
7COMPUTER hODED SOFTHARE ENOIERN (WAS) ENVIRONMENT
XSSUESCU) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

SFEN K FREY JUN 877 N
UIELR SIFI DF/12/5 NL

Dl1.0 Q -jM

m,~I~ N ~Eo'

- - lB

-.2 L.4 11.6i

~~IP IW W W w AM w

NAVAL POSTGRADUATE SCHOOLMonterey, California

DTIC
1 ELECTE I

S~D
0THESIS

COMPUTER AIDED SOFTWARE ENGINEERING (CASE)
ENVIRONMENT ISSUES

I by

Wayne K. Frev

June 1987

a.

: ',

Thesis Advisor: Daniel L. Davis

Approved for public release; distribution is unlimitc!

a'20,

unclassified I\T
SIC-0.TY CkASWICAToN OF ., .AGF

REPORT DOCUMENTATION PAGE
la REPOR' WECAIY CLAS-S$CAION tb ISTIVI MARKIINGS

unc lass if ied
la SU-R TY CASSCiCATION AuVIHORTv I O'ST IUTION'AVAiLAI~iTY OF REPORT

D(I.-%S)J CAfOPY DO*NILRAONG SCMIDULE Approved for public release;
distribution is unl imited.

4 :1 QF0RVCN6 ORGAN ZA~iON REPORr N'MIRS) S MONITOING ORGANZATON R(PQ.Rt NUVOER(Sg

6a %AVE :5 PERFORMING ORGANIZATION 6o OgLC(SIYBOL 'a %AV(0; MONItOR NG ORGANZA! ON

Naval Postgraduate Schoolj 00cbt Naval Postgraduate School

6(A30ESS Crq Start avn ZiP Code) ?b AOORIES CCOr State and itillCode)

Monterey, California 93943-S000 Monterey, California 9.-9453,1'

ia %AV'E)F 9,%O'%G. SPONSORING lb 0F~cC(SVMOOL 9 PROCUREMENT .NSTR~tME~t DEN' (At-ON 1M6(101[
CRGA%,AT ON apio ~4cabio)

i, ADEIS Cr~ Stott and 1IPCode) '0 SOURCE 0F FuNOiNG NuMOVRS

PROGRAM IPRO.ECT rASK AI .O'K
ELEMENT NO INO INO)

COM.PUTER AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMEN- ISSUES

E ~ ~ Frey , Wayne K.

Ma t e s %h es i s cloy ~ el* .un% ea A4nAOy 9

C05A' CDDES IS S~jS.ECT 'ERIAS Coftfnut on revenwe d AeceUa'ly and dentfhy by block .P 'Il

T SA GROLP Comput er Aided So f twa re En g in eer ing 'C, ':: Fn -
vironment; Software Engineering Environment,
Environment Development Principles

~ .4~ A..CO~tnr. On fevero If necessary and dentify by block nuo~br)

The risin(' Percentaoe of system costs attributed to software devcl-prient
and ma intena nce have resulted in the research by indust ry and a cad.emriia
ir'tu wsavs to improve the product ivity of software professionalsz in all

<;aesof the software lifecvcle. Computer Aided Software E~rern
F) environments are one solution being pursued. This thesisz attempts

t,)calse from various efforts to date, some general princ:iples : r
s7uch enviro-_nments in order to assist decision makers who must prlCurtc
them11. This %..ork. is in support of the M.issile Software B~ranch, \Naval
*e-i-cn Center China La'ke, California (M1SB), and their invest izati n

CA\SE environments to improve product ivity. Problems of CA\SE devecl m t
and! use are discussed in this cnntext. A general problem solvin zao c
thr-u~h abstract ion of resources is proposed with a focus on an idi>
ia 1 p rc:rammer productivity subset of a CASE environment.

3 _NC AvALA$IL'T" 0' ABS'RAC? 1 ASSTRACT SECURITY C ASSCAO%

[: -_iASS ; D,, MITED 0 SAME AS RPT 007, -SERS unclass if ied
- ' _;~ ES;'ONS BLE ~I'.0',AL 22,3 'E,iPIoNf (include Are aCode) j'2c 0'; 1, ,'V9>l

Pr-'. Daniel L. Davis (4081 b40-3091I C o -1
00 FORM 1473. laMAR 8) APR PC I on -y be %#o 41t -IP4 1dSEC-R.1 (LASS % : :.S

All o~rit to I o'$ are obOioll
tim laI -sI i 0e

Approved for public release; distribution is unlimited.

Computer Aided Software Engineering (CASE) Environment Issues

by

Wayne K. Frey
Lieutenant Commander, Lnited States Navy

B.S.(Busjness Administration), University of Minnesota, 1974

Submitted in partial fulfillment of the
requircnents for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRAIXDUATE SCHOOL
Junc 1937

Author:

Approved by: ZP"
Danic! L. Dav is, Thesis Advisor

Vincent . Lurn, Chairman.
Departrncpt of Computer Science

Kncale T. Marshall.
Dean of Inlbrmation and Po1iCr cs'

2

t "-

- ~ 9 '

A BST RAXCT

The rising percentage of system costs attributed to software development and

maintenance have resulted in the research by Industry and academia int.o ".3"s :o
improve the productivity of software proifessionasinllpaeofteotwrIi-

C:.:,.Comnputer Aided Software Engineering (CASE) environments are one ci07

hneir.z r ursue-d. This thesis attempts to coalesce, from various efforts to Jjlte. Some

gznera 1 principles for such environiments in order to assist dec:sion makers ,, ho mnust

procure them. This work is in support of the Missile Softwvare Branch, Na.~ld Wearpzn

Cent.er. China Lake. California (MSB), and their investigation of CASE en'.oncient',

tj Improve product Ivity. Pr-cblems of CASE development and use are discused In

conzext. A general problem solving approach through abstraction of resa)urkces is

propo~cd wiha focus on an individual programmer productivity ,ubset C:~~ASE

Afcccziori For

NTIS CRA&I
K:TAB E5

U X-OL IrT]

DTIC

r~pp

THESIS DISCLAIMElt

The following tradcmarks are used throughout this thesis:

* .da! is a Registered Trademark of the U.S. Government (Ada Joilnt
Program OfTice)

* Apple® is a Reg'stered Trademark of Apple Computer Incorporated
* GEI® is a Registered Trademark of Digital Research

IB.M® is a Rezistered Trademark of International Business MaLhines
Corporation

* Macintosh is a Trademark o" Apple Computer Incorporated

* Macintosh II is a Trademark of Apple Computer Incorporated
ricroVAX II is a Trademark of Digital Equipment Corpor tion

* LNIX) is a Registered Trademark of AT&T Bell L oratories
* VAN is a TraJeinark of Digital Equipment Co oration

% % %

' ~ %* * ~* ~ W<

TABLE OF CONTENTS

INTRODUCTION .. 8

11. BACKGROUND OF SOFTWVARE ENGINEERING AND
ENVIRONMENTS... 10
A. THlE SOFTWARE ENGINEERING PROCESS '0(

B. THE SOFTWARE ENGINEERING PROBLEM 13

1. Quality 13
2. Quantity ... I;
3,. Maintenance....................................... 17

4. Managzement 17
C. DEVELOP.MENT ENVIRONMENT A SOLUTION 1I

1. Structured Methodology.............................. IS
2. Automation....................................... 19

The Environment Jungle 20.

