

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

USAAEFA PROJECT NO. 86-02 ATTA FILE GAR US ARN AVIATION SYSTEMS COMMAND **ENGINE/AIRFRAME RESPONSE EVALUATION OF** THE HH-60A HELICOPTER EQUIPPED WITH THE **T700-GE-701 TRANSIENT DROOP IMPROVEMENT ELECTRONIC CONTROL UNIT** U S A 443 GARY L. BENDER JAMES M. ADKINS **PROJECT OFFICER** CW4, AV **PROJECT PILOT** AD-A184 A E F ROY A. LOCKWOOD MAJ, AV PROJECT PILOT ECTI SEP 0 3 198 Α **OCTOBER 1986** FINAL REPORT APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. **US ARMY AVIATION ENGINEERING FLIGHT ACTIVITY** EDWARDS AIR FORCE BASE, CALIFORNIA 93523 - 5000 2989 ł 87

<u>᠉᠄᠄᠄᠈᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉᠉</u>

DISCLAIMER NOTICE

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE	

AD-A184443

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

La REPORT SECURITY CLASSIFICATION UNCLASSIFICATION UNCLASSIFICATION AUTORNY UNCLASSIFICATION AUTORNY OF ALSO AUTORNY CLASSIFICATION AUTORNY OF ALSO AUTORNY A						
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTIBUTION AVAILABUITY OF REPORT 10.S. ARPY AVIATION STEENS COMMAND Approved for public release, distribution uninited. 20. DECLASSIFICATION REPORT NUMBER(S) 5. MOMITORING ORGANIZATION REPORT NUMBER(S) 20. DECLASSIFICATION REPORT NUMBER(S) 5. MOMITORING ORGANIZATION REPORT NUMBER(S) 20. APPL OF REPORTING ORGANIZATION REPORT NUMBER(S) 5. MOMITORING ORGANIZATION REPORT NUMBER(S) 20. APPL OF REPORTING ORGANIZATION U.S. ARPY AVIATION ENCINEERING ("Applicable") 74. NAME OF MONITORING ORGANIZATION ("Applicable") PLICHT ACTIVITY 66. OFFICE SYMBOL ("Applicable") 76. ADDRESS (CR), State, and ZP Code) 20. ADDRESS (CR), State, and ZP Code) 76. ADDRESS (CR), State, and ZP Code) 76. ADDRESS (CR), State, and ZP Code) 20. ADDRESS (CR), State, and ZP Code) 10. SOURCE OF FUNDING NUMBER WORE UNIT 4.300 GODDFELLOW BLVD. 86. OFFICE SYMBOL ("Applicable") 10. SOURCE OF FUNDING NUMBER WORE UNIT 4.300 GODDFELLOW BLVD. 81. OFFICE SYMBOL ("Applicable") 10. SOURCE OF FUNDING NUMBER WORE UNIT 7. Intru (mode security Cashification) 10. SOURCE OF FUNDING NUMBER WORE UNIT WORE UNIT 7. Transient Droop Improvement Electricit Control Unit. Unclassified 11. Transient Droop Improvement Electr	1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE N	MARKINGS		
U.S. ARY AVIATION SYSTEMS COMMAND Approved for public release, distribution DECLASSIGNATION DOWGAMADING SCHEDULE unlimited. APERCAMING ORGANIZATION REPORT NUMBER(S) S. MONTORING ORGANIZATION NEPORT NUMBER(S) AFER PROJECT NO. 86-02 S. MONTORING ORGANIZATION REPORT NUMBER(S) ALS. ARKY AVIATION ENTREERING 66. OFFICE SYMBOL VI.S. ARKY AVIATION ENTREERING 66. OFFICE SYMBOL VI.S. ARKY AVIATION ENTREERING 66. OFFICE SYMBOL VI.S. ARKY AVIATION ENTREERING 80. OFFICE SYMBOL VI.S. ARKY AVIATION SYSTEMS COMAND 80. OFFICE SYMBOL S. MAME OF FUNDING/SPONSORING 80. OFFICE SYMBOL ORGONALATION U.S. ARKY 80. OFFICE SYMBOL VI.TION SYSTEMS COMMAND 80. OFFICE SYMBOL S. ADDRESS (CHY, Stere, and ZP Code) 10. SOURCE OF FUNDING NUMBERS EDWARDS ALK POOLS (STEMS COMAND) 10. SOURCE OF FUNDING NUMBERS ST. LOUIS, NO 63120-1998 ALI-6-01008-68-01 N.TI TI GYGUME Security Cambraine 10. SOURCE OF FUNDING NUMBERS Cary L. Bender, James A. Akins, Roy A. Lockwood 11. Datassified 12. PREONAL UNPAGIS 13. TAIC OFFICE THE SCONT (Trame Response Engline Aritima Response, Engline Governor Configuration, Guidstopa, UN-60A Helicopter, TOO-CE-700 Engline 17.	2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/	AVAILABILITY OF	REPORT	
4. PERFORMING ORGANIZATION REPORT NUMBER(3) 5. MONITORING ORGANIZATION REPORT NUMBER(5) AEFA FROJECT NO. 86-02 5. MONITORING ORGANIZATION GL NAME OF PERFORMING ORGANIZATION 6b. OFFCE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION N.S. ARHY AVIATION ENCIMEERING 6b. OFFCE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION NUMBER PLIGHT ACTIVITY CADDESS (CR), State, and ZP Code) 7b. ADDRESS (CR), State, and ZP Code) 7b. ADDRESS (CR), State, and ZP Code) St. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. ARHY AVIATION SYSTEMS COMMAND 8b. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER St. LOUIS, MO 63120-1998 10. SOURCE OF FUNDING NUMBERS MORE UNIT Transient Droop Tipprovement Electronic Control Unit. MORE UNIT FROMO® 2000 Transient Droop Tipprovement Electronic Control Unit. Unit Grades Scale 1a. SATE of REPORT (Vea, Month, Day) 15 PAGE COUNT FROMO® 2006 5 transition, Quickstops, Unit Control Scale 12. FERSONAL AUTHORDS 13b. TIME COVERED FROMO® 2006 5 tracestry and dentify by block number) 15 PAGE COUNT FROMO® 2006 5 tracestry and dentify by block number) 13b. SUPPLEMENTARY NOTATION 13b. TIME COVERED FROMO® 2006 5 tracestry and dentify by block number) 15 SUPPLEMENTARY NOTATION 17. COSATI CODES FILLO 1b. BUB COT TERMS (Continue on reverse if necestary and identify by block number)<	U.S. ARMY AVIATION SYSTEMS COMM 2b. DECLASSIFICATION / DOWNGRADING SCHEDU	AND LE	Approved fo unlimited.	r public rel	lease, dis	tribution
AEFA PROJECT NO. 86-02 Sa. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION FLIGHT ACTIVITY 7b. ADDRESS (CHy, State, and ZH Code) 7b. ADDRESS (CHy, State, and ZH Code) EDWARDS AIR FORCE BASE, CALIFORNIA 93523-5000 7b. ADDRESS (CHy, State, and ZH Code) Sa. ADDRESS (CHy, State, and ZH Code) 8b. OFFICE SYMBOL (# applicable) 7b. ADDRESS (CHy, State, and ZH Code) Sa. ADDRESS (CHy, State, and ZH Code) 8b. OFFICE SYMBOL (# applicable) 7b. POCUREMENT INSTRUMENT IDENTIFICATION NUMBER AVIATION U.S. ARMY AVIATION SYSTEMS COMMAND 8b. OFFICE SYMBOL (# applicable) 7b. POCUREMENT INSTRUMENT IDENTIFICATION NUMBER 4.300 COODFFLLOW BLUD. ST. LOUIS, MO 63120-1998 10 SOURCE OF FUNDING NUMBERS MORE UNIT TATS indiverse Security Cashifterion) Engline/Aitframe Response Svaluation of the HH-60A Helicopter Equipped with the T700-CE-701 Transient Droop Improvement Electronic Control Unit. Unclassified NORE COUNT 82 17. COSATI COODS 16. DARE OF REDET (Vear, Month, Day) 15 PAGE COUNT 82 18. SUBECT TERMS (Continue on reverse if necessary and identify by block number) 15 19. ASTRACT (Continue on reverse if necessary and identify by block number) 15 19. ASTRACT (Continue on reverse if necessary and identify by block number) 16	4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING C	ORGANIZATION RE	PORT NUMBER(S)
Sa. NAME OF PERFORMING ORGANIZATION U.S. ARMY AVIATION ENGINEERING FLIGHT ACTIVITY C. ADDRESS (CRy, State, and ZPCode) 7a. NAME OF MONITORING ORGANIZATION (# applicable) FLIGHT ACTIVITY C. ADDRESS (CRy, State, and ZPCode) 7b. ADDRESS (CRy, State, and ZPCode) EDWARDS AIR FORCE BASE, CALIFORNIA 93523-5000 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION U.S. ARY AVIATION U.S. ARY AVIATION SYSTEMS COMMAND 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (# applicable) R. ADDRESS (CRy, State, and ZPCode) 10. SOURCE OF FUNDING NUMBERS PROGRAM AVIATION SYSTEMS COMMAND 10. SOURCE OF FUNDING NUMBERS PROGRAM AVIATION SYSTEMS COMMAND R. ADDRESS (CRY, State, and ZPCode) 10. SOURCE OF FUNDING NUMBERS PROGRAM AVIATION SYSTEMS COMMAND 10. SOURCE OF FUNDING NUMBERS PROGRAM AVIATION SYSTEMS COMMAND R. ADDRESS (CRY, State, and ZPCode) 10. SOURCE OF FUNDING NUMBERS PROGRAM AVIATION SYSTEMS COMMAND 10. SOURCE OF FUNDING NUMBERS PROGRAM AVIATION SYSTEMS COMMAND R. ADDRESS (CRY, State, and ZPCode) 10. SOURCE OF FUNDING NUMBERS PROGRAM Transient Droop Improvement Electronic Control Unit. Unclassified 13. SOURCE OF FUNDING NUMBERS PROGRAM I PROGRAM I PROFECT 10. SOURCE OF FUNDING NUMBERS PROGRAM I PROFECT 15. PAGE COUNT TRANSIELL AVIANDON ST. LOUIS, NUMPON(S) 17. COSATI CODES TISALL AUTHONGY 11. DATE OF REPORT 11. SUBJECT TERMS (Continue on reverse if necessary and identify by Moke number) 17. COSATI CODES TISALL AUTHONGY 11. SUBJECT TERMS (Continue on reverse if necessary an	AEFA PROJECT NO. 86-02					
PLIGHT ATTIVITY 7b. ADDRESS (Chy. State, and ZP Code) FLIGHT ACTIVITY 7b. ADDRESS (Chy. State, and ZP Code) EDWARDS AIR FORCE BASE, CALIFORNIA 93523-5000 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION U.S. ARY Bb. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AVIATION SYSTEMS COMMAND Bb. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AUTATION SYSTEMS COMMAND Ib. OFFICE SYMBOL (If applicable) 10. SOURCE OF FUNDING NUMBERS AUTATION SYSTEMS COMMAND Ib. OFFICE SYMBOL (If applicable) 10. SOURCE OF FUNDING NUMBERS AUTATION SYSTEMS COMMAND Ib. OFFICE SYMBOL (If applicable) 10. SOURCE OF FUNDING NUMBERS AUTATION SYSTEMS COMMAND Ib. OFFICE SYMBOL (If applicable) 10. SOURCE OF FUNDING NUMBERS II. ITHE (Include Security Classification) II. Intit (Include Security Classification) II. Intit (Include Security Classification) II. ITHE (Include Security Classification) II. Intit (Include Security Classification) III. Intit (Include Security Classification) II. THE (Include Security Classification) III. Intit (Include Security Classification) III. THE (Include Security Classification) III. THE (Include Security Classification) III. Intit (Include Security Classification) III. Intit (6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	NITORING ORGAN	IZATION	
