Productivity Engineering in the UNIXt Environment

M EILE Cor

An Empirical Investigation of Load Indices for Load Balancing
Applications

Technical Report

AD-A184 250

S. L. Graham
Principal Investigator

(415) 642-2059

“The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.”

Contract No. N00039-84-C-0089 ~

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

$+UNIX is a trademark of AT&T Bell Laboratories

S e
.QQII“: »

X
)

An Empirical Investigation of Load Indices

for Load Balancing Aprlications?

Domenico Ferrari and Songnian Zhou

Computer Systems Research Group
Computer Science Division
~Department of Electrical Engineering and Computer Sciences
VUl.iversity of California, Berkeley

\ Abstract
\

—A\
In this paper, we empirically evaluate the quality of several load indices in the con-

text of dynamic load balancing. We have implemented a load balancer for Sun/UNIX#/

environments. In our experimental setup, six Sun-2 workstations were driven by job
scripts, and job response times were measured while loads were being balanced and vari-
ous load indices used to make job placement decisions. We study the effects on perfor-
mance of the choice of load index, the averaging interval, the load information exchange
period, and the characteristics of the workioad. Measurements show that the performance
benefits of load balancing are indeed strongly dependent upon the load index. Load
indices based on resource queue lengths are found to perform better than those based on
resource utilization, and the use of an exponential smoothing method yields further
improvement over that of instantaneous queue lencths. s

F \

t This work was partially sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa
Order No. 4871, monitored by Space and Naval Warfare Systems Command under Contract No.
NO00039-84-C-0089, and by the National Science Foundation under grant DMC-8503575. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Research Projects Agency or
of the US Government.

t UNIX is a trademark of AT&T Bell Laboratories. T

1. INTRODUCTION

In a loosely-coupled distributed system, the potential for resource sharing and its
possible rewards are substantial. Two frequently cited advantages of resource sharing are
the tirger number of accessible resources, in terms of both type and quantity, and the
higher reliability that may result from the multiplicity of available resources. In order to
share these resources effectively, some measure of the loads being imposed on the resources
has to be made available to the clients. The information about resource loads is part of
the system's state, and is among the most rapidly changing aspects of it. Since the loads
are likely to be changing all the time, load information tends to become stale rapidly. To
quantify the concept of load, we use a load indez, which preferably is a non-negative vari-
able taking on a zero value if the resource is idle, and increasing positives values as the
load increases. This paper is concerned with the quality of the possible load indices for
hosts in a particular but important application of load indices, that of load balancing in
distributed systems.

A job arriving at a host will very likely demand services from a number of resources
(e.g., CPU and disks). Hence, it is important to define not only the load on a single
resource in a host, but alsc that of the host viewed as a collection of resources. Since the
resource consumption patterns of the jobs are likely to be different, it may not be mean-
ingful to talk about ‘‘the load" of the host. For example, the CPU may be heavily cong-
ested, while the disks are not. In this case, to an incoming CPU-bound job the host’s load
is very high, whereas to an incoming I/O-bound job the host's load is low because it will
not experience much queueing at the disks. This observation is formalized in [Ferrarig8],
where a job type-dependent load index based on the resource queue lengths is proposed
and experimentally evaluated.

Load information is important since it can serve as the basis of the efforts to improve
the system’s performance by redistributing the loads. It is frequently observed that, in a
distributed system, the loads of the hosts are not evenly distributed all the time. Livny
and Melman pointed out that, for a queueing system consisting of multiple homogeneous
service centers with Poisson arrivals of identical rates, the probability of some hosts being
idle while some others have more than one job can be very significant; hence, redistribut-
ing the workload among the resources has the potential of improving performance
[Livny82).

In order to evaluate the quality of a load index for load balancing, we specify a
number of criteria, or desirable properties. These criteria, in turn, are dependent on the
objective of load balancing, i.e., the per formance indez that is to be optimized by balanc-
ing the loads. In this research, we are mostly concerned with interactive computing
environments, where the job response time and its predictability are very important meas-
ures of system performance. Therefore, we use the mean job response time as our perfor-
mance index, supplemented by the standard deviation of the response times. A good load
index should:

1) be able to reflect our qualitative estimates of the current load on a host;

2) be usable to predict the load in the near future, since the response time of a job will
be aflected more by the future load than by the present load;

VLRGN A 0 SRR G R RARERE - 1 |

TRy AT R AT R RIS RTTRETTRTT R Aas T R RETAE e VRIS TR AR N TR A TR W e

-3-

3) be relatively stable; i.e., high-frequency fluctuations in the load should be discounted,
or ignored;

4) have a simple (ideally, linear) relationship with the performance index, so that its
value can be easily translated into that of the expected performance.