III. CASE DEVELOPMENT ISSUES FOR MISSILE SOFTWVARE
BRAN%'CH (ISB). CHINA LAKE....................... I...... 29
A. NISB BACKGROUND 29

1. M.,fission... 29
2. Problem ..

3. O rganization .

4.Current Environment...............................S3I

~.CASE a Desired Solution

B. CASE ENVIRONMENT PROCUREMENT ISSUES

1. Short Term Off-the-srielf Buy Approach.....

2. Lcng Term Of-the-shelf Buy.Approach

Make Approach 16

C. WHICH WAY FROM HERE '

IV. CASE ENVIRONMENT DEVELOPMENT ISSUES 37

A. SCOPE OF CASE PROBLEMS 37

I. Evolutionary Development Politically Necessary 37

2. Requirement Tradeoffs Contributing to Risk 38

B. FUNDAMENTAL PRINCIPLES FOR CASE
EN VIRO N M EN TS 38

1. Portable Reusable CASE Resources 9
2. Integrated CASE Resources 40

3. Open Environm ent 41

4. U ser Friendly ... 41
C. FUNCTIONAL ABSTRACTION AN APPROACH TO

SOLVING PROBLEM S 42
1. Definition ofrAbstraction 42

2. Form al Specification 42
3. Abstraction of Physical Resources 43

4. Abstraction of Environment Resources 43

5. L ayers ... 44
6. Standards Enforcement vs. Encouragement 45

7. Top Down or Bottom Up 47

V. FUNCTIONAL REQUIREMENTS ANALYSIS ISSUES 49

A. SCOPE OF THIS EFFORT 49

B. INDIVIDUAL PROGRAMMER PRODUCTIVITY (IPPI
R E SO L R C E S .. 5o

1. Physical R esources

2. CASE Resources

C. WHAT ABOUT THE REAL WORLD ;7

VI. CON CLUSION S .. 5S

A. INVITATION FOR REVOLUTION 5S

B. FU T U R E W O R K ... ;q

C. RECOMMENDATIONS FOR MSB

I. N ear T erm 60

2 . T h e F u tu re ...

LIST O F R E FER EN C ES 6

IN ITIA L D ISTR IBU TIO N LIST ... OS

6

LIST OF FIGURES

2.1 The W aterfall Model of the Software Life Cvcle 11

2.2 The ISTAR Integrated Project Support Environment (IPSE) 2-4

2.3 Thie Ada Prcgra,,mring Support Environment (APSE) 26

!

I
p-

pi

4'

1o

I iRV&'
~ ~W W ~S

1. INTRODUCTION

Since its infancY, the software industry has '% orked to improk~e the enivironment-

in which people work to create software. In general, thes' efforts wcre paced by

hardware developments and by the way programmers thoug~ht about prograrnmir.C.

The de-vclcpm-cnt of assembly and then higher level programming lang-uages wvas an

environmental improvement (over machine language) beca use zhey all owed

programmaers to think in more abstract, logical terms about the problems their

programs were soviing. System operators and operating systems reicvei tle

programmer from thc burden of managing hardware resources. The move from oflihne

batch interaction to online real time interaction was another major improvement in the

environimenrt of programmers. As more and more software resources to impro~e the

programmers en~ironment have been introduced, the hardware designers have provided

th.c speed and computing power rnecessary to support aU of these features. andi real

work. without bringing systems to thecir knees.

The hardware advances resuitiniz from VLSI and other technologies have allowed

the proliferation of low cost computers throughout modern society. resulting in an

explosion in the demnand for software. The drastic improvements already. being made

in soft-aare enszmeerir.g methods have not kept up with this demand.

For1 the pas t decade and more, the software industry has expended miuch effert1

on the .ss-,e,. of set~ware enp-Ineerin2 as a methodology analogous to other engic~n.er:1n1

Is.an,. to the development of automated tools and environments to su!port h

mct ,odo'ov and enhance the productiv ity of software developers and maintaincrz,

Tl.is thesis attmpts to coalesce, from various software development envjroninnt

e1t:-ts -:o date, some general principles for such environments to aid the ~c>c

makers xvho must procure them. We begin by discussing the 0:,z~ar "t' P:ctl~z

Ss..:he sofr;~iare engincering probv':tn arid the issue of' environmrrents. \\o

c:'cra particular research and Jeveopment software group, Is: So:':'v' -c
BrrT.Navai Weanon Centcr. China Lake. Ca. 'MSB). their russion. the-.r .,cc-' 'or

Comp2 er AiUSoftware Encineerinz Environment iCASE). and some of'ii 'zl ,

tnev "-"C~ in flrJLUrIneY a CASE.

S

J.-*~~~~~~~~ 0..,,* . , .'.<?..PeiPf~

The concept of an integrated CASE has developed to include the cradle t,) ga~e

lie cycle of software. We discuss the general state of technclogy of ,oftwure

development tools and environments to date and some of their problems. We discuss

abstraction of environment resources and standardization of intenraces as potentiai

solutions to problems. To limit the scope of this effort we focus on one of the better

developed and understood subsets of a CASE environment, the aspect of :..divIduIi

programmer produc:ivitv (IPP). in terms ef abstract resources applicable to an% CASE.

Future areas of study are suggested. Recommendations. for Missile Softw:are Branch

procurencn: efforts, are discussed in terms of general CASE principles in the IPP

context.

o,

.5

I..

-S

J.°

.5• -i -. - " ") " • '' ') * "

.,. ,,,• • • , ., ,. . ,, .. ._. €.,,,,€. ., ,..,.,. .. , .,,.,. , . ,, ,...,..,..,.. , ,.. :., ,,- .,:,,. ,-,_.,.., : ,, ,. ,.-,- 9,

"I ' ' / ' ' '. '. .- " '' ',
" ')

: : "'" - i " i -, , i i, ,, ,

II. BACKGROUND OF SOFTWARE ENGINEERING AND
ENVIRONMENTS

A. THE SOFTWARE ENGINEERING PROCESS

Software engineering has been defined in manyrays. Boehm (1981, p. 161 called

it "'the application of science and mathematics by which the capabilities of computer

equipment are made useful to man via computer programs. procedures. and aso ;ateJ

docun'entation." The focus of such definitions is that software eng:neering i€

encineerinn in :he same sense as the traditional engineering fields.

It should be clear that we are not talking about one person progranmng for his

sole .ndividual usc. We are talking about the case where more than one person is

n% olved in developing and or usIng the software products. In general terms there are

at a nun.mum: a customer (an individual or organization(s) who want soneth:: uefu

done Lb i computer). a developer 'an individual or organization() who must c:rincr

t.e Solwarc to meet the customer's need), a user (who may or may not be the ,arex 1,s
the customer) and a mainainer who may or may not be the same as the de-e oper..

An applicable definition of ,rocess when referring to the software eog:,t #,:.

process :s. a serics of aztions or operations conducing to an Qnd. e.

c:nz:rtuous operatz-.r," or treatment esp. in manufacture.....'"- (''s,'rs. 1966,. . -,

We :a'ke tiie "end" in :he Ncf:.vare engineering process to be an operat'e:na. 'er.:x':

: re prcdu,:t incuding the object code and all aztendant documerta!tc:: .iC:.

pz-r,.h-i a::2 dei:'.erable) equired to recreate it.

i .e .on-mon "vaterfall model of the software I'.e cycle, :gure 2. I Boem.'n. 19 ,.

r .&. w:.; nun.r ',ariatons. is often used to capture the major top le'.c!, ",re,

.a:T..h:"n ur c-erar:ons" :n tile software engineering process. r!is :rad;:iont. .

xppe>:: :n the literature as far back a, a 1956 paper wvritten by Ilcrbert I) Bce:...:,

ue, r.i,:n,: work on t".e SAGE .!.r de:nrlse 10, stem sct:'.arc 'Benn:nto:;. l\'.

the IEEE Nnth in'ernat:oral Conference on Sofzware Erze::cer:n,. \1,::.-

.%7:" :qs-. \lc..ere. CahIfbrn:a. SA, met wuli the theme of

.\ i:on:~.~:;: the Softwz-re Process." During the open:ng P,._ nar\ Seie. '

.:L,,r~nn Ro'-'crt BJ'cr stated t.at :'e trad:tonal ', ' u:
2 .,: , .. .r,,,c e:; r.".ee ::f h 'f c i.,c ,S -ea,. Our parnoe here is nct :2 6er-..:e

. ..,,ci ! 1'" c xc-. :h., .,:r b, d I'c n a 'chef :hat the x,,aer.,' .. .i c ,

#V .I*.p 4* ~ ~ ~ -

Op1eon aset-O

P'Oduct tglW9n

Dow-sodda Com

r12r~ 1hc A c: .il N cwftcSot. ~ lf >C

I-- tos

/ t 'r* V % ' % * . ' V'

known te-rr~noloev and common framework around which much cf ro!t%%.1re

engineering to date can be discussed. We believe that the waterfall model represent, a

ton' leve view of the software crigineering process when the process :s %iewed ai l

SI.ch .I static view is cl*en attem.pted, and miay be appropriate, in dealing with sxv-ems

Xh.~re %h problem an~d solution methodi are well known and defined.

