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CHAPTER I

INTRODUCTION

1.1. Spread-Spectrum Multiple-Access Communication

In recent years there has been increased interest in a class of multiple-access

techniques known as spread-spectrum multiple-access (SSMA). The SSMA tech-

N niques are those multiple-access methods in which the multiple-access capability

is due primarily to coding and in which - unlike traditional time- and frequency-

division multiple-access - there is no requirement for precise time or frequency

coordination between the transmitters in the system. One attractive feature of

SSMA is the difficulty of detection by an unauthorized receiver. Another advan-

-: tage of SSMA is that it is relatively easy to add additional users to the system.

However, probably the dominant reason for considering SSMA is the need for

some type of external interference rejection capability such as multipath rejec-

tion or resistance to intentional jamming.

SSMA techniques have been considered for a variety of satellite systems

[San 81], systems to provide communication to aircraft and other mobile users

[Leb 71], [Coo 78], [Goo 80], air traffic control systems [Sti. 73].

The two most common forms of SSMA are frequency-hopped (FH) SSMA

and direct-sequence (DS) SSMA. In DS-SSMA [Leh 84], [Pur 81b], each user

1
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is given its own code, which is approximately orthogonal (i.e., has low cross

correlation) with the codes of the other users. The carrier is phase modulated

by the digital data sequence and the code sequence. In FH-SSMA [Pur 84J, each

user is assigned a unique frequency hopping pattern, so that the RF signal from

a given transmitter is hopped from slot to slot by changing the carrier frequency

according to its own hopping pattern.

This thesis is concerned with the application of FH-SSMA techniques to com-

munication networks. We are interested in the multiple-access capability of a

frequency-hop packet radio network as characterized by the user-channel model

described in section 1.2. The goals of this thesis are to find the theoretical limit

in performance and to show how to achieve the limit through the use of channel

coding techniques.

1.2. The User-Channel Model

We consider a frequency-hop spread-spectrum (FH/SS) packet radio network

in which I transmitter-receiver pairs (also called user pairs) of terminals wish

to communicate over a common channel (see Figure 1.1). Each source generates

messages (information), independent of messages generated by other users. There ii

are I separate encoders, one for each source. The j" encoder has as input only the

messages from the j" source and produces a codeword (zj 1, X,*... , zXj), zi E

X, where X is a common input alphabet. At the ji" receiver the j t" frequency

dehopper, which has knowledge of the j"' hopping pattern, dehops the received

signal and the dehopped signal is demodulated to produce the output vector

(Yil,Yj2,'" ,IYn), yij E Y, where Y is a common output alphabet. Decoding is

done independently at each of the I receivers and thus there is no cooperation

between users on either the transmitting or the receiving side. We thus model

,,.-
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the communication system from the modulator input to the demodulator output

as an I-user interference channel [Gain 80].

We assume that each receiver is able to hear the transmissions of each of the

I transmitters. Each receiver does not attempt to dehop and demodulate signals

other than its own. The signal of each user is, however, present in the front end

of each receiver and is a potential source of interference. An example of this is a

satellite multiple access broadcast system or a fully connected network. Thus the

interference traffic level will be the same at each receiver in the network, which

makes the component channels for all user pairs be identical. We thus assume

that exactly the same code is used for all user pairs in the network.

The users are assumed to transmit data in fixed-length packets, and the

packet may consist of several codewords. In this thesis we will assume that a

"packet" consists of exactly one codeword from the code. This provides us with

a natural definition of a "successfully transmitted packet": A packet is declared

successfully transmitted if the number of errors and/or erasures occuring due to

multi-user interference is within the errors-and-erasures correcting capability of

the code.

In our model of a frequency-hop radio network, there is a band of q frequency

slots available and each user pair has a frequency hopping pattern that randomly

hops among all q frequency slots with probability 1/q for each slot independent N

of previous hop frequencies (i.i.d. hopping). In each hopping time-slot, Nb code

symbols are transmitted using a common type of modulation whose spectrum

falls within the specified frequency slot. In general, frequency hopping for the

terminals in the network can be either synchronous or asynchronous. The re-

quirement for synchronotns frequency hopping is that the hop intervals from all of

the transmitters in the network must be aligned at each receiver in the network.

The term asynchronous frequency hopping is reserved for the situation where

V
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this requirement is not met. We also assume that packet time slotting is em-

ployed, that is, time is divided into intervals called packet (time) slots, and each

packet transmission must take place wholly within a packet slot. The conditions

required for slotted transmission are much less strict than the requirements for

synchronous frequency hopping: Because the packet slot size is typically one to

three orders of magnitude greater than the hop size (hop duration time), it is

considerably easier to implement a slotted packet transmission system than to

synchronize the frequency hopping among all of the terminals in the network.

In particular, a guard time of a few percent of the packet length is sufficient to

permit slotted operation in the packet radio network, and therefore represents a

small degree of added overhead.

Whenever two or more code symbols from different radios are transmitted

simultaneously in the same frequency slot, we say a "hit" occurs. Suppose two

packets are transmitted in the same packet slot on two different hopping patterns,

and consider a single symbol from one of them. The probability that the other

packet has symbol transmitted in the same frequency slot at any time during

the transmission interval for that symbol is called the probability of a hit and is

denoted by Ph. It is known that ph can be calculated as [Ger 82]

"Ph = +[1+ -(i - )], asynchronous frequency hopping (1.1)

Iq' synchronous frequency hopping,

where N is the number of code symbols per hop. If there are I simultaneous

ON, transmissions, the probability of a particular symbol being hit is

Ph,! = 1 - (1 - p ). (1.2)

Since each receiver can hear the transmissions of all I transmitters, the proba-

bility of a particular symbol being hit will be the same at all receivers, namely

ph,!. We will assume that the background noise power is small compared with

r.
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the signal power, so that when there is no interference at a particular hop, the

data is correctly received.

1.3. Previous Work

Studies of the multiple-access capability of frequency-hop spread-spectrum

communication systems have begun quite recently. Geraniotis and Pursley [Ger 821

have obtained the (uncoded) bit error probability in an asynchronous frequency-

hop SSMA communication system. Soon after, the use of frequency-hopping,

M-ary modulation, and Reed-Solomon coding in a multiple-terminal communica-

tion system was considered in [Haj 82], [McE 82], [Pur 81a]. In particular, Hajek

[Haj 82], [Pur 81a] have evaluated the throughput of frequency-hopped commu-

nications with error-correction coding for a Poisson traffic model. Musser and

Daigle [Mus 82] derived the throughput of an urslotted code division multiple

access (CDMA) network with fixed length packets. Pursley [Pur 83a] examined

the improved multiple-access capability available through the use of frequency-

hopping with side information and erasure-correction. In [Pur 84] he also evalu-

ated error probabilities and local throughput of the frequency-hop radio networks

which incorporate the standard slotted and unslotted ALOHA channel-access

protocols, and Reed-Solomon error-control coding. Hegde and Stark [Heg 85]

considered the multiple-access capability of frequency-hop spread-spectrum com-

munication from an information theoretic (capacity) point of view. It was shown

that there is an optimal number of users that maximizes the total information

being reliably transmitted.

Spread-spectrum network protocols have been discussed in the literature

{Pur 83b], [Sil 84], [Sou 84], [Wie 821, but the design and analysis of these pro-

tocols are still an active area of basic research, and several problems remain un-

_w.
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solved. Raychaudhuri [Ray 81] presented analytical techniques for performance

evaluation (such as steady-state throughput, delay) of slotted ALOHA CDMA

Ssystems. In [Wie 83], [Wie 86] a distributed reservation scheme for SSMA chan-

nels has been introduced and analyzed.

1.4. Thesis Outline

In this section we briefly outline the remaining chapters of this thesis. In

chapter II, several performance measures of the multiple-access capability which

are to be discussed throughout this thesis are stated. Those are the channel ca-

pacity, the achievable region, and the throughput. In brief, the channel capacity

is the maximum average amount of information that can be transmitted over the

channel with the best possible code. The achievable region is the set of all code

i rate, channel traffic pairs such that it is possible to have the packet (codeword)

error probability to be less than a desired error probability. The throughput is

the average number of successful transmissions that can take place within the

range of a given receiver.

Chapter III is concerned with the multiple-access capability of a frequency-

hop packet radio network which utilizes Reed-Solomon coding. Reed-Solomon

(RS) codes are employed to correct the errors and/or erasures occurring due to

multi-user interference. If the receiver can detect the presence of interference

in the same frequency slot in which the signal of interest is present (side infor-

mation) and erase the corrupted channel symbols, the unique erasure-correcting

capability of the RS codes can be exploited. In general, an (n, k) RS code can

Will correct up to e - k erasures out of n symbols or up to t L L(n - k)/2J errors

out of n symbols: this is the best value of e and t that can be achieved by any

code of the same block length and rate. This is often a strong justification for
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using RS codes. For both the perfect side information and no side information

cases, we derive the achievable regions of code rate and channel traffic, and the

optimal code rate and optimal channel traffic at which the normalized through-

put is maximized. From these optimum points we derive the maximum possible

throughputs, and compare them with the corresponding channel capacities. It

is found that for the perfect side information case, the maximum sum capacity

(defined in section 2.2) is achieved by the optimal rate RS code with bounded dis-

tance decoding. However it is shown that the maximum (normalized) throughput

achievable without side information is only 39.3% (worst case) of that achievable

with perfect side information. The loss in using Reed-Solomon codes in a no side

information environment is partially due to the use of a non maximum likelihood

decoder (i.e., bounded distance decoder).

In chapter IV, we investigate a technique for obtaining the side information.

This is done by partitioning the data stream into blocks, encoding each block

using an error-detecting code, and transmitting the encoded block (codeword)

during a single hop. On the basis of the received version of the codeword the

decoder makes a statistical decision about which of the channel states (hit or

no hit) each codeword was transmitted over. Clearly, as the rate of the error-

detecting code decreases, the error detection capability increases, therefore the

reliability of side information obtained will increase. However, decreasing the

code rate implies a decrease in the efficient use of the channel. An interesting

question that arises from this discussion is "How does the reliability of the side

information change as the code rate changes?", or "What is the maximum allow-

able code rate to obtain a certain reliability of the side information?". In this

chapter we give the answer to the above question for both the synchronous and

asynchronous frequency-hopping systems.

The combination of encoder, channel, and decoder generates in general an

•'
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.a errors-and-erasures channel. The above encoder and decoder will be called later

as inner encoder and inner decoder respectively. We employ an outer code to

correct the errors (caused by undetected errors) and the erasures (caused by

detected errors). In this way the inner decoder informs the outer decoder which

symbols (inner codewords) in the received packet have been hit by symbols from

other packets in the same time slot. We find that the normalized throughput

achievable with perfect side information can indeed be achieved through the use

of this concatenated coding scheme, even though the channel provides no side

information. This chapter ends by evaluating the performance of diversity / RS

code as an example of the concatenated coding schemes.

In chapter V, we consider the performance of frequency-hopping multiple-

access systems which have imperfect side information at the demodulator. In

fact, perfect side information and no side information are special cases of the

imperfect side information. When imperfect side information is available at the

demodulator, its output is, in general, a sequence of errors, erasures, and correct

symbols. In order to correct the errors and erasures we employ a Reed-Solomon

code, and consider two different decoders for it: one is the errors-and-erasures

decoder and the other is a parallel decoder. We first evaluate the performance of

errors-and-erasures decoder and discuss an idea for improving the performance.

Based on this idea we suggest a parallel decoding scheme and evaluate the per-

formance of it over the imperfect side information channel.

Finally in chapter VI, conclusions are made.

r
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CHAPTER II

PERFORMANCE MEASURES

2.1 Introduction

Up to now our characterization of the performance of frequency-hop multiple

aaccess systems has been qualitative. In this chapter, this characterization is made

more precise by examining specific quantitative performance measures: these are

the capacity region, the achievable (rate, traffic) region, and the throughput.

Such measures not only are needed for analytical and numerical comparisons

of the effectiveness of different multiple access systems, but are also used in

optimizing the performance of a given multiple access system. In the latter case,

the performance measure acts as the objective function in the problem of selecting

the best system parameter values and/or operational modes.

2.2 The Interference Channel

The I-user interference channel has I transmitters and I receivers. Trans-

mitter j wishes to send information to receiver j. He does not care what other

receivers receive or understand. It is not quite a broadcast channel because

10



there is only one intended receiver for each transmitter, nor is it a multiple ac-

cess channel because each receiver is only interested in what is being sent by the

corresponding transmitter.

The I-user interference channel is characterized, in general, by (X 1 X X 2 x

X Xx, P(y 1 ,y 2 ,'"y I z1 ,x1,... ,X ), Y1 x Y2 x .. x Y) consisting of 21

finite sets X 1 , X 2 , ••, X, Yl, 1 2,.• , Y and a collection of conditional probability

distributions P(.,.,...,. I zi,z2 ,...,X1 ) on Y, x Y2 x .. x Y1, one for each

vector (XI, x 2 ,... ,X) where xi E X1 ,X2 E X2 ,...,xi E X 1 . Here X1, X2 ,..., 1

are inputs to the channel and Yl,Y2,'".,y 1 are outputs from the channel (see

Figure 1.1). In our interference channel model, X, = X2 = = X and
Y1 = Y = ... = Y1"

Using Sato's terminology [Sat 77], if the marginal transition probabilities

P(Y, I, zX2,*..,zxj), do not depend on xi, i : j, i.e.,

P(yj X1 , , .,zX) = P(yj I Xj), j= 1,2,-..,I, (2.1)

then the interference channel is called "separated". The interference channels

created by a specific frequency-hopping modulation will be characterized by the

marginal transition probabilities P(y , I z1,X2 ,. . ,xI), j = 1,2,... ,I. We will

show later how the marginal transition probabilities depend on the frequency-

hopping modulation (e.g. number of frequency slots, hopping pattern) and avail-

ability of side information. If the interference channel is separated, the individ-

ual channels characterized by P(y I z.) are called "component" channels. In our

model the component channels for all user pairs are identical.

2.3 Capacity Region

In general, by the "capacity region" of any interference channel, one means the

set of all joint user rates such that it is possible to communicate with arbitrarily
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small error probability at any joint rate inside this set, but it is impossible to

do so at any joint rate outside this set. To define the capacity region for such

channels precisely, it is convenient to make use of the concept of the "achievable

rate". An ((MI, M 2,..., MI), n) code for an I-user interference channel consists

of I sets of integers called the message set

M = {1,2,.. Ms}, j= 1,2,... 1, (2.2)

I encoding functions

J Ms X7, j =1,2,...,I, (2.3)

and I decoding functions

rd g,: Y - M i , j=1,2,'".,I. (2.4)

Assuming an uniform distribution over the product message sets M 1 x M 2 x

... x M 1 , i.e., that the messages are independent and equally likely, we define

the "average probability of error" for the J" channel to be

SI(e) P( g(Ys) # m,, j (in1 ,...,m 1 ) sent)," , ~~~M1 ... Mr (, ...,, e,..M
(2.5)

. where Y, E y.

*-,- '.. We define the rate vector (r 1 ,r,.. -,rj) of an ((MI,M 2 ,... ,M), n) code by

log12 Mr -  n 1,2,. (2.6)

The rate vector (rl,r2,. .,r) is said to be achievable by an I-user interfer-

ence channel if, for any e > 0 and for all n sufficiently large, there exists an

((MI,M 2 ,...,MI), n) code with

su ch t M 2 Mat2 M, .. 2n",

such that
- p .l( ) < p2% p-(e) < C, .. p() <

pi)e 'Eo (n , e <C

- u i:
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The capacity region of the I-user interference channel is defined as the set of all

achievable rate vectors in the (rl, r2,.. ,rr)-space.

Notice that the notions of achievable rates and capacity region depend only JU

on the marginal transition probabilities of the channel, P(yJ z 1, z 2,', z,), and

not directly on the joint conditional probability P(yi, y 2 , Y1, yr X1 , z 2 ,- .

This is because the average probability of error Pj' )(e) (j 1, 2, .. ,I) depends - S

only on the corresponding marginal probability

1 j(i(' I iX1X2",XI) = P(Yi, Y .. Y1 I X1, X, .Xt). (2.7)

From this, we can conclude that the capacity region is the same for all I-user

channels that have the same marginal probabilities.

