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There has been considerable disagreement about how best to estimate the
I ' j

prameters In Michaells-Menten models. -W9L point, r out that many fitting

methods are based on different stochastic models, beIng weighted least
r r

squares estimates after appropriate transformation. -Wt propose a flexible

model which can be used to help determine the proper transformation and

choice of weights. The method is illustrated by examples.j
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SErI(1 : Introduction

The Michaelis-Menten relation between a response y and a predictor x can

be written as

(1.1) y = Vx/(K+x) = (a0 + al/x}-

where ao0 = I/V and a1 = K/V. The model applies at least approximately in a

variety of biological and biochemical situations, see Cressie & Keightley

(1981), Currie (1982), Johansen (1984) and Ruppert & Carroll (1985). In

fisheries research. (1.1) is called the Beverton-Holt (1957) spawner-recruit

model.

There is considerable debate as to how one can best estimate the

parameters in model (1.1). The simplest method is to linearize (1.1) by the

double reciprocal or Lineweaver-Burke transformation

(1.2) 1/y = a0 + al/x .

and then regress l/y on l/x using least squares to estimte (ao.al). While

the Lineweaver-Burke model is often used, in some areas it is thought to be a

particularly poor fitting technique. Currie (1982) states that the estimates

from this technique are "more prone to be biased" than are the estimates from

"any other commonly used technique". Other authors have come to the same

conclusion, based in part on a study by Dowd & Riggs (1965).

A second common method is the Woolf linearizing transformation, which

multiplies through by x in (1.2). leading to the model

.5-
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(1.3) x/y = a1 + aOx

Cressie & Keightley (1981) find that for hormone-receptor assays, least

squares applied after the Woolf transformation is more robust to outlying

points than is least squares after the Lineweaver-Burke transformation,

although when using a robust fit the latter was marginally better. For this

and other reasons (Keightley, Fisher & Cressie, 1983), they prefer the Woolf

transformation for analyzing hormone-receptor assays.

Currie (1982) recommends fitting (1.1) directly by nonlinear least

squares. He also states that "The Woolf transformation, the best among the

linearizing transformations ... provides unreliable parameter estimates ...

(linearizing) transformations should not be used", although he adds the

qualifying statement "except in cases where they stabilize the error".

It seems to us that the proper fitting method necessarily depends on the

particular subject area. experiment and underlying distribution. No general

conclusions about a fitting method can or should be made without taking these

considerations into account. Fitting (1.1) - (1.3) by unweighted least

squares should be seen as a consequence of fitting different stochastic

models for the data. If e has mean zero and variance one, fitting (1.1) -

(1.3) is a consequence of assuming, respectively

(1.4) Nonlinear (Currie) y = (a0 + al/x)-1 + ae

(1.5) Lineweaver-Burke y = (aO + al/x + ae}- I

(1.6) Woof: y = (a0 + al/x + ae/x)

That these may be very different stochastic models for data can be seen by 0

letting a be small and taking a simple Taylor series expansion. If E(y) and

J, % %
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SD(y) denote the mean and standard deviation of y, we have the following

approximations :

Nonlinear SD(y) n a

Lineweaver-Burke : SD(y) = a {E(y)}
2

Woolf: SD(y) = a (E(y)} / x

Surely it should come as no surprise that if one runs a simulation in which

the errors in (1.1) are additive or nearly so. then ordinary nonlinear least

squares should be a clear winner over linearizing transformations, with the

Woolf transformation second and Lineweaver-Burke a poor third. Yet this is

essentially what Currie did in his study. We have little doubt that had he

based his simulation on the underlying distribution implied by say the Woolf

model, then he would have found that linearizing is the method of choice.

Storer, Darlison & Cornish-Bowden (1975) present real-life examples for

which the standard deviation of y appears to be proportional to the mean or a

power of the mean. This evidence with real data suggests that one should

take care to study the underlying distributional properties of an experiment,

and not assume that the Nonlinear model holds in all situations.

