

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

Unclassified		•	ADAI	8634	0
	REPORT DOCUM	MENTATION	PAGE		
a. REPORT SECURITY CLASSIFICATION		15. RESTRICTIVE	MARKINGS		
Unclassified		3 DISTRIBUTION	VAVAILABILITY OF	REPORT	
L SECURITY CLASSIFICATION AUTHORITY		Approved	for Public H	Release	
'5. DECLASSIFICATION / DOWNGRADING SCHEDU		Distribu	tion Unlimite	ed .	
. PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5. MONITORING	ORGANIZATION RE	PORT NUMB	ER(S)
17-7958-834		MMEI-87-0	001		
. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF M	ONITORING ORGAN	IZATION	
Southwest Research Institute	(ir applicable)	MMEI/SA-A	ALC, Kelly Ai	lr Force	Base
- ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	ty, State, and ZIP C	(ode)	
6220 Culebra Koad San Antonio, Texas, 78284		San Anto	io. Texas J	78241	
	_		iiv, texas ,		
A. NAME OF FUNDING / SPONSORING	85. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATION	NUMBER
ORGANIZATION Defense Logistics Agency	(17 applicable) DTIC-DS	DLA 900-84-	-C-0910, CLIN	10001BC	
= ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	UNDING NUMBER	s	
DTIC, Cameron Station		PROGRAM	PROJECT	TASK	WORK UNIT
Alexandria, Virginia 22314					
2. PERSONAL AUTHOR(S) Hegeon Kwun 3a. TYPE OF REPORT Final 6. SUPPLEMENTARY NOTATION Performed as a Special Task 1	COVERED 27/86 TO 9/26/87 For the Nondestru	14 DATE OF REPO 1987, Sep active Testin	DRT (Year, Month, D Detember 26 ng Informatic	on Analys	GE COUNT 57 is Center
	18 SUBJECT TERMS (Continue on revers	a if narattany and	identify by !	Noct sumber)
FIELD GROUP SUB-GROUP	10. SOBJECT (EXING (identity by t	
]				
9 ARTRACT (Continue on counce if personal	and identify by block of	wither)			
A literature search was conducted to identify commercially available ultrasonic equip- ment for nondestructive inspection of bonded structures used in advanced high performance aircraft for flaws such as delaminations, debonds, and impact damage. More than fifty instruments were identified from the search. The majority (approximately 80 percent) of the instruments were conventional ultrasonic flaw detectors based on the pulse-echo/through- transmission techniques. A small fraction (approximately 20 percent) of the instruments are based on other techniques such as resonance, acousto-ultrasonic, and so-called shadow techniques. Approximately forty instruments were evaluated, based on the data available from the literature, for their capabilities and limitations. A trend toward the digital, automatic, and computer-controlled instruments was observed. The majority of the commercial instru- ments are microprocessor-controlled with interfaces for communication with other devices 20. ONSTRUBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/JUNUMMITED SAME AS RPT. OTIC USERS					
222. NAME OF RESPONSIBLE INDIVIDUAL Ms. Susan Frisch		22b. TELEPHONE ((512) 925	include Ares Code) -6408	SA-ALC	SYMBOL /MMEI
DD FORM 1473, 84 MAR 83 A	PR edition may be used un All other editions are of	til exhausted. scolete.	SECURITY O	nclassif:	N OF THIS PAGE

ł

ł

ľ

:

ı

Unclassified

EQURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued)

such as an external computer, a printer, a recorder, or a video display. Also, the majority of the instruments are modular in construction to facilitate maintenance and repair. In addition, almost all instruments are equipped with visual and/or audible alarms.

Most of the instruments use sensors (or probes) which require a liquid couplant such as light machine oil or water to transmit ultrasonic energy through the contacting interfaces between the probe and the part under inspection. Several instruments are operated with dry-coupled probes which do not require a liquid couplant. The dry-coupled probes use a pliable and resilient material such as rubber to transfer ultrasonic energy from the piezoelectric crystal to the part under inspection and vice versa. Almost all of the instruments require a smooth and clean surface of the part for inspection. However, substantial surface preparation such as removing paint on the part is not generally required. In addition, most of the instruments are operable in field environmental conditions. Except for highly sophisticated and automatic instruments and some instruments operated with a wheel-type probe, the inspection speed of the instruments is generally slow. Most of the instruments are portable. Also, about 50 percent of the instruments are battery powered. The operating time of the batteries typically ranges from 6 to 12 hours. The equipment cost varies over a wide range from several thousand dollars to over a quarter of a million dollars depending on the degree of sophistication and automation.

Four instruments were selected for laboratory evaluation. They were NDT Instrument Inc.'s BondaScope 2100, Acoustic Emission Technology Corp.'s Model 206 AU instrument, Sonatest's UFD-S instrument, and Fokker B.V.'s Bondtester Model 80L. A total of 28 reference bonded structure samples containing a total of 213 reference flaws were used in the evaluation. The samples represented a wide variety of bonded structures including metal-metal, metal-composite, composite laminates, metal-honeycomb-metal, and compositehoneycomb-composite structures. In general, three of the four instruments showed good flaw detectability in most of the structures investigated, while the remaining one showed good flaw detectability on only a limited number of samples. Two of the four instruments which exhibited better performance were recommended for use in inspection of bonded aircraft structures.

Accesion For	
NTIS CRA&I	N
DTIC TAB Ulutto inced	
Jultier Hon	
1 4 EV	
Dest ibertion /	• • • • • • • • • • • • • • • • • • •
Availabelity	y Codus
Dist Avail	rd/or cal
A-1 2	

Unclassified SECURITY CLASSIFICATION OF THIS PAGE ţ

THROUGH-TRANSMISSION/PULSE-ECHO ULTRASONIC EQUIPMENT EVALUATION

FINAL REPORT SwRI Project 17-7958-834

Performed as a special task for Nondestructive Testing Information Analysis Center under Contract No. DLA 900-84-C-0910, CLIN 0001BC

Prepared for

Nondestructive Inspection Program Office Service Engineering Division Directorate of Material Management and Engineering Inspection San Antonio Air Logistics Center Kelly Air Force Base, Texas 78241

September 1987

Written by

Kwun acon

Hegeon Kwun Senior Research Scientist Department of Nondestructive Science and Research

Approved by

5. K

Amos E. Holt Vice President Nondestructive Evaluation Science and Technology

FOREWORD

This work was conducted under a program sponsored by Directorate of Material Management and Engineering Inspection (MMEI), San Antonio Air Logistics Center (SA-ALC), Kelly Air Force Base, San Antonio, Texas. The author experesses his special appreciation to Mr. John Petru, Chief Engineer, and Ms. Susan Frisch, Engineer, of Nondestructive Inspection Program Office, Service Engineering Division, MMEI/SA-ALC, for their participation and guidance in this program and their assistance in obtaining the reference bonded structure samples used in the laboratory evaluation of ultrasonic bond testing equipment. The author also thanks the following individuals for their courtesies and cooperation in arranging and providing the instruments for the laboratory evaluation: Mr. Ronald J. Botsco of NDT Instruments Inc., Mr. Jim Rhamey of Automation/ Sperry, Qualcorp, Mr. Paul Slaba of NDT Technologies U.S., Inc., Mr. Jerry Slaba of NDT Technologies Inc., Mr. Gordon Turner of NDT Equipment and Supply Inc., and Mr. Gordon Schneider of Acoustic Emission Technology Corp. Particular thanks go to Mr. Jerry Slaba for his time and effort in demonstrating and evaluating the UFD-S instrument at Southwest Research Institute. Appreciation also goes to all the companies who provided technical information on their respective bond testing ultrasonic equipment. The author also thanks Mr. David Alcazar of SwRI for his assistance in conducting the program.

SUMMARY

A literature search was conducted to identify commercially available ultrasonic equipment for nondestructive inspection of bonded structures used in advanced high performance aircraft for flaws such as delaminations, debonds, and impact damage. More than fifty instruments were identified from the search. The majority (approximately 80%) of the instruments were conventional ultrasonic flaw detectors based on the pulse-echo/through-transmission techniques. A small fraction (approximately 20%) of the instruments was based on other techniques such as resonance, acousto-ultrasonic, and so-called shadow techniques.

Approximately forty instruments were evaluated, based on the data available from the literature, for their capabilities and limitations. A trend toward the digital, automatic, and computer-controlled instruments was observed. The majority of the commercial instruments are microprocessor-controlled with interfaces for communication with other devices such as an external computer, a printer, a recorder, or a video display. Also the majority of the instruments are modular in construction to facilitate maintenance and repair. In addition, almost all instruments are equipped with visual and/or audible alarms.

Most of the instruments use sensors (or probes) which require a liquid couplant such as light machine oil or water to transmit ultrasonic energy through the contacting interfaces between the probe and the part under inspection. Several instruments are operated with dry-coupled probes which do not require a liquid couplant. The dry-coupled probes use a pliable and resilient material such as rubber to transfer ultrasonic energy from the piezoelectric crystal to the part under inspection and vice versa. Almost all the instruments require a smooth and clean surface of the part for inspection. However, substantial surface preparation such as removing paint on the part is not generally required. In addition, most of the instruments are operable in field environmental conditions. Except for highly sophisticated and automatic instruments and some instruments operated with a wheel type probe, the inspection speed of the instruments is generally slow. Most of the instruments are portable. Also about 50% of the instruments are battery powered. The operating time of the batteries typically ranges from 6 to 12 hours. The equipment cost varies over a wide range from several thousand dollars to over a quater of million dollars depending on the degree of sophistication and automation.