Sc. ADDRESS (CRy, State, and ZP Code) 7b. ADDRESS (CRy, State, and ZP Code) EDWARDS AIR FORCE BASE, CALIFORNIA 93523-5000 7b. ADDRESS (CRy, State, and ZP Code) Ba. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. ARMY 8b. OFFICE SYMBOL (0' applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER VITATION SYSTEMS COMMAND 10. SOURCE OF FUNDING NUMBERS 10. SOURCE OF FUNDING NUMBERS RCADDRESS (CRy, State, and ZP Code) 10. SOURCE OF FUNDING NUMBERS St. LOUIS, MO 63120-1998 10. SOURCE OF FUNDING NUMBERS Transfer Droop Improvement Electronic Control Unit. No. Transfer Droop Improvement Electronic Control Unit. Unclassified Transfer Droop Improvement Electronic Control Unit. Unclassified Torsport FROORT 13b. TIME COVERED FROMO9/05 & rc25/08/87 October 1986 Tr. COSATI CODES 10. SUB-GROUP Engline/Airframe Response, Engine Governor Configuration, Uump Takeoff, Power Recovery from Autorotation, Quickstops, UH=60A Helicopter and one flight was conducted at Edwards AFB, California (elevation 2302 Testine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 Testine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 Testine/airframe response testing was conducted in the UH=60A helicopter. Four different engine/engine governor configurations were tested. Engine/airfram	FLICHT ACTIVITY					
EDWARDS AIR FORCE BASE, CALIFORNIA 93523-5000 a. NAME OF FUNDING/SPONSORING (************************************	6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City	y, State, and ZIP C	ode)	
Ba. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. ARMY Bb. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER VITATION SYSTEMS COMMAND Bb. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 11 THIE (mcdue Security Cashification) PROGRAM ELIMENT NO. PROGRAM PROGRAM ELIMENT NO. NOK 12 FREGORAL AUTHOR(S) ITA SK NOK AL-6-01008-08-01 12 FREGORAL AUTHOR(S) Ita Tite (mcdue Security Cashification) Ita Tite (mcdue Security Cashification) 13a, TYPE OF REPORT 11b. TIME (COURTO) 11 D. TATE OF REPORT (Yes, Month, Day) 15 PAGE COUNT B2 13a, TYPE OF REPORT 11b. TIME (COURTO) 14. DATE OF REPORT (Yes, Month, Day) 15 PAGE COUNT B2 13a, TYPE OF REPORT 11b. TIME (COURTO) 14. DATE OF REPORT (Yes, Month, Day) 15 PAGE COUNT B2 13a, TYPE OF REPORT 11b. TIME (COURTO) 14. DATE OF REPORT (Yes, Month, Day) 15 PAGE COUNT B2 13a, TYPE OF REPORT 11b. TIME (COURTO) 14. DATE OF REPORT (Yes, Month, Day) 15 PAGE COUNT B2 14, OCO	EDWARDS AIR FORCE BASE, CALIFOR	NIA 93523-5000				
AVIATION SYSTEMS COMMAND ID SOURCE OF FUNDING NUMBERS Sc. ADDRESS(CR), State, and ZP Code) ID SOURCE OF FUNDING NUMBERS 4300 GOODFELLOW BLVD. ID SOURCE OF FUNDING NUMBERS ST. LOUIS, MO 63120-1998 Al1-6-0108-68-01 ITTEL (include Security Classification) ELEMENT NO. NO. Engine/Aitframe Response Evaluation of the HH-60A Helicopter Equipped with the T700-CE-701 Transient Droop Improvement Electronic Control Unit. Unclassified 12. FF850MAL AUTHOR(S) Gary L. Bender, James A. Adkins, Roy A. Lockwood IS FACE COUNT 13. TYPE OF REPORT IB: TIME COVERED I4. DATE OF REPORT (Year, Month, Day) IS PAGE COUNT FIRAL IB: SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 17. COSATI CODES III: SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES III: SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 18. SUBJECT TERMS was conducted at Edwards AFB, California (elevation 302 Feel between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter, rour different engine/drive train response was stable for a	8a. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. ARMY	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATION N	JMBER
BC ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 4300 GOODFELLOW BLVD. PROGRAM PROGRAM NO. A300 GOODFELLOW BLVD. Al-6-01008-6B-01 TASK WORK UNIT A1. TITLE (Include Security Classification) Engline/Airframe Response Evaluation of the HH-60A Helicopter Equipped with the T700-GE-701 Transient Droop Improvement Electronic Control Unit. Unlassified 17. TOPE OF REPORT 13b. TIME COVERED FROMAU AUMHOR(S) Gary L. Bender, James A. Adkins, Roy A. Lockwood 14. DATE OF REPORT 15 PAGE COUNT 13a, TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT 15 PAGE COUNT FIAL 13b. TIME COVERED Tab. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 16. SUPPLEMENTARY NOTATION 11. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 18. SUPPLEMENTARY NOTATION 19. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. FIAL 19. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)	AVIATION SYSTEMS COMMAND					
4300 GOODFELLOW BLVD. FROGRAM BUDS. FROGRAM FROGRAM NO. FROGRAM NO. FROGRAM NO. MOREKUNIT ACCESSION NO ST. LOUIS, MO 63120-1998 A1-6-01008-68-01 MOREKUNIT NO. MOREKUNIT ACCESSION NO It TITLE (Include Security Classification) Engine/Airframe Response Evaluation of the HH-60A Helicopter Equipped with the T700-GE-701 Transient Droop Improvement Electronic Control Unit. Unclassified 12 FERSONAL AUTHOR(S) Gary L. Bender, James A. Adkins, Roy A. Lockwood 13a, TYPE OF REPORT 13b. TIME COVERED FROM/9/06 6 T025/08/87 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 82 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FROGRAM B2 82 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) B2 82 19. ABSTRACT (Continue on reverse if necessary and identify by block number) B2 19. ABSTRACT (Continue on reverse if necessary and identify by block number) B2 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe Response Engine Governor Configurations, Hun-60A Helicopter, T00-GE-401 Engines, T700-GE-700 Engine 19. ABSTRACT (Continue on reverse if ne	8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBERS		
ST. LOUIS, MO 63120-1998 A1-6-01008-6B-01 11. TITE (Include Security Cassification) Engine/AITframe Response Evaluation of the HH-60A Helicopter Equipped with the T700-CE-701 Translent Droop Improvement Electronic Control Unit. Unclassified 12. PERSONAL AUTHOR(S) Gary L. Bender, James A. Adkins, Roy A. Lockwood 14. DATE OF REPORT T3. TYPE OF REPORT 13b. TIME COVERED FINAL 13b. TIME COVERED FINAL 13b. TIME COVERED FIELD GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Field GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Engine/Airframe Response testing was conducted at Edwards AFB, California (elevation 202 Field GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Engine/Airframe Response testing was conducted at Edwards AFB, California (elevation 202	4300 GOODFELLOW BLVD.		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification) Engline/Airframe Response Evaluation of the HH-60A Helicopter Equipped with the T700-GE-701 Transient Droop Improvement Electronic Control Unit. Unclassified 12. FPESONAL AUTWOR(S) Gary L. Bender, James A. Adkins, Roy A. Lockwood 13. FYPE OF REPORT 14. DATE OF REPORT 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. GASUR 18. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engline/Airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five filights totaling 11.1 hours were conducted on the HH-60A helicopter. Four diff	ST. LOUIS, MO 63120-1998		A1-6-01008-6	8-01		
Gary L. Bender, James A. Adkins, Roy A. Lockwood 13. TYPE OF REPORT 13. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 13. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 17. COSATI CODES 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/Airframe Response, Engine Governor Configuration, Quickstops, UH=60A Helicopter, T700-GE-401 Engines, T700-GE-700 Engine 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH=60A helicopter and one flight was conducted in the UH=60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response test included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the-earth quickstops, power recovery from autorotation, not noportation, the speed droop, rotor speed droop recovery characteristics, and power turbine speed govopr. rotor speed droop recovery characteristics, and power turbine speed govop, rotor speed droop recovery, and less desirable power turbine speed governing	11. TITLE (Include Security Classification) Engine/Airframe Response Evalua Transient Droop Improvement Ele	ation of the HH ctronic Control	-60A Helicop Unit. Uncla	ter Equipped ssified	d with the	T700-GE-701
13. TYPE OF REPORT 13. TIME COVERED FROM/09/06 6 T025/08/87 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 82 16. SUPPLEMENTARY NOTATION 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 82 19. ABSTRACT (Continue on reverse if necessary and identify by block number) UH=60A Helicopter, T700-GE-401 Engines, T700-GE-700 Engine 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH=60A helicopter and one flight was conducted in the UH=60A helicopter. Four different engine/orther earth ridgeline crossing maneuvers. *-The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed droop recovery characteristics, and power turbine speed governing characteristics was the HH=60A with the T700-GE=401 engine equipped with the -401 transient droop improvement engine control unit. The HH=60A with the T700-GE=401 engine equipped with the -401 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing c	Gary L. Bender, James A. Adkins	, Roy A. Lockwoo	d			
16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Engine/Airframe Response, Engine Governor Configuration, Jump Takeoff, Power Recovery from Autorotation, Quickstops, UH-60A Helicopter, T700-CE-401 Engines, T700-CE-700 Engine 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/Airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the-earth ridgeline crossing maneuvers. * The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-CE-401 engine equipped with the -401 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and leas desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 21 JuncLASSIFIED/UNNIMITED 21 ABSTRACT (LASSIFIED) 22a NAME OF RESPONSIBLE INDIVIDUAL 21 ABSTRACT SECURITY CLASSIFICATION (MSOL </td <td>13a. TYPE OF REPORT 13b. TIME C FINAL FROM 09/</td> <td>OVERED 06 & TO25/08/87</td> <td>14. DATE OF REPO October 1986</td> <td>RT (Year, Month, I</td> <td>Day) 15. PAGE 82</td> <td>COUNT</td>	13a. TYPE OF REPORT 13b. TIME C FINAL FROM 09/	OVERED 06 & TO25/08/87	14. DATE OF REPO October 1986	RT (Year, Month, I	Day) 15. PAGE 82	COUNT