The three models (1.4) - (1.6) are special cases of a simple

generalization to the Transform Both Sides approach of Carroll & Ruppert

(1984, 1987a, 1987b), see also Bates. Wolf & Watts (1985) and Snee (1986) for

nice applications of this technique. Define the usual Box - Cox (1964) power

transformations

v ()') = (v)' - ) for # 0

v(X ) = log(v) for X 0

-. # -4 . - , 
"  
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The Extended Transform Both Sides Michaelis-Menten Model is

(1.7) y(N)= (a0 +al/x) - 1  (X) + a x0 a

See Carroll & Ruppert (1987a) for an introduction to this model. By choosing

X = 1 and 0 = 0. we obtain the nonlinear model (1.4). The Lineweaver-Burke

model (1.5) sets X = -1, 0 = 0, while the Woolf model (1.6) sets X = 0 = -1.

The purpose of this paper is to illustrate the use of the Extended

Transform Both Sides Model (1.7). In section 2. we discuss properties of the

model and methods of fitting it. In section 3. we present examples.

An alternative method of estimation due to Cornish-Bowden & Eisenthal

is discussed by Dalgaard & Johansen (1986). We do not study this method

because as they state "it ... appears dangerous to us to use these estimates

without making a careful investigation of the error distributions, and if one

can do that. it would appear more reasonable to apply the model based maximum

likelihood estimator".

s,-,"*..%
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SECION 2 : The Extended Transform Both Sides Model

We consider a slight generalization of model (1.7). one which permits

any nonlinear regression model and a wider variety of models for the standard

deviation

(2.1) y(X) = f~xI)(X) + a g(xO) a.

Here f(x.13) is called the regression function. g(x.0) is called the standard

deviation function and (X.13.9) are unknown parameters which are to be

estimated. In accordance with tradition, a is assumed to be approximately

normally distributed with mean zero and variance one. In (2.1). the standard

deviations could also depend on the mean, but we do not discuss this

refinement here.

To make the identifications with (1.7). we have

P = (aOal) ; f(x,1) = (a0 + alz/x)-1 g(x.6) = x .

Assuming only symmetry of a, under this model y has median f(x,P)

independent of the values of X and 0. Snee (1986) has argued that for

heavily skewed data in nonlinear regression. it is more natural to model the

median rather than the mean, with the transformation taking care of skewness

and some of the heteroscedasticity in the data. Alternatively to (2.1). one

might choose to model the mean-variance relationship directly, i.e., build a

heteroscedastic nonlinear regression model without transformation. As an

approximation when a is small, the two approaches are closely related. In

this instance, the mean and median nearly coincide, skewness is not a great

.e, 6 ".,k ' . . ". '.. . . .
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issue and y has approximate standard deviation ag(xO)f(x,) -  Hence, a

natural alternative to the Extended Transform Both Sides Model is the

heteroscedastic model

E(y) = f(x.,)

(2.2)

SD(y) = og(xO)f(x.) 1 X

Methods for fitting model (2.2) are discussed by Davidian & Carroll (1986)

and Carroll & Ruppert (1987a. Chapters 2 and 3). The approximate model (2.2)

6offers some insight when g(x,O) = x . In many of these problems f(x.p) given

by (1.1) is approximately proportional to a power of x, so that 6 and X will

be difficult to distinguish. In most of the examples we have studied, we

have found confidence regions for (X.0) to be fairly broad, but not so broad

as to include all three of the Nonlinear, Woolf and Lineweaver-Burke models

simultaneously.