Four instruments were selected for laboratory evaluation. They were NDT Instrument Inc.'s BondaScope 2100, Acoustic Emission Technology Corp.'s Model 206 AU instrument, Sonatest's UFD-S instrument, and Fokker B.V.'s Bondtester Model 80L. A total of 28 reference bonded structure samples containing a total of 213 reference flaws were used in the evaluation. The samples represented a wide variety of bonded structures including metal-metal, metal-composite, composite laminates, metal-honeycomb-metal, and composite-honeycomb-composite structures. In general, three of the four instruments showed good flaw detectibility in most of the structures investigated, while the remaining one showed good flaw detectability on only a limited number of samples. Two of the four instruments which exhibited better performance were recommended for use in inspection of bonded aircraft structures.

TABLE OF CONTENTS

	<u>P</u>	<u>age</u>				
FOREWORD SUMMARY LIST OF	ILLUSTRATIONS AND TABLES	iii iv v				
I.	INTRODUCTION	1				
	A. Background	1 1				
II.	LITERATURE SURVEY AND EVALUATION OF ULTRASONIC INSTRUMENTS FOR INSPECTION OF BONDED AIRCRAFT STRUCTURES	2				
III.	LABORATORY EVALUATION OF SELECTED INSTRUMENTS	5				
	A. Equipment	5				
	 BondaScope 2100 Acoustic Emission Technology Corporation Model 206 AU UFD-S Instrument Fokker Bondtester Model 80 L 	5 5 7 7				
	B. Specimens	10				
	 F-16 Bonded Structure Samples. F-5 Honeycomb Structure Samples Graphite/Epoxy Samples 	10 10 10				
	C. Procedure	10				
	D. Results	17				
IV.	CONCLUSIONS AND RECOMMENDATIONS	23				
	A. Conclusions	23 24				
APPENDIC	ES					
Α	Names and Manufacturers of Ultrasonic Instruments for Inspection of Bonded Structures	25				
В	Ultrasonic Equipment Evaluation Form and Rating Guidelines	29				
С	Description of F-16 Bonded Structure Reference Samples	34				
D	Description of F-5 Honeycomb Structure Samples	44				
E	Description of Graphite/Epoxy Samples					

LIST OF ILLUSTRATIONS AND TABLES

-

E.

ł

ł

1

ţ

<u>Figures</u>	Description	<u>Page</u>
1	BondaScope Ultrasonic Impedance Plane Presentation for a Multi-layered Laminate	6
2	Example of Changes in the UFD-S Signal Pattern with Increasing Fault Condition	8
3	Typical Bondtester A-Scale Indications on a Single Bondline Configuration with Relatively Thin Lower Sheets as a Function of the Bond Quality	9
4	Photographs of F-16 Bonded Structure Samples	11
5	Photographs of F-5 Honeycomb Structure Samples	13
6	Photograph of Graphite/Epoxy Samples	15

<u>Tables</u>	Description	Page
1	Summary of Literature Evaluation of Ultrasonic Instruments for Nondestructive Inspection of Bonded Structures	3
2	Description of F-16 Bonded Structure Samples	12
3	Description of F-5 Honeycomb Structure Samples	14
4	Description of Graphite/Epoxy Samples	16
5	Laboratory Evaluation Results on Flaw Detectability of Four Selected Instruments	19

vi

I. INTRODUCTION

A. Background

Adhesive bonding is widely used in the construction of advanced high performance aircraft utilizing metal-to-metal, metal-to-composite, honey-comb, and multilayered composite structures. The main reason for this widespread use is because it provides more uniform stress transfer, increased fatigue life, and reduced weight than structures joined by traditional fastening techniques such as welding and riveting. Presently, adhesively bonded components are found not only in secondary structural applications, but also in highly loaded, primary structures.

To determine the structural integrity and reliability of adhesively bonded components, it is essential to nondestructively inspect the parts for voids, disbonds, delaminations, and/or damage. Ultrasonic methods including throughtransmission, pulse-echo, and resonance techniques are used extensively in the Air Force for the inspection of bonded and multilayered aircraft structures. Presently, a wide variety of ultrasonic instruments is commercially available for inspection of bonded structures. Information on the types of ultrasonic instruments available on the market and their respective capabilities and limitations is important for the Air Force to assess the current state-of-the-art of the instrument technology and thus to determine the Air Force's future equipment needs to improve the accuracy and reliability of nondestructive inspection.

B. <u>Objectives</u>

The objectives of the project were to:

- (1) Identify various commercially available ultrasonic equipment for detecting defects such as disbonds, delaminations, and subsurface damage in bonded aircraft structures.
- (2) Evaluate the capabilities and limitations of the identified equipment based on data available from literature and, for a limited number of selected instruments, experimentally evaluate their capabilities in the laboratory by using reference samples of bonded aircraft structures.

II. LITERATURE SURVEY AND EVALUATION OF ULTRASONIC INSTRUMENTS FOR INSPECTION OF BONDED AIRCRAFT STRUCTURES

A literature survey was conducted to identify ultrasonic equipment for nondestructive testing (NDT) of bonded structures. The computer retrieval facility at the Nondestructive Testing Information Analysis Center (NTIAC) at SwRI and manual searches of product catalogues, product briefings and recent issues of trade magazines and NDT related journals were used. The search was limited mostly to those instruments available domestically. From this search, names of more than fifty ultrasonic bond testing instruments and the respective manufacturers were identified, as listed in Appendix A. Most of the instruments listed in Appendix A represent the most recent models. Many old models were intentionally excluded from the list. The list, therefore, was not meant to be an exhaustive one. The majority of the instruments were conventional ultrasonic flaw detectors based on the pulse-echo and/or through-transmission techniques. The instruments based on different techniques such as resonance or acoustoultrasonics (combination of acoustic emission and ultrasonics) comprised a small minority.

Through a written communication to, and a direct phone contact with, the manufacturer or a dealer of each identified instrument, the technical and price information on the equipment was requested. While gathering the information, the list of the identified instruments was reviewed by personnel of SA-ALC/MMEI at Kelly Air Force Base at a meeting held in Feb. 1987. After the review, approximately forty instruments were chosen for literature evaluation excluding those whose capabilities were well known to SA-ALC/MMEI personnel and/or those systems that were unsuitable for field inspection.

Based on the data available in the literature gathered, the chosen instruments were evaluated by using the evaluation form and rating guidelines described in Appendix B. Because of inadequate information, some of the factors, particularly accuracy, sensitivity, repeatibility, and reliability, were difficult to evaluate. Consequently, in many cases, subjective judgement was used for evaluation. The evaluation was therefore more qualitative than quantitative and, in some cases, was incomplete. Thus, no attempts were made to rank the instruments. The literature evaluation data were submitted to SA-ALC/ MMEI separately, and the overall findings may be summarized as described in Table 1. Accuracy and sensitivity were not included in Table 1 because of insufficient information.

The majority (32 out of 41) of the evaluated instruments were based on the conventional pulse-echo/through-transmission techniques. Of the remaining non-conventional ultrasonic instruments (9 out of 41), six were based on resonance techniques, two on the acousto-ultrasonic technique, and one on the shadow technique (see Section III.A.3). All the instruments required some degree of operator skill and experience, particularly in the interpretation of the detected signals.

Most of the instruments (33 out of 41) used sensors (or probes) which require a liquid couplant such as light machine oil or water to transmit ultrasonic energy through the contacting interfaces between the probe and the part under inspection. Several instruments (8 out of 41) were operated with dry-coupled

Table 1

.* :

-

. .

