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Kinds of bootstraps and kinds of jackknifes,
discussed in terms of a year of weather-related data

John W. Tukey

Technical Report No. 292
Princeton University

Fine Hail
Washington Road

Princeton, NJ 08544

1. Introduction.
"Resampling methods" - - are in the process of becoming popular ways of

assessing the standard error appropriate to some number we have chosen to

distill, perhaps in a rather complex way, from data.

An ever-present danger is that "resampling" will come to be thought of as a

cure-all. The most that can reasonably be hoped for is that questions that do

not arise in connection with the simplest distillates - - arithmetic means of

samples - - need not be considered in connection with resampling applied to the

results of more complicated calculations. (If, as we should be, we are content

with reasonable approximations, this will often be the situation.)

This means that, in particular, (a) needs for the use of robust/ resistant

techniques in the distillation process, and (b) needs to consider the question of

"the proper error term" are in no way automatically addressed by the use of

jackknife or bootstrap. Robust/ resistant techniques, if required, must be built

into the calculation of the final distillate from the observations, before that

distillate is jackknifed or bootstrapped. (While inadequately advertised,

perhaps, this point has been made repeatedly.)

Prepared in part in connection with research at Princeton University sponsored by the

Army Research Office (Durham), DAALO3-86-K-0073.
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Questions related to "the proper error term" do not seem to have received

appropriate attention. Their consideration will often determine the kind of

bootstrap - - or, probably more often, the kind of jackknife - - required. This

set of issues is the target of the present account.

We have referred to what we have chosen to calculate from the data as the

"distillate". Some would have been happier had we used "estimate". The latter

term usually implies, however:

a) a probability model (of greater or lesser tightness),

b) a parameter appearing in that model,

c) a desire to estimate that parameter,

d) a search for a "good estimate".

We do not want to rule this

probability model -+ parameter -- estimate

route out. But neither do we want to rule out the

distillate -+ parameter -* class of probability models

route, where the class of probability models is often vague. So we shall persist

in using "distillate" for what is calculated from the data.

To balance things a little, we will use "parameter" for what our distillate is

thought of as pointing to. (In the case of the second route, where the choice of

the distillate has led to the choice of the parameter, some would insist that this

usage is "par abus de langage" in Bourbaki's sense.) (We shall need this term

only in Sections 18, 19 and 28.)

April 21, 1987
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A hypothetical, unspecified distillate from a year of weather-related data

offers a good platform for careful discussion; one where the issues arise

unavoidably and clearly, one where many of us because of all the years of

weather we have lived through, have some "feel" for the facts. So we shall use

this as an illustrative example - - one that raises many issues. We hope the

modifications needed for other instances, whose essential character may be

quite different, will be easy to make.

Our approach will proceed in four steps:

(A) the issues for arithmetic means,

(B) the issues for bootstrapping,

(C) the issues for jackknifing,

(D) discussion, including comparison of jackknifing. and bootstrapping

The writer sincerely thanks Bradley Efron for helpful comments and face

to face discussions. He hopes to have represented Efron's views correctly, but

must take the sole responsibility for all that appears here. He also thanks Thu

Hoang and Kenneth W. Steinberg for help in reducing errors and improving

clarity.

PART A: The issues for arithmetic means

The considerations of this part apply to many kinds of arithmetic means - -

the mean temperature at 8 am for all the days of the year; the same for all

hours of all days; the mean pollution of a specified sort, measured in a specified

way, at a specified place, at 1 pm on Tuesdays throughout the year; the mean

April 21, 1987
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temperature one hour after sunrise for all the days of the year - - and so on.

For most of our considerations it will be sufficient to think of a very simple

arithmetic mean, but our considerations apply quite generally to various kinds

of arithmetic means.

Judging the variability of a distillate seems inevitably to be based on the

identification of pairs of "parts" whose differences reflect, fairly and equitably,

the impacts of those kinds of variation whose impacts on the chosen distillate

we plan to account for. The simplest way to do this, not always feasible, is the

single-block way, where the choice of error term is carried out in terms of

pieces, where it is all the differences from one piece to another piece that are

taken as the basis for assessing the chosen distillate's variability.

It may not be possible, especially with weather-related data, to use only a

single block, as we shall discuss below. With several blocks each divided into

pieces, the selected differences are all those between pairs of pieces that both

belong to t!'t same block.

We should think about blocks and pieces as exactly a way to identify

differences that reflect the right sources of variability equitably.

2. Pieces and blocks.

Throughout our analysis we shall think of the observations as divided into

pieces, which combine to make blocks. (A minimum of two pieces per block.)

The underlying, almost qualitative, stochastic model is that we dare treat the

pieces that make up any block as sample from a corresponding population of

pieces and that we are going to treat the set of blocks as fixed. (Some would

April 21, 1987
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then like to call '"blocks" strata. (Those with a strong agricultural background

might like to refer to "pieces" as "plots".)

When we come to resampling, we will operate block by block, in such a

way as to preserve the sizes of the blocks.

In dealing with a year of weather-related data, our pieces are not likely to

be shorter than a day, and are likely to be made up of (one or more) whole

days. We might consider, for instance, 1-day, 3-day, 5-day or 10-day pieces

and 10-day, 20-day or 1-month blocks.

An extremely naive approach to a year of weather-related observations

would have chosen

pieces = 24-hour periods (few would dare go to 1-hour periods,

even if the data would support it),

blocks = years (of which we have one).

This would have meant treating our 365 or 366 days as a random sample from

a single population of days. This would be, as we shall see, a dangerously

extreme choice in more than one direction, and is not what we shall

recommend.

3. Why more than one day per piece?

Within a block we have to agree to dare to treat pieces as a sample. If 1-

day pieces were to show appropriate behavior, so would k -day pieces, for larger

k. The converse need not be true. What are the pros and cons of various

choices of k ? (We discuss these issues first for a single block, the extension to

more blocks is easy - - and left to the reader - - also cp. Section 7.)

April 21, 1987
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If we are dealing with a block of n = km days of observations (see the top

panel of exhibit 1), we can write our arithmetic mean over all the days of our

year as

mean over m pieces

of the

mean over k days within a piece.

If we write, transiently, y,* for the input from the j1 day of piece i, and put

Yj k yj,
q

-- 1

then the last equation leads to a Student's t with m-1 degrees of freedom and

2= ---2--1 2

_- 
Y..

est'd var G} = s2/M

whatever the chosen value of k. In the ideal case we can choose k freely - -

paying only a reduction to m- I = (n/k)- I degrees of freedom as k increases.

Real weather-related data tends to be persistent from one day to the next.

Appreciable persistence, even of a probabilistic sort, extends for only a few

days, perhaps 3 or 4. But adjacent day persistence is quite strong. The

"meteorological events" of a weather sequence are not confined to individual

days.

April 21, 1987
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exhibit I

Days, pieces, blocks; relations and notation

As in Section 3:

days

pieces in 1 1-2 ink

oneblck I -2 ju 3 -

(m pieces per block, k days per piece)

As In Section 7:

pieces f i
ij- /2 J"n3 J--J

A blocks

1 j12 lin/

(a pieces per block)

April 21, 1937



-8-

The easy way to understand the direction of the resulting effect on

assessing the variance of an arithmetic mean is to consider a very artificial

example: So let us assume that n, the total number of days in our lone block,

is even, and that days come in successive pairs such that the response from

which we are distilling our arithmetic mean is the same for the two days of

every twin pair, namely that

Y2j-I = Y2j for i from 1 to n/2,

While the value for each twin pair is independent of all others. (This gives

50% persistence for adjacent days, and 0% persistence for days further removed

from one another.)