Assuming the transformation achieves approximate normality, the

loglikelihood for model (2.1) is given by

N

(X-1) log(y1 ) log(a g(x1 .o)) ]

_ N [ (yi(o) - (xi.13)() / g(xi.6) ]2 / 22

For given values of (X.O). P and a can b2 estimated by weighted nonlinear

least squares regression of yi(X ) on f(xP)01 () with weights 1/g2 (xi.0). If

the weighted mean squared error is denoted by a (N.6). we thus obtain the

S% ".. - ..
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maximized loglikelihood

"[ 1
(2.3) e m(X.0) = I (X-l) log(Yi) - log{a(X,O) g(x.O)}J

t=l

The maximum likelihood estimates of X and 9 can be computed by maximizing

(2.3). In the Michaelis-Menten model, we usually restrict -1 X.0 K 1. and

compute (2.3) over a grid of values. This enables us to plot the

loglikelihood surface, and as a simple by-product make tests for the fit of

the Nonlinear model (X=I. 0--0), the Woolf model (X=6=-I) and the

Lineweaver-Burke model (X=-l, 0=0). Such computation is usually very quickly

done. In the examples of the next section, using a grid size of 0.05 and the

matrix programming language GAUSS on an IBM PC/AT, the loglikelihood surface

took less than 5 minutes to compute.

For more complex regression and standard deviation functions, one can

maximize the likelihood in all the parameters simultaneously either by a

general maximum likelihood program or by using nonlinear least squares

programs. Let ym and gm(0) be the geometric means of {y,} and {g(xi.O)}

respectively. Define

DiN.O.) = g.(9) ym1-X [ (yi(X) - f(xi,)(X) / g(x,.e)

Then the maximum likelihood estimates of (X,0,.) minimize the sum of squares

N 21D i (,0,.)

i=l

To use a nonlinear least squares program to make this computation, identify

- " ' , -- " _ ." . - . .. . * ,~-... .. , . . . . .< - -.. . . . . - -.- .- .. ..............
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Di(X,.P) as the "regression function" and identify all "responses" to be

zero; see Carroll & Ruppert (1987a. Chapter 5).

Professor D. Bates (personal communication) has suggested that it is

useful to plot the individual components of P as a function of (X,@). as a

check on the sensitivity of the parameter estimates to the choice of the

model.

As argued in Carroll & Ruppert (1984). the effect on the distribution of

(3 due to estimating (X,) is often small. In practice, we have sometimes

found it useful to adjust standard residuals for leverage, see Cook &

Weisberg (1982). For robust estimation and diagnostics in this type of

model, see Carroll & Ruppert (1987a. Chapter 6) and (1987b).

0

. . . . . N
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SECTION 3 Examples

In this section. we analyze two data sets. The analyses are meant to be

illustrative numerical examples rather than complete investigations.

EXAMPLE 3.1 : Skeena River Sockeye Salmon

The data in Table 1. taken from Ricker & Smith (1975), concern the

relationship between x = number of spawners and y = total return or number of

recruits for Skeena River Sockeye Salmon. The data are given for the years

1940 - 1967. Since our intention is to provide numerical illustrations only,

we have deleted 1951 which was affected by a rockslide and 1955 because other

analyses indicate that it is rather extreme. A possibility which we will not

consider is that of dependencies in the data. For alternative analyses

including robust methods and influence diagnostics and different models, see

Carroll & Ruppert (1987a. 1987b).

The studentized residuals from the Woolf model, while not pictured here

to conserve space, suggest a systematic lack of fit and/or severe

heteroscedasticity. The Spearman rank correlation between the absolute

studentized residuals and the predicted values is 0.60 with a formally

computed significance level of 0.001. The studentized residuals from the

Nonlinear model suggest a clear pattern of classic heteroscedasticity; see

Figure 1. Some idea of the severity of the problem can be gleaned from the

fact that the Spearman rank correlation is 0.50 with a formal significance

level of 0.007. The Lineweaver-Burke studentized residuals show no such

pattern of obvious heteroscedasticty, but they do seem skewed; see Figure 2.

