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I. Introduction

The significant role played by microdefects (damage) in the process of

crack formation and growth is commonly recognized. We distinguish two extreme

cases of the influence of defects on the fracture procese; modeling of these

two cases requires essentially different formalisms.

Case I - The intensity of damage formed as a response to the stress conoentra-

tion at the tip of a propagating crack is much greater than the intensity of

the pre-existing damage. The crack propagation is then inseparable from the

evolution of the damage accompanying the crack. This strongly cooperative

phenomenon is modeled, for example, by Crack Layer Theoryl based on thermo-

dynamics of irreversible processes.

Case 2 - A crack propagates through a pre-existing field of defects causing

negligible changes to the field. The fluctuation of the microdefect field is

directly reflected in stochastic features of fracture surfaces and also leads

to the scatter of experimentally observed fracture parameters, such as criti-

cal crack length, critical load, etc. A probabilistic approach seems most

adequate under these circumstances.

Below, we present a probabilistic model of crack formation. Our consid-

eration is based on the approach outlined earlier 2 .

II. Probabilistic Model of Crack Formation

We address the following problem: what is the probability of crack for-

mation beyond a particular depth in an elastic medium with fluctuating

strength properties under prescribed loading conditions.

Let us consider an ensemble or macroscopically identical specimens sub-

jected to identical loading conditions. Let the resulting fracture profiles

I
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be superimposed on the same plot as shown in Fig. I (such experiments are

reported3 ,4'5 for simple tension, and6 for four point bending). Apparently,

each crack trajectory is unique (no two coincide). More

importantly, in a given test from the above sequence of identical tests, any

of the plotted trajector for each specimen ies must be viewed as a priori pos-

sible. Statistical analysis of the observed trajectories allows one to formu-

late reasonable assumptions about the nature of the set 0 of all possible

crack trajectories for each specimen under given test conditions. Thus Fig. 1

presents a sample subset of 0.

If we assume that only one crack is formed in each specimen (single path

fracture), then the probability P(X) that a crack is formed beginning at the

notch and extending to or beyond the depth X can be written as

i ~ P =EP{XI }P{[ o(1

where PO) is the probability that the crack 'chooses' a path w among all

possible paths, and P(X[wj is the conditional probability that the depth X

is reached by a crack formed along w. In a continuum-based model, the space

D is uncountable, so the sum in (1) has to be substituted by an integral

P(X) =J P{]Xw d ) .(2)

This brings about three tasks: to propose an adequate crack path space n,

to choose a probability measure dp(w) on n, and to determine the probabil-

ity PfX[w).

The first two tasks are closely related. Their solution, in principle,

is based on a statistical analysis of fracture surfaces, and preliminary data

has been obtained recently. Here we consider a 'diffusion' model, i.e., we

p '~.~ . M ai
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model crack trajectories by Brownian paths y = w(x), 0 < x < X, w(O) =, (
7

=w) will denote the space) and choose dp(w) to be a Wiener measure

d(D) { X Ix
d( (W) = const • exp f - [,'(x)]2 d(x n dw(x) (3)

X 2D x=O

Below we will meet the parameter D > 0 from (3) in a diffusion-type equation

(13) for a probability of crack formation. By analogy, we refer to D as

'crack diffusion coefficient'. D reflects the tendency of crack trajectories

5to deviate from the X-axis and is experimentally measurable . Evaluation of

D uniquely determines, in the 'diffusion' model, the set of all possible

crack trajectories as well, as the measure in (2).

The third task, determination of the conditional probability P{Xtw], is

based on the formulation of a fracture criterion.

