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I. Introduction

The significant role played by microdefects (damage) in the process of
;; crack formation and growth is commonly recognized. We distinguish two extreme
% cases of the influence of defects on the fracture process; modeling of these
g two cases requires essentially different formalisms.
Za
g Case 1 - The intensity 5f damage formed as a response to the stress concentra-
:; tion at the tip of a propagating crack is much greater than the intensity of
K the pre-existing damage. The crack propagation is ther inseparable from the
§ evélution of the damage accompanying the crack. This strongly cooperative
;g phenomenon is modeled, for example, by Crack Layer Theoryl based on thermo-
?3 dynamics of irreversible processes.
é
j;‘ Case 2 - A crack propagates through a pre-existing field of defects causing
“f negligible changes to the field. The fluctuation of the microdefect field is
:é directly reflected in stochastic features of fracture surfaces and also leads
i% to the scatter of experimentally observed fracture parameters, such as criti-
- cal crack length, critical load, etc. A probabilistic approach seems most
E? adequate under these circumstances.
]
EE Below, we present a probabilistic model of crack formation. Our consid-
y
- eration is based on the approach outlined earlier2,
%
9%
W
L II. Probabilistic Mod Crack Formatio
% We address the following problem: what is the probability of crack for-
Sﬁ mation beyond a particular depth in an elastic medium with fluctuating
;; strength properties under prescribed loading conditions.
- Let us consider an ensemble of macroscopically identical specimens sub-
§ Jected to identical loading conditions. Let the resulting fracture profiles
" |
3
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be superimposed on the same plot as shown in Fig. 1 (such experiments are
reported3.4.5 fopr simple tension, andé for four point bending). Apparently,
each crack trajectory is unique (no two coincide). More
importantly, in a given test from the above sequence of identical tests, any
of the plotted trajector for each specimen ies must be viewed as a priori pos-
sible, Statistical analysis of the observed trajectories allows one to formu-
late reasonable assumptions about the nature of the set 0 of ossib
crack trajectories for each specimen under given test conditions. Thus Fig. 1
presents a sarcple subset of Q.
If we assume that only one crack is formed in each specimen (single path
fracture), then the probability P(X) that a crack is formed beginning at the

notch and extending to or beyond the depth X can be written as

P(X) =) P{Xlw}P{w} , (1)
0

where P{w} is the probability that the crack ’‘chooses’ a path « among all
possible paths, and P{Xlw) is the conditional probability that the depth X
is reached by a crack formed along w. In a continuum-based model, the space

! is uncountable, so the sum in (1) has to be substituted by an integral

P(X) =fP{XIm} d () . (2)
0
This brings about three tasks: to propose an adequate crack path space 1,
to choose a probability measure dp(w) on I, and to determine the probabil-
ity P{Xlw).
The first two tasks are closely related. Their solution, in principle,

is based on 2 statistical analysis of fracture surfaces, and preliminary data

has been obtained recently. Here we consider a 'diffusion’ model, i.e., we
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‘ model crack trajectories by Brownian paths y = w(x), 0 { x < X, ©(0) =0, (nx
= {w} will denote the space) and choose du(w) to be a Wiener xneasur'e7
o
e du "' (w) = const - exp —f = [u'(x))? dx} 0 do(x) (3)
by X 0 2D x=0
Wy
:":l' Below we will meet the parameter D > 0 from (3) in a diffusion-type equation
M
:::.' (13) for a probability of crack formation. By analogy, we refer to D as
]
iy
‘ecrack diffusion coefficient’. D reflects the tendency of crack trajectories
«‘ ‘:.
::3;' to deviate from the X-axis and is experimentally measurables. Evaluation of
ot
;:::‘!‘ D uniquely determines, in the 'diffusion’ model, the set of all possible
e
' crack trajectories as well, as the measure in (2).
18
;: The third task, determination of the conditional probability P{Xlw}, is
L)
2 ) based on the formulation of a fracture criterion.
Ly
e
§§§: III. Probability of Crack Formation Alopg Given Path
oo
':E; In the case of brittle fracture of a homogeneous material, the Griffith
]
-‘)' criterion of uncontrolled crack propagation is commonly written as
L)
)
e
iy aJ
o J(2) =2y , — >0, (4)
Rl ¥}
L =4 L= 1L
- c c
L/
".
;:k' where J is the energy release rate, vy is the specific surface energy, and
?»‘l!
%)
_ 2o is the critical crack length for the crack-loading configuration under con-
.Q'
ﬁ:i sideration. Strictly speaking, (4) is a condition of global instability, if
(
.24
.{::' 3J/3s > 0 for all 2 > &,, Namely, (4) then assures that, as the crack
r‘\.".
‘ advances, there is sufficient amount of potential energy released to compen-
e .
ﬂgﬁs sate for the energy required for new surface formation
R
&
S
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J(L) > 2y (s)
for L Lo