Model (1.7) was fit to the data and the maximum likelihood estimates for

I. .". . .. . ".*d.* .r... . . ... e*-" . * %... . .4% e. o- io *- .t- e .
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(X,) are (0.34, 0.77). The likelihood ratio 2 test statistic based on two

degrees of freedom is X(2 = 10.7 for the Nonlinear model (-1, 0--0), x 2 = 18.5

2
for the Woolf model (X=O=-1) and X = 8.43 for the Lineweaver-Burke model

(=-l, =--0), these having significance levels of 0.005, 0.0001, and 0.015

respectively. The likelihood ratio tests agree with our graphs in concluding

that none of the three standard models have constant variance with

approximately normally distributed errors.

Of course, no choice of (X.) perfectly explains skewness and

2
heteroscedasticty in these data. However, X = 0 = .5. ( 2 = 1.14) and X = 0

- 1 ( 2 = 2.24) both seem adequate. The choice X 0 = 1. for which the

residual plot is given in Figure 3. has the feature that it is a model of

heteroscedasticity without data transformation, which some will find to be an

advantage. In this model, the standard deviation is proportional to the

number of spawners, which changes by a factor of about 4 over the observed

data. Alternatively, one might model the variance as proportional to a power

of the mean, see Carroll & Ruppert (1987a, Chapter 3 and example 6.4.1).

A S'
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EXAMPLE 3.2 : A Hormone Receptor Assay

In Table 2 we list the results of a small hormone-receptor assay as

taken from Cressie & Keightley (1979, Table 3); the ordering is slightly

different to reflect the fact that there were duplicates at six levels. Our

purpose is to illustrate the application of Extended Transform Both Sides,

but not to give a complete analysis. Indeed, the data set is very small

(only 12 observations), and it would be unwise to read too much into the

analysis.

The estimates of (N.0) were constrained to lie in the unit square. i.e.,

-1 X,0 1. The maximum likelihood estimate occurs very near the

2
Lineweaver-Burke model, being X = -1.0 and 6 = -0.1. The 2 test statistic

2for the Lineweaver-Burke model (A = -1.0. 6 = 0) is k = 0.78, for the Woolf

model (A = -1.0. 0 = -1.0) it is 2 = 8.29, while it is 2 = 4.54 for the

Nonlinear model (X = 1.0. 6 = 0.). Even though the confidence region is

fairly large, the Extended Transform Both Sides model suggests that the Woolf

and (to a lesser extent) the Nonlinear models might provide a worse fit than

does Lineweaver-Burke.

In Figures 4 - 6 we plot the studentized residuals from the Woolf.

Nonlinear and Lineweaver-Burke fits against the logarithm of the predicted

values. We have also looked at plots of the absolute studentized residuals.

To our eye, as suggested by the likelihood analysis, the Lineweaver-Burke

model seems to do the best Job of accounting for heterogeneity of variance.

There are additional factors of some interest. First, the Spearman rank

correlation of absolute studentized residuals against their predicted values

is .44. .17 and -.32 for the Woolf, Nonlinear and Lineweaver-Burke models

respectively. This might suggest that the Lineweaver-Burke model has

-. A. %
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overcorrected for heterogeneity of variance. Note too that the plots suggest

that there may be both within and bejtween components of variance, which we

have not been attempting to model.

There is also the issue of robustness and leverage. One can do a robust

fit to the data here, but in the interest of space we only do the following

analysis. Since the data are essentially collected in pairs, it is of some

interest to see if there is a single pair of observations which has a very

large effect on the final parameter estimates. In Table 3 we have recomputed

the likelihood after deleting succesive pairs of data points. What is most

striking here is the effect of deleting the first pair of observations. If

this pair is deleted, then in terms of likelihood, all three of

Lineweaver-Burke, Woolf and the Nonlinear model are essentially equivalent.

Either using the full data or keeping the first pair and deleting any of the

others leads to a strong preference (in terms of likelihood) for

Lineweaver-Burke. This example suggests that especially for small data sets

one will need to examine the data carefully to ascertain whether the answers

are being driven by a small group of observations.