We recognize that it is difficult, perhaps impossible, to find a load index that satisfies all
of the above requirements, as they may even turn out to be contradictory. But a load
index may be judged by the degree to which it meets the above criteria.

A number of load indices have been proposed in the past, most of them related to
the load balancing problem. In this paper, we conduct an empirical comparison study of a
pumber of those indices, and attempt to rationalize and generalize our observations. The
experimental environment we use includes a load balancer running on diskless Sun/UNIX
workstations. By driving the workstations with job scripts and by using different load
indices, we were able to measure the mean response times and compare them. In the next
section, we examine the types of load index proposed and used in the past. The load
balancer and the workloads we used are described in Section 3. In Section 4, we discuss
the design of the experiments and their results. The major results are summarized in Sec-
tion 5.

2. LOAD INDICES

A wide variety of load indices have been explicitly or implicitly used in the literature,
mostly in load balancing schemes. For example, in most of the studies using queueing net-
work analysis, as well as some in other studies, the CPU queue length was used as the
load index {Chow79, Eager86a, Eager86b, Lee86, Livny82, Wang85, Zhou86]. Some other
authors used the CPU utilization [Alonso88, Ezzat86]. Other possibilities include the nor-
malized response time [Hwang82| (defined as the ratio between the response time of a pro-
cess on a loaded machine and its response time on the same machine when it is empty),
the remaining processing time of all the jobs running on a host, the processing time accu-
mulated by the active processes [Hac87), and the total processing time of the active
processes [Leland88]. Functions of the above simple variables have also been used
|[Ezzat86, Ferrari86, Zhou87a]. In a number of studies in which reducing job response
time was the objective of load balancing, the estimated response time was used as the load
index [Bryant81, Carey85]. Performance improvements were often reported using the
indices discussed above. However, since no systematic and comprehensive comparisons
between the indices have been made, their relative merits remain unclear. We note with
regret that, in most cases, the authors did not even provide a scientific justification for the
choice of the load index.

The first systematic attempt to study the load indices to be used in load balancing
was made in [Ferrari86)|. Based on mean value analysis, a linear combination of resource
queue lengths was proposed as a load index. In that linear combination, the coefficient of
a resource queue length is the amount of service time that the particular job being con-
sidered requires from that resource. Thus, if an incoming job requires s; seconds of ser-

vice from resource r;, and the queue length of resource r; is ¢,, then the load index /1 of

the host, as perceived by this job, is

Rt ccindh iinaihadh e dhandhadind '“T

- W T T W YW headhd on kb o i -

-4-

e . N
! It = Z 3;Xq,
where .V is the total number of resources for which there is queueing in the host. This
R index was evaluated with measurement experiments under a production time-sharing
:' workload [Zhou87b].
” The index introduced in [Ferrari86] is response time oriented, and job dependent.
* Instead of a unique value at a particular moment in time, the load of a host differs for
, different jobs because of their varying resource demands, which are assumed to be known
W upon job arrival. This assumption enables us to predict the response time of a job more
::. accurately, hence to make better load balancing decision. However, while we have found
.::. some simple relationships between the arguments of a job and the job's resource demands
et [Zhou87¢|, the assumption that the demands of a job are known in advance may be too
strong in many cases. In this study, we investigate versions of the same load index in
;'.:,’ which the coefficients of the resource queue lengths are job sndependent, and only reflect
o the relative importance of the resources (with respect to a “‘basket™ of jobs). For exam-
. ple, we can use unity as the coeficients to reduce the linear combination to the sum of the
;'..' resource queue lengths, that is, in queueing modeling terms, ‘‘the pumber of jobs (or
e processes) in the system.”
iu' Our extensive measurements of production time-sharing workload show that the sys-
X tem load is changing quite rapidly (Zhou87b]. On top of a low-frequency main component,
;:: there are a number of high-frequency load components that may be regarded as ‘‘noise’
O rather than useful information. Using the instantaneous resource queue lengths may give

excessive importance to such noise and lead to bad job transfer decisions. We used a
. smoothing algorithm to compute the time-averaged queue length and compared load
. balancing performance using smoothed queue lengths to that of the same scheme using