The capacity region for the interference channel is not, in general, known,

but various inner and outer bounds have been developed for it JAh 71], ISat 771.

However, if the channel is separated, i.e.,

PjCYi I X1,,. -., z) = P,(y, I X), j = 1,2,..,, (2.8)

then using the properties given in [Sat 771 it can be shown that the inner bounds

and the outer bounds coincide, thus giving us the capacity region:

((r, , ,.,r[) : 0 < i < C,(I)}, (2.9)

where

C,(I) = maxQ;ICX; Y,) (2.10)

is the capacity of the j t h component channel which is described by (Xi, P(y, I x), Y,).

This implies that the capacity regions of the separate interference channel are Ile,

determined by the individual channel parameters only. Reducing the rate of one

user is of no benefit to other users.

The sum capacity, C,,(I), is defined as the largest possible total rate that

A'
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can be achieved by all users, and if the channel is separated

Cau(I =maxQ, ..q, F-= I(X, ; 1',)

- E#,l maxQ.I(Xj, y") (2.11)

2.4 Achievable Region

In the previous section we have considered the performance achievable with

the best possible codes, i.e., the capacity region. The coding theorem guarantees

the existence of codes, but does not provide any criteria for construction or

selection of such codes. The capacity region is a property of a channel. This

section and the next section are focused on a coding viewpoint. We assume that

all encoders have same rate and are identical. We first consider an achievable

region of a family of interference channels with a family of codes. The achievable

region is defined as the set of all code rate (r), channel traffic (I) pairs such

that there exists a code with rate r and codeword error probability less than

some desired value, PE, for I users (packet transmissions). The codeword error

probability is the probability of the number of errors and erasures occuring in the

received sequence being greater than the correcting capability of the code. The

set of all (r, I) such that the codeword (packet) error probability is less than PE

is the "Pv achievable region". The requirement for PE on the individual links is

closely coupled to the system delay: a larger packet error probability implies that

a larger number of retransmissions will be required, and this implies increased

delay.

The effectiveness of a class of coding schemes on a given channel (i.e., given I)

can be measured by letting the code length become sufficiently large and compar-

ing the resulting maximum possible (maximized over all codes in a specific class)

U;
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code rate for the codeword error probability to be less than an arbitrarily small

constant with the absolute maximum rate, i.e., the capacity. Many people have

been searching for practical realization of Shannon's promises, but the search has ' *'

been difficult and only partially completed. In fact, the problem of finding an

explicitly constructable, practical sequence of codes for which the probability of

error approaches zero for all rates less than the capacity region remains open in "

general.

2.5 Throughput

Throughput is a widely-accepted performance measure for a satellite packet

broadcasting system [Kle 76]. Basically, it is intended to be a measure of the

information flow in the neighborhood of an arbitrary terminal in the network. It

is defined as the average number of successful packet transmissions that can take

place simultaneously within the range of a given receiver. If the network is homo-

geneous in the sense that the interference traffic is the same at each receiver, the

codeword (packet) error probability given I simultaneous transmissions, PE(I),

is the same for each packet, and the unnormalized throughput given I simulta-

neous transmissions, S(I), is the number of transmissions times the probability

of success; that is,

S(I) = I. (1 - PE(I)). (2.12)

Notice that this throughput measure does not distinguish between packets ac-

cording to their destination. It is a measure of the multiple-access capability of

the modulation and coding technique which is divorced from the particular pro-

tocols being used in the network. A packet is correctly received if the number of

errors and erasures it encounters is within the correction capability of the code.

In order to make valid comparisons between frequency-hop and narrowband N-

N,
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radio networks, it is necessary to normalize S(I) to give throughput per unit

bandwidth. If the code has rate r and the number of frequency slots is q, the

normalized throughput at traffic level I is

W(1) = rS(I)/q (2.13)
= rI(l - PE(I))/q;

Sthis is the total amount of information being reliably sent over the network

per unit time per unit bandwidth. As the code rate decreases, the amount of

bandwidth required (for fixed q and information bit rate) increases so that the

normalization factor, r/q, decreases. However, the smaller the code rate the

greater the error and erasure correcting capability of the code. The larger error

and erasure correcting capability of the code tends to increase the unnormalized

throughput. These two competing factors cause there to be an optimum code

rate that maximizes the normalized throughput. Alternatively we can imagine

that for fixed q as the number of transmitter-receiver pairs increase there will be

a decrease in the reliability of the information being transmitted. This is because

the chances of more than one user hopping to the same frequency slot, i.e. the

probability of a hit, are larger for larger I. On the other hand as the number

,.. of user pairs increases, the total amount of information being transmitted is

." increasing. From this discussion one is led to believe that for a fixed q there

will be an optimum number of users simultaneously transmitting that maximizes

the normalized throughput. The values of I and r for which W(I) is maximized

is denoted by Ipt and rp respectively. For frequency-hop radio networks with

* error-control coding, the value of I., depends on the code and the bandwidth

used by the spread spectrum, but it is typically much larger than one. The

value of rop depends on the number of users simultaneously transmitting and

e' the bandwidth used by the spread spectrum. From these two optimum values

we can derive the maximum possible normalized throughput W,...

a..I"



CHAPTER III

REED-SOLOMON CODES

a-,

3.1 Introduction

An important and popular subclass of nonbinary BCH codes is the class of

Reed-Solomon codes often abbreviated as RS codes [Cla 82], [Bla 83]. They

are BCH codes over GF(M) with the special property that the block length
n is M - 1, M, or M + 1, where M is a power of a prime. Besides serving

as illuminating examples of BCH codes, they are of considerable practical and

theoretical importance. They are convenient for building other codes, either

alone or in combination with other codes, as in concatenated codes which will be

discussed in chapter IV. In this chapter we investigate the achievable region and

the throughput for the family of interference channels generated by our spread-

spectrum frequency-hopping model of Chapter I, when only RS codes are used.

An important property of any (n, k) RS code is that the minimum distance

1' is given by

d., = n - k -+- 1, (3.1)

where n is the block length and k is the number of information symbols in each

block. A code for which the minimum distance equals n - k + I is called a

17
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maximum-distance-separable (MDS) code. Therefore, every RS code is an MDS

code and is optimum in the sense of the Singleton bound [Bla 83]. This means ,.

that for fixed n and k, no code can have a larger minimum distance than a RS

code. This is often a strong justification for using RS codes. Furthermore, it

can be readily verified that shortening the block length of a RS code by omitting

information symbols can not reduce its minimum distance, and therefore any

shortened RS code is also an MDS code.

Another important property of a RS code is the fact that any k positions in

the codeword may be used as an information set. That is, given an (n, k) RS code

over GF(M), for any k symbol positions there will be one and only one codeword

corresponding to each of the M" assignments in those k positions. An important

and very useful consequence of this property is that it enables one to write down

the exact weight distribution for any RS code. The weight distribution (Ai) for

a RS code or any MDS code defined over GF(M) having block length n and

minimum distance d,,, is given by

A j ( M - 1) (3.2)

for dm,, j <n. Derivation of this weight distribution formula can be found in

Forney [For 66], Berlekamp [Ber 68], Peterson and Weldon [Pet 721.

From the above minimum distance property, an (n, k) RS code with bounded

distance decoding will correct up to e = n - k erasures out of n symbols or up .'

to t = [(n - k)/2J errors out of n symbols. More generally, it will correct any

combination of e erasures and r errors provided that 2r + e does not exceed n - k.

3.2 Perfect Side Information

Since the RS code can correct twice as many erasures as errors, it can be

1
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expecLed that the multiple-access capability of frequency-hop packet radio net-

works is considerably enhanced if the receiver can determine which symbols in

the packet have been hit. This information, typically called side information,

is used in the demodulator and decoder to improve error control. The received

symbols that have been hit by other transmissions are erased in order to take

"5 advantage of the powerful erasure correction capability of RS codes. An (n,k)

RS code can correct any pattern of n - k or fewer erasures.
J%

01 We consider the spread-spectrum frequency-hopping model described in Chap-

, % ter I. If there are I users transmitting, we model it as an I user interference

channel. We assume that the background noise is negligible compared to the

*signal power and perfect side information is available to the demodulator and

decoder. However, these assumptions will be relaxed in chapter V. The main pur-

*, pose of the present section is to examine the improved multiple-access capability

available through the use of frequency-hopping with perfect side information and

Nerasure correction.

3.2.1 Assumption 1: No Discrimination Against Partially Overlapping

Interference

We assume first that all symbols that have been hit, even if only partially over-

lapping in time (due to the asynchronous nature of frequency hopping process),

are detected and erased. When there are I simultaneous users the probability

that a particular symbol is hit is given by Ph,! (see (1.2)), The marginal transition

probability in this case is given by

P (Y--1, 2p h .] , ,z ) --

othr uer, te ntefeenc cannel Phi, Yj =

Since the j" channel output does not depend on the symbols transmitted from

',A other users, the interference channnel is separated. The component channel

%~
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Figure 3.1: M-ary erasure channel.

model (seen by each user pair) will be an M-ary erasure channel with erasure

probability equal to pAi as shown in Figure 3.1.

Achievable Region

A given codeword (packet) is correctly received if the number of erasures

does not exceed the erasure-correction capability of the RS code. By the memo-

rylessness of the random hopping pattern, the hits at different hop durations are

conditionally independent given I. Thus the probability of correct codeword for

a bounded distance decoder given I simultaneous transmissions, P,(I), is given

by
P.(M = E-(1 -Pt.,) - (3.3)

,=0 j

Asymptotically, as n and k approach infinity while the code rate, r - k/n, is

e6 *. . .' ;; ' ' x~w ' %" V
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held constant, it can be shown (see Appendix A) that

1, 1 - r > phj

lir P(I) = 0.5, 1 - r = Phj (3.4)
n,k . 1

;% 0, 1 - r < ph..

This implies that "error-free" communication is possible asymptotically provided

that the code rate is less than 1 - ph,, i.e.,

r < (1 - Ph)'-1 , (3.5)

or equivalently

I n(r) (3.6)

This represents an asymptotic (n, k --. oo) achievable region of I and r for arbi-

trarily small error probability with perfect side information. The limiting value

for the asymptotic achievable region as both the number of users and the number

of frequency slots get large (i.e., I, q --+ 0 with A I/q held constant) is given

I by

- < e-, (3.7)

or 1 1!
A < - n(, (3.8)

17 r

where

f 1, synchronous frequency hopping
= (3.9)

1 + -, asynchronous frequency hopping.
NN

It can be easily shown that the capacity of the component channel shown in

" Figure 3.1 is given by

C (1) 1 p'

= (1 -

which is the same as the right hand side of (3.5). This implies that the capacity of

the channel with perfect side information can be achieved by the Reed-Solomon

.* code.
I?
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Now we consider the achievable region for finite block length Reed-Solomon r

codes. We want to find the maximum number of simultaneous transmissions

(or channel traffic) and the maximum code rate for the packet error probability

to be less than PE when Reed-Solomon codes of finite block length are used to .

correct the erasures due to the multi-user interferences. Unfortunately it is very

difficult to derive the exact maximums analytically, because (3.3) is a complicated

function of I and k. However, we can derive a simple approximation to the

maximum channel traffic and code rate as follows. If we apply the Demoivre-

Laplace theorem [Pap 651 to (3.3), we can get an approximation

P, (I) _-F n-k -nPhj (3.10)

where

F(x) -  (27r)- 2 /2du.

By combining (3.10) with the constraint, PE(I) A 1 - P,(I) _ P , we obtain

r < 1 - p&,i - oph,(1 - ph,I)/n (3.11)

or equivalently
ln(A)

< 1 + (3.12)

where 4

-F(1 -P)

A A 2nr+&
2 +a ~n~-)a

= 2(n+a 2 )

Figure 3.2 shows the achievable regions of I and r for PE(I) _ 10- 2 with Reed-

Solomon codes of length 32 and 256 and also the asymptotic achievable regions

for arbitrarily small error probability with perfect side information. We see that

the exact values and the approximations are very close, where the exact values

have been obtained by computer search.

S' W "" " -- * S -V 4,, -- ,
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- exact

approximation
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0. 9 n=256
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Figure 3.2: Achievable regions of (r,I) for PE(I) < 10-2 and the
asymptotic achievable region, perfect side information,
q = 100, i7=2.
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When there is a distribution on the number of packet transmissions (Poisson

with mean G), we have the average probability of correct decoding, Pc, given by

00

Pc E P'(I + 1)f(1), (3.13)
1=0

where

f (I) = GIC-GII 1.

It is shown in [Pur 841 that as G and q approach infinity while A G/q is held

constant, V

PC = (, (1- e)(e-"I)n - , (3.14)

where q is given by (3.9). By applying the Gaussian approximation of (3.14) to

the constraint, PE 1 - Pc _5 PE, we obtain

r <_ C- 5 - a0 e-D'(1 - e-1)/n, (3.15)

or equivalently
1

u 1-In (1/A). (3.16)

Equations (3.11) and (3.12) will be especially useful for the use of adaptive

transmissions and coding techniques. The idea is to observe the channel and

respond to an unfavorable channel (e.g. heavy traffic) by controlling the channel

traffic level (restricting the number of packet transmissions according to (3.12)) 'C3

or by improving the error-correction capability of the system (reducing the code

rate according to (3.11)) such that the packet error probability on the individual

communication links is less than some desired value, hE. Estimation of channel

traffic is fairly easy to implement in a frequency-hop radio network [Pur 83a].

Perhaps the simplest estimate of channel traffic is the number of frequency slots

that have signal strengths above a certain threshold. Another alternative is to

monitor a few of the frequency slots and count the number of times signals are

present on these slots during a few hop periods.

:1.
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Throughput

For a system employing an (n, k) code and q frequency slots, the normalized

throughput given I simultaneous transmissions is given by

rtnq

The asymptotic normalized throughput as n and k approach infinity while r A

k/n is held constant can be obtained by using (3.6) and (3.17) as

l-mW = r ln(r)
nk-oo q ln(1 -Ph)) (3.18)

This means that the asymptotic normalized throughput approaches arbitrarily

close to the RHS of (3.18). The unit of the above normalized throughput is infor-

mation symbols per channel use per frequency slot. To change it to information
* dbits per channel use per dimension, it must be multiplied by log 2 MID, where D

is the dimensionality of the signal set per frequency slot. In all that follows we

will consider the former unit: information symbols per channel use per frequency

slot.

By optimizing over r, we get the optimum code rate, ropt, given by

""'.rop e-'(1 - Ph)-', (3.19)

S which for reasonable values of q is very close to C'. This asymptotic optimal
N

N code rate also seems to give a very good approximation to the optimal code rate

for finite length codes, even the length 32 codes. We can see from Figures 3.3 and

3.4 that the maximum normalized throughput is obtained by the (32,12) code

and (256,94) code: but the optimum values of k obtained from the asymptotic

optimum code rate, e-1 , are 32 x e- 1 = 11.77 and 256 x e- 1 = 94.18, which are

very close to the exact optimum values of k, namely 12 and 94 respectively. At,. ,,,
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Figure 3.3: Normalized throughputs, perfect side information, q
100, n =32, Y7=2.
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this optimum code rate the optimum number of transmissions is given by

Io,, = [ln(1 - ph)-'], (3.20)

thus the limiting optimum value of the channel traffic per frequency slot, A zx I/q, 4

is * -1
A -- (3.21)

as q - 00. At ropt and Iopg the maximum possible throughput, Waz becomes

W,. = 1/[qe(1 - p,) ln(1 - ph)-], (3.22)

which approaches e-1 /Y7 for large enough q. This is also the asymptotic sum

capacity of the interference channel with perfect side information in information

symbols per channel use [Haj 83], [Heg 85]. Therefore it can be concluded that if

perfect side information is available, the asymptotic sum capacity is achieved by

the optimal rate Reed-Solomon code with bounded distance decoding. However,

this is not true if side information is not available as we will see in section 3.3. UK

Comparisions With Narrowband Slotted ALOHA System

For Poisson traffic model (the number of packet transmissions in a time slot

is given by a Poisson random variable) and slotted ALOHA [Tan 81] without

frequency hopping, the optimum average number of transmissions attempted

per time (packet) slot is 1. The throughput at this traffic level is e- , and the

resulting packet error probability is 1-e - I which is approximately 0.632 [Abr 701,

[Tan 81].