If we use 2-day pieces that are in phase with the twin pairs, we have

Y = j(Y2j-l + Y2,) for j from l to n/2

Since the y (=Y2j) are independent, a Student's t based on the variability among

the T,, with its (n/2)-i degrees of freedom, is an appropriate assessment (given

all our assumptions) of the variability of =Y

For this case, where k=2, each pair of days, presently one piece,

contributes (y2~-) 2 -- (Y2j--) 2 tO the sum of squared deviations - - since y

(for the jA pair) = Y2j-1 = y2j - - this sum would then be divided by (n/2)-I to

reach an s21, where [2] reminds us of the piece size. If, instead, we had taken

k= 1, each pair of days, now two pieces, would contribute (Y2j_--) 2 +

(Y2j-y) 2 = 2(y2j-y) to the new sum of squares, which would consequently be

twice what it was for k=2. This sum is then divided by n-I = 2((n/2)-(1/2))

which is only a little larger than 2((n/2)-1). Thus, in this very special

April 21, 1987
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circumstance, s21, the s2 for pieces made up of single days, is only slightly

smaller than s22, the S2 for pieces made up of two twin days.

If we try to get away with using k= I to reach an estimated variance for y,

we will divide this slightly smaller s(1 by n, when we already know that, in our

special case, dividing the slightly larger s(' 1 by n/2 gives an appropriate variance

estimate for y. Thus, in this special case,.using k=1 leads to an estimated

variance only about 50% of what is appropriate.

If there is strong persistence, we dare not use k= 1!

To carry this special case a little further, we return to k=2 and suppose that

the 2-day pieces straddle the boundaries between the twin pairs. Adjacent y

will now be correlated, with r = .5 and r2 = .25, while more remote y will remain

uncorrelated. The amount of distortion corresponds, roughly to:

k= 1: half adjacent pairs (same twins): r2= 1

other adjacent pairs (straddle): r-2 = 0

k = 2 pieces out of phase with twin pairs: r2 = .25

pieces in phase with twin pairs: r2= 0

Since, in a real situation, such a regular pattern of dependence would not

persist, it is reasonable to average the match-straddle alternatives as well as the

two kinds of adjacency, giving, for this special case:

k- 1: r!- .5 (1-1--.5)
k -2: r2 = .125 (IFI 1 .25)

This indicates, for cases like this extreme case, that going to k = 2 should

April 21, 1987
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greatly ameliorate the bias due to persistence, but that going to k = 3 or more,

which will reduce r 2 further, is likely to be worthwhile.

Unless there is some unusually stringent reason based on other

considerations, then, we ought never take k = 1 in dealing with arithmetic

means of weather-related quantities, and we ought to look forward to k = 3 or

more. (We expect this to generalize to other distillates.)

4. Why more than one block per year?

Every year of our present calendar has 31 January days and 31 July days.

However, if we think of days as a sample from a single population of days

(which surely can be thought of as retaining their month-name tags) a simple

sample would have about

31 t 24'11 (± 2a-limits run from 20 to 42)

days with January tags and, similarly, 20 to 42 (at ± 2 a ) July-tagged days.

This is most unlikely to be acceptable, especially anywhere outside the tropics,

where July days are very different from January days.

If we make 12 blocks, one for each month, we will ensure exactly 31 July

days and exactly 31 January days in each resample. But this may not be

enough. In northern temperate climates, March traditionally "comes in like a

lion and goes out like a lamb". Of our 31 March days 15 ± 4T.3, (9.5 to 20.5 at

± 2 a ) will be lion-like 1 March to 15 March days. Are we prepared to accept

this much variation in lion-like March days? Often not! So we need to be

prepared to use blocks shorter than one month, at least for those times of year

when the seasons change most rapidly.

April 21, 1987
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5. Why not really small blocks?

Should we go to the other extreme, and use very short blocks, like 2-day

or 4-day blocks? (These would require one-day or two-day pieces.) Almost

surely not, for if we take our blocks short enough for a single meteorological

event (we use this term for the time involved in a single weather system - - not

just a single hour or a single day) to cover that block, every piece in this block

will involve the one event, and we are forcing - - in one sense or another - -

this event to be represented in al of our alternatives whether merely as

contributors to Cy2 or in some kind of resamples. This is unrealistic! There will

be 31 days in July next year, but a copy next year of this year's most unusual

(short-term) event is quite unlikely.

So we dare not take our blocks too short.

6. Longer-term weather phenomena.

The weather patterns we all are used to noticing last for a few days at a

time. Underneath these alternations there are longer-term irregular changes of

smaler magnitude. Sea-surface temperatures in the central Pacific seem to

have season-long effects on North American weather. So-called "blocking

events" can last for weeks or even months. There are differences from one

year to another that cannot be assessed from what goes on within a single year.

Often we would like to include the consequences of these year-to-year

variations in our "significance" or "confidence" statements about our results - -

sometimes it would be quite essential to do this - - but if we have only one

year's data we just cannot do anything in the way of relevant calculation. All

April 21, 1987
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we can do is to emphasize that, for example, our confidence interval is based

on only a year's data and that, accordingly, the interval needs to be widened by

a judgment-based amount to allow for unmeasured, year-to-year variation.