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Engine/Airframe Response, Engine Governor Configuration, Jump Takeoff, Power Recovery from Autorotation, Quickstops, UH-60A Helicopter, T700-GE-401 Engines, T700-GE-700 Engine 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/gine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the- earth ridgeline crossing maneuvers. Arthe engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNIMITED 22a NAME OF RESPONSIBLE INDIVIDUAL SHELLA R. LEWIS Previous editions are obsolete. 22 coffi	16. SUPPLEMENTARY NOTATION					
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Engine/Airframe Response, Engine Governor Configuration, Unickstops, Unickstop, Unickstops, Unicksted, Unickstops, Unickstops, Unickstops, Unickstops, Un						
17. COSAIT CODES 1a. Subject Transferme Response, Engine Governor Configuration, Jump Takeoff, Power Recovery from Autorotation, Quickstops, UH-60A Helicopter, T700-GE-401 Engines, T700-GE-700 Engine 19. ABSTRACT (Continue on reverse if meetsary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the- earth ridgeline crossing maneuvers. ArThe engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 		T TO CUDIECT TERMS (Continue on revert	e if necessary and	identify by blo	ck number)
Jump Takeoff, Power Recovery from Autorotation, Quickstops, UH-60A Helicopter, T700-GE-401 Engines, T700-GE-700 Engine 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the-earth ridgeline crossing maneuvers. ArThe engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed droop, rotor speed/power turbine speed droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNALIMITED SAME AS RPT DTIC USERS 223 NAME OF RESPONSIBLE INDIVIDUAL 221. ABSTRACT SECURITY CLASSIFICATION SAVTE-PR 224 NAME OF RESPONSIBLE INDIVIDUAL Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE SECURITY CLASSIFICATION OF THIS	TT. COSATI CODES	Engine/Airframe	Response, E	ngine Govern	nor Configu	iration.
UH-60A Helicopter, T700-GE-401 Engines, T700-GE-700 Engine 19 ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the-earth ridgeline crossing maneuvers. The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL 21 ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE 22a NAME OF RESPONSIBLE INDIVIDUAL Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE 22a NAME OF RESPONSIBLE INDIVIDUAL Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE </td <td>FIELD GROOF JOD GROOF</td> <td>Jump Takeoff, I</td> <td>Power Recove</td> <td>ry from Aut</td> <td>orotation,</td> <td>Quickstops,</td>	FIELD GROOF JOD GROOF	Jump Takeoff, I	Power Recove	ry from Aut	orotation,	Quickstops,
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the-earth ridgeline crossing maneuvers. *\The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -101 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 212.a NAME OF RESPONSIBLE INDIVIDUAL SHELLA R. LEWIS Previous editions are obsolete. 221. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED		UH-60A Helicopt	er, T700-GE	-401 Engine	s, T700-G	E-700 Engine
Engine/airframe response testing was conducted at Edwards AFB, California (elevation 2302 feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the- earth ridgeline crossing maneuvers. * The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT DICLUSERS 21 ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS 22b FELEPHONE (include Area Code) 22c OFFICE SYMBOL SAVTE-PR 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS 22b Freevious editions are obsolete. 22c OFFICE SYMBOL 22c OFFICE SYMBOL 22c OFFICE SYMBOL 22d SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)			
feet) between 9 June and 25 August 1986. Five flights totaling 11.1 hours were conducted on the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the- earth ridgeline crossing maneuvers. A The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. OFFICE SYMBOL SAWE AS RPT 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS Previous editions are obsolete. 22. OFFICE SYMBOL SAVTE-PR 22b TELEPHONE (Include Area Code) UNCLASSIFICATION OF THIS PAGE UNCLASSIFICATION OF THIS PAGE 22. OFFICE SYMBOL SAVTE-PR	Engine/airframe response testi	ng was conducte	ed at Edward	s AFB, Cali	fornia (e	levation 2302
the HH-60A helicopter and one flight was conducted in the UH-60A helicopter. Four different engine/engine governor configurations were tested. Engine/airframe response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the- earth ridgeline crossing maneuvers. * The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS DD Form 1473, JUN 86 Previous editions are obsolete: SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	feet) between 9 June and 25 Au	gust 1986. Five	flights tot	aling 11.1 H	nours were	conducted on
engine/engine governor configurations were tested. Engine/airtrame response tests included jump takeoff, nap-of-the-earth quickstops, power recovery from autorotation, and nap-of-the- earth ridgeline crossing maneuvers. The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNUMINITED ED SAME AS RPT 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNCLASSIFIED/UNCLASSIFICATION OF THIS PAGE UNCLASSIFIED/UNCLASSIFIED/UNCLASSIFICATION OF THIS PAGE UNCLASSIFIED/UNCLASS	the HH-60A helicopter and one	flight was cond	ucted in the	UH-60A hel	icopter. F	our different
Jump takeoff, hap-of-the-earth quicks tops, power recovery from autoforation, and hap of the earth ridgeline crossing maneuvers. * The engine/drive train response was stable for all tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed droop, rotor characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 212a NAME OF RESPONSIBLE INDIVIDUAL 21 ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL 22a NAME OF RESPONSIBLE INDIVIDUAL Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE_UNCLASSIFIED	engine/engine governor configu	rations were te	sted, Engine	from autoro	esponse to	ests included
tests performed. The best configuration for magnitude of main rotor speed droop, rotor speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 212a NAME OF RESPONSIBLE INDIVIDUAL 21 ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL 22a NAME OF RESPONSIBLE INDIVIDUAL Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE_UNCLASSIFICATION OF THIS PAGE_UNCLASSIFIED	earth ridgeline crossing mane	uvers. ^A . The eng	ine/drive ti	rain respons	se was st	able for all
speed/power turbine speed droop recovery characteristics, and power turbine speed governing characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED XI SAME AS RPT DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL SHEILA R. LEWIS Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED UNCLASSIFIED	tests performed. The best co	nfiguration for	magnitude	of main rot	or speed	droop, rotor
characteristics was the HH-60A with the T700-GE-401 engines equipped with the -401 transient droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 21 UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 222 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL 224 NAME OF RESPONSIBLE INDIVIDUAL Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	speed/power turbine speed droo	p recovery chara	acteristics,	and power (turbine sp	eed governing
droop improvement engine control unit. The HH-60A with the T700-GE-401 engine equipped with the -701 transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL SAVTE-PR 20 DForm 1473, JUN 86 Previous editions are obsolete.	characteristics was the HH-60A	with the T700-G	E-401 engine	s equipped	with the -	401 transient
the -/Ul transient droop improvement engine control unit (with and without the collective potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED 22a NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL SHEILA R. LEWIS 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED UNCLASSIFIED	droop improvement engine contr	ol unit. The HH	-60A with th	e T700-GE-4	01 engine	equipped with
potentiometer input) exhibited larger rotor speed droop, noticeable drive train oscillation during droop recovery, and less desirable power turbine speed governing characteristics. 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL SHEILA R. LEWIS Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED UNCLASSIFICATION OF THIS PAGE	the -/Ul transient droop impre	ovement engine	control unit	(with and	without th	ne collective
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. UNCLASSIFIED/UNLIMITED 21. ABSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL SHEILA R. LEWIS 28b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASS IFIED UNCLASS IFIED	during droop recovery, and le	ess desirable po	ower turbine	speed gove	erning cha	racteristics.
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS UNCLASSIFIED 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL SHEILA R. LEWIS (805)277-4024 SAVTE-PR DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED UNCLASSIFIED	20 DISTRIBUTION / AVAILABILITY OF ABSTRACT		21. ABSTRACT SE	CURITY CLASSIFIC	ATION	
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL SHEILA R. LEWIS 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED UNCLASSIFIED	UNCLASSIFIED/UNLIMITED SAME AS	RPT DTIC USERS	UNCLASI	IFIED		
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	228 NAME OF RESPONSIBLE INDIVIDUAL SHEILA R. LEWIS		226 TELEPHONE ((805)277-	(Include Area Code 4024	SAVTE-PR	
	DD Form 1473, JUN 86	Previous editions are	obsolete.	SECURITY UNCLAS	CLASSIFICATION	OF THIS PAGE