III. Probability of Crack Formation Alonz Given Path

In the case of brittle fracture of a homoieneous material, the Griffith

criterion of uncontrolled crack propagation is commonly written as

= 2y - > 0, (4)

where J is the energy release rate, y is the specific surface energy, and

ic is the critical crack length for the crack-loading configuration under con-

sideration. Strictly speaking, (4) is a condition of global instability, if

a8J/Z > 0 for all £ > -t. Namely, (4) then assures that, as the crack

advances, there is sufficient amount of potential energy released to compen-

sate for the energy requfred for new surface formation
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J(i) > 2- (5)

for Z ) Ec

In a heterogeneous material, Y becomes a random field which we assume

to be statistically homogeneous. Now we take (5) as the criterion of l

crack propagation. Thus, for a heterogeneous strength field y, the global

instability criterion should be written as an integral requirement that (5) is

met everywhere along a fracture path. We further assume that, at distances

exceeding certain r, values of the field y are independent. This correla-

tio.n distance r will be assumed to be much smaller than the crack size.

Subdividing the crack trajectory into small portions and assuming that

the crack arrest at each step is an unlikely event with the probability pro-

portional to the length of the step, we arrive at the following expression for

the probability of crack penetration to a depth X along a particular path w

(see Appendix):

PfXIl) = exp y27 > J(x) - (6)

0 0 r

where P{2 7 I. Jw(X)) stands for the probability that the value of the random

field y exceeds the value of the energy release rate at a current point (x.

w(x)) of the path w.

To describe P [2y I Jw(x)), we assume that locally a crack chooses the

'easiest' path, i.e., it minimizes the energy barrier 2y - J. This is equiv-

alent to the assumption that y along crack traiectories represents minimal

values of the y-field, since fluctuations of the y-field occur at a scale

small in comparison to crack increments, considered for energy release rate
8

evaluation. According to the theory of statistics of extremes, we employ a

Weibull distribution for y at every point of crack trajectory
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1- exp [ 7 min (.y > ,min)

0 (7 < min(

where a > 0. Tmin and y (commonly known as shape, minimal value and scale

parameters) are empirica.l constants. Then

J-x)1 - min'
P(2 > J() - 1 - F(JW(x)/2) = exp [ J,(x -mi/ (8)

Putting Eqs. (2), (6) and (8) together we get the following expression

for the probability that a crack is formed to a depth greater than X:

P(X) = exp - J exp .... dd (w) (9)
f f To r xn\
Ox 0

(D)where dx () is given by (3).

The functional integral in (9) can be evaluated by various techniques7

some of which we use below.

IV. Crack Diffusion Eauation

In this section we reduce integration in (9) to solving a conventional dif-

fusion type equation. This is achieved by representing P(X) as

P(X) = JP(X,Y)dY , (10)

where the new function P(XY) is introduced by

P(XY) = f xp f[ X P(2y > (X)) -- d4D)(W) (11)
f-- r ,l

Ox,Y"

-- Mm o I'
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Here PM2y > J (x)) is given by (8), OX,Y is the set of all possible crack
S(D)lw

trajectories beginning at the origin and crossing a point (X.Y), and dOiX()

is the corresponding conditional Wiener measure. The meaning of P(X,Y)dY is

the probability that a crack is formed beginning at the notch and passing

through the 'window' Y < y < Y + dY at the depth X.

The probability PM2y _ Jw(x)) given by (8) is a functional of e, since

the energy release rate JL(x) is a functional of the crack trajectory. A

special feature of this functional is that it is insensitive to small pertur-

bations away from the crack tip, i.e., functional derivatives such as

aJ(x)/6w cat be approximated as being proportional to 6-functions concen-

triated at the crack tip. It follows by means of a functional Taylor expan-

sion near a conditional average

wo(x) = w(x) dm(D(W)

that PM2y I J,(x)) can be substituted by a function V of current crack tip

coordinates x and w(x) thus allowing to rewrite (11) as

P(XY)= exp- V(x,,(x))dx d(D)(w) (12)

f Vx~~xyl

Exploiting results or M. Kac 9 concerning integrals of the form (12), we con-

clude that P(X,Y) is the solution of

aP(X.Y) D a2p(xY) V(XY) P(XY)(13)

aX 2 ay2

which satisfies

I ~ '
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= P(X,T)-O-O, as Y-'-_oe (X > 0)

(14)
P(OY) = 6(Y)

We refer to (13) as 'crack diffusion equation'.