For frequency-hop radio networks with error-control coding (RS code with

perfect side information) and Poission traffic, the normalized throughput can be

N 41 I
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derived as

W "4I ~ 0 1IP(I) f(I)

= I ± =° ! (1 - (1 - Ph)I)((1 - ) G

A . q ( (3.23)

.'. n nJ~~-7An j

as G,q -- oo, while u = G/q is held constant. From (3.4), as n,k -- oo while

r ki/n is held constant, we can show that the summation term approaches 1 if

r < eP-". Therefore the normalized throughput becomes

eW -- se'"', (3.24)

as n,k, G,q - oo. The optimum traffic level can be shown to be 17- ' and the

throughput at this optimum traffic level is e-/l: for synchronous frequency

hopping 17= 1, and even for asynchronous frequency hopping 77 can be 1 asymp-

p totically by forming each M-ary symbol from binary signals (e.g. BFSK) of

length log12 M bits, and thus making N6 = log2 M in (3.9). Therefore, it can

be concluded that frequency-hop spread-spectrum modulation can be just as

bandwidth-efficient as narrowband modulation in the sense that for a given band-

width it can achieve the same throughput. However, for the narrowband ALOHA

system without frequency hopping the throughput of e 1 is achieved when the

packet error probability is 0.632 (which may be too large in practical system) and

with binary feedback, while for the spread-spectrum modulation it is achieved

with arbitrarily small packet error probability and without feedback. Error-

control coding can not improve the situation very much (if at all) in the nar-

rowband ALOHA system, because the symbol error probability is approximately
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1/2 for M-ary signal set of interest whenever the symbol is hit by another trans-

mission of equal power. Thus the average number of errors within the received

version of a codeword (packet) of length n will be approximately n/2, while for

any (n, k) code the maximum number of correctable errors is [(n - k)/2j. This

implies that coding can hardly improve the performance of narrowband ALOHA

system. Numerical datas given in [Haj 821 support the above arguments.

3.2.2 Assumption 2: Discrimination Against Partially Overlapping Interference -

In this section we assume the use of noncoherent M-ary FSK signaling (each

frequency slot thus consists of M orthogonal tone positions), and assume that

the packet radio network operates asynchronously at the hop level (asynchronous

frequency hopping). Then the occurence of hits generally results in partial, rather

than total, overlap among tones of different users; it is assumed that the degree

of overlap in time experienced by any pair of hops that suffer a hit is uniformly

distributed over the interval from 0 to the total hop duration time, T. Without

loss of generality we assume Tk=1. It was assumed in subsection 3.2.1 that any

degree of hop overlap results in the loss of the information (erasure) carried in

that hop. In this subsection we make a departure from this assumption. r' .

We assume that a symbol erasure will be necessitated if and only if in any

one (or more) of the M tone positions of the frequency slot the amount of time

overlap between the symbol (tone) of interest and those of other users exceed a

fraction p of the hop duration time. Otherwise, the symbol is received correctly.

This modified model in which partial overlaps can be tolerated was introduced

in [Wie 841.

Therefore we must examine each of the M tone positions of the frequency

slot to determine whether any of them experience interference for more than a

fraction p of the hop duration. Note that this interference may arise from one or
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more other users' signals in the same tone position whose combined overlap at

the same or at opposite ends of the hop lasts for a fraction of a hop greater than

p. However, it is shown in Appendix B that as M becomes large, the probability

of the event that all users sharing the same frequency slot transmit distinct tones

approaches 1. Therefore if r denotes the amount of time overlap between the

l tone of interest and that of an interferer, the probability of symbol erasure given

m hits, Pm, is given by

.. ]b = 1 -[P(r < p)]"-(.5

(3.25)
= 1 i-np.

Thus, by averaging over the number of hits we obtain the symbol erasure prob-

* ability, p,, given as

po. Z-Ij1 n MI-1)--V
.. :. pp, = vn=I( - ')Ph - ph)- '

-. ( (3.26)

= 1 - 1 -(1 -p)ph)I- 1.

The marginal transition probability in this case is given by

P(YIi, X2, , ,) = -~P P 'I ' y = ?

Since the J1 h channel output does not depend on the symbols transmitted from

other users, the interference channnel is separated. The component channel
model is again M-ary erasure channel, but with erasure probability equal to p,,.

J. 2Achievable Region

*: By following the same procedure as in subsection 3.2.1, we can show that

"error-free" communication is possible asymptotically provided that the code

rate is less than 1 - p,,!, i.e.,

r < (1 - (1 - P)Ph)'-1 , (3.27)
,.P

k,

'- ..Ji ::" ,. -> % ° p -
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or equivalently,

In(r) (3.28)
< 1+n(1- (1- o)p,)"

Throughput .,

By following the same procedure as in subsection 3.2.1, the asymptotic nor-

malized throughput as n and k approach infinity while r = k/n is held constant

can be shown to be

lim W = ( In(r) (3.29)n~-o q +ln~i - (1- "~j

By optimizing over r, we get the optimum code rate, rop, given by

a= e-(1 (1 - p)ph- (3.30)

which for reasonable values of q is very close to e'. At this optimum code rate

the optimum number of transmissions is given by

Irt = [ln(i - (1 - p)ph)- ]-, (3.31)

thus the limiting (I, q -- oo with A = J/q held constant) optimum traffic intensity

per frequency slot, Ap, is given by

= /["(1 - p)I. (3.32)

At r.pt and Ipt the asymptotic maximum possible throughput, W,.., becomes

W.2= 1/[qe(1 - (1 - p)pt,) ln(1 - (1 - p)p 1)-], (3.33)

which approaches e-/[i7(1 - p)] for large enough q. This is also the asymptotic

sum capacity of the interference channel as modeled by M-ary erasure component

channels with erasure probability, p,,., given in (3.26). We see that the ability to

discriminate against interfering signals results in dramatic increase in throughput

by the factor of 1/(1-p).
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3.3 No Side Information

We now assume that side information is not available at the demodulator,

thus it does not produce any erasure symbol, but instead makes an estimate

(hard decision) on the received signal. The demodulated symbols are fed into an

error-correction decoder. As long as there are no more than L ' I errors, the

(n, k) RS code can correct them, where [xj denotes the integer part of z.

3.3.1 Demodulator Model 1: Worst Case

We assume that if a received symbol is hit by one or more symbols, then the

demodulator output is equally likely one of the M possible symbols, and if there

is no hit it is correctly received. That is, the conditional probability of symbol

error given hit is given by 1 - 1/M, and it is 0 given no hit. Thus the probability

that a received symbol is in error given I simultaneous transmissions, pj, is

given by

Pe,.I (1 - 1/M)(1 - (1 - Ph)1-l). (3.34)

This is the worst case assumption in the sense of minimizing the capacity: The

minimum of the capacity of an M-ary channel is obtained when all the transition

probabilities are equal to 1/M, and the resulting minimum capacity can be shown

to be zero. Therefore, the resulting achievable regions and throughputs are

pessimistic results.

The marginal transition probability in this case is given by

P(yiXIl, X2,', X,) =
P.,z, 9i z,"

Since the j"h channel output does not depend on the symbols transmitted from

other users, the interference channnel is separated. The component channel

I.t

W6 W"%- W" F V-% rI
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Figure 3.5: M-ary symmetric channel.

model will be an M-ary symmetric channel with crossing probability p,, as

shown in Figure 3.5.

Achievable Region *1>. *'

When an (n, k) Reed-Solomon code is employed to correct the errors, the

probability of correctly decoding a codeword (packet) given I simultaneous trans-

missions, P,(I), with bounded distance decoding is given by

L(ft-k)/2J In
P.(I) = E ,(1 - p,)"-. (3.35)

j=O ~3

Asymptotically, as n and k approach infinity while the code rate, r k/n, is

held constant, it can be shown that 1>

lim P,(I) = 0.5, 1 - r = 2p,., (3.36)

0, 1 - r < 2p,,,.

ML.
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.% This implies that "error-free" communication is possible asymptotically provided

that the code rate is less than 1 - 2p,.,, i.e.,

• < 2(1 - P,) -1, (3.37)

or equivalently

< 1 + ln((1 + r)/2) (3.38)
ln(1 - Ph)

This represents an asymptotic achievable region of I and r for arbitrarily small

error probability without side information. The limiting value for the asymptotic

achievable region as both the number of users and the number of frequency slots

get large (i.e., I, q - with A - I/q held constant) is given by

r < 2e-nA - 1,

or equivalently

A < 1 In( 2)

It can be shown that as M - oo, the capacity of the channel shown in Figure

3.5 is given by

C(I) = (1 -

which is the same as that obtainable with perfect side information.

For the case of finite block length codes, we can derive a similar approximation

to the maximum channel traffic and code rate for the packet error probability to

be less than PE. By applying the Demoivre-Laplace theorem to (3.35), we can

get an approximation

Pl (I) mz F L(n - k)/2j - nP.,, (3.39)
/np.,(l - p.,)

By combining (3.39) with the constraint, PE(I) a- 1 - P,(I) !5 PE, we obtain

1 [rp., + crfnp.,(1 - p,.,) (3.40)

.
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or equivalently

I < 1 +In (B)/I n (1-ph) (3.41)

where
2t -4- a 2 -- V'4t + a2 - 4t2/nB A1 - 2(

Figure 3.6 shows the achievable regions of I and r for PE(I) < 10-2 with Reed-

Solomon codes of length 32 and 256 and also the asymptotic achievable regions

for arbitrarily small error probability without side information. We see that the

exact values and the approximations are very close.

When there is a distribution on the number of packet transmissions (Poisson

with mean G), it can be shown that

Pc = , [(1 - 1/M)(1 - e-nM)]I[1 - (1 - 1/M)(1 - e-n')]" - , (3.42)

as G and q approach infinity while u A G/q is held constant. By applying the

Gaussian approximation of (3.42) to the constraint, PE PE, we can obtain

2n
r < 1 - rnpe,, + ok\/nP.,(1 Pe,#), (3.43)

or equivalently

j_ - n(1/B), (3.44)

where -

PC,, != (1 - l/M)(1 - NN,

As in perfect side information case, the equations (3.40)and (3.41) will be

useful for the use of adaptive transmissions and coding techniques.

CI

-. *M
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Throughput

The asymptotic normalized throughput can be obtained from (3.17) and

(3.38) as
+ l((I+ ,)/2)

lim.'ko W (- 1 +

for large enough q. By optimizing over r we get the optimal code rate, ropt

ropt = 0.4597. (3.46)

This asymptotic optimal code rate also seems to give a very good approximation

for finite length codes, even the length 32 codes. We can see from Figures 3.7 and

3.8 that the maximum normalized throughput is obtained by the (32,14) code and

(256,118) code: the optimum values of k obtained from the asymptotic optimum

code rate, 0.4597, are 32 x 0.4597 = 14.71 and 256 x 0.4597 = 117.68, which are

very close to the exact optimum values of k, namely 14 and 118 respectively.

At this optimum code rate the optimum channel traffic per frequency slot, A, . .

is

AO,, = 0.3148/77, (3.47) .

which is also a good approximation for finite n and q. At ro,,, and Ao,, the
. %

asymptotic maximum possible throughput, W,,., becomes

W.,., = 0.1448/n, (3.48)

which is only 39.3% of that achievable with perfect side information.

We can also show that the asymptotic (I,q - oo) maximum sum capacity

without side information approaches e- 1 /77 as M -- oo. The loss in using Reed-

Solomon codes is partially due to the use of a non maximum likelihood decoder

(i.e., bounded distance decoder). However, we will show in chapter IV that the

normalized throughput achievable with perfect side information can be achieved .
"

Lw 

-

16$
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Figure 3.7: Normalized throughputs, no side information, q = 100,
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through the use of concatenated coding scheme, even though the channel provides

no side information.

3.3.2 Demodulator Model 2: Realistic Case

Notice that in the previous model we have not distinguished one hit from
O

more than one hit in the calculation of pe,. This can be taken into account as

follows. If two users hop to the same frequency slot at the same time, i.e. one hit,

" * the probability of symbol error is 1/2 if the two users have different symbol and

0 if they have the same symbol. If three users collide, i.e. two hits, the symbol

error probability is 2/3 if all three users transmit different symbols, and 1/2 if

two of the users transmit the same symbol but the third transmits a different

symbol, and 0 if they have the same symbol. This modeling is valid for the M-

orthogonal signaling, such as MFSK. Notice that the jth channel output depends

on the symbols transmitted from other users. Therefore, the interference channel

in this case is not separated.

.5. If each symbol is transmitted with equal probability, i.e., 1/M, then the

probability of symbol error for this situation with m hits, P,", can be derived as

(see Appendix B)

P( 1 M

13_.L+ 1 3(M- +I (M-1)(M-2) 4M 2 -3M-1
P2 'M2 2 M23 M2 6M 2

p3 = 3M 3 -2M 2 -M

p4 = 24M'-15M 3 -j -M
2 + (3.49)

= IOM-6M'-SM'+M

12M5

As M becomes larger, P, becomes

P'= m/(m + i). (3.50)

5**
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That is, the probability of symbol error tends to depend more on the number of

interfering signals than on which symbols are being transmitted from interferers

as M becomes large. The above probability is also an upper bound for finite

M, and can also be used as a good approximation: for example, P4=0.784 for

M=32 and 0.798 for M=256, while the upper bound is 0.8. By averaging over

the number of hits we can determine the average symbol error probability given

I simultaneous transmissions, P,.l, as

/ZI-1 M (I-1 ",IIi

pe.j =L+ Ph(l r (3.51)

,1-(1-P '

Achievable Region

From (3.36) and (3.51) we can show that asymptotically as n, k - oo while

r k/n is held constant, "error-free" communication is possible, i.e, P,(I)=1,
r --.

provided
r < 2-2(1-ph) 1.

IP, (3.52)
-. ,--( - e -" ) - 1,

as I, q -- oo while A I/q is held constant. Figure 3.9 shows the asymptotic

achievable regions of code rate and number of packet transmissions for arbitrarily

small packet error probability for the cases of perfect side information and no

side information.

Throughput

From (3.17) and (3.52) the asymptotic normalized throughput can be shown

4
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to be
SW I (2-2(1-ph)

9 In (3.53)
-, 1- e') - Ax, ,

as I, q -- oo while A I/q is held constant. By optimizing over A we get the 0'

optimum channel traffic, Aopt

Aopt = ln(2)/i -- 0.69 3 1/17, (3.54)

and the optimum code rate, ropt

opt 2(1-e -.o°") , 1
(3.55)A

= ln(e/2)/ln(2) - 0.4427,

and the asymptotic maximum possible throughput, W,,,..

W.. = ln(e/2)/t7 = 0.3069/17. (3.56)

However, the capacity region with this model is not known, because the channel

is not separated. Figure 3.10 shows the asymptotic normalized throughputs for

the perfect side information and no side information cases.

-S..-.

ZIJ
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CHAPTER IV

CONCATENATED CODES

4.1. Introduction

It has been shown in Section 3.3 that the maximum throughput achievable

without side information is only 39.3% (worst case) of that achievable with perfect

side information. This gives us a quantitative measure of the importance of side

information in improving the multiple-access capability of frequency-hop packet

radio networks.

One technique for obtaining the side information is to partition the data

stream into blocks of K digits and to encode each block into a codeword of

-; length N(> K) and to transmit the codeword during a single hop. On the basis

of the received version of the codeword the decoder attempts to detect errors in

the received sequence: if there are errors then at least one code symbol must have

been hit. However, not all error patterns are detectable, so there is a nonzero

probability of undetected error. If an error is detected then symbols transmitted

on that hop are erased, and if the error is undetected it results in an error.

A similar technique has been suggested by McEliece and Stark [McE 84] using

a test patterii. it is .wvever a special example of the class of error detecting

codes considered in this chapter, and the underlying assumption in [McE 841 is

'- 46
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that interference occurs in a whole block if it occurs: that is, the interference

during a hop remains the same throughout the hop. This assumption is very

restrictive, and certainly many real channels such as asynchronous frequency-

hopping multi-user systems do not have constant interference in the block. In

general, interference occurs partially during a hop.