Block No. 19

The undesirable engine/airframe characteristics of the HH-60A with the -701 transient droop improvement engine control unit is a shortcoming. The UH-60A with the T700-GE-700⁻⁴ engine demonstrated the largest main rotor speed droop but residual drive train oscillations were small, droop recovery characteristics were more predictable and power turbine speed governing was noticeably more stable than demonstrated by the T700-GE-401 engines equipped with the -701 transient droop improvement engine control unit. The undesirable engine/airframe response (large main rotor speed droop) of the UH-60A with the T700-GE-700 engines is a previously identified shortcoming. Future designs for the UH-60 engine control units should include all the transient droop improvements of the -401 transient droop improvement engine control unit. Additionally, future designs of engine control units should have dynamics tailored to the particular helicopter in which the engines are to be installed.

TABLE OF CONTENTS

INTRODUCTION

Background	1
Test Objective	1
Description	1
Test Scope	2
Test Methodology	2

RESULTS AND DISCUSSION

General	3
Engine/Airframe Response	4
General	4
Configuration One	4
Configuration Two	6
Configuration Three	7
Configuration Four	8
Engine/Drive Train Stability	9

CONCLUSIONS

ないななない

20.222

General	10
Shortcomings	10
RECOMMENDATIONS	11

APPENDIXES

References	12
Description	13
Instrumentation	21
Test Data	23
	References Description Instrumentation Test Data

DISTRIBUTION

Accesi	on For	1	
NTIS DTIC Uliann Justifi	CRA&I TAB ounced cation		
By Diut.ib	ution /		-
A	vailability	Codes	-
Diut	Avuit an Speci	rl or al	
A-			

Page

INTRODUCTION

BACKGROUND

1. The US Army has expressed a desire to install T700-GE-701 engines in the UH-60A helicopter to provide added performance margin. To provide commonality with the AH-64A, the UH-60A engines would be equipped with the T700-GE-701 transient droop improved electronic control units (-701 TDI ECU) and hydromechanical units (HMU). However, there is concern that with this engine change the engine/drive train response of the UH-60A may be degraded. As the -701 engine has yet to be installed in an Army UH-60A, the best available test article is the US Air Force HH-60A, which is equipped with T700-GE-401 engines. The US Army Aviation Systems Command requested (ref 1, app A) the US Army Aviation Engineering Flight Activity (USAAEFA) to conduct an evaluation of the US Air Force HH-60A helicopter equipped with the T700-GE-401 engines modified with the -701 TDI ECU and HMU. Additionally, USAAEFA evaluated the HH-60A with -401 TDI ECU and a US Army UH-60A with the T700-GE-700 engine with the standard -700 ECU and HMU.

TEST OBJECTIVE

2. The objective of the test was to evaluate the engine/drive train stability and transient rotor speed droop characteristics of the HH-60A helicopter equipped with the T700-GE-401 engines modified with the installation of the -701 TDI ECU and HMU.

DESCRIPTION

3. The HH-60A helicopter is an Air Force version of the US Army UH-60A. The HH-60A and UH-60A are described in references 2 and 3, respectively. The rotor and drive train systems are the same on both aircraft and therefore, the results of this testing on the HH-60A should be valid for the UH-60A also. The HH-60A and the AH-64A helicopter use the same HMU. The -701 TDI ECU incorporates a three-Hertz notch filter, a collective position signal, and modified torque and power turbine speed values for power turbine governor gain switching. The HH-60A TDI ECU incorporates a collective position signal and a rotor speed signal to improve rotor speed droop characteristics. The dynamics of the two ECUs are different to accommodate the different rotor/drive train dynamics of the AH-64A and HH-60A aircraft. The UH-60A ECU does not incorporate a collective signal nor a rotor speed signal. A further description of the HMU and ECU can be found in appendix B.

