[3]; (voice pitch string)
rate :string[3]; [voice rate string)
setbuf :shortstr; (set pitch and rate

buffer)

begin

(setup pitch, p, and speech rate, r}

if p in (0,50..200]
then str(p,pitch) {convert pitch to string)
else pitch:= '85'; {default to normal pitch)

if r in [50,2501
then str(r,rate) {convert rate to string)
else rate:= '150'; (default to normal rate)

setbuf:=^[+'['+pitch+,p,+^[+'[,+rate+,r,+^@;
{setup the pitch and rate buffer)

{open command to obtain a resource control block and

connection ids}

reg.ax:=$1111; (function code for open
command)

reg.dx:=$021f; {board I/O address)
reg.es:=seg(pb); (parameter block segment)
reg.bx:=ofs(pb); {parameter block offset)
intr($14,reg); {call interrupt 14}
if pb(0] <> 0 then {zero if no error)

begin
writeln('An error occurred in open.');
goto 99;

end;
rcb:=pb[l]; {save resource control

blockl
bid:=pb(21; {save base id)
cid:=pb[41; {save partition 2

connection idl

- 194 -

4a



(claim h/w resources for the rcb using claimhdw
command)

reg.ax:=$llla; (function code for
claimhdw command}

reg.dx:=bid; {need base id in dx}
reg.es:=seg(pb); {parameter block segment)
reg.bx:=ofs(pb); (parameter block offset)
pb[2]:=$2602; {claim port 2, partition

2, spkr, microphone)
pb[3]:=$0000; {no base interrupt)
intr($14,reg); {call interrupt 14)
If pb(O] <> 0 then (zero if no error)

begin
writeln('An error occurred in claim.');
goto 99;

end;

{connect devices to the port using conndtop command}

reg.ax:=$1121; (function code for
4' conndtop}
4'4 reg.dx:=bid; {need base id in dx)

reg.es:=seg(pb); {parameter block segment}
reg.bx:=ofs(pb); {parameter block offset}
pb[2]:=2; {connect to port 21
pb[3]:=$0600; (connect microphone and

speaker}
intr($14,reg); {call interrupt 141
if pb[0] <> 0 then {zero if no error}

begin
writeln('An error occurred in connect devices.');
goto 99;

end;

{load function set into a port and connect it using
the connftop command)

reg.ax:=$111f; {function code for
p' connftop command)
A reg.dx:=bid; {need base id in dx}
0 reg.es:=seg(pb); {parameter block segment)

reg.bx:=ofs(pb); {parameter block offset}
pb[ll:=cid; (need cid in the

'parameter block)
pb[2]:=2; {connect to port 21
pb[3]:=10; (connect text-to-speech

function}

- 195 -

4'

N1 b



intr($14,reg); [call interrupt 141
if pb[O] <> 0 then {zero if no error)

begin
writeln('An error occurred in connect

function.');
goto 99;

end;

{the initialize text-to-speech function set data
structures}

reg.ax:=$1113; (function code for
initialize data
structures)

reg.dx:=cid; [need connection id in
dxl

reg.es:=seg(pb); {parameter block segment)
reg.bx:=ofs(pb); {parameter block offset}
pb[l]:=cid; (need cid in parameter

block also)
intr($14,reg); {call interrupt 141
if pb[O] <> 0 then {zero if no error)

begin
writeln('An error occurred in initialize speech

function.');
goto 99;

A end;

(the text-to-speech speak command}

{set the pitch and rate by outputting setbuf}

reg.ax:=$llle; (function code for speak
command}

reg.dx:=cid; {need connection id in
dx}

reg.es:=seg(pb); (parameter block segment)
. reg.bx:=ofs(pb); {parameter block offset)

pb(l]:=cid; {need cid In parameter
block also)

pb[2]:=2; (32 bit address for
J. buffer setbuf}
Spb[3]:=ofs(setbuf)+l; (setbuf address offset,

V. offset 1 for length}
pb[4]:=seg(setbuf); {setbuf address segment}
intr($14,reg); {call interrupt 14)

S.. - 196 -
I.
J.

S
xj

V.



if pb[0] <> 0 {zero if no error)
then

begin
writeln('An error occurred in speech

function.');
goto 99;

end;

{say the text line that was passed as a parameter}

reg.ax:=$llle; (function code for speak
command}

reg.dx:=cid; (need connection id in
dx)

reg.es:=seg(pb); {parameter block segment)
* reg.bx:=ofs(pb); {parameter block offset)

pb[l]:=cid; {need cid in parameter
block also}

pb[21:=2; {32 bit address for
buffer talk)

k:=length(talk); {find the length of the
buffer)

talk(k+l]:=^[; {put in an ESC}
talk[k+2]:='['; {and a left bracket)
talk[k+3]:='i'; {and an i to create

interrupt}
talkfk+4]:=^@; {add a null at the end}
pb(3]:=ofs(talk)+l; {use the buffer passed in

talk, offset 1 for
length}

pb(4]:=seg(talk); (segment for talk}
intr($14,reg); {call interrupt 141
if pb(0] <> 0 {zero if no error}

then
begin

writeln('An error occurred In speech
" gtfunction.');

. goto 99;

end;
goto fini;

99: writeln('Return Code is ',pb(0]); {tell the user
what code was
returned)

- 197 -

-S2



(close command to release resources)

fini: [come here always to
release resources}

reg.ax:=$1112; (function code for close}
reg.dx:=bid; {need base id in dx}reg.es:=seg(pb); {parameter block segment}

reg.bx:=ofs(pb); {parameter block offset)
pb[l]:=rcb; {resource control block

4. to release resources}
intr($14,reg); [call interrupt 141
if pb[O] <> 0 then {zero if no error)

begin
writeln('An error occurred in close.');
writeln('Return Code is ',pb[0]); (tell the user

what code was
returnedl

end;

end; {procedure speak}

CC..

19

S%.'

4.

.
%0e

,"

04~
4 ".

-, O•.

dJ.' PN 4 *444:4



APPENDIX B

PROGRAM LISTING

for

SAY.COM

-199-

04



(SAY.PABI

{This program will say the text entered as parameters on
the command line. Input is limited only to 127 total
characters (due to limitation of Turbo Pascal). To use the
program, enter the command 'say' followed by the text you
wish spoken. Remember to end the text with a sentence
terminator, either a period(.), question mark(?), or an
exclamation point(!). Examples:

say This is a mighty fine computer!

say Do you want to delete all files?

say It is now time to have a coffee break.

{$V-} {compiler directive to
relax

length of strings}

type longstr = string[240]; {size of buffer for text
input}

word string[80]; {size of buffer for a word
input}

var passage :longstr; (buffer for text that is input}
param :word; {buffer for word that is inputi
numparam :integer; {number of parameters (words)}
i :integer; [an index for words}

{$I b:speak.inc} {interface procedure for
speech}

begin
fillchar(passage,240,' '); {clear the buffer)
numparam:=paramcount; (find number of words passed}

for i:= 1 to numparam do {create the text buffer}
begin (to be spoken)

param:=paramstr(l); {get each word from the command
line}

passage:=passage+' '+param; (and add It to the text
bufferl

end; {end for i:=1 to numparam}
i:=length(passage); {find the text length}
if not (passage(i] in ' , * , '' ]) then

passage:=passage+'.'; {default to period if not
punctuated}

speak(passage,65,170); {speak the text in buffer,
pitch 65, rate 170)

end.

i - 200 -

p% " " '' m[' " "4 / -" ., ,..a= a,,"" ' ,, a"",], a" ",, "" ' " ,". . ." . .""" " "" "z' " ..-. "-'. . ._ " . ..v.., , -.-. N = N ;



S. w

APPENDIX C

PROGRAM LISTING

for

SAYTEXT.CQM

S.
4

S.'

S

-S..

'p
5).

5-.
'p

Q*t. -

5-
'S.S.S. .d

S.-,.

- 201 -

5'.

~s5).

A'
2'

- ~ ~ ' 'q55~'~. -*

5- 
5
S.*. *'* '5S. ~ *~ * ~



{SAYTEXT.PAS}

~{***********************************************************

The SAYTEXT program causes the text in the file, whose name
is passed as a parameter, to be spoken. The file should be
in regular ASCII characters similiar to this passage
following all rules of normal punctuation. The length of

the input file is unlimited- The text is first read into a

linked list then each node of the linked list is spoken.

Example:

if the file named HELLO.DAT contains the following text:

Hello all! It is so nice of you to visit. Will you
come in and stay for awhile?

then to have the passage spoken, enter the following
-, command:

saytext hello.dat~***********************************************************}

program saytext;

{$V-} {compiler directive to relax length of parameter
strings passed}

type longstr = string[240]; {length of text string to
speak}

filname = string[66]; {file name passed}
buffer = array[l..240] of char; {temporary buffer

storage}

~~ RECORD FOR LINKED LIST NODE
LlistNod = ^SNode;

* SNode = record
txt: longstr;
next: LlistNod;
prior: LlistNod;

end;

O{***** RECORD FOR LINKED LIST HEADER ***********}

Slist = ^SHead;
SHead = record

length: integer;
first: LlistNod;
Last: LlistNod;

end;

- 202 -

04 Pr P" Pr or o



[. vat data :filname; [buffer to hold file name
that is passed}

_- [ datafile :text; [assigned to the filename}

"-."i,j :integer; [counter for nodes and
• "." chars)}

i- LList :Slist; [the head node}
mnode :LListnod; (pointer to keep track of

r 'n. current node}

. Str240 :longstr; {buffer for string}
i-- ,chin :char; {char read in}

buf :buffer; (used to manipulate data}

{* function to test for existence of a file *

-,.'.Function Exist(filename: filname): boolean;

var fil :file;

begin
assign(fil, filename);

reset(fil);

"{ $I+ }
exist:= (IOresult =0)

< .-. end; {function existl

-''.*Node -Ptr; RETURNS A PTR TO CURRENT NODE OF LINKED LIST

-I Function NodePtr(pos: integer): LlistNod;

L ," '.Va r
i j: integer;

nd: LlistNod;

" - Begin
nd := Llist^.first;

o- for i :=2 to pos do
.'."nd :=nd^.next;

nesn;oNodeePtr :etnd;
chin Endc;

-203

hbegin

asi".iVflnan)

1 ", , , , • ,.% , ,,. "- - , ,. " ". " ," - ,% : ",-. " . ,,,- , -. ,. ..- .I ". '



". W

*CreateLst; CREATES HEADER FOR LINKED LIST FOR TEXT LINES*

Function CreateLst: Slist;

Var
thishead: Slist;

Begin
new( thishead);
thlshead-.1ength :=0;
thishead^.first nil;
thishead-. last nil;
CreateLst :=thishead;

End;

* Make Node;CREATES NEW NODE FOR LINKED LIST*

Function MakeNode(dat: longstr; prey, nxt: LlistNod):
LlistNod;

Var
thisone: LlistNod;

Begin
new( thisone);
thisone&.txt :=Copy(dat,1,Length(dat));
thisone^.prlor :=prey;

thisone^.next nxt;
MakeNode := thisone;

End;

*APP Llist; APPENDS A NODE ONTO LINKED LIST*

Procedure App__list(dat: longstr);

Va r
thisone: LlistNod;

-204-

04

!A 0



Begin
if Llist-.first = nil then
begin

thisone :=MakeNode(dat,nil,nil);

end
else

begin
thisone := Make-Node(dat,Llist-.last,nil);

end;
Llist-.length := Llist^.length + 1;

