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ABSTRACT

A recent advance in computer architecture, the parallel processor computer, has

made it theoretically feasible to reduce the time required to integrate a system of n

ordinary differential equations by a factor of n. One established numerical technique,

the Runge-Kutta-Fehlberg method. is adapted for parallel processing on an Intel

Scientific Computer iPSC Concurrent Supercomputer. The algorithm is evaluated

using a standardized collection of systems of equations. It is concluded that this type

of parallel processor is not suited for the solution of this problem due to the

communications overhead required. Short developments of ordinary differential

equations and numerical integration methods are provided as background.
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I. PRFLIMINARIES

A. INTRODUCTION

With the advent of modern computers, the implementation of numerical methods

for the solution of systems of ordinary differential equations has become commonplace.

Rather than developing new methods, the task at hand has become making current

methods more efficient by reducing the amount of computer time needed to solve a

system or by increasing the accuracy of the results. Previously, efforts to accomplish

this task were centered on modifying existing algorithms.

A recent advance in computer architecture, the advent of parallel processing, has

made it theoretically feasible to reduce the time required to integrate a system of n

differential equations by a factor of n, assuming the parallel processor computer

possesses n or more processors. This is a very significant time savings compared to

those previously realized. This savings is provided by the parallel processor's ability to

perform n different tasks, e.g. integration of n differential equations, simultaneously

rather than sequentially as is done with a computer possessing a single processor.

In this thesis, one established method for solving systems of diflerential

equations, the Runge-Kutta-Fehlberg method, is adapted for parallel processing on an

Intel Scientific Computer iPSC Concurrent Supercomputer. The algorithm is then

evaluated using a standardized collection of systems of equations. It is found,

however, that this type of parallel processor is not suited for this purpose due to the

communications overhead required. As background, short developments of ordinary

differential equations and numerical methods are presented.

B. ORDINARY DIFFERENTIAL EQUATIONS

An equation that involves derivatives or differentials of a function or functions is

called a differential equation. Differential equations are further classified as ordinary

or partial differential equations. If the equation is a function of ordinary derivatives, it

is an ordinary differential equation (ODE). If it is a function of partial derivatives. it is

a partial differential equation (PDE). The order of a differential equation is the value

of the highest derivative which appears in the differential equation. For the purposes

of this thesis, the only concern is that of ordinary differential equations.

S



A first-order ordinary differential equation is the simplest case. Consider

v" = ftx,y). (1.1)

This equation is a first-order ordinary differential equation. The general solution of I .

is a one-parameter family of curves. To select one member from this family, it is

necessary to specify an initial value. That is to say the initial value of the dependent

variable is specified for any value of the independent variable. An example of this

would be

y" = fxy), Y(xo) = Y0  (1.2)

A system of n first-order equations is of the form

Y =fl(x, Y' Y2. ".".' Yn)

-2"= f2(x, Y Y21  •.... Yn)  (1.3)

Yn" = fn( x , Yl, Y2, Yn)

where the yi (i = 1, 2 .... , n) are functions of the independent variable x and fi (i

1.2, . . . , n) are functions of the x, V.....>n" The solution to 1.3 will be a family of

ordered n-tuples of the form

Y = (YI' Y2' .. • Yn) "  I.1

,\gain, to select one member of this family of n-tuples. it is necessary to have an initial

value. In this case, the initial value problem becomes a vector equation

y'= f(x,y), y(xo ) = co. (1.5)

An nth-order ordinary differential equation of the form

n  g(x, y, y(1), ... , y(n-l) (1.6)

9
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is solved by converting it into a set of n simultaneous first-crder differentia! equations

of the form

uI  = u2 = fl(x, u, ... un )

u2 ' = u3 = f2(x, ul,..., Un) (1.7)

Un- I un  fnI(X, u . . .. . . un)

u n  = g(x,u .... , un)

by letting u1 = , u .1), . , Un y(n-l); by differentiating each of these

equations: and by substituting for y, y(1), , v(n-l) in terms of u1 , u2 , . . , un. In

order to determine a unique solution to this set of simultaneous equations, initial

conditions must again be specified. These initial conditions are of the form ul(c) =

dI , u2 (c) = d2 , . . . , un(c) = dn which are obtained from transforming the conditions

in terms of y and its derivatives. For further discussion of the solution of ordinary

differential equations, see [Ref. 1].

Given a system of differential equations, the problem now becomes one of

solving the system. 'Whenever possible, it is desirable to find an explicit solution.

However, most systems cannot be solved exactly--that is, it is impossible to obtain a
solution in elementary form. It is because of this characteristic of ordinary differential

equations that we must turn to numerical methods to obtain the solutions.

A
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11. DEVELOPMENT OF NUMNERICAL AxETHODS

A. TAYLOR SERIES METHOD
A: t,,mzh a ,-r e ernemetod.s are not usualiv used in practical problems,

these mnethods must, howev er. be understood in order to understand the Run~e-Kutta

met,,hcds described in thle nvx-, qections. In crder to solve thle initial value prcblem

posed in Equazion 1.2. we d'evelop the relationl between y and x by determining, the

,cetflcients of the Taylor series in which \ve expand about the point x = x. If vi'x)

has m- I continuous deri atives on an interval Icontaining xn then by Taylor's

Fcrmula with remainder,

%1 v,4 V' X}x ) + il 2,)v'1 x)(X-x~) (2. 1)

K. ~r soe c c -xx. Toas and Finnev IRef 2 pp. 663-6651 show a detailed proof

o, this theorem.) If -(x) is a solution to the initial value problem 1.2 and y-(xY has

in-- 1 continuous derivatives. then

Y'(Xn) f(xn v(X ))
=,T ~xn.Y (Xn) = - rv V = f -1

f. + +.f

where 'I and its partial derivatives are all evaluated at (xn- Y(xn)).

One could continue in this manner, compung any, d erivative of v evaiuated at x

y(n i Vx.). in terms of f and its partial derlvativ e, evaluated at xn, Y( n)- 1 t is obv"ious

to Se'z that for other than reasonabov smnall values of ni. the derivatives are usuall

bothersome to comnpute. For this reason. nn in Equation 2.1 is chosen to be reasonably

small. By letting hn = (XxXn)- Yn- is approximnated by

~-I n J (Xn n)hn 1 2,411 )1 x,~ l 2 -**2

(IM:)L,(rl I (xn %V )lln

* 1%
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Equation 2.3 represents a single step numerical approximation to the solution of the

initial value problem 1.2 and is known as the Taylor series method of order m.1 From

Equation 2.1, the error of this method is represented by

(I (m+ 1)!)fm)(4, y(r))hnm+ 1, (2.4)

where r = ( Xn+ 1).

As seen above, the computational disadvantages of the Taylor series method are

due to the calculation and evaluation of the derivatives 1 ), f(2) , (m-l) at (Xn.