One can expect that as the code rate decreases, the probability of undetected

5 error decreases and the probability of detected error increases because of the

increased minimum distance among the codewords. That is, the reliability of theLI

side information obtained from the code increases. However, decreasing the code

rate implies a decrease in the efficient use of the channel. An interesting question

that arises from this discussion is "How does the reliability of the side information

change as the code rate changes?", or "What is the maximum allowable code rate

to obtain a certain reliability of the side information?". In this chapter we give
the answer to the above question for both the constant and partial interference

cases.

The combination of encoder, channel, and decoder generates in general an

errors-and-erasures channel. The above encoder and decoder will be called later

an inner encoder and inner decoder respectively. We employ an outer code to

correct the errors (caused by undetected errors) and the erasures (caused by de-

tected errors). In this way the inner decoder informs the outer decoder which

symbols (inner codewords) in the received packet have been hit by symbols from

other packets in the same time slot. We find that the normalized throughput

achievable with perfect side information can be achieved through the use of thisN

concatenated coding sche me, even though the channel provides no side informa-

tion. This chapter ends by evaluating the performance of diversity IRS code as

an example of the concatenated coding schemes.
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4.2. Concatenated Coding

PI

The basic concept of concatenated codes for two levels of coding is illustrated

in Figure 4.1. This figure provides the general outline of a powerful class of codes

which were introduced by Forney in 1966 [For 66]. Information to be transmitted

is first encoded with an (n, k) outer code. The symbols from the outer encoder

are further encoded with an (N, K) inner code. Clearly, if the symbol alphabets

of the inner and outer codes are not the same, it is necessary to reformat the

data between the encoders for the inner and outer codes. At the receive side, the

demodulated data is first decoded with the inner decoder, and the symbols from

the inner decoder are then decoded with the outer decoder. The combination

of inner encoder, channel, and inner decoder is referred to as the super channel.

The alphabet sizes of the inner code and outer code are denoted as M, and Mo

respectively.

Several characteristics of concatenated codes are evident from Figure 4.1.

First, the resulting concatenated code has overall length of nN channel symbols

PO (Mi-ary) with kK information symbols per overall codeword and with code rate

rR = kK/nN, where R = K/N and r = k/n. Although the overall length

of the code is nN, the structure imposed by the concatenation concept allows

decoding operation to be performed by two decoders for codes of length N and

-,a n, respectively. This allows a significant reduction in complexity over that which

would be required to provide the same overall error rate with a single level ofa,

coding. The most natural choice for outer codes are the RS codes. This is

because the RS codes, being maximum-distance-separable codes, make highly
is.

efficient use of redundancy, and block lengths and symbol sizes can be readily

adjusted to accomodate a wide range of message sizes.

The concatenated scheme we consider uses an inner code to correct or detect
.41
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Figure 4.2: Super channel model created by inner code.

errors within a hop. The codewords of the inner code are transmitted during a

- single hop and one outer code symbol consists of one inner codeword (- M, =

Mo). The inner code can correct e errors and detect f errors (e < f) provided

e + f < di,, where dmin is the minimum distance of the inner code [Mac 77].

I When an error is detected every symbol of the inner code is erased. There are,

however, errors that are not detected nor corrected by the inner code which

result in errors at the output of the inner decoder. Therefore, the inner code

creates an errors-and-erasures channel, as shown in Figure 4.2, where Pd and P,,d

denotes the probability of detected error and the probability of undetected error

respectively. The purpose of the outer code is to correct the errors and erasures

of the inner code.

p

5

If
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Achievable Region

Since an (n, k) RS outer code can correct t errors and e erasures provided

e -.- 2t < n - k, for a memoryless channel of Figure 4.2 the probability of correctly

decoding a codeword (packet) is given by [Ber 80]

n

P,(I) = P M P(1- Pd- Pud)n-l-m, (4.1)
L+2m<n-k , r "

where

n 46 n! ."
1, m l!m!(n - I - m)!"

Asymptotically as both n and k approach infinity while the outer code rate

r = k/n is held constant, it can be shown (see Appendix C) that

1, r < 1 - Pd - 2P.u .

lim P'(I) = 0.5, r = 1 - 2 Pd (4.2)nl,k-oo

0, r > 1 - Pd - 2 P..

That is, "error-free" communication is possible asymptotically provided

r < 1 - Pd - 2P, . (4.3) .

This is the requirement on the outer code rate to have error-free communications.

To get the requirement on the overall code rate we have to multiply by the inner

code rate K/N. Thus the resulting asymptotic normalized achievable rate is

given by K

rR < :(1 - P - 2Pud). (4.4)

For the case of finite block length codes, we can derive an approximation to

the maximum channel traffic and the maximum code rate for the packet error

probability to be less than PE. It is shown in Appendix C that A,

P_ (I) .F V ( 1- r - P2P ) . (4.5)
P, - P, + 4P, - 4 P - 4PPu d
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By combining (4.5) with the constraint, PEM(I) 1 - PM(I) < PE, we obtain

r < 1- Pd- 2dPd- (Pd- Pd +4 Pd -4Pd -4Pd P.d)/n, (4.6)

where a is defined in (3.12). This is the constraint on the outer code rate for the

packet error probability to be less than PE for a given inner code and the channel

(number of simultaneous transmissions). Thus the normalized achievable region

is given by

KN,"" " rR < N 1 - Pd - 2Pd - Pd - Pd + 4P,, - 4 - 4PdP.,d) /n]. (4.7)

Throughput

-!

The normalized throughput with the concatenated coding scheme is defined

by

W = kK IP,(I) (4.8)
n N q

As both n and k approach infinity while r = k/n is held constant, from (4.3) and

(4.8) the asymptotic normalized throughput is given by

li" W K I(1 - P - 2Pd) (49)

,-oo N q

"" Pd and P 4 are determined by the inner code and the channel. Note that the

L achievable regions and the throughput derived in this section are general enough

to be applied to any combinations of inner block codes and RS outer codes.

4.3. Error Detecting Code / RS Code

In this section we assume that the receiver does not have side information

concerning the presence of hit. However we try to get the side information by

*iv.
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detecting the errors in each hop caused by the multi-user interference through

the use of binary error detecting code (Mi = 2). The idea is to encode a block of

K data bits into a block of N bits and to transmit the N bits during a single hop,

and on the basis of the received version of the transmitted codeword to detect the

errors caused by interference. If an error is detected the entire N bits transmitted

on that hop are erased. However not all error patterns are detectable so there

is a nonzero probability of undetected error. We employ an RS outer code to

correct" the errors (caused by undetected errors) and the erasures (caused by

detected errors).

The multi-user interference level during a hop may or may not remain con-

stant throughout the hop depending on the availability of synchronism at the hop

level. If all transmitters adjust their timings of frequency changes such that their

changes occur simultaneously at each hop (synchronous frequency hopping), the

multi-user interference level during a hop will remain the same throughout the

hop. This model matches also certain real channels such as partial-band jammed

channel. However, for the asynchronous frequency hopping multi-user systems

where the timings of frequency changes do not occur simultaneously, the multi-

user interference level will not remain constant throughout the hop. For both

the synchronous and asynchronous frequency hopping multi-user systems, we in-

vestigate the concatenated coding scheme that employs a binary error detecting

code and Reed-Solomon code.

4.3.1. Synchronous Frequency-Hopping System

We assume that the synchronization at the hop level is maintained by all users

so that the multi-user interference level during a hop remains the same through-

out the hop. Since the interference from the other users' packet transmissions

passes through the dehopper and then is filtered, only the interference at the
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Figure 4.3: Component channel for a simple interference channel.

frequency of the signal affects the performance. We assume that the hopping

pattern is essentially random, which makes the multi-user interference during a

hop be independent of the interference at other hop intervals.

In each hop we have two possibilities: hit or no hit. When the signal is hit

we have fixed bit error probability of 1/2 for all bits in the hop. When the signal

is not hit the entire bits in the hop are error-free. In both cases the channel

is modeled by a binary symmetric channel (BSC) with crossing probabilities

1/2 and 0 for the hit and no hit channel respectively. The interference channel

is separated, because the j"k channel output does not depend on the symbols

transmitted from other users. The component channel model is shown in Figure

4.3.

When error detection is being used the decoder will make a mistake and

accept a codeword which is not the one transmitted if and only if the error

pattern (vector) is a nonzero codeword. If PN,, is the probability of a particular

Ij bit error pattern in N bits, where N is the length of the inner code, and A, is
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the number of codewords of weight j, then the probability of undetected error is 'a

given by [Mac 77[
N

Pd -- ZAPI. (4.10)
j,="

For the above channel model, PN.j is given by

_ Ph,J'2- N + (I-ph,I) -, 3=0

PN,- (4.11)
Ph,j.2-N + (1 - ph,) 0, j > 1.

Thus the probability of undetected error is given by

P,,d = = AjPN,j

P.,2 - N EN A, (4.12)

S( 2 -(N-K) - -N)ph.,,

since
N

A = 2 K _ 1, (4.13)
j=1

for any linear code (A0 =1).

The probability of a detected error Pd is given by

Pd = 1 - PN,o - Pd (4.14)

= (1 - 2(N-K))ph,

since 1 - PNO is the probability of at least one bit error. Figures 4.4 and 4.5 show

the variations of the reliabilty of side information, i.e., variations of Pd and P',d,

as a function of the inner code length N for several values of K. One observation

from the figures is that the probability of undetected error approaches zero and

the probability of detected error approaches the probability of a hit as N becomes

large. This will be proved later.

The maximum allowable inner code rate for the reliability of side information

to be above a threshold, i.e., Pd < P:, and Pd _ Pd for some P]d and P], can
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be obtained from (4.11) and (4.13) as follows:

Pa- 2 -N( 2K - 1)Ph,

K < ( .
PN.R. <= K L 1092g (,#-a.21v + 1)

- o ,

P and

Pd = (1 - 2-(N-K))ph,/

:.;'> Psd

ph 1 (4.16)
==>K < N -og09 2

== R < 1 092

Therefore,

&.1 NP&., -Pd{ 2 o (.--& 2v + 1) , Pd +A P5 P.,(1 - 2-N) (4.17)

102 = AI '' P Pd + Pud > ph(1 - N).

Figures 4.6 and 4.7 show the maximum allowable code rate to satisfy the require-

ment for P < P" and Pj _ Pd respectively.

From (4.11) and (4.13) we can obtain the asymptotic normalized achievable

rate given by

rR < K(1 - Pd- 2Pd) (4.1)

. --[1 - (1 + 2 -(N-K) - 2-Nvl)p'],

and the asymptotic normalized throughput given by

W KP(I)
- N q (4.19)
NL11 -(1 + 2 -(N-K) - 2-N+)ph,,].

If the number of redundancy bits N - K is of length log12 N, then as n -- oo

(== N - oo, because n = Mo = 2 N - l € 'o N),

R -- v-Iol,1
N (4.20)

%.W
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and

Pud = ( 2 -(N-K) - 2N)ph,

= (2
- Io 2 N - 2 -N)ph. 1  (4.21)

-. 0,

and

Pd = 1 -PNo-Pu

1- (ph,I/2N +1- ph,,) (4.22)

- PhJ(1 - 2 -N)

"* Ph,j.

This implies that there are no undetected errors and every hit is detected as

the inner code length becomes large. Therefore, if the redundancy bits of the

inner code is of length log 2 N, then for large values of N one can expect the side

information provided from the inner code to be increasingly reliable, and yet the

fraction of the transmitted bits devoted to the redundancy is quite small. What N

this means is that, for large N, the super channel (combination of inner encoder,

channel, and inner decoder) behaves as if perfect side information were available

even though the channel provides no side information.

Therefore, the asymptotic normalized achievable region is given by

rR < X[1 - Pd - 2Pud] "

-- 1 Ph .! (4.23)

as N,I,q -- oo with A I/q held constant, and the asymptotic normalized

throughput is given by

W (1 - Pd - 2Pud)

-- 1 -1 (4.24)

e~ ._, e 
-

5 .
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If the signal of interest is hit by m bits, i.e., it is overlapped by other signals for

the m bit intervals, (m = 1,2,- ,N), there will be Hm such m bit hit patterns,

where
me 1, m 1, 2,...N-1I

H,, =(4.25)

1, rn=N.

The probability of undetected error in this case is given by

N

P = P,d,,,, P(m bit hit), (4.26)
v,= I

where P,,, denotes the probability of undetected error given that the signal is Y

hit by m bits, and P(m bit hit) is the probability that the signal is hit by m bits.

The total number of hit patterns can be obtained from (4.25) as

NI= H, 1' (mH = 1 ±(4.27)

If we assume that every hit pattern is equs-probable, then

m~~~- 1,-, N- 1

P(m bit hit) 2 (4.28)
N(N*L, m = N,

2

where

Ph,= - -{1 + , -:q N

since there are N bits per hop fGer 82. .,
.-

To get P,,,, let us consider an m bit hit pattern as shown in Figure 4.9. p

Notice that only the error patterns belonging to group B can occur from the
WV

above m bit hit pattern. Thus the probability that a particular j bit error

pattern in group B occurs given the above m bit hit pattern, denoted P,.,,,, is

given by

P,,B (2)'( 1 - 1)"-' ('
=

To get the average number of codewords of weight j in group B, denoted A,B.',

let us consider the following random coding arguments: we choose 2 K codewords,

- - - 'a % % •% ,* * * % % '. "*. "* , "* "* * 'a ' a * 5\ % "% % = *'* . *'a"
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each being chosen at random with equal probability among 2 N sequences and

independently of the other codewords', and then choose one of the codewords

with equal probability among 2 K codewords (call it c). Then the probability that

c has weight j* and is in group B is given by

P(weight(c) c , E B) = P(weight(c) = c E B) P(c C B)

m
= 2-1, 2-

I i~. (4.30)

2- 1 m

Since there are 2 K codewords, the average number of codewords of weight j in

group B, A,,,.B, is thus given by

Aim.B 2-  (4.31)

Notice that the probability of a j bit error pattern is the same (i.e., 2- ' ) for all

m bit hit patterns, and the average number of codewords of weight j that can

be accepted (by a mistake) as a transmitted codeword is the same for given m.

Therefore, the probability of undetected error given that the signal is hit by m

bits is given by
P ,d.,,, = Z '= l A;, v ,,B P ,.,,n, .B .

- ,2 h 2-" (4.32)

= -( -K)( 1  - 2- ),

for all m bit hit patterns. Therefore, the probability of undetected error is given

This emsemble of codes will include some very poor codes, i.e., those

for which not all codewords are distinct. Nevertheless, this technique provides

some very useful insights into the fundamental behavior of coding sc,.emes.

%o

*. *. *.' " , , . , , , *, . . . .,~ .* *t~~.'
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-., by
5-

p.a I N Pud, P(m bit hit)
n '_ 2N- 2 -(N-K)( 1  2-, ) 2("n-1)p, 2 -(N-K( 1 - 2pI

- NNi)INN-.-21)

.N-K- .I V:1 2 -N-' - 2 - N  05(.v - 1)(.V - 2) - 2
.. ((4.33)

*l Notice that since this is the average performance of all possible codes, there must

exist specific codes which will do even better.

* The probability of detected error Pj is given by

, .

P.. P (no error) - Pud, (4.34)

since 1 - P(no error) is the probability of at least one error. The probability of

no error is given by

S'" P(no error) ,,o P(no error m bit hit) • P(m bit hit)

= (I ~ - ' N-1 2- 2(m- )Ph., 2 -N 2p#.,
* * . - Ph .i . .. .- =1 NfN.-I) N(N-I)

2 I ' 2 N2+ - (A' 1)2
- N 2 2 -N 3'= - P hj " N (N )

(4.35)

Therefore the probability of detected error is given by

-d = ph, 1 N(N 2{N2- - (.V - 1 ) 2
- N + 2 -N - 3}

2(NK1) {(N 4 1)2 -N+2 - N2-N+1 - 2 -v 0.5(N - 1)(N -2) - 2.
N(N + 1)

(4.36)

Figures 4.10 and 4.11 show the variations of the reliability of side information,

i.e., variations of P 4 and Pd, as a function of the inner code length N for several

values of K.