Whe-n facedl with uncertainty in the definiton of the proinlem or :ezzhods 0.:

szolution. unfoerszanding evoixes throughout the solftwarc enizineer:.mg prCcess and a
%tt~ view of' the w'hole life cvc Ic is inap"propriate. WVe believe that. ;n such a ca

'anr odel is still useful, but not as the top level of" the process. luiszczid. mjor

portions cf it exist at a lower level of' a process which may be catevor-zed as

cv~utionary protot:Nping. In other w-ords, a waterfall mod.el applies at many ees:

thec overall soft ware er.21neering life cycle process. In our view of such a J:~ranuc

proces. a %vaterlai-iike seque:-ce ofl transformations may be executed repeatcd% 'o

"conduce- progressi~elv mo-re functional versions of the "end" product. S:rice the

wae~imoc"l imposes no temporal constraints on Its phases. an u'.:.tial ve r.nmi-.

'-e r'.o'pdranidl\ by manipulating not only the functionalty of the rrototx pe

vcr~on bulte cornplex :-v and detai of' some phases of that %erson s 'I* l e. A

rutcau- 'c to:' d1own dcsizn. with a combination of' top down and -,.nuu:

ur~'ernntatonof' a flarruLl or' -voluz:onan. versions. Each new version :s cx j\ cu ;'

C~tri'121 O th cictxe analxsis. design. implementation and testing, etc.. 0!n~

%r7 ersion. This a,-pro ach can deal dynanucaliv with prob~eni soilution U, ,_r:._.
u~ ~c~ctdc ezpent life c,.-cle. as well as withi continued Ix :,lut:c: :the

:'roec: over time and in the context of1 technological advance. Lehman 1,4,

":sLU O S. in U'eta:i. :he, dynami1.cs of soft-ware evoluticni with respect to his n x.v :.A

SP utnd E -rcg2ram classes. H-Icalso discusses the process of iterative ta2 n. !,:;on

throu.:I xaz,;r,'a!1 like phases from topmost (i.e.. requirementsi s peicui.

in this case a prototy-pe cr subseq,,uenz versions. Lehr..nuncr .e

tranlonnation is based on a singie canonical des;gn siep wherelb, the softwa-re cunc

... cau 2>Chooses U fo=1malCi.'Qer level :'insisTiL S\ stemn in which to" :'.i .

.'.c wi th wkhi h he bc2ins each -;tep. FormalIsmi is :nten dcat '2 <

r i.'nz, "r om th e hi 21ne r l ev\el m o el to thIie s ub se qu e nt l o wer ie m odel :a.:.

cci. '.S .s emir:caui venrication. '-acktrackingz and change ~cai. .

Vca~noithe dcsign sic,- and support eouin S0 c cr~::i

::-. omnnon 'raictical ueIn industry tcdav. Such a process is intendede to hc:-p

throwir-g out iarge portions of prior de'eiopment work and having to start o~.cr !r,)m

scratch.

Speaking at the IEEE \inth !nternational Conference on Software Eng.neecn: -.

?Ie:ber! Benninvocn c:ornnien:ed tha, h successful S.AGE de~eloprnen.t effl-s -. ere

:-,o "-% 0-. x h.atErf,.--1ke mo~id :I!ustrated in his 10o5c paper. 13,t.,~

P.~~rco'--. 'ased or, thc~e atx was employed to dca! J.n~L.~A

.~r:~x n~o. dnr cn : r cc,.- "nbiiions and possible soiut~ori, S c!"

"110" :.e.; he. 1-ne been stuJied and ziined prcmnence in the :~~
'~:su~~esar~ fa-es. 6i,.en these .icxwr of' the -itwre eri;nec:u.g -r.%c~'

'o.ar u. s s b r: e!, cur).,' ofthe soizzxare engrieerinrg proh~ern

B. THE SOFTW-AARE ENGINEERING PROBLEM

~ Or ~';.'~e~f~ p~'.:or risis .o use a popular chiche. has .i.eU

.:'i .. p'ens r~c~dng :~t'.qualht%. maintenance u.," rnauzcrnent

I Quaht%
ar yaLt~is a :undamen.: issue \Ian,, prod.Auzts sirnpl% donl J)' ~

~.'r~ar:.1'1o -JU. CS :br :~~onri.redo .e to the inher t:L t.'

a. aladaion

:s th-1 :rccss o!' deer-'onini the ::n~sof a 1re -!,.,7

:~:' rzi:o~u :~:~~c~n o J'. oore :rter.,,.t with .hc Lutcme7. u. !-,c

~ iiula:ici at, tflh, t,. e :ries j dzterniune ,hat :the r.:~ 'rr. .t

.~ood.Tho uzrer:eLt to.' .,n he prod.u..t m,.t .~ ~'

oj'r~.' ca.~e is expresed :ni a !enn~c.' mprec~e na,,'ora. !~a'

I :t..h.':hnhis o-w%:i or, n.ztcM'. tlic "Ie~clcper transidate th C

7i i requirenients 7e:La r.T. has t-et:na~ bco'. _ "C:,:.

:rmnatural :anuaze to'.' aro a moro, pre(cise rerresen- tion. \jl'iua....

- n :o(tn Uc. D. me~ u r z r t tr ;n :;...a.i...

rce nrt I . eh ce. o:..rm n sc t:atn 0t. ..

- r~2 t. trie CrO':. omare JOIC~ e:e' Cn ;.'t:

questions. Often this does not happen. Sometimes it is not even c'ear to the designer
that h~s decision cannot be validated from the requirements . Additionally, design
representation is generall, so far removed firom the customer s view and understandinig
that atn inherently tmorec,,se reverse translation is required in order to get any feedback
froni thre customer at this point. After impiementation. validation must detern-Lne if

tCE r.ight product wa~s actual"," built. As we'll discuss latcr. th,.s last phase. testing. is an
in'rcrent.v riprecisc process.

b. Jeriflation

Verjicat,*on assumes t'hat the requirements specificatlon Is valid and tries to
znsure that the product is built correctly. The developer must transiatc de-ign

sreLIficatIon1s into an Implementation in object code for the target mach:rne. SXrLe

dcsizn specifications are a more precise representation. this translation is much more
c.:rect. In fact. systems have been imiplemented in which specifications are
.u~oma-icallv ,rarslated from design languages to source code languages which are

,hen translated into object codle by compilers. However, these programs thcrmse!ves

.ian s ,e,. be proven correct. so empirical verification is essential to insUre thc
:ner f t1he!.z design Is met by t!he obect .,jde. For two diecades. considerah.c 1:',t as
'cndevoted to proving_ the correctness of programs (verification). [1owe~er. testing

tcon:nucs to be lie b-est availaHe tool for vecrification and vaiidat:on.