SUMMARY OF LITERATURE EVALUATION OF ULTRASONIC IN INSPECTION OF BONDED STRUC -

						Need for	Need for	Sensitivity		t	
			Ор	eration S	Skill	Liquid	Surface	to	Inspection		
In	strument	Technique	Setup	Proc.	Interp.	Couplant	Preparation	Environment	Speed	Repeatabi	
1.	Ultra Image III	PE/II ⁽¹⁾	High	High	Low	Yes	Mod	Low	High	Eigh	· ·
2.	AcousUltrasonic	AU ⁽²⁾	High	High	Eigh	Yes	Mod	Mod	Low	Low	• •
	Instru. Sys.										
3.	Multisonic/PC	PE/TT	Eigh	Bigh	Low	Yes	Mod	Mod	High	Eigh	Sec. 2
4.	UFD-S	Shadow	Low	Low	Low	No	Low	Low	Mod	Mod	
5.	ZIPSCAN 2	PE/II	High	High	Low	Yes	Mod	Low-Mod	High	High	
5.	TTU-90	PE/TT	Low	Low	Mod	No	Low	Low	Mod	Mod	no /Arra
1	USIP 12	PE/TT	Mod	Mod	Mod	Yew	Mod	Low	Low	Mod	
8.	USIP 11	PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	· · ·
9.	PARIS	PE/TT	High	High	Mod	No	Mod	Low	High	High	
10.	Sigima Series 2000	PE/TT	High	High -	Mod	Yes	Mod	Mod	High	Eigh	tine".
11	USD-1	PE/TT	High	High	Mod	Yes	Mod	Low-Mod	Low	High	
12	Fokker Bondtester	Reson.	Low	Low	Mod	Yes	Mod	Low	Low	Mod	CONST-
	Model 80L										1. 1. 1.
13	Metrotek M-Series	PE/TT	Low	Mod	Mod	Yes	Mod	Low	Low	Mod	
16	NDT 132	PE/TT	Low	Mod	Mod	Yes	Mod	Low	Low	Mod	
15	AET 206AU	AU	Mod	Mod	High	No	Low	Low	Mod	Mod	
16	NovaScope 3000	PE/TT	Low	Low	Low	Yes	Mod	Low	Low	Mod	
17	NovaScope ⁽³⁾	PE/TT	Low	Low	Low	Yes	Mod	Low	Low	Mod	
18	BondaScope 2100	Reson.	Low	Low	Mod	Yes	Mod	Low	Low	Mod	
19	210 Bondtester	Reson.	Low	Low	Mod	No	Mod	Low	Low	Mod	1 · · · · ·
20	S-1A Sondicator ⁽³⁾	Reson.	Law	Low	Mod	No	Mod	Low	Low	Mod	
21	S-2B Sondicator	Reson.	Low	Low	Mod	No	Mod	Low	Low	Mod	1.3 m .
22	PS-710B	PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	
23.	DZ-3	PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Low	1
24	FX-5	FE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	Lange St.
25.	FX-7	PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	12 22
26.	Echograph 1150	FE/TT	High	Bigh	Low	Yes	Mod	Low	Eigh	High	
27	Echograph 1030	PE/TT	High	High	Mod	Yes	Mod	Low	Low	Eigh	
28	Echograph 1030-	PE/TT	Mod	Mod	Low	Yes	Mod	Low	Low	High	
	OUASCO										1
29.	Echograph Series 1	O PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	
3(Echograph Series 2	O PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	
31	NovaScope 412	PE/TT	Mod	Mod	Mod	' Yes	Mod	Low	Low	Mod	1
32.	Epoch 2002	PE/TT	Mod	High	Mod	Yes	Mod	Low	Low	High	
33	50.52 UA	PE/TT	Low	Low	Mod	Yes	Mod	Mod	Low	Low	1
34	5055 UA	PE/TT	Low	Low	Mod	Yes	Mod	Mod	Low	Low	ł
35	Teneleven SG	PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Mod	1
36	PA 1020	PE/TT	Mod	Mod	Mod	Yes	Mod	Low	Low	Mod	1
37	MIA 3000	Reson.	Bish	High	Mod	No	Mod	Low	Mod	Mod	1
38.	USL 33	PE/IT	Low	Low	Mod	Yes	Mod	Low	Law	Mod	1
39	USL 48	PE/TT	Mod	Mod	Mod	Yes	Mod	Low	Low	Mod	
40	USM 3	PE/TT	Low	Low	Mod	Yes	Mod	Low	Low	Low	1
41	USM 35	PE/TT	Mod	Mod	Mod	Yes	Mod	Low	Low	Mod	
											. /

(1) Pulse-Echo/Through-Transmission

(2) Acoustic-Ultrasonic

J ŀ

(3) Discontinued Production

142

STRUMENTS FOR NONDESTRUCTIVE TURES

	R	ecorder						Ability
	I	iterface		Power	Maintain~	Equipment	Personal	to
<u>y</u>	<u>Av</u> a	<u>ilability</u>	<u>Portability</u>	Romt	ability	Cost	<u>Safety</u>	Automate
		High	Mod	High	Mod-Low	High	High	Automated
		Mod	Mod	High	Mod-Low	High	High	High
		Eigh	Low	High	Mod-Low	High	Eigh	Automated
		Mod	High	Low	Mod	Mod	High	Low
		High	Mod	High	Mod-Low	High	High	Automated
		Mod	High	Mod	Mod	Low	High	Mod
		Mod	Mod	Mod	Mod	Mod	High	Mod
		Mod	High	Mod	Mod	Low	High	Low
		High	Mod	High	Mod-Low	Eigh	High	Automated
	۹.	High	Low	High	Mod-Low	Bigh	High	Automated
		Bigh	Mod	High	Mod-Low	Bigh	High	Automated
		Mod	High	Low	Mod	Mod	Eigh	High
		M - 1	# / _ h	NA. 1	.		17 /-1-	M- 4
		mod	High	bow	high-mod	Mod	aign	Mod
		moa	High	Low	Eigh-mod	LOW	nign Tist	Mod
		maa	<u>Bign</u>	Low	high-Mod	Mod	nign	Mod
		Mod	High	Low	Mod	Low	High	Mod
		Mod	High	Mod	Mod	Low	High	Mod
		Mod	High	Mod	Mod	Mod	High	High
		Mod	High	Low	Mod	Low	High	Mod
		Mod	High	Mod	Mod	Mod	High	Mod
		Low	Eigh	Low	Mod	Low	High	Low
		Mod	High	Low	High-Mod	Low	High	Mod
		Low	High	Low	Mod	Low	High	Low
		Mod	Bigh	Low	Mod	Low	Eigh	Mod
		Mod	High	Low	Mod	Low	High	Mod
		Mod	Mod	High	Mod-Low	Eigh	High	Automated
		Mod	Mod	Low	Mod-Low	Mod	Eigh	High
		Mod	High	Low	Mod	Mod	High	Eigh
		Mod	High	Low	Mod	Low	fligh	Mod
		Mod	Hígh	Low	Mod	Low	High	Mod
		Mod	Mod	Mod	Mod	Low	High	Eigh
		Mod	Eigh	Low	Mod	Low	High	Eigh
		Mod	High	Mod	Mod	Low	High	Mod
		Mod	Eigh	Mod	Mod	Low	Eigh	Mod
		Mod	High	Low	Mod	Low	High	Low
		Mod	Mod	Low	Mod	Mod	High	Mod
		Mod	Mod	Low	Mod		Bigh	High
		Mod	Eigh	Low	Mod	Low	Eigh	Low
		Mod	High	Low	Mod	Low	Bigh	Mod
		Low	High	Low	Mod	Low	Eigh	Low
		Mod	High	Low	Mod	Low	Bigh	Mod

-

,

٠

2072

مان المانية المعالية المانية المحترية المرتبية المحترية المحترية المحترية المحترية المحترية المحترية المحترية ا المحترية الم ÷

.

a a an an antis a constant a name o con an an an an

3

ه . به به مهمد و محمد به کی بر د به بوله و بالی البعد کر بیمی مقبود و آواه بک

-

.

probes which do not require a liquid couplant. The dry-coupled probes use a pliable and resilient material such as rubber to transfer ultrasonic energy from the piezoelectric crystal to the part under inspection and vice versa. The coupling state of both the liquid-coupled and dry-coupled probes influences the inspection results. Therefore, to obtain repeatable results, uniform and consistent coupling of the probes is required.

Almost all the instruments evaluated required a smooth and clean surface of the part for inspection. However, substantial surface preparation such as removing paint on the part is not generally required. In addition, most of the instruments were operable in field environmental conditions. Except for highly sophisticated and automatic instruments and some instruments operated with a wheel-type probe, the inspection speed of the instruments was slow.

With the recent advancements in semiconductor and computer technologies, ultrasonic NDT instruments have been undergoing a transition from analog and manual types to digital, automatic, and computer-controlled types. Most of the instruments for which information was gathered incorporated the recent, stateof-the-art electronic design technologies partially or totally. At present, almost all instruments are equipped with visual and/or audible alarm to aid in flaw detection. The majority of the instruments are modular in construction to facilitate maintenance and repair. Also, the majority of the instruments are microprocessor-controlled and have interfaces for communication with an external computer and peripheral devices such as a printer, a video display, or a data storage device. Some of the computer-controlled instrumentation systems have capabilities for data acquisition, data processing, data analysis and evaluation, as well as documentation of the inspection. In general, microprocessor or computer-controlled instruments require a fair amount of operator training (2 weeks or more).

Portability of the instruments evaluated was generally high. Also, about half of the instruments (23 out of 41) were battery operable (Low in the Power Requirement column in Table 1). The operating time of the batteries varied with each instrument but ranged typically from 6 to 12 hours.

The detailed literature evaluation data submitted separately were reviewed by personnel of SA-ALC/MMEI at Kelly Air Force Base. Upon review, the following four instruments were selected for further experimental evaluation in the laboratory:

- (1) NDT Instrument Inc.'s BondaScope 2100
- (2) Acoustic Emission Technology Corp.'s Model 206 AU instrument
- (3) Sonatest's UFD-S instrument
- (4) Fokker B.V.'s Bondtester Model 80 L

Conventional pulse-echo/through-transmission ultrasonic flaw detectors were excluded from the laboratory evaluation because their capabilities are generally well known to the Air Force. Automated and computerized instrumentation systems were also excluded because evaluating such systems in the laboratory was beyond the funding constraint of the program due to a lack of easy access to (or availability of) such systems and a long training time required for operating such systems.

III. LABORATORY EVALUATION OF SELECTED INSTRUMENTS

A. Equipment

ļ

1. <u>BondaScope 2100</u>

The BondaScope 2100 instrument operates on an ultrasonic principle, whereby the specific acoustic impedance of the material under test is monitored by electrical circuits sensitive to both the amplitude and the phase of the acoustic impedance. A piezoelectric transducer (or probe) is employed to transmit and receive the ultrasonic energy. The probe is excited by using a continuous wave (CW) of frequency equal to the resonant frequency of the piezoelectric crystal in the probe. Anomalies in the material such as debonds, delaminations, and voids create acoustic impedance changes which are detected, processed, and displayed as a "flying" dot on the instrument CRT.