End;

*DelHere; DELETES A NODE FROM THE TEXT LINKED LIST AND*
* RETURNS THE TEXT STRING FROM THAT NODE*

Function DelHere(pos: integer): longstr;

Var
temp: LlistNod;

Begin
temp := Llist^.first;
if pos =3. then

begin

if Llist^.first <> nil then
Llist-.first^.prior := nil;

end
else

begin
temp :=NodePtr(pos);
temp^.prior'.next := temp^.next;
if temp-.next =nil then
Llist^.last :=temp-.prior

else
temp^.next .prior := temp .prior;

end;
.4 DelHere := temp-.txt;

Dispose(tenp);
Llist^.length :=Llist^.length -1;

End;

-205-



* DEALLLIST;*

Procedure DeallList;

Var
Tx: Stringf 80];

Begin
while Llist-.length > 0 do

Tx :=DelHere(1);
Dispose(Llist);

End;

{$I b:speak.inc} {speech interface procedure}

begin
data:=paramstr(l); [get the file name passed as

a parameter I
*if exist(data) then {see if the filename is

validi
begin {do this if filename valid

else tell userl
assign(dataflle,data); (assign var datafile to the

string name I
reset(datafile); (get the file ready to readl
LLlst:=CreateLst; (create a head nodel
while not eof(datafile) do

begin (begin while not eof .. I
j:=l; {initialize char counter}
repeat

read(datafile,chin); (read char in}
buf[J]:=chln; (put it in an array)
J:=J+1; [increment the index}

until (chin In Ct. 1V I?'ll!') or (J > 240) or
eof(dataflle); (stop for end of sentence or

buffer full or end of filel
Str24O:=copy(buf,1,j-l); (creates a complete

* sentence)
APPLList(Str24O); (add it to the array)

end; (while not eof(dataflle)}
close(datafile); [remember to close the file)

-~node:=LList-.first; [set pointer to first node}
for i:=1 to LList^'.length do

0 begin (for i:=1 to LList .. .
speak(node-.txt,65,175); {speak the current line)
node:=node-.next; (move the pointer up)

end; (for i:=l to LList .. I1
DeallList; (delete all the nodes}

end {while not eof .. I

-206-

Si. I

@4 ka z



else
writeln(data,' does not exist.');

{error message if file does not
exist)

end. [program SAYTEXTI

,'.,

,0,

- 207 -

04

-. 5'.".5..- -.. .;.-''2-.-",'.:.-'---..;-- " '.5.,..-.-- 55 * *.,' . ,, '. ,' .'r ':'5 ,



APPENDIX D

PROGRAM LISTING

for

REMIND.COM

"20

S

. _ - 208 -

04



(REMIND.PASI

{$R+}
{$C-}
{$v-}

PROGRAM REMIND;
{This program is a memory resident program that drives the
IBM voice applications software and hardware board. When
first loaded, it allows input of messages to be spoken and
the time when they should be spoken. Interface to the board

4 is made through the procedure speak. After the user is
prompted for input (messages and times), the program
terminates and becomes memory resident. Access to the
schedule for review/revision or to terminate the program
can be made by entering ALT-F7.}

4,

{ * * * * * CONSTANTS * * * * * * * * * * * * * * * * * *

const
{ (the next field is needed for the windo.inc routines

MaxMsg = 15; [maximum number of messages to
be in schedule}

MaxWin = 10; (Max number of windows open at
one time I

Esc = #27; {character equivalent of Escape
Keyl

. Alt = 08; (Shift bits at 40:17 }
Ctrl = 04;
LeftShift = 02;
RghtShift = 01;

BIOSI8 = 8; {Bios Timer interrupt}
BIOSI16 = $16; {Bios Keyboard interruptl
BIOSI13 = $13; {Bios Disk interrupt}
DOSI21 = $21; {DOS service router interrupt}
DOSI28 = $28; {DOS Idle interrupt)

------------- TYPE D E CL AR AT I ON S-------I
Type

Regtype = record
Ax,Bx,Cx,Dx,Bp,Si,Di,Ds,Es,Flags:integer

end;

HalfRegtype = record
Al,Ah,Bi,Bh,Cl,Ch,Dl,Dh:byte

end;

filename_type string[64];

- 209 -



Vector record { Interrupt Vector type
IP,CS :integer ;

end ;
longstr = string[24];

-------------- T Y P E D C 0 N S T A N T S-----------
Const

OurHotKey byte = 110; { scan code for ALT-F7}

"** scan code can be changed to make *****************}

{****** another key active as the hot key. *

I This table marks those INT 21 functions which must
be passed without modification. They either never return,
fetch parameters from the stack, or may be interrupted by a
TSR I

Functab array[0..$6F] of byte =

(1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,0, {0-Cl
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,0,1, {26,2F}
0,1,1,1, 1,1,0,0, 0,0,0,0, 0,0,0,0, {31-35}
0,0,0,0, 0,0,0,0, 1,1,1,1, 1,1,0,0, {48-4D}
1,1,1,1, 0,1,0,0, 1,0,0,0, 0,1,1,1, {50-53,

,55,58,5D-5F}
i,1,i,1, 1,1,1,1, 1,1,1,1, 1,1,1,1); {60-621

IntrFlags : byte = 0; {Active interrupts flags}
INT13_on = 04; [Disk interrupt is active}
INT21_on 08; {DOS Service router is active}
Status : byte = 0; [Status of current TSR activity}
Hotkeyon = 01; (Received the HotKey}
Inuse = 02; (TSR is active)
Foxs = $FF; {workaround for inline hex FF1

4. DosVersion : byte = 0; {Current Version of DOS}
WaitCount : byte = 0; {Wait to activate count}
UserProgram :integer = 0; (Offset to Users Program Code}
OurDSeg: integer = 0; (Turbo Data Segment Value I

V OurSSeg: integer = 0; (Turbo Stack Segment Value I
DosDSeg: integer = 0; {Dos Datasegment value }
DosSSeg: integer = 0; {Dos Stack Segment Value I
DosSPtr: integer = 0; {Dos Stack pointer value
DosSsiz: Integer = 0; (Dos Stack size in words I
UsrDSeg: Integer = 0; {Interrupted Datasegment Value)
UsrSSeg: integer = 0; {Interrupted Stack Segment

Value)
UsrSPtr: integer = 0; {Interrupted Stack pointer

Value
OurPSP : integer = 0;

- 210 -

444 . . . . .-..- -. - v. . .-. ..-



{ The following constants *MUST* remain in the IP:CS

order. StaySave uses them as JMP targets)

BIOSINT8 : vector = (IP:O;CS:0); (BIOS Timer Interrupt
Vector I

BIOSINT16 : vector = (IP:0;CS:0); {BIOS Keyboard
Interrupt Vector }

BIOSINT13 : vector = (IP:0;CS:0); [BIOS Disk Interrupt
Vector I

DOSINT21 : vector = (IP:O;CS:O); (DOS Sevice Interrupt
-' Vector}

DOSINT28 : vector = (IP:0;CS:0); (DOS idle Service
interrupt Vectorl

DOSStatl : vector = (IP:O;CS:0); {Pointer to INDOS
byte}

"* DOSStat2 : vector = (IP:0;CS:0); (Pointer to CRITICAL
byte}

Version :string[4] = '4.15'; { Current Version number }
{NEEDED FOR SETTIME}

TIMERHI: INTEGER = 0; [used to set timer}
TIMERLO: INTEGER = 0; {used to set timer}
TIMERON = 4; {timer mask bit}
FROMTIMER = 8; [timer mask bit}
TIMER TIME = 15; {check every 15 seconds}n, CHANGE TIMERTIME TO THE VALUE (IN, SECONDS) TO THE*****)

.** YOU WANT THE PROGRAM TO CHECK FOR TIME EXPIRATION ****}

-------------- V A R I A B L E S-----------------------
Va r

Regs : regtype;
HalfRegs : halfregtype absolute regs;

4 Keychr : char ;
Bytecount : integer;
SavedPSP : integer; { Program Segment Prefix

pointers I
Error : integer; { I/O results }

4 Good : boolean; { I/O results switch I
Terminate : boolean; { Exit stayRes Flag I

OurDTA :Array [1..2] Of integer; (Local DTA pointer}
SavedDTA :Array (1..2] of integer; {Interrupted DTA

pointer}
{NEEDED FOR REMIND PROGRAM}

4'. HICLOCK: INTEGER ABSOLUTE $40 : $6E;
N LOCLOCK: INTEGER ABSOLUTE $40 : $6C;

TICS : REAL;

- 211 -

-'p



times :array[l..MaxMsg] of string[51;
mesg :array(l..MaxMsgl of string[127];
said :arrayfl..MaxMsg] of boolean;
line :string[127];
i,j,k :integer;
uchin :char;

punct :char;
{-----------------------------------------------------------
{ W I N D 0 W R 0 U T I N E }
{ --------------------------------------------------------
{$I b:STAYWNDO.341}

S T A Y E X I T }
{-----------------------------------------------------------}
{$I b:STAYXIT.420}

bZ.-" ********************************************************}I

----------------------------------------------------------------------}
{THE FOLLOWING ARE THE USER INCLUDE ROUTINES

S{ --------------------------------------------------------

{$I b:STAYSUBS.420}
{ --------------------------------------------------------
{ PROCEDURE SETTIME NEEDED TO INITIALIZE
{-----------------------------------------------------------

---------------------------------------------------------------------- I
{ D o u b 1 e to R e a 1 number conversion

--------------------------------------------------------
function double to real(I,J : integer):real;

-, var temp : real;
begin

temp I; IF temp < 0 THEN temp := temp + 65536.0;
temp temp * 65536.0;

* IF J < 0 THEN temp := temp + 65536.0 + J ELSE temp
temp + J;

doubletoreal := temp;
* END;

------------------------------------------------------
R e a 1 t o D o u b 1 e number conversion }

---------------------------------------------------------
PROCEDURE Realtodouble(R : real; VAR I, J integer);

5: var It, Jt : real;
begin

It Int(R/65536.0);
'I Jt R - It*65536.0;

- 212 -

.10



IF It > Maxlnt THEN I trunc(It - 65536.0) ELSE
I:= trunc(lt);

IF Jt > Maxlnt THEN J trunc(Jt - 65536.0) ELSE
5' J:= trunc(Jt);

END;

{--------------------------------------------------------
I S e t T i m e Turn timer on}

PROCEDURE SetTimer(the-time :integer);
begin

tics double -to -real(HiClock, LoClock);
tics tics + the _time*18.206481934;
real -to -double~tics, timer-hi, timer lo);
Status :=status or Timer _On;

END;

PROCEDURE BeBeep; {makes a nice beep, beep sound)
VAR N :byte; (called before message is spoken}
begin

nosound;
FOR N :=1 to 3 do

begin
sound(800); delay(50);
sound(400); delay(50);

END;
nosound;

END;

procedure changetable; (allows user to change schedule
table)

label l0,out; {label 10 writes schedule and
begin label out gets out of changetable

clrscr; {clear the screen}
10:for i:= 1 to j do {j is number of table entries)

beg I n
Writeln('Entry #1,i:2,' 1,times~i),' 1,mesg(iI);

[write table outl
end;

*Writeln; [skip a line)
Writeln('Correct? (Y/N)'); (ask if the

entries are correct}
Writeln; (skip a line)
Repeat (read input until valid}

*Read(kbd,chin); (do a fast read)
Until chin in ('y','Y','n','N']; [the valid entries)

-213 -



bq..