7. Student's t for blocks.

If we have h blocks each divided into m pieces, we are dealing with hm

results (y, O, for individual pieces, where i runs over blocks from 1 to h and j

runs over pieces from 1 to m. For the ill block

I

-___m
~~~esrd ,at r,, = _2.

M

combining over blocks gives, since we dealing with independently estimated y;

1) y=l hi

(*) estd var3= 1; esed var [y7= est'd var y(Ti-) &2 = s2 /mh

2) where s 2  L 's2.

Thus the natural form for Student's t is

3) = - its contemplated value

as expanded by (1) and (2).

8. Some specific possibilities.

For our year of data, there are a number of more or less plausible choices

April 21, 1987
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of piece size and block size, including:

- pieces of - days each per block of - days (d')

2 4 8 (45)
3 3 9 (80)
2 5 10 (36)
3 4 12 (60)
4 3 12 (90)
5 3 15 (96)
3 5 15 (48)
6 3 18 (100)
4 5 20 (54)
5 4 20 (72)
2 6 12 (30)
2 8 16 (23)

each of which has k k 3. (The last column gives degrees of freedom

accumulated, optimistically - - see Section 10 below - - for a year.) We can also

consider some (less desirable) cases with k = 2, mainly:

- pieces of 2 days each per block of - days (d)

4 8 (135)
5 10 (144)
6 12 (150)
8 16 (154)

10 20 (162)

which could provide some extra degrees of freedom, even though they may not

be effective enough in dealing with persistence to estimate a large enough s2 to

be appropriate.

9. Composites of arithmetic means.

Often our attention needs to be given to results that compound (perhaps

by taking the difference) different arithmetic means. In the simplest case, as

when the difference in arithmetic means for Chicago and Milwaukee is at issue,

April 21, 1987
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we can arrange to t-test the final distillate in a way that bypasses any attempt

(a) to consider an assumed amount of correlation between intermediate results,

or (b) to evaluate the variability of the sampling distributions of the separate

arithmetic means before differencing. (Doing (b) would of course force us to

do (a)). (Assuming no correlation is often even more dangerous than

assuming a specific amount, e.g. that r = .42.) When we can work directly with

the final distillate (as we can both in this example and in almost all resampling

situations), it will almost always be wiser to do so.

10. Seasonality of variability. - and degrees of freedom.

We need to think somewhat further about our final s2, in particular about

assigning it an appropriate number of degrees of freedom. To think effectively

about this topic is easier if we recall "df" might better have been called "degrees

of firmness" and that what we protect against by using, for instance, the

numerically larger 5%-points of Student's t for finite values of v (larger as

compared with the Gaussian value of 1.960 for v = -) is the chance that S2, in a

particular instance, will be substantially smaller than the a 2 it is estimating.

If the variability of whatever we are averaging is different from one season

to another, as would be the case with average daily snowfall in middle latitudes,

for instance, we need to allow for this fact in assessing a df for our s2. In the

snowfall case, for example, there will be no variability in summer. Adding the

si2 for the summer blocks does nothing to improve the coefficient of variation

of s2 = (sum of the s,2)/h

April 21, 1987
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If we want to assign a reasonable number of degrees of freedom to S2 or

s2lh (which deserve the same number), the simplest thing that we know how to

do is the Smith-Welch-Fisher calculation of an equivalent number of degrees of

freedom, v,:

_9 = -'++...+ I v

where S,2, for the il block, deserved vi degrees of freedom.

If the individual S,2 have only a few degrees of freedom, particularly when

they have only one or two, the SWF analysis may not be satisfactory.

The reason is simple. If the a? were all equal, as were the vi, then

2 _ 1 (1)2 +...+ a J V, n V 1 V

giving v, = nv. But if the vi are small the values of the S,2 will not be close to

y; = a 2 and the SWF formula, using the s2 we have instead of the a? we don't,

will give too few degrees of freedom. The values of an untypically typical

(untypically close to ideal behavior) set of 10 sj2 with a? a 1 and v = 2 might well

run from 2.74 and 1.82 down to .18 and .07. Putting such a set of 10 values in

the SWF formula could easily give v,, = 11.56 rather than the v,, = 20 that we

deserve. (For vi = 4 we might get v,, = 29 instead of 40. For v, = 1 we might

get 4.23 instead of 10.)

Even a rough fix for this problem can be worthwhile. What we

recommended (provided the vi are nearly equal) is to:

1) order the s,2 and renumber them so that s1 < s2 ... < s.1 (relabel the

v, accordingly)

April 21, 1987
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2) let a (i I n, v) be an approximate median for the i* order statistic in a

sample of n from Z,2/v,

3) use the Wilson-Hilferty approximation and the usual working-value

approximation for Gaussian order statistics to write

a(i In, v) 2(1= + a(i 1n) 4--) 3

where

a(i I n) = Gau- 1).

3n+ 1

4) divide each s,2 by a(i I n, vi),

5) apply SWF to the resulting ratios.

For v = 2, we know that a (i I n, v) can be found from

l~e~~ilj, =3i- 1

3n+ 1

and hence from

a(i In, 2) = - (1- 3i- I
3n+ 1

avoiding the use of the Wilson-Hilferty approximation for this particular value

of v.

While the Wilson-Hilferty approximation is usually recommended for large

v, where it is indeed very precise, it works surprisingly well for small v. The

writer would not mind, in the present context where even a rough correction is

very worthwhile, using it for v = 1 or v = 3, as well as for intermediate values of

V.

We may also need to think, in judging how much data we really have,

about effective - - or relevant - - numbers of blocks. Other forms of
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calculation, some of which depend specifically on the distillate chosen, are likely

to be appropriate.

11. Summary of PART A.

This part has been concerned with the basic questions about "choice of

error term" for the simplest, relatively highly manageable distillates, namely

arithmetic means. The two basic questions were:

1) what comparisons should contribute to our S2 ?

2) how many degrees of freedom do we deserve?

The three basic answers turned out to be:

1) Comparisons of days not too near one another (not adjacent days) and

not too far from one another (not July with January).

2) We can only earn contributions to degrees of freedom form a particular

blocks if that block contributes appreciable variation to the final distillate,

3) we need to assess an equivalent number of degrees of freedom,

plausibly by the Smith-Welch-Fisher calculation, often after adjustment for

sampling dispersion.

These results apply to a wide variety of arithmetic means, as illustrated at

the start of this part. (With the appropriate modifications to the formulas for

Student's t, they would also apply to weighted arithmetic means.) We have no

reason not to expect them to apply to many other distillates.

This being the situation for the simplest distillates, the best we can hope

for from resampling is that, when we use resampling wisely enough, there will
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be no new kinds of problem for at least moderately complex distillates.

PART B. Bootstrap Issues

12. The basic bootstrap.

As described by Bradley Efron, the basic bootstrap operates by treating an

observed set of observations as a (finite) population of pieces, and sampling

pieces from it with replacement in such a way as to generate resamples of the

same size as the original sample.

This means beginning by converting the finite sample that was observed,

not into a finite population as jackknives do, but rather into an infinite

population where the only values present are those actually observed in the

sample and the discrete probabilities of such values axe the discrete frequencies

observed in the data. If the data consists of only two pieces, A and B, - - not

too likely to happen, but the easiest case to describe in detail - - then:

25% of resamples will be made up of two copies of A

50% will consist of one A and one B, like the original

25% will consist of two copies of B

Usually there will be many more than two pieces. "Resamples" or "bootstraps"

are drawn, using the best available pseudo-random numbers. What would

seem to be enough "resamples"?

To the extent that Student's t reflects our knowledge about the original

distillate, if the actual variability deserved v degrees of freedom - - ordinarily
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v S n-I, where there were n original pieces - - and we draw N bootstraps, the

bootstrapped variability might deserve (roughly) only about v'(< v) degrees of

freedom, where

V °  V N

(or perhaps = (I/v) + (c/N) for some moderate c). If v is small, N > 1Or

provides most of the information possible. If v is large, N > v makes v quite

large, so that 'larger" would not be appreciably better. Thus 100 to a few

hundred bootstraps ordinarily suffice.

13. The blocked - - or stratified - - bootstrap.

Here, our resampling is restricted to selecting the correct number of pieces

from each block (or stratum), again with replacement. If we have pieces A and

B in block I and pieces C and D in block 2, then the sampling we strive for will

have:

6.25% AACC's
12.50% ABCC's

6.25% BBCC's
12.50% AACD's
25.00% ABCD's
12.50% BBCD's

6.25% AADD's
12.50% ABDD's
6.25% BBDD's

100%

with similar situations - - showing independence from block to block - - for

larger examples.
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14. Duplication in the bootstrap.

Our examples, so far with (a usually quite unrealistic) 2 pieces per block,

have made it clear that some duplication of pieces are to be expected. How

many times will a particular piece appear in a given bootstrap when there are m

pieces per block? Exhibit 1, easily calculated from the formulas for binomial