When in use, the instrument is first calibrated or balanced on defect-free material. This calibration positions the dot at the center of the CRT screen. As the probe scans the test piece, the dot will displace from the center of the CRT when anomalies are encountered. The amount of displacement correlates with the changes in the amplitude and phase of the acoustic impedance of the material at that location. Figure 1 illustrates an example of the dot display obtained from a sample of multi-layered bonded laminate with unbonds (from the operating manual of the instrument). In this example, the dot was displaced from the center and moved counterclockwise with the increasing depth of the unbond from the surface of the sample. The position of the dot on the CRT display is used for flaw detection as well as its characterization.

The instrument is operated with a contact type probe which requires a liquid couplant such as light machine oil on the test surface to transmit the ultrasonic energy through the contacting interfaces.

2. Acoustic Emission Technology Corporation Model 206 AU

The Model 206 AU (acousto-ultrasonic) instrument is based on a NASAdeveloped technique relating the transmission of acoustic waves to the strength of composite material (Ref: A. Vary and R. F. Lark, "Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor," Journal of Testing and Evaluation, Vol. 7, No. 4, July 1979, pp. 185-191). The method is similar to the ultrasonic pitch-catch technique except that the transmitted sound beam is received by a sensitive, wideband, acoustic emission (AE) type sensor. The instrument in effect simulates an AE event in the material and receives the signal at some distance from the point of source (or injection). The received signal contains information about the wave path of the signal in the material and a parameter called "stress-wave factor" is correlated to the strength of the material or the presence of a defect.

The instrument is operated with wheel-type probes which do not require a liquid couplant. The rubber O-ring or tire on the probe allows transmission of signals from the crystal to the part or vice versa without the application of couplant.

(a) BondaScope Display of Unbonds in Laminate Shown Below

(b) Multi-layered Bonded Laminate with Unbonds

Figure 1. BondaScope Ultrasonic Impedance Plane Presentation for a Multilayered Laminate

3. <u>UFD-S Instrument</u>

The UFD-S (ultrasonic flaw detector - shadow) instrument uses the shadow technique for flaw detection. The technique is similar to the ultrasonic pulse- echo or pitch-catch method except that it relies on the ultrasonic signal re- directed by the presence of a defect rather than the direct reflected signal for flaw detection. Changes in the pattern of the received signal caused by defects are correlated to the condition of the material under test. More specifically, the following three factors are used for determining the material condition: (1) amplitude of the received signal, (2) displacement of the starting point of the first half-cycle of the received signal on the time base, and (3) shape of the interference pattern. Calibration of the instrument and probe alignment (distance between the transmitter and the receiver and their respective angle relative to the surface of a part under inspection) by using a reference sample of known condition is required prior to the inspection. Any changes in the signal pattern exceeding the predetermined acceptance level would indicate a fault or flawed condition. Figure 2 shows an example of signal pattern change with increasing fault condition (from the instrument brochure). Figure 2a is the signal from a good area. The received signal shown in Figure 2b is shifted to the right and is smaller in amplitude because of a fault condition (no specifics were given on the fault condition in the brochure). As the fault condition becomes more severe, the signal is shifted further to the right accompanied by a further reduction in amplitude as shown in Figure 2c.

Two types of dry coupled probes are used with the instrument: a roller probe and a rubber-tip probe. Both probes do not require any liquid couplant. The roller probe is for continuous scanning. The rubber-tip probe is for intermittent spot checking.

4. Fokker Bondtester Model 80 L

The Fokker Bondtester instrument is based on the principle that the resonant frequency and the electrical impedance of a piezoelectric crystal placed on the surface of a bonded structure are dependent on the quality of the bonded joints. The shift in resonant frequency and the change in electrical impedance of the crystal are measured and used for flaw detection and characterization. The instrument uses a continuous wave (CW) signal like the Bonda-Scope 2100 described above. To find the resonant frequency, however, the frequency of the CW signal is swept in a certain range determined by the setting on the instrument. When the applied CW frequency equals the resonant frequency of the crystal, the electrical impedance of the crystal exhibits the most change. Both the shift in resonant frequency (called A-Scale) and the peak change in electrical impedance (called B-Scale) are displayed on the instrument. Since the instrument relies on relative changes, it must be calibrated prior to the inspection by using a reference sample. An example of typical A-Scale indications for various bond qualities is illustrated in Figure 3 (from the operating manual of the instrument).

The crystals (or probes) used with the instrument require a liquid couplant.

|

ł

(a) Good Area

(b) Faulted Area

(c) More Faulted Area

Figure 2. Example of Changes in the UFD-S Signal Pattern With Increasing Fault Condition

Figure 3. Typical Bondtester A-Scale Indications on a Single Bondline Configuration with Relatively Thin Lower Sheets as a Function of the Bond Quality

B. <u>Specimens</u>

In the laboratory evaluation, three sets of reference bonded samples were used. They were F-16 bonded structure samples manufactured by General Dynamics, F-5 honeycomb structure samples manufactured by Northrop, and graphite/epoxy samples manufactured by Lockheed-Georgia Company. The three reference sample sets consisted of a total of 28 specimens containing a total of 213 reference defects. Further details of the specimens are given below.

1. F-16 Bonded Structure Samples.

The F-16 bonded structure kit consisted of 9 samples representing a wide variety of bonded structures including metal-to-metal, metal-to-composite, composite laminates, metal-honeycomb-metal, and composite-honeycomb-composite structures, and a wide range of thicknesses for each structure type. A photograph of the samples is shown in Figure 4. The structure type and the part number of each sample are listed in Table 2 along with the number of reference defects contained in each sample. Detailed information on the geometrical dimensions, material types, and construction of the samples is given in Appendix C (obtained from T.O. 1F-16A-36).

2. <u>F-5 Honeycomb Structure Samples</u>

The F-5 honeycomb structure standard kit consisted of a total of 16 samples representing a variety of parts used on the F-5F and the F-5E aircraft. Figure 5 shows a photograph of the kit (Figure 5a) and a close-up view of some of the samples (Figure 5b). The description of the samples including the part number, structural applications, and the number of defects contained in each sample, is contained in Table 3. More specifics of the samples are given in Appendix D.

3. <u>Graphite/Epoxy_Samples</u>

A total of three graphite/epoxy samples shown in Figure 6 were used in this laboratory evaluation. The samples were part of the Graphite/Epoxy NDI standards with built-in flaws fabricated at the Lockheed-Georgia Company (Ref: W. H. Sproat, "Composite NDI Proficiency Kit and Methodology, Hardware Design and Fabrication", Preliminary Report, Lockheed-Georgia Company, Contract No. F41608-83-D-A100, August 1986). The three samples were one impact damage standard, one delamination standard, and one repair patch standard. The identification number and the number of defects contained in each sample are described in Table 4. Further details of the samples are given in Appendix E.

C. Procedure

The instruments used in the laboratory evaluation were loaned to SwRI by the respective distributors and manufacturers.

The BondaScope 2100 came with eight different probes, each with a specific range of applicability. The diameter of the piezoelectric element in these probes ranged from 1/8 to 3/4 inch, and the operating frequency range was from 24 to 385 KHz.

ł

Figure 4. Photographs of F-16 Bonded Structure Samples

Table 2	
---------	--

DESCRIPTION OF F-16 BONDED STRUCTURE SAMPLES

<u>No.</u>	<u>Structure Type</u>	Part No.	<u>No. of Defects</u>
1	Metal-to-Metal	16A11039-7	75
2	Metal-Aluminum Honeycomb Core	16A11039-9	16
3	Aluminum-Graphite/Epoxy	16A11033-7	5
4	Steel-Graphite/Epoxy-Fiberglass	16A11033-11	2
5	Graphite/Epoxy-Graphite/Epoxy	16A11033-13	3
6	Graphite/Epoxy-Aluminum Honeycomb Core	16A11033-15	8
7	Graphite/Epoxy-Aluminum Honeycomb Core	16A11033-109	8
8	Graphite/Epoxy Laminate	16A11033-9	15
9	Graphite/Epoxy-Fiberglass-Titanium	16A11033-17	18
		Total	150

Note: Except for samples 2, 6, and 7, the defects in these samples are flatbottom holes. The diameter of the flat-bottom holes is, respectively, 0.75 inch for sample 1, 0.62 inch for samples 3-5, 0.25 inch for sample 8, and 0.5 inch for sample 9. The defects in samples 2, 6, and 7 are made by cutting out the honeycomb core. The width of the cutout is 0.75 inch for sample 2 and 0.5 inch for samples 6 and 7.

(a) Photograph of the Whole Kit

(b) Photograph of Some of the Samples

Figure 5. Photographs of F-5 Honeycomb Structure Samples

Table 3

DESCRIPTION OF F-5 HONEYCOMB STRUCTURE SAMPLES

I

i.

<u>No.</u>	<u>Part No.</u>	Applications	<u>No. of Defects</u>
1	14-76444-1	Vertical Stabilizer T/E Rudder	4
2	14-76445-5	Horizontal Stabilizer L/E	4
3	14-76445-7	Horizontal Stabilizer L/E	4
4	14-76445-9	Horizontal Stabilizer L/E	3
5	14-76445-11	Horizontal Stabilizer L/E	3
6	14-76445-13	Horizontal Stabilizer L/E	3
7	14-76446-1	Trailing Sections of Wing, Horizontal Stabilizer, Aileron, and Flap	4
8	14-76447-1	Vertical Stabilizer L/E	2
9	14-76447-3	Wing Upper Skin Panel	2
10	14-76447-5	Nose Gear Door	2
11	14-76447-7	M.L.G. Articulated Door, Avionics Bay Door*, Access Door F.S. 47.5-87.5*	2
12	14-76448-1	Main Landing Gear Door	2
13	14-76448-3	M.L.G. Door Outboard	2
14	14-76448-5	M.L.G. Door Outboard	2
15	14-76448-7	Access Door and Bay Skin of Aileron	2
16	14-76448-9	Floor Panels*	2
		Total	53

Note: Applications marked with * are for use on the F-5F only. All other items are for use on both the F-5E and the F-5F. All the defects are flat-bottom holes with diameters of 0.5 inch for samples 2-6 and 0.25 inch for the others.