1t tsgeea.: accepted that e'thaustive testing (instrument-ed exec.utxcn c! a
pr.grim. in its precise operational environnient. over every possibie ccrnbirncu;:r. of'

jSi-lI not easil.): focr othner t",an trivial prograrns. It is also accpted th.it ne::;ni:

-:.r of' c\haas*.i% e testing will infer program correctness. As Di!k stra -aid. -'rogramn

.2ta~ c~i '-e used to show the -resenLC of bues. but never their absence". Dal
19 2. p. 1 So. the primary. cb,,ective cf' testing becomes derionstration o: the

por scperationali readiness. lnIndidal tests m1ust be miapped -rom the cx

~&~c::on forverification and from requJ1iremnents specifications foCr V Sa~zn

C\:~iW. etesting cannot reaiikticiliy Ise ;,er!Krm'ed. a rea sonablc s ub-et of d:: rc-s.he

:c~tsn~t e c hosen. With kn wcdv e te de,,cn and code. i- ri ct sinirI\tr- iu.

a~s nd nrc,.rarns as 6l~ oxes" ' test-s can be Lcsen f-or L-oundr- :;n,

:Uii'ezal inputs, volume,. CtL. arid JZ.XLl assuniptions Lan be madc ab out

So. : b~.o et%.eer 1bcu:-.Jan conditions. vnit' the 7 r o ra n C-cJ Ic' h
ttsW!hout errors, and the logic isu.,ti operaticnai readiness io> hn t

the specific environment tested. Was some unforsecni combination of inputs omitted?.

Is the targe:. machine and its firmware and system software identical to t-,- res,

mac hl.-z

2. Quantiti

Pro jiferation of computers throughout modern society has caused arn e\pios:c',n

in deCn or ;oftwarc. This demand is a double edzed sword. The more socftwire

zncre is. the miore software there is to be maintained. A fixed number of' softw ar.,

enginecrs, with fixeCA productivity, will eventually rea-ch a point %%here all of -,heir etlirt

,s ccns5.ined by maintenance. No new software can be de%-eloped until some sof'twarc :n

mna.ntenarnce isretired.

While the number of software en2ineers is not fixed. several industr-, slucies

conc"lde that the number is increas-mg tzoo slowly to keep pace with increasin~g

sc~twarc demands. To complicate matters. the !:fespan of" existing so! .tware ef ten

exc~Js ectatioris. This is particularly true in the United States Departient of

Delense 'DoDi where captal investment in wdlitarized hnardware. lo2g.stics ~~

tr~ina.z of zechnicians and operators. etc. :iil add up to practica: and politica: :.er o

.eca -xorkui.e s-xstem in place iand :nl maintenance) long after techrcolcc- ; -es :t

by lnpro\ing the productivitv of' softwarc engineers appears not only lcsran e. -ur

L-;en~iil to stern the quantzity problem.

a. Reuse

IThe reuse issue is actual. a ccm pornen- cl the overi!l :ssue ofInpru'z

c~utvt fsoft-ware enzineers. It is ieritioned separately here bec~ause :i :._As L".

"een O";ghl to ':e the key. to miaking an order of' mn-, tanie iraprovmenz in ol:%" -z

~ t~cr. apabliit". Sice the earliest days software engineers have r :r~

2netdthings which had bee-,bil before. The probleri- ot f'~ ~

kn-mnid Co "a- 1beyond anv "not invenved Lere omania. Rcusabe soue >'~r

i~.i; .1'.meea~.success f1 or discrete funLZICnAS :.Ae niathematic:al 'orniu .s) Iz v':d

i.,:7-'c.tt hipher order lanizuaizes wou!dI .make scurce code reuse a reapt

~:ra~caed unctions and, proe-r,!nm,. lio'.'eer. a genera: ickofJ.<n

Sand adh eringz to ianizuace ,tan Ja-Js -csu:!cd in P70111' at,;on o! uc'

~u:'c'e> nd ,nera!iv isisza. ,' mr:~~so cm~r or .a:n:.:e

:n,- n:~ orraiv..V of SUcI ccJC. Ad J:tiona %, at the ar(:e r sc c,:m:

~u~e\ a:;: n n roeues code :s too d 11md .e.. data :~~

:ut e%e. !or casy rcue.\!C A 7r;ut. At~~nr> tea at

J. P Ir -: f -a.
A. -. _%- _%

doma'.a specikx model), and not the concrete implementation, that is reutillzed.
(Standish. 1934, p. '495) In genc!rAl. even tlie reuse of the abstraction has been iformali
a: best. Documentation of reouirenients and design specifications generally iacks

itanla.rds outsid'e a particular organization (and sometimes within). The whjt of

par-.icu~ar ;estlgni and inipleentation choices is often unclear in documentation. The
lt:,-el ot' efi'hrt retquired to understand -. hat an existing design is doing and what, if

a~izhne..mstbe done zo adapt it to a niew appliatic or new, emnronment. is often

sccri as rimore diFicult than s~artiri-a fresh. So. reuse of the abstraction, w'*hout

niethods and1 tools to reduce the understanding overhead, is usually inforrmai.

Inldividua:s use their own prior xork (thines they understand and reta-in In ,1heir

pcrsonal, tocibox), but1 they reject organized libran- resources as too hard to use. This

sltuation. Is chan~ing as such methods and tools supporting reuse become more
avaobe.but formal reuse is sill aosent imaycan;z~os

b. Productivity

In dlassicai terms productivity can lbe defined as units of product delivered
dvUUby cost. Herzir. 1es one of many problems associated with measuring :he

trod.uctiv1,t of sotwzre developers. There are no basic units of softxare. [lowxe\er.

varIOUs measures have been developed and attempts to instrument and Study

producti'.itv have been made. In ge .neral. we believe productivity in software

eatnern~activitv has been worse than '-, is now. We belie-e that %arjo-us ei ,orts to
ii'o% c tble software en~ineer'inz nethodoloc-v an nIromn a. :oe

\V e dnt belie-.e precise measurments of prod uct ivity are possible.

Such measurem-ents industn' wide are complica-.ed bv the 'aclk of

:11caninifl mneasurement standards and the proprietary nature of statistics. Sonicthirne

11% on% V C v;mnle as lines of cod e per programrmer per day cannot loe comniared

unIess o-ne 'efines prccisely what a li-ne of cod 's. Is it assembly ccde or a rh

en encrat, on languagye? Is their more than one statement per line? Be,,:ond tn.,, th m

3 .programn cornp!exity. 12h,% niodularized Code is likely zo h_,_- Inc, ''

.-. n u,,nstructured monolithic unmnodularized codle. Yet a poor design can '.!cl i' ".S

mun': or more_ hn'ic)i' nod aarized code as a good design. Which represents -.more

he most beievable claims ":cr measurnn,- software engin eering product;%;:%.

aan, prd-tvn nrae.~m.e ir-cn szad,.es ith n individual or~arniza~ior. At leat

the,% measure activity in a relativehv consistant er%-ironment (source svstemn hardware

anda software, source language. methodology. etc.). with cons.,stant measurement units

(what is - line of code?) and with a relatively consistant croup of individuals ov.er the

cotir-e oi' the stLudy. Wi"th such a semblance of a controlled environment, the impact of

introducine new tools or methods becomnes more measurablle. One cenisistant soure of-

such reports. for a number of years. has been Boehm at TRWV. 'Boehm. 1981 and IQS' i

One can a.rzue that thc resuit of such studies can be izeneralized for- other

cnrailzations. One cannot argue that such a generalization offers any precision. But,

is evidencc to off'set the risk in a decision to invest in similar tools and niict, o.s for

projuctivi improvement.