The requirement on the inner code rate for the reliability of side information

to be above a certain threshold, i.e., P,,d Pud and Pd > Pd for some P5 and

%
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Figure 4.10: Plot of undetected error probability, Pud, for several
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Pd, can be obtained from (4.33) and (4.36) as follows:

Pd PW.
=== K < log2 (p.(N N(*)NI)(.7 '

( N-PII
K - 10 2 p~ N 1)2-N 2_ N 2-N I_1 2-t+ 0.5(N _ I)(N .) 2) ( . 7)2

= R < Ilog2 ( P. N(N+1)24- (437
- N Pkj(N+i)2-1+'-N2 -

NN 
- 2 -

+N+0.5(N-1)(N+2)-2)

+,= Rud,

and

Pd > Pd

S  N(N+)2 N-I (I-Pd/pt )+2N+3-3-2 N
K : 10g2 (N+1)2-N+2-N-=N+1-2-N +O'S(N-1)(N+)-2" (4.38)

(NN(N+)2N-'(I-Pd/Ph.j)+2N+3
- 3 2 N  )

=~ R < - log ) (N+1)2 -N2lv+1-2-JV+0.5(N- 1)(N+2)-.

=Rd-

Therefore,

R < min(Rud, Rd)

3.4- N - (4.39)
- Rd, Ptsd + Pd :5 P,1 j(l -N-(4.39)W--T

Rd, Pd + Pd > PhI(1 3"N-2N--

Figures 4.12 and 4.13 show the maximum allowable code rate to satisfy the

requirement Pu d _ -Pur and Pd : Pd respectively. By comparing Figures 4.4 - 4.7

and 4.10 - 4.13 it can be observed that the reliability of the side information for

the asynchronous frequency-hopping system is slightly lower than that for the

synchronous frequency-hopping system, but as the inner block length increases

the difference between them decreases and approaches to zero.

If the number of redundancy bits of the inner code, N - K, is of length log12 N,

then the code rate R is given by

R = N-Iog2 NN (4.40)
---+ 1,,, :

and the probability of undetected error is given by

Pud = ((N) + 1)2-N+1 - N2-N+1- 2 -N + 0.5(N - 1)(N + 2) - 21

.0,

(4.41)

7
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and the probability of detected error is given by

Pd = ph,I[1 2 {N2- N+ - (N + 1) 2
- N+2 + +- N  3}

N2(N+l) {(N + 1 )2 N+ - N2 -N+ - + 0.5(N - 1)(N + 2) - 2}]

(4.42)

as N -- oo. This shows that as in synchronous frequency-hopping systems perfect

side information can be obtained from the inner code without any loss in the inner

code rate as N --* oo.

Therefore, the asymptotic normalized achievable region and the normalized

throughput are the same as those that can be obtained with perfect side infor-

mation, That is,

rR < K(1 -Pd -2P,,d)

(1 -p ) - (4.43)

e-A,

I and

W (1 - Pd - 2Pd)

", (1 -Ph) p(4.44)

since

Ph +

as N -- oo.

4.4. Diversity / RS code

The simplest type of block code allowing a variable amount of redundancy

is the repetition code, often called diversity. With this code a single informa-

tion symbol is encoded into a block of L identical symbols, producing an (L, 1)

N * %

"' - " S e Nr
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code. Each symbol is transmitted during a single hop, so that L diversities are %

transmitted over the L hops. When diversity and perfect side information are L

employed, the inner decoder (diversity decoder) can ignore the diversity recep-
a.

•

tions that have been hit and it can extract the data from the interference-free

diversity receptions. If all the diversity receptions of a symbol are hit, they are

erased. The RS outer code will correct the erasures if the number of erasures

produced by the inner code is within the erasure correction capability. When

there is no side information, the inner decoder (a maximum likelihood decoder)

counts the number of times each symbol was received and chooses the one that

had the largest count, as the transmitted symbol. The RS outer code in this case

will correct the errors produced by the inner decoder if the number of them is

within the error correction capability.

4.4.1. Perfect Side Information

If the perfect side information is available at the receiver, a given symbol will ,

be erased if all of its L diversity transmissions are hit: otherwise, the symbol is

correctly received. In this case the probability of symbol erasure given I users,

denoted P,L, is given by

PI,L = [1 - (1 - ph)t-,].. (4.45)

The induced super channel is an M-ary erasure channel with transition proba-

bility PIL and M = M= M,. See Figure 4.14.

Achievable Region

Since the input symbol to the (n, k) RS outer decoder is erasure with probabil-

ity PiL and the erasures at different hop durations are conditionally independent

or .1 r F'r. %.U,
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Figure 4.14: M-ary erasure channel, L diversity, perfect side infor-
mation.

given I, the probability of correctly decoding a codeword (packet), P, (I), is given

by
n-k n .

P(I) = j rL( 1- P,L). (4.46)i=o

As n, k -- o while r = k/n is held constant, it can be shown (see Appendix A)

that P,(I) will remain 1 as long as

" :r < 1- PI,L (4.47)
.

Thus the asymptotic normalized achievable region of overall code rate and chan-

nel traffic is given by
rR < *[-*P)-l

L (4.48)

L

as I,q --- oc with A = I/q held constant. Figure 4.15 shows the asymptotic

normalized achievable regions for various diversity levels. We can see that the

optimum diversity level that maximizes the asymptotic normalized achievable

p.

W * *'a " ' ' '" .. " ' m I|



"IP

75

region is 1 for all channel traffic. Figure 4.16 show the variations of the normalized

achievable regions as q increases. We can see that the asymptotic formula (q =

oo) gives a very close approximation even for small values of q.

Solving (4.47) in terms of I we can obtain the maximum number of simulta-

neous transmissions given by

In(1 -(1- r)t)I < 1 + I(-P)(4.49) :
n(1 - Ph)

As q approaches infinity, the asymptotic maximum number of simultaneous trans-

missions per frequency slot, A _ I/q, becomes

A < - In(1 - (1 - r)#) - 1  (4.50)
77 a

For the case of finite n, an approximate achievable region of channel traffic

and outer code rate for P,(I) >_ 1 - PE is given byZ-'

r < 1 - P,L - Ca PI,L(1 - PIL)/n, (4.51)

which is obtained from the Gaussian approximation of P,(I) given in (4.46). The '

normalized achievable region can be obtained by dividing by L.

Throughput

From (4.8) and (4.49) the asymptotic normalized throughput is given b:-

W = r I (I
Lq

S[+ (4.52)

17L

as q - o. Figure 4.17 shows the asymptotic normalized throughputs in terms of

the outer code rate r for various values of L. We can see that the overall optimum

diversity level that maximizes the normalized throughput is 1, but the optimum

% % -VS
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Figure 4.15: Achievable region of (r/L, I/q) for various values of di-
versity levels L, asynchronous frequency-hopping, per-
feet side information.
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deversity level is changed for different ranges of outer code rate. Figure 4.17 will

be useful when decoding complexity should be considered in designing a system,

because the decoding complexity of a code of rate r is proportional to (1 - r)' ,

and in some high performance applications the extreme decoding complexity may

make the system impractical to build. For example, for the coding system used

for deep space communication by NASA ((255,223) RS code), we can see that

the optimum diversity level is 3.

4.4.2. No Side Information

When there is no side information the demodulator makes an estimate (hard

decision) on the received signal, and the inner decoder (a maximum likelihood

decoder) counts the number of times each symbol was received and chooses the

one that had the largest count, as the transmitted symbol. In this way the

inner decoder corrects some errors and passes its output to the outer decoder.

However, not all errors can be corrected by the inner decoder, so there is a nonzero

probability of uncorrected error. The probability of (uncorrected) error with -.

diversity L, PLe,, on the M-ary symmetric channel with transition probability

p,./(M - 1) is derived in [Sta 85] by assuming that the conditional probability

of symbol error given hit is 1 - 1iM. If we let p pc.! and p 1 - p,, then for

large enough M, PL,. is given by
P, P

P1 , = p

P2,, =p ;
P3 . 1- p-3p 2p- pp 2

P4.1 = 1 - p 4 - 4p3 p - 6p 2p2  pp3  (4.53)

Ps., = 1 - pS- 5p4p - 10p 3p2 - 10p 2p3  pp4

P6,, = 1 - p" - 6p'p - 15p 4p2 - 20p3 p3 - 15plp 4 - ppl ,

P7,, = 1 - p - 7p~p - 21pp - 35pp - 35p3 p4 - 21p p'- pp6 .

% %- %

P6 :0,<



80

0 I-P, -- 0 0
* P./ (M-1)

(/M-1) i

P" (M- o

M-1 M-I

" . Figure 4.18: M-ary symmetric channel, L diversity, no side informa-
tion.

PThe induced super channel is an M-ary symmetric channel with transition prob-

ability PL./(M - 1) and M = M, = Mo. See Figure 4.18.

Achievable Region

Since the input symbol to the RS outer decoder is in error with probability

PL., the probability of correctly decoding a codeword (packet) given I simulta-

neous transmissions Pc(I) is given by

(n-k) /2J (n"
PC(I) = Y ( I P.' (- PLL)-'. (4.;4)

As n,k oo while r = k/n is held constant, it can be shown that P,(I) will

remain 1 as long as
r < I-2PLI. (4.55)
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The asymptotic normalized achievable region is obtained by dividing the above

by L, and is plotted for various values of L in Figure 4.19. We notice that the

optimum diversity level depends on the channel traffic, which is not the case

when perfect side information is available.

For the case of finite n, the approximate achievable region of channel traffic

and outer code rate for P,(I) > 1 - PE is given by

2
r < 1 - -[nPL,, + a nPLC(1 - PL,,) (4.56)

n

which is obtained from the Gaussian approximation of P,(I) given in (4.54). The

normalized achievable region can be obtained by dividing by L.

Throughput

From (4.8) and (4.55) the asymptotic normalized thrpughput is given by

W rir Lq

_ (1-2PL,.)
Lq

Figure 4.20 shows the asymptotic normalized throughputs

code rate r for various values of L . As in perfec ,...

can see that the overall optimum diversity le' e"

throughput is 1, but the optimum divers. ,,,

of outer code rate.
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Figure 4.19: Achievable region of (rIL, I/q) for various values of di-

versity levels L, asynchronous frequency-hopping, no
side information.
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CHAPTER V

PARALLEL DECODING FOR IMPERFECT SIDE

INFORMATION

5.1. Introduction

In section 3.2 we have considered the achievable regions and throughputs of

Ufrequency-hopping (FH) multiple-access systems for which perfect side informa-

tion is available at the receiver. In practice, however, the assumption regarding

the perfect side information is only approximately true. In this chapter this as-

sumption is relaxed, and we consider the performance of the FH multiple-access

systems which has imperfect side information at the receiver.

The purpose of the side information is to determine which received symbols

are to be erased. The side information regarding the presence of hit is extracted

from the dehopper and demodulator. However, there is a chance that some

symbols with interference will be missed (miss) and other symbols which have

no interference will be erased (false alarm). We define Pp as the probability that

the demodulator produces the erasure symbol given the symbol was "not hit"

and PM as the probability that the demodulator does not produce the erasure

symbol given the symbol was "hit". Then PM and PP give us a measure of the

"imperfectness" of the side information: for example, PM = Pp = 0 corresponds

84
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to the perfect side information case, and PM = 1, PF = 0 corresponds to the

no side information case, because the demodulator never produces the erasure_,

symbol when there is no side information. Thus, perfect side information and no

side information are a special case of the imperfect side information.

In this chapter we assume that only imperfect side information is available at

the demodulator. The demodulator decides first whether to erase the received

signal or not based on the side information given to it. If the received signal is

not erased, it is further processed to get the estimate of the transmitted signal.

We will consider two different models for the demodulator.

The demodulator output is, in general, a sequence of errors, erasures, and

correct symbols. In order to correct the errors and erasures we employ a Reed-

Solomon code, and consider two different decoders for it: one is the errors-and-

erasures decoder and the other is a parallel decoder.

The remainder of this chapter is organized as follows. In section 5.2 we intro-

duce two demodulator models and derive the probabilities of error and erasure in

terms of channel traffic for both demodulator models. In section 5.3 we compute

the capacity of the component channel resulting from one demodulator model,

and discuss an idea for improving the capacity. In section 5.4 we consider an

errors-and-erasures decoder, and evaluate the performance of it over the imper-

fect side information channel. Based on the ideas given in section 5.3 and 5.4 we

suggest a parallel decoding scheme and evaluate the performance of it over the

imperfect side information channel. These are discussed in section 5.5.

5.2. Demodulator Models

In the first model (we call it "demodulator model 1: worst case"), if a received

signal is hit, and not erased, it is demodulated to one of the M equally likely

L,
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h erasure

P.. hit IP oersr -I/M ero
Io erroro P ' no erasure

a receivedeno errorsymbol

no hit error

1r P~ no erasure
. , no error

1

Figure 5.1: Demodulating procedures, demodulator model 1.

symbols so that the probability of symbol error is 1 - 1/M, independent of the

number of hits and which symbols transmitted from the interferers. If it is

not hit and not erased, it is demodulated correctly. The resulting interference

channel is classified as a "separated" channel by its definition given in (2.1).

Demodulating procedures for demodulator model I are summarized in Figure 5.1,

and the component channel model is shown in Figure 5.3. Thus the probability

of erasure is given by

p., = P(erasure I users)

= P(erasure [hit, I) P(hit I I) + P(erasure jno hit, I) P(no hit I I)
= (1 - PM)ph,, + P,(I - Ph,,),

It j(5.1)

-I
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and the probability of error is given by

p,., = P(errorj Iusers)

- P(error, no erasure [I) + P(error, erasure I)

- P(error, no erasure I hit, I) P(hit I I)

+P(error, no erasure I no hit, I) P(no hit I I)

- P(error I no erasure, hit, I) P(no erasure I hit, I) P(hit I)

+ P(error I no erasure, no hit, I) P(no erasure I no hit, I) P(no hit I I)

- (1 - l/M)PM P."hI.

(5.2)

In the second model (we call it "demodulator model 2: realistic case") both

the number of hits and which symbols being transmitted from the interferers are

taken into account in calculating the probability of error. If a received signal is

hit by m interferers, i.e. m hits, and is not erased, the probability of symbol error,

P, is given by (3.49). If it is not hit and not erased, it is demodulated correctly.

In this case, the resulting interference channel is not separated, because the

property given in (2.1) is not satisfied. Demodulating procedures for demodulator

model 2 are summarized in Figure 5.2. Thus p,,' is the same as given in (5.1),

but p,, for large M is given by

p.,, = P(error I I users)

- P(error, no erasure I I) + P(error, erasure I)
1:-1 (5.3)

- ,wo P(error, no erasure I m hits, I) P(m hits 3)

E -' P(error I no erasure, m hits, I)

P(no erasure I m hits, I) P(m hits I I)

U-
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I-P erasure

Pk -10 m hits
on. M error

) ( no erasure
a received no error

symbol
r. 'ierasure

no hit error
no erasure

no error'I. 1

Figure 5.2: Demodulating procedures, demodulator model 2.

=0O. (I - PP)(1 - Ph)'1- + EE= , ( p"t(1 - P,)-

- PM [1 -( h- )t ]

(5.4)

In both models, the demodulator output is a sequence of errors, erasures, and

correct symbols. Thus the component channel with imperfect side information

is modeled by an M-ary errors-and-erasures channel with certain erasure proba-

S.' bility p.,.,, and certain error probability p.,, which depend on PM, Pp, and the

V number of simultaneous packet transmissions in a time slot. This component

channel model is shown in Figure 5.3.

5.3. Component Channel Capacity

The channel capacity of an M-ary errors-and-erasures channel in information



0 0o

P ILI (M-1)

1i

N *I/ (M-i)

M- 1 M-1

?