Yn)" It will be seen in the following sections that a Runge-Kutta method of order m is

usually as accurate as the Taylor series of order m and is simpler to use. The Taylor

series method. however, will be shown to be of theoretical value since the order of a

Runge-Kutta method will be defined using the Taylor series method.

B. RUNGE-KUTrA METHOD

The German mathemetician Carl Runge (1856-1927) was the first to develop a

numerical integration technique designed to approximate the Taylor series method

without requiring explicit evaluations of derivatives beyond the first while preserving

the accuracy of the Ta'or series method [Ref. 3]. The technique was later improved

by the German mathematician Martin Kutta (18671944) [Rer. 41 and, thus, it was

named the Runge-Kutta method.

This technique sets up a problem with undetermined parameters and uses

evaluations of f(x.y) within the interval (xn, yn) and (xn+ I' Yn+ 1) thus bypassing the

derivatives of the Taylor series by requiring fRx, y) to be evaluated a number of

additional times within the interval. The general form of this scheme is

V

Yn+ I = Yn + wiki (2.5)
i=lI

where v is the number of fix, y) substitutions, wi are the weighting coefficients, and the

k: satisfy the sequence

1Published by the English mathematician Brook Taylor (1685-1731) in 1715.

however. Gregory and Leibnitz knew the series before Taylor, and John Bernoulli had
published a similar result in 1694 [Ref. I: p. 106].

12
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k = hlixn. vn

k = hflxn + c-h, Yn + a2 1kl) (2.6)

k3 = hf Xn + c3 h, Y -4- a31 kI + a3 2k2)

The values of k can be thought of as estimates of the change in y when x changes a

value of h. The problem now becomes one of determining the coefficients wi . ci, and

a-.. Each set of parameters will specify the points (x, y) where f(x. y is to be

evaluated. Therefore, this method calculates Yn I using only a value for yn and

evaluations of f(x. v) at points between xn and Xn+ 1" For this reason the method is

termed se/f starting. To obtain specific values for the coefficients, a value fbr V is

chosen and Y is expanded in powers of h such that it agrees as well as possible

with the solution c^ the ordinary differential equation found using the Tayl.or series

nmethod. (For a complete development see [Ref. 5].)

A popular example of this method is the classical fourth-order Runce-Kutta

method. It is 2iven by

+ (1 6)(k o + 2kI + 2k2  k3). (2.7)

where ko = hffx n . y n

X = hfqx n + h2. v + ko 2)

2 hfiXn _ h 2 Yn + kl 2 )
k3 = hfkx n - h, Yn + k-)

In this case, we avoid the derivatives of the Taylor series by performing four function
evaluations on fix, y) in the interval (xn ,  

) and (xn+ 1' Yn+ 1) " As was stated earlier.

the Taylor series method provides an error estimate for other methods. Here, as h goes

to ). this method agrees asymptotically with the Taylor series through the h4 term.

thus. making it a fourth-order method with error term proportional to E. from

Equazion 2.4. A disadvantage of this method is that an estimate of the local error is

not readily available to help in choosing a suitable stepsize h.

13



C. RUNGE-KUTTA-FEHLBERG METHOD

In 1969, Erwin Fehlberg published a variation of the Runge-Kutta method which

uses an estimate of local error to select a proper stepsize [Ref. 6]. For a given value of

Yn' Fehlberg's method computes two estimates of yn+I using fourth- and fifth-order
Runge-Kutta formulas. In order to obtain an estimate of local error, the two values of

Yn -1 are compared. The stepsize is then adjusted, depending on the local error.

Fehlberg first uses

6
Yn- 1l= Yn +  ciki (28)

il

where the ki satisfv

i-I
ki = hnf(xn + Cihn y n + Z ijki) i .... ,6. (2.9)

* j=l

This method requires six function evaluations per step. As with the fourth-order

method discussed in Section II.B. the ci are found by expanding Yn+ I in powers of hn

so that it agrees as well as possible with the Taylor series solution. The coefficients

determined by Fehlberg are found in Appendix A. Fehlberg found that the two

expansions match until the hn6 term, thus, making the method fifth-order. This is a
departure from the behavior of the nth-order Runge-Kutta methods where n = 1, 2. 3,

4 which produce (n+ l)st order error. This partially explains the popularity of the
classical fourth-order method described in the previous section; it takes two more

function evaluations to obtain one more order of accuracy. Fehlberg's method,

however, exploits the sixth function evaluation by determining a second value -'n1

using

6
Yn+ 1* = Yn Y " cik i  (2.10)

14



This value was found to be fourth-order using the method described above. The local

error is then estimated by

6
Dn  (ci- ci*)ki (2.11)

i~ 1

which is used for stepwise control. [Ref. 7: pp. 129-131]

Because the Runge-Kutta-Fehlberg method is generally thought of as one of the

"best methods" available for solving nonstiff systems of equations [Ref. 8], it was

chosen to adapt for parallel processing.

15



III. DESCRIPTION OF SEQUENTIAL PROGRAM

A FORTRAN program written by H.A. Watts and L.F. Shampine [Ref 7: pp.

132-147] was chosen to be implemented. The program solves initial value problems in

ordinary differential equations and is based on the Runge-Kutta-Fehlberg method

described in Section II.C. It is designed to solve non-stiff and mildly stiff systems of

differential equations when derivative evaluations are inexpensive. The program is

typically used to integrate from a given initial value to a desired final value but can

also be used as a one-step integrator. The program consists of a main program along

with subroutines RKF45, RKFS, and FEHL. The following is a brief description of

the program as it was developed for sequential processing.

A. MAIN PROGRAM

The main program first defines the system of equations to be solved through the

use of the problem specific subroutine F. Additionally, it defines the system's initial

conditions and program parameters such as absolute and relative error tolerances, and

it provides output of data and error messages. Once the system of equations and

parameters are defined, the main program begins solution of the problem by passing

information to subroutine RKF45.

B. SUBROUTINE RKF45

Once the main program sets up the problem, subroutine RKF45 becomes the
interfacing routine for the solution of the problem. RKF45 first sets up work arrays

for storage of information used during integration, thus relieving the user of lengthy

subroutine calling lists later in the program. It then calls subroutine RKFS, providing

it with the work arrays.

C. SUBROUTINES RKFS AND FEHL

RKFS is the subroutine which, along with subroutine FEHL, performs the

integration of the system of equations. It first establishes a minimum acceptable

relative error and a maximum number of function evaluations allowed in order to avoid

the expense of a user's attempt to obtain an excessive accuracy. It next checks inOut

parameters, issuing error flags back to RKF45 as appropriate. Machine epsilon is then

computed and used in conjunction with the minimum acceptable relative error to limit

16
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precision diflIculties. Error flags are issued if user specified relative error tolerance is

too small. Once these preliminary tasks are complete, initialization is performed. I his

includes setting the function evaluation counter to zero and estimating the initial

integration stepsize H. Throughout the program, the stepsize is not allowed to become

smaller than 26 units of roundoff in the dependent variable T.