;gg; In a heterogeneous material, <y becomes a random field which we assume
§§3 to be statistically homogeneous. Now we take (5) as the criterion of local
b crack propagation. Thus, for a heterogeneous strength field y, the global
E;? instability criterion should be written as an integral requirement that (5) is ,
%g‘ met everywhere along a fracture path. We further assume that, at distances
o exceeding certain r, values of the field y are independent. This correla-
%%E tion distance r will be assumed‘to be much smaller than the crack size.
3%% Subdividing the crack trajectory into small portions and assuming that
;Tf the crack arrest at each step is an unlikely event with the probability pro-
§¥§ portional to the length of the step, we arrive at the following expression for
%i: the probability of crack penetration to a depth X along a particular path o

(see Appendix):
v X dx
e P{Xlw} = exp -f P{2y ) J (x)} = (6)
0 »

where P{2y 2 J (X)) stands for the probability that the value of the random

;4#‘ field <y exceeds the value of the energy release rate at a current point (x,
)
Aot
ﬁﬁﬁ w(x)) of the path «e.
. ' :
£§~ To describe P {2y 2 J (x)), we assume that locally a crack chooses the
;;ﬁ ‘easiest’ path, i.e., it minimizes the energy barrier 2y - J. This is equiv-
AL
iﬁx alent to the assumption that y along crack trajectories represents minimal
3}; values of the y-field, since fluctuations of the y-field occur at a scale
&
ﬂ' snall in comparison to crack increments, considered for energy release rate
b
'0..'0
:ﬂh‘ evaluation. According to the theory of statistics of extremes,8 we exmploy a
;{j Weibull distribution for y at evéry point of crack trajectory
o
R
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i T = Toin\
1-exp|-|——— (v 2 Ymyp)
F(y) = ° , (7)

" (' 0 (7 < Ymin)

where a > 0, ypy, and 1, (commonly known as shape, minimal value and scale

?:j,«'i-‘ parameters) are empirical cqnstants. Then

Jo(x)/2 = ypen\®
P(2y > J,(x)} =1 - F(J (x)/2) = exp [-( - ” min) ] . ®
1

:"0' Putting Eqs. (2), (6) and (8) together we get the following expression
for the probability that a crack is formed to a depth greater than X:
X

e B w min dx (D)
:E:‘::‘ PX) < fexp{_ f exp [- ( - ) ]—r}dux (w) (9

Yt where dpx(D)(u) is given by (3).

K The functional integral in (9) can be evaluated by various techniques7.

} some of which we use below.

F:e > IV. Crack Diffusion Equatjon

In this section we reduce integration in (9) to solving a conventiomal dif-

fusion type e<:1x.1at:icm.9 This is achieved by representing P(X) as

.
".'.‘;"-._. )

AKX
"!‘

oo
P(X) = fP(X.Y)dY s (10)

S -0

-
-

where the new function P(X,Y) is introduced by

. X d
o PIX,Y) = / éxp{— f Pl2y > J(x)) r—x}dnﬁ?}(w) (11)
} 0, 0 0

:!::... x ’ Y .
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Here P{2y > J (x)} 4s given by (8), 0y y is the set of all possible crack

trajectories beginning at the origin and crossing a point (X,Y), and duépz(”)
’

is the corresponding conditional Wiener mezsure. The meaning of P(X,Y)dY is
the probability that a2 crack is formed beginning at the notch and passing
through the ’'window’ Y ( y (Y + dY at the depth X.