Delamination Sample

Repair Patch Sample

Figure 6. Photograph of Graphite/Epoxy Samples

Table 4

DESCRIPTION OF GRAPHITE/EPOXY SAMPLES

<u>No.</u>	<u>I.D. No.</u>	<u>Description</u>	<u>Nc</u>	<u>o, of Defe</u>	<u>cts</u>
1	ID-6	Impact Damage Standard		2	
2	DL-8	Delamination Standard		2	
3	RP-7	Repair Patch Standard		6	
			Total	10	

Note:

#1. The Impact Damage standard was a 32-ply graphite/epoxy laminate with flaws produced by hitting the standard with a weight dropped from a given height. One of the defects was 3/8 inch in diameter and was produced by an 80 in-lb impact. The other defect was a cluster of three 1/4-inch diameter damaged areas, each produced by a 40 in-lb impact.

#2. The Delamination standard was a 12-ply graphite/epoxy laminate bonded as face sheets to one-inch-thick aluminum honeycomb core. Delamination flaws were simulated by inserting Teflon envelopes between laminate layers. There were two flaws; one placed in the front face sheet (1/2 inch diameter) and the other placed in the back face sheet (1/4 inch diameter).

#3. The Repair patch standard consisted of a 36-ply graphite/epoxy laminate base with a 36-ply graphite/epoxy laminate on top with 1/2-inch ply dropoffs. The sample contained one 1% bondline porosity defect 3/4 inch in diameter, one 3% bondline porosity defect area, two rectangular delamination defects $1/4 \times 1/2$ inch and $1/8 \times 1/2$ inch, respectively, and two square delamination defects $1/2 \times 1/2$ inch. The AET model 206 AU instrument came with one wheeled probe with a fixture and two AC 375 LM acoustic sensors. The piezoelectric crystals used in the wheeled probe and the acoustic sensors had a resonance frequency of 375 KHz. The fixture for the wheeled probe maintained a fixed distance between the transmitting and receiving transducers.

The UFD-S instrument came with one roller probe (Model RP 25-1) and one rubber tip probe (Model STP 5-12) and accompanying fixtures. Each probe consisted of one transmitting and one receiving transducer. The fixture allowed adjustment of the distance between the transducers and the angle of each transducer with reference to the surface of the part under inspection.

The Fokker Bondtester Model 80 L came with nine different probes and four different probe adaptors. Each combination of probe and adaptor had a specific range of applicability (details are described in the operating manual). The diameter of the piezoelectric crystal in these probes ranged from 0.25 to 1.5 inches.

The flaw detectability of each of the instruments was evaluated using the reference bonded structure samples described in the previous section. The instruments were adjusted or calibrated according to their respective operating manuals. The appropriate probes were also selected according to the respective manuals. The AET Model 206 AU and the UFD-S instruments were adjusted by using a comparative procedure whereby the probe was placed over known good areas and known flaws, respectively, and the instrument controls adjusted so that the flawed region produced a measurably different response compared to a good bonded region. The BondaScope 2100 and Fokker Bondtester Model 80 L were calibrated according to the procedures described in their respective manuals, which involved a nulling procedure whereby the probe was placed over known good areas or known flaws and the instrument controls adjusted so that the instrument response was at specified null conditions. Since the instrument adjustment and/or calibration depended on the particular construction of the specimen (type of material, total thickness of the specimen, and thickness of face sheet) and selection of the probe, readjustment of the instruments was generally required whenever the construction of a specimen varied or a different probe was used.

With all four instruments, the reference bonded specimens described in the previous section were examined and the detectability of the known reference defects was determined. Unless otherwise specified, examinations were made from the front sides of the specimens.

D. <u>Results</u>

The results of the flaw detectability evaluation for the four selected instruments are presented in Table 5. To avoid identifying the performance of each individual instrument in this report, the instruments are renamed alphabetically in no specific order in the table. The identifications of the instruments were separately provided to SA-ALC/MMEI.

For the sake of the simplicity in presenting the results, the overall performance of the instrument in detecting the flaws contained in each specimen

is given in Table 5, instead of the detectability of each individual flaw. When the detectability of some of the flaws in a specimen differed from that shown in Table 5, the difference is described at the bottom of the table. There were a total of 28 specimens containing a total of 212 reference flaws for examination. In some cases (instruments B and C), not all the reference flaws were examined because of the lack of appropriate probes for certain geometric construction types. For instance, some thick-skin portions of the specimens were beyond the specified applications of the available probes, and some portions of the specimens were too narrow to accommodate the probes. Any such limitations are also noted at the bottom of the table.

In Table 5, the flaw detectability is expressed by using the following four ratings: very good (VG), good (G), fair (F), and poor (P). The ratings were defined by using the following criteria based on the flaw signal to noise (S/N) ratio:

Rating	S/N Ratio
Very Good (VG)	egual to or greater than 5
Good (G)	equal to or greater than 3 and less than 5
Fair (F)	equal to or greater than 2 and less than 3
Poor (P)	less than 2

Here, flaw signal refers to the magnitude of the instrument response to a flaw and noise refers to the magnitude of the variations in the instrument response from good bonded areas.

On the F-16 bonded structure samples, instruments A and D showed a good to very good flaw detectability. Also, instrument B generally showed a good to very good flaw detectability except the metal-aluminum honeycomb core sample on which the instrument showed a poor flaw detectability. Instrument C exhibited a good detectability on only a few specimens indicating a limited applicability. In addition, instrument A showed a potential for measuring the depth location of a debond in a laminate structure within the accuracy of a few plies and a debond in a multi-bonded structure. Instruments B and D showed a limited capability of identifying the debonded interface in a multi-bonded structure.

On the F-5 honeycomb samples, instrument A exhibited poor to fair flaw detectability. In general, the flaw indications on instrument A were not prominent and a very close attention of the inspector was required to identify the flaws. The inspection was therefore time consuming. Both instruments B and C, on the other hand, showed poor flaw detectability. Instrument D showeda very good detectability of the 1/2 in. diameter debonds in samples Nos. 2-6, while the detectability of the 1/4 in. diameter debonds in the rest of the samples was poor. It took a considerable time to calibrate instrument D; however, once calibrated, the inspection was straightforward and fast. In addition, flaw indications on instrument D were not influenced by the tapering (gradual thickness decrease) in the samples and, therefore, no readjustment of the instrument settings was needed to inspect the tapered section of the samples.

Table 5

LABORATORY EVALUATION RESULTS ON THE FLAW DETECTABILITY OF FOUR SELECTED INSTRUMENTS

		Fla			
Ref	Eerence Samples	A	В	С	D
F-1 San	l6 Bonded Structure mples (Ref.Table 1)				
1.	Metal-Metal	G-VG ⁽¹⁾	G ⁽²⁾	_(3)	G ⁽⁴⁾
2.	Metal-Al Honeycomb Core	G-VG ⁽⁵⁾	P	P	VG
3.	Al-Graphite/Epoxy	VG	G-VG	G	VG
4.	Steel-Graphite/Epoxy-Fiberglass	G-VG	G	G	G-VG
5.	Graphite/Epoxy-Graphite/Epoxy	VG	VG	F(6)	VG
6.	Graphite/Epoxy-Al Honeycomb	G-VG	G-VG	P ⁽⁷⁾	VG
7.	Graphite/Epoxy-Al Honeycomb	G-VG	_F (8)	P	VG
8.	Graphite/Epoxy Laminate	G-VG	F-G ⁽⁹⁾	P	G-VG ⁽¹⁰⁾
9.	Graphite/Epoxy-Fiberglass- Titanium	G-VG	F-G ⁽¹¹⁾	P	G-VG(12)

Notes:

i

- Fair for the cases where lower sheet thickness is 0.05 in. and upper sheet thickness is 0.19 in. or greater, and lower sheet thickness is 0.10 in. and upper sheet thickness is 0.21 in. or greater.
- (2) For up to 0.19 in. upper sheet thickness. Those with upper sheet thickness greater than 0.19 in. were not inspectable because of the lack of an appropriate probe.
- (3) Not examined because of the lack of an appropriate probe.
- (4) Poor for the cases where lower sheet thickness is 0.05 in. and upper sheet thickness is 0.15 in. or less.
- (5) Poor for those with skin thickness of 0.17 in. or greater.
- (6) Poor for 12 ply skin.
- (7) Good for 6 ply skin.
- (8) Poor for 40 to 44 ply skins.
- (9) Poor for the holes at 70 and 75 ply depths.
- (10) Fair for the holes at 30 to 50 ply depths. Poor for holes at a depth greater than 50 plies.
- (11) Good to Very Good for 18 ply skin.
- (12) Poor for Nos. 1 4 holes under the 52 ply graphite/epoxy laminate.