Once stepsize is computed and checked, subroutine FEIIL is called. Subroutine
FEHL contains the heart of the integrator in the form of the FORTRAN equivalent of
the Runge-Kutta-Fehlberg formulas represented in Equations 2.S-2.10. Because of its

importance, subroutine FEHL is included as Appendix B. FEHL performs the
integration and returns to RKFS which in turn implements Equation 2.11 in order ,o

determine local error and test to see if the integration step was successf'ul. If

unsuccessful, the st,psize is reduced and integration is attempted again. If successful,

the sciution at T4-H is stored and the components of the system of equations L:re

reevaluated at T- H using subroutine F. The Function evaluation counter is chanced
to reflect the function evaluations performed in FEHL. This integration process

continues until the final location is reached causing program flow to return to the n'ai:,

program which provides output of the final solution.

'i
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IV. IMPLEMENTATION

A. METHODOLOGY
In order to test the hypothesis that the time required to integrate a system of n

ordinary differential equations can be reduced by a factor of n through parallel

proessing. the program described in Chapter III was implemented on an Intel

Scientific Computer iPSC Concurrent Supercomputer. Appendix C contains a

technical description of this computer. The particular computer used in this thesis

possesses 16 processors thus making it a 16-node or 4-dimensional hypercube, as

explained in the appendix.
The general scheme of the testing of this hypothesis was to choose systems to be

- integrated from a standard suite of problems used to test the performance of other

integrator programs [Ref. 9: pp. 617-6211. Four systems were chosen in order to test

performance of both small and moderate sized systems. As was done in the reference.

the interval of integration for all implementations was [0, 20]. The constraint of only

examining small and moderate sized systems was imparted due to the number of

available independent processors being 16 or less. The systems chosen consist of 2

equation. 3 equation, 4 equation, and 10 equation systems. Each problem was first

* solved sequentially and timed on a single processor of the hypercube by adapting the

code previously described, thus providing a sequential time standard to be compared

with parallel run times. Next, the Runge-Kutta-Fehlberg algorithm was adapted for

parallel processing using varying schemes to optimize performance of the hypercube.

The systems were then solved using these schemes and timed. Detailed descriptions of
Neach system's implementation are contained in this chapter following a discussion of

internodal cormmunication times.

B. INTERNODAL COMMUNICATION TIMES
The theoretical feasibility of reducing integration time by a factor of n assumes

that the time required to pass information between processors is minimal when

compared to the speed of' computation. Time spent in communicating is a critical
factor in the impiementation of an integrator of systems of ordinary differential

equations since, after each integration step, the solutions to each component of the

,,,stem must be combined at a central location. This requires, for every step in the

Is



integration, a message pass back to a central node from each node tasked with

processing a separate component of the system of equations. For this reason. the

hypercube's internodal communication times were empirically determined for later use

in minimizing total time spent in communication when implementing the parallel

algorithms.

Based on the topology of the 4-dimensional hypercube. as is discussed in

Appendix C, it was decided to deternine communication time for a message sent round

trip from the host to the cube as well as between two nodes of' distance 1, 2, 3, and 4

froi each other. For these timings. a messae of length 4 bytes was sent round trip

1000 times and an average round trip time was calculated. This experiment was

performed a total of' ten times for each and a final average round trip time was found.

From :he host to the cube. average round trip time was .02308 seconds. Average

round trip times between nodes whose internodal distances are 1, 2. 3, and 4 were

.002709 seconds. .005317 seconds. .006615 seconds, and .007797 seconds respectively.

In addition, message passing was also timed for messages of length 16. 32, .40, and SO

bytes. These times were similar to those found using the 4 byte long message, thus

showine that internodal communication times are not a function of message length.

Three conclusions may be drawn from these results. First, when minimization of

conunications time is desired, tile host should be used only to house the main

program and provide input and output. It should not be used as a "seventeenth" node

due to the high relative order of host to cube communication time as compared with

:r.ternodal communication times. Secondly. to ninimize the total communication time

in a given parallel algorithm. internodal distances must be considered when assigning

tasks to specific nodes. Thus, in order to attain minimum program run times, parallel

algorithms must create an optinmum hypercube topology for a given system of'

equations based on internodal distances. Thirdly. since communication tine is not

message length dependent, it can also be concluded that a single long message is

preferred to several short messages containing the same information.

C. A TWO EQUATION SYSTEM

1. System Description

Equation 4.1 depicts the two equation system chosen. It represents the

growth of two conflicting populations.

YI" = 2(y' - YlY 2). yl(0) 1. (,4.1)
.-'= - (y-> - ylV }. x' o = 3.

: 2" y I --))
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2. Sequential Implementation
Sequential implementation was accomplished by adapting the integrator

program described in Chapter III to run at node 0. This adaptation includes a
subroutine F tailored to Equation 4.1. A main program, running at the host, loaded
the integrator program to node 0 and provided output of integration results and
sequential run times. It should be noted that these run times do not include time
necessary to load the integrator program to node 0.

3. Parallel Implementation I
The paralielization scheme thought to be most natural, i.e. sending component

1 to node 1. component 2 to node 2 .... , component n to node n, was next
implemented. This scheme was termed "shotgun" and consists of a main program at
the host, the modified integrator program less subroutine FEHL at node 0, and node
programs at nodes I and 2. Excerpts from the node 0 program and the node I and
node 2 programs are listed in Appendix D.

Again. the main program loads the node programs and outputs integration

results and parallel run times. The node 0 program is the driver program for the
integration. It has been modified by removing subroutine FEHL and adding
communications with nodes 1 and 2 which evaluate components I and 2 of the system
respectively. It should be noted that these node assignments were made in order to
insure internodal distances were minimized. Referring to Figure 4.1, the reason that
this process was termed "shotgun" was due to the fact that the node 0 program sends
and receives information from the nodes processing the component computations in a
shotgun" fashion.

A typical integration step takes place as in the sequential program except that
instead of calling subroutine FEHL, the node 0 program first sends the component
nodes the initial y vector. Although this message passing is sequential. the
computation at the nodes does overlap, providing concurrent component processing.
The component nodes perform the first function evaluation, using subroutine FNODE,
and the first Runge-Kutta-Fehlberg step. This information is then sent back to node 0.
This process takes place five times per integration step. Node 0 then computes a
solution at the new location T + H, computes an appropriate stepsize, and again calls
the component nodes to continue integration.

In general, the "shotgun" scheme may be extended to a 16-node hypercube to
integrate systems up to size fifteen. For this scheme, the cost in number of message

transmissions is represented by Equation 4.2

20
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Figure 4.1 Shotgun Scheme.