Figure 5.3: Imperfect side information channel model.

symbols per channel use is given by

C(I) = (1-p,,.-p.) log M M(i -- Pe)) +P.o. ( - 1'1 p..,))"

(5.5)

Notice that for PM = Pp = 0 (perfect side information),

(I) = P. ,, (5.6)

= (1- ph)'- 1 ,

and for PM = 1, Pp = 0 (no side information),

C(I) = (1 - p,.) logm (M(1 - P.s)) + P.,1 log't( !- ,- (5.7)

As mentioned in Section 5.2, since the channel resulting from demodulator model

is not separated, only the channel resulting from demodulator model 1 will be

considered in this section. For model 1, by applying (5.1) and (5.2) into (5.4) we
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obtain
/P"P",,+M(I - P) (I - ph'/)

C() = (PMPhI/M + (1 - PF)Y - Pl.I)) logM ( PU,,+(1-PP)(1-P&,)

" +(PM-, P1,r) lOgM (PPAp,,I+(1-PP)(1-P&,A) -

(5.8)

Figure 5.4 shows the component channel capacity in terms of the channel traffic,

A = I/q, for several values of PM and Pp. We notice that there is a threshold in

channel traffic, Atj, such that for A < At the channel capacity can be increased by
ignoring the imperfect side information (thus do not erase) and making a hard

decision demodulation of the received signals. This implies that for the lower

traffic it is advantageous to make a hard decision demodulation rather than to

try to make an (erroneous) erasure based on the imperfect side information. We

also notice that the threshold Agh increases as PM and Pp increase, that is, as

the side information becomes less reliable. On the other hand, as the alphabet

set size becomes large, it can be shown from (5.4) that the component channel

capacity approaches

limM.. C(I) = 1 -, - P,

= (1 - P)(1 - ph)'- (5.9)

• ' ~--* (1- )- "

as I, q --* co while A = I/q is held constant. This implies that for large enough

M, the component channel capacity can be increased by ignoring the imperfect

side information (thus Ppr = 0) and making a hard decision demodulation of

Nthe received signals for al channel traffics. Notice that the resulting component

channel capacity c- "' is the same as that obtainable from perfect side informa-

tion. It can be also noticed from (5.8) that the limiting (M -- cc) value of the

component channel capacity depends only on Pp (independent of PM). This can

be explained as follows. If a received signal is hit it results in either error with

probability PM (because 1 - 1/M - 1) or erasure with probability 1 - Pm (see

IPA
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N

Incomplete RS decoder

Demodulator Errors-and-erasures

.A

Figure 5.5: Receiver model.

Figure 5.1). However, the events of error and erasure give the same effect on

the component channel capacity in the sense of information loss. Therefore, the

component channel capacity is independent of PM. On the other hand, when the

signal is not hit, it results in erasure (i.e., information loss) with probability Pp.

Therefore, the component channel capacity is a function of PF.

5.4. Errors-and-Erasures Decoding Scheme

The block diagram of the receiver to be considered is shown in Figure 5.5. The

incomplete demodulator output has an alphabet set of (0, 1, ... , M- 1, ?}, and is

a sequence of errors, erasures, and correct symbols. As before, let P,,,I and P,.1

denote the probability of symbol erasure and error given I users respectively. The

RS decoder corrects the errors and erasures if the sum of the number of erasures

.*0 and twice the number of errors is less than or equal to n - k. Therefore, the

probability of correctly decoding a codeword given I simultaneous transmissions,

V. !
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P,(I), is given by )

P ) Per,lIr.l (1 - Per,l -Pe (5.10)
1+2m<n-k ,m )

Asymptotically as n and k approach infinity while the code rate r = k/n is held

constant, it can be shown (see Appendix C) that

1, r < 1 - Per -
2 pe

=im P,(1) 0.5, r 1 - Per,! - 2 p,,I (5.11) K .,

0, 7>1 per,I 2 pe,1.

That is, "error-free" communication is possible asymptotically provided I,

r < 1 - Pe,,! - 2 pe,. (5.12)

5.4.1. Demodulator Model 1: Worst Case

From (5.1), (5.2), and (5.11) the asymptotic achievable region of code rate

and channel traffic for arbitrarily small error probability is given by

7 < (1 + PM - Pp)(1 - ph) 1 - - PM (5.13)

- (1 + PM- p)e-"' - pM,

or equivalently,

A < 1 In ( + PM - Pp (5.14)
17 r + Pm/

as I, q --+ oo while X A I/q is held constant.

The asymptotic normalized throughput can be obtained from (5.12) as

W U ~P'(I)

"- (1 - P,,rj - 2p,)
q (5.15)

"- [(1 + PM - P,)(1 - Ph)'-_ PM]

00[(1 + PM - Pp)e-n - PM].

*ft
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Figures 5.6 and 5.7 show the achievable regions and the normalized throughputs

for various values of PM and Pp. We notice that as in the channel capacity

case, the achievable region and the throughput can be increased by making a

hard decision demodulation and error-correction decoding for the lower channel

traffic.

Also, it can be shown from (5.14) that

aW

aPp e (5.16)

and

- -A(1 - e - ) (5.17)

so that

aW aw 1
> for A> - In 2, (5.18)

aPp - PM 77

and
aW aW 1a- - 9 for A <-1n2. (5.19)
2iPF <8PM '7

These imply that for A In 2 the throughput decreases faster along the PM

axis than along the Pp axis, and for A < - In 2 the opposite happens. The ways
17

in which the throughput decreases as a function of PM and Pp is shown in Figure

.5 5.8.

Optimum code rate, optimum traffic, and maximum normalized throughput

To get the optimum channel traffic at which the normalized throughput W is

maximized, we take the derivative of W w.r.t. A, and set it to zero. This results

in the following nonlinear equation:

'-1\ PM (5.20)
- IA) = 1+ PM - Pp(

S- This equation will have a unique solution, because RHS is a constant between 0

and 1, and LHS is a strictly decreasing (at least from 1 to 0) function of A as

pN- -w -
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----- perfect side infor.
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imperfect side infor.

P F=0.1
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Figure 5.6: Achievable regions of code rate and channel traffic,
errors-and-erasures decoding, demodulator model 1.
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Figure 5.7: Normalized throughputs vs. channel traffic, errors-and-
erasures decoding, demodulator model 1.
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Figure 5.8: Plot of the normalized throughput vs. (Pm, Pp), errors-
and-erasures decoding, demodulator model 1.
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.

Figure 5.9: Plot of e-"(1 - 17,\) vs. A.

shown in Figure 5.9. Also, by taking second derivative of W w.r.t. X, we get

.2W = 1/(l + P - Pp)e-'A(i, - 2).

From Figure 5.9 we can see that the solution of (5.19), call it A,,, has the

property A.P, < 1/1. Thus

a'--- < 0 at X = \.,t.

Therefore there should exist a unique optimum channel traffic where the nor-

malized throughput is maximized. Thus the optimum channel traffic Apt can be

found from (5.19), and at A., the optimum code rate is obtained from (5.12)

and (5.19) as

.rop, = (I + Pw - ep)e-n - P t (5.21)

and at .,t and rpt, the maximum normalized throughput is given by

WmPE 1- (5.22)



In Table 5.1 we list Wi.., rpt, and Apt for various values of PMW and pp.

For the case of finite block length codes, P0(I) can be approximated as (see

Appendix C)

P. (I A-. k m(5.23)

where

m A n(p.,,ir + 2p,,i) (5.24)

ff2  n(p.,,j - pl,.r + 4p., 4 ,j - -p,,p,)

Therefore the achievable region for P,(I) ! 1 - PE~ is approximately given by

r(1 - -g~ 2p.,i) -a 1/(-P',x 4p., p~ 4p.,,rp,j)/n. (.5

N-
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

00 0500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.000
0.1 0.400 0.391 0.381 0.370 0.355 0.33 0.313 0.281 0.234 0.158 0.000
0.2 0.337 0.326 0.313 0.299 0.281 0.260 0.234 0.202 0.158 0.097 0.000
0.3 0.293 0.281 0.268 0.252 0.234 0.213 0.188 0.158 0.120 0.070 0.000
0.4 0.260 0.248 0.234 0.219 0.202 0.181 0.1508 0.130 0.097 0.055 0.000
S.5 0.234 0.222 0.209 0.194 0.177 0.158 0.136 0.111 0.041 0.045 0.000
0.6 0.213 0.202 0.188 0.174 0.158 0.140 0.120 0.097 0.070 0.038 0.000
0.7 0.196 0.184 0.172 0.158 0.143 0.126 0.107 0.086 0.061 0.033 0.000
0.8 0.181 0.170 0.158 0.145 0.130 0.114 0.097 0.077 0.055 0.030 0.000
0.9 0.169 0.158 0.146 0.134 0.120 0.105 0.088 0.070 0.049 0.026 0.000
1.0 0.158 0.147 0.136 0.124 0.111 0.097 0.081 0.064 0.045 0.024 0.000

0.4 I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.368 0.331 0.294 0.314 0.272 0.184 0.147 0.110 0.094 0.037 0.000
0.1 0.394 0.357 0.320 0.282 0.244 0.206 0.167 0.128 0.089 0.046 0.000
0.2 0.412 0.33 0.335 0.295 0.256 0.216 0.176 0.134 0.092 0.047 0.000
0.3 0.424 0.384 0.344 0.304 0.264 0.222 0.181 0.137 0.093 0.048 0.000
0.4 0.432 0.392 0.352 0.310 0.26 0.227 0.183 0.140 0.094 0.048 0.000
0.5 0.439 0.398 0.356 0.314 0.242 0.229 0.186 0.141 0.095 0.048 0.000
0.6 0.445 0.401 0.361 0.31 0.275 0.231 0.17 0.141 0.095 0.049 0.000
0.7 0.449 0.407 0.363 0.321 0.287 0.233 0.18 0.142 0.097 0.049 0.000
0.8 0.453 0.410 0.366 0.322 0.729 0.235 0.18 0.143 0.096 0.048 0.000
0.9 0.455 0.412 0.370 0.324 0.280 0.235 0.190 0.143 0.097 0.049 0.000
1.0 0.45 0.416 0.371 0.327 0.281 0.235 0.191 0.144 0.097 0.048 0.000

0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.184 0.166 0.14 0.129 0.110 0.092 0.024 0.055 0.037 0.018 0.000
0.7 0.158 0.140 0.122 0.104 0.040 0.069 0.052 0.036 0.021 0.002 0.0000.2 0.139 0.122 0.105 0.088 0.072 0.056 0.041 0.027 0.014 0.005 0.000.- 0.3 0.124 0.108 0.092 0.077 0.062 0.047 0.034 0.022 0.011 0.003 0.000
0.4 0.112 0.097 0.082 0.068 0.054 0.041 0.029 0.018 0.009 0.003 0.000

"0.5 0.103 0.088 0.074 0.061 0.048 0.036 0.025 0.016 0.b08 0.002 0.000
0.6 0.095 0.081 0.068 0.055 0.043 0.032 0.022 0.014 0.007 0.002 0.000

0.7 0.082 0.075 0.063 0.051 0.040 0.029 0.020 0.012 0.006 0.002 0.000
0.8 0.082 0.070 0.058 0.043 0.036 0.027 0.018 0.011 0.005 0.001 0.000
0.9 0.077 0.065 0.054 0.043 0.034 0.025 0.017 0.010 0.005 0.001 0.0001.0 0.072 0.061 0.051 0.040 0.031 0.023 0.015 0.009 0.004 0.001 0.000

Table 5.1: Apt, rpt, and W,,,.,, errors-and-erasures decoding, de-
modulator model 1, j7=2.
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5.4.2. Demodulator Model 2: Realistic Case

By applying (5.1) and (5.3) into (5.11), the asymptotic achievable region of

code rate and channel traffic can be obtained as-d

r < 1l- p,.- 2p.,.r

(1 - PM - Pp)(1 - Ph)' 1I + PM fps,-ai i 5.6

as I, q --+ oo while A - I/q is held constant. Thus the asymptotic normalized

throughput is obtained from (5.25) as

W IP, V'

1(1 - pwj, - 2p 1 ) (.7

[( Ff PM D P(1 - h I(2-2(1-p,)i -

- L.'- M -AP~~L -P&'
1 + PM Aj

Figures 5.10 and 5.11 show the achievable regions and the normalized through-

puts for various values of PMw and Pp. We can see again that the performance

can be improved by making a hard decision demodulation and error-correction

decoding for the lower traffic. In Figures 5.12 and 5.13 we compare the perfor-

mances obtained from the two demodulator models.

From (5.26) it can be shown that

01W (5.28)

and
a = -2" ~i ? -A (5.29)1

8PM '7

sot a C > a for A > 1.594/, (5.30)
8i- -aPM

and

a- <.- for A < 1.594/j7. (5.31)
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Figure 5.10: Achievable regions of code rate and channel traffic,
errors-and-erasures decoding, demodulator model 2.
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Figure 5.12: Comparison of the achievable regions obtained from the
two demodulator models, errors-and-erasures decoding.
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* Figure 5.14: Plot of the normalized throughput vs. (PM, Pp), errors-
and-erasures decoding, demodulator model 2.

These imply that for X > 1.594/n7 the throughput decreases faster along the PM

axis than along the Pp axis, and for A < 1.594/17 the opposite happens. The

ways in which the throughput decreases as a function of PM and Pp is shown in

Figure 5.14.

yOptimum code rate, optimum traffic, and maximum normalized throughput

To get the optimum channel traffic at which the normalized throughput W is

maximized, we take the derivative of W w.r.t. A, and set it to zero. This results

in the following nonlinear equation:

(1 + PM- P) -1(1 - P- Pp)A = PMenX. (5.32)

From Figure 5.15 we can see that there exist a unique solution because LHS and

RHS meet at exactly one point. Also, by taking second derivative of W w.r.t. A,
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+P;-p

-F. -. A 0. e

i-p-p > 0 case 1-p-p 5 0 case

Figure 5.15: plot of pMen1A and (1+PM-PF) -i7(1-Pm-PF)Ak vs.

we get

=2 -"'lT[2(l - Pp) - i7(l - PM - Pp)A].-

Forl1- PM -PF<O 0case, it is obvious 19 w<0. For 1-PM-Pp >0case,

the solution of (5.3 1), call it A~t has the property A01,j < (1 + Pm - P,) /[v1(1

Pm -Pp)J]. Thus

-1W< 0 at A= A.,t.
49, 2 -

Therefore the unique optimum channel traffic A0pt can be found from (5.31), and

at Ap the optimum code rate is obtained from (5.25) as

=p (1-pm - p)cfAIo + pm (2( 1 - -n . ) (5.33)

and at A.P and r.,,g, the maximum normalized throughput is obtained from (5.26)

and (5.31) as

WMIz = Ii -PM- Pp')c"%Q'~ + PM(1 - 2,p)J. (5.34)

r. ~ -
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.000
0.1 0.470 0.467 0.463 0.459 0.453 0.446 0.436 0.421 0.397 0.347 0.000
0.2 0.446 0.441 0.436 0.429 0.421 0.410 0.397 0.377 0.347 0.292 0.000
0.3 0.427 0.421 0.414 0.406 0.397 0.384 0.369 0.347 0.315 0.259 0.000
0.4 0.410 0.404 0.397 0.388 0.377 0.364 0.347 0.325 0.292 0.237 0.000
0.5 0.397 0.390 0.382 0.372 0.361 0.347 0.330 0.307 0.274 0.220 0.000
0.6 0.384 0.377 0.369 0.359 0.347 0.333 0.315 0.292 0.259 0.207 0.000
0.7 0.374 0.366 0.357 0.347 0.335 0.321 0.303 0.280 0.247 0.196 0.000
0.8 0.364 0.356 0.347 0.337 0.325 0.310 0.292 0.269 0.237 0.186 0.000
0.9 0.355 0.347 0.338 0.327 0.315 0.301 0.283 0.259 0.228 0.178 0.000
1.0 0.347 0.339 0.330 0.319 0.307 0.292 0.274 0.251 0.220 0.172 0.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pp- PM. -"

0.0 1 0.368 0.331 0.294 0.258 0.221 0.184 0.147 0.110 0.074 0.037 0.000
0.1 0.381 0.344 0.308 0.270 0.234 0.196 0.159 0.121 0.083 0.044 0.000
0.2 0.393 0.356 0.318 0.281 0.243 0.205 0.166 0.128 0.088 0.047 0.000
0.3 0.401 0.364 0.326 0.288 0.250 0.212 0.172 0.133 0.092 0.049 0.000
0.4 0.410 0.372 0.333 0.295 0.256 0.217 0.177 0.136 0.094 0.050 0.000
0.5 0.416 0.378 0.339 0.300 0.261 0.221 0.180 0.139 0.096 0.051 0.000
0.6 0.423 0.384 0.344 0.305 0.265 0.225 0.184 0.142 0.098 0.052 0.000
0.7 0.428 0.389 0.350 0.310 0.269 0.228 0.186 0.143 0.100 0.053 0.000S 0.8 0.433 0.394 0.354 0.313 0.272 0.232 0.189 0.145 0.101 0.054 0.000
0.9 0.438 0.398 0.357 0.317 0,276 0.233 0.191 0.147 0.102 0.054 0.000
1.0 0.442 0.402 0.361 0.320 0.278 0.236 0.193 0.149 0.103 0.054 0.000

P1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.184 0.166 0.147 0.129 0.110 0.092 0.074 0.055 0.037 0.018 0.000
0.: 0.179 0.160 0.142 0.124 0.106 0.087 0.069 0.051 0.033 0.015 0.000
0.2 0.175 0.157 0.138 0.120 0.102 0.084 0.066 0.048 0.031 0.014 0.000
0.3 0.171 0.153 0.135 0.117 0.099 0.081 0.063 0.046 0.029 0.013 0.000
0.4 0.168 0.150 0.132 0.114 0.096 0.079 0.061 0.044 0.027 0.012 0.000
0.5 0.165 0.147 0.129 0.112 0.094 0.076 0.059 0.042 0.026 0.011 0.000
0.6 0.162 0.144 0.126 0.109 0.092 0.075 0.058 0.041 0.025 0.011 0.000
0.7 0.159 0.142 0.125 0.107 0.090 0.073 0.056 0.040 0.025 0.010 0.000
0.8 0.157 0.140 0.122 0.105 0.088 0.071 0.055 0.039 0.024 0.010 0.000
0.9 0.155 0.138 0.120 0.104 0.087 0.070 0.053 0.030 0.023 0.010 0.000
1.0 0.153 0.136 0.118 0.102 0.085 0.069 0.053 0.037 0.022 0.009 0.000

Table 5.2: Ao9, ropg, and Wm,, errors-and-erasures decoding, de-
modulator model 2, i-=2.