i instantaneous queue lengths.
o
. 3. SYSTEM AND WORKLOAD
l\
’ In this section, we describe the experimental environment in which the measurements
Wy were taken, and the workloads used to drive the system.
A
. System
A We implemented a dynamic load balancer for Sun/UNIX environments. The struc-
‘a ture of the system is shown in Figure 1*. The UNIX user interface program, csh, is
modified so that the commands typed in by the user are intercepted, and some of them
N are transferred to some remote host for execution when the local host is heavily loadedt.
- At startup time, the C-shell reads in a configuration file that specifies a list of job types
.
~
\ z t To distinguish our modified C shell from the standard one {Joy80|, we call it C-shell. The R-shell,
* w0 be described below, shares the same software with the C-shell, but its only lunction is to receive re-
A mote jobs and execute them.

$ Our system is based on a modified C shell implemented at Berkeley by Harry Rubin and Venkat
Rangan for the Berkeley UNIX 4.3 BSD system running on VAX machines [Joy83, McKusick85].

o I F R R P WAL LN LR Ly
Y ‘.Q-"‘ W "" "‘ (»‘-- * " h » ..‘ R .f.’

LIM

/

R-shell

crcation
\ \ LBM
a Host B
\ remote
\ Jo
ezeculions
LIM
placemnent
User -shell ai
Jobs C é %ngbfL
lsat
LBM
Host A

Figure 1. Structure of the load balancer.

that are eligible for remote execution®. When an eligible job is submitted by the user to
the C-shell, the C-shell contacts the local Load Information Manager (LIM), a software
module that constantly exchanges load information with its peers on other hosts and per-
forms job placements. If the local host is heavily loaded, while some other hosts are not,
one of the remote hosts is selected as the destination for the job. In any case, the place-
ment decision is returned to the C-shell.

For remote execution, the C-shell contacts the Load Palancing Manager (LBM) on
the destination host, which starts up an R-shell and establishes a stream connection
between it and the home C-shell. The command line is transmitted over this connection
to the R-shell after the user’s identity has been authenticated, and an appropriate user
environment set up there. Access control to files and other resources in the system is
automatically enforced as the R-shell assumes the same user identity as that of the home
C-shell. Since starting an R-shell is an expensive operation (several seconds of real time),
we keep such a shell alive after the execution of the first job so that, if a later command
from the same user login session is placed on the same host, we do not have to go through
the same process described above. The R-shells on remote hosts act as agents for the

® This list is part of the context of each user, just like command aliases, and may be dynamically
modified by the user to suit his or her needs.

-6 -

home C-shell, and are terminated when the home C-shell exits. This scheme has the
potential problem of R-shell proliferation. However, the code segments of all C-shells and
R-shells on each host are shared, so that, when an R-shell is not active, almost no
resources are consumed. Since files are retrieved from file servers, as the workstations are
diskless, only the command line needs to be shipped, and the cost of file access is essen-
tially the same from all hosts.

Load balancing algorithms have a stror ; influence on performance. We implemented
and studied a number of algorithms using different methods for load information exchange
and job placement [Zhou87a]. For this study of load indices, however, we just selected
one of the best realizable algorithms, that is, the one we called GLOBAL. For every time
period P, the LIM on each host extracts load information from the local kernel to com-
pute the local host's load index. If the new value of the load index is significantly different
from the previous one, the new value is sent to the master LIM, which collects load infor-
mation from every host and broadcasts the entire load vector in each period P. When a
job whose name is on the eligibility list is submitted to a host, the local LIM is contacted
for job placement. If the local load is high, the host perceived by the local LIM to have
the least load is selected, and the job is sent there.

The implementation described above provides a transparent, low-cost, and general-
purpose load balancer whose installation requires no changes to the kernelt or to the
application programs. Since the emphasis of this paper is on the measurement experi-
ments we performed on the system, we will not describe the design and implementation
issues in more detail. The interested reader is referred to (Zhou87a].

Workload

Workload characterization and selection are crucial to a measurement study.
Although artificial workloads considerably increase the repeatability of experiments, they
ought to represent natural workloads reasonably well, so as to strengthen our confidence
in the results. We traced a production VAX-11/780 machine running under the Berkeley
UNIX 4.3BSD system [Joy83, McKusick85] for an extended period of several months, and
analyzed the types and frequencies of the commands executed by the system. On the
basis of such an analysis, we selected 30 frequently executed commands, listed in Table 1,
and used them to construct job scripts, i.e., sequences of commands.