COST= 2 x NEQN x NFE (4.2)

where NEQN is the size of the system and NFE is the number of function evaluations.

Since the number of function evaluations increases as the error tolerances are

decreased, integration times can be expected to increase due both to the increased

number of computations required, as well as the increased communications overhead

requirement. For this system of two equations, the communications overhead in terms

of the number of message passes performed is four times the number of function

evaluations.

4. Parallel Implementation II

In order to reduce the communications overhead present in the "shotgun'

implementation, a second integration scheme was developed. This new scheme, termed

"flip-flop", involves sending information from node 0 to nodes 1 and 3 and then

performing the integration step through a series of computations at these two nodes

and message passes between them. Figure 4.2 depicts this scheme and program

excerpts are contained in Appendix E.

Again the program at the host provides loading of the three node programs

and output of the results. The node 0 program is the driver for the integration. The
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0

Figure 4.2 Flip-flop Scheme.

integrator segment of the original sequential code was again modified. It now only

sends and receives one message from nodes 1 and 3 for a total of four message passes

per integration step. Node I computes function evaluations for the first component,

node 3 for the second. First, node 0 sends the initial information to each component

node and these nodes compute the first function evaluation for the respective

component. Once completed, the two component nodes exchange information in a

"flip-flop" manner and then proceed with their respective second function evaluation.

This process continues until all of the function evaluations in the Runge-Kutta-

Feldberg scheme are completed at the component nodes, at which time nodes 1 and 3

transmit their final component solutions back to node 0. The node 0 integrator

program proceeds by advancing the integration as was done in previous programs.

In terms of communication overhead, the "flip-flop" scheme is superior to the

"shotgun" scheme. The cost, in terms of message transmissions, is represented by

Equation 4.3.

COST = 2.8 x NFE (4.3)

."* ' ~ - ,. .. ~p2



where NFE is the number of function evaluations. The cost is derived from the fact

that fourteen message transmissions occur during the computation of five function

evaluations. These include ten between nodes I and 3, two between node 0 and node

1, and two between node 0 and node 3, as shown in Figure 4.2 . This cost is thirty

percent of the cost of the "shotgun" algorithm for the two equation system.

D. A THREE EQUATION SYSTEM

I. System Description

The three equation system chosen is depicted in Equation 4.4 and represents a

linear chemical reaction.

Yv'= -YI + y 1 (0) = 2,

y2 Y + 2Y2 + Y3, v-(0) = 0, (4.4)

- ", 3(0) = 1.

2. Sequential Implementation

Sequential implementation was performed in the same manner described for

- the two equation system and by modifying the subroutine F to reflect Equation 4.4.

3. Parallel Implementation I

The three equation system was first run parallel using the "shotgun"

integration scheme with node 0 for the integrator program and nodes 1, 2, and 4 for

the component programs. Nodes 1, 2, and 4 were chosen to again minimize internodal

distances. Program excerpts are not included for this implementation as they are minor

modifications of those found in Appendix D. From Equation 4.2, it can be determined

that the the cost of solving the three equation system by the "shotgun" method is equal

to six times the number of function evaluations.

4. Parallel Implementation II

An additional scheme was developed to decrease the total integration time for

the three equation system. It was termed the "train" scheme due to its use of' messages

in the form of a real valued vector of size seventeen which is passed from node to node

during integration. The vector contains information necessary for integration including

values for T. stepsize H, y values, y' values and computed derivatives. Upon thc

n'essage's arrival at a node, the node performs function evaluations for its respective

conponent, updates inf'ormation in the message, and passes it on. An analogy can be

made between the process of updating information in the message and filling cars in a

trair.: thus the name "train."
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Figure 4.3 Three Equation Train Scheme.

Figure 4.3 depicts this integration scheme and program excerpts are listed in

Appendix F. Node 0 is used to run tile driver program while the three components of

the system are processed at nodes 1, 2, and 3. Nodes I and 2 were chosen since they

arc of minimal distance to node 0, whereas, node 3 was chosen for its adjacency to

node 1.

Referring to Figure 4.3 , the "train" scheme will be explained in terms of

message pass time frames, meaning the time frame during which a message is passed

between two nodes. In the first time frame, node 0 computes the first Runge-Kutta-

Fehlberg function evaluation and sends the information "train" to node I which

performs the second function evaluation. While this computation is being performed,

the second time frame begins when node 0 sends the integration information to node 2.

Upon completion of its computation, node I updates the information pertaining to its

component and sends the "'train" to node 3. At this point nodes 2 and 3 are

performing their computations for the first function evaluation. As a worst case, it is

assumed that node 3 sends its updated inflormation to node 0 during the third time

frame and that node 2 returns its information during a fourth time frame. Throughout

this process, as information is received at node 0, the updated values are placed in a

butfer until all component nodes return their updates. This completes one function
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evaluation which takes a maximum of four message pass time frames during which five

message passes occurred. This cycle is repeated until six function evaluations have

bcen performed. Upon completion of the function evaluations, node 0 selects a new

stepsize H and continues integration at the new location T+ H.

In this topology, for one function evaluation, five message passes have been

accomplished in the time associated with four. This gives a cost, in terms of messae

trarsmissions, as

COST = -. x NFE 54)

where NFE is the number of function evaluations. This value is two thirds of the cost

associated with the "shotgun" scheme for the three equation system.

E. A FOUR EQUATION SYSTEM

1. System Description

The four equation system implemented is a two body orbit problem and is

represented in Equation 4.6 .

= ',, Y(0) 1 -

"2 = Y4 " = 0, (.
S= - y .. y2) 3 2, y3(0)= 0,*r.:" - -1( I 2 :

" = - 2 ( "I +, -4 (0) = ((0 + C)(l - Cf))1 "

c = .9, where c is the eccentricity of the orbit.

2. Sequential Implementation

Sequential implementation was performed in the same manner as described [or

2 tho two equation system and by modifying the subroutine F to reflect Equation 4.6

3. Parallel Implementation I

The four equation system was first run parallel using the "shotgun integration

scheme with node 0 for the integrator program and nodes 1. 2. .1. and S fCCr the

component programs. Again, these nodes were chosen to minin/e internodal

-l distances. Program excerpts are not included for this implementation as they are minor

modifications of those found in Appendix 1). From Equation 4.2. the cost of solving

the fcur equation system with the "shotgun" mehod is equal to eght times the number

of Function evaluations.
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4. Parallel Implementation 1I

The four equation system was also run using the "train" scheme. As shown in

2b:'2

43

Figure 4.4 Four Equation Train Scheme.

Figure 44, this application employs nodes 0 through 4. Nodes 1, 2, and 4 were chosen

for their adjacency to node 0 and node 3 was chosen for its adjacency to nodes I and 2.