3. Maintenance

Software maintenance is commonly defined as any work on a softwarc s' stcm

otter operational release. It is often subdivided into mainteniance to ccreCt errors

(co2rrectiv*e mnaintenanice) or maintenance to improve or modify capability (sonietirres

called perfective rnainenance). In either case, maintenance involves chanunng the

programi. Without a complete understanding of' how the program works anid wh-, the

designers chose to make it work that, way, a maintainer can often introduce :ot.Ev

unexpccted1 errors. Such a change cani invalidate all prior testing. %lainta:ners ar

,oIten not the orizinril developers, anrd they. must rely on the documientattoi c' :he

&.evelopment process for the understanding required. to change a sof'tw-are ~.se.

Thev need to be ablc to repeat testing and co mpare results to origenal tests ;i order- tC

determine the operational readiness of the new mwairntained) version. Tlhe'. nisl

coaxu Lcz and document new.N tests to demonstrate readiness of' new capabihtz,.es.\bh

c. dC\C,,:cpmen-t and maintenance documentation for existing softwxare hsbe

incqu'iate to support efficient maintenance efforts. Often. much of the dvipe.

e~o:must, be repeated to do mnaintenancec well. In reall t%, driven by pressure 'o nreet

operaizionai deadlines. much maintenance results From efforts closer to trial and' error

\eedies. s to sav, d ocumentation of such e!forts. i! arty. is selu'om hencfl'c;-i to L'.-

4Management

4 ana gerient probierns hase lieen a- major dri~iniz factor towards o ar

er.:flCr nfetm hcdologtes and tcoos Prob'ems v.uch as; late oc-vn. oer "nudoc:.'

unrehJ-:C nroduct. fail1.re of' prodJuc to meet \pec.11ca,;ons and product dlcd

ex'eni1 e to miaintain; are ccntmjon. They, are attrlnutabie in part to zlxe ui.

%I

quantity and maintenance issues areadv discussed. The familiar phrase. "Y'ca cant

manage what you can t measure.", sums up part of management's woes. Another

Tv.Aor con-ztibutor to management problems is the chaos inflitdosatcr.r he

:ewell kdetred prohem or solution unexpectedly evolves into something else. Such

.ntepts to manage, based on measurement of the wrong things, are fur-,her

cori-ppica--ed by the phase in the life cycle when the change is discovered. Change.s or

errors invoiving the requircrnen~s and design, which are not discovered until late .ni the

deve-lopment process. are often much mnore expensive to correct. They can) I lesult

.n d~s;:arding much cf the vork alreadv done.

In the last dccade software engineering methodologies, tools and environments

I-a-,e e- plcded on the market offering and delivering partial solutions to the soft\ are

problem. Work% arid controversyv surrounding development enivironments continues.

C. DEVELOPMENT ENVIRONMENT A SOLUTION

A softwvare dzvelopment environment i . in general terms, the domain in which

the software systcm is developed. From the view of software engineers tLis Jorna-ri
coznssts of methou's, tools (computer hardware and software) and other s-ftwarIe

enginee-rs (the managers, analysts, designers. programmers. etc. who make LIP thed

-z ineering team). In other words, all of the resources necessary to engineer so!frware.

I.- Structured Methodology

Since the early 19-Os. structured mIethods for managzing anid deior:;,v
s oftwvare have been written ab-out, tauizht and imp'emented. The structured eod

support the major activities of the waterfall miodel (Figure 2.1).

By structured methods wve mecan a collection of procedures and concerrt; to

increase the prod~uctivity and effectiveness of the software engineering orgarn::.ion_

E Eernents of the structured methods include:
* structured analysis, guidelines and graphical tools that -'Iowk replci:n:, -,he

traditional representations of the requirements specificat on wkith one :. :can
,-e more easilv -understood by the customer.;

* -,op-down design and implementation.
" structured dIesign, guilinles and mnethods to help the designerd1ttu\

b~etween gzood and bad desitzns:

" structured programmilg. comiposition o:_ program logic from sequence, :!'-:hcn-
else an_: dc-while constr-ucts With liteor no use of the go-to.

As, ociated wi th these methods are aidst mlmnainsc ~

BS

0 program librarians, to relieve programmners of clerical tasks and manage version
control and archival;

* structured wlkthroughs, peer group review of design and implem.-ntations to
a!sist in error reduction and schedule pacing between for-mal inspections

AYcurdon, 19S6. pp. 2.3).

Controversy about the value of these and other methods often centers aon

hcv. much the. Improve productivity and effectiveness. As indicated earher, ho,.t much

is a difficult thing to measure and compare with any precision. Yourdcn savs "In

zeeea! they double the productivity of the average programmner, increase the

rce.,abitv of his code by an order of magnitude, and decrease the diflcultv ot'

ma.rttcnance by a factor of two to ten." (Yourdon. 19S6. p. 3) We 111 just ,a% that

contzion sense indicates these methods should improve productiutx and effectiCnevo

andJ our 2eneral sensc of reports from industry, regarding such method.s, is that they do

work witli substantial benefit.

One o,- the serious problems encountered trxing to use these methods is tha, a

tre-mendous amrount of' cross referencine of data and data structures from one nase of

Zihe :if'e cv,%,e ta another is required. Also. many tasks are cyclic in nature and requ~rc It

lot c" rcpet~tive ac:iv ity. For instance, validation of a data flow diagramn representing a

req.uiremerit specification might require reiterating tlie diagramn several times .%-:th

nuncr cnanges as the customer and developer narrow down exactly what the custcmcnir

%vants. E c-ch niamed piece of' data on the diagram is a unique entity recorded in a d,1ta

c~c~onrv.Each newx chang-e to the diagram must be cheCLKed avainst, the data

~toa~ to ensure all items are uniquely- recorded. Su~li repetiie or pUre.!'.

Mcnhan:cal tasks tend to be error prone and slowv when done by humans. Ti-.c,. are

e'.el nt anidates for automation using a computer. (MacLennan. 10S1. p. 51

2. Automation

T Lere Lire generally three fr ms of automation surpporting soI tVa re

en"1 e e en r, 2.

a. Tools

Tools are programs that per!form a single type of' :unct~on A.\ ccnrer.

,ha:: -enc-rates object code for a target mac.,hine from source code ina specEifi langa-e.

ia to.as are assemblers, linkers, editors. graphic tool box-Is. spread sheet -t~c L rn,.

C:c..

19

Ir

N.

b. Programming Support Environments

Programming support environments are collections of tools to pro.ide

support for programming (normally considered the implementation phase of the hfe
c cie . They generally only directly support programmers. They may be a cooperati'.e,
interoperable set of tools (what we will call a toolset) specifically designed to work

together v ith a common user interface and common data exchange formats. Or. they
may be a set of disjoint tools which are separately executed, each with its o,,kn user
interface, each performing its task on its own internal data structures, generail. xith a
sequential Elie of characters as the only external data interface with each o'her.

c. Computer Aided Software Engineering (CASE) Environments

CASE environments are a relatively new concept. They are an extension of

programming support environments to the entire software engineering life cycle. They
are in~ended to provide support to the entire engineering team (i.e., managers. analysts,
designers. programmers, maintainers. etc.) for overall product development.

3. The Enironment Jungle
We have been automating aspects of the environments in which wc engineer

software for a !ong tume. At first there were simply collections of whatever software

tools were available .or the hardware and languages we wanted to use. In general.
partly due to the large number of languages being developed, only the most basic tools
",.\ere a'ailable (assemblers. linkers, loaders, compilers) to support production of object

code. These environments were based in batch processing techniques. As hardware
adv.ances produced teletype terminals for on-line real-time processing, environments

ave the illusion 'in the user interface) of being interactive with the compu:er. This

was stil sequential batch processing (for that user), only the batches were much

smal!er and turnaround time much faster. Video terminals evolved directly from

:eiet',pe termiunals. still processing lines of characters. The natural data struczure to

eCo1e :'or external interfaces in such environments were files of sequential characters.

These are still the most common -standard" data exchange format indu.,tr wid. S.nce

there ire more than one "standard" character code (e.g.. ASCII and EBCD(1. fi'tcr

programs are employed for portability of files.