distributions, has the answers.

Contrary to the intuition of many, the problem of duplication is least for 2

pieces per block, which has only 25% omissions, a fraction that rises steadily as

k increases. The fraction of repetition twice or more, also begins at 25%, but

rises only very slightly, remaining below 27%.

15. Theoretical results.

Derivations for the bootstrap are usually confined to limiting (asymptotic)

results as the number of pieces per block get larger and larger. (Just doing

many, many bootstraps - - 500, 5000, even 50,000 - - provides no added

applicability for the classical derivations of the bootstrap.)

The theory of many-block bootstraps seems not to have been worked

through.

As I have heard Efron say, the bootstrap was invented, using the jackknife

as a model, to be supported by a simpler and more coherent theory and thereby

support the jackknive. This has meant that it has had, to a degree not always

publicized, to be a 'large sample" (which here means "many pieces per block")

technique. The basic asymptotic results involve terms of order 114-n, and are

equally applicable to the bootstrap and to a wide variety of modifications of the
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exhibit 1

Frequency of multiple appearances for any given piece,
when there are k pieces per block*

appearances k =2 k =3 k =4 k =5 k =6 k large

0 25% 30% 33% 33% 37% 37%
1 50% 44% 42% 41% 40% 37%
2 25% 22% 21% 20% 20% 18%
3 4% 5% 5% 5% 6%
> 4 0.4% 0.7% 0.9% 1.9%

(2 or more) (.250) (.259) (.262) (.263) (.263) (.264)

*Values shown are, respectively, 1, 2 and 1 divided by 4;

8, 12, 6 and 1 divided by 27;

81,108, 54, 12 and 1 divided by 256;

1024, 1280, 640, 160, and 21 divided by 3125;

15625, 18750, 9375, 2500 and 406 divided by 416,656;

and 1, 1, 1/ 2, 1/ 6, e -(8/ 3) divided by e

(the last from the Poisson approximation to the binomial).

bootstrap (including the classical versions of the jackknife). All that is needed

is the effects of the modifications converge (to zero) eve n slightly more rapidly

than n1 '2 as n -+- .

It would be most helpful if we could make even rather crude estimates of

how much impact on the bootstrap the finiteness of nt is having in specific

in stances.

One simplicity of the bootstrat) is the idea of using the 2.5% points of the

distribution of bootstrap results as a 95% confidence interval for the final result

-- a very attractive (or seductive) approach. Even for sufficiently large n, this
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has problems (see Section 19, below.) But if the experience with the jackknife

is a good analogy, then, as discussed later, we cannot expect this to work at all

well for small n - - for a few pieces per block. The most that we can hope for

is that we can use the S2 of the bootstrap results to estimate the variance of the

lone actual result, which means that we will have to depend, as is so often the

case, on the robustness of Student's t.

If, as our discussion above indicates to be the case for weather-related

data, we want to work with relatively few pieces per block, dare we bootstrap

such blocks?

If we had no other alternative, the sound maxim that 'It is better to have

an approximate answer to the correct question, rather than an exact answer to

the wrong one!" would tell us "Don't bootstrap with one block per year, that's

quite unacceptable, it's better to bootstrap with small blocks even though we do

not know as much about the precision (or even the accuracy) of our final

results as we should!" However, as the remaining parts will make clear, we do

have other alternatives.

16. The correction for finiteness.

As Efron has pointed out to me, the conversion of a sample of m into an

inlfinite population (with m equal parts) changes the variance, since we now

divide by m where we did divide by mn-i1 . The variance of the results of

bootstrap resampling is thus only (m -1)/mn times as large as would be needed to

reflect the original sampling variance.
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This effect is of order /m, while the asymptotic calculations are only

correct to order 1/-4- . Thus it is reasonable to neglect the finiteness correction

for large m (where it will be small).

The writer, however, sees no excuse for neglecting this correction for

small m. It corresponds to a phenomenon that we know happens for the

simplest instances of distillates. It is reasonable to take it as a useful

approximation for other distillates.

Thus, any calculation using the variance of some quantity over bootstraps

resamples, the writer would be careful to multiply by m/(m-1), which is as large

as 2 for m=2, before inserting the result in the appropriate formula.

When we have several blocks, 1/r will be much larger than limb, quite

possibly as large as 1/'-/ which is about the order to which we might have a

blocked bootstrap be asymptotically correct. Here there seems absolutely no

excuse for avoiding the correction for finiteness.

17. The extreme cases of the ultimate and of the penultimate.

An extreme case that challenges the bootstrap very effectively arises when

the distillate is the largest (or smallest) value of some observable quantity

during the year observed. If z1 > z 2 > z 3 ... are the largest values in the

different pieces concerned, then, in unblocked bootstraps involving many pieces
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z, will be the maiximum in about 63% (=100%-37%) of all cases

Z2 will be the maximum in about 23% (63% of 37%)

23 will be the maximum in about 9% (63% of 14%)

Z4 will be the maximum in about 3% (63% of 5%) and so on.

The first of these for instance, has to happen because, see Section 14, there is a

37% chance of any specific piece being omitted from any specific bootstrap

shape. In fact, the chance of any one piece being missing is about 37%, with

reasonable independence for different pieces.

This means that if we try the seductive approach of looking at the 2.5%

points of the distribution of bootstrap results, enough repetitions will give 24

and z, as, notionally, the 95% confidence limit for "the largest". Clearly such a

confidence interval is quite unsatisfactory, since a confidence interval pretends

to tell us about some long-run value, some parameter. In fact, the median

(over years) largest (in a given year) will be larger than z, 50% of the time.

(The mean largest, for the usual behavior of distribution tails, will be still

larger than the median. Thus, it will exceed z, more than 50% of the time.)

Against such an extreme challenge, this seductive approach fails lamentably.

It might be that the s2 based on bootstrap repetitions is not too bad an

estimate of the variance of zi, but it would be surprising if the adequacy of this

approximation did not depend upon the shape of the distribution tail, just as

the amount of asymmetry of the distribution of z1 (and thus the severity of the

corresponding challenge to Student's t if we try to use z, ± to s as a confidence

interval) surely does. Again, if we had no alternative - -
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The second highest value is not as great a challenge as the highest one, but

it is still a very serious challenge. It will simplify our analysis, and sometimes

be reasonable, to assume that the 5 or 6 highest values fall in different pieces.

(This will surely be the case when the values apply to pieces, and not to days or

hours within them.)

Now we have the following event-descriptions for a bootstrap:

z, will be second highest if piece 1 occurs at least twice

Z2 will be second highest if piece 1 occurs once and piece 2 at
least once OR if z, is absent and 32 appears
at least twice

z3 will be second highest if : and z2 appears a total
of only once and :3 appears at least once, OR if z:
and z2 are both absent, and z3 appears at least twice

z, will be second highest if zi, Z2 and z, appear
a total of once and z4 appears at least once OR if z1 ,
z2, z3 are all absent, and Z4 appears at least twice.

The relevant individual-piece probabilities are, for many pieces,

absent: 36.8%

just one: 36.8%

at least once: 63.2%

at least twice: 26.4%

and the compound probabilities are:

two a total of once: (36.8%)(36.8%) + (36.8%)(36.8%) = 27.0%

two not at all: (36.8%)(36.8%) = 13.5%

three a total of once: 3(36.8%) 3 = 14.9%

three not at all: (36.8%)- - 5.0%
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from which we get the following probabilities that x, will be the 21 highest in a

bootstrap repetition.

i Probability z, is 2" highest

1 26.4%
2 (36.8%)(63.2%) + (36.8%)(26.4%) = 33.0%
3 (27.0%)(63.2%) + (13.5%)(26.4%) = 20.6%
4 (14.9%)(63.2%) + (5%)(26.4%) = 10.7%
5 (7.3%)(63.2%) + (1.8%)(26.4%) = 5.1%
6 (3.4%)(63.2%) + (0.7%)(26.4%) = 2.3%

(a 7) (1.9%)

These probabilities may not be unreasonable, but we have still to worry about

the impact of different kinds of tail area shapes.

Were there no alternatives, we might have to do such things, but ..

We notice how silly it would be to calculate actual bootstrap replications in

each of these special, unusually challenging situations, since we can calculate

the results for all replications rather easily.

18. The reflection of dissymmetry.

naive argument

Suppose that the true distribution of some quantity in samples of n is quite

skew, say with a stretched tail to the right, and that n is large enough so that

we are supposed to trust the bootstrap procedure. This means, presumably,

that our bootstrap samples will have a distribution close to the actual sampling

distribution - - and will also be stretch-tailed to the right.
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What ought our confidence limit do? The danger that the observed value

is far to the left of the value of the parameter is much smaller than the danger

that the stretched right tail has let it go far to the right.

Thus our confidence interval should be longer to the left (thus allowing for

the observed value to have been further to the right) than to the right. This is

the opposite of the true sampling behavior's distribution. If the bootstrap