As in the three equation application, node 0 runs the driver program. Nodes I through

4 process their respective components as was done by the component nodes for the

three equation system.

The integration process can again be described using message pass time

fiames. In the first time frame, node 0 makes the first Runge-Kutta-[ehlbrg function

evaluation and sends a vector message containing twenty-two pieces of information

necessary for integration to node 1. Node I computes the second function evaluation

for its component. In the second time frame, the "train" message is again sent out by

node 1, this time to node 4 Node 4 in turn computes its function evaluation and sends

updated information to node 0 where it is stored in a buffer until the other "train"

message arrives. During the second time frame, node I also sends its updated message

to node 3. In the third time frame, node 3 computes and sends its results to node 2.
Finally, in the fourth time frame, node 2 computes new information and sends the
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message containing updated information from nodes 1. 2. and 3 to node 0. In all. four

message pass time frames have elapsed upon node 0 receiving all component

information necessary for continuing integration. This cycle repeats until ,ill -Ix
functicn evaluations are accomplished, causing node 0 to recompute step-ize 11 and

continuing integration at T + H.

.\s with the three equation "train" implementation, the communications tcost is

COST = 4 x NFE i,.1.7)

* where NFE is the number of function evaluations. This is half the cost of the four

equation "'shotgun" scheme.

F. A TEN EQUATION SYSTEM

1. System Description

The radioactive decay chain problem listed in Equation 4.8 was chosen as the
ten equation system.

Yl=- Y" Yl(O) = 1,

= Y - 2' Y2(0) = 0,

" = Y2 - Y3 '() =0,
Y4= Y3 - Y4, y4 (0) = 0.
Y5= )4 - y"5, Y.(0) = 0, .. ,

Y6  = Y5 - Y6, Y6 (0) = 0,

7' Y6 - 7' Y7(0) = 0,

YS '7 - Y8' yS(O) = 0,
Y9= Y8 - "9, Y9(0) = 0.

Y = Y9 Yo(O) = 0 .

2. Sequential Implementation

Sequential implementation was performed in the same manner as described for
the two equation system and by modifying the subroutine F to reflect Equation 4,.

S. Parallel Implementation I

The ten equation system was first run parallel using the 'shotgun intcgration

scheme with node 0 "or the integrator prozram and nodes I throueh 10 !,,r the
component programs. In this case, internodal distances were not considered it' the
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node assignments. Program excerpts are not included for this implementation as they

are minor modifications of those found in Appendix D. From Equation 4.2, the cost

of solving the ten equation system with the "shotgun" method is equal to twenty times

the number of function evaluations.

4. Parallel Implementation II

The ten equation system was also implemented using the message "train"

technique. Figure 4.5 depicts the topology of the implementation. Nodes 0 through 10

were employed using node 0 as the driver and nodes I through 10 for component

programs. Minimization of internodal distances was taken into account. As can be

seen in Figure 4.5 . the four equation algorithm was modified to have three message

"trains." Information from nodes 1, 2, and 3; nodes 4, 5, 6, and 7; and nodes 8, 9. and

10 is contained in each of the three messages. The computation flow is the same as the

four equation algorithm except that node I transmits the message "train" to node 5

prior to performing its own function evaluation, then sends the updated message to

node 3. Six time frames elapse during the course of a single function evaluation.

During this period, thirteen message passes occur. The cost in communications

overhead can be expressed as

COST = 6 x NFE (4.9)

where NFE is the number of function evaluations. When compared to the "shotgun"
y implementation, a seventy percent time savings is theoretically attained.

I. .'?
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V. RESULTS AND CONCLUSIONS

A. RESULTS

Results of the sequential and parallel implementations described in Chapter IV
are displayed graphically in Figures 5.1 through 5.4. For all implementations, the
interval of integration was [0, 20], the absolute error tolerance set equal to 0.0, and the
relative error tolerance was varied for each system as indicated below. In all four
cases, the sequential implementation was fastest while the "shotgun" scheme was

slowest. The "flip-flop" and "train" schemes resulted in reduced run times from those
of the "shotgun" scheme. It is clear that these reductions, resulted from the lowering of

the communications overhead required in the "shotgun" scheme.

1. Tisio Equation System
For all implementations, the two equation system was solved using relative

error tolerances of 10 -n for n = 3, 4. ... , 8. The number of function evaluations

performed was the same for all implementations and ranged from 403 to 2622
corresponding to relative error tolerances of 10- 3 and 10-8 respectively. The "shotgun"
scheme resulted in run times approximately eleven times longer than the sequentia! run

times. The run times for the "flip-flop" implementation were approximately three and
one half times those of the sequential runs and resulted in a seventy percent time
savings over the "shotgun" times. This savings is in keeping with the comparison of

equations 4.2 and 4.3 and it affirms that the communications overhead is the primary
cause of parallel run times being slower than sequential run times for this algorithm.

2. Three Equation System
Relative error tolerances for the three equation system were successively set at

10 -n for n = 3, 4, ... , 7. The corresponding number of function evaluations ranged

from 481 to 2418. Here, the "shotgun" run times were approximately twenty times the
sequential run times, while the run times for the "train" scheme were approximately
fourteen times the sequential run times. Again, the relationship between the

communications overhead of the two parallel methods, as expressed in Equations 4.2
and 4.5. is upheld. The "train" scheme, in fact, attained run times that were about two

thirds the run times for the "shoteun" scheme.
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3. Four Equation System

The number of function evaluations performed in solving the four equation

system ranged from 67S to 2771. These values corresponded to relative error

tolerances ranging from 10' to 10-7. "Shotgun" run times were approximately thirteen

times sequential run times. Run time, attained by the "train" scheme were seven to

nine times those attained by the sequential runs and resulted in a seventy percent time

savings over the "shoteun" scheme. This is a better result than encountered in the

three equation "train" implementation because of the fact that the topologies of each

scheme required the same number of message pass time frames for one function

evaluation while the number of conununications required in the "shotgun" scheme

increased by two for the four equation system. Equations 4.2 and 4.7 predicted a fifty

percent time savings going from the "shotgun" to the "train" implementation. The fact

that the actual resulting savings was twenty percent better can be explained by looking

at the derivation of Equation 4.7. It was derived using an upper bound of four

message pass time frames when in fact the required number is likely to be somewhat

less than the upper bound due to the semisequential nature of the "train" scheme's

topology.
4. Ten Equation System

Finaly, for the largest of the four systems implemented, relative error

tolerances were varied from 10-3 through 10-10. The minimum number of function

= evaluations was 252 corresponding to 10-3 while the maximum was 1639 for the error
,% tolerance 10-1 0 . "Shotgun" timing results were approximately seventeen times the

corresponding sequential results, whereas the "train" scheme results were a more

respectable eight times the elapsed sequential run times. The savings over the

"shotL~un" results attained by the "train" scheme were from fifty-two to sixty percent of

the "shoteun" times. These savings values are less than the theoretical savings

predicted using Equations 4.2 and 4.9. Most likely, this disparity is due to the

comiplexity of the topology of the ten equation "train" scheme as compared to the

others. It is difficult to predict the time loss due to message collisions which occur at

node 0 as the message "trains" return with their updated information. Therefore, the

predicted number of elapsed time frames in Equation 4.9 is a "best guess" estimate and

appears to be optimistic.