As hardware provided inexpensive speed and raw computing power, assisted

by operating systems offering virtual memory support. a few languages hegan

conu'nd:::e a laree market share. As software eneineers came to grips with tlhe

so:w,are problem. more compiex intercperable toolsets appeared. These intero",era-'e

20

"I

tools often rely on comrmon data structures (other than simple sequen~tial character

files) representing objects which can be viewed and manipulated by various functions

within each tool. These objects are normally stored in a database accessible by all of'

the interoperable tools. The database objects are generally only meaningful in the

context of their tool or tool set which often must eventually produce a sequential

character file for mianipulation by tools not integrated with the set. The advent of itt

miapp)ed oraphic objects has added further complexity to portability of datta amiong

tocls. Due to storaze overhead, and the complexity of handling bit images ir-zeac of

the object*s thev represent. I it mapped graphic objects are generafly, cori-acted into

unique., conmplex, proprietary storage code wvhich constitutes a recording of the
sequence cf resource (tool) calls used to construct the object. These recordIngs are

r e 'a% ed and edited in order to reconstruct or manipulate the objects. The s-.orage

format cf" such ob;ec:s is therefore meaningless outside the context of the environment

rcqu-1red to replay it.

a. Interated v's. Disjoint Environments

WXe use the term integrated to describe environments with the Collowima

features:
* all resources conFormi to a consistant user interface.

* all resources are as highly interoperable as possible.
* objIects and their interrelationships are in a persistent common data format:.

%i.ch is meaning.ful to all environment resources:

We use thc term disjoin. to describe environments which lack integration:
* .Inconsistent user interface amion- resources requiring user to shift modes when

nmoing -:rcni one resource to another.
* inconipatable data formats among resources

b. Environment Development Efforts

The software crisis and technological advances (hardware, operating:

systems, ianguages. user interfaces, databases. etc.) have resulted in a b ocwune new

miarL:-,- in environments. We easliy coilec:ed a full file drawer of' documenitation in -11e
: ormn o. books. papers, technical revie,,s, promotional materials. ind cn.r

~rceJ~gsdescribing myriad en-.irnrnments under research, or in product:,,cn or

o~oa::n.What is izenerallv miost comnrrion about these enx ironnients is that bc h(I*.C

I)Gc,:erai State of T'chnobI.-vzy Developing a CASE environment is is~

a s1C.:ware engzincerig prob-'Xni of' ian-Loth proportions. No siandardreurmcs
1W

for a CASE environment have been adopted. Since the software engineering proce~k

itself is less than mature or stable, top down specilracation and design of an

environment to model it has been defficient. For the most part a bottom up approach

h-as or.-vailed. While many CASE labels have been~ hung on pro~ects, at best it is

l mlted 'Integrated toolsets that are beingz made. Thc CASE customer who can define
his particular software engineering process is unlikely to find a toolset whxch is a
complete CASE environment flor his process. Since data portabi.'t%. betwecni
ndependent tools and toolsets is generally limited to sequential character : !c.

assemmiing a complete CASE environment from off-the shelf products can at best ".&Id

a disjoint environment. The majority of what are being called CASE environments

today include:
0 graphic tools supporting various structured analysis a nd design met hods-.
* program design language (POL) tools supporting prototy-ping through

execuiable specifications.
a progranmming support environments supporting specific inug

implementa tions. debugging, documentation. version control. and archival:
* proiect management systems supporting a variety of management

methiodologies and economiuc models.
* office automnation toolsets*:

" hardware and software supporting multiple view windlow interfaces a'.d
multitasking.

A\ prevailing point of view seems to be that it is unlike!%y that any single oriart:7,at:On

:ouid, or should. define canonical requirements for some CASE environment and :,hen

imnplement all of the integrated resources to instantiate it.

This may no, do Justice to a few large softwvare developers who have invecsted :r.
long term top do-xn development of environments for their own use based on their (,%%rn
software enineerintg process and method's of operat'cn. However these -ovsenms ar-,
either :cnerally not available off the shelf. or represent an exorbitant iv~r:n.at
crniplete integration within them is dubious,. A possible exception . tie RD)u'n A\Jj
Developmrnet System from Rational (Mountain Viex. Californwa. has beer tde'.lc:-cd
bo the market place and is touted in the literature to epitornize -.. . the ..

integzrazed CASE environment." (Suvdam. 19S 7. p. 548 However, maost woukA c a.xl

the Rlo)Q) dedicated hardware architecture and scoft-.vare as an exorbitant n.tzrz
AlVso, we si,.ouid note that Europea-n CASE environment efforts seem more czd
than our owvn domestic endeavors. lST.AR. from Imperial Softwvare Tcn
London. Enali, is an example. ISTAR's top dJown design pro%'ides, i~o: 11

open an"' exzernible environmnent.

-~ -~-~ - -22

It is generally agreed that integration of tools toolsets ircsounx ,#.

desirable within an environment for:
0 coherence. wherebv all the tools behave in a uniform and consistant wa% e i: . a

co~rinon user interface tyle);,
0 control. whereby toois behave in a disciplined way (e.g.. riot ~i n

unintep-rated tools to bypass and subvert a configuration managemrcrnt too,,
* sharine. whoreb, tools work together by sharing data (d.ata I, truL, ,,eJ

mndependentlv of the tools which create and use it)
(Hall. JQ7 p. 289i. There is a bnasic con ict between the desire for in*,ecration a. -lie
desire and need ieccnorric and evolutionary) for environments to accept :oo.s f!"I
various sources. NWe feel the most promisine of the~ current approaches; to rsai
: s conflict is to build arourd a kernel structure of resources which provde c;:e.c

zhe tools for accessing and manipulating objects in a standardized en'ironrrent
daitabase. Once zhe interfaces to these kernel resources are defined, tool de~clo'-'
who ad here to the interfaces will develop integratable toois. Two such efortS cret
under-xa- are the Portable Commron Too! Environment (PCTE) which is the >.c:'o- a
numher of' European environment and tool projects (including [STAR. see F ;c'7.2 2
*.In1er~cn. 19S-. p. ;9, and the Comnmon Apse(Ada Prograrrnnjn~ .- '
En', irornment) I nterface Set i CA IS sponsored b-, the DoD.

2) U~z:ted States Deprarinient of De"'nse (DoD) Iniiianixs. E ar.'1%n1:.'

DoD common high-order language project which spawned Ada. de' dopers :~e:i'

that te !an,_,,ave alone would he insuilient to combiat the pro!-,emns oc

DoD softw-.re prolec'.s. DoL) spcrnsorcd de'.e loprnent of rcqu.rerrcnts. i:n;.

.\.'a Piozrarni-,= Support Enmironment (APSE . witlh the stated ozbje ti'.c

S":Pport the de'veopment and maintenance of Ada applications software t:o...

v. cle. with particular emphasis on software for embtedded com-p,,ter %~~u.\

S:&n,::.1931). p. 1) Fundamental concepts of the APSE included:

* host tareet rnironment. where the APSE ts hosted on a devectnrie-t :..u.
*.xhiie the target machine of' the scftware. to ile decved :w~t. I
zia% be a difllerelit machine.

* program database. to inclu~c ai: pro;ect information ce il soc,:-C In_"
code, documentation. specific a-tons. ec. ;.

* extensIbility, with all tools written in Ada.

2 1n emnbedlded svstems the tarect h.,ardware ma-, be so hm;iLei in recourLc, 'cci
MonCM'., etc.) that it cannot prict~cal ', sqport the d!e\elopmient en-. irornme-.

'~N

ISTAR FRAMEWORK ISTAR TOOLSET

ri~ K--

r u7 2 1 c I S T.\R Inc,-,-a -,, Pi rjc, Su p Iort I ii\ i - n nicn t d

AOL .L WP dAP- WIfAW

The onignal Stoneman representation of the APSE is illustrated in Figure 2.3 (Boocr..