We remind that P(X,Y) gives rise to the function P(X) via (10). and

consequently determinesthe probability density p(X) of a crack penetrating

e: ..ly to a particular depth X

dP(X)
p(X) dX (15)

(by its definition, I-P(X) is the distribution function for the X-coordinate

of the crack tip). Apparently, P(X) contains less information than P(XY).

However, it allows one to reconstruct the 7-field parameters on the basis of

experimental data, as discussed in section VI.

V. Illustrative Example

In this section, we consider the effect of the y-field parameters and of

the crack diffusion coefficient on the crack depth distribution p(X) for a

particular example of specimen-loading configuration.

Let us consider a random crack formed in a semi-infinite plane, under the

action of a pair of forces, as shown in Fig. 2.

In Section III the evaluation of the probability of crack penetration to

a depth greater than X was reduced to the evaluation of the energy release

rate J%(x) as a functional of w(see (9)). The energy release rate dependency

on a crack trajectory is quite complex; no general solution is available.

There are 'long wave' and 'short wave' w-contributions to J (x). The 'long

wave' effect is accounted for by perturbation methods or other
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means.1 0 ,1 1'1 2'1 3  The 'short wave' w-contribution can be approximated by

11,14
existing kinked crack solutions, since the functional J. is highly sen-

sitive to the direction of the crack at the very tip and is practically not

affected by small perturbations away from the tip. It follows from an analy-

sis of the existing solutions that the 'short wave' effect dominates. Consid-

ering the nature of the kinks in the 'crack diffusion model', we take the fol-

lowing approximation for the energy release rate associated with the crack

formed along w to a depth x :

JW(x) = Jo(X) - k Jo(x) (W/r)2  (16)

where J (x) stands for the conventional energy release rate for a rectili-

near crack of the length x formed along the X-axis

2.2 T
J (x) = g,2 (17)0 E -x

the factor k = 0.5 is evaluated on the basis of a numerical solution for a

kinked crack. 1 3

Before proceeding to the evaluation of the probability P(X) (see (9)),

it is convenient to introduce the mean value y* of the y-field instead of

Yo in the Weibull distribution (7), obtaining

a

f - exp - c(a) i ( ' Ymin )
Y" -Ymln

F(y) = ( (18)
0 (y < 7min)

vWe used (a straightforward calculation)

00

7- 7min + cO(a)o c() f exp - zL jdz (19)

,I0
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The corresponding changes in (8) and (9) are immediate.

Zeroth Approximation (indicated below by the subscript 0). Substituting

J,(x) in (9) by Jo(x) (see (16,17)), and performing the functional inte-

gration (which is trivial since the integrand does not depend on

w), we obtain

Pc(x) = exp - exp - c(o) * - rin -x (20)

It is convenient to rewrite (20) in a dimensionless form.

Let us introduce a 'Griffith length' ZG determined from Jo(£G)= 2y*

and representing the length of an equilibrial rectilinear crack along the

X-axis in an ideally homogeneous material with the fracture energy ys. This

yields dimensionless crack penetration depth and correlation distance

z = Xl/G , p= rl G  . (21)

We also have from (17)

Jo(x) 9G 1
= - = - (22)

27" x z

Passing to the dimensionless quantities in (20). we get

Po(Z) = exp - o Zexp [- (a) 1/ -q - (23)

where

q = 7min/ •  (0 < q < ) . (24)

The probability density pc(Z) = - dPo(Z)/dZ of the dimensionless crack

penetration depth Z Ccf. (15)) is shown in Fig. 3 for various q and a

3, p = 10-2. 15
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Notice first that the mean crack depth < X >0 - < Z > does notG 0

coincide with the depth ZG of the 'Griffith crack' corresponding to the mean

value of the fracture energy (as should be expected).

Secondly, as q increases, the mean crack depth increases, the variance

of the crack depth decreases (though non-monotonically in general). and, when

q approaches 1, po(Z) tends to I(Z-1). The latter is a consequence of the

fact that ymin/y* = 1 corresponds to the distributicn F(y) being a step-

function, i.e., the field y being a homogeneous nor-random field with the

value y*.