If chin in ['n', N] then {take action if table is
not correct}

begin
writeln('Enter the number of the entry to change

. or );
Swriteln('enter FF:FF in an entry''s time field to

delete the entry or');
if j < MaxMsg then {if number of entries is less}
begin {than maximum available)

writeln('enter ',j+l,' to add a new entry to
the table or');

end;

writeln('enter 0 to reaccomplish the entire table
or');

writeln('enter 99 to return with no changes.');
repeat {see what the user wants}

readln(i); {get input)
if (i > j+l) and (i <> 99) then
writeln('Value too high.');

{make sure user enters}
if i < 0 then writeln('Value too low.');

{a valid input}
until i in [0 .J+1,99]; {the valid entries)
if i = 99 then {user doesn't want any)
begin (changes, go back to

relist}
i:=l; {reinitialize i}
clrscr; {clear the screen}
goto 10; {go back to relist schedule)

end;
if i = 0 then goto out; {user wants to rebuild,

exit with i=0}

if i > j then j:=i; {wants to add an entry,
increase table size)

clrscr; {clear the screen}
gotoxy(15,10); (set the cursor}

A Writeln('Time ',i,'? (hh:mm)'); {get new entry or
change the old one}

O gotoxy(15,12); [set the cursor}
Readln(times~i]); {get the time}
gotoxy(15,14); (ask the user for the

message)
Writeln('Message ',i,'? Punctuation required.');

gotoxy(15,16); {go to end of line)
Readln(mesgli!); (read the message)
k:=length(mesgfi]) {check to make sure

1 1..1. punctuated}
line:=mesg[i]; {change to string}

- 214 -

0"

oA

SA%;



If not (linelk) in'1.1'?' , '!' 3) then
begin [tell the user to add

* punctuat ion}I
gotoxy(15,20) (set the cursorl
writeln('Punctuation (''."'','?"''or 11!1'

required.');
delay(1500); {delay to let user read}
gotoxy(15,20); {reset the cursor)
writelnC ' I )

gotoxy(l5i-k,16); [reset the cursor at end)
readln~punct); (get punctuation}
mesg11ih=mesg(i]+punct; [and add it to the

message)
end;

said(I):=false; (haven't said this yet}
ClrScr; {clear the screen)
goto 10; (go back, print the table,

and see if its correct now)
out: (label to exit procedure)
end;

end; {procedure changetable)

Procedure Getdata; (initializes table on
entry or if user wants to
reinitialize)

label go,10;

* begin
go: (labe' to start getting data)

i: =1;[initialize variables}

clrscr;{clear the screen)

*gotoxy(10,3); (position the cursor)
writelnC'Enter the time (hh:mm) then the message you wish

spoken. ')
gotoxy(10,4); (position the cursor)
writeln( 'Time range is 00:00-23:59. Message is a maximum

of 127');
S.gotoxy(10,5); {position the cursor)

writeln( 'characters. ',Maxxsg,' different messages may
be entered.');

writeln; (skip a J ~nel

-215-

.14



for i:=1 to MaxMsg do {read in all message

begin 
etis

gotoxy(15,10); {time to get user input}
WritelnC'Time ',i, '? (hh:mn) Q to quit.');
gotoxy(15,12); {set the cursor)
Readin~timesti]); {get time desired for

message}I
if (times(iV='q') or Ctimes(i]='Q') then

{see if user wants to quit}
begin

j:=i-1; (user wants to quit, set
up number ofl

clrscr; {valid entries in j then
call change-}

goto 10; {table procedure to list
out the entries}

end;
*gotoxy(15,14); {get the desired message

now}
Writeln('Message ',i,'? Punctuation required.');
gotoxy(15,16); (read the user's inputl
Readln(mesg[ i );
k:=length(mesg(i]); {check to see if

punctuated}I
line:=mesg~i); [change to stringi
if not (line[k] in (.,''' 1)then
begin (no punctuation, tell the

user}I
-. gotoxy(15,20); {position the cursorl

writeln( 'Punctuation ''*'''''or '1 'f

- required.');
delay(l500); (give user time to read}
gotoxy(15,20); (set the cursor}
writeln( '

gotoxy(154-k,16); (set the cursor at the endi
*readln(punct); (get the punctuation}

mesg~il:=mesg~i]+punct; (and add it to the
message)

end;
said(il:=false; {haven't said this yet)

*ClrScr; (clear the screen)
* J:=i; (entered max entries, soj

can equal i}
end;

-216-

1 
2



1 -~* - w .- V V

10: changetable; {procedure changetable lists the
entries and let user change}

if i=0 then goto go; [if i=0 on return from
changetable, user wants to
reinitializel

end; [procedure getdatal

-- 'S. ---------------------------------------------------------}I
{ NOW BEGINS THE REAL PROGRAM

---------------------------------------------------------I

---------------------------------------------------------I
C CH EC K

' -'S (---------------------------------------------------------}

PROCEDURE check;
type

twostr =String[2];

var
timestr :String[51;
hrstr :twostr;

0minstr twostr;
buffer String(127];

Procedure gettime(var hrl,mnt:twostr);
{gets the time in hour and minI

begin
tics:=double-to-real(HiClock,LoClock)/18.206481934;

{current timfe ticks!
str(trunc(tics/3600.0) MOD 24,hrl); {get hours}
str(trunc(tics/60) MOD 60, mnt); (get minutesi

end; (procedure gettimel

{$I b:speak.inc} (voice interface procedure)

begin
While Keypressed DO read(Kbd,KeyChr); (clear any waiting

keysl
* IF (status AND timer-on) = timer-_on THEN {If our timer is

ticking .
begin

IF (status AND from-timer) = from-timer THEN (and the
timer finished..}I

begin (then clear the
timer request

status := status and not (timer _on + from timer);
gettime(hrstr,mlnstr); (get the current

time l;
if (hrstr(1] '' then hrstr(l]:='0'; [change

blank to zero}

-217 -



if (minstr(l] = ' ') then minstr[l]:='0'; (change
blank to zero)

timestr:=hrstr+': '+minstr; (concatenate hr
and min}

for i:= 1 to J do [check all entries
for a time match)

begin
if (timestr=times[i]) then {if time matches a

time}
begin

if not said[i] then (did we tell the
-user already?)

begin (no, tell the
User)

bebeep; {an attention
getter}

speak(mesg(i],65,180); {say the
message}

said(i]:=true; (set a flag that
we said the msg)

end; [if not said}

end; {if (timestr... I
end; (for i:=l to j...}

settimer(timertime); {issue another
time call}

end
else {user must have entered ALT-F7}

begin
MkWin(1,1,80,25,bright+cyan,black,3);

(make a window)
gotoxy(10,12); {set the cursor)
writeln('Enter R to review/revise schedule or T

to terminate.');
repeat {get user input)

read(kbd,chin); {do fast read)
until chin in ('r','R','t','T']; (valid inputs)
if chin in ['t','T']

then terminate:=true (user wants to cancel}
else {user wants to review/revise table}

begin
i:=l; [initialize i}
changetable; {user wants the entries)
if i=O then getdata; {if i=O is returned,

then user wants)
end; {to reinitialize the table)

RmWin; (remove the window)
end; {if chin in ['t'...}

end; (end else)
end; {procedure check)

- 218 -

'p



L '

{------------------------------------------------------------I
I THE ABOVE ARE THE USER INCLUDE ROUTINES }
I------------------------------------------------------------

. { ---------------------------------------------------------

{ P R O C E S S I N T E R R U P T

{ PURPOSE:
The following procedures displace standard

-interrupts.

Do not put Variables or Constants in this Procedure.
It will cause registers to be clobbered during the
Interrupt routine when Turbo attempts to allocate storage
for local variables or parameters.}

PROCEDURE STAYINT16; {Keyboard Interrupt 16 Service
Routine }

[If anything but "OurHotKey" is pressed, the key is
* passed to the standard keyboard service routine. B_U_T,
-/, when Our HotKey is recognized, a hotkey bit is set.}

begin
( b:Stayil6.4101

"* End; {STAY_INT16}

PROCEDURE STAY_INT13; {BIOS Disk interrupt Routinel
begin {Sets a flag while disk is active)
{$I b:Stayil3.410}
End; {STAYINT13}

PROCEDURE STAY_INT21; (DOS interrupt 21 Service Routine}
begin {Sets a flag while INT 21 is activel
{$I b:Stayi2l.410}

.' . End; (STAYINT21}

PROCEDURE Stay_INT8; {Timer Interrupt 8 Service Routine}

{Activates Stayres during pgm execution}
O begin (when safe to do so.}

{$I b:ClkI8.410}

{$I b:Stayi8.420}
End; (Stay Int8}

. PROCEDURE StayINT28; {Idle Interrupt 28 Service Routinel
begin {Invokes Stayres from the DOS prompt}
{$I b:Stayi28.410} {and allows background activity to }
End;{Stay_Int28} {continuel

- 219 -

eq

1.4-



PROCEDURE StaySave; (Prolog to Resident Turbo Code}
begin
{$I b:StaySave.420}

GetDTA(SavedDTA[1],SavedDTA[2]); {Save callers DTA
ZK: address I

GetPSP (SavedPSP); {Save callers PSP
Segment)}

SetPSP(OurPSP); {Set our PS2 Segment)

SetDTA(OurDTAfliI,OurDTA[2J); {Set our DTA address}

NewCtlc(2] : CSeg;
NewCtlc(1] : Ofs(IRET);

GetCtlC(SavedCtlc); SetCtlC(NewCtlc);{Get/Save the users
Ctrl-C vector}

INT24On; {Trap Dos Critical
* Errors I

---------------------------------------------------I
{ INVOKE USER PROCEDURE HERE

---------------------------------------------------I

begin
KeyChr :=#0; 1Clear any residual I

-check; (go execute the programl
end;

4 1-----------------------------------------------------I
{ END USER PROCEDURE HERE

4 1-----------------------------------------------------I

SetPSP (SavedPSP); IRestore Callers PSP
Segment}I

*SetDTA(SavedDTA[l],SavedDTA[2]);{ Restore the users DTA}

SetCtlC(SavedCtlC); {Restore the users Ctrl-C
Vector I

INT24Off; IRemove Our Critical
Error routine)

If (Terminate =true) then StayXlt;{ If exit key,
restore Int Vectors I

-220-

04
WI S,



f(-- -- - - - --- - - - - - - - - - - - - - - - - --1
{ BEGINNING OF THE STAYRSTR ROUTINE

---------------------------------------------------------
{$I b:Stayrstr.4201 { RETURN TO CALLER I

--------------------------------------------------------------- I
{ END OF THE STAYRSTR ROUTINE

{-----------------------------------------------

End ;{StaySavel

(----------------------------------------------------------
M MAI N

{----------------------------------------------------------
{ The main program installs the new interrupt routine I
{ and makes it permanently resident as the keyboard
f Interrupt. The old keyboard Interrupt vector is I
{ stored in Variables , so they can be used in Far
(Calls.