To obtain various levels, or intensities, of a host’s load, we ran a variable number of
jobs in the background. The artificial workloads were not intended to represent the typi-
cal workloads of personal workstations, but rather those of small (i.e., not very powerful)
time-sharing systems. Workstations were used because of their being available in our dis-
tributed systems laboratory. We simulated user think times by the ‘“‘sleep” command.
The scripts are classified into three levels: light (L), moderate (M), and heavy (H), with a
number of distinct scripts constructed for each level, so that hosts subjected to the same
level of workload always use different scripts. The ranges of CPU utilization and mean
load index values of the three levels of scripts are shown in Table 2. Each script runs for
about 30 minutes on a Sun-2 workstation. Job and system performance statistics, such as

t For our experiments, to obtain accurate values of resource queue lengths and to perform the
smoothing operations efficiently, some code had to be added to the kernel. No functional changes
were made, however.

:o::fi
e "7
e
e
]
o
'e . .
"3? Table 1. Commands used in scripts and their eligibilities for remote execution
o , . - -
i command elig. function command elig. function
?::.' cat N view a file ls N directory listing
|
! ce Y C compsler man Y manual page viewsng
‘,!.:",; cp N file copying my N move a file
e ;
,:':::0' date N current time nroff Y text formatter
1850
:‘,::., df N file system usage ps N process checking
[N I. -
ditroff Y text formatter pwd N current directory
:‘t' n du N disk usage rm N delete a file
" 7 egrep Y text pattern search || sort N file sorting
z »
':!:. eqn Y equation formatter || spell Y spelling checker
T Sfgrep Y text pattern search || thl Y table formatter
'::.'3' finger N uaer information troff Y text formattcr
.::‘E grep Y tezt pattern search || uptime N aystem uptime
o
\" grn Y graph printing users N list of current users
e lint Y C program checker | we N word count in a file
' 3 - ;
"\ Ipq N printer queue check || who N user information
o)
-
"V
;3 Table 2. Characterization of the workload levels
Lo
V)
.._,:" type CPU utilization | average load index
s light (L) 30-45% 0.3-0.7
moderate (M) 60-70% 1.0-1.8
heavy (H) 70-85% 1.8-3.0

resource demands, response times, resource utilizations, and resource queue lengths, were
measured throughout each run. We used six Sun-2 workstations in our experiments.

As in any measurement experiment, we must consider the variability of the experi-
mental environment, and therefore that of the measurement results. In dynamic load
balancing, the placement of each job may vary from one run of the experiment to the
next, because of the unavoidable variations in the timings of the events. This problem
was further complicated in our experiments by the fact that we had to share the file
server and the network with other parts of the research community. We tried to minim-
ize this impact by running the experiments during the night. We repeated each experi-
ment a number of times (typically 6), and computed the mean and the 90C confidence

S A a0 NI IS TP B PO S LIAMTERRY i

TPTTTT O

-8-

interval (CI) of the values of the performance indices over these replications.

4. DESIGN AND RESULTS OF THE EXPERIMENTS

Experimental Factors

1)

2)

3)

4)

Four factors were identified to be of interest in the study of load indices:

Load index. We used as load indices the following quantities: the instantaneous
CPU queue length; exponentially averaged CPU queue length; the sum of averaged
CPU, file and paging/swapping [/O, and memory queue lengthst; and the average
CPU utilization over a recent period. Inside the kernel, we kept variables for the
queue length of each resource type. The length of each queue was sampled every 10
ms by the clock interrupt routine, and used to compute the one-second average
queue length, g;. Exponential smoothing was used to compute the average queue
length over the last T seconds:

Q; = Q;_(1—e D + g;eT, t 2> 1
Qo=0

Averaging interval T. For exponentially smoothed values of a resource queue
length, and for the average CPU utilization, the interval T over which the average is
computed conceivably affects the quality of the index, and hence the system's perfor-
mance.

Warkload. There may be interactions between the load index chosen and the work-
load the system is subjected to. Using the three suites of host workloads described in
the previous section, we were able to construct several combinations of system work-
load for the six workstations in our system. The canonical workload consisted of two
heavy, two moderate, and two light scripts (2H, 2M, 2L). We also studied the indices
under a more balanced workload, with all six workstations driven by moderate
scripts (6M).