Our final remark on the zeroth approximation cor~erns a straightforward

way to arrive at (20) without functional integrals. Namely, let us consider a

rectilinear crack propagating along the X-axis throug the same random field

y, as above. Then adopting the Poisson process type assumption (see Appen-

dix, specially, (A7)) one arrives, in a standard way, at the differential

equation

1dPo(X)_1dP - - P{2y > J (x)} P (X)
dX r 0 0

Po= 1(25)

whose solution is exactly (20) (in view of (8), (17)).

Next Approximation, Now we consider J.(x) given by (16). As in the zeroth

approximation, it is convenient here to pass to the &imensionless quantities

Sz = X/ .G Z = X/-G, p = r/ G, q = 7min"7 * , and, in addition, P(z) = w(z)/r.

Substituting (16) into (9), using (22), and taking intc consideration a simple

relationship for functional integrals
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/ (D) ( f () P) GD (26)
(... d~ lw = ... d z 1) A -Ox  QZ  r2

we get the following expression for the probability of crack penetration to a

depth greater than Z:

•(Z e= exp -_ ( ) E -- d A ()O ) (27)

0Z0

Maintaining in the inner integrand the terms of the degree up to two (in v'),

we obtain

P(Z) = Po(Z) f exp - Z u(z)i2(z)dz d)A(4)(P) (28)
0Z 0oz

where Po(Z) is the probability of crack pentration to a depth grater than Z

evaluated in the zeroth approximation (23);

a, cla) l/ -q) 1 z- ac

U(z) =- (/z exp - (a) 1-q (29)
-p lQ . z 1zQ

Evaluation of the functional integral in (33) can be reduced to solving

an ordinary differential equation, 1 6 namely,

/ -1/2
exp f u(z)21 ( = [Q(z)] - 1 / 2  (30)

0 Z dz0(
9Z

where the function Q(z) satsfies

,,I
Q (z) - A u(z).Q(z) = 0

(31)
Q(z) I  1 Z Q'(z) 1  =-0

The probability density p(Z) =-dP(Z)/dZ of the dimensionless crack penetra-

tion depth Z (cf. (15)) is shown in Fig. 4 for various.., q = 0 and a, p as above.

le oi a V ~ I.-
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Notice that, as D increases, the mean crack depth decreases. This can be

understood in the following way. In terms of energy, one finds lower average

energy release rate for trajectories associated with higher D, since those

have steeper kinks. In addition, the statistical weight of such trajectories

increases with D.

Due to this effect, evaluation of y* on the basis of measured average

crack depths (7* = I.I7 /(E.< X >)) ignoring 'crack diffusion' would result

in overestimation of the strength. More generally, reconstruction of the

y-field parameters requires crack diffusion analysis. The latter can be based

on a straightforward statistical analysis of fracture surfaces in an ensemble

of identical specimens5 or on a more sophisticated analysis of a single frac-

ture surface from a sufficiently large specimen.

VI. Conclusions

In brittle solids, specific fracture energy evaluated on the basis of

fracture experiments displays large scatter and specimen geometry dependence.

The probabilistic model outlined above treats specific fracture energy y as

a random field and suggests certain experimental procedure for evaluation of

the y-field parameters.

Two types of parameters enter the expression for the probability distri-

bution of crack penetration depth: Weibull distribution parameters (pointwise

characteristics of the y-field) and the correlation distance together with the

'crack diffusion coefficient', both reflecting non-local properties related to

material structure such as grain size. 6 The latter ones can be extracted from

fractographic analysis of a sample set of crack trajectories. Then a compari-

* .\,
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son of the mathematical expectation, variance and other moments of the crack

penetration depth. as rendered by the model, with those found experimentally

yields the values of the Weibull distribution parameters.

Thus determined -field parameters can be used (a) to rank brittle

materials with regard to toughness; (b) to predict structural reliability.