The following dos calls are used:
f; Function 25 - Install interrupt address

I input al = int number,
ds:dx = address to isalI

IFunction 35 - get interrupt address
input al = mnt numberI

Ioutput es:bx = address In interrupt I
(Function 31 - terminate and stay resident I

Input dx = size of resident program I
obtained from the memory

Iallocation block at [Cs:0 - $10 + 3] 1
I Function 49 - Free Allocated Memory

IInput Es = Block Segment to free I
---------------------------------------------------------------------- I

begin {**mfain**}

A OurDseg:= Dseg; ISave the Data Segment Address for
Interrupts

OurSseg:= Sseg; ISave our Stack Segment f or
Interrupts I

GetPSPCOurPSP); ILocal 252 Segment I

GetDTA(OurDTA~l),OurDTA[21); { Record our DTA address I

UserProgram:=OfsCStaysave); (Set target of call
instruct ion)

Regs.Ax :=$3000 [ Obtain the DOS Version
.. i fnumber)

Intr CDosI2l,Regs);

-221-

N'c



DosVersion := Halfreg5.Al; (0=1+, 2=2.0+, 3=3.0+}

(Obtain the DOS Indos status location)
Regs.Ax := $3400;
Intr (DosI2l,Regs);
DosStatl.IP :=Regs.BX;

DosStatl.CS :=Regs.ES;
DosStat2.CS :=Regs.ES;
DosSSeg :=Regs.ES;

Bytecount := 0; 1Search for CMP (critical flag],O0
instruction I

While (Bytecount < $2000)
1 then Mov SP,stackaddr instruction

and (Memw(DosStat2.CS:Bytecouit] <> $3E80)
do Bytecount := SuccCBytecount);

If Bytecount = $2000 then begin ICouldn't find
critical flag addr

%7 Writeln( 'StayRes incompatiblity with Operating
System');

Writeln('StayRes will not install
correctly. .Halting' );

Halt; end;

I Search for the DOS Critical Status Byte address.I
'.4, 1Bytecount contains offset from DosStatl.CS of the 1

( I CMP (critical flag],00
IJNZ ....

I Mov SP,indos stack address

If MemlDosStat2.CS:Bytecount+7] = $BC {NOV SP,xxxx}
then begin
DosStat2.IP :=Memw[DosStat2.CS:Bytecount+2];

DosSptr =Memw( DosStat2 .CS bytecount+8 1;
{INDOS Stack address}

* END
else begin

Writeln('Cannot Find Dos Critical byte ... Please
Reboot.' );

Halt;
end;

Inline($FA); (Disable interrupts)

-222 -



I Setup Our Interrupt Service Routines I

SetupInterrupt(BIOSI16, BIOS_IntI6, Ofs(StayINTl6));
W {[keyboard }
V. SetupInterrupt(BIOSI8, BIOSInt8, Ofs(StayINT8));

{timer}
SetupInterrupt(BIOSI13, BIOSIntI3, Ofs(StayINTl3));

(diski
SetupInterrupt(DOSI21, DOSInt2l, Ofs(StayINT21));

{DOSfunctionl
SetupInterrupt(DOSI28, DOSInt28, Ofs(StayINT28));

{DOS idle}

Inline($FB); {Re-enable interrupts}
******************************************************** *

--------------------------------------------------------
,( { INITIALIZE YOUR PROGRAM HERE I

5, {-------------------------------------------------------------I

{Initialize Program Here since we don't get control again.)

Terminate := false; (Clear the program exit flags I
MkWin(1,1,80,25,bright+cyan,black,3); {make a window)
clrscr; {clear the screenl
getdata; {set up initial times and msgs}
RmWin; {remove the window}
writeln; {skip a line}

writeln('*** Remind System is now resident.
writeln( *** Enter ALT-F7 to review/revise schedule ***'
writeln('*** or terminate program.

settimer(timertime); {start the timer}
( }

{ END OF INITALIZE PROGRAM CODE }
--------

{ Now terminate and stay resident. The following Call
* utilizes the DOS Terminate & Stay Resident function. We

get the amount of memory by fetching the memory allocation
v paragraphs from the Memory Control Block. This was set by

Turbo initialization during Int 21/function 4A (shrink
block), calculated from the mInimum and mAximum options
menu. The MCB sits one paragraph above the PSP.}

{ Pass return code of zero I
Regs.Ax $3100 ; { Terminate and Stay Resident I
Regs.Dx MemW [Cseg-1:0003]+1 ; { ProgSize from

Allocation Blk}
Intr (Dosl2l,Regs);

{ END OF RESIDENCY CODE I
"o end.

- 223 -

..-
I"% *o



{ S T A Y W N D . 3 4 1
{ ". ..but I dont do floors !" }

.. **********************************************************

{ Kloned and Kludged by Lane Ferris }
" { -- The Hunters Helper --

{ Original Copyright 1984 by Michael A. Covington
{ Modifications by Lynn Canning 9/25/85

{ 1) Foreground and Background colors added. }
{ Monochrome monitors are automatically set }
{ to white on black. I
{ 2) Multiple borders added. }

3) TimeDelay procedure added. I
{ Requirements: IBM PC or close compatible. }

--------------------------------------------------------
{ To make a window on the screen, call the procedure}

{MkWin(xl,yl,x2,y2,FG,BG,BD);
{ The x and y coordinates define the window placement and
are the same as the Turbo Pascal Window coordinates. The
border parameters (BD) are 0 = No border 1 = Single line
border 2 = Double line border 3 = Double Top/Bottom
Single sides I

The foreground (FG) and background (BG) parameters are the
same values as the corresponding Turbo Pascal values.}

{ The maximum number of windows open at one time is set at
five see MaxWin=5). This may be set to greater values if

*-.- necessary.1

{ After the window is made, you must write the text desired

from the calling program. Note that the usable text area
is actually 1 position smaller than the window coordinates
to allow for the border. Hence, a window defined as
1,1,80,25 would actually be 2,2,79,24 after the border is
created. When writing to the window in your calling
program, the textcolor and backgroundcolor may be changed

* as desired by using the standard Turbo Pascal commands. I

{ To return to the previous screen or window, call the
procedure RmWin; I

{ The TimeDelay procedure is invoked from your calling
S program. It is similar to the Turbo Pascal DELAY except

DELAY Is based on clock speed whereas TimeDelay is based on

the actual clock. This means that the delay will be the
same duration on all systems no matter what the clock

speed. The procedure could be used for an error condition
as follows: I

- 224 -

O4



' MkWiri - make an error message window }
{ Writeln - write error message to window I

{ TimeDelay(5) - leave window on screen 5 seconds I
{ RmWin - remove error window
{ continue processing

-------------------------------------------------

Const

InitDone :boolean = false ; { Initialization switch)

On = True ;
Off = False ;
VideoEnable = $08; { Video Signal Enable Bit I

Bright = 8; { Bright Text bit}
Mono = 7; { MonoChrome Mode}

Type
Imagetype = array [1..4000] of char; { Screen Image

in the heap}
WinDimtype = record

xl,yl,x2,y2: integer
end;

Screens = record { Save Screen Information)
Image: Imagetype; { Saved screen Image I

Dim: WinDimtype; { Saved Window
Dimensions I

x,y: integer;{ Saved cursor position I
end;

Var

Win: {Global variable package }
record

Dim: WinDimtype; { Current Window Dimensions I
Depth: integer;

{ MaxWin should be included in your program I
{ and it should be the number of windows
saved at one time}

. It should be in the const section of your program }
Stack: array[l. .MaxWin] of -Screens;

end;

Crtmode :byte absolute $0040:$0049;
{Crt Mode,MonoColorB&W..}

Crtwidth :byte absolute $0040:$004A;
Mnufr :Iaepe{Crt Mode Width, 40:80 . .

Monobuffer :Imagetype absolute $BOOO:$0000;
[Monochrome Adapter Memory)

- 225 -

O4



Colorbuffer :Imagetype absolute $B800:$0000;
[Color Adapter Memory

CrtAdapter :integer absolute $0040:$0063;
{ Current Display Adapter }

VideoMode :byte absolute $0040:$0065;
{ Video Port Mode byte

TurboCrtMode: byte absolute Dseg:6;
{Turbo's Crt Mode byte

VideoBuffer:integer; { Record the current Videol
Delta,

x,y :integer;

{---------------------------------------------------------I
Delay for X seconds

procedure TimeDelay (hold : integer);
type
RegRec = The data to pass to DOS I

record
AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags Integer;

end;
var

regs:regrec;
ah, al, ch, cl, dh:byte;
sec :string[2];
result, secn, error, secn2, diff :integer;

begin
ah := $2c; [Get Time-Of-Day from DOS}
with regs do {Will give back Ch:hours }

{Cl:minutes,Dh:seconds

ax := ah shl 8 + al; {Dl:hundreds I

intr($21,regs);

with regs do

str(dx shr 8:2, sec); {Get seconds
{with leading null}

if (secfl] = ' ') then
sec[l]:= '0';

val(sec, secn, error); (Conver seconds to integer)
. repeat { stay in this loop until the time)

ah := $2c; { has expired }
with regs do

* ax := ah shl 8 + al;
. intr($21,regs); {Get current time-of-day}

with regs do {Normalize to Char)
str(dx shr 8:2, sec);

if (sectl] = ' ') then
sec[l]:= '0';

- 226 -



val(sec, secn2, error); (Convert seconds to Integer}
diff :=secn2 - secn; {Number of elapsed seconds)
if diff < 0 then I we just went over the minute

diff := diff + 60; {so add 60 seconds
until diff > hold; I has our time expired yet I

end; { procedure TimeDelay I

-------------------------------------------------------------------- I
{ Get Absolute postion of Cursor into parameters x,y

-------------------------------------------------------------------- I
Procedure GetAbsCursor (var x,y :integer);

Var
Active-Page byte absolute $0040:$0062;

{ Current Video Page Indexl
CrtPages array[0. .7] of integer absolute $0040:$0050;

Begin
X Crt_Pages[activepageJ; {Get Cursor Position I
Y =HiUD)+l; { Y get Rowl
X Lo(X)+l; { X gets Col positionl

* End;

I-----------------------------------------------------------I
ITurn the Video On/Off to avoid Read/Write snow

- .J. I-------------------------------------------------------------
Procedure Video (Switch:boolean);

Begin
If (Switch = Off) then

* Port[CrtAdapter+4] := (VideoMode -VideoEnable)

else Port[CrtAdapter+4J : (VideoMode or
End; VideoEnable);

{----------------------------------------------------------I
IInitWin Saves the Current (whole) Screen
I----------------------------------------------------------
Procedure InitWin;

IRecords Initial Window Dimensions I
Begin

* with Win.Dim do
begin xl:=1; yl:=l; x2:=crtwidth; y2:=25 end;

Win. Depth: =0;
InitDone := True ;IShow initialization Done

end;
---------------------------------------------------------

0. { BoxWln Draws a Box around the current Window
---------------------------------------------------------
procedure BoxWin(xl,yl,x2,y2, BD, FG, BG :integer);

{Draws a box, fills it with blanks, and makes it the
current Window. Dimensions given are for the box; actual
Window is one unit smaller in each direction. I

-227-



var

TB,SID,TLC,TRC,BLC,BRC :integer;

begin
if Crtmode = Mono then begin
FG :=7;
BG :=0;
end;

Window(xl,yl,x2,y2); {Make the Window}
TextColor(FG) { Set the colorsl
TextBackground(BG);
Case BD of {Make Border characters}

0:; [No border option}
1:begin {Single line border option}

TB 196; {Top Border}
SID 179; (Side Border}

*TLC :=218; (Top Left Corner}
TRC 191; {Top Right Corner}
BLC :=192; (Bottom Left Corner}
BRC 217; {Bottom Right Corner)
end;