TEST SCOPE

4. This evaluation was conducted at Edwards AFB, California, between 9 June and 25 August, 1986. Five flights were conducted on the HH-60A for a total of 11.1 hours. Because the Army test pilots were not qualified in the Air Force HH-60A, and because the aircraft was under the operational control of the Air Force, an Air Force instructor pilot was in the left seat for all HH-60A flights. The HH-60A aircraft was flown at an engine start gross weight and longitudinal center of gravity (cg) of 20,375 pounds and fuselage station (FS) 352.5, respectively. Tests were conducted at field elevation (2302 feet), 6000 and 10,000 feet, pressure altitude. A one hour flight was flown in the UH-60A. The UH-60A tests were flown by an Army crew at field elevation and 6000 feet, pressure altitude. Takeoff gross weight was 17580 pounds at a longitudinal cg of FS 354.6.

TEST METHODOLOGY

5. The engine/drive train stability and engine/airframe response were evaluated using collective steps and pulses, jump takeoffs, NOE quickstops, and recoveries from autorotation. Test techniques are described in the results and discussion section of this report. Data were obtained from calibrated test instrumentation and recorded on magnetic tape. A detailed listing of the test instrumentation is contained in appendix C.

RESULTS AND DISCUSSION

GENERAL

6. Three configurations of the US Air Force HH-60A helicopter equipped with the T700-GE-401 engines were evaluated to determine engine/drive train stability and transient main rotor speed (N_R) droop characteristics. The following configurations are described in the order in which they were evaluated. The first configuration was obtained by modifying the engines with the installation of the -701 TDI ECU and HMU. The second configuration was identical to the first configuration except for the addition of a collective control potentiometer signal to the ECU. For the third configuration, the engines were equipped with the -401 TDI ECU which incorporates a collective control potentiometer signal and N_R signal to the ECU. The -701 TDI HMU was used for all HH-60 testing. Additionally, the US Army UH-60A with the T700-GE-700 engine was evaluated for comparison and will be referred to as the fourth configuration. The low rotor speed warning horn and light is designed to illuminate when N_R drops below 94% for all configurations. The undesirable engine/airframe response of configurations one, two and four during power application from a low torque condition and during nap-of-the-earth (NOE) quickstop maneuvers is a shortcoming.

7. Engine airframe response tests included jump takeoffs, NOE quickstops, power recoveries from autorotation, and NOE ridgeline crossing maneuvers. The engine/drive train was stable for all configurations tested (i.e., all oscillations were damped). The best configuration for magnitude of Ng droop, rotor speed/power turbine speed (N_R/N_P) droop recovery characteristics, and Np governing was the T700-GE-401 engines with -401 TDI ECU (third configuration). The first and second configurations (T700-GE-401 engines with the -701 TDI ECU and HMU) exhibited larger Ng droop for the same collective input time (fig. A), noticeable drive train oscillation during NR/Np droop recovery, and less desirable Np governing characteristics. Following the flight tests of configuration one, the engine load demand spindles were found misrigged. The load demand spindles were rerigged prior to configuration two testing, but no significant improvement in engine response was apparent. The UH-60A with T700-GE-700 engines demonstrated the largest Ng droop but residual drive train oscillations were reduced from configurations one and two. $N_{\rm R}/N_{\rm P}$ droop recovery characteristics were more predictable, and Np governing was noticeably more stable than configurations one and two.

FIGURE A H-60A ROTOR SPEED DROOP

SYM CONFIGURATION A NO. 1, HH-60A WITH -701 TDI ECU, NO COLLECTIVE SIGNAL + NO. 2, HH-60A WITH -701 TDI ECU, WITH COLLECTIVE SIGNAL NO. 3, HH-60A WITH -401 TDI ECU

X NO. 4, UH-60A WITH -700 ECU

4

ENGINE/AIRFRAME RESPONSE

General

8. Jump takeoffs were performed from the ground with the initial collective control position at full down. Collective control was increased to 95% intermediate rated power (IRP) at several rates (input times varied incrementally from 1 to 5 seconds). NOE quickstops were performed at 50 ft above ground level (AGL) with entry speeds of 60, 80, 100 and 120 knots indicated airspeed (KIAS). The maneuvers were terminated at a stable hover. Power recovery from autorotation was performed from stable 80 KIAS descent (power levers at fly) with collective positioned to maintain 1 to 15% split between NR and Np. Collective control was increased to 95% IRP in 2 to 12 seconds during recovery. Ridgeline crossing maneuvers were performed at 100 ft AGL from initial airspeeds of 60, 80, 100 and 120 KIAS using simultaneous cyclic and collective control inputs. No significant NR droop was observed in the four configurations tested while performing ridgeline crossing maneuvers.

Configuration One

9. Configuration one featured T700-GE-401 engines modified with the -701 TDI ECU and HMU. Engine/airframe response of this configuration was evaluated with the maneuvers described in Time history data are presented in figures 1A paragraph 8. through 5E, appendix D. A maximum of 3% Ng droop was observed during jump takeoffs, but 5 to 10% torque splits and torque reversals between number one and number two engines occurred during collective control increases. These torque splits and torque reversals persisted for as much as 8 seconds after the collective control movement was stopped (fig. 1B). Power recovery from autorotations resulted in larger NR droops and increased engine and airframe oscillations. A 7 second collective control increase to 95% IRP with less than 5% Ng/Np split resulted in a 5.5% NR droop, activating the low rotor rpm warning horn and light, followed by a 4.5% N_R overshoot prior to reaching 95\% IRP. Residual oscillations persisted for 3 seconds after collective control movement stopped (fig. 2, app D). An extremely slow (11 second) collective control increase with 10% N_R/N_P split resulted in a 5% N_R droop and 3.5% N_R overshoot prior to reaching 95% IRP (fig. 3A). Residual oscillations persisted for 5 seconds after the initial N_R overshoot. More aggressive collective control increase (2 seconds to 95% IRP) resulted in N_R droop to 90%, but the N_R recovery was improved over the slower collective control increase in that N_R/N_P overshoot and residual oscillations were reduced (fig. 4A). The recovery is

inconsistent with the previous examples (figs. 2A through 2C and 3A through 3C) since the pilot will expect a more aggressive collective control increase and larger N_R droop to result in degraded recovery characteristics. These oscillations during recovery occur after the TDI circuit (described in fig. 3, app B) is disabled (i.e., engine torque is above 50 ft-lb). The data indicates that recovery characteristics are improved when collective control input terminates not more than 0.5 seconds after the maximum N_R droop occurs.

10. Poor Np governing, large Np droop, and persistent residual engine/airframe oscillations were observed during quickstop maneuvers. During the deceleration to a quickstop, Np and Ng remained joined up to 104% (fig. 5A, app D). A clean N_R/N_P split did not occur until 5 seconds after collective reduction was initiated. During collective control increase, NR drooped to 92% activating the low N_R warning horn and light. N_R/N_P overshot to 106% during the final portion of the maneuver while the aircraft was slowing to a stop. Poor Np governing, torque splits and reversals, unpredictable and inconsistent N_R/N_P droop recovery (para 9) and residual engine/airframe oscillations will make it difficult to safely perform NOE maneuvers such as quickstops and recovery from low power descents with reduced visual cues (e.g., flying at night using pilot night vision systems). The pilot will be required to direct his attention inside the cockpit to compensate for the rapidly changing aural and visual cues (cockpit torque and Ng/Np indicators) resulting from engine, rotor, and airframe oscillations. This will reduce the NOE maneuvering capability of the aircraft. The undesirable engine/ airframe response with the -701 TDI ECU (without collective potentiometer signal) during power application from a low torque condition and during NOE quickstop maneuvers is a shortcoming.

Configuration Two

11. Configuration two was identical to configuration one except for the addition of a collective control potentiometer signal to the ECU. Engine/airframe response of this configuration was evaluated with the maneuvers described in paragraph 8. Time history data are presented in figures 6A through 10E, appendix D. No Ng droop was observed during jum takeoffs, but a torque split between number one and number two engines of more than 15% persisted for over 4 seconds after collective control movement stopped (fig. 6B). A 3 second collective control increase to 95% IRP during power recovery from autorotation with an 11% N_R/N_P split resulted in N_R droop to 93% which is liveled the low N_R warning horn and light (figs. 7A through 7C). One NR/Np overshoot to 102.5% was observed during recovery. A 6 second collective control increase with a 2% N_R/N_P split resulted in a smaller

 N_R droop to 95% (figs. 8A through 8C). An unintentional reduction in rate of collective control increase during the last two seconds resulted in degraded recovery characteristics in that N_R/N_P overshot to 103.5% and several residual engine/airframe oscillations ocurred. Addition of the collective control potentiometer signal improved the magnitude of N_R droop for a given rate of collective control input but this configuration demonstrated the same trends as configuration one in torque splits and unpredictable N_R/N_P recovery characteristics. The addition of the collective potentiometer signal to the ECU had no effect on the torque and N_R/N_P oscillations since they occurred when the TDI circuitry was disabled (i.e., above 50 ft-1b engine torque).