The probability P(2y > J,(x)) given by (8) is a functional of e, since
the energy release rate J,(x) 1is a functional of the crack trajectory. A
special feature of this functional is that it is insensitive to small pertur-
bagions away from the crack tip, i.e., functional derivatives such as
0J,(x) /6w car be approximated as being proportional to &-functions concen—
triated at the crack tip. It follows by means of a tunctional Taylor expan-

sion near a conditional average

wo(x) = / w(x) du&?%(w)
%,y

that P{2y 2 J (x)} can be substituted by a function V of current crack tip

coordinates x and w(x) thus allowing to rewrite (11) as

X
P(X,T) = '/‘exp{—/ V(x,.u(x))dx}dp,‘(“’,’((m) . (12)

0
0.y

Exploiting results ot M. Kac9 concerning irntegrals of the form (12), we con-

clude that P(X,Y) 1is the solution of

aP(X,Y) D 3%P(X,Y) (13)
— i o - /T _WX.Y) P(XY)
X 2 aYz

which satisfies
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¥
.‘ P(X,Y)—0, as Y — +too (X > 0)

l‘g‘

(14)
‘ P(0,Y) = §(Y)
RO
B
‘:S:"i We refer to (13) as ‘crack diffusion equation’.

i We remind that P(X,Y) gives rise to the function P(X) wvia (10), and
;::;t consequently determines the probability denmsity p(X) of a crack penetrating
5
::::: e .ly to a particular depth X
u.'i
!"(":
dP(X)

p(X) = - (15)
‘l‘( dx

Lo .
gt
"S' (by its definition, 1-P(X) is the distribution function for the X-coordinate
;;;‘ of the crack tip). Apparently, P(X) contains less information than P(X,Y).
.»,'0.‘
:Sé’ However, it allows one to reconstruct the y-field parameters on the basis of
)
,'.,:Eﬁ. experimental data, as discussed in section VI.
)
R
o& V. Ilustrative Example
)
% In this section, we consider the effect of the y-field parameters and of
B
'.',v".; the crack diffusion coefficient on the crack depth distribution p(X) for a
e

:‘:‘ particular example of specimen-loading configuration.
X%
A’Qi
s Let us consider a random crack formed in a semi-infinite plane, under the
A action of a pair of forces, as shown in Fig. 2.
i}

(%)
::1' In Section III the evaluation of the probability of crack penetration to
L%
ot
) a depth greater than X was reduced to the evaluation of the energy release
;:’;“ rate Jw(x) as a functional of w (see (9)). The energy reiease rate dependency
#
,:,:, on a crack trajectory is quite complex; no general solution is available.
l'|
£ There are '‘long wave’ and 'short wave' w-contributions to Jw(X)' The ‘'long
:::' wave' effect 1is actounted for by perturbation methods or other
» g

e e S e L T L
U AR AN ) LA N

T ATy U 0Ny BTy Vg W W BV Ny DN UV Y oo D0 I AN SN N S AN 38 AN At
LR RO DO IS OE DN MBI .,_ } . , AN AR AT

i 3
ke L Dol



Si means.w‘u'lz'13 The ‘short wave' wo-contribution can be approximated by

fg existing kinked crack solutions.11'14 since the functional J, 18 highly sen-
iﬂ sitive to the direction of the crack at the very tip and is practically not
33 affected by small perturbations away from the tip. It follows from an analy-
A

. sis of the existing solutions that the ’short wave’ effect dominates. Consid-

-

ering the nature of the kinks in the ‘crack diffusion model’, we take the fol-

lowing approximation for the energy release rate associated with the crack

AN

formed along o to a depth x:

1 _ J (x) = Jo(x) - k I (x) (o/r)? (16)
4
:
4 where Jo(x) stands for the conventional energy release rate for a rectili-