2:begin (Double line border optioni
TB 205;
SID :=186;
TLC 201; TRC 187;
BLC 200; BRC 188;
end;

3:begin {Double Top/Bottom with single sides}
TB 205; ("1deary and dont spare the lace'}
SID 179;
TLC :=213; TRC 184;
BLC 212; BRC 190;
end;

End; (Casel

IF BD > 0 then begin t User want a border?I
TopI

*gotoxy(1,1); { Window OriginI
Write( chr(TLC) )f Top Left Corner }
For 1:=2 to x2-xl do f Top Bar

Write( chr(TB));
Write( chrCTRC) );{Top Right Corner

0g I Sides
for 1:=2 to y2-yl do begin

gotoxyC 1,1); (Left Side Bar
writeC chrCSID) )
gotoxy(x2-l,);{ Right Side Bar
write( chr(SID) )

end;

-228-

04



{BottomI
gotoxy(1,y2-yl+1); I Bottom Left CornerI
write( chr(BLC) );
for I:=2 to x2-xl do {Bottom Bar

writeC chr(TB) )

{ Make it the current Window
Window(xl+1,yl+l,x2-1,y2-1);
write( chr(BRC) f Bottom Right Corner I

end; {If BD > 0);

gotoxy(1,1);
.. '*.r.TextColor( FG) I Take Low nibble 0. .15

TextBackground (BG); ITake High nibble 0. .9 }
ClrScr;

end;

IMkWin Make a Window
----------------------------------------------------------
procedure MkWin(xl,yl,x2,y2, FG, BG, BD :integer);

{Create a removable Window

begin

If (InitDone =false) then I Initialize if not done yet I
InitWin;

TurboCrtMode :=CrtMo~le; {Set Textmode w/o ClrScr}
If CrtMode = 7 then Video-_Buffer :=$BOOO {Set Ptr to

Monobuffer I
else Video-_Buffer :=$B800; [or Color Buffer I

with win Ju Depth:=Depth+I; {Increment Stack pointer I
if Win.DepthmaxWin then

begin
writeirK 0; WindOWs nested too deep')
hal2t

end;

Save contents of screen I
---------------------------------------------------------- I

With Win Ju
Beg in
New(Stack(Depthj); fAllocate Current Screen to Heap I
Video( Off);
If CrtMode = 7 then
Stack[DepthV. Image :=monobuffer I set pointer to itI
else
Stack[DepthlV.Imaqge colorbuffer
Video( On);

End

-229-



With Win do
Begin { Save Screen Dimentions}

Stack[Depth]^.Dim Dim;
Stack[Win.Depth]^.x wherex;{ Save Cursor Position}
Stack[Win.Depth]^.y wherey;
End ;

{ Validate the Window Placement}
If (X2 > 80) then { If off right of screen

begin
Delta := (X2 - 80); { Overflow off right margin}
If Xl > Delta then

Xl := X1 - Delta ; { Move Left window edge I
X2 := X2 - Delta ; {Move Right edge on 80
end;

If (Y2 > 25) then { If off bottom screen
begin
Delta := Y2 - 25; { Overflow off right margin I
If Y1 > Delta then

Y1 := Y1 - Delta ; { Move Top edge up}
Y2 := Y2 - Delta ; Move Bottom 24 }

end;
0 { Create the New Window

BoxWin(xl,yl,x2,y2,BD,FG,BG);
If BD >0 then begin {Shrink window within borders}

Win.Dim.xl xl+l;
Win.Dim.yl yl+l; { Allow for margins }
Win.Dim.x2 x2-1;
Win.Dim.y2 y2-1;
end;

end;

{ ---------------------------------------------------------
{ Remove Window

{ ---------------------------------------------------------
{ Remove the most recently created removable Window I
{ Restore screen contents, Window Dimensions, and
f position of cursor. I

Procedure RmWin;

Var

Tempbyte : byte;

Begin

Video(Off);
With Win do

Begin { Restore next Screen I
If crtmode = 7 then
monobuffer Stack[Depth^.Image
else
colorbuffer := Stack[Depthl^.Image;
Dispose(Stack(Depth]); { Remove Screen from Heap
end;

- 230 -



".* Video(On);

With Win do { Re-instate the Sub-Window }
Begin { Position the old cursor }

Dim := Stack[Depth]^.Dim;
Window(Dim. xl, Dim.yl, Dim. x2, Dim. y2 );
gotoxy(Stack[Depth]^.x,Stack[DepthP ^ .y);

end;

GetAbs Cursor(x,y) ; {New Cursor Position I
Tempbyte := { Get old Cursor attributes}

Mem[ VideoBuffer:((x-1 + (y-l) * 80 ) * 2)+1 ];

TextColor( Tempbyte And $OF );[ Take Low nibble 0..151
TextBackground ( Tempbyte Div 16); { Take High nibble

0..91
Depth := Depth - 1

end ;
end;
---------------------------------------------------------

2

..

.?,-

- 21
d It

,.o... 'q ~ - - *



S T AY XIT 4 2 0

(----------------------------------------------------------
{Stay_Xit Check Terminate Keys

~,. p {Clean up the Program ,Free the Environment block, the
program segment memory and return to Dos. Programs using
this routine ,must be the last program in memory, else ,a
hole will be left causing Dos to take off for Peoria.1
{------------------------------------------------------------
Procedure StayXit;
{This code reinstates those interrupts that will not be
restored by DOS. Interrupts 22,23,24 (hex) are restored
from the Current PS2 during termination.)

VAR
PSPvector22: vector absolute Cseg:$OA;
PSPvector23: vector absolute Cseg:$OE;
PSPvector24: vector absolute Cseg:$12;

DOSvector22: vector absolute 0:$88;
DOSvector23: vector absolute 0:$8C;

0DOSvector24: vector absolute 0:$90;

Begin { Block I
wr iteln;
Writeln ('Remind program Terminated');
WRITELN;
WRITELN ('Enter <CR> to continue');

Inline(C$FA); (Disable interruptsl

{Restore Disk Interrupt Service Routine }

Regs.Ax $2500 + BI05113;
Regs.Ds BIOSINTl3.CS;
Regs.Dx BIOSINTl3.IP;
Intr ($21,Regs);

* {Restore Keyboard Interrupt Service Routine

Regs.Ax $2500 + BIOSIlS;
Regs.Ds BIOSINTl6.CS;
Regs.Dx BIOSINTl6.IP;
Intr ($21,Regs);

{Restore Timer Interrupt Service Routine

Regs.Ax $2500 + B10518;
Regs.Ds BIOSINT8.CS;
Regs.Dx BIOSINT8.IP;
Intr ($21,Regs);

-232-

04~



{Restore DOS 21 Interrupt Service Routine

Regs.Ax $2500 + D05121;
Regs.Ds DOSINT21.CS;
Regs.Dx DOS_INT21.IP;
Intr ($21,Regs);

I Restore DOS 28 Interrupt Service RoutineI

ARegs.Ax $2500 + D05128;
Regs.Ds DOS_1NT28.CS;
Regs.Dx DOS_1NT28.IP;
Intr '$21,Regs);

tMove Interrupt Vectors 22,23,24 to our PSP from where
DOS will restore I

PSPvector22 O~Svector22; [Terminate vector}
PSPvector23 DOSvector23; f Cntrl-C vector I

0'PSPvector24 DOSvector24; [ Critical vector

Inline(SFB); {Re-enable interrupts}

Regs.Ax $49 shi 8 + 0 ;{Free Allocated Block
function)

Regs.Es MemWfCseg:$2C]; [ Free environment
'.lock

MsDos( Regs)

Regs.Ax $49 shl 8 + 0; { Free Allocated Block
function)

Regs.Es Cseg ;IFree Program)
EdMsDos( Regs );
En StayXit 1;

0

-233-



,.1

f STAY SUBS 420

-----------------------------------------------------I
{ SETUP I N TER R UPT }
{ --------------------------------------------------

Msg # *48 Dated 07-07-86 16:54:36
From: NEIL RUBENKING
To: LANE FERRIS
Re: STAY, WON'T YOU?

Lane,
Here's what I did:

}

PROCEDURE Setup_Interrupt(IntNo :byte; VAR IntVec
:vector; offset :integer);

BEGIN
Regs.Ax := $3500 + IntNo;
Intr(DosI21,Regs); [get the address of interrupt }
IntVec.IP := Regs.BX; { Location of Interrupt Ip }
IntVec.CS Regs.Es; { Location of Interrupt Cs I

Regs.Ax := $2500 + IntNo; { set the interrupt to point
to our procedure}

Regs.Ds := Cseg;
Regs.Dx := Offset;
Intr (DosI21,Regs);

END;
(********C 0 M M E N T *
{in the main part of the programl
Setup_Interrupt(BIOSI16, BIOS_Intl6, Ofs(StayINTl6));
{keyboard}

*. SetupInterrupt(BIOSI10, BIOS_IntlO, Ofs(Stay_INT10));
*, {videol

Setup_Interrupt(BIOSI8, BIOS_Int8, Ofs(Stay_INT8));
{timer}

Setup Interrupt(BIOSI13, BIOS_Intl3, Ofs(Stay_INTl3));
{disk}

Setup Interrupt(DOSI21, DOS_Int2l, Ofs(Stay_INT21));
{DOSfunctionl

Setup_Interrupt(DOSI28, DOS_Int28, Ofs(Stay_INT28));
{DOS idlel

r ******C 0 M M E N T *******************)

- 234 -



{------------------------------------------------------------
Procedure SetDTA(var segment, offset : integer );
BEGIN

regs.ax $1A00;{ Function used to get current DTA
address }

r.. regs.Ds segment; [ Segment of DTA returned by
DOSI

regs.Dx offset; { Offset of DTA returned
MSDos( regs ); { Execute MSDos function request }

4.' END;
-4.., -------------------------------------------------------I

SG E T D TA 

-----------------------------------------------------
Procedure GetDTA(var segment, offset : integer );
BEGIN

regs.ax := $2F00; { Function used to get current
DTA address I

MSDos( regs I Execute MSDos function
request I

segment regs.ES; { Segment of DTA returned by
DOS I

offset regs.Bx; i Offset of DTA returned }
END;

<'a I------------------------------------------------------I
S E T P S P 1

--------------------------------------------------
Procedure SetPSP(var segment : integer );
BEGIN

- A bug in DOS 2.0, 2.1, causes DOS to clobber its
standard stack when the PSP get/set functions are issued at
the DOS prompt. The following checks are made, forcing DOS
to use the "critical" stack when the TSR enters at the
INDOS level.}

{If Version less then 3.0 and INDOS set I
If DosVersion < 3 then [then set the Dos Critical Flag)

If Mem[DosStatl.CS:DosStatl.IP] <> 0 then
_.,,- .,Mem[DosStat2.CS:DosStat2.IP] := SFF;

- regs.ax $5000; { Function to set current PSP address }
regs.bx :=segment; { Segment of PSP to be used by DOS I
MSDos( regs ); { Execute MSDos function reauest }

(If Version less then 3.0 and INDOS set I
r.o If DosVersion < 3 then {then clear the Dos Critical Flag I

If Mem(DosStatl.CS:DosStatl.IP] <> 0 then
Mem[DosStat2.CS:DosStat2.IP] $00;

-4.- END;

- 235 -
4."



V n T V I 'r 
w T l

% 4

-------------------------------------------------------------------- I

Procedure GetPSP~var segment :integer )
BEGIN

{A bug in DOS 2.0, 2.1, causes DOS to clobber its
standard stack when the PSP get/set functions are issued at
the DOS prompt. The following checks are made, forcing DOS
to use the "critical" stack when the TSR enters at the
INDOS level.)