12. Poor Np governing, large Ng droop, and persistent residual engine/airframe oscillations were observed during quickstop maneuvers. During deceleration to a quickstop, NR and Np remained joined up to 104% (fig. 9A, app D). After the $N_{\rm P}/N_{\rm P}$ split, $N_{\rm P}$ continued to increase to 105% followed by N_R droop to 95.5%. No Ng/Np split occurred during a quickstop with minimum collective control position of 25% and $N_{\rm R}$ drooped to 98% (figs. 10A through 10E). An 8 to 10% torque split and small persistent engine/airframe oscillations were apparent to the pilot as the aircraft came to a stop. Configuration two with the collective potentiometer signal showed some improvement in magnitude of NR droop, but demonstrated trends similar to configuration one in torque splits and unpredictable NR/Np droop recovery characteristics. Poor Np governing, torque splits, unpredictable Ng/Np droop recovery characteristics (para 11), and residual engine/airframe oscillations will make it difficult to safely perform NOE maneuvers such as quickstops and recovery from low power descent with reduced visual cues (e.g, flying at night using pilot night vision systems). The pilot will be required to direct his attention inside the cockpit to compensate for rapidly changing aural and visual cues (cockpit torque and NR/NP indicators) resulting from engine, rotor, and airframe oscillations. This will reduce NOE maneuvering capability of the aircraft. The undesirable engine/ airframe response with the -701 TDI ECU (with collective potentiometer signal) during power application from a low torque condition and during NOE quickstop maneuvers is a shortcoming.

Configuration Three

Received as your

13. Configuration three featured the -401 TDI ECU, described in appendix B which incorporated a collective control potentiometer signal and N_R signal to the ECU. This configuration was evaluated with the maneuvers described in paragraph 8. Time history data are presented in figures 11A through 12E, appendix D. During jump

takeoffs, N_R droop was minimum and the torque splits observed on the previous two configurations did not occur. During recovery from autorotation, an aggressive 1.5 second collective control increase to 95% IRP with a 10% N_R/N_P split resulted in N_R droop to 87.5% with only one overshoot to 102% during recovery (figs. 11A through 11C). There was no degradation in Ng/Np recovery characteristics with slower collective control increases or smaller N_R/N_P splits at the initiation of the collective control increase. During an aggressive quickstop maneuver, N_{R} drooped to 91.5% with one overshoot to 102% during recovery (figs. 12A through 12E). NR droop and NR/NP recovery characteristics were predictable with changes in maneuver aggressiveness. During all maneuvers, configuration three demonstrated noticeably less N_R droop, good N_P governing, good N_R/N_P droop recovery characteristics, and minimum residual engine/airframe oscillations. The reduced magnitude of N_{R} droop can be attributed to the addition of an N_R signal to the TDI circuit in the ECU. Future designs of UH-60A engine control units should include all the transient droop improvements of the -401 TDI ECU. The better recovery characteristics of the -401 TDI ECU (reduced oscillations) occur when the TDI circuit is disabled. Therefore, the better recovery characteristics must be attributed to the different Np governor dynamics shown in figure 5, appendix B. The dynamics of the -701 TDI ECU were developed for the AH-64A helicopter. In future designs, the dynamics of the engine Np governor should be tailored to the helicopter in which the engine is to be installed. The engine/airframe response characteristics of the HH-60A with the -401 TDI ECU are satisfactory.

Configuration Four

14. Configuration four was the UH-60A equipped with the T700-GE-700 engines. Engine/airframe response of this configuration was evaluated with the maneuvers described in paragraph 8. Time history data are presented in figures 13 through 16, appendix D. A jump takeoff performed with a 1.5 second collective control increase to 95% IRP resulted in N_R droop to 96.5% and one overshoot to 102.5% during NR/Np recovery (iig. 13). A torque split between number one and number two engines persisted for 6 seconds after collective movement stopped. Autorotation with a 4.0 second collective control increase to 95% $IR^{\rm p}$ resulted in N_R droop to 88% and one overshoot to 102% during N_R/N_P recovery (fig. 14). The torque split during N_R/N_P recovery was similar to that described for jump takeoffs. For a given rate of collective control input, the magnitude of N_R droop was larger in this configuration than the other three configurations, but the $N_{\rm R}/N_{\rm P}$ droop recovery was more predictable than configurations one and two. The dynamics in the UH-60A Np governor are the same as the

-401 TDI ECU and $N_{I\!\!R}/N_{I\!\!P}$ recovery characteristics are good in both configurations.

15. During quickstop maneuvers, good Np governing and good $N_{\rm R}/N_{\rm P}$ droop recovery characteristics were observed. During an aggressive quickstop maneuver N_R drooped to 85% with one overshoot to 101.5% during N_R/N_P recovery (fig. 15, app D). A moderately aggressive quickstop resulted in $N_{\mbox{R}}$ droop to 94%, activating the low $N_{\mbox{R}}$ warning horn and light, with one overshoot to 102% (fig. 16). For a given rate of collective control increase, the magnitude of N_{R} droop was larger in this configuration than the other configuration tested. During all the maneuvers, the N_R/N_P droop recovery characteristics were predictable and fewer residual engine/airframe oscillations were apparent to the pilot. Torque splits occurred during all maneuvers but were less noticeable to the pilot because the return to matched torque and steady state torque conditions occurred more smoothly in this configuration than configurations one and two. Large NR droop resulting in activation of the low N_R warning system and moderate residual engine/airframe oscillations will limit aggressive combat maneuvering tactics. The undesirable engine/airframe response (large N_R droop) in the UH-60A with T700-GE-700 engines during power application from a low torque condition and during NOE quickstop maneuvers is a previously identified shortcoming.

ENGINE/DRIVE TRAIN STABILITY

16. Tests of engine/drive train stability were conducted in configuration one. Ground tests consisted of pulling up on collective to get the aircraft light on the wheels, rapidly dropping the collective control 10%, holding for 5 seconds, then rapidly pulling the collective up 10% and holding for 5 seconds. The collective was also cycled $\pm 5\%$ at 2 to 3 Hertz and then held steady for 5 seconds. The collective oscillations were repeated at a 300-foot hover. The engine/drive train response was well damped. No residual oscillations were noted. The engine/drive train stability of the HH-60A with the -701 TDI ECU is satisfactory.

GENERAL

17. The dynamics of the -701 TDI ECU N_p governor (AH-64A configuration) degrade the power turbine speed governing of the HH-60A when compared to either the -401 TDI ECU (HH-60A configuration) or the UH-60A with the T700-GE-700 engines (paras 13 and 14).

18. The HH-60A with the -401 TDI ECU exhibited the least transient N_R droop and the best N_R/N_P recovery characteristics and is satisfactory (para 7).

19. The TDI circuits in the -401 TDI ECU decrease the magnitude of transient rotor speed droop (para 13).

20. The engine/drive train response is stable with the -701 TDI ECU in the HH-60A.

21. The UH-60A with T700-GE-700 engines exhibited large transient N_R droop but N_R/N_P recovery characteristics were comparable to the HH-60A with the -401 TDI ECU (para 7).

22. The HH-60A with the -701 TDI ECU (with and without collective potentiometer input) exhibited the least desirable N_p governing characteristics (large N_R droop and poor N_R/N_P recovery) (para 7).

SHORTCOMINGS

23. The following shortcomings were found:

a. The undesirable engine/airframe response of the HH-60A with -701 TDI ECU (with and without collective potentiometer input) during power application from a low torque condition and during NOE quickstop maneuvers is a shortcoming (paras 10 and 12).

b. The undesirable engine/airframe response (large N_R droop) of the UH-60A with the T700-GE-700 engines during power application from a low torque condition and during NOE quickstop maneuvers is a previously identified shortcoming (para 15).

RECOMMENDATIONS

24. Future designs for UH-60 engine control units should include all the transient droop improvements of the -401 TDI ECU (para 13).

25. Future designs of engine control units should have dynamics tailored to the particular helicopter in which the engines are to be installed (para 13).

1

CHICK (AC)

AND CAR

1. Letter, AVSCOM, AMSAV-8, 29 January 1986, subject: HH-60A Helicopter Equipped with the T700-GE-701 Transient Droop Improvement Electronics Control Unit. (Test Request)

2. Technical Order, TO 1H-60(H)A-1, Preliminary Flight Manual, HH-60A Helicopter, Headquarters Department of the Air Force, 16 August 1985.

3. Technical Manual, TM 55-1520-237-10, Operator's Manual, UH-60A Helicopter, Headquarters Department of the Army, 21 May 1979 with change 37 dated 17 July 1986.