near crack of the length x formed along the X-axis

2
2.2F
i Jo(x) = ; (17)
E-x
;¥ the factor k = 0.5 is evaluated on the basis of a numerical solution for a
o kinked crack.13
: Before proceeding to the evaluation of the probability P(X) (see (9)),
K<)
& it is convenient to introduce the mean value ¢* of the ¢-field instead of
O
2 Yo 1in the Weibull distribution (7), obtaining
[
>
o
- a
. 1 p (c( )Y _ 7m1n> (y > )
- ex - a)—m— Y Y
4 y* ~Ymin Z Tain
F(y) = . (18)
: 0 (Y 4 Ymin)
A We used (a straightforward calculation)
b
o0
! . - + cla) ela) = [ exp!- % jdz (19)
4 L Ymin Yo pi-=z
W 0
1\l
)
o
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The corresponding changes in (8) and (9) are immediate.
Zeroth Approximation (indicated below by the subscript 0). Substituting
Jo(x) in (9) by J,(x) (see (16,17)), and performing the functional inte-

gration (which is trivial since the integrand does not depend on

w), we obtain

- X

’ J(X)/2 = 7,00 \°
P,(X) = exp{-f exp [— <c(a) ° min) ]2 } (20)
r* r

0 - 7min

It is convenient to rewrite (20) in a dimensionless form.
Lgt us introduce a ‘Griffith length’ 2, determined from Jo(ld)= 2¢*
and representing the length of an equilibrial rectilinear crack along the
X-axis in an ideally homogeneous material with the fracture energy ¢*. This

yields dimensionless crack penetration depth and correlation distance
z = x/lG . p = r/lG . (21)

We also have from (17)

Jo(x) L 1 ,
= = - . 22)

Passing to the dimensionless quantities in (20), we get

7 a
1/z - q dz
P,(2) = exp{ _f exp[- (c(a) Tr) :| o } , (23)

0
where
Q= Tpi/7r* (0<q ¢ 1) . (24)
The probability density po(Z) = - dPo(Z)/dZ of the dimensionless crack

penetration depth 2Z (ef. (15)) is shown in Fig. 3 for various q and a =

3, p =102, 15
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A Notice first that the mean crack depth ¢ X 5, = &, ¢ Z ), does not
K% .
S coincide with the depth £; of the 'Griffith crack’' corresponding to the mean
‘; value of the fracture energy (as should be expected).
b
;i Secondly, as q increases, the mean crack depth increases, the variance
po
b of the crack depth decreases (though non—monotonically in general), and, when
.
&; qQ approaches 1, p,(Z) tends to 3(2-1). The latter is a consequence of the
&
E& fact that yp;./y* =1 corresponds to the distributicn F(y) being a step-
énit

function, i.e., the field y being a homogeneous nor-random field with the
23 value y®.
R '
t? ’ Our final remark on the zeroth approximation corzerns a straightforward
W
’."'n
:f way to arrive at (20) without functional integrals. Nemely, let us consider a
it'
Aﬁ rectilinear crack propagating along the X-axis througt the same random field
ol
{éf Y, &as above. Then adopting the Poisson process type assumption (see Appen-
o]

dix, specially, (A7)) one arrives, 1n a standard wey, at the differential
v
‘x equation
N dP, (X) 52 ) N
M = - > J « P
‘j ax n Y 2 J (x) 0 (X)
o (25)
3
> X=0
)
B
0 whose solution is exactly (20) (in view of (8), (17)).
X
$_ Next Approximation, Now we consider J (x) given by (16). As in the zeroth
£, 0
ﬁ'. approximation, it is convenient here to pass to the cmensionless quantities
1$p z2=x/%, Z=23X/%, p=r/ G, 9 = Ymin/y.' and, in addition, ¢(2) = w(2)/r,
a4
ﬂ;q Substituting (16) into (9), using (22), and taking intc consideration a simple
L) i
0 Q. |
L relationship for functional integrals
“0
; »
g
g,
"
ip
i,
G
X . .
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(D) £.-p 26
/ (..) duy (w) = /(...) dffz\)w) A= (26)

nx nz r

we get the following expression for the probability of crack penetration to a

K depth greater than Z:

N

} v Z 2 a

) : 1-k - dz

2 - P(2) =/exp{~f exp[-(c(a) (_%3) ] —; } dn(%)(v) (27)
N 0

K Maintaining in the inner integrand the terms of the degree up to two (in ¢),

¢ we obtain
+
z A
% P(2) = P,(2) f exp{ - f u(z)e?(z)dz § du$B (@) (28)
¢ 0
& QZ
Y
k)
*. where P,(Z) is the probability of crack pentration to a depth grater than 2

evaluated in the zeroth approximation (23);