[If Version less then 3.0 and INDOS set}
If DosVersion < 3 then [ then set the Dos Critical Flag)

If Mem[DosStatl..CS:DosStatl.IP] <> 0 then
MemE DosStat2 .CS:DosStat2. IP] := $FF;

regs.ax :=$5100;[Function to get current PSP addressI
MSDos( regs ); { Execute MSDos function request I
segment :=regs.Bx; { Segment of PSP returned by DOSI

{IF DOS Version less then 3.0 and INDOS set }
If DosVersion < 3 then {then clear the Dos Critical Flag I

If MemtDosStatl.CS:DosStatl.IP] <> 0 then
Mem(DosStat2.CS:DosStat2.IP] :=$00;

END;
{-------------------------------------------------------
f G et Co nt rol1 C (break) V ec to r
{-------------------------------------------------------

Type
Arrayparam = array [1.-2] of integer;

Const
SavedCtlC: arrayparam = (0,0);
NewCtlC :arrayparam = (0,0);

Procedure GetCtlC(Var SavedCtlC:arrayparam);
Begin [Record the Current Ctrl-C Vector)

With Regs Do
Begin
AX: =$3523;

* MsDos(Regs);
7" SavedCtlC(1] :=BX;

SavedCtlC 2]: =ES;
End;

End;
I----------------------------------------------------
I S et Co nt rol1 C V ec t or I

r f-----------------------------------------------------
Procedure IRET; (Dummy Ctrl-C routine)

Begin
inline($5D/$5D/$CF); {Pop Bp/Pop Bp/Iretl
end;

-236-



Procedure SetCtlC( Var CtlCptr:arrayparam);
Begin {Set the New Ctrl-C Vectorl

With Regs Do
Begin
AX: =$2523;

DS :=CtlCptr [2];
DX: =CtlCptr (11;
MsDos(Regs);

End;
End;

K e y n R Re ad K ea bo a rd I
{--------------------------------------------------------- I
Function Keyin: char; { Get a key from the Keyboard

Var Ch : char; { If extended key, fold above 1271
Begin {-------------------------------- I

Repeat until Keypressed;
Read(Kbd,Ch);
If (Ch = Esc) and KeyPressed then

Begin
Read(Kbd,Ch);
Ch := Char(Ord(Ch) +- 127);
End;

Keyin := Ch;
End; {Keyin)

I-----------------------------------------------------------
B Be ep : So u nd t he H or n

I-----------------------------------------------------------I
- -Procedure Beep(N :integer);-------------------------------- I

Begin { This routine sounds a tone of frequency
Sound(n); IN for approximately 100 ms
Delay(100); I------------------------------
Sound(n div 2);
DelayC 100);
Nosound;

d. End {Beep)

--------------------------------------------------I
I N TE R RUPT 2 4

--------------------------------------------------IL I Version 2.0, 1/28/86
- Bela Lubkin

0.~ CompuServe 76703,3015
Apologetically mangled by Lane Ferris

For MS-DOS version 2.0 or greater, Turbo Pascal 1.0 or
greater.

Thanks to Marshall Brain for the original idea for these
routines. Thanks to John Cooper for pointing out a small

-237-



flaw In the code. These routines provide a method for
Turbo Pascal programs to trap MS-DOS interrupt 24 (hex).
INT 24h is called by DOS when a 'critical error' occurs,
and it normally prints the familiar "Abort, Retry,
Ignore?" message.

With the INT 24h handler installed, errors of this type

will be passed on to Turbo Pascal as an error. If I/O
checking is on, this will cause a program crash. If I/0
checking is off, IOResult will return an error code. The
global variable INT24Err will be true if an INT 24h error
has occurred. The variable INT24ErrorCode will contain the
INT 24h error code as given by DOS. These errors can be
found in the DOS Technical Reference Manual.

It is intended that INT24Result be used in place of

IOResult. Calling INT24Result clears IOResult. The simple
way to use INT24Result is just to check that it returns
zero, and if not, handle all errors the same. The more

0 complicated way Is to interpret the code. The integer
returned by INT24Result can be looked at as two bytes. By

.• assigning INT24Result to a variable, you can then examine
the two bytes: (Hi(<variable>)-l) will give the DOS
critical error code, or (<variable> And $FFOO) will return
an integer from the table listed in the INT24Result
procedure (two ways of looking at the critical error);
Lo(<variable>) will give Turbo's IOResult. A critical
error will always be reflected in INT24Result, but the
lOResult part of INT24Result will not necessarily be
nonzero; in particular, unsuccessful writes to character
devices will not register as a Turbo I/0 error.

INT24Result should be called after any operation which
might cause a critical error, if Turbo's I/O checking is
disabled. If it is enabled, the program will be aborted
except in the above noted case of writes to character

0 devices.

Also note that different versions of DOS and the BIOS
seem to react to printer errors at vastly different rates.
Be prepared to wait a while for anything to happen (in an
error situation) on some machines. These routines are

0O:, known to work correctly with:
Turbo Pascal 1.OOB PC-

S.-. DOS; Turbo

.- Pascal 2.00B PC-DOS; Turbo Pascal 2.00B MS-
DOS;
Turbo Pascal 3.01A PC-DOS. Other MS-DOS and PC-DOS
versions should work.

- 238 -

'04



Note that Turbo 2.0's normal IOResult codes for MS-DOS DO
NOT correspond to the I/O error numbers given in Appendix
I of the Turbo 2.0 manual, or to the error codes given in
the I/O error nn, PC=aaaa/Program aborted message. Turbo
3.0 IOResult codes do match the manual. Here is a table
of the correspondence (all numbers in hexadecimal):

Turbo 2.0 IOResult Turbo error,Turbo 3.0 IOResult
00 00 none
01 90 record length mismatch
02 01 file does not exist
03 F1 directory is full
04 FF file disappeared
05 02 file not open for input
06 03 file not open for output
07 99 unexpected end of file
08 FO disk write error
09 10 error in numeric format
O 0A 99 unexpected end of file
OB F2 file size overflow
OC 99 unexpected end of file
OD FO disk write error
OE 91 seek beyond end of file
OF 04 file not open
10 20 operation not allowed on a

logical device
11 21 not allowed in direct mode
12 22 assign to standard files is not

allowed
-- F3 Too many open files

Bela Lubkin
CompuServe 76703,3015 1/28/86}

Const
INT24Err: Boolean=False;

* INT24ErrCode: Byte=0;
OldINT24: Array (1..2] Of Integer=(0,0);

Var
RegisterSet: Record Case Integer Of

1: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags:
Integer);

2: (AL,AH,BL,BH,CL,CH,DL,DH: Byte!;
End ;

- 239 -



*Procedure 1NT24; {Interrupt 24 Service Routine
Begin

* Inline( S2E/$C6/$06/ Int24Err / $0l/$50/$89/$F8/$2E/$A2/
Int24ErrCode/$58/$BO/$00/$89/$EC/$5D/$CF);

- { Turbo: PUSH BP Save caller's stack frame
MOV BP,SP Set up this procedure's stack

frame
PUSH BP?

Inline:
NOV BYTE CS:(INT24ErrJ,1 Set INT24Err to

* True
PUSH AX
NOV AX,DI Get INT 25h error code
NOV CS:(INT24ErrCode],AL Save it in

INT24ErrCode
POP AX
M OV AL,0 Tell DOS to ignore the error
NOV SP,BP Unwind stack frame

0POP BP
IRET Let DOS handle it from here

End;

---------------------------------------------------I
tI NT 2 4 O N
---------------------------------------------------}

{Grab the Critical error ptr from the previous user}
Procedure INT24On; {Enable INT 24h trapping I
Begin

INT24Err :=False;
With RegisterSet Do
Begin
AX: =$3524;
MsDos (RegisterSet);
If (OldINT24(lJ Or OldINT24(2])=0 Then

* Begin
.V OldINT24(1] :=ES;

OldINT24f2I :=BX;
End;

DS: =CSeg;
DX: =Ofs ( NT24);
AX: =$2524;
MsDos(RegisterSet);

V End;
End;

&A 240-

% 0 %1



-* -*~ -** - -. -. - - - -- - - -*~ - - - -i - - - --------------

{ I N T 24 OFF
--------------------------------------------------

{Give Critical Error Service pointer back to previous user}
Procedure INT240ff;

*Begin
INT24Err :=False;
If OldINT24[I]<>0 Then

- . With RegisterSet Do
Begin
DS :=OldINT24 [1];
DX: =OldINT24 (2];
AX: =$2524;
MsDos(RegisterSet);

End;
OldINT24[I] :=0;
OldINT24[2] :=0;

End;

Function INT24Result: Integer;
Var

I:Integer;
Begin

I :=IOResult;
If INT24Err Then
Begin
I :=I+256*Succ(INT24ErrCode);
INT24On;

End;
INT24Result : =I;

End;
{INT24Result returns all the regular Turbo IOResult codes
if no critical error has occurred. If a critical error,
then the following values are added to the error code from
Turbo:

256: Attempt to write on write protected disk
512: Unknown unit (internal dos error]
768: Drive not ready [drive door open or bad drive]
1024: Unknown command [internal dos error]
1280: Data error (CRC) [bad sector or drive]

-. 1536: Bad request structure length (internal dos error]
-.. 1792: Seek error [bad disk or drive]

2048: Unknown media type [bad disk or drive]
2304: Sector not found [bad disk or drive]
2560: Printer out of paper (anything that the

printer might signal]
2816: Write fault (character device not ready]
3072: Read fault [character device not ready]

.___ 3328: General failure (several meanings]

v . '.i.- 241 -

0241



If you need the IOResult part, use
I:=INT24Result and 255; [masks out the INT 24h code]

- For the INT 24h code, use
I:=INT214Result Shr 8; [same as Div 256, except faster]

INT24Result clears both error codes, so you must assign
it to a variable if you want to extract both codes:

J :=INT24Result;
WriteLn('Turbo IOResult =',J And 255);
WriteLn('DOS INT 24h code 1 ,J Shr 8);

Note that in most cases, errors on character devices (LST
and AUX) will not return an IOResult, only an INT 24h
error code.}
I Main program. Delete next line to enable I

G GET ER RO0R CO0D E

Procedure GetErrorCode;
Begin
Error := IOresult; {Read the 1/O result}
If INT24Err Then

-. Begin
Error: =Error+256*Succ (INT24ErrCode);
INT24On;

End;
Good (Error =0); {Set Boolean Result

End;

-242-



Inline(

{;P ROC E SS I NTE RR U PT 1 6

1Function:1
{;Provide a Keyboard trap to allow concurrent processes to
run in the background while a Turbo Read is active.