Table 5 (Cont'd)

LABORATORY EVALUATION RESULTS ON THE FLAW DETECTABILITY OF FOUR SELECTED INSTRUMENTS

Refe	erence Samples	F] A	law Dete B	ctability C	y D
F-5 Samp	Honeycomb Structure bles (Ref. Table 2)				
1.	Vert. Stab. T/E Rudder	Р	P	Р	Р
2.	Horiz. Stab. L/E	F	P	P	VG
3.	Horiz. Stab. L/E	F	P	P	VG
4.	Horiz. Stab. L/E	P	P	P	VG
5.	Horiz. Stab. L/E	F-G	Ρ	P	VG
6.	Horiz. Stab. L/E	P	P	P	VG
7.	Trailing Sections of Wing	F-G	P	P	P
8.	et al. Vert. Stab. L/E	P	P	P	P
9.	Wing Upper Skin Panel	P	P	P	P
10.	Nose Gear Door	F	P	P	P
11.	M.L.G. Articulated Door	F	P	P	P
12.	et al. Main Landing Gear Door	P	P	P	P
13.	M.L.G. Door Outbd	P	P	P	P
14.	M.L.G. Door Outbd	F	P	P	P
15.	Access Door and Bay Skin	F	P	P	P
16.	of Aileron Floor Panels	F	Р	P	Р

i.

Table 5 (Cont'd)

LABORATORY EVALUATION RESULTS ON THE FLAW DETECTABILITY OF FOUR SELECTED INSTRUMENTS

		Fla	w Detec	tability		
Ref	erence Samples	A	В	C	D	
Graj Samj	phite/Epoxy ples (Ref. Table 3)					
1.	Impact Damage	VG	F-G	P	VG	
2.	$Delamination^{(1)}$	VG	P	F-G	VG(2)	
3.	Repair Patch	_G (3)	Р	P	P	

Notes:

- (1) The results were based on the near surface inspection. From the face sheet opposite to the sheet where the flaw was located, the flaw was not detectable.
- (2) Poor for 1/4 inch diameter delamination.
 (3) Poor for the bondline porosity and one of the 1/2 x 1/2 inches patch delamination.

On the graphite/epoxy samples, instrument A showed a good to very good detectability of impact damage and delaminations. Instrument D exhibited a very good flaw detectability on the impact damage and delamination samples but showed a poor detectability on the repair patch sample. Instruments B and C showed only a limited detectability. All the four instruments used showed a poor detectability of the bondline porosity (up to 3%) in the repair patch sample.

Generally speaking, inspection with instruments requiring a liquid couplant was slow and time consuming, and the inspection results were sensitive to the coupling state of the probe to the specimen. The responses of the instruments operated with dry-coupled probes were also sensitive to the amount of force applied to the probe. This observation indicated that coupling variations of the dry-coupled probes also influenced the inspection results. Therefore, for both fluid-coupled and dry-coupled probes, care must be exercised to maintain a consistent and uniform coupling in order to obtain reproducible instrument responses.

Overall, instruments A and D performed very well. Instrument B showed a good performance while instrument C showed only a limited applicability. Of the four instrumnets evaluated, instrument A was the easiest to calibrate and operate. The inspection speed with instrument A, however, was slow. Instrument D, on the other hand, was easy to operate and the inspection was fast. However, calibration and adjustment of instrument D for optimum flaw detection require skill and experience and may take considerable time. Instrument B was easy to calibrate but the inspection was slow. The probes were somewhat inconvenient to use. Instrument C, in its present form, was somewhat difficult to use and may not produce consistent results.

IV. CONCLUSIONS AND RECOMMENDATIONS

A. <u>Conclusions</u>

1. More than fifty commercial ultrasonic instruments are available for nondestructive inspection of bonded aircraft structures. The majority of these instruments are conventional ultrasonic flaw detectors based on pulse-echo and through-transmission techniques. The rest of the instruments, which comprise a small minority, are based on nonconventional techniques including the resonance technique, the shadow technique, and the acousto-ultrasonic technique.

2. The trend in ultrasonic instruments is toward digital, automatic, and computer-controlled instruments. The majority of the commercial instruments are microprocessor-controlled with interfaces for communication with other devices such as an external computer, a printer, a recorder, or a video display. Also, the majority of the instruments are modular in construction to facilitate maintenace and repair. In addition, almost all instruments are equipped with visual and/or audible alarms to aid in flaw detection.

3. Most of the instruments use sensors (or probes) which require a liquid couplant such as light machine oil or water to transmit ultrasonic energy through the contacting interfaces between the probe and the part under inspection. Several instruments are operated with dry-coupled probes which do not require a liquid couplant. The dry-coupled probes use a pliable and resilient material such as rubber to transfer ultrasonic energy from the piezoelectric crystal to the part under inspection and vice versa. The degree of coupling of both the liquid-coupled and dry-coupled probes influence the inspection results. Therefore, to obtain repeatable results, uniform and consistent coupling of the probes is required.

4. Almost all the instruments require a smooth and clean surface of the part for inspection. However, substantial surface preparation such as removing paint on the part is not generally required. In addition, most of the instruments are operable in field environmental conditions. Except for highly sophisticated and automatic instruments and some instruments operated with a wheel type probe, the inspection speed of the instruments are generally slow. The portability of the instruments is generally high. Also, about 50% of the instruments are battery operable. The operating time of the batteries varies with each instrument but ranges typically from 6 to 12 hours. The equipment cost varies over a wide range from several thousand dollars to over a quarter of million dollars depending on the degree of sophistication and automation.

5. A total of four instruments was evaluated in the laboratory. Two instruments were based on the resonance technique, one was based on the shadow technique, and the other was based on the acousto-ultrasonic technique. A total of 28 reference bonded structure samples which contained a total of 213 reference flaws were used. The reference samples represented a wide variety of bonded aircraft structures including metal-to-metal, composite-to-metal, composite laminates, metal-honeycomb-metal, and composite-honeycomb-composite structures. 6. Instrument A showed generally a good to very good detectability of the flaws in the reference samples used except the F-5 honeycomb structure samples. The instrument also demonstrated the potential for determining the depth location of a debond in a laminate structure (within the accuracy of a few plies) and in a multi-bonded structure. The instrument setup and operation were straightforward. Recalibration of the instrument was required when the geometry or thickness of a part under inspection varied. The inspection time was slow.

7. Instrument B showed generally a good flaw detectability except for the flaws in the metal-aluminum honeycomb-metal structure samples. The instrument was easy to calibrate. Inspection speed was slow. Recalibration was required when the geometry or thickness of a part under inspection varied.

8. Instrument C showed a good flaw detectability on only a small number of samples thus indicating its limited applicability to inspection of bonded structures.

9. Instrument D generally showed a good to very good flaw detectability. The instrument performed particularly well in detecting debonds (of the diameter 0.5 inch or larger) between the skin and the core of metal-aluminum honeycombmetal structures. The taper in the F-5 samples did not influence the flaw detection. The instrument was easy to operate and the inspection was fast. Setting up and calibration of the instrument for optimum flaw detection required skill and experience and might take a considerable amount of time.

10. The four instruments evaluated showed a poor detectability of the bondline porosity up to the 3% porosity investigated.

B. <u>Recommendations</u>

1. Instruments A and D are recommended for nondestructive inspection of bonded aircraft structures.

2. Development of inspection procedures including instrument setup and calibration for each specific inspection application is recommended.

3. A study of the effects of the real world problems encountered such as dents, hail damage, and variation in paint thickness on the inspection results and their reliability is recommended.

APPENDIX A

i.

]

1

NAMES AND MANUFACTURERS OF ULTRASONIC INSTRUMENTS FOR INSPECTION OF BONDED STRUCTURES

<u>No.</u>	Equipment Name	Manufacturer
1.	Ultra Image III	Ultra Image International
2.	Acousto-Ultrasonics Instrumentation System	Physical Acoustics Corp.
3.	Multisonic/PC	California Data Corp.
4.	UFD-S Ultrasonic Flaw Detector	Sonatest
5.	Zipscan 2	SGS Sonomatic Ltd.
6.	Sparta TTU-90	Sparta Technology
7.	USIP 12 Ultrasonic Flaw Detector	Krautkramer Branson
8.	USIP 11 Ultrasonic Flaw Detector	Krautkramer Branson
9.	PARIS (Portable Automated Remote Inspection System)	Sigma Research, Inc.
10.	SDL-1000 Ultrasonic Imaging System	Sigma Research, Inc.
11.	Sigma Series 2000 Ultrasonic Imaging System	Sigma Research, Inc.
12.	USD-1	Krautkramer Branson
13.	Fokker Bondtester Model 80 L	Fokker B.V.
14.	M-Series Ultrasonic Instrument	Nortec/Metrotek
15.	NDT-132 Portable Ultrasonic NDT Instrument	Nortec/Metrotek
16.	AET Model 206AU Acousto-Ultrasonic Instrument	Acoustic Emission Technology Corp.
17.	NovaScope 3000	Automation/Sperry
18.	NovaScope 2000	Automation/Sperry
19.	BondaScope 2100	NDT Instruments, Inc.
20.	Bondtester 210	NDT Instruments, Inc.
21.	S-1A Sondicator Ultrasonic Test Instrum	ent Automation/Sperry