% %. ks.
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Complete Y MS Decoder

od.at r E-rors-only

Figure 5.16: Parallel decoding system.

In Table 5.2 we list W,..., o .p, and Aot for various values of PM and Pp.

For finite block length codes, the achievable regions for P,(I) _ 1 - PE is

approximately given by (5.24) with p., and p,,,I given in (5.3) and (5.1) respec-

tively.

5.5. Parallel Decoding Scheme

We have observed in sections 5.3 and 5.4 that there is a threshold in channel

traffic such that for the lower traffic it is advantageous to ignore the imperfect

(unreliable) side information and make a hard decision demodulation of the re-

ceived signals, and for the higher traffic to try to erase the unreliable symbols.

This suggests the following parallel decoding scheme whose block diagram is

shown in Figure 5.16. The output of the demodulator is a pair (z,y): the first

component is the input to the errors-and-erasures decoder and the second com-

ponent is the input to the errors-only decoder. The output of the incomplete N

Yr&&N Ik, 111
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demodulator, z, is either a symbol estimate or an erasure, and it is in the al-

phabet set of {0, 1,..., M - 1, ?}. On the other hand, the complete demodulator

makes a hard decision demodulation of the symbol transmitted, and its output,

y, is in the alphabet set of {0, 1, ... , M - 1}. If z is not an erasure, then z and y

eare identical. We will assume throughout that RS decoder never errors (produces

7 the wrong codeword) but always fails (gives up) when the number of errors and

erasures exceeds the capability of the code. In fact, if a Reed-Solomon code is

being used and the decoder is attempting to correct t errors, the probability of

a decoding failure is approximately t! times the probability of a decoding error

[Ber 801: as n -- oo, t = n(J-f) - oo = t! - oo =*' P(decoding error) --- 0.

Therefore a codeword (packet) error occurs if both decoders fail and at least one

symbol out of the complete demodulator is in error.

Previous studies on parallel decoder begin with [Pur 821, in which the use of a

parallel combination of erasures-decoding and errors-decoding for Reed-Solomon

codes was introduced. Soon after, it is applied in [Pur 83] and [McC 83] to

increase the jamming margin against a partial-band jammer. In all of those

works, the perfect side information was assumed to be available at the receiver.

S1 For the partial-band jamming, no side information environment, Castor [Cas 86]

analyzed a parallel combination of diversity decoder/errors-and-erasures decoder

and diversity decoder/errors-only decoder. In this section we will evaluate the

%P performance of the suggested parallel decoding scheme under the multiple-access,

imperfect side information environment.

5.5.1. Achievable Region and Throughput

Let us first define the following random variables:

Z - the number of symbols in the received packet for which

"%- JAA
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x is erasure and y is in error,

Z A the number of symbols in the received packet for which

x is not erasure and y is in error,

Z3 the number of symbols in the received packet for which

z is erasure and y is not in error.

Then there are Z, + Zs erasures and Z2 errors at the input of the errors-and-

erasures decoder, and Z + Z2 errors at the input of the errors-only decoder.

Therefore the packet (codeword) error probability given I simultaneous trans-

missions, PE(I), is given by

PE(I) = P(ZI + Zs +2Z2 > n - k zi+ Z 2 > [--VJ nzi + Z 2 > O)

= P(Z1+Z 3 +2Z 2 >n-klZI + Z 2 >[n 2).

(5.35)

This implies that the performance (in terms of packet error probability) is the

same whether the complete demodulator output is selected or not. Therefore

we will consider the modified parallel decoding scheme which has no path from r

the complete demodulator to the selector, i.e., without the dotted line in Figure

5.16.

Since the events of Z1, Z2, and Zs are mutually exclusive and they are in-

dependent from symbol to symbol within a codeword, the joint distribution of

Z1 , Z2 , and Z3 may be calculated as [Kal 85]

P(ZI=j, Z 2 = l, Zs = m)= A p2 p3(1 - PI - P -P)'

(5.36)

where

Pi P( a received symbol is erased and in error I I users

P2 = P( a received symbol is not erased and in error I users (5.37)

P3 = P( a received symbol is erased and not in error I users).P =PC reeive sybolis ease an notin rro [ Iuses )

'~ ~ 4
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Thus the codeword error probability given I users, PE(I), is given by
n n-,v n-j-1

PE(I) = E , F, P(Z - j, Z2 = 1, Z3 = M), (5.38)
j=o I=h(j) m=g(j.1)

where

g(jl) _ max{O,n-k-j-21+}.

To get the limiting value of PE(I) as n, k -- oo, let us define the following

random variables:

X. Z + 2Z2 +Z3

Y. = z + z.
U x x(5.39)

A X ,_(Xn)

VI/

Then, X. is the sum of the number of erasures and twice the number of errors

at the input of the errors-and-erasures decoder, and Y. is the sum of the number

of errors at the input of the errors-only decoder. Therefore,

PEs(I) =P(Xn > n -k, Y. > LV-J)
.-k-L'(x-) L -i J-s6(r,) (.0,; =~ ~ (b. v.,(x. v > (5..,40)

= (U,>aV/' , V, >bV 'n

where

E(X.) = n(pi + 2p2 + ps)

E(Y.) = n(p 1 +p 2 )

A" Var(Xn) = n(pi - p2 + 4 p2 - 4p" + Ps - p2 - 4 pIP2 - 2pIp3 - 4p2p3)

Var(Yn) = n(p, + p 2)(1 p - P2 )

a . -r-PI-2P2-02
a. = Vf(pl-p+4p2-4p2 +ps3p]-4pp2-2pp3-4p 3)

. b = - - pi 2 ,
V/(P,+P2)(1-P,-P2)"

(5.41)

By the central limit theorem, as the code length n becomes large, it is well known

that the distributions of U. and Vn approach the standard normal distribution

FV
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with mean zero and variance one. That is, as n -o,

Fc(u) - el < Fu. (u) < Fc(u) + el, (5.42)

and

FAG(v) 2- < Fv. (v) < F(v) + C2, (5.43)

for arbitrarily small positive el and E2, where

Fu. (u) P (U :5u)14

fv. (v) P P(V. <5 v) (5.44)

FG(u) .- I ez /2dx.
v'2w

Thus, asn, k -* oo while r = k/n is held constant

PE(I) = P(U, > an- , V. > b/ )
<P(U,, > avrn::

S1 - Fu. (av/n) (5.45)

<G I-F(a V/" + e

0,

if a > 0. Similarly,
PE,(I) :_ P(V,. > bv/n-)

- 1 -Fv.(by.n) (5.46) '

< I - Fo(bV ) + (2

-40,

if b > 0. Therefore, the codeword (packet) error probability PE(I) approaches

zero asymptotically if

a>O or b>O, (5.47)

€='•<1-pj-2P2-ps or r<1-2pj-2p (5.48)

4=r r < max {1 - p, - 2p2 - ps, 1 - 2p, - 2p2}. (5.49)
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Also, it can be shown that as n -- oo,

.PEI -, 1,

ifa<0andb<0, i.e.,r>max{l-p -2p 2 -p 3 , 1- 2 p1- 2 P2}:

PE(I) = P(U,. > af/ n V. > bv/'n)

= 1-P(U,% a%/-) - P(V. :< bv/f-)

-*0, if 4<0 -. 0, if 6<0

--- 1,

as n - oo. Therefore, (5.48) represents the asymptotic achievable regions of code

rate and channel traffic for arbitrarily small error probability. The asymptotic

normalized throughput is thus given by

i-I (1-PSI)w qq (5.50)
= max - p - 2 P2 -P3 

2p -2p2}.

SThe remaining problem is to find the probabilities pi, P2, and ps in terms of the

number of packet transmissions.

5.5.2. Demodulator Model 1: Worst Case

I:'. In computing (5.48) and (5.49) we need only the probabilities PI + P2, PI + P3

and P2, which can be derived as follows:

PI + P2 = P (erasure, error I users)

+P(no erasure, error I users)

= P(error I transmissions)

= P(error hit, I) P(hit I I) (5.51)
=I-I/M

+ P(error I no hit, I) P(no hitI I)
=0

= (1 - 11M)ph,

- p
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P, + ps = P(erasure, error I I)

+P(erasure, no error I I)

= P (erasure I I) (5.52)

- P(erasure Ihit, I)P(hit I)

+P(erasure I no hit, I)P(no hit II)

- (1 - PM)Ph,I + PF(1 - Ph,!),

p2 = P(no erasure, error If)

- P(error [no erasure, I)P(no erasure I I)

= P(error no erasure, hit, I)P(no erasure I hit, I)P(hit I I)

+ P(error I no erasure, no hit, I) P(no erasure I no hit, I)P(no hit I I)
=0 A~w

- P(error I no erasure, hit, I)Pm Ph,..

(5.53)

Since both the complete demodulator and the incomplete demodulator produce

identical symbols if the symbol produced by the latter is not an erasure, the

probability of symbol error at the complete demodulator output given no erasure

at the incomplete demodulator output is the same as that at the incomplete

demodulator output given no erasure. That is,

P(errorCcmpl I no erasureinompl, hit, I) = P(errori,,ompj no erasureiomp1 , hit, 1)
- i-/M.

Thus P2 is given by
P2 = (1 - 1/M)PMph',I. 

(5.54)

Therefore,

1 - 2 p, - 2p2 = 1 - 2 phj, (5.55)

and

-p - 2p2 - Ps = 1 - P - (1 + P - P)Ph.r. (5.56)

V1
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The resulting asymptotic achievable regions for arbitrarily small error probability

is given by

r < max {1 - 2 ph,J, 1 - Pr - (1 + PM - PF)ph,j}, (5.57)

and the asymptotic normalized throughput is given by

W - r-P(1)

q

= !max {1 - 2ph,,. 1 - Pp - (1 + PM - PF)ph,.} (5.58)
I max {2(l)- - 1, (+ PM- P.)(1 - p) - PM}.

Since

1 - 2 phj > 1 - PF - (1 + PM PF)phI, (5.59)

for

I < 1+ 
(-P 

+ ,
& GT(1-,Al (5.60)

Ith,

the achievable regions are
2( pt- -1,I <_ Ith

r<

(1 +PM- PF)(1 -ph) 1 - -PM, I> Ih,(- :":'.(5.61)

2e-"" - 1, A Ath

(1 + PM - Pr)eUPA - PM, 1\> AgAh,

where
" (II1 -PM + P.

* In i - PM (5.62)

as I, q -- oo while A I/q is held constant. Similarly the asymptotic normalized

throughput is given by

W = --P,(I)

Es ~ ~ ~ ~ ~ - [j2(l h' i,1 i

"[(1 +PM-PF)(1 -Ph)'1 -PMj, I> It,, (5.63)

A(2e- 71 - 1), A < A,h

A[(1 + PM- P)e -" - PM], A > As,,.

%~ W~' '7Y'. /~ r
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We can see that for lower traffic (A < Ath) it is advantageous to select the "errors-

only" decoder, and for higher traffic (A > Ath) it is advantageous to select the

"errors-and-erasures" decoder. This implies that the parallel decoder adapts to

the level of channel traffic by switching between two decoding modes. Figures

5.17 and 5.18 show the achievable regions and the normalized throughputs for

various values of PM and Pp respectively. The shaded area in the lower traf-

ftic region indicates the performance improvement over the errors-and-erasures

decoding scheme. Notice that the performance improvement becomes more sig-

nificant as the side information is less reliable, i.e., higher PM and Pp.

On the other hand, the requirement on (PM, PP) pair for the errors-only

decoder to perform better than the errors-and-erasures decoder can be obtained :2
from (5.58) as (-p1

PM + 1 -PJ PP1,(64

and as I, q -- o while A = I/q is held constant it becomes too

PM_+ (ip P _ 1. (5.65)

Figure 5.19 indicates regions of (PM, Pp) pair where one decoding scheme per-

forms better than the other for given A. Notice that as the channel traffic in-

creases, the errors-and-erasures decoder performs better even for less reliable

side information, and as the channel traffic decreases, the errors-only decoder

performs better even for more reliable side information. "

Optimum code rate, optimum traffic, and maximum normalized throughput

In Figure 5.20 we show the typical form of the normalized throughput, where

A, and A.2 denote the optimum channel traffic at which A(2e - "' - 1) and

Aj(1 + PM - Pp)e - " - PMJ are maximized respectively, and W, and W. 2 are

the maximum values at A, and A.2 respectively. It has been shown in (3.47) and



IRWRIM ~ 111M 11 W1W NO~ WI' 171 IUX ORl XR XF1 X.R hIR r Ow I. 10% I lI R WE NO ~ 1 I NO' WO Pwtnw P* o nm i x i iq

118

____p.iralill dc,(-roding

---- r'rrors-,ind-erasures decoding

-1 =2

0.8f

0.6_ F=.

PP F =0.2

0D.2-

IC..

0.0 0 2 0.41 0.6 0.8 1.0

I/q

Figure 5.17: Achievable regions of code rate and channel traffic, par-
allel decoding, demodulator model 1.
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Figure 5.18: Normalized throughputs vs. channel traffic, parallel de-
coding, demodulator model 1.
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Figure 5.20: Typical form of the normalized throughput of parallel
decoding system.
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(3.48) that *

A., = 0.3148/j7, and Wo1  0.1448/1/. (5.66)

To get W2, we take the derivative of A[(1 + PM - Pp)e-A - PM] and set it to

zero:

A {A[(1 + Pm - PF)e - 7* - PM]} (1 + PM - PF)e-'7(1 - iA) - PM

" 0

PM= -(1 77A) = 1 + PM - PF. (5.67)

The above nonlinear equation will have a unique solution, which is A02, by the

arguments given in subsection 5.4.1. Therefore W,2 is obtained from (5.62) and

(5.66) as

W.2 A. 2 [(1 + PM - PF)e-' °. - PM] (5.68)

From (5.65) and (5.67) it can be shown that W.2 > W.1 if

A. 2 - -0.1448+ (01448)
2 +O792PM ( )

2nPu

AT.