distribution is like the sampling distribution, what we need is also the opposite

of the bootstrap distribution's behavior.

It seems hard for the direct use of the bootstrap distribution to allow

correctly for the shape of the sampling distribution. What the bootstrap is

more likely to do well is to assess the variability of the sampling distribution.

* careful discussion *

The argument just given is correct for an important special case, when the

possible states of the world differ by rigid translation. When we deal with one

end of a confidence interval, the relevant theory is not what applies when the

parameter falls at the value we observed, but rather that which applies when

the parameter falls at that end of the confidence interval. Efron has pointed out

that, in the most elementary of those cases where changing the parameter

shrinks the distribution toward zero or swells up away from zero - - where we

are dealing with a scale parameter - - the naive argument fails, because the

confidence interval associated with knowing exactly what the possible

distributions are is skewed in the same direction (but not by the same amount)

as the sampling distribution. This might seem to considerably reduce the
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cogency of the naive argument. However, as we next see, there is a better way

to look at this class of examples.

If instead of using a distillate to tell us about a scale parameter 'T, we

choose to look for one to tell us about log t, we will have converted a scale

specification into a location specification, usually changing what was a heavy

skew to the right into a somewhat milder skew to the left. (Doing our best to

eliminate the skew often leads to focussing on something like 'T-1.)

If we are not going the seductive route, it will matter whether we focus on

T, log Tr, or T". This discussion suggests that something between making the

distribution neai , ymmetric and making the effect of the parameter nearly

additive can often lead to a better-posed problem.

* conclusion *

To go from the lone actual value, and a bootstrapped variance, to a

confidence interval, then requires something like Student's t. If we do not

require to include an exceptional degree of robust/ resistance (within this final

stage of setting a confidence interval - - which is a quite different issue from

building in robustness/ resistance into the calculation that distills the lone actual

value out of the data), it is likely that Student's t is close to the best that we

might do.

19. Less seductive and safer bootstraps.

Neither Efron or the writer recommend the use of the seductive bootstrap

(in which the 2.5% points of the bootstrap distribution are taken as the ends of
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a '95%" confidence interval). While we differ in the type of improvement we

prefer, we are in agreement that improvement is needed.

For Efron's detailed suggestions, see Section 7 of his recent paper (Efron

1987). We notice here only that they include using % points for modified %'s,

not just for equal tails.

The writer would, when bootstrappery is at issue, recommend at least

trying:

1) seek for an expression for the parameter at interest for which the

sampling distribution of the corresponding estimate (corresponding

distillate) - - as pictured by the bootstrap distribution - - is reasonably

symmetrical (about where it wants to be symmetrical, not necessarily about

the value of the distillate based on the actual observations).

2) apply the seductive procedure to provide an initial confidence interval,

3) expand the length of this interval in the ratio (m/(m-1))" 2, and recenter

it at the distillate from the actual data.

If it doesn't seem feasible to do (1), I would consider

-I) Seek for an expression for the parameter of interest that makes the

changes in distribution consequent upon changing the parameter as much

like translation as we can,

2") Like 2.

3") Like 3.

In any event, don't just sit there and use the seductive bootstrap.
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20. Summary of PART B.

The basic idea of the bootstrap is quite simple. Its theoretical support is

asymptotic - - for large samples, which for us means many pieces per block.

Blocking, which seems essential for single years of weather-related data, tends

to force us to small samples.

With fewer pieces per block, correction for finiteness is likely to be

needed.

In any event, the seductive bootstrap (using the 2.5% points of the

bootstrap distribution as the ends of a confidence interval) is to be avoided.

It is far easier for a resampling procedure to assess the variability of the

final distillate than to assess the shape of its distribution. So even with the

bootstrap we are likely to be driven to a symmetric interval for a re-expressed

parameter, even, perhaps, to Student's t.

If we had no other alternative with a year of data, we would presumably

decide to use a blocked bootstrap, theoretical uncertainties and al. However,

as we shall soon see, we do have alternatives.

PART C: Jackknife Issues.

21. The basic jackknife.

If we have but one block, and m pieces, the basic (or leave-out-one)

jackknife begins with m+ I distillations; one, yALL, using all the data, and m

others y(1),y(2 ..... y(.,) where Y(,), read y-not-j is distilled from all the data

except the jd piece. The next step is to calculate m pseudo-values from
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y-i = MYALL - (Mr- )yj )

and the final step is to use Student's t "as if" the pseudo-values were a sample,

through:

MM Iyj

s. y= - yy)

est'd var (y.1 = s. rn

y,- its contemplated value4 S-M

By using y. instead of yA., the jackknife makes a bias correction

appropriate for biases proportional to 1/ (amount of data). Since

n-i
Y".rYALL = =(Y i-Y.LL) = (YAU -- Y(j))

= (,n-1)(yA.-'-))

where

- 1
7= mLy

This bias correction, for a shift from 1/m to 0, is m- I times the estimated

change in bias from 1I(m-1) tO 1/m (a distance of Im(m-1)), as it should be.

Notice carefuUy the restriction to Student's t in connection with "as if the

pseudo-values were a sample". Attempts to use other confidence procedures,

like the sign test and the Wilcoxon test, for example, within the jackknife have

proven unsatisfactory. It is easiest to remember the formulas in terms of "as if

... a sample", but it is not wise to think about the procedure in such a way.

Rather we should think of the jackknife as a way of producing a y. and an s!

such that:
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1) the average of y. is what yL seems to have been trying to estimate,

and

2) we have near equality in

var(y.)= ave~slIm)

so that a Student's t with y. in the numerator and 4 TY.Im in the denominator is

quite appropriate.

The more closely our distillates resemble arithmetic means in their

behavior, the clearer it is that the jackknife process works well.

The most challenging situations for the jackknife (and presumably, also for

the bootstrap) are those where the values associated with a very few of the

pieces control the value of the distillate, where there is narrow estimnation.

Narrow estimation is antipodally opposite to the behavior of arithmetic

means. The most extreme (and most antipodal) form of narrow estimation

arises when our distillate is - - or behaves rather like - - an order statistic (and,

at least for simplicity, each piece contains exactly one value) -- for example, a

"S minimum, quartile, median or maximum.

Among order statistics the behavior of an extreme of - - the maximum or

the minimum - - is the furthest from the behavior of the arithmetic mean.

This is one of the reasons why we began to discuss extremes and near-extremes

in Section 17 of PART B.

Extremes and near-extremes are a severe challenge to the jackknife.

Knowing this need not keep us from using the jackknife when we are sure that

we should distill out an extreme. But knowing this should urge us to ask
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ourselves: "Can we modify the distillation process to serve the same ends nearly

as well so that the behavior of the distillate involved is not so extreme?".

If we have to deal with an intermediate order statistic, or with some other

distillate that behaves rather similarly, the basic or "leave-out-one" jackknife has

very limited effectiveness. The reason for this is easy to see. If we leave out

any value below that of the distillate, we have one common effect on the order

statistic. Similarly, for leaving out any value above the distillate we get a

second common value for y(j) . With at most 3 different values for the y(,)'s

(we could also leave out the distillate (the original order statistic) itself!), there

can be at most 3 different values for the y., . So how can the s2 found from

their differences be worth more than 2 degrees of freedom? (In fact, it is often

worth more nearly 1 df.) For intermediate order statistics (e.g. medians or

quartiles) we can, indeed, improve the performance of our error estimation

considerably by going to a different form of jackknife, to be discussed in a later

section.

22. The simplest blocked - - or stratified - - jackknife.

If we have h blocks, labelled by i from 1 to h, and, in each block, m, we

can apply the jackknife calculation to each block in turn, omitting, from that

block, each piece in turn. The formulas are

Y i = MyL - (M -1)y Y()
__I

S. = :(y.,-y.) 2/(m- )

y. = Ty
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hS2. = S 2 + s 2  5 ... s = m(es'dw r for ZY)

so that we may appropriately take

y. - its contemplated value

_T smh

with

Sl 2

If we have more than 2 pieces per block, we are likely to want to use this

approach.

23. Jackknifing by halves.

The special case where h=2, when each block consists of 2 pieces, can be

approached a little differently. Instead of 'leaving out" half of a single block,

going through the blocks in turn, we can 'leave out" a half of each block in

response to a preassigned sequence of two-fold choices. With two halves,