D a a-1
4 ak (o(a)) (1/2-q) 1/z-q\%
) u(z) = exp| - (cla) (29)
i p 1-q z 1-q
:: Evaluation of the functional integral in (33) can be reduced to solving
)
o an ordipary differential equation,16 namely,
.
S Z 2 (8) -1/2
) exp —f u(z)e“(z)dz dug="(¢) = [Q(z)] , (30)
:: 0 0 z2=0
W Z
..
‘0
. where the function Q(z) satsfies
‘l
K ) "
J; Q (z) -A-u(z)-Q(z) =0
2 (31)
L Q(z) -1, Q' (z) -0 .
z=12 z =2

The probability density p(Z) = - dP(Z)/dZ of the dimensionless crack penetra-

tion depth Z (cf. (15)) is shown in Fig. 4 for various.., q=0 and a, p as above.
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E‘i
’ﬂ Notice that, as D 1increases, the mean crack depth decreases. This can be

i

%
S understood in the following way. 1In terms of energy., one finds lower average
Ag energy release rate for trajectories associated with higher D, since those

v_‘

% have steeper kinks. 1In addition, the statistical weight of such trajectories

increases with D.

o)

a Due to this effect, evaluation of ¢* on the basis of measured average

I

ﬁ' crack depths (y* = 1.1 74/(E-< X >)) ignoring ’'crack diffusion’ would result

¢

' in overestimation of the strength. More generally, reconstruction of the

ﬁ' 1—f1e}d parameters requires crack diffusion analysis. The latter can be based

44

ﬁ on a straightforward statistical analysis of fracture surfaces in an ensemble

q of identical specimensS or on a more sophisticated analysis of a single frac-

; ture surface from a sufficiently large specimen. |
A |
‘.q (
K |
n |

l

.

14

U

h VI. Conclusions

1

5 In brittle solids, specific fracture energy evaluated on the basis of

f fracture exp.riments displays large scatter and specimen geometry dependence.

)‘4

$' The probabilistic model outlined above treats specific fracture energy vy as

iy

b a random field and suggests certain experimental procedure for evaluation of

f the y-field parameters.

“

$ Two types of parameters enter the expression for the probability distri-

.ﬁ

”, bution of crack penetration depth: Weibull distribution parameters (pointwise

i
,& characteristics of the y-field) and the correlation distance together with the
a%a )
o ‘erack diffusion coefficient’, both reflecting non-local properties related to
K,

" material structure such as grain sizq.ﬁ The latter ones can be extracted from

|.‘

:: fractographic analysis of a sample set of crack trajectories. Then a compari-

'
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son of the mathematical expectation, variance and other moments of the crack
penetration depth, as rendered by the model, with those found experimentally
yields the values of the Weibull distribution parameters.

Thus determined y-field parameters can be used (a) to rank brittle
materials with regard to toughness; (b) to predict structural reliability.

The dimensionless ’‘crack diffusion coefficient' A = ﬂc- D/,-2 introduced
above gives a new similarity criterion for single path fracture (to be used in
addition to similitude in geometry and stresses). It involves a mixture of
macroscopical and microscopical parameters, thus constraining the choice of

materials for small scale modelling of brittle fracture.
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5
Q';‘ APPENDIX - CALCULATION OF P(Xlw)
Y
"f We subdivide the interval 0 ¢( x { X into m equal portions Ax, whose
:‘:‘% length Ax is small enough so that J, (x) can be considered constant over }
::& each Ax,, At the same time, we assume that Ax is much greater tban the J
é ; correlation distance of the y-field, Ax >> r. Let us further split each Ax, .
E'.:’ into n = Ax/r subintervals &xy ((k - 1)n < J ¢ kn) of the length r (see ;
“':"- Fig. 5) and consider y to be constant over each 8Xj5. Thus the interval
:-‘;' 0 {x (X 4is subdivided into m - n subintervals GxJ.
: érack formation between the notch and a de;;th X means failure over all
"3’ 6xj'5. According to the energy criterion of local failure, the failure over
:::{‘ 5x; occurs, if the released potential energy All; 1s greater than the
%E‘: energy required for new surface formation Ally 27, - 5xj.18 Thus
. mn
oy Pxlal = P { N (AL > 2y - 6xy) | (A1)

fg j=1
[ )
.