As a postscript, there is another linearizing transformation (y/x = a0 +

a IY) yielding the Scatchard model, which has been used heavily in the context

of hormone-receptor assays. This model is not a special case of the model

(1.7). Its performance on hormone-receptor assay data is shown by Cressie

and Keightley (1981) to be markedly inferior to that of either the Woolf or

the Lineweaver-Burke models.

F Or q .' ' '
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SETIOK 4 : Discussion

In fitting a Michaelis-Menten model to data, the three standard fitting

models are a consequence of different distributions for the responses. It is

clear that no single fixed distribution will fit all situations, so it should

also be clear that no single fitting technique will be universally

appropriate. The proper model and its associated fitting techniques should

be allowed to vary among subject areas and even within a subject area.

We view Extended Transform Both Sides as a reasonable, flexible and

effective method for helping to decide upon a model for data. The method is

easily computed and enables standard model checks to be performed.

Naturally, as indicated in section 2, the model is not restricted to

Michaelis-Menten relationships. We do not advertise Extended Transform Both

Sides as a panacea, nor do we advocate that it be used as a black box. While

the technique is widely applicable, no simple model will fit all data sets.

Inferential problems concerning the parameters V and K in the model

(1.1) has not been our concern in this article. The validity of Wald-type

confidence statements depend on the design and parameterization, see Bates &

Watts (1980). For further discussion, see Carroll & Ruppert (1987a. Chapters

2. 4 and 5).

a
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a TABLE 1

Skeena River Sockeye Salmon data. Years 1951 and 1955 have been deleted in
the illustrative example of section 3. Data are in millions of fish.

YEAR SPAWNERS REcDITS

1940 0.963 2.215
1941 0.572 1.334
1942 0.305 0.800
1943 0.272 0.438
1944 0.824 3.071
1945 0.940 0.957
1946 0.486 0.934
1947 0.307 0.971
1948 1.066 2.257
1949 0.480 1.451
195( 0.393 0.686
1951 0.176 0.127
1952 0.237 0.700
1953 0.700 1.381
1954 0.511 1.393
1955 0.087 0.363
1956 0.370 0.668
1957 0.448 2.067
1958 0.819 0.644
1959 0.799 1.747
1960 0.273 0.744
1961 0.936 1.087
1962 0.558 1.335
1963 0.597 1.981
1964 0.848 0.627
1965 0.619 1.099
1966 0.397 1.532
1967 0.616 2.086

....-
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TABLE 2

Results of a Hormone Receptor Study. Data are in units of
fmol/mg cytosolprotein.

0.358 1.43

0.358 1.46

0.782 2.23

0.771 2.36

1.725 2.88 ,

1.703 3.15

2.672 3.34

2.680 3.43

3.653 3.58

3.629 3.81 8i

4.630 3.75

4.697 3.57
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TABLE 3

Hormone-Receptor Study. The values of the log likelihood for (X.O) are
listed after successively deleting pairs of points.

Deleted Woolf Lineweaver Nonlinear
Observations Burke

(1,2) 19.44 20.42 20.55

(3.4) 19.85 23.57 21.02

(5.6) 20.20 24.70 22.43

(7.8) 18.91 23.23 20.66

(9.10) 22.09 24.05 21.86

(11.12) 20.92 24.05 21.86
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Figure I

The studentized residuals plotted against the logarithm of the
predicted values for the Nonlinear model in the Skeena river data set.

Figure 2

The studentized residuals plotted against the logarithm of the
predicted values for the Lineweaver-Burke model in the Skeena river data
set.

Fl-ure 3

The studentized residuals plotted against the logarithm of the
predicted values for the untransformed heteroscedastic model in the Skeena
river data set.

Figure 4

The studentized residuals plotted against the logarithm of the
predicted values for the Woolf model in the Hormone Receptor Study.

Figure 5

The studentized residuals plotted against the logarithm of the
predicted values for the Nonlinear model in the Hormone Receptor Study.

Flure 6

The studentized residuals plotted against the logarithm of the
predicted values for the Lineweaver-Burke model in the Hormone Receptor
Study.
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