'leaving out" one piece means "keeping" the other piece, and vice versa. Thus,

if

'+" means V' piece in left-hand half, 2"1 in right-hand half

and

"-" means 1" piece in right-hand half, 21 in left-hand half

Then the sequence + - + + divides 8 pieces (AB)(CD)(EF)(GH) - - in 4

blocks as follows - - into:

a left-hand half made up of ADEG, and
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a right-hand half made up of BCFH

If g runs through some set of such sequences of +'s and - 's, and hence

through some set of halvings, we can write:

yL- = y distilled from the left half of halving g

y,_a = y distilled from the right half of halving g

The usual jackknife formulas for m = 2 now give

Y-Ra = 2YALL - YS

Y.Ls = 2YAL. - YR S
1 1 +I ~ a

I

= =(YL -Y+)

"2+(YR.YLI)2= est'd vat for y.

If now we average over g - - over our set of halvings - - we get, if there

were G halvings:

Y 2Ys - * '(YL+YR)

2

- 2y= ._ - mean ofy'sfor halves

i corresponding to a bias correction of

y - mean of y's for halvings

which is appropriate for a bias proportional to 1/ (amount of data) (since

doubling the amount of data takes (1/amount of data) half-way to its value, 0,

for an infinite amount of data.
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Such averaging also gives

1 12
. = -- -(yL-yR,)2

Because many more different sets of pieces are left out, this "multi-halver"

jackknife can acquire a reasonable number of degrees of freedom, even when

jackknifing an intermediate order statistic.

24. How many, and which, halvings?

No matter how many halvings we manage to calculate, we cannot deserve

more degrees of freedom than we started with, which was surely < mh. A

counsel of perfection might call for halving according to all 2h sequences of m

+ 's and -'s. But so much calculation would hardly be worthwhile, especially

for substantial values of h. Yet the symmetry of doing all halvings is

attractive.

We can obtain the desired symmetry with many fewer halvings by a simple

device. Consider h=4 as an illustration. The 4 sequences (rows)

+ +4 + +

- +- - -

+- - +- -

+4- -+

have a nice symmetric relation to one another, each pair (of rows) agreeing in

two positions and disagreeing in two. The more interesting fact is that if we fix

on any two columns, and look from halving to halving, these columns will

show two matches and two disagreements - - a perfect balance.

One reason this fact is more interesting is that if there were only 3 blocks,
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the set of truncated halvings

+ + +

+ + -

+ - +

+-

would still show this second sort of balance.

The four sign patterns we have been considering are relatively familiar,

they define the usual factorial contrasts in 22 factorial experiment (where the

grand mean is also of interest). There is no difficulty of extending all this to

the 2 contrasts (including the grand mean) for a 2- factorial experiment. (And

if it is important to use intermediate numbers of sequences we can go to

Plackett-Burman designs.)

For the very nice case of an arithmetic mean, it is not hard to show that

±L1-(YL1-YR*)2
G 1 4

is exactly the appropriate multiple of the s2 based on the individual yi . For the

"easy" cases then we can expect the multihalver to do essentially as well as

" possible. In the case of one year of data, with 3-day pieces and 2-piece (6-day)

blocks, for instance we would have 61 blocks (trivially in leap years) and could

use p=6 to generate 26= 64 sequences that were nicely balanced for 64 blocks,

and that retained the important part of their balance for 61 blocks.

25. Stronger multihalver jackknives.

The property of the columns of the design matrix of +'s and -'s just

discussed, that any two interrelate in a quite balanced way (once we realize that

the complementary sequence refers to a transposed separation into the same
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two halves). This says that the design matrix is an orthogonal array of strength

two.

There are also arrays, somewhat larger (more rows, more sequences) of

higher strengths, three, four, etc.

Orthogonal arrays of strength 3 for this problem are not difficult to use.

*Bose and Bush (1952) point out the existence of such patterns (sets of

sequences) for halving up to 2' blocks using only 2.2' sequences (2.2' halvings).

This need never involve as many as 4 times as many halvings as blocks.

Orthogonal arrays of strength 4 or 5 tend to require many more halvings.

Brillinger, Jones and Tukey (1978) give some selected examples, requiring:

for strength 4:

512 halvings for up to 23 blocks

1024 halvings for up to 32 blocks

2048 halvings for up to 63 blocks

for strength 5:

1024 halvings for up to 24 blocks

2648 halvings for up to 33 blocks

4096 halvings for up to 64 blocks

These may require as many as 60 (for strength 4 at 33 blocks) or 120 (for

strength 5 at 35 blocks) times as many halvings as blocks.

These much stronger multihalvers are only likely to be needed in rather

extreme circumstances.
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26. Pros and cons of bias adjustment.

An important aspect of the jackknife is its bias-correction. This serves to

allow, to a reasonable degree, both for known oversights in formulating the

process by which a result is distilled from the data and for unrecognized

dependencies on the amount of data.

We can choose to reduce the importance of bias-correction, both by how

we formulate the process of distillation and how we choose to express our

results - - see Section 28 below. We should strive to do the things as well as

we can - - it is almost always better to avoid trouble than to try to fix it, but we

should not expect to be perfect in avoiding this sort of bias - - some amount of

bias decreasing like l/(amount of data) is likely to remain. No matter how

careful we are in formulation and expression, there is likely to be use for bias

correction.

The nature of the jackknife's bias correction inhibits its use with very

many pieces per block. The formulas for the pseudovalues

Y. j= Y, .L-(r-l)Yi(j)= YAL. + (M-)(yA yiQ))

Y = myLL,-(M-)y.)= YAL, + (m- )(yALL-Yi(.))

where (.) = (yi(I) + Yi(2) +...+ yi(.))/m, with their factors of m and m-I force the

calculation of YALL and the Yi(j) to additional precision. For m's between 5 and

20 this amounts to requiring about one extra decimal place or significant figure,

not a great problem. (We are likely to be already keeping precision beyond that

necessary for a not-bias-adjusted yALL, so that, for this range of m, it is often

unnecessary to take special precautions.)
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Much larger values of m can, and would, cause precision problems. Thus,

much of our experience with the jackknife is in the range 4 5 m s 20.

We can always make m smaller by (a) using larger pieces and/or (b) using

more blocks. Both of these reduce the number of degrees of freedom available

- - (a) substantially and (b) slightly. But either or both, as we have already

seen in the context of weather-related data, will often lead to the use of a more

appropriate error term. It is more important to estimate a more appropriate a 2

than it is to estimate whatever a2 we choose with somewhat more precision.

On balance, the existence of a bias correction in the jackknife helps us

much more than it hurts us.

This view seems appropriate, even after we study the effect of bias

correction on other types of bias, such as bias which decreases more rapidly,

say like 1/(amount of data)2 . Such inverse quadratic biases come through the

ordinary jackknifes - - leave-out-one or multihalver - - with an opposite sign

and a somewhat reduced magnitude (x(l-L) for leave-out-one, hence x(1/2)
m

for multihalver).

There are higher-order jackknifes, (cp. book by Gray and Schucany, 1972),

but they involve magnification factors of order m2 and do not seem

computationally acceptable.

27. Jackknife heuristics.

We have emphasized that the jackknife pseudovalues are intended to copy

a sample only through second moments, to do a reasonably good job of making
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ave {s21m) = var(y.]. What about some more upbeat heuristics, at least so far as

the structure of calculation for the pseudovalues and their analogs?

The basic need is to accommodate the existence of non-linearity - - doing

this by finding modified values that can be well enough treated linearly.

The key process seems to involve:

1) a first step

2) turning the non-linearity loose

3) a final step

where, if there were no non-linearity at (2), the final step is so chosen as to

undo the first step.

In the "leave-out-one" jackknife the first step involves leaving out one

piece (or no pieces), the second step involves distilling a result according to the

chosen algorithm, the third step involves the calculation of pseudovalues.

In the equally weighted case, the only one discussed explicitly in this

report, no non-linearity would mean (some multiple of) forming an equally

weighted mean, so that, in this special case,

- Yi + l"y, my._- yi
. y(i) --- _

y m, = m'-(M- 1)y(i) = (Yj)-(Y" yj) + Yi = Yi

(in greater generality, we could consider [some multiple of] a weighted mean

Ew jyj

=
-I +-Wli + I WiYj (YAWW 2- wiyY" . = Wi + 2:Wj (E w)- Wi
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Y(d - _____-_((_.___)-_______

Wi

(1:wjyd-(1wjyd) + wax-y,= yi
Wi

and thereby construct a weighted jackknife.)

The fact that the final step reverses the first step, when the intervening

calculation is linear, is of course not sufficient to provide the useful properties of

the jackknife. We need to follow through, at least for simple non-linearities,

and see how well ave (s2 1/mI matches var(y.). But this simple pattern can at

least help us remember the form of the jackknife calculation and, at best, give

us a somewhat better "feel" for what is going on.

Something similar goes on with the "multihalver" jackknife, where the first

step involves halving - - in which each block of two pieces is divided between

left and right halves in accordance with the corresponding sign in a sequence of