19S7. p. .409 P. The host machine resources are provided through the Kerne: APSE

(K.-PSE, -.%hich provides the togical to physical mapping. The \lininiai APSE

iIAPSEI contains some Imninial toolset for rrogram deveiopment, and t~e APSE

ocraUl -ernresents a :.,--e :.,,cle en' ronnient.

hlecarlI Stonemazn de',.elopers may have thought in terms ofa Single

c-zanization 1.exeloping an APSE or NIAPSE under DoD sponsorship. th:. prc,

a~cvran .nto the nte-zration versus independent develcners confal.c mevnioncd,

3a;~r Ccrir~erc:al dieveloapers are competitiveiv pushing the edge Of' Ln0o,.' ,

Frograr..ning suppor-, and CA-S[environment resources. Any standard'izedcJ :t

too -: rm a '~gedexelcper faces ;if conipetion in fields (e.g.. editcrs. c.ce.

Liscr ;rnter, .tceS. etc., %%hre few w;dely accepted standards exist and sex crdl ce:i

d..e!facto standards ihtemnerge. To encourage the conipeti:,%e ZIJ anle of

env,%ronment technolccy in a drect~or, support!n- integrated environrnIenz,, DOD

1 'rzmncrL-d -,. Je'.eloprnent oF the Ccm..rnon APSE Interl'ace Set (CAlS).

T C.\iS rex ides intcCacs for dta storaae and retrieval, data transi-rjs-i-- :o
11,j i-orn e\-;.rndl i ' c~ nd ac.t,%za-:on of' programs and control c!- :ie,,r
c'.ecUt,.or. In crdLcr to) aJhiexe unifornat :;, the interf'aces, a sincle niodel ,s use2

to ~ci:~e .t J ,Lr:Ie -cncrai .Iata sioraec. dxieand executin r~orois
rcr2 c a' the node model. .l'':~vSiatdivd Common . PSE S,.,;e N

""he 2c; e.,pmnert o:' CAIS has becen a lenc.-hy and rnezhodical process c!f boir.Icd

LC"C' I:'er .:cn of tne Snecnf,,aion s hedu.;cd fOr reease in dho Spring of' l16-

2 : <port, Some trarnportability .r,,-rf'aces often required by ccommo2'

de. t,,-v. 0 otS. ~nL U J2i.:

* ~ ~&er.ng pro_,ram in% ocition and control-
* .~at a2pa.c..ernng 1.. 0n e.~I and interprocess cormunicaz :cn.

*~ ~ ~ ~ ~~~~~~~~o p~.te.;::'.io. r:n~u.i;r :arameters ndu attr:-IL.e '

I (XS e in .i', r,' dcrc la .t er xe r ion s o F the C.\NI S Inrclu U, C

[~ r:~\a'~ \JiLa;~u~eS-. stern AL.S xwas such a xenturc from. -,*mcr'-

:1C A.\rm. :;..A ~r'r. ic Navx, has contrued with .\[IS-\ w the

It hI~bo :2> ';1,, .,: uroO:E WIIO not' sP0ntn',CU,
'' ~ 1,t seto 02 h \r2.. ;E:0 r.. arke:.

.a.4

L'wtr interfaCt!

P t-

I

I [It -

I Jit-,ri

3.. C c Pr mnnSuport Enwionment tAPSI

26

* configuration management. CAIS supports resources for confiqurAtico.
management but no specific methodolog :

* eices. suppors scroll. page and form tcrmnals and magnetic tape dri'cs
other de'dcc-s and possibly other ANSI or ISO interfaces ie g.. ISO DIS

G7.inhicai Kernel S~stem iGKS) are ,undcr considera tion)*

in~rter-to of interfaces. are not defined:

* :t~rper~ii~.only a prirmtive text-or~crited file transfer capabilit% is prc'.ided
be:.vee a CAIS implernenitron and its host. CAIS does not define c'.ternai

1Ct frnats for transfer between environments or between a host arnd target:

*arch.%,nz. a dec,,, ian on the --orrn that archP~ine interfaces shoud take has 'een

Stkva',rd Cvrnrnon .APSE Inter," ce Set (C.-IS). 1985. pp. 1-2).

The Software Technology for Adaptable Reliable Systems fSTARSi

t'rogra:'. cstabl!.-hed by the DoD in late 19S3 included the STA*RS Seftwa-e

Inc-.neer-ng Environment (STARS-SEEi task. The carlv objcctives of STARS-SEE

v.*re- to ~c \te requirements faDr a ccomplete life cycle environment which %k s F2

~:icertedand -.-ieoperabie. m~ulilingual. utiliZed state of the art technoloc'; ani .vas

."01. c:e to evclve wvi-h techncloev. Eariv STARS leadership felt *-.a,, hc Do)

:ts:was betcapable of anaixs-s and definition of requirements 11or \uCh .in

:rz nm.ent. A :,Dint serv:ces e.-r composed of untbrmned and DoD c i*ia i.~r

-rc,'Coo zn.ii . ausmieri-c"d b- DoD contrac:or,-. ana:,xzed the softwvare c~~r:.

* ~ reaarements r the S-rARS-SEE. and -he state of' technolig%. 'F*-:, ci

!1\~ie vojume collectzion ot' thirty-fi'e -rclirrnar\ reports - e

-2'r.ton. Cr defliing zhe ST.-RS-SEE sclt\,are architecture !\X-1

(:ener. . ly'eaf) Changes inpr;.etnaaeet

*o:~:n J: ,.hinding the STARS-SEE task effort wizhin DoD acti%:-:eSan

o.zo.s to ancouraizemcnt and Nurport of -rivate sLectcr of,,,are

In addition to such hieh :exel DoD en'.irorent ;t:t~> Is

.\?SV_ CAIS and STA\RS. several lower :evei cz"rt, ev: s. Dot) field IL';\:*::e~:~~

a :~wreengiflounng areu hjave i:. n\etn ith:ow ar:-

amnswhich have e,. o:-. ed otcrm up with the e-. ! ut~on oi hr. r

~ re~cn.io~.as t.,e:, ha'e doeter~o~o 'evasThe\ r i:;

.u:o rom hach crieneJ ani interac::.,C* tie ar v

onlplzxes. to rietw.rkcd pes ni nuroconuters'xta

C.e~ to c - ,,1t-i Lomr ut;. roc'..rLc. ",-; ;aaI~: es to1 ur rI~

environments with relatively inexpensive "personal- computers and off-the-.shelf

software engineering tools in such a bottom up fashion are often seen as both blesing

and curse. Blessing for their contribution to improving an often otherwise exrreiely

unproductive working environment, and curse beceause of the lack of rntcrcperabiit',.

transportabilitv. consistancv. etc. which they represent. 4 DoD Ada implementaton

p chI:c': (essentally that Ada is the ony authorized programming language fcr ne'.

enbedded qstcms and existing systems entering major revision) has been cr.e -c'in, of'

ocus .": many of these independent efforts in DoD as well as for th, tool a.d

n n ;rorment developers.

p

4\ot all of these efforts are so li:rted. Some are lare and wefl oraze. and
f u.ndd zhe nteractive Ada Workstation being developed under cor:act ?x
Genera: LecItric for the .-\.ior cs Lab. AFWAL AAAF-2. VPAFB. OH, . ,e
Sof.vare Lie C cle Sapport Enviror.,n ient (SLCSE) being de eloped hy G e:.er.i l.'
Rc,e r,, Corporation un cr spo sor aip of te L.S. Atr Force Rcn ', . -,
)ce'onnt Center, GAFB. N.Y.

Is.