top"'~ ?_.*. A
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B. CONCLUSIONS

The theoretical reduction of times required to solve systems of ordinary

difi'erential equations by a factor of n was not attained through parallel processing. In

fIact, times required to solve systems of equations using parallel algorithms on the

hypercube were greater than those of sequential algorithms. It was found that this is
diue to the conmmunications overhead inherent in internodal message passing. When

this high overhead is coupled with the requirement of numerical integration techniques

to combine updated integration information from each system component after each

function evaluation, parallel processing becomes ill suited. Two possible solutions to
this problem might be (i) increased communications speeds within the hypercube or (ii)

a small amount of available common memory for all the cube's nodes. This common

memory would alleviate the need to artificially create it as was done by passing the

"train" message from node to node and then transferring updated data in the "train" to

a buffier at the driver node. The lack of any shared memory negated the concurrent
processing of'a system's components at the nodes by requiring message passes back to

the driver node. Therefore, it is concluded that, due to the communications overhead

encountered in conjuction with the manner in which systems of ordinary diffierential

equations are numerically solved, parallel processors with totally distributed menmo'

are not suited for the solution of systems of ordinary differential equations.

Additionally, several general conclusions may be drawn about parallel processing

on the hypercube. First, the "natural" conversion of an existing sequential algorithm
to a parallel algorithm may not be the best choice. This point was clearly supported in

-the failings of the "shotgun" implementations compared to the "train" implementations.

Secondly, it is imperative to consider internodal adjacency and distances when

developing parallel algorithms. This was evidenced by the empirical determination of

internodal message pass times. Finally, paralle l processing in itself is not a panacea. It
:s well suited and affords large time savings to many applications: however, it has been

shown h-ere that for at least one application. parallel processing causes a signilicant

time loss over sequential processing.
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APPENDIX A
RUNG E-KUTTA-FEH LB ERG COEFFICIENTS

TABLE I
RUNGE-KUTTA-FEHILBERG COEFFICIENTS

o4X c c.*

0 16/135 25/216

1/4 1/4 0 0

1/8 3/32 9/32 6656/12825 1408/ 25651

1/13 193Z/2197 -7200/2197 7296/2197 251540j49/14

1f 439/216 -8 3680/513 -845/4104 -9/50 -1/5s

1/2 -8/27 2 -3544/2565 1859/1404 -11/40 2/5
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APPENDIX B
SUBROUTINE FEHL

4, SUBROUTINE FEHL
C
C FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METHOD
C
C FEH' INTEGRATES A SYSTEM OF NEQN FIRST ORDER
C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM

DU-(I)/DT=F(T,Y("1),.Y(NEQN)
C WHERE THE INITIAL VALUES Y(lI) AND THE INITIAL DERIVATIVES
C Y?(I) ARE SPEC IFIED AT THE STARTING POINT T. FEHL ADVANCES

M C THE SOLUTION OVER THE FIXED STEP H AND RETURNS
C THE FIFTH ORDER (SIXTH ORDER ACCURATE LOCALLY) SOLUTION

APP ROXINIATION AT T+H IN ARRAY S(I).
C Fl,.F5 ARE THE ARRAYS OF DIENSION NEQN WHICH ARE NEEDED
C FOR INTERNAL STORAGE.
C THE FORI'ULAS HAVE BEEN GROUPED TO CONTROL LOSS OF SIGNIFICANCE.
C FEHL SHOULD BE CALLED WITH AN H NOT SMALLER THAN 13 UNITS OF
C R:UNDOF7 IN T SO THAT THE VARIOUS INDEPENDENT ARGUMENTS CAN BE
C DIST:TNG&ISED.

p, C
C

INTEGER NEQN, K
REAL Y(NEQN1),T,H,CH,YP(IEQ N),Fl(NEQN),F2(NEQN),

C I F3(NIE N ,F4(NEQN),F5(NlEQN),S(NEQ)
CH=H/4.0
DO 221 K=1,NEQN

221 F5(K)=Y(K)+CH-YP(K)
CALL F(T+CHF5,F1)

C
CH=3 .*H/32 .0
DO 222 K=1,NEQN

222 FS(K)=Y(K) +C1i(YP(K)+3.0*Fl(K))
CALL F(T+3 .O*H/8.O,F5,F2)

CH=H/2197 .0
DO 223 K=1',NEQN

223 F5(K)=Y(K)+CHx(1932.O*YP(K)+(7296.O*F2(K)-72OO.O*Fl(K)))
CALL F(T+22.OKH/13.O,F5,F3)

C
CH=H/4104 .0

24DO 224 K=1,NEQN
24FS (K) =Y (K)+CHw( (8341. O*YP (K) -845 . *F3 (K) )+
1 (29440.C*F2 (K)-32832.O*F1(K)))
CALL F(T+HF5,F4)

C
CH=H/20520 .0
DO 225 K=1 ,IEQN

225 FI(K)=Y(K)+CH*((-6080.0*YP(K)+((9295.0*F3(K)-
1 5643.O*F 4(K)))+(41C4O.O*F1'(K)-28352.O*F2(K)))
CALL F(T+H/2.O,F1,FS)

C COMPUTE APPROXIMATE SOLUTION AT T+H
C

CH=H/7618050 .0
DO 230 K=1, NEQ

230 S(K)=Y(K)+C!H* ((902880.O*YP(K )+(3855735.O*F3(K)-
1 1371249 O*F4(V)))+(3953664.0*F2(K)+
2 277020.O*F5(K))

C
RETURN
END

I~s
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APPENDIX C

IPSC CONCURRENT SUPERC'OMPUTER TECHNICAL DESCRIPTION

1:pflementaion of the Rurig-Kutta-Fehlberg method in -his thesis was

renTormed uL,.mg an Intel Scientific Computer iPSC Concurrent Supercomputer. The

bai, sx ste:n consists of two elements, a cube manager and a cube, as depicted in

I .ure C.I

Figure C.A 32-Node iPSC Concurrent Supercomputer.