* + 's and -'s. If we write E, for the 01 sign and the g11 sequence, we can say that

we put piece Pi into the left half (l+Ei,)/2 times and into the right half

(1-E4)/2, putting its mate, P,, into the left half (1-Ei)/2 times and into the

right half (1+Ei,)/2 times.

In the very special case of linearity with equal weights, we could have

1kyL, = + (+Ez)Yl+

= -- Y + TYi2+ YE,,(yiy 2)

= + TYEi.(y;: ;z)

so that the corresponding pseudo-value

Y.L, = 2 - YL,
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whence

Y*.L-Y.Rs =- Eit ( i- 9

and we can recover the i-. 2, by applying an inverse of (Ei,). (If we use an

orthogonal array of strength at least 2, (Ei.) provides the necessary columns for

an inverse.) We want to do this as a basis for (a) calculating s.2 (which we

could have done from the y.L-y.R) and (b) doing this with allowance for

"seasonality of variability" - - for different ave( 1-Yz) 2 for different blocks

(which requires getting hold of difference associated with blocks, not

differences associated with sequences) - - so as to obtain a more appropriate

number of degrees of freedom (cp. Section 10).,.

Here, so far as variance assessment goes, the first step is the halving

according to each of several sequences, the middle step involves both distilling

of each half and the comparison (by subtraction) of each pair of matched

halves, and the final step undoes the linear transformation inherent in the

halving.

Presumably other types of jackknife, involving the same three kinds of

steps, are likely to appear in the future.

28. Care in the use of the jackknife.

If we jackknife y2 instead of y - - where y is a well-specified distillate of the

data - - we can expect somewhat inequivalent confidence intervals. A very

simple case would involve m=2, y(1) = 4, y(2 = 6, yAt = 5, so that the

pseudovalues will be 10-4 = 6 and 10-6= 4. Hence, y.= 5, s. (12+ 12)/l = 2
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and

y.± 2 s--= 5± 2= from 3to7

If we jackknife z = y2 instead, we would have z(,) = 16, z(2) = 36, zL = 25, so

that the pseudovalues will be 50- 16 = 34 and 50- 36 = 14. Hence, z. = 24,

s, (102+ 102)/1 = 200 and

z.± 2"s2= 24± 2411TO= from 4 to44

corresponding to an interval on the y scale of

from 2= .44to6.6= 4Z

clearly both ends of the confidence interval have been altered.

As noted above, one reasonable ground for choosing between jackknifing y

and jackknifing y2 _ - if we have the necessary knowledge or insight - - would be

to choose the expression whose sampling distribution is more nearly

symmetrical.

Sometimes we can build in approximate symmetry through our choice of

distillate. If we have two schemes, A and B, for predicting certain values that

will be observed, if we are prepared to choose a measure of imperfection of

prediction, of whatever reasonable form, and if we are concerned with

comparing the two schemes, then we might reasonably plan to distill and

jackknife

(imperfection of prediction of A)
MINUS

(imperfection of prediction of B)

which should tend to have a symmetrical distribution, at least in the null case

where the two schemes produce predictions of equivalent quality (though

April 21, 1987



- 45 -

involving different values).

* second example *

Another sort of example may also be helpful. Suppose that we are

distilling the second highest hourly value, for the whole year, of some

weather-related value. (It is clearly easier to describe how we calculate such a

distilled value than it is to define a parameter which it is suppostvd to estimate.)

The failure of the bootstrap to have a bias correction (all "sample sizes" the

same) implies no need to make a definition for any other number of

observations than 24 x 365 or 24 x 366. For a leave-out-one jackknife we will

need a definition for a few days (a few x 24 hours) less than one year's data.

For a multihalver jackknife we will need a definition for approximately half a

year of lours.

In this situation, we face, when we make our choices, not possible vs

impossible, but better vs worse. We could define our general distilling process

as "take the second highest of whatever values you have". This would mean

relying on the bias correction to pick up the pieces. And there would be things

for it to do! Since our half years, because of the blocks of the multihalver, are

spread all through the year, the second largest from one half will be about the

same size as the second largest from the complementary half, and thus will be,

perhaps, the third, or fourth highest for the year as a whole.

This choice means (a) that we have thrown the difference between the

second and the third-or-fourth highest (for the full year) into the bias

correction, and (b) that we have forced ourselves to indicate that the target of
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our distillation - - the corresponding parameter - - is the second highest value,

even in a record of many, many years duration. It is unlikely that we really

want either (a) or (b). While this choice of distilling process is possible, it is

also both worse and unsatisfactory.

If instead we say we shall try to distill out a pointer to the (2/24x365)n"

largest value (out of n candidates) then we will ask for almost the second

highest for a 'leave-out-one" jackknife, but for about the highest itself for each

of the half-years used in our multihalver jackknife. Now we leave much less

for our bias correction to do, and we indicate that, if we had 100 years of data,

the 2 00 1A highest value would satisfy us. These are both reasonable things,

better than the previous choice.

This calculation made an assumption, one that we can improve slightly. It

is that we should associate the il largest out of n with the fraction i/n - - an

unsymmetric choice with i= i giving 1/n > 0, but i=n giving 1 = 1 not < 1. A

variety of arguments suggest to me, not too strongly, but definitely, that it

would be good (perhaps better) to assign the fraction (3i- 1)/((3n+ 1) to the i"

highest value. If we do this, the fraction 5/(3 x 24 x 365)+ 1) is assigned to the

2I' highest for the year. The corresponding order statistic for the half year is j,

where

(3j- 1) 5
((3 x24 x 365/2)+ 1) (3x 24 x 365)+ 1

or, nearly enough, the j where (3j- 1) = 5/2 or j = 7/6, corresponding to

interpolation about 1/6 of the way from the highest of the half-year toward the

2Nd highest for the same half year. (It would also correspond to taking about
A 1
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the 16701 highest out of a 100-year record.) I would expect this to be a slightly

better choice than the previous one; others might not. Either will surely be

better than the "always take the second highest" with which we began this

example.

*regaining some degrees of freedom *

So much for bias and 'what would we do with much more data". We

usually have viable solutions. But what about minuscule numbers of degrees of

freedom? Whatever bootstrap or jackknife we use, a "highest" or "second

highest", leaves us poorly treated in this regard. Our need, then, is to find

something which "points toward" a second highest, but whose value depends on

many more observations. A reasonable class of possibilities are brought to

mind by the words "exponential tail fit". If we are willing to assume a nominal

shape for the extreme tail of the distribution of our values, thus redefining (we

hope not by too much) what our distillate is pointing toward, we can fit a tail of

the chosen shape - - perhaps to the highest 25 values - - and read off our

distillate from the fitted curve at the point corresponding to the second highest

value.

Doing something like this can earn us a fair number of additional degrees

of freedom. The value we distill may - - or may not - - be somewhat more

precise, but our estimate of its precision will be better, the critical values of

Student's t will be smaller, the resulting confidence interval will be shorter.

Making such a change in our distillation process will give us a slightly

modified target which we can estimate more closely. This will usually be a
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good thing.

There is no reason not to combine this choice with the better dependence

on the size of the body of data involved discussed just previously. Together

they may help us quite a lot.

29. Summary of PART C.

Jackknives basically look at a finite "sample" of pieces as a finite

population, and resample "subsamples" of different sizes. Blocking offers no

particular difficulty. At one extreme the subsamples of a block include all but

one of that block's pieces (the leave-out-one or basic jackknife). At another,

* blocks are of only two pieces each and the subsamples contain exactly half the

data, one piece from each block. In this multihalver jackknife a number of

halvings are used, perhaps a few more than there are blocks, sometimes several

times this number, occasionally dozens of times this number.

The exact results of the jackknives depend on how we have expressed the

distillate and its parameter, which ordinarily should be expressed in the same

way. Choosing an expression is part of the user's responsibility, and allows us

to do better than otherwise, ordinarily by seeking symmetry of distribution - -

or translation-like behavior of the parameter - - or something between these

Stwo.

The bias correction built into the jackknives is usually helpful, particularly

so when the expression is well-chosen.

Like the bootstrap, the jackknife is intended to help us with confidence

intervals when distillates are not found by a simple adding up. Heuristically it
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may help to think of a 3-step process, in which the 3' step would undo the 1"

step if the second step were not there.

PART D: Discussion

30. Many pieces per block.

If we have many pieces to our blocks, conventional bootstrap methods are

a competitor for the jackknife. We recognize two main difficulties (and wish we

knew if there are others):

1) the bootstrap invitably causes us to repeat 1/4 to 1/3 of all pieces in a