GENERAL

1. Only one type hydromechanical unit (HMU) was used on the HH-60A during these tests. The HMU on the UH-60A was different. The HH-60A tests were done with -401 transient droop improvement (TDI) electronic control units (ECU) and with -701 TDI ECU (with and without a collective position signal input). The UH-60A tests were done using a third type of ECU, which is standard on the T700-GE-700 engines on the UH-60A.

Hydromechanical Units

2. The acceleration fuel schedules for T700-GE-700 and T700-GE-701 engines are shown in figure 1. The T700-GE-701 HMU used is known as the TDI HMU because the acceleration fuel schedule was raised above approximately 61% gas producer speed from the previous T700-GE-701 HMU version.

Electrical Control Units

3. Figure 2 presents a schematic of the -700 ECU power turbine speed governor. The governor switches from high to low gain at low engine torque when the power turbine speed (Np) is close to 100%. This is to prevent the engine from spooling down rapidly so that it can respond to power demands more quickly. It switches back to high gain if engine torque rises above 20 foot-pounds or Np is above 104% or below 99%.

4. Figure 3 presents a schematic of the -701 TDI ECU Np governor and the cicuitry added to improve the transient rotor speed droop characteristics. The TDI circuitry accepts a collective control position input which it differentiates. It then increases fuel flow as a function of positive collective control rate of movement. This ECU was also tested with the collective signal disabled. The TDI circuitry is disabled if the engine torque is above 50 ft-lb or Np is above 107%. The Np governor gain is switched from low to high if the engine torque is above 50 ft-lb or the Np is above 107% or below 99% (a change from the -700 Np governor).

5. Figure 4 presents a schematic of the -401 TDI ECU Np governor and TDI circuitry. The TDI circuitry increases fuel flow as a function of collective rate of movement and rotor speed decay rate. Differences between the -701 and -401 TDI ECU are highlighted in dashed circles. Table 1 presents the differences among the ECU in Np governor gain switching conditions and input signals.

فككدكك

.

201

RUNE

юdda

40

CC

....

00000

15

3.0

Ċ,

67

Figure 4. Functional Description of T700-GE-401 FCU

.

.

•

SO VEN

17

Figure 5. Power Turbine Speed Governor Dynamics Comparison

18

		Gain Switch Conditions		Input Sig	nals
Configuration	Type ECU	Engine Torque (ft-lb)	Power Turbine Speed (%)	Collective Position	Rotor Speed
One	-701	50	107	No	No
Two	-701	50	107	Yes	No
Three	-401	50	112	Yes	Yes
Four	-700	20	104	No	No

Table 1. Electrical Control Unit Description

٠. ب

1. M. 1

1

ب رک

. **1**1.

6. Figure 5 shows the difference in dynamics between the -700/-401 TDI ECU and the -701 TDI ECU. The notch filter in the -701ECU was added to prevent an instability on the AH-64A.

「「「「「「」」

-

APPENDIX C. INSTRUMENTATION

1. Airborne data acquisition systems were installed on both aircraft. The systems included transducers, wiring, signal conditioning, pulse code modulation (PCM) encoder, magnetic tape recorder, and cockpit displays and controls. A boom was mounted on each aircraft, extending forward of the nose in the water line plane. The booms incorporated pitot-static tubes, and angle-of-attack and angle-of-sideslip sensors.

2. Instrumentation and related special equipment required for the test are presented in the following list.

Pilot Station Displays

Pressure altitude (boom system) Airspeed (boom system) Vertical rate of climb (ship system) Main rotor speed (high resolution) Engine torque (both engines) Engine measured gas temperature (both engines) Engine power turbine speed (both engines) Engine gas generator speed (both engines) Engine load demand spindle position (both engines) Angle of sideslip Control positions Longitudinal Lateral Directional Collective Radar altitude Event switch CG Normal acceleration Primary attitude indicator Turn needle and ball

Copilot Station Displays

Pressure altitude (ship system) Airspeed (ship system) Main rotor speed Engine Torque (both engines) Engine measured gas temperature (both engines) Engine gas generator speed (both engines) Fuel used (both engines) Total air temperature Time code display Event switch Data system controls

Parameters Recorded on Magnetic Tape

Time code Event (pilot and copilot) Main rotor speed Fuel used (both engines) Engine torque (both engines) Engine measured gas temperature (both engines) Engine gas generator speed (both engines) Engine power turbine speed (both engines) Engine fuel flow (both engines) Airspeed (boom system) Airspeed (ship system) Pressure altitude (boom system) Pressure altitude (ship system) Total air temperature Control positions Longitudinal Lateral Directional Collective Aircraft attitudes Pitch Roll Yaw Aircraft angular velocities Pitch Roll Yaw Radar altitude CG normal acceleration

APPENDIX D. TEST DATA

INDEX

Figure

Figure Number

Jump Takeoff (Configuration One)	14	through	10
Sump Takeoff (configuration one)		chirough	10
Recovery from Autorotation (Configuration (One) 2A	through	4C
Quickstop (Configuration One)	5 A	through	5E
Jump Takeoff (Configuration Two)	6A	through	6C
Recovery from Autorotation (Configuration 1	Гwo) 7А	through	8C
Quickstop (Configuration Two)	9A	through	10E
Recovery from Autorotation (Configuration 1	Three) 11A	through	11C
Quickstop (Configuration Three)	12A	through	12E
Jump Takeoff (Configuration Four)		13	
Recovery from Autorotation (Configuration E	Four)	14	
Quickstop (Configuration Four)	1	.5 and 16)

FIGURE 1A

1111111111

JUMP TAKEOFF HH-60A USAF S/N 83-23718

535

NO. 1 & 2 GAS GENERATOR SPEEDS (PERCENT) NO. 1 & 2 ENGINE TORQUES (PERCENT) COLLECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN)

25

FIGURE 2A

RECOVERY FROM AUTOROTATION

COLFECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN) NO. 1 & 2 ENGINE TORQUES (PERCENT)

88
0.1 & 2 GAS GENERATOR SPEEDS (PERCENT)
0.0

FIGURE 2B

and see show

RECOVERY FROM AUTOROTATION HH-60A USAF S/N 82-23718

RECOVERY FROM AUTOROTATION HH-60A USAF S/N 82-23718 FIGURE 2C

TIME (Seconds)
FIGURE 3A

TIME (Seconds)

FIGURE 3B

RECUVERY FROM AUTOROTATION HH-60A USAF S/N 82-23718

TIME (Seconds)

COLLECTIVE CONTROL POSITION (PERCENT) NULL & 2 GAS GENERATOR SPEEDS (PERCENT) NULL & 2 GAS GENERATOR SPEEDS (PERCENT) NULL & 2 GAS GENERATOR POSITION (PERCENT FROM FULL) NULL & 2 GAS GENERATOR POSITION (PERCENT) NULL & 2 GAS GENERATOR SPEEDS (PERCENT) NULL & 2 GAS GENERATOR SPEEDS (PERCENT) NULL & 2 GAS GENERATOR SPEEDS (PERCENT) FIGURE 3C

A STATE OF A

TIME (Seconds)

FIGURE 4B

State States

の日本市の「「「日本の」のように、

CHONE HOL

RECOVERY FROM AUTOROTATION HH-60A USAF S/N 82-23718

COLLECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN)

NO. 1 & 5 ENCINE TOE (DERCENT)

NO. 1 & 2 GAS GENERATOR SPEEDS (PERCENT)

22 NO. 1 & 2 ENGINE FUEL FLOW (1b/hr) NO. 1 & 2 MEASURED GAS TEMPERATURE (DEG. C)

FIGURE 5A

it choice ho

and a state of the second

FIGURE 58

QUICK STOP HH-60A USAF S/N 82-23718

COLLECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN) NO. I & S ENCINE TORQUES (PERCENT)

NUL 1 & 2 GAS GENERATOR SPEEDS (PERCENT)

22.25

222222

TIME (Seconds)

СОГГЕСТИЛЕ СОИТКОГ БОЗЕТТОИ (БЕКСЕИТ ЕКОМ ГИГТ ВОМИ.

LONGITUDINAL CONTROL POSITION (PERCENT FROM FULL FORWARD 86

TIME (Seconds)

ANNAL ANALY COMPANY ALARMAN

PITCH RATE (DEG/SEC) PITCH ATTITUDE (DEGREES) PITCH ATTITUDE (DEGREES) TIME (Seconds)

TRACE

Stander Tablink streets streets

ذ المداركين

WAIN ROTOR SPEED (РЕКСЕИТ) 41

TIME (Seconds)

a history and

COLLECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN) NO. 1 & 5 ENGINE TORQUES (PERCENT) the second second

34 A.12

FIGURE 6B

Sec. Sec. Sec.