The dimensionless 'crack diffusion coefficient' A = L. D/r 2 introduced

above gives a new similarity criterion for single path fracture (to be used in

addition to similitude in geometry and stresses). It involves a mixture of

macroscoDical and microscopical parameters, thus constraining the choice of

materials for small scale modelling of brittle fracture.

laa '
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APPEUDIX - CSLCULATIOI OF PMIN)

We subdivide the interval 0 < x < X into m equal portions Axk whose

length Ax is small enough so that J,(x) can be considered constant over

each AXk. At the same time, we assume that Ax is much greater than the

correlation distance of the y-field, Ax >> r. Let us further split each Axk•k
into n = Ax/r subintervals 6xj ((k - 1)n < j < kn) of the length r (see

Fig. 5) and consider y to be constant over each 6xj. Thus the interval

0 < x < I is subdivided into m. n subintervals 6xj.

Crack formation between the notch and a depth X means failure over all

6xi S * According to the energy criterion of local failure, the failure over

6xj occurs, if the released potential energy Aflj is greater than the

energy required for new surface formation Anj > 2yj. 6xj. 1 8  Thus

mn

P(XIW) = P n ( Al > 2j • xj) I (Al)

J-1

To evaluate the probability, we consider crack formation as an ordered

sequence of local failures. Therefore it is convenient to represent P(XI.)

as the following product of conditional probabilities:

mn i-i

Paw - n P Arlj > 2 *j ( Ali > 2 6i 6xi). (A2)

J=l i=1

The potential energy released at the J-th step under the condition that all

preceeding elements failed can be evaluated through the conventional, in frac-

ture mechanics, energy release rate J,(x)

Arj - Ju)(xj) • 6xI . (A3)

Thus (A2) becomes
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mn

PaX[w) - n P{.3 (xj) > 2 j1

J-1

m kn (A4)

= l n P{J,(xj) > 21j}
k=l J=(k-l)n+l

where the inner product neprosents the (conditional) probability of failure

over Axk. According to the choice of Ax, JW(x) is (approximately) constant

over each Axk. i.e., for a given k, all the values Jtw(xj) in the inner

product in (A4) can be substituted by the one and same value J (xk). Also
wkn

7j's are independent random variables, which have the same (Weibull) distri-

bution (7). We conclude that the probabilities in (A4) are all equal, for a

given k. Passing to the opposite event in each of the n = Ax/r (equal) fac-

tors in (A4), assuming that its probability is small, and using

n

(1 - ) z exp (-ne) (small ) , (AS)

we rewrite (A4), as follows:

m Ax/r

PaX[w = I (- P{2y > J(xkn)})

k=1

kl Ax (6
2 exp - P {2- > J(X) -x (A6)

Substituting the above summation by integration, one arrives at (6).

* It is worth noting that one can arrive at (6) by a standard Poisson pro-

cess type argument, if one postulates that the probability of the crack arrest

over a segment x < x' < x + Ax is proportional to Ax
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P 2-y(x.w(x')) > w(x') for scme x < V' x + Ax

=P(2y >Wx) (A7)
r
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there exists a Hausdorf measure (closely related to the dimension 3/2 of the

Brownian paths) such ttat the length of 6w is almost surely finite and

proportional to the corresponding bx (see footnote 19).
1 9B. Fristedt, in 'Advances in Probability and Related Topics' (P. Ney, S.

Port, eds) Marcel Dekker, Inc., New York (1974), Vol. 3.
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Fiure 1. A ensemble of macroscopically identical specimens cracked under

identical fatigue load and the superimposition of the profilograms

of the crack trajectories (see footnote 3).

Figure 2. The specimen-load configuration and a sample crack.

Figure 3. The probability density of the crack penetration depth for various

q = /ymin/* in the zeroth approximation. Parameters a and p-2
r/ G are 3 and 10 - respectively.

Figure 4. The probability density of the crack penetration depth for various

A. Parameters a. p = r/G, and q = y min/y* are 3. 10 - 2 and 0.

respectively (see footnote 17).

Figure 5. Discretization of a crack trajectory for the purpose of the prob-

ability calculation.
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FIG. 1 Superimposition of the profilograms of crack3
trajectories from identical Ti-alloy samples.
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Please notice that Figures 2 thru 5 have been duplicated.
- / We did not remove the duplicate to avoid confusion that

discontinuity of pagination would have caused.
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