typical resampling,

, 2) the naive bootstrap interval reacts to skewness in the wrong direction,

in the desirable situation where the parameter is a location parameter. We

have also to recognize the very limited character of available assessments

of the rough size of the leading terms in the failure of the bootstrap to be

exact. Asymptotics without some idea of error size could be, for all we

know, a weak reed.

Either leave-out-one or multihalver (this one would require redefinition of

blocks) jackknives avoid difficulty (1) and weaken (2) to:

(2") Student's t produces symmetrical intervals, in whatever scale of

expression is chosen - - thus we do have to choose an expression, but can

gain by doing this well.

An argument could be - - and perhaps should be - - made for modifying
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the naive bootstrap to deal more effectively with (2). Some possibilities (see

also Section 19) include:

A) Using the bootstrap replications only to assess an estimated variance,

and going over to Student's t ( we would now, like the jackknife, have

symmetric confidence intervals and the choice of expression would matter)

B) using reflected % points, of the replications, for instance

2(broadened median of bootstraps) - (upper 25% point of bootstraps)

as the lower end of the confidence interval,

2(broadened median of bootstrap) - (lower 25% point of bootstraps)

as the upper end. (The confidence interval would now depend more obviously
.. *

on the scale in which the distillate is expressed. Probably dangerous for both

small and moderate numbers of pieces per block.)

C) We might try to re-express the distillate - - perhaps through

y -+ (ec"- 1)/c for a chosen c - - to promote symmetry of the bootstrap

distribution, at least between the 1% and 10% points, and then go to (A).

31. Moderate numbers of pieces per block.

Until we have a better understanding which choices among the many

modifications of the bootstrap that have the same asymptotic properties seem to

lead to better performance, it is hard for me to urge the bootstrap as a serious

competitor in this range of pieces per block. We do not know as much as we

should about the jackknife in this range, but we know less about the bootstrap.
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The "n" visible in all elementary discussions (usually for unstructured data)

of the bootstrap will, in a blocked bootstrap, presumably fall somewhere

between the number of pieces per block and that number multiplied by the

number of effective (or relevant) blocks. (Ineffective, irrelevant blocks, like

snow in summer months, cannot help us increase "n".)

32. Few pieces per block.

Here the multihalver jackknife - - and its possible generalizations to 3 or

even 4 pieces per block - - seems to be the only reasonable candidate. It would

be nice to know more about the properties of this approach, but, until we do, it

is rather clearly best to steam right ahead and use the technique.

There could be a multiselector bootstrap, where the elements of our

sequences describe the selection - - for example of 2 from 2 - - in each block.

It seems unlikely that even an asymptotic justification could be found.

33. Differences in approach: bootstrap vs jackknife.

It may or may not have had to happen that the most traditional attitudes

involved in approaching the bootstrap differ in flavor from the most traditional

attitudes in approaching the jackknife. But they do differ - - and their

difference illuminates the choice between traditional bootstraps and traditional

jackknives.

The asymptotically sensible attitude common to most bootstrap approaches

- - take care of everything that's of order n- /2 before taking anything of order

n- 1 , and so on - - is an advantage for sufficiently large n. (Recall that, for the
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present account, n, which we will write "n" in this section, is something

between the number of pieces per block and that number multiplied by the

effective number of blocks.) How large is sufficiently large? It is quite plausible

that 1000 is quite sure to be sufficient; it is implausible that 100 might be (at

least most of the time); it is very doubtful that 10 will ever be sufficiently large.

,The typical attitude surrounding the jackknife is quite different, having two

major foundations:

1) If we know how to handle something, we do so (whether or not

unhandleable things might be larger).

2) "Knowing" often has to be taken as depending on

Studentizing - - referring to some one of Student's t distributions rather than to

the unit Gaussian distribution - - is an illuminating instance. The only thing

that has to be chosen is a number of degrees of freedom - - if this depends

only on externals, not on the data, then we can Studentize quite well for small

"(where degrees of freedom can be quite small).

If we have to estimate a number of degrees of freedom from the data,

there will be some crossover "n." such that we lose on average by Studentizing

when "n " < "n,, ", but we gain if "n "> "n, ". The crucial role in our thinking

ought to be played by crossovers rather than by asymptotic order.

Instead of doing first everything of order nt1 2 , and then things of higher

asymptotic order, we plan to do those things that have "n " above the

corresponding crossover. Thus, we will almost always Studentize, but will

require a fairly large "n" before we start making the confidence interval
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unsymmetrical around the (bias-adjusted) original distillate.

This latter approach has apparent advantages for smaller "n" it is

plausible that these advantages are very real.

34. More on duplication in bootstrap replicates.

Bootstrapping special distillates that, so long as ties in the basic data are

infrequent, are reasonable responses to plausible questions, can give rise to

* serious difficulty, because of the bootstrap's repetition of so large a fraction of

P. pieces. If we do not expect many ties, and want to regard the data as a

combination of a substantial number of small samples from different

distributions of similar shapes and spreads, we may want to assess the (nearly

common) spread of the constituent distributions. Arranging the observations

in order of value and forming the gaps, the differences between adjacent

values, followed by a summary of the lengths of the shorter gaps can be a

reasonable approach to this question under these circumstances.

We might, for instance, distill:

a) the mean of the lower half of the gaps, or

b) the lower 33% value of the gaps.

Both of these will be distorted, to different degrees, by the additional ties

generated by bootstrapping.

If there are several or many pieces per block, and we count repetitions in a

weighted way (r appearances gets weight r- 1) we find that there have to be

additional ties covering an average of about 35%-37% of the gaps, thus
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generating an equal % of additional zero gaps. This is enough to bias (a) very

seriously - - and enough to force (b) to vanish for most bootstrap replicates.

While these examples are a little extreme, the extent of the failures

suggest a need for serious worry about this problem, enough to be a further

serious consideration favoring jackknives over bootstraps.

35. Improving the jackknife?

We have noted the possibility of using a weighted jackknife. The question

of how best to generate the weight deserves some attention.

Considerations of third cumulants might be helpful, at least in cases where

there are many degrees of freedom - - in either leave-out-one or multihalver

forms.

Schemes for choosing an expression of the distillate that appear to have a

reasonably symmetric distribution probably deserve attention. (It may be that

this is a place of real usefulness for some form of bootstrap. Or it may be that

we can make better use of the collective distribution of the distillates from all

the halves of all the halvings considered.)

36. Basic philosophy.

I hope the flavor of this report will clearly distance me from those

hypothetical people who "draw straight lines from inappropriate assumptions to

inapplicable conclusions". If statistical techniques are to be helpful in practice,

it will have to be because they work fairly well in real situations. A carpenter

has to build a house using boards and timbers that have the shapes they have.
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No one will be exactly a rectangular parallepiped. Building a data analysis needs

to be thought of similarly - - as using what we have, for which no one

assumption will hold exactly. It is our responsibility to understand, as best we

can, how techniques work in real worlds. Knowledge of how they work in

severely idealized worlds can help with this, but only if we take it for guidance,

often quite rough guidance, and not for directly applicable truth.

37. Summary of PART D.

For many pieces per block, we can use the bootstrap, especially if we

include a suitable subset of the modifications pointed to in Section 19.

For moderately many pieces per block we can happily use the leave-out-

one jackknife; rather than have extremely many pieces per block we may want

* to reduce the block size somewhat.

For a moderate number of pieces per block, the writer would use a leave-

out-one jackknife - - or change the block size to have only a few pieces per

block.

For a few pieces per block, the writer would fatten pieces or shrink blocks

to 2 pieces per block and then use a multihalver jackknife (ordinarily with only

an orthogonal array (of halvings) of strength 2, exceptionally with one of

strength 3 to 5.

There appear to be possibilities of improving both bootstraps and

jackknives. Until these are tried out and understood, however, we should use

the best that is currently available - - presumably that which is recommended at

the start of this section.

This report has striven for a real world point of view.
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