Exchange interval P. The GLOBAL algorithm employs periodic updates of load
information. If P is too short, the overhead may be too high, but, if P is too long,
then job placements are based on stale information, and performance may
deteriorate, and system instability may result.

Measurement Results

We shall first study the indices and the averaging interval T by fixing the workload

at its canonical level, and the exchange interval at 10 seconds. We will then use the more
balanced workload 6M to examine the interactions between load indices and workload.
Finally, we will study the effect of load exchange interval P on performance.

t For simplicity, we treated the disk queues as a single aggregate queue for I/O operations. For the
memory queue, we identified a number of places inside the kernel where processes queue up for vari-
ous types ol memory resources (e.g., buffer space, page table), and treated all these as a single
memory queue.

PrTOTITTEr T

-9

Table 3 shows the performance under various load indices. The numbers following
the response time values indicate their 909 confidence intervals.

Table 3. Measured performance with various indices

-:plication count: 6

total number of jobs per run: 501
total number of eligible jobs per run: 254 (50.7%)

total number of processes per run: 768 (1.53 processes/job)

average process execution time: 7.45 s
approximate average CPU utilization for NoLB case: 0%

(Canonical workload, P = 10 s)

Load Index Resp. Time Improv. Std. Dev. Improv.
NoLB (no load bal.) 53.3 +0.83 - 90.1 -
inst. CPU ql 35.0 £0.68 34.4% 46.7 46.7%
1 s avg CPU gl 33.8 £0.65 36.8% 45.8 19.2%
4savg CPU gl 33.1 £0.39 37.9% 42.3 48.7%
43 CPU+1/O+Mem ql 32.2 £0.45 39.6% 44.3 50.9%
20 s avg CPU gl 37.0 £1.20 30.6% 51.8 42.6%
20s CPU+1/O+Mem qi 35.6 £0.12 33.3% 49.1 45.6%
60 s avg CPU gl 39.7 £1.69 25.5% 54.1 40.0%
60s CPU+1/O+Mem ql 40.0 +0.56 25.0% 56.2 37.6%
80 s UNIX load average 37.2 £0.85 30.2% 54.9 39.1%
10 s CPU utilization 38.5 £2.10 27.8% 55.4 38.5%
80 s CPU utilization 42.9 +1.36 19.5% 67.6 25.09%

The indices can be divided into two categories: those based on resource queue length and
those based on resource utilization. For each category, we can do the averaging over
intervals of varying lengths.

We see in Table 3 that all the indices provide performance improvement, that is,
they all contain some amount of current load information. The amount of improvement,
however, varies quite widely: from 20% to 40%. This means that the performance of load
balancing is heavily dependent on the load index used, and hence studying load indices is
important. Comparing the two categories, the indices based on resource queue lengths are
able to perform substantially better. This is probably because, when a host is heavily
loaded, its CPU utilization is likely to be clcse to 100%; thus, in that region, the exact
load leve]l cannot be reflected by the value of the utilization. In contrast, queue lengths
can directly reflect the amount of contention for a resource under heavy load. As an
example, both a resource with an average queue length of 3 and one with a queue length
of 6 probably have utilizations close to 1009, while they are obviously very differently
loaded.

N AT PO Lol ot o O Lt

XTI TSR T TTSTT T T I TR T IRt T W R e T e v wwe v oo wsw RITREVE .-

- 10 -

Comparing the queue-length-based indices with each other, we notice that the
exponentially smoothed indices can perform best, but, if the averaging period T is too
long (e.g., > 20 s), performance may even become worse. Earlier in this paper, we have
pointed out that, by averaging the queue lengths, the adverse effect of the high-frequency
“poise”" in the load can be reduced. This is reflected by improved performance. However,
since the system load is changing all the time, averaging over too long a period will
emphasize too much the past loads, which have little correla-:on with the future ones.
The optimum averaging interval is clearly dependent upon the dynamics of the workload:
the faster the load changes, the shorter the interval should be. In a measurement study of
production workloads on a VAX-11/780 running Berkeley UNIX 4.2BSD [Zhou87b], we
found that the average net change in CPU queue length in 30 seconds was 2.31, when the
average CPU queue length itself was 4.12. This suggests that T should be substantially
shorter than 30 seconds.