,
0,

t-

111. CASE DEVELOPMENT ISSUES FOR MISSILE SOFTWARE
BRANCH (XISB), CHINA LAKE

A. NISB BACKGROUND
NIISB is a small software research and development group. They are a branch of

the Weapons Deveopment Division, Mi;cheson Laboratory. Naval Weapons Center.

Chirna Lake. California. Software engzineers in the group are domain speci,;s .n

onboard. embedded missile software. Prior to current efforts to use Ada. '.irtualik JI

of their work involved assembly language programs for unique processors wt

extremel% limited resources (e.g., speed, mnemory) in onboard. mission critical, reai-tirle,
embedded rmssile systems. Working around constraints like limnited mernor% oftlen
requires methods teg.. unstructured design) which subsequentl% make the saf:%tare
extremzly difficu~t to understand and maintain. Reuse of such hardware specific and
unstructured sotaeis virtually impossible. Knowledge of the weapon Jomnain 'a

major -actor itsefi Is often the only reusable resource in this sof-tware enineeinne
process. Hard'ware advances with the potential to improve the resource 'speed.
memory. etc.) ava.iabilitv of potential target processors, and the increasing aThz:
of Ada compilers for target processors. lia'e opened the door for MSB to ex-101t -V A s
in ierent surport for structured methods, object oriented sof~tware eninneerimg and cd

~.Mission

TLie b~asic mnission of MISB is to establish and maintain a NavyN in-houISe

capability for de-.eioping state of the art missile software. As wath any research

orien~ed orzanzation. they are considered a resource for exploring new Lechno>~s

which %ould !ikel, remain unexplored in the profit oriented priva'e sector. As a

de'.ciapment resource the-, may% be tasked to perform some or all of the de~e~opmer.:zOf
so;'zw-xre f-or -zpeclfc MIssile projects.

On)oair" embnedded sof .ware opera-tes in a unique environment. Siz;e. ezt
po~ver. and ita isinatioll Wotiu to e a ialcr- concern, and ee o~v:~

:~*m ~ -s- iar scenario ria% nat app'l%. E.U1c,,cnc% of' oniect :od'e cenerate4 y:~
_-n . 'ers is 0so o x o _nern. \V,-ers. 19K'. pp. 1-2

Ao5

2. Problem
Har'.Aware advances (e.g.. VLSI) have proliferated embedded processors into

weapons systems projects at an ever increasing rate. The impact of new tcchno'ogecs

on the op.-rational environment of the wea pons (e.g., operational deception, eiec'kron:C

warfare. etc.) demands increasing capabilities for mnission fulfillment. New tchnioo:es
rrake new mission capabilities possible and or esserntial. As a result. mission Lrntical.

enibeddeJ syte oftware demand (both upgrade of existing systems and new s% stemns

de-velor-menO is :ncreasing rapidly.

Current fiederal policy on personnel funding etTectively, limits any increase in
NIS3 personnel resources in the foreseeable future. Projects rejected (due to

insuaient capacity) by NISB must either be done somewhere else (generally private

s.,ctor contracts) or be abandoned or postponed. For many projects, especiaiiv

research. the niissile software domain expertise of MSB makes them the best aie

for the 'ob. Othier considerations, such as security of operational envi.ronment

intel";,ernce and hardware advances, can make in-house research and de~elopment

easier, more desirable and less expensive. Our purpose here is not to attempt to

4quantifY capacity shortf-all at MSB, or its cost in terms of private sector contracts or

UneCxplored av;enues of research. But, to report MvSB's own assessment that the% are'

unable to keep pace with demands for their services.

3.Organization

The lar,:est oreanizat~orial subgroup within MSB is known as the Sof:zwarc

Teca-no~ogyv (ST) group. Th1is group, currently, seven software engineers, is -n.cc n

arcsprojects oflen involving only one or two people per project. These rrOICe_> are

pr"maruvy rese~archi oriented (e.g.. rapid prototyping for feasibilty demonstration). The

cuis:wn'per ponscring such projects is generally the project manager inot pa.- of' \ISB-

for thie particular weapon systemn invoived. Also. independent research of a less S . wi

pcc.'.:nture (e.g., developing and benchmarking Ada library, packages) may '

sponsored by the branch, department or some other activity. Besides the ST ru'

team of three software engineers and a program librarian are currently enza2e : :n a

Ue b e . men t project for the Sidewinder missile. There are three software engineer, in

th-e Spar-row mi'ssile development group. There is a Software AciuisitionCorcin

\laa~r roun. of two, who are dedica-ted to confiouration and do~n~ion

mana_-emer: for the branch. Finallv, there are a Branch Head and a secrctar' i,~ n

the total to IS personnel. De~clonnient teams arc formed from ST grour.c'a~c

assets, and return to the ST group when development projects end. This is a general

description of the MSB organization and the degree of riexibility in their software

er.gineering process required to mneet their cornrnitmnents.

-4. Current Environment

N!SB has been actively improving the environment within which they work.

Management tailors the sof"tware engineering process to the task at hand. Research

proiects may proceed employing structuredl methods and top dow,%n design for rapid

prototypirng Nvthcut pushing the entire bow wave of' static sequential lifle cycle

c onstraints required (e.g., b-, DoD Standard 2167) when a project enters developmeint.

NISB employs structured methodologies espoused by Yourdon and others. NISB is

acively engageed in research to demronstrate Ada feasibilitv for mriissile softwvare. This

work includes performance analy-sis of object code generated for potential "Off the

shelf' target processors. They are developing expertise in object oriented design with

Ada. They are actively researching mi-ssile software domain Ada library packages and

wvorking towards reuse of desien and code. They have sponsored develcpmient of an

A.-a code analysis mnetric (Halstead metric) tool, Ada.1easure. (Fairbanks, l9 Th at the

Naval Postgraduate School (NPS). They have encouraged other NPS efforts

including this one. wahich focus on aspects of CASE resources and development.

To the extent possible with avaliable funding, MISB has upgradld the

hardware and software of their host development qystem. The result to date -'s a

:s) int en."Ironn'ent of' personal microcomnputer workstations with local area netw-ork

:errainal access to their own supe-mn-icrocomputer and the ;entral site rroce~sors. Th-e

NISB -nicroVAX 11 runs the U.NIX operating systemi and hosts %arious .AdaI cIMPliers

zand their run timre support tools (e.g., debuggers). Sirrular resources are Jlb On

-1-c central sit,: VAX. The perscnal computer wcrkstat.ons £Ce:IC ave

inJivi;dualized collections of disjoint tools For word processing, text editing. s--hedal~ng.

snrezwdsrhee:s. graphic drawing. etc..

'Under de~ elopmient concurrentlx with this work, these efforts %vil alo result in
Jun > , teS. W tl tils are nio- %et firm. the works are identified b% uhc and

aut Iior:

* An ;Ala Terminal Intzrface Pakae. by Anthony Kcowuzh:

I lniprovCl Ada~icasure I lenr\ K Ir .,rnerc. Paul Flcrzig:

* lr.:eractive Grapics in a CA.SE Erv:roniner~nt L ser Inter!face:, by Gregg STnger.

%2

Recognizing not only a need, but an obligation, to remain a viable research

and development resource, by remaining competitive in terms of development cost.

productivity, and availability, MSB is actively investigating CASE environments.

5CASE a Desired Solution

In the Fall of 1986, MISB began to actively explore CASE solutions to

improve productivty, reduce development costs and mprove product quality. The:r

high level requirements included automated resources supporting the following:

* CASE environment database containing code. documentation, specificatiorns.
requirements, transformations, design histories, project sumniaries -,ru cost
pr-ojectior.s integrated with graphic design tools.

* library, supporting reusability of' source code. documentation, tests and test
data and object code;

* documentation generation. supporting their research prototype process and the
development process (DoD Standard 2167 and other requirements):

9 graphical analysis and design. supporting Yourdon strUCturcd