FIGURE 6C

JUMP TAKEOFF HH-6UA USAF S/N 83-23718

43
 ио. 1 & 2 ЕИСІИЕ FUEL FLOW (16/hr)
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 43
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44

TIME (Seconds)

TIME (Seconds)

WVIN BOTOR SPEED (PERCENT)

FIGURE /A

FIGURE 7B

RECOVERY FRUM AUTURUTATION #H-60A USAF S/N 82-23718

4

REBCENT EBUM FOLD DOMA NOT11500 COFFECTIVE CONTROL

NO. 1 & 2 ENGINE TOR DEC (PERCENT)

30

16

14

12

10

ω

á,

0

ر. ز

TIME (Seconds)

1030836/ SC3365 80108389 SV9 C M t 100 45

TIME (SECONDS)

No. of the second second

TIME (Seconds)

N'HY COL

1.1.1

FIGURE 8A

19224-0

ANNO PERSONA ANNOVAL SA RAYA PERSONA ANARAGA ANARAGA ANARAGA ANARAGA

CONTECTIVE CONTROL POSITION (PERCENT FROM FOLL DOWN)

NOT T & 5 EMOTHE LOBORES (DEBCENT)

(101-1-8-2 GENERATOR SPEEDS (PER-ENT)

Surger S

and the set

and a second recently because a second

NO. 1 & 2 MEASURED GAS TEMPERATURE (DEG. 1.)

(44,74,1) MOLE THOLE ENTONE 1 8 1 100 49

14.62

Contraction and the

TIME (Seconds)

*

NOT I & S HOMER INBRINE SHEEDS (HERCENI)

WMIN ROTOR SPEED (PERCENT) 05

CRACK AND

COLLECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN)

NO. 1 & 2 ENGINE TORQUES (PERCENT)

NUL 1 & 2 GAS GENERATOR SPEEDS (PERCENT)

TIME (Seconds)

ES LONGITUDINAL CONTROL POSITION (PERCENT FROM FULL DOWN) COLLECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN) TIME (Seconds)

TIME (Seconds)

FIGURE 9E

(TVEDAER PORENTAR SPEEDS (PERCENT) WMIN BOTOR SEED (FERCENT)

TIME (Seconds)

CORFECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN)

HOT T & LENNINE LONGOE (DEBCENT)

96 (PERCENT) A L LOR RETOR SPEEDS (PERCENT)

TIME (Seconds)

OFFECTIVE CONTROL POSITION (PERCENT FROM FULL DOWN)

85 ...NUCITUDINE (ONTRO: POSITION (PERCENT FROM FULL FORMAPD)

~ Landaha

A CONTRACTOR OF THE STATE OF TH

PO MAIN ROTOR SPEED (PERCENT)

FIGURE 11A

NO. 1 & 2 ENGINE TORQUES (PERCENT)

NUL 1 8 1 GAS PRODUCER SPEEDS (PERCENT)

FISURE 11C

6.0000

1000000

AND AND SALARS

500000 - 10000000

MANY FRANKING

MAIN RUTOR SPEED (PERLENT)

55575551 1000000

92 NO. 1 & 2 ENGINE FUEL FLOW (15/הד) NO. 1 & 2 MEASURED GAS TEMPERATURE (DEC. C)

1000000 (1000000)

Contraction of the second

CONTRACT IN CONTRACT

12121212

ANTER AND ANTER ANTER ANTER

99 LONGITUDINAL CONTROL POSITION (PERCENT FROM FULL FORWARD) TIME (Seconds)

TIME (Seconds)

PITCH RATE (DEG/SEC)

68

ALLANA LANA IM-A

۱.

272.2.2.272.72

DISTRIBUTION

HQDA (DALO-AV, DALO-FDQ, DAMO-HRS, DAMA-PP	М-Т,	6
DAMA-RA, DAMA-WSA)		
US Army Materiel Command (AMCDE-SA, AMCDE-	P, AMCQA-SA,	4
AMCQA-ST)		
US Army Training and Doctrine Command (ATC	D-T, ATCD-B)	2
US Army Aviation Systems Command (AMSAV-8	, AMSAV-ED,	15
AMSAV-Q, AMSAV-MC, AMSAV-ME, AMSAV-L,	AMSAV-N,	
AMSAV-GTD)		
US Army Test and Evaluation Command (AMSTE	-TE-V,	2
AMSTE-TE-0)		
US Army Logistics Evaluation Agency (DALO-	LEI)	1
US Army Materiel Systems Analysis Agency (AMXSY-RV, AMXSY-MP)	8
US Army Operational Test and Evaluation Ag	ency (CSTE-AVSD-E)	2
US Army Armor School (ATSB-CD-TE)	<u>:</u>	1
US Army Aviation Center (ATZQ-D-T, ATZQ-CD	C-C, ATZQ-TSM-A,	5
ATZQ-TSM-S, ATZQ-TSM-LH)		
US Army Combined Arms Center (ATZL-TIE)		1
US Army Safety Center (PESC-SPA, PESC-SE)	2	2
US Army Cost and Economic Analysis Center	(CACC-AM)	1
US Army Aviation Research and Technology A	ctivity (AVSCOM)	3
NASA/Ames Research Center (SAVRT-R, SAV	RT-M (Library)	
US Army Aviation Research and Technology A	ctivity (AVSCOM)	2
Aviation Applied Technology Directorate	KT TY-DRD	
SAVRT-TY-TSC (Tech Library)		

050505052305050

10 - C + C + C + C +

DISTRIBUTION

HQDA (DALO-AV, DALO-FDQ, DAMO-HRS, DAMA-PPM-T,	6
DAMA-RA, DAMA-WSA)	
US Army Materiel Command (AMCDE-SA, AMCDE-P, AMCQA-SA,	4
AMCQA-ST)	
US Army Training and Doctrine Command (ATCD-T, ATCD-B)	2
US Army Aviation Systems Command (AMSAV-8, AMSAV-ED,	15
AMSAV-Q, AMSAV-MC, AMSAV-ME, AMSAV-L, AMSAV-N,	
AMSAV-GTD)	
US Army Test and Evaluation Command (AMSTE-TE-V,	2
AMSTE-TE-0)	
US Army Logistics Evaluation Agency (DALO-LEI)	1
US Army Materiel Systems Analysis Agency (AMXSY-RV, AMXSY-MP)	8
US Army Operational Test and Evaluation Agency (CSTE-AVSD-E)	2
US Army Armor School (ATSB-CD-TE)	l
US Army Aviation Center (ATZQ-D-T, ATZQ-CDC-C, ATZQ-TSM-A,	5
ATZQ-TSM-S, ATZQ-TSM-LH)	
US Army Combined Arms Center (ATZL-TIE)	1
US Army Safety Center (PESC-SPA, PESC-SE)	2
US Army Cost and Economic Analysis Center (CACC-AM)	1
US Army Aviation Research and Technology Activity (AVSCOM)	3
NASA/Ames Research Center (SAVRT-R, SAVRT-M (Library)	
US Army Aviation Research and Technology Activity (AVSCOM)	2
Aviation Applied Technology Directorate (SAVRT-TY-DRD	
SAVRT-TY-TSC (Tech Library)	

US Army Aviation Research and Technology Activity (AVSCOM)	1	
Aeroflightdynamics Directorate (SAVRT-AF-D)		
US Army Aviation Research and Technology Activity (AVSCOM)	1	
Propulsion Directorate (SAVRT-PN-D)		
Defense Technical Information Center (FDAC)	2	
US Military Academy, Department of Mechanics	1	
(Aero Group Director).		
ASD/AFXT, ASD/ENF	2	
US Army Aviation Development Test Activity (STEBG-CT)	2	
Assistant Technical Director for Projects, Code: CT-24		
(Mr. Joseph Dunn)	2	
6520 Test Group (ENML) .	1	
Commander, Naval Air Systems Command (AIR 5115B, AIR 5301)	3	
Defense Intelligence Agency (DIA-DT-2D)	1	
US Army Aviation Systems Command (AMSAV-EAA)	2	
US Army Aviation Systems Command (AMSAV-ECU)	2	
US Army Aviation Systems Command (AMSAV-EP)	2	
US Army Aviation Systems Command (AMCPM-BH-T)	4	
Commander, US Army Test and Evaluation Command (AMSTE-CT-A		
AMSTE-TO, AMSTE-EV)	3	
Commander, US Air Force Aeronautical Systems Division		
(ASD/AFX, ASD/YZA)	2	
Commander, US Air Force Flight Test Center		
(Test W/TEVH)	1	

1

Ĩ