The performance difference between the cases in which indices based on CPU queue
alone are used, and those in which indices consider I/O and memory contention also, is
not significant, suggesting that the CPU is the predominant resource in our hosts. We
found that the [/O and memory queue lengths were generally much shorter than that of
CPU; that is, the former are much less contended for. It should be pointed out that our
systems support general computing in a research environment; with other types of work-
load, e.g., database-oriented one, the contention profile of the various resource types may
be substantially different. However, to achieve near-optimal performance, we do not have
to consider all the resources in the system, but rather only those with significant conten-
tion. We also studied more general forms of linear combinations of queue lengths by using
coefficients other than unity, but no significant changes in performance were observed.
This, again, is probably due to the dominating influence of the CPU queue.

The load average shown in Table 3 is an index provided by a UNIX command; it is
the exponentially smoothed number of processes ready to run, or running, or waiting for
some high-priority event (e.g., disk I/O completion). A number of load balancers con-
structed in the past in the UNIX environment have used the load average as their load
index (e.g., [Bershad85]). This research shows that significant further improvement can be
obtained by using indices that more accurately reflect the current queueing at the
resources.

The performances produced by the indices under the more balanced workload 6M is
shown in Table 4. Since the workload is now more balanced and moderate, the amount of
improvement in response time is not as much as that under the canonical workload; how-
ever, the relative rankings of the indices are quite similar. This suggests that the above
analyses of the qualities of the indices and the appropriate values for T remain valid
under a more balanced, moderate workload. It is worth noting that, in this case, due to
the smaller improvement, using a poor load index (e.g., load average or 60 s CPU utiliza-
tion) may yield little or no performance improvement.

Finally, we study the influence of the load exchange period P. Figure 2 shows the
mean job response time as a function of P, and with the other three factors fixed. The
brackets around the data points show their 90% confidence intervals. When the exchange
period P is very short, the load information used in job placements is generally up to
date, but this positive influence is outweighed by high message overhead. Conversely, if P
is too long, the information may get stale, the quality of job placements deteriorates, and

S P P T R TRy L PR TR . g PR L
'\‘.‘ Rhrh ~ nY : iy > " : R nc\\"(_*\{-..,r:]

preceding page was missing from original film

-12-

M
e
a
n
R
e 45.0 o ...-.....
s H H M N N .
p
(o]
n o
D 400
e
¢
i 35.04
m
e
(
s 3004
)
25.0 . —

3.0 50 100 200 400 60.0
Load Exchange Period (s)

Figure 2. Mean process response time under various load exchange periods P
(Canonical workload, load index 4 s CPU+1/O+Mem ql).

criteria reasonably well: the queue length is an accurate measure of a resource’s load, and
smoothing over a short interval into the past gives predictive capabilities to the value of
the index, as well as stability against the noise in the load waveform. Queue-length-based
load indices also appear to be more adaptable to a heterogeneous environment, but more
studies are needed to substantiate this conjecture.

Our results support indices compatible with the one proposed in [Ferrari86|, as they
can be seen as degenerate forms of that index. However, the comparisons performed in
this study are far from being complete. We decided to use the same load balancing algo-
rithm for all the indices, so that the qualities of the load indices may be directly compar-
able. On the other hand, the algorithm limited the varieties of load indices that could be
studied. We demonstrated, using a particular set of workloads and in a particular com-
puting environment, that linear combinations of resource queue lengths may be good load
indices. No proof, however, is offered that they are the best.

pwong
Text Box
preceding page was missing from original film

- 13-

REFERENCES

[Alonso86]
R. Alonso, “Query Optimization in Distributed Databases through Load Balancing,” Ph.D
thesis, also as Tech Report, UCB/CSD 86/296, Computer Science Division, University of
California, Berkeley, June 1986.

[Bershad85]
B. Bershad, ““Load Balancing with Maitre d',”” Tech Report, UCB/CSD 85/276, Computer
Science Division, University of California, Berkeley, December 1985.

[Bryant81]
R. Bryant and R. Finkel, “A Stable Distributed Scheduling Algorithm,” Proc. 2nd Interna-
tional Conf. on Distributed Computing Systems, pp. 314-323, 1981.

[Carey85]
M. Carey, M. Livny, and H. Lu, “Dynamic task allocation in a distributed database system,”
Proc. 5th International Conference on Distributed Computing Systems, Denver, May 1985.

[ChowT9)
Y. Chow and W. Kohler, ‘‘Models of Dynamic Load Balancing in a Heterogeneous Multiple
Processor System,”” [EEE Trans. Comp. Vol. C-28, No.5, pp. 354-361, May 1979.