Copyright (C) 1985,19861
1; Lane Ferris}

1; - The Hunter's Helper -

Distributed to the Public Domain for use without
profit. Original Version 5.15.851

;On entry the Stack will already contain: ;I
1) Sp for Dos

;2) Bp for Dos
;3) Ip for Dos
;4) Cs for Dos
;5) Flags for Dos

$ 5D
[Pop Bp}

/$5D
{Pop Bp;
Restore Original BpJ

/$80/$FC/SOO
{Cmp Ah,0O;
If Char request,}

/$74/$2A
{Je FuncOO;
loop for character)

* /$80/$FC/$O1
{Cmp Ah,O1;
If character availability test)

/$74/$05
{Je Func~l;
go check for char)

* fGoBiosl6:1
/$2E

{Cs..
Go to Bios Interrupt 161

/$FF/$2E/>BIOS _INTl6
{Jmp Far (>BIOS _Intl6]I

-243-

0I



[Func~l:
/$E8/$3F/$OO

[Call KeyStat;
Look at Key bufferl

/$9C [PushF}
/$74/$16 {Jz Fret~l;

Return if no key}
/$2E {CS:;

Test for HOT KEY)
/$3A/$26/>OURHOTKEY

[Cmp Ah, I OurHot~ey]l
/$75/$OF Jne Fret0l}
/$B4/$00 {Mov Ah,O;

Remove the HotKey}
/$2E {CS:;

flags are removed by BIOS return}
/$FF/$lE/>BIOS _INTl6

{Call Dword [>BIOSINTl611
/$2E

S {ICS:;
Say we saw the HOT Key}

/$80/$OE/>STATUS/(HOTKEYON
(Or by [<Status],(HotKeyON}

/$EB/$E4
[Jmp Func~l;}

(Fret0l: }
/$9D {POPF)
/$CA/$02/$0O

{RETF 2;
Return to user}I

{FuncOO: I
/$E8/$lF/$OO

{Call KeyStat;
Wait until character available}

/$74/$FB {Jz FuncOO}
- -/$B4/$00 {Mov Ah,O;

* Get the next User Key}
,'$9 C

{PUSHF; I
/$2E [CS:1
/$FF/$lE/>BIOS _INT16

{Call Dword [>BIOSINTl6]}
5,/$9C {PushF;

Save Return Flags}
/$2E (CS:}
/$3A/$?26/>OURHOTKEY

{Cmp Ah, [<Our _HotKeyj; Our HotKey ?}

- 244 -

04

-~~J r~-



/$74/$04
{Je GotHotKey;
yes..enter Staysave code}

/$9D
{POPF;
else Restore INT 16 flags)

/$CA/$02/$00
{RetF 2;

Return W/Key discard original INT 16 flags}
{; ".. give it to Mikey..he'll eat anything"}

{GotHotKey:}
/$9D {POPF; Discard INT16 return flags}
/$2E {CS:; Say we saw the HOT Key)
/$80/$OE/>STATUS/<HOTKEYON ( Or by [<Status],<HotKey.ON}
/$EB/$DE {Jmp FuncOO; Get another Key}

~{; }
{; Call the Background task if no key is available)

* {;}
{KeyStat:}

/$B4/$O1
{Mov Ah,01;
Look for available key}

/$9C
{Pushf;

- Call the keyboard function}

/$2E {CS:}
/$FF/$1E/>BIOSINTI6

{Call dw [<BIOSINT16]}
/$74/$01

{Jz ChkDosCr;
/$C3No Character available from Keyboard)
/$C3

{RET;
.. ko else return with new flags and code}

{ChkDosCr:}

* e/$06
{Push ES;

Check if DOS Critical error in effect}
/$56 {Push Si}
/$2E (CS:}
/$C4/$36/>DOSSTAT2

en {Les Si,[>DOSStat2]}
/$26 {ES:;

% Zero says DOS is interruptable}
A /$AC {Lodsb;

$FF says Dos is in a critical state}

- 245



/$2E (CS:}I
/$C4/$36/>DOSSTAT1

{Les Si,(>DosStatll;
If INDOS then INT $28 issued by DOS}

/$26
{ES:;
so we dont have to.}

/$OA/$04 for AlJSII}
/ $2E

{CS:;
Account for active interrupts}

/$OA/$06/>INTRFLAGS
(Or Al,[<IntrFlags);

Any flags says we dont issue call}
/$ 5E

[Pop Si;
to the background.)

/$07 (Pop Es}
/$3C/$Ol

{Cmp A1,01;
Must be INDOS flag only}

/$ 7 F/$02
(JG Skip2B;

DOS cannot take an interrupt yet}
/$CD/$28

{INT $28;
Call Dos Idle function (background dispatch).}

{Skip28: I
/$31/$CO

(Xor Ax,Ax;
Show no keycode availablel

/$C3 {RET}
-------------------------------------

.24

0z..



Inlin{; STAYI13.4001

;------------; I
IRoutine to Set a Flag when INT 13 Disk I/O is active}

$5D {Pop Bp;

Remove Turbo stack frame)
/$5D {Pop Bpi
/$2E (CS:)
/$80/$OE/>INTRFLAGS/<INT13_ON

{Or by
[(Intr_flagsJ,<INT13_on;
Say INT 13 is Activel

/$9C
* {Push;

Invoke Original Disk INT 131
/$2E {CS:}
/$FF/$1E/>BIOSINT12

(Call dw [<BIOSINT13I}
/$9C

(Pushf;
Save Return Flags}

/$2E (CS:)
/$80/$26/>INTRFLAGS/<FOXS-INT13_-ON

(And by (<Intr _flags],<Foxs-INTl3 on;
Clear INT 13 Active flag}

/$9D
(Popf;
Retrieve results flags}

/$CA/$02/$OO
{RETf 2;
Throw away old flags}

.................................................................... I

-247-



Inline(
{; STAY121.400}

{Routine to Set a Flag when certain INT21 functions are
active. Functions to be flagged are identified in the main
Stayres routine. Cf. Functab array.}

$5D
{Pop Bp;
Remove Turbo Prologue}

/ $5D
{Pop Bp}

/$9C {PushF}
/$FB {SI

-JTI

Allow interrupts}
/$80/$FC/$62

{Cmp Ah,$62;
Verify Max function}

/$7F/$28 {Jg Skip1211
{Some Int 21 functions must be left alone. They either

never return, grab parameters from the stack, or can be
interrupted. This code takes account of those
possibilities. }

/$ 50
(Push Ax;
Skip functions marked 1 in}

/$53
{Push Bx;
in the function table.}

/$86/$C4
{Xchg Ah,Al)

/$BB/>FUNCTAB
* {Mov Bx,>FuncTab;

Test Int 21 function}
/$2E (CS:}
/$D7 {Xlat}
/$08/$CO {Or A1,Al;

Wait for functions marked zero}
S./$5B {Pop Bx;

in the function table.}
/$58 {Pop AxI
/$75/$19 {Jnz Skip121}

{Set121:1~

"'p - 248 -

J. 10

N'~ N reP



/$2E (CS: I
/S80/SOE/>INTR_FLAGS/(INT21_ON

fOr by f(Intr flagsJ,<INT2l on;
Say INT 21 is Active}

/$9D {PopF}
/$9C {Pushf}
/$2E {CS:1
/$FF/$1E/>DOSINT21

[Call dw [<DOS_-INT21];
Invoke Original INT 211

/SFB
* (STI;

Insure interrupts enabledl
/$9C.

{Pushf;
Save Return Flags}

/ $2E
(CS:;

* Clear INT 21 Active}
/$80/S26/>INTRFLAGS/<FOXS-INT21_-ON

{And by (<Intr_flags],.<Foxs-INT21_on1

/$9D (oE
APpf
V Retrieve the flags}

/$CA/$02/$OO {RETF 21
{SkIpI2l:;
Invoke Int 21 w/o returil

/$9D {PopF}
/$2E {CS:}
/$FF/$2E/>DOS _INT21

{Jmp dw [>DosINT21]}

...............................................

IW4

SW



{* C L K I 8 . 4 1 0 Clock Interrupt Service *1

(* CLOCK_I8.INL *)
(* Fm: Neil J. Rubenking [72267,1531]

On each call to INT 8, this routine checks If the
timer is "running". If it is, It checks if the activation
time has been reached. If It has, the STATUS byte is set
to include the "HotKeyOn" and "From Timer" bits. After
that, control passes on to the STAYI8.5BJ code *)

. (*NJR*)
INLINE(
$9C/ {PUSHF}
$2E/$F6/$06/>Status/<Timer _On/

(TEST BY CS:status, timer-on)
$74/$29/ {JZ nothing}

""$50/ {PUSH AX)

$1E/ {PUSH DS}
$B8/$40/$00/ {MOV AX,40h}
$8E/$D8/ {MOV DS,AX}
$A1/$6E/$00/ {MOV AX,[6E]}
$2E/$39/$06/>timer hi/ {CMP CS:timer hi,AX}
$75/$16/ {JNZ notyet}
$Al/$6C/$00/ {MOV AX,[6C1}
$2E/$39/$06/>timerLo/ {CMP CS:timer Lo,AX}
$7D/$OC/ {JGE NotYet}
$2E/$80/$OE/>Status/<HotKey_On/

{OR BY CS:status, hotkeyon}
$2E/$80/$OE/>Status/<fromTimer/

{OR BY CS:status, fromtimer}
{NotYet}

$1F/ {POP DS}
$58/ {POP AX}

. {nothing}
$9D); {POPF}
(*NJR*)

{---------- E n d C 1 o c k _ I 8----------------------

'O

- 250 -

o4



Inline(
{STAY18.4131
---------------------------------------- I

{Routine to Await Outstanding I/O, then post Stayres
Act ivel

$5D
{Pop Bp;
Remove Turbo Prologue}

/$5D {Pop BPI
/$9C {Pushf)

/$2E {CS:1
/$FF/$1E/>BIOSINT8

{Call dw (>BIOSINT8];
Invoke Original INT 8}

*/$2E (CS:)
/$F6/$06/>STATUS/<HOTKEYON

{Test by t<Status],(HotKeyon;
Have we received the HOTKEY)

/$74/$39 {Jz NoGo)
/$2E {CS:)
/$F6/$06/>STATUS/<INUSE

(Test by E<Status],<Inuse;
If Inuse. . then No go)

/$75/$31 (Jnz NoGol
/$2E [CS:;

Have the HotKey}
/$80/$3E/>WAITCOUNT/$OO

(Cmp by (<WaitCount],OO;
If waiting, check time)

/$75/$22 (Jnz Waiting)
(If Not already waiting I/O, not already in use, and

HotKey received see if DOS is now interruptablel
{ChkIO: I

/$06
(Push ES;
Save registers)

/$56 (Push Si)
/$50 (Push Ax)

*/$2E {CS:)
/$C4/$36/>DOSSTATl (LES Si,(>DOSstatlJ;

Fetch Dos status 1)
/$216 (ES:)

-251-

111MN 111' &



/$AC
S (Lodsb;

Fetch Status byte from dos)
/$2E (CS:1
/$C4/$36/>DOSSTAT2

{LES SI, t>DOSstat2];
Add second status byte)

/$26 {ES:)
/$OA/$04 for Al,[SI])
/$2E (CS:)
/$OA/$06/>INTRFLAGS

{Or Al,[<IntrFlags];
Add Interrupt active flags)

/$58 {Pop Ax)
/$5E [Pop Si)
/$07 {Pop ES)
/$74/$OE

(Jz Go;
Wait for inactivity)

/$2E (CS:)
/SC6/$O6/>WAITCOUNT/$1O

(Nov by [<WaitCountJ,$1O;
- Set Wait count)

(Waiting:)
-. /$2E (CS:)

/ $FE/ $OE/ >WAI TCOUNT
(Dec by [(WaitCount];
Decrement wait count)

/$74/$D7 {Jz ChkIO}
NoGo:)

/$CF (IRET)
(GO: ;Enter the User's Turbo Procedure)

/$2E I CS:)
/$FF/$16/>USERPROGRAM { Call [<UserProgram])
/$CF ( IRETI

p {;..........................................................)