ł

No.	Equipment Name	Manufacturer
22.	S-2B Sondicator Ultrasonic Test Instrume	nt Automation/Sperry
23.	PS-710B Pulse Ultrasonic Test Unit	Magnaflux Corp.
24.	FX-3 Ultrasonic Flaw Detector	Magnaflux Corp.
25.	FX-5 Ultrasonic Flaw Detector	Magnaflux Corp.
26.	FX-7 Ultrasonic Flaw Detector	Magnaflux Corp.
27.	Echograph 1150 Ultrasonic Instrument System	Karl Deutsch
28.	Echograph 1030 Portable Modular Ultrasonic Flaw Detector	Karl Deutsch
29.	Echograph 1030-QUASCO Portable Ultrasoni Quality Assurance System	c Karl Deutsch
30.	Echograph Series 10 Portable Ultrasonic Flaw Detector	Karl Deutsch
31.	Echograph Series 20 Portable Ultrasonic Flaw Detector	Karl Deutsch
32.	Nanoscope 412 Ultrasonic Flaw Detector	Erdman Instruments Inc.
33.	Epoch 2002 Flaw Detector	Panametrics
34.	5052UA Ultrasonic Analyzer	Panametrics
35.	5055UA Ultrasonic Analyzer	Panametrics
36.	TenEleven SG Flaw Detector	Baugh & Weedon Ltd.
37.	PA1020 Ultrasonic Flaw Detector	Baugh & Weedon Ltd.
38.	MIA 3000 Structural Integrity Monitor	Inspection Instruments Ltd
39.	USL 33 Ultrasonic Flaw Detector	Krautkramer Branson
40.	USL 48 Ultrasonic Flaw Detector Digital Thickness Instrument	Krautkramer Branson
41.	USM 3 Large Screen Ultrasonic Flaw Detec	tor Krautkramer Branson
42.	USM 35 Large Screen Ultrasonic Flaw Dete	ctor Krautkramer Branson

No.	Equipment Name	Manufacturer
43.	Intraspect 98 Ultrasonic Imaging System	Combustion Engineering
44.	KB-6000 Ultrasonic Instrumentation System	Krautkramer Branson
45.	QC-2000 Reflectoscope	Automation/Sper ry
46.	QC-400 Reflectoscope	Automation/Sperry
47.	M-90 Reflectoscope	Automation/Sperry
48.	S-80 Reflectoscope	Automation/Sperry
49.	CM 2000 Squirter Ultrasonic Scanning System	Custom Machine Inc.
50.	MBS-8000 Computer Controlled Ultrasonic Testing System	MATEC Instruments Inc.
51.	NDT-150 Ultrasonic Inspection System	Nortec/Metrotek
52.	NDT-131D Digital Ultrascope	Nortec/Metrotek
53.	1712A Computerized Ultrasonic Instrument	Systems Research Lab., Inc.
54.	AX-8000 Integrity Tester	American NDT, Inc.
55.	FD-700 Ultrasonic Flaw Detector	Mitsubishi Electric Corp.
56.	Mark IV Ultrasonic Flaw Detector	Sonic Instruments Inc.
57.	ARIS (Automated Realtime Inspection System)	Southwest Research Institute
58.	ABE (Advanced Bond Evaluator)	United Western Tech., Corp.

APPENDIX B

ŝ

h

2

þ

ł

j,

-

ULTRASONIC EQUIPMENT EVALUATION FORM AND BATING GUIDELINES

ULTRASONIC EQUIPMENT EVALUATION FORM

Equipment Name : Manufacturer : Based on Thru-Transmission/Pulse-Echo Tech. (), Resonance Tech. () Spike, Square Wave Pulse Maximum Output Voltage of the Pulser : Receiver Gain _____dB, Dynamic Range _____dB, Freq. Range _____MHz Flaw Sensitivity : Flaw Type : Delaminations, Voids, Unbonds/Debonds, Subsurface Damage Flaw Location : Near Surface, Sub-surface Flaw Size : Accuracy in Locating a Flaw : Position _____, Depth _____ Dependency on Operator Skill : Setup _____, Procedure _____, Interpretation _____ Need of Surface Preparation _____, Need of Couplant _____ Sensitivity to Environmental Conditions: Temp.____, Humidity ____, Light ____, Shock and Vibration _____ Inspection Speed : Repeatability/Reliability of Inspection Results : Availability of Recorder Interface : Cost of Inspection (Including supplies and consumables) : Portability of Equipment :_____ Overall Weight _____ Maintainability of Equipment: Modular Construction _____, Internal Diagnosis Capability _____ Power Requirement : Personnel Safety : Equipment Cost : Ability to Automate : Adaptation/Modification Cost for Automation : Remarks

RATING GUIDELINES

1. Flaw Sensitivity:

This rating pertains to the detectability of flaws of various types, sizes, and depths in a component. "Low" ratings refer to the case where the detectability is limited to flaws of a few specific types and a large size (1 inch or larger in diameter), and those located near the accessible surface. "High" ratings refer to the case where the detectability is good for various flaw types of small size (0.25 inch or smaller in diameter) throughout the thickness of the component. "Moderate" ratings are for the intermediate detectability.

2. Accuracy in Locating a Flaw:

This rating pertains to the accuracy and the resolution in determining the spatial position of a flaw in a component.

3. Dependency on Operator Skill

This relates to the training and skill required by the operator to conduct the inspection. "Low" ratings refer to minimal training (two days or less) and technical knowledge (high school graduation or equivalent experience) requirements. "High" ratings refer to the case in which a two-week or more training and a high level of technical knowledge (university graduation or equivalent experience) are required. "Moderate" ratings are for those cases which require training and technical knowledge intermediate between the "Low" and "High" ratings.

4. Need of Surface Preparation

ł

This rating measures the amount of surface preparation required in the region to be inspected. "Low" ratings refer to the case where little or no preparation is required other than wiping the surface to remove loose foreign material such as dirt. "Moderate" ratings refer to the case where all foreign material adhered to the surface such as grease, oil or dirt must be removed and a clean surface is required. "High" ratings refers to the case where a substantial surface preparation such as removing paint is required.

5. Sensitivity to Environmental Conditions

This relates to the influence of field environmental conditions (temperature, humidity, light, shock, vibration, and noise) on the operation of the equipment and performing the inspection. "Low" ratings refer to the case where the equipment is adequate for use in the field condition. "Moderate" is for the case where the equipment is marginal for use in the field condition. "High" is assigned to the equipment whose use is limited to the laboratory condition.

6. Inspection Speed

This relates to the speed of inspection. "Low" ratings are assigned if the inspection is done manually. "Moderate" ratings are assigned if the inspection is done manually with the use of a mechanical device such as yoke which facilitates the inspection. "High" ratings are assigned if the inspection is done by using a mechanical or electrical scanning device.

7. Repeatability/Reliability of Inspection Results

This rating pertains to the repeatability (or reproducibility) and the reliability of the inspection results. This is intended to identify the degree of variation in inspection results from day to day operation and from operator to operator. "Low" ratings are assigned if the inspection relies heavily on the subjective judgement of the operator and requires a high degree of operator interaction with the inspection process and operator's attention to detail. "Moderate" ratings are assigned if the equipment is provided with features such as visual or audible alarm to allow objective judgement of the operator and the dependence of the inspection results on the operator is low. "High" ratings are assigned if the equipment requires little or no operator's judgement.

8. Availability of Recorder Interface

This rating relates to the availability of outputs for recording inspection results such as amplitude, thickness, distance, or logic (yes or no; on or off) outputs. "Low" ratings are assigned if no recording output is available. "Moderate" ratings are assigned if any of the following outputs is available; amplitude, thickness, distance, or logic. "High" ratings are assigned if all of the above outputs and A-scan output are available.

9. Portability of Equipment

This relates to the easiness in transporting the equipment by hand. "High" ratings are assigned if the equipment is equal to or less than 30 lbs. "Low" ratings are assigned if the overall weight of the equipment is over 200 lbs or the equipment has a component weighing more than 50 lbs. "Moderate" ratings are assigned if the overall weight of the equipment is no more than 200 lbs and no component exceeds 50 lbs.

10 Maintainability of Equipment

This relates to the easiness in maintaining the equipment including repair and calibration. "High" ratings are assigned if the equipment consists of easily exchangeable plug-in modules or has internal diagnosis capability. "Moderate" ratings are assigned if the equipment can be diagnosed with standard testing device such as an oscilloscope and can be repaired and calibrated at user's facility in the Air Force. "Low" ratings are assigned if the equipment requires a special testing instrument or must be maintained at the manufacturer's facility.

11. Power Requirement

This rating measures the power required to operate the equipment and to conduct inspections. "Low" is assigned for power requirements which can be fullfilled with batteries. "Moderate" refers to a power requirement of a few hundred watts which could be obtained from a portable generator. "High" refers to a requirement of an electrical power line.

12. Personnel Safety

ł

I

•

This rating measures the relative amount of precaution required in operating the equipment during the inspection to protect inspection personnel and other personnel nearby.

13. Equipment Cost

This rating pertains to the cost of the basic equipment excluding periperal equipment. "Low" is assigned if the equipment is equal to or less than \$10,000. "Moderate" is assigned if the equipment is above \$10,000 and equal to or less than \$30,000. "High" is assigned if the equipment is above \$30,000.

14. Ability to Automate

This rating refers to the capability of the equipment for automatic inspection. "Automated" is assigned if the equipment is already automated. "High" is assigned if the equipment is controllable using a microprocessor or a computer. "Moderate" is assigned if the equipment is manually controlled but can provide a digital output for data acquisition, process, and analysis using a computer. "Low" is assigned if the equipment is manually controlled and provides an analog output.

APPENDIX C

DESCRIPTION OF F-16 BONDED STRUCTURE REFERENCE SAMPLES (FROM T.O. 1F-16A-36)

--

]

- -25, FMS-3018, Form II adhesive primer
- Dimensions with two digits after the decimal point uses ± 0.03 tolerance while three digits after the decimal point uses ± 0.010 tolerance.
- 3. After evaluation of reference part for bond line integrity, drill 0.75-inch diameter flat bottom holes from bottom surface of reference part to adhesive bond line.
- 4. Finish: one coat epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-83286).

