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GRAPHS OF CHENISTRY AND PHYSICS: ON DATA REDUCTION OF CHEMICAL INFORMATION

SHERIF EL-BASIL*

Department of Chemistry, The University of Georgia, Athens, GA 30602 U.S.A.

ABSTRACT

Five types of related graphs which are of recent use in mathematical
chemistry are considered. The notion of "equivalent" graphs is introduced
which seems to be of value in connection with data reduction.

INTRODUCTION

The past twenty-five years witnessed serious chemical applications

of discrete mathematics (mainly graph theory (ref. 1), comblnatorics (ref.

2), number theory (ref. 3), and group theory (ref. 2)) which led to what
is known today as *chemical" graph theory (ref. 4). The structure-resonance

theory of Herndon (ref. 5), the conjugated circuits model (independently

introduced by Randic (ref. 6) and by Gomes (ref. 7)) and the topological
theory of resonance (refs. 8, 9) are illustrative examples of such models.
An interesting combinatorial concept, the introduction of which in chemistry

is mainly due to Hosoya and coworkers (ref. 10) is that of nonadjacent
structures. This latter concept can be made to unify many related

combinatorial polynomials in chemistry and physics (ref. 4) as shown in

Chart:

NONADJACENT STRUCTURES

EDGES VERTICES HEXAGONS CELLS

p(T;k) o(A;k) r(B;k) K(P;k)

O(Pr;k)

Matching Color, Sextet King

Independence Rook

*Permanent Address: Faculty of Pharmacy, Kasr El-Aini Street, Cairo, Egypt
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The abive terms are explained in Table 1 which contains polynomials of

chemistry and physics. The general form of the polynomials given in Table

1 is given by

(6;x) - I (G;k) x (kn) (1)

EQUIVALENT GRAPHS

Fig. 1 shows five types of graphs most coimonly considered in

mathematical chemistry, viz., a caterpillar tree (ref. 11), T, a polyhex
graph (ref. 12) of a benzenoid hydrocarbon, 8, a Clar graph (ref. 13),
A, a king polyomino graph (ref. 14), P and a rook board Pr (ref. 15).

s~tiELT

XIs4

A A P ,

Pr

Fig. 1. A set of five equivalent graphs: a caterpillar tree, T, a polyhex
graph, 8, a clar graph, A, a king polyomino, P, and a rook board, Pr.

The following identities can easily be verified

H(T;x) -a (B;x) -w(A;x) - K(P;x) - R(Pr;x)

- I + 7X + 13X2 + 6x3 .

There is a one-to-one correspondence between any two of the invariants of

each graph. For example the edges of T (arbitrarily labeled as shown) can
be mapped onto the hexagons of B and so on: k edges in T are incident only
if k hexagons in B are nonresonant, k vertices in A are adjacent or k cells

in P or Pr are adjacent. In P two cells are adjacent if they share one

vertex. Two cells are adjacent in Pr if they are in the same row. Fig.

2 illustrates the one-to-one correspondence between the adjacency relations
of the five types of graphs for k=3. Sets of graphs such as shown in Fig.

1 will be called equivalent araphs16.
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T X*I±1 Polynmials, associated graphs and graph Invariants in chemistry &d physics.

Poly l aGraph- Invariants Associated Graph e(4;k) f(kn)

1. Acyclic * (.j)k set of edges Caterpillar Tre.. 9 (6;k)a n-2k

Pbtchmg * s(6'x)" T

2. Counting (of Nosoya) 1 $et of edges Caterpillar Tree, p(G-k)a k

a N(B;x) T

3. Sextet. I set of hexagons Poly eX Graph, r(S;k)b k

a 0(8;x) 9

4. King I set of calls Polycmino Graph. x(P;k)c k

I K(P;x) P

S. Pook, 1 or set of cells Poly Ino Graph, o(Pr;k)d k or

I K(P,;x) (-)k p 0-2k

S. Independence, I set of vertices Clar graph O(A ;k)e k

-(A ;x) A

7. Color, I set of vertices Arbitrary graph, z(G;k) f  k

C(G;x) 6

S. Rtesonance. (-1)k set of hexagons Polyheox graph, r(I;k)b Z4-2k

A(3;x) I

a Numoer of selections of k independent edges c T( i.e. no two edges are incident)

b Numer of selections of k nonadjacent but mutually re enant hexagons e I

c Number of ways of arranging k nontaking kings on a polyamino graph.

d Numer of ways of arranging k ion-attacking kings

0 Number of selections of k independent vertices eA . (No two are

adjacent)

f Nuber of colorings in in whichthere are k vertices of the sae color so hat no two of

them are adjacent. - ...

01'tI., I

Tic.

f ,P:
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Fig. 2. One-to-one correspondence between the k-matchings of five equivalent
graphs for k-3.

CONJECTURE
The graph theoretical properties (which depend only on connectivity

relations between vertices) of a graph are preserved in any of its equivalent
graphs. A similar conjecture applies to the physical properties (i.e.

observables) which depend minly on the graph adjacency matrix.

TEST OF CONJECTURE AND RESULTS

If our conjecture is true it would be possible (and, in fact, desirable)

to study a larger graph, such as a polyhex graph of a benzenoid system in

terms of much smaller equivalent caterpillar tree, or its line graph: the

corresponding Clar graph. Fig. 3-5 illustrates such studies where one

physical and two graph-theoretical (combinatorial) properties are studied.

In all cases the molecular connectivity index of Randic (ref. 17), x , is

used and is given by

hx - (vivj ... Vh+)' (2)

where the sumation Is taken over all paths in the graph. Table 2 shows

percent retrieval of a property for one representative case. The concept

illustrated here seems to be of value In data reduction.
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Fig. 3. A plot of electronic absorption a band, 10 for a series of
branched benzenolds. 8 and the connectivity indices of a series of disconnected
trees, (T).
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Fig. 4. Correlation between total number of self-avoiding paths. 19 Ep(Bj.
(numbers of parentheses) of families of benzenoid hydrocarbons and Ex (T)12,
the squares of connectivity indices of the equivalent trees.
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N& 5.Correlation between the total number of acyclic Sachs graphs, 4)
Sa (8), (numbers in parentheses) for a series of polyhex graphs with their
molecular connectivity indices, (B) up to sixth order.

Table 2

Percent retrieval of the total number of self-avoiding paths for the series
of nonbranched hydrocarbons shown in Fig. 4. The regression line is Yu
4.374 + 0.484 X with a correlation coefficient - 1.0000.

n* % Retrievala)
1 99.3
2 99.7
3 100
4 99.8
5 99.7
6 98.9

*See Fig. 4

a) *100 - 100(Calcd - Actualj /Actual.
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