525



* STAYI28 410

Inline( {; STAYI28.4001

(----------
{; Routine to Invoke User Code When HotKey or DOS idle}
$5D {Pop Bp;
/S5D Remove Turbo Prologue}
/$5D (Pop Bpi
/$9C {Pushf}
/$2E {CS:1
/$FF/$1E/>DOSINT28 {Call dw [>DOSINT28J;

Invoke Original INT 281
/$2E (CS:)
/$F6/$06/>STATUS/<HOTKEY ON

{Test by [<Status],<HotKeyon;
Have we received the HOTKEY}

/$74/$25 {Jz NoGol
- /$2E {CS:}

/$F6/$06/>STATUS/<INUSE

{Test by [<Status],<Inuse;
If Inuse.. then No go}

-. -/$75/$1D {Jnz NoGo}
{; If Not already waiting I/O, not already in use, and
HotKey received see if DOS Is now Interruptable}

{ChkIO:}
/$06

{Push ES;
Save registers)

/$56 (Push Si}
/$50 {Push Ax)
/$2E {CS:}
/$C4/$36/>DOSSTAT2

{LES SI,[>DOSstat2I;
Fetch DOS Critical status byte)

* /$26 (ES:)
/$AC {LodSb}
/$2E {CS:}
/$OA/$06/>INTRFLAGS

(Or Al,[<IntrFlags];
Add Interrupt active flags)

I /$58 (Pop Ax)
/$5E {Pop Si}
/$07 (Pop ES}

- 253 -

o.

", ". . o ' -, % % ° - " . , ', . % % " ' , " ' '



Inline(

1; ST A YS A V E 42 0

[;Version 4.151
{1

{This Ilnline routine will save the regs and Stack f or
Stay resident programs. It restores DS and SS from the
previously saved integer constants "OurDseg" and
"OurSSeg". DS is restored from the Turbo Initialization
Savearea.}
{; Author: Copyr. 1985, 19861

1; Lane Ferrisl
1;- The Hunter's Helper -

[;Distributed to the Public Domain for use without profit.}
Original Version 5.15.85}

$FA
{CLI;

* Stop all interrupts)
/$2E [CS:)
/$80/$OE/>STATUS/<INUSE

[Or by [(Statusl,<InUse;
Set Active bit)

{Switch the SS:Sp reg pair over to ES:Sil
{Put Turbo's Stack pointers Into SS:Spl

/$2E (CS:)
/$8C/$1E/'>USRDSEG

{llov (>UsrDSeg],DS;
Save Usr DataSegment I

/$2E [CS:)
/$8C/$16/>USRSSEG

{Mov (>UsrSSeg],SS;
Save Usr Stack Segment)

/$2E (CS:)
/$89/$26/>USRSPTR {Mov [>UsrSPtr],Sp;

Save Usr Stack Ptr}
* {; Stack User Interrupted pgm regs for Exit.)

'I (;These are the original interrupt process regs}
{; that must be returned on interrupt return)

/$2E (CS:)
/$8E/$1E/>OURDSEG {MovDS, (>OurDseg];

Get Turbo Stack pointer from DataSegment)
/$2E {CS:)
/$8E/$16/>OURSSEG (Mov SS,f>OurSSeg1}
/$8B/$26/S74/$01 {Mov Sp,($174J;

Sp set by code at $B2B in Turbo initialization)

-255-



/$55 (Push Bpi
/$50 (Push Ax)
/$53 (Push BxI
/$51 [Push Cx)
/$52 [Push DxI
/$56 {Push Si)
/$57 {Puzh Dil
/$06 (Push Es)

(;Save the InDOS stack to avoid recursion crashes
(Writein).1

(Setup destination to Turbo Stack)
/$89/$E7 (Nov DI,Sp;

Dest is our stack)
/$4F (Dec Di;

Back off current used word}
/$4F (Dec Di)
/$2E (CS:)
/$8C/$DO (Mov Ax,SS;

* Turbo stack is destination)
/$8E/$CO (Nov ES,Ax)

{Setup source from DOS Indos primary stack}
/$2E (CS:}
/$8E/$1E/>DOSSSEG (Mov DS, E>DosSSeg];

Source is DOS Indos primary stack)
/$2E (CS:)
/$8B/S36/>DOSSPTR

(Nov Si,(>DosSptrl;
DOS primary stack offset)

/$B9/$40/$00 (Mov Cx,$40)
/$2E (CS:)
/$89/$OE/>DOSSSIZ (Nov (>DosSsiz];

remember the stack word size)
/$4E (Dec Si;

point last word on stack)
/$4E (Dec 511
/$89/$EO

* (Nov Ax,Sp;
Get stack pointer higher to avoid}

/$29/$C8 (Sub Ax,Cx;
overwriting during enabled REP functions)

/$29/$C8 {Sub Ax,Cx}
/$89/$C4 (Mov Sp,Ax}

S/$FD {STD;
Move like Pushes on stack)

//$F2/$A5 {Rep Movsw;
Move users stack to our own)

-256-



/$89/FC
{Mov Sp,Di;

Update our stack pointer to available word.}
/$FC {Cld}
/$2E {CS:}
/$8E/$1E/>OURDSEG

{Mov DS,[>OurDSeg];
Setup Turbo Data Segment Pointer}

"/$FB
{ STI;
Enable Interrupts}

-25

-. •

I
I).

.

_1

- 257 -



Inline(

S T A Y R S T R 4 2 0 ;1
{ This is the StayRstr.Inc file included above

{ 5******************************************************

( Inline Code to restore the stack and regs moved; to the
Turbo Resident Stack which allows Turbo Terminate & Stay
Resident programs.}
{ ; Copr. 1985, 1986}

S { ; Author: Lane Ferris}
{ ; - The Hunter's Helper -}
Distributed to the Public Domain for use without profit.}

{ ; Original Version 5.15.85}

---------------------------------------------------------------- }
f; Restore the Dos (or interrupted pgm) Regs and Stack ;}

{ --------------------------------------------------------- ;
{; Replace the Users Saved Stack)

* {; Note that pushes on the stack go in the opposite

direction of our moves. Thus we dont worry about REP stack
activity overlaying the enabled REP fuction.}

$FA {CLI}
/ $2E

{CS:;
Avoid stack manipulation if never "StaySaved"}

/$Al/>DOSSSIZ (Mov Ax,[>DosSsizl}

/$09/$CO {Or Ax,Ax}
/$74/$20 {Jz NotinDos}
/$8C/$DO

{Mov Ax,SS;
Source is our Stack}

/$8E/$D8 (Mov DS,Ax}
/$89/$E6 {Mov Si,Sp;

Point to Last used USER word on our stack}
/$46 {Inc Si}
/$46 [Inc Si}
/$2E (CS:}
/$8E/$06/>DOSSSEG {Mov ES,[>DosSSegl;

Dest is Dos indos primary Stack}

/$2E (CS:)
/$8B/$3E/>DOSSPTR (Mov Di,[>DosSptr]}
/$2E {CS:}
/$8B/$OE/>DOSSSIZ {Mov Cx,[>DosSsiz];

Saved words)

- 258 -

04drW x 0



' ; "APPENDIX E

• PROGRAM LISTING

-. -. for

'.'. TURBO. LAN

nn

,-...A r for

,. "



/*TURBO.LAN

This file is an example of a user defined keyboard overlay.
Once compiled, the resulting language description file

overlay is intended to be used with Turbo Pascal with the
IBM Voice-Activated Keyboard Utility. Special key
sequences that are normally entered by hand may be voiced
when this overlay is loaded into memory. With the special
overlay, CONSOLE.LDF, preloaded with the option permanent,
the user may voice commands to train the words in this

overlay.

vocabulary:

This overlay contains two word groups:

Group Words Description

ALL 37 This group contains the overlay's
predefined words. By selecting
the ALL group, the user can change the
name and/or keystrokes generated by a
word. Words in this group contain
commands for the Voice-Activated
Keyboard Utility and for Turbo Pascal
Commands. Words are always active.

COMMANDS 10 The words in this group are always
active. The user may define desired

*words and the keystrokes that are

produced.

Note: All words in this overlay are always active. No

subproductions are defined. */

#define vcom /* Special key bindings for this overlay */

"bind a-c console
bind a-m menu/permanent
bind a-l microphone on
bind a-o microphone off
bind a-t microphone momentary
bind a-r remember

4 bind a-d define
bind /echo enter reset";

Defined Words (followed by the keystrokes they
generate) */
enter "'enter'";

- 261 -



C QT 11 .

9.voice console 'a-c'"
line-up "'esc H";
line Tdown "1'esc'P"1;
scrolljip 'l'c-W'",;
scroll down 1''c-Z?'";
pageup "'esc' I";
page down "1'esc' Q";
delete line "'c-Y'";
delete character 11'esc'S"';
begin b ilock "'c-K'b";

9.end -block "'c-K'k"f;
9',Copyblock "'c-K'";

move block "'c-K'v";
hide block "'c-K'h";
delete _block "'c-K'y" ;
read _block "l'c-Klr";
write-_block "'c-K'";
end "c-K 'dt;
topof-file "''c-Q'r";

0 end _of-file "'lc-Q'c";
left "'lesc'K";
right "'esc'M";
word left "''c-A'";
word right "'c-F'";
beginningofjline 'esc'G";
end of -line "'lesc'O"l;
findi " 'c-Q' f";

.. 4, replace "'lc-Q'a"l;
quit "q"
edit "ell;
compile Icll
options 'oll;
run "r
save ls"l;
escape "'lesc'";

/* The root sentence definition follows *

Root (enter menu voice console cmdl cmd2 crnd3 cmd4 cmd5
Z cmd6 cmd7 cmd8 crnd9 cmdlO]

(line_up,
line down,

'S scroll-up,
scroll-down,
page.up,,
page down,
delete line,

Ile delete-character,

beg in-block,

S 262-

9%.



endblock,
copyblock,
move_block,
hideblock,
delete block,
read block,
write block,
end,
topof _file,
end of _file,
left,
right,
word _left,
word-r ight,
beginning ofline,
end ofline,
find,
replace,
quit,
edit,
compile,
options,
run,
save,
escape);

4-.

/* ALL is the group of all predefined words */

*ALL = enter, menu, voiceconsole, line-up, linedown,

scroll-up, scrolldown, page-up, page-down,
delete_line, deletecharacter, beginblock,
endblock, copy_.block, moveblock, hide-block,
deleteblock, read block, writeblock, end,
topof_file, end of file, left, right,
word_left, word right, beginning_ofline,

end ofjline, find, replace, quit, edit, compile,
options, run, save, escape;

/* COMMANDS is the group of all user-definable words */

*COMMANDS = cmdl, cmd2, cmd3, cmd4, cmd5, cmd6, cmd7, cmd8,

cmd9, cmdlO;

. cmdl; ! cmd2; ! cmd3; ! cmd4; ! cmd5;
! cmd6; ! cmd7; ! cmd8; ! cmd9; ! cmdlO;

.'.. /* END TURBO.LAN */

263 -

S..

Al



IL

BIBLIOGRAPHY:

TB Ptf T ii;1, i i on dind Set tup Voic (rnnur iot r

VTEN Contuimncit i n Appi ic-it irc flS'rcjr iir 1 ntor fA(t2
t, i- ~ne, Vol 1I & 2, 62307423

'TIM VlI Jc Ac t cKeIurlrt 1ty649:8



0 lb

pM~b

/lfi