To evaluate the probability, we consider crack formation as an ordered

sequence of local failures. Therefore it is convenient to represent P{Xlo)

*::"
.:::: as the following product of conditional probabilities:
) )
»
. mn J-1
5-}_, PXlo) = NP { (ATl > 27y - 8xp| M (Al > 2y 8xp) ). (a2
"e =1 i=1
y
[AK)
_ The potential energy released at the j-th step under the condition that all
LA
-,:' 3 preceeding elements failed can be evaluated through the conventional, in frac-
ety
*::',‘ ture mechanics, energy release rate Jw(x)
L}
i = . . (A3)
?‘ AﬂJ Jw(xj) 5X-y
) Thus (A2) becomes
e
Y '\

~ > PP R ) > O Y fw R T T R SRS LR .\.\. NN
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mn
Pixlw) = N P{Jw(xj) > 274)
J=1
m kn (A4)
= N n P{J,(xy) > 274}

k=1 Jj=(k-1)n+l

where the inner product nepresents the (conditional) probability of failure

over Ax,, According to the choice of Ax, J,(x) 1is (approximately) constant

over each Ax,, i.e., for a given k, all the values J,(xj) in the inner

product in (A4) can be substituted by the one and same value Jw(xkn)' Also

YJ's are independent random variables, which have the same (Weibull) distri-
bution (7). We conclude that the probabilities in (A4) are all equal, for a

given k. Passing to the opposite event in each of the n = Ax/r (equal) fac-

tors in (A4), assuming that its probability is small, and using
n
(1 -¢) =~ exp (-ne) (small ¢) , (AS)

we rewrite (A4), as follows:

hn Ax/r
Pixle} = N ( 1-P{2r) Jw(xkn)})
k=1
- A
~ exp [ -3 P {2y > I (xpp) —%}] _ (A6)
k=1

Substituting the above summation by integration, one arrives at (6).
It is worth noting that one can arrive at (6) by a standard Poisson pro-
cess type argument, if one postulates that the probability of the crack arrest

over a segment x ¢ x' ( x + Ax 1is proportional to Ax

OUOAOSNINON0N0
h"' w.!'-"'.‘?'alf'g“.l‘!h‘!‘i
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P { 2y(x',w(x")) > Jw(x') for some x {( x' (x + Ax }

* (A7)

| R

= P{2y > J (x))
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(1945), see also footnote 8, p. 81.

:; 17'1‘he selection of the values of A has purely illustrative purpose. The
"
~ values 0, 102 and 103 correspond to the standard deviation of the crack tra-
¥
'('

Jectories at the depth Ec being equal to 0, 0.1-%. and 0.3-%., respec-

' tively. (The variance of the ordinate of a crack trajectory at a depth X
equals DX = A - r2. X/ILG.)

18Her'e as well, as in (A3), it would be more appropriate to use, instead of

i:’ 51.3. a length of the corresponding &wj. In the 'diffusion approiimation.'

‘f the conventional length of a crack trajectory is meaningless. However,

there exists a Hausdorf measure (closely related to the dimension 3/2 of the

e

Brownian paths) such that the length of ©&w dis almost surely finite and

proportional to the corresponding &x (see footnote 19).
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Figure 5.
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A ensemble of macroscopically identical specimens cracked under
identical fatigue load and the superimposition of the profilograms

of the crack trajectories (see footnote 3).
The specimen-load configuration and a sample crack.

The probability density of the crack penetration depth for various

Q= Ymin/Y‘ in the zeroth approximation. Parameters a and p =

r'/lc are 3 and 10—2. respectively.
The probability density of the crack penet_r'ation depth for various
A. Parameters o, p = r/iG, and q = 7min/7. are 3, 10-2 and 0,

respectively (see footnote 17).

Discretization of a crack trajectory for the purpose of the prob-

ability calculation.
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» .
e FIG. 1 Superimposition of the profilograms of crack
i trajectories from identical Ti-alloy samples”.
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v Please notice that Figures 2 thru 5 have been duplicated.
We did not remove the duplicate to avoid confusion that
discontinuity of pagination would have caused.
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