Therefore we get the following results:

W. = 0.1448/il 17 !

if A.2 < AT, rt = 0.4611

A.p = 0.314/17,

w,. (5.70)

if A2 'A, r~t nPkd A., 2

if A02 > ATr, ro = 1-,7A.2

=t Ao2.
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5.5.3. Demodulator Model 2: Realistic Case
4,

The probabilities PI + P2, pi + p3, and p2 can be derived as follows:I.

Pi + P2 = P(error I I users)
1 1- 1-(l-pk (5I1

,It

PI + P3 = P(erasure I I users)

= ,,=0 P(erasure I m hits, I)P(m hits I )
* . PF(1-ph)±(I-PM)~,' (- pI-1phI~=in(, _ hy)-I-m (5.72)

=PF (1 - Ph,1) + (1 - PU) Ph

=F P(1 -Ph,J) + (1 - PU) Phj,

P2 - P(error, no erasure I users)

,,- P(error, no erasure I m hits, I)P(m hits I I)

E'-' P(error I no erasure, m hits, I)

P(no erasure I m hits, I)P(m hits I I)___ ( mj
-_. I-i= O-(1-PF)(1 -ph),) + .'PM ph(-ph)I-1-.l

PM [1 - _-___

ph:,. (5.73)

Thus,
- 2 - 2(1 - Ph)'

1 - 2p 2P2 IN 1, (5.74)

" .. and

+ 2(1 Ph) 1 (5.75)

,'Ph

1" - pP

%, * "
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Therefore, the resulting asymptotic achievable regions for arbitrarily small error

probability is given by
2 -2(1-p#)' 2 -2(1-pl)'

r < max I, - 1, (1 - PM - PF)(1 -- + PM pI -)}

max { 1,(-PM - Pp)e-"'\ + PM( 1F'i)}
(5.76)

and the asymptotic normalized throughput is given by

2-2(1-P&,)' _ r_ _1 - I-p)Lj hri+ (2-2(1-PAJ'
W - max{ -

_
-

_ 
- -

_ , (-PM- P) 1 (i-p)-+ PM& 9 1P&
max{2 - 29 - yA A, PM - PF)A-- + PM (- A ,.

(5.77)

as I, q -+ oo while A = I/q is held constant. It can be easily shown that

2 - 2 -A (1 -PM -PP)Ae + PM2 -2e" (5.78_ - - , (5.78)

if
2e ",\ - 2 eX > 1 - PM -- PP"(.9).

2e- -, ePM P (5.79)
77A 1 - PM

Let

f(A) A 2e'l -2 e,. (5.80)

Then it can be shown for both t7=1 and 2 that

O=-T [e-- (2A 2/2 + i1A - 1)] (5.81)

< 0,

for all A > 0. This implies that f(A) is a decreasing function of A, whose max-

imum is 1. But, since the RHS of (5.78) is a constant between (-oo, 1], there

exists a unique threshold in channel traffic, denoted A , such that the achievable

region and the asymptotic normalized throughput are given by

r 2-2e 1 A < A' (5.82)

(1-PM--PF)e- qx + PM (2 i), 22> g,-

and

( 2-'P A, A ,
W = (5.83)

- PM - P.)Ae- nA + PM (-2- - A), A > A.,
.W > -\11h
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The achievable regions and the asymptotic normalized throughputs are plotted

in Figures 5.21 and 5.22 for various values of PM and PF respectively. The shaded

area in the lower traffic region indicates the performance improvement over the

errors-and-erasures decoding scheme. As in subsection 5.5.2, the performance

• "improvement becomes more significant as the side information becomes less re-

liable, i.e., higher PM and PF. By comparing Figures 5.17, 5.18, 5.21, and 5.22,

one can also observe that the performance improvement in the lower traffic re-

gion is even higher with the demodulator model 2 (realistic model) than with

the demodulator model 1 (worst case).

The requirement on (PM, Pp) pair for the errors-only decoder to perform

. better than the errors-and-erasures decoder can be obtained from (5.77) as

2 e - 1 2 (e, - 1
[1 + C"A - 2 A )]PM + PP -: 1 + e" A _( ). (5.84)

Figure 5.23 indicates regions of (PM, PF) pair where one decoding scheme per-

forms better than the other for given X. We can see similar phenomenon as in

demodulator model 1.

Optimum code rate, optimum traffic, and maximum normalized throughput

Let Wo1 and Wo2 be the maximum values of (2- 2e" 'A)/t 7 - A and (1 - PM -

PF)Ae - '? + P[(2 - 2e-1)/Y7 - A] respectively, and Ao1 and Ao2 be the channel

traffics at which Wo, and Wo 2 are achieved respectively. It has been shown in

(3.53) and (3.55) that

Ao 0 = .6931/77 and Wo, = 0.3069/17. (5.85)

In section 5.4.2 it has been shown that A.2 is the (unique) solution of (5.31).

Thus,

W [(1 - PM - PA)C-o° + PM(1 - 2\12)]. (5.86)
17

p.
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pairallel decoding
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Figure 5.21: Achievable regions of code rate and channel traffic, par-
allel decoding, demodulator model 2.
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parallel decoding
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Figure 5.22: Normalized throughputs vs. channel traffic, parallel de-
coding, demodulator model 2.
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Pp

less reliable
i~e.~~~(iZ)side information

errors-and-erasures errors-only-
decoder decoder

Figure 5.23: Region of preferences, demodulator model 2.

Therefore,

W.n4 = maxWM1 , W. 2 ),

= 0.6932/17, W- 1  W. 2

)A.2, W-'1 < W.2

= 0.4427, W. 1 W. 2

t opt (1 - PM -Pp)e'7002 + PM (2-2e-'I.2- ,w0 <w 2.-
(5.87)



CHAPTER VI

CONCLUSIONS

In this thesis we have examined the multiple-access capability of frequency-

hop packet radio networks from a coding point of view. The achievable region

of code rate and channel traffic and the normalized throughput were considered

* as performance measures. We modeled the communication system from the

modulator input to the demodulator output as an I-user interference channel,

and evaluated the performance of several codes for the interference channels with

perfect side information, no side information, and imperfect side information.

For channels with perfect side information, we have considered the perfor-

mance of Reed-Solomon codes with erasures-correction. The achievable region of

code rate and channel traffic, and the optimal code rate, optimal channel traffic

at which the normalized throughput is maximized have been derived. It is found

"r that the maximum sum capacity is achieved by the optimal rate Reed-Solomon

code with bounded distance decoding. Also, it is shown that the maximum

normalized throughput obtained with frequency-hopped spread-spectrum mod-

ulation and Reed-Solomon coding is the same as that with narrowband ALOHA
0.

system without frequency-hopping. This implies that frequency-hopped spread-

spectrum modulation can be just as bandwidth-efficient as narrowband modula-

tion in the sense that for a given bandwidth it can achieve the same throughput.

However, for the narrowband ALOHA system without frequency-hopping the
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throughput of e-1 is achieved when the packet error probability is 0.632 (which

is too large in practical sense) and with binary feedback, while for the frequency-

hopped spread-spectrum modulation it is achieved with arbitrarily small packet

error probability and without feedback.

Next we considered the performance of Reed-Solomon codes for channels

with no side information. It is found that the maximum normalized throughput

achievable without side information is only 39.3 % (worst case) of that achiev-

able with perfect side information. This gives us a quantitative measure of the

importance of side information in improving the multiple-access capability of

frequency-hop packet radio networks.

We investigated a technique for obtaining the side information. This is done

by partitioning the data stream into blocks and encoding each block by an error-

detecting code, and transmitting the encoded block (codeword) during a single

hop. On the basis of the received version of the codeword the decoder makes a

statistical decision about which of the channel states (hit or no hit) each codeword

was transmitted over. Clearly, as the code rate decreases, the error detection ca-

pability increases, therefore the reliability of the side information obtained will

increase. However, decreasing the code rate implies a decrease in the efficient

use of the channel. With this notion in mind, the relationship between the relia-

bility of side information and code rate has been investigated, and the maximum

allowable code rate to obtain a certain reliability of side information has been

derived for both synchronous and asynchronous frequency-hopping systems.

The above combination of (inner) encoder, channel, and (inner) decoder gen-

erates in general an errors-and-erasures channel. To correct the errors (caused

by undetected errors) and the erasures (caused by detected errors) we employed

an outer code (Reed-Solomon code). In this way the inner decoder informs the

outer decoder which symbols (inner codewords) in the received packet have been

as
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hit by symbols from other packets. It is shown that asymptotically perfect side

information can be generated from the inner code without any loss in code rate
for both synchronous and asynchronous frequency-hopping systems, so that the

normalized throughput achievable with perfect side information can be achieved

through the use of this concatenated coding scheme, even though the channel

provides no side information.

Finally, we considered a parallel decoding scheme for channels with imperfect

side information. In fact, perfect side information and no side information are

special cases of imperfect side information. When imperfect side information

is available at the demodulator its output is, in general, a sequence of errors,

erasures, and correct symbols. In order to correct the errors and erasures we

employed a Reed-Solomon code, and considered two different decoding schemes

for it: one is the errors-and-erasures decoding and the other is a parallel decoding.

We first evaluated the performance of errors-and-erasures decoder, and found

that there is a threshold in channel traffic such that for the lower traffic region the

performance can be increased by making a hard decision demodulation and em-

ploying errors-only decoding, rather than trying to make an (erroneous) erasure

based on the imperfect (unreliable) side information and employing errors-and-

erasures decoding.

Based on this observation we suggested a parallel decoding scheme, and

analyzed the performance of it for channels with imperfect side information.

We found that the parallel decoder gives better performances than errors-and-

erasures decoder, and the performance improvement becomes more significant as

the side information becomes less reliable.

74;
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APPENDIX A

Proof of (3.4)

Proof of

n~k..4oo0 )1 - r { '<ph,!,

* where r k/n.

Let

Ph,! - P (erasure)

X. number of erasures in a codeword (A.2)

Yn Xn/n.

Then

.n-h n=n-
J=0 P1,1(1 -PhIjn = P(0 Xn 1 n-k) (A.3)

From the weak law of large numbers [Day 701,

lrn P(0IY" - Ph,! I > e)=0, (A.4)
n-ooc

for any c > 0. This implies

lrn P(O <Y 1 -r)= 1, 1-rph,j'+c41 Ph,! (A.5)
0, 1 -7 r~ P< ! ph 1- < PA,!*
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Also, DeMoivre-Laplace limit theorem [Fel 70] implies that as n - oo,

P(o < x,, <n, - k) -- ,F n-k-nhI(A.6)
Vpnh) 'h.1)

where

F(z) - _0 (27r)-e- /du.

Therefore,

lim P(0 < X,<5 n - k) =0.5, if 1- r =ph. Q.E.D. (A.7)
n,k-..oo

.-'

f. .t .f .' .. ....
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: APPENDIX B

Derivation of P,.

Let N.j denote the number of distinct tone positions in the frequency slot,

each containing exactly j signals given m hits (i.e., m + 1 signals in the same fre-

quency slot). Then the tone position occupancy distribution within a frequency

slot can be represented by [Nm.i, NM,2, , N,.+i]. For example, consider the

case of m=3: [2,1,0,01 corresponds to a situation in which one tone position is oc-

cupied by two users and two tone positions are singly occupied. Consider another

S Iexample, m=5 case: [3,0,1,0,0,0] corresponds to a situation in which one tone

position is occupied by three users and three tone positions are singly occupied.

Using this notation we can derive Pm as follows.

P, = 0 P(two users transmit the same symbol)

+ !P(two users transmit different symbols)
= 0 P([0,1]) + !P([2,0])

~= O-L + 1-)

M -,

("
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P2  - 0 P(three users transmit the same symbol)

+ P(two users transmit same symbol, the third user

transmit a different symbol)

+!P(all three users transmit different symbols)

OP([O,0, 1]) + !P([l,1,0]) + !P([3,O,O])

O_1 + 13(M-1) +_ I M-1)(M-2)
M 0- 2 M2 3 2

4)4 2 -3M-1-- 6M2  "

P3  oP([O,O,O, 1]) + !P([1,0,1,0]) + !P([0, 2, 0, 0]) + !P([2,1,0,0])
+ 1 P([4,o0,o0, 0]) :

0 01 + 14(M-1) + 13(M-1) + 16(M-)(M-2) + 3(M-1)(M-2)(M-3)
MY 2 M3  2 M 3  3 M3 4 Al 3

SM 3 -2M 2A-M
4M3s

P4  OP([O, O, 0, O, 1]) + !P([1, 0, 0,1, 0]) + !P([0, 1, 1,0,0]) + !P([2,0,1,0,0])

+!P([, 2,0,0,0]) + !P([3, 1,0,0,0]) + !P([5, 0, 0, 0, 01)

- 1 -+ 16(M-1) + 110(M-;1) + II(-)M2= 4 0 2+ M, +2 M4 +3 M,
+1 I(-1)(M-2) + I IO(M-1)(M-2)(M-3) + I(M-1)(M-2)(M-)(M-4)

3 MA' 4 A5 M"

- 24M'4-1M AlO2 +1
30M4 .

Ps = OP([0 0, O, 0, 0, 1]) + 1P([1,0,0,0, 1,O]) + P([0,1,0,1,0,0])

+!P([2,0,0, 1,0,0]) + !P([O, 0, 2, 0, 0, 0]) + P([1, 1,1,0,0,0])

+!P([3,0, 1,0,0,0]) + XP([0, 3,0,0,0,0]) + IP([2,2,0,0,0,0])

+!P([4, 1,0,0,0,0]) + !P([6, ,0, 0, 0, 0])

+1IO(M-I} + 160(M-1)(M-2) + 320(A-1)(M-2)(M-3) + 15(M-1)(M-2)

2 A' 3 Mal 4 Al 6  3 M&'

45(M-I)(M-2(M-3+ 4 I1(M-1)(M-2)(M-3)(M-4) + (M-1)(M-2)(M-$(M-4)(M-5)4 M& M6 6 Ma

_IOM6-6M4-SM3+M
12M65
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Notice that in general as M becomes large, P,, is dominated by the last term,

i.e., 'n P( [m +±1, 0, -- ,0]), because

P( [ + 10,.. Q]) = (M-1)MM--2).(M-m)
P([ m + ,0,.. ,Ol) M 1,

*for large enough M. Therefore, Pm m for large enough M.

M+

%S
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APPENDIX C

Proof of (4.2)

Proof of

1, 1 - r > 2P + Pd

rm PM(I) = 0,d + Pd
nk--oo

' O,1 - r < 2Pd + Pd,

where r k/n.

Let random variables X,, Yn, and Z,, be defined as

0, if the received symbol is correct
Xi 1, if the received symbol is erased (C.1)

2, if the received symbol is in error, i= 1, 2,..., n,

and

tY = x,, (C.2)
1=11

and

SY - E(Y) (.3)

where E(Yn) and Var(Yn) are the mean and the variance of Y respectively.

Then Y,. is the total number of erasures and twice the number of errors in

the received packet (codeword). Therefore the probability of correctly decoding

a packet P,(I) is given by

P0 (I) = P(Y. -< n - k). (C.4)

I-
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Since the X,, i = 1,2,.., n, are mutually independent (due to the random

frequency-hopping), by the central limit theorem [Dav 70]

lim P(Z_< )= f ' eC 2 du. (C.5)

It can be shown that

E(Y.) = n(Pd + 2Pd)

Var(Yn) = n(Pd - P2 + 4Pu -4P4PdP d), (.

since

P(X = 1) = Pd,

P(X,=2) = P, .

for i 1, 2,.-, n. Therefore,

P,(I) = P(Y. < ,n- k)

= P z,< v"(Y.)

= P Zn < f'_(l- r - Pd - 2Pu)

-Pd - P2 + 4Pd - 4P,2 - 4PdaP,j (

-4 I e-, 2 /2 du

0.5 1-r - Pd - 2P,, > 0

1 -- Pd- 2Pd =O

1 ,- Q.E.D.
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