[Eager86a]
D. Eager, E. Lazowska, and J. Zahorjan, ‘A Comparison of Receiver-Initiated and Sender-
Initiated Dynamic Load Sharing,” Performance Evaluation, Vol.6, No.1, pp. 53-68, April
1986.

[Eager86b)
D. Eager, E. Lazowska, and J. Zahorjan, “Dynamic Load Sharing in Homogeneous Distri-
buted Systems,” IEEE Trans. Soft. Eng., Vol.SE-12, No.5, pp. 662-675, May 1986.

[Ezzat86]
A. Ezzat, “Load Balancing in NEST: A Network of Workstations,”" Proc. 1986 Fall Joint
Computer Conference, Dallas, TX, pp. 1138-1149, November 4-6.

[Ferrari86|
D. Ferrari and S. Zhou, ‘A Load Index for Dynamic Load Balancing,” Proc. 1986 Fall Joint
Computer Conference, Dallas, TX, pp. 684-690, November 4-6.

[Hac87]
A. Hac, “Load Balancing Algorithms for Distributed Systems,” presentation at the Univ. of
Calif., Berkeley, April 3, 1987.

[Hwang82]
K. Hwang, W. Croft, G. Goble, B. Wah, F. Briggs, W. Simmons, and C. Coates, ‘A UNIX-
based Local Computer Network with Load Balancing,” IEEE Computer, Vol.15, No.4, pp.
55-66, April 1982,

[Joy80]
W. Joy, "“An Introduction to the C Shell,” Computer Science Division, University of Califor-
nia, Berkeley, November 1980.

[Joy83]
W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and D. Mosher, “4.2BSD System
Manual,” Computer Systems Research Group, University of California, Berkeley, July 1983.

[Lee86]
K. Lee and D. Towsley, “A Comparison of Decentralized Load Balancing Policies in Distri-
buted Systems Characterized by Bursty Job Arrivals,” Proc. 1986 SIGMETRICS Confer-
ence, pp. 70-77, May 1986.

[Leland86|
W. Leland and T. Ott, “Load-balancing Heuristics and Process Behavior,” Proc. Perfor-
mance '86 and ACM SIGMETRICS Conf on Measurement and Modeling of Computer

e 1P D) A) y . o P ORI A AN "ol >
g AW i ""ﬁ .\ l!‘ 2 “i:) !’.‘. LN I.‘.(‘O B‘;‘ 3. '_'l‘?,l%,',t»’_f“'t-“ B k:"h 3

T e

L] . b *~
3 v'o‘?'!‘-.?f.’*smo..‘a..ﬁ

- T P S e

. O Yy

-_= e P

14 .

Systems, pp. 54-69, May 1986.

[Livny82
M. Livay and M. Melman, ‘‘Load Balancing in Homogeneous Broadcast Distributed Sys-
tems,” Proc. ACM Computer Network Performance Symposium, pp. 47-55, April 1982.

[MuKusick85)
K. McKusick, M. Karels, and S. Lefller, ‘‘Performance Improvements and Functional
Enhancements in 4.3 BSD,"” Proc. Summer USENIX Conference, Jun- 1985, Portland, OR,
pp. 519-531.

[Wang85]
Y. Wang and R Morris, “‘Load Balancing in Distributed Systems,” [EEE Trans. Comp.
Vol.C-34, No.3. pp. 204-217, March 1985.

[Zhou86|
S. Zhou, “A Trace-Driven Simulation Study of Dynamic Load Balancing,” Tech. Rept No.
UCB/CSD 87/305, September 1986, also submitted for publication.

[Zhou87a]
S. Zhou and D. Ferrari, ‘An Experimental Study of Load Balancing Performance,” Tech.
Rept No. UCB/CSD 87/336 January 1987, also submitted for publication.

[Zhou87b)
S. Zhou, “An Experimental Assessment of Resource Queue Length as Load Indices,” Proc.
Winter USENIX Conference, Washington, D.C., pp. 73-82, January 21-24, 1987.

[Zhou87c¢|
S. Zhou, “Predicting Job Resource Demands: a Case Study in Berkeley UNIX,” in prepara-
tion.

AN Wy CaohONARAE] W S Y LA
A e e T S I L e o e e A L T e o e AT

-’{\‘\..“. = W