The cube manager is a desktop programning station that provides programming

support and system management. It consists of an Intel System 310AP Multibus-
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based computer using an Intel S0286 central processing unit and an Intel 802S7

numeric processing unit. It also contains a 5 1 4" 140 megabyte Winchester disk. a

320K byte floppy disk, a 45 megabyte cartridge tape. and a 2 megabyte ECC RAM

memory. Additionally, it is equipped with an integrated Ethernet interface for

communicating with the cube, and an alphanumeric terminal for input, output. Cube

manager software consists of a UNIX-based programming and development

environment with FORTRAN, C, Assembler, cube control utilities and

conmmunications, and system diagnostics.

The cube is a complete ensemble of microcomputers connected in a parallel

architecture. Each microcomputer, along with its own numeric processing unit and

local memory is referred to as a "node." Nodes are connected together by high-speed

conmmunication channels to form a self-contained "cube" in a free-standing enclosure.

Each node in the cube is an independent, single-board computer. The node contains

an Intel 802S6 central processing unit and its companion 80287 numeric processing
unit. The node also contains 512K bytes of NMOS dynamic RAM and 8 bidirectional

connunication channels managed by dedicated 82586 communications coprocessors.

Cube software consists of a monitor and kernal residing on each node. The monitor is

contained in PROM and the kernal is loaded into node RAM after successful
initialization. [Ref. 10]

The interconnection scheme, or topology, for the iPSC is a "binary n-cube" or

"hypercube." The dimension n refers to the power of two corresponding to the number

of nodes in the cube. In the case of the iPSC computer used in this thesis, the number

of nodes is 16: thus. making it a 4-dimensional hypercube, as depicted in Figure C.2.

Within a 4-dimensional hypercube, each node has 4 nodes adjacent to it. The

distance between a node and one of its adjacent nodes is defined to be 1. Additionally,

there are 6 nodes with distance 2, 4 nodes with distance 3. and 1 node with distance 4

from any given node in the 4-dimensional hypercube. These internodal distances must

be considered when employing parallel algorithms, in order to minimize distances over

which messages are passed.
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APPENDIX D

PROGRAM LISTING EXCERPTS FOR THE TWO EQUATION
SHOTGUN SCHEME

The f'ollowing listing is an excerpt from the node 0 program for the Shotgun

implementation of the two equation system.

220 buf(1)=t
buf (2)=h

C
cnhh/4. 0
do 221 k=1 2
buf 4=P1
call. sendw(ci,10 buf,16,k,l)

221 f5(k)=y(k)+ch*yp(k5
C

do 222 k=1,2
222 call. sendw(ci,20,f5,len,k,1)

C
do 223 k=1,2
call recvw(ci.,15,z,4,cnt, frnode, frpid)

223 f5(frnode)=z
c

do 224 k=1,2
224 call serdw(ci,30,f5,len,k,1)

C
do 225 k=1,2
call recvw(ci,15,z,4,cnt, fznode,frpid)

225 f5(frnode)=z

226 call sendw(ci,40,f5,len,k,1)

do 227 k=1,2
call recvw(ci,15,z,4,cnt, frnode,frpid)

227 f5(frnode)=z
C

do 228 k=1,2
228 call sendw(ci,50,f5,len,k,1)

C
do 229 k=1,2
call recvw(ci, 15,z,4,cnt,.frnode, frpid)

229 fl(frnode)=z
C

do 230 k=1,2
230 call sendw(ci,60,fl,len,k,1)

c
do 231 k=1,2
call recvw (ci,15,zz,8.cnt,frnode,frpid)
fl( frnode)=zz(1

2311 eee(frnode)=zz (2)
c
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The Following listing is the node 1 and node 2 program flor the Shoteun
implementation of the two equation system.

Program rode2eqc ........ nodes 1 and 2 ...... 2 equation system ....
C

integer chan,copen,nodeid,cntfrnode
dimension buf(4) ,d5(2 ,zz(2)equivalence (bfi)t ,(buf(2),h),(buf(3),a),buf(4),b)

chancopen(mypido)
node id~mynodeo(

C
10 call recvw(chan,lo,buf,16,cntfrnodefrpid)

tp=t+h14.0
call recvw(chan,20,d5,8,cntfrnodefrpid)
call fnode tpd5 1 ~nodeid)
z~a+3.0*h* (b-+3.0'wlj/32-0
call sendw chan,15,z,4,0,1)
tPt+3.0*h/8.0
call recv4 (chan,30,d5,8,cnt,frnodefrpid)
call fnode(tp d, w2 ,nodeid)

c za+h*(1932.O b+(7296.0*w2-7200.0*wl))I2197 .0
call sendw(chan, 15, z,4,0 ,1)
tp=t+12 .O*h/13 .0
call recvw (chan,40,dS,8,cnt,frnodefrpid)
call fnode (t d5,w3,nodeid)

zah((8341. *b-845.0*w3)+(2944.0*w2-.32 32 0*wl))/4104.0c
call sendw(chan,l5,z,4,0, 1)tp=t+h
call recvw (chan,50,d5,8,cnt,frnode,frpid)
call fnode (tp ,d5,w4,nodeid )za+h*((-608 O *b+( 9295 0*w3-5643.0*w4))

1 +(4j040.0*wl-28352.0*w2))/20520.0
C

* - call sendw(chan,15,z,4,0,l)
tpt+h/2. 0
call recvw~chan,60,dS,8,cnt,frnodefrpid)
call rnode ti., ,d5,w5,nodeid)
zz(l)=a+h* ((902880. 0*b

1 + (3SS5735.O*w3-1372.249.o*w4)
2 + (3953664.0*w2+277020.0*w5) )/ /7618050.0zz(2)=abs((-2090.0*b+(219700*w3..5048.0*w

4))1 +(22528.0*w2-2736O0 * W))
call sendw(chan, 15, zz ,8,0, 1)

c4 go to 10
c

end
C

subroutine fnode(tp,d,v,nodeid)
dimension d(2)

C

go to (1,2), nodeid
c

1 v=2*(d(1)-d(1)*d(2))
return

C
2 v=-(d(2)-d(l)*d(2))

retirn
c

end
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APPENDIX E

PROGRAM LISTING EXCERPTS FOR THE TWO EQUATION FLIP-
FLOP SCHEME

The following listing is an excerpt from the node 0 program for the Flip-flop

implementation of the two equation system.

220 buff(2.)=t
buf (2 )=h

ch~h/4.0
C

buf (3) =y1)
buff 4)y= 1cal 1,snwc,0,u,611
buf (3) =(2)
bu14 (4=y2)
call sendw(ci,10,buf,16,3,1)

C
do 221 k=1,2

221 f5(k)=y(k)+ch*yp(k)
C

call sendw(ci,20,f5,len,1,1)
do 231 k=1,2

call recvw(ci,15 zz S,cnt,frnode,frpid)
if (frnode .eq.15 then

fl(frnode)=zz(1)
eee(frnode)=zz(2)

else
frnode=frnode-1
fl(fznode)=zz(l)
eee frnode)=zz(2)

end if
231 continue

The following listing is an excerpt from the node I program for the Flip-flop

implementation of the two equation system.