Figure

16A11039-7 Metal-Metal Reference Part

· Figure

16A11039-9 Metal-Core Reference Part

- 1 Materials: (See table 1-3.)
 - -23, FMS-2023, Type 3 or Type 5, Form A or Form C graphite-epoxy tape. P5284-3 cloth (1 ply-upper surface),
 - P5362-1 cloth (1 ply-lower surface)
 - -49, FMS-3018, Form II adhesive primer
 - -51, 2024-T851 aluminum
 - -53, FMS-3018, Form IB adhesive
- 2. Ply designation indicates thickness of step.
- 3. Every 5 plies of graphite-epoxy are oriented +45°, -45°, 0°, -45°, and +45°. This pattern is repeated 2, 3, 4, and 5 times, respectively, for 10, 15, 20, and 25 ply thicknesses.
- 4 Dimensions with two digits after the decimal point uses ± 0.03 tolerance while three digits after the decimal point uses ± 0.010 tolerance.
- After cure, drill 0.62-inch diameter flat bottom holes from aluminum side of reference part to adhesive bond line.
- 6. Finish:
 - a. Composite—two coats epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-83286).
 - b. Aluminum—one cost epoxy primer (Military Specification MIL-P-23377) and two costs urethane costing (Military Specification MIL-C-83286), except holes which are unfinished.

Figure

16A11033-7 Aluminum-Graphite Reference Part

- 1. Materials: (See table 1-3.)
 - -25. FMS-1023, Class 1, Type A fiberglass
 - -27, FMS-2023, Type 3 or Type 5, Form A or Form C graphite-epoxy tape
 - -57. CRES Type 321 annealed steel (Military Specification MIL-S-6721)
 - -101, FMS-3018, Form IB adhesive
- 2. Dimensions with two digits after the decimal point uses ± 0.03 tolerance while three digits after the decimal point uses ± 0.010 tolerance.
- 3. Orientation of graphite-epoxy plies is +45°, -45°, 0°, -45°, and +45°
- 4. Orientation of each ply of fiberglass is 90° to adjacent plies, e.g., +45°, -45°, +45°, -45°, etc.
- 5. After cure, drill flat bottom holes as shown.
- 6. Finish:
 - a. Composite and laminate—two coats epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-83286), except holes which are unfinished.
 - b. Metallic—one coat epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-83286).

Figure

16A11033-11 Steel-Graphite Reference Part

- 1 Materials: (See table 1-3.)
 - -29, FMS-2023, Type 3 or Type 5. Form A or Form C graphite-epoxy tape and P5284-3 cloth (1 ply-upper surface)
 - -31, FMS-2023, Type 3 or Type 5. Form A or Form C graphite-epoxy tape and P5362-1 cloth (1 ply-lower surface)
 - -103, FMS-3018, Form IB adhesive
- 2. Ply designation indicates thickness of step.
- 3. Every 4 plies of -29 and -31 graphite-epoxy are oriented -45°, +45°, +45°, and -45. This pattern is repeated two times for -31 base and one, two, and three times respectively, for -29 cap 4, 8, and 12 ply thickness.
- 4. Dimensions with two digits after the decimal point uses ± 0.03 tolerance while three digits after the decimal point uses ± 0.010 tolerance.
- 5. After cure, drill flat bottom holes to adhesive bond line as shown.
- Finish: two coats epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-82386), except holes which are unfinished.

Figure

16A11033-13 Graphite-Graphite Reference Part

1 Materials: (See table 1-3.)

t

	MS-2023, Type	3 or Type 5. F	orm
P	5284-3 cloth (1	ply-inner surf	ace),
a	nd P5362-1 clot	h (1 piy-outer	
-63. FMS-10	044. Type V sea	lant	
-67, P190-1	B (5052-18) alu	minum core	
-105/-107	. FMS-3018, Fo	rm IB adhesive	\$
2. Ply designation	on indicates thic	kness of step.	
3. Orientation o	f each ply of gra	phite-epoxy is	as
follows (when	e + is +45° - is	-45°, and 0 is	(°°)
—35 ply1-6	+-+-+-	ply 13-14	-+
ply 7-8	+-	ply 15-16	-+
ply 9-10	+-	ply 17-18	-+
ply 11-12	••	ply 19-20	.+
-37 ply 1-10	++0 0++		

- Dimensions with two digits after the decimal point uses ± 0.03 tolerance while three digits after the decimal point uses ± 0.010 tolerance.
- 5. Install flaw area as follows
 - a Cut plug from core
 - b. Assemble core to stepped top Lav strip of teffon sheet in plug cut out area of core and reinstall plug in core. Cover core surface with teffon sheet. Bond assembly.
 - Remove tefton sheet, plug, and tefton strip and discard
 - d. Bond bottom skin
 - e Seal exposed areas of core with sealant
- 6. Finish: two coats epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-83286).

NOT

Figure

16A11033-15 Graphite-Core Reference Part

- NOTES.
- 1 Materials (See table 1-3.)
 - -37/-113. FMS-2023, Type 3 or Type 5, Form A or Form C graphite-epoxy tape, P5284-3 cloth (1 ply-inner surface), and P5362-1 cloth (1 ply-outer surface)
 - -63, FMS-1044, Type V sealant
 - -67, P190-18 (5052-18) aluminum core
 - -105, FMS-3018, Form IB adhesive
- 2. Ply designation indicates thickness of step.
- 3. Orientation of each ply of graphite-epoxy is as follows (where + is 45°, is -45°, and 0 is 0°):

-113 ply 1-12	+-+-+-+-+-
ply 13-24	. * . * . * . * . * . *
ply 25-28	++
ply 29-32	++
ply 33-36	++
ply 37-40	++
ply 41-44	++
piy 45-48	*··*
ply 49-52	* <i>*</i>

-37 ply 1-10 +--+ 00 +--+

- 4 Dimensions with two digits after the decimal point uses ± 0.03 tolerance while three digits after the decimal point uses ± 0.010 tolerance.
- 5. Install flaw area as follows:
 - a. Cut plug from core.
 - b. Assemble core to stepped top. Lay strip of teflon sheet in plug cut out area of core and reinstall plug in core. Cover core surface with teflon sheet. Bond assembly.
 - c. Remove tefton sheet, plug, and tefton strip and discard.
 - d. Bond bottom skin.
 - e. Seal exposed areas of core with sealant.
- Finish: two coats epoxy primer (Military Specification MIL-P-23377) and two coats urethane coating (Military Specification MIL-C-83286).

104

Figure

16A11033-109 Graphite-Core Reference Part

NOI

Figure

16A11033-9 High Resolution Reference Part

Figure

F

16A11033-17 Graphite-Titanium Reference Part

APPENDIX D

DESCRIPTION OF F-5 HONEYCOMB STRUCTURE SAMPLES (FROM A COPY OF THE ENGINEERING DRAWINGS OF THE SAMPLES)

ł

 PART PROTECTON PELZ MATERIALS WHICHAIG MANJAL STER P-6950 MANJAL STER P-6950 MANJAL STER P-6950 JUSE PROCESS SPEC MA-124 USE IN128 TWE II USE IN128 TWE II FMISH OUTSTE OF SAME ONLY OF BOMED AS SEMELY FER STROUT 	4 BOND PER MAINUS EXCEPT DONOT SEAL WARES CRICKRE ECCES FER MAIN DUE TIME AF40 CLASSI CKNDE A PER MAI 11340 22 USE 4.5-UB-104 ALX MAI 1171 CLASSI USE 6.1-UB-154 PER MAI 1171 CLASSI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I -33 3 CORE MEN FREE Prefex to Jage 3.1 12 I -31 3 CORE MONEYCOMB 6.1 12 I 1 -31 5xtu 54EET AL 65.3.1 00-A-253/2 11 I 1 -23 5xtu 54EET AL 65.3.3.1 00-A-253/2 11 I -23 5xtu 5xtu 70.55 AL 65.3.3.1 00-A-253/2 11	I -27 2 CORE HONE FCONE 2.99 Million 9 1 -25 B SKIN SKET D SKE P	I I FS SKIN PONEYCOURD 6.0.1 1 1 1 -13 SKIN 7035-10. 00.4.1 0.5.3 0.6.3.30/12 1 1 1 -13 SKIN 7037-10. 00.4.30/12 1 0.0.5.30/12 1 1 1 -11 10 CORE M. FOIL 00.4.30/12 1 1 1 1 -11 1 CORE M. FOIL 0.00.3.31 00.6.7.30/12 1 1 1 -11 1 CORE M. FOIL 0.0.3.31 0.0.6.7.30/12 1 1 1 -11 1 <td< th=""><th>The location of the second sec</th></td<>	The location of the second sec
	a.oo 1.50 DA HOT FTWOWN AND CONTRACT TWOWN AND CONTRACT A		250 DIA MOLE THREOLOH RIBGURI LIIRECTICN San And Care Threoloh Mear San And Care Throutant Mear Surface of Far San Must Mot BE Scratched	н стана 170 ста	

APPENDIX E

•

DESCRIPTION OF GRAPHITE/EPOXY SAMPLES (FROM W. H. SPROAT, "COMPOSITE NDI PROFICIENCY KIT AND METHODOLOGY, HARDWARE DESIGN AND FABRICATION," PRELIMINARY REPORT, LOCKHEED-GEORGIA COMPANY, AUGUST, 1986)

-

ł

;

L.

DELAMINATION ENVELOPE LOCATIONS

REPAIR PANEL FLAW LOCATIONS