10 call recvw (chan 20 d 8 cnit,frnode,frpid)

za+3.0 h'w( +3.0 wl)/32.0

call sendwi( chan 23 bufl,12 3,1)
call recvw (chan,32,bufl,12,cnt,frnode,frpid)
t =t+3.0*h/8.0
w3=2.0*(d (1)-d(1)*d (2)
d(l )a+h* (1932O+(26 .0*w2-720. O*w1))/2197.O
call recvw(chan,42 d()4 crt finode,frpid)
call sendw (chan,43,d(1),'4,3,1
tp=t+12.0*h/13.0
w3=2.0*(d(1N-(l) *d(2))
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d(1)a+h*l a 8341.0*b-845.0*w3)+ (29440.0*w2-32832.0*w1))/4104.O
call se dw chan,43,d (2)4ct ndjpd
call senvw chan,43,d M 4 t'3 nderid
tpth

d(1)=a+h* ( (6080.0*b+(9295.0*w3-5643.0*w4))
1 +(41040.0*w:6-28352.0*w2))I20520.0
call recvw(chan ,42 ,d(2) , 4 ,cnt frnode frpid)
call serndw (chan,43,d (1) ,3,1S
t =t+h/2 .0

w 20* (d( 1)-d(1)*d( 2) )
z-(1)=a+h!( (902880.0*b

1 + ( 355735.0*w3-1371249.0*w4)
2 + (3953$64.0*w2+277020.0*w5) )7618050.0
zz(2)=abs( (-2090.0*b+(21970.0*wz3-15048.0*w4))

1 + (22528.0*w2-2736O.0*w5))
call sendw(chan,15,zz,8,0,1)

C
go to 10

The following listing is an excerpt from the node 3 program fhr the Flip-flop

implementation of the 2 equation system.

10 call recvw(chan.20 ,d,8,cnt, frnode ,frpid)
tp=t+h/4.0
call recvw (chan 23 bufl,12,cnt,frnode,frpid)

% d(2)a*3i0*h*(b+.0 Ow1)/32.0
d(1) bufl (3)

call sendw(chan,32,bufI,12,1,l)

d(2)=a+hw(1932.0 b 4(7296.0*w2-7200.0*w1))/2197.0
call sendw (chan,42, d~ (2) ,.1 1)
call recvw~chan4d1) ,4,cnt,fr-node,frpid)
2=t+12.0*h/13.0

cal sendw ( chan,42,d(2) ,4 11)
call recvw chan,42,d(l1) ,cnt,frnode~frpid)
tp=t+h

1 +(4l040.0*wI-28352.0*w2) )/20520.0
call sendw (chan ,42 d(2) ,4,1%1
call recvw(chan,43.d(1) ,4,cnt,frnode,frpid)
t2=t+h/2 .0

1 + (3855735.0*w3-1371249.0*w4
2 + (3953664.0*w2+277020.0*w5) )/7618050.0
ZZI(2)=abs((-2090.0*b+(21970.0*w3-15048.0*w4))

1 .s02528.0*w2-27360.0*w5))
call sen w(chan,15,zz,8,0,1)

c
go to 10
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APPENDIX F
PROGRAM'V LISTING EXCERPTS FOR THE THREE EQUATION TRAIN

SCHEME

Th1-e followving listing is an excerpt from the node 0program for the T rain

implementation of the three equation system.4

220 buf~l)=t

ch=h/4.0
do 222 k=1,3

buf (k+2 )=y(k)
buf(k+5=)yp(i0

222 buf(k+8)=f5 (k)
C

do 224 i~k1 4
call senw( ci..10,buf,68 1,1Hcall sendw (ci,10,buf, 68,2,1)

C
do 223 ii=1,2
call2 recvw(ci,10,bufl,68,cnt,frnode,frpid)

if (frnode .eq 2) then
buf(10)=bufl(13)

else
buf (9)=bufl(12)
buf ( 1)=buf 1(14)

end if
C

223 continue
224 corntirue

call sendw ci,10 buf,68 1,1H
call sendw(ci,'10,buf ,68'2,1)

do 225 iil1,2
call recvw(ci,10,bufl,68,cnt,frnode,frpid)

if (frnode .eq.2) then

eee(2)=bufl(16)
else

fl(1)bufl 
3)

eee(1bul(5
eee(2)=bufl1(17)

end if
225 continue

The following listing is the component node for the Train implementation of the

three equation svstem.

nodp2=node id+2
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rndpSnode id+S
n~odpl 1=nodeid+1 1
nodpl4=nodeid.+14

10 call recvw(chanlO,buf,len,cnt.frnode,frpid)
tp~t+h/4 .0
a:=buf (nodp2)
bbu nrocp.-)
call node(tp,d5,wl ,nodeid)
buflnodpll)=a+3.0*hw(b+3.0*wl)/32.0

C
call sendw (chan,l0,buf, len,4,ndest, 1)

9 tp=t+3.0*h/8.0
call recvw(chan,!lbuf len cnt,frnode,frpid)
call fnode (tp,d5,w2,nodeidj
buf(nodpl1)=a+h*(1932.0*br(7296.0*w2-7200.0*wl))/2l97.0

call sendw(chan, 10,buf, len,ndest,l)
tpt+12.O*h/lSO0
call recvw (chan,10,buf len cnt..frnode,frpid)
call fnode (tp,d5,w3,nodeid5
bluf(no: pll)a +h*((8341.0*b-845.0*w3)+(2944.0*w2-32832.0*wl))

1 /41.04.0
C

call sendw(chan, 10 ,buf, len, ndest, 1)
tpt+h
call recv-w( chan,l0,buf len cnt..frnode,frpid)
call fnode tp,d5,w4,noaeidS
bluf(ncd ljJ=a+h*((-6080.0*b+(9295.0*w3-5643.0*w4))
1 +(4l040 .*wl-28352.0*w2))/20520.0

c
call sendw(chan,10,buf,len,ndest,l)
tpt+h/2 .0
call recvw chan,10,buf,len cnt 'frnode,fz-pid)
call fnode tp,d5,w5,nodeid
buf (nodpll)=a+h*((902880.0 b
1 +'385 735.0*w3-137l249.0*w4)
2bufno. 14)=abs((%29.*2;K(o25l70.0 4 a1.*w 4 ))
1 +MA2S.0*w2-2736O.0*w5)
call sendw(chan,.l0,buf,len,ndest,1)

go to 10
c

end
c

subroutine fnode(tp, d,v,nodeid)
dimension d(3)

c
go to (1,2,3), nodeid

c
1 v=-d(l)+d(2)

return
c

2 v=d(l)+2*d(2)*d(3))
return

c
3 v~d(2)-d(3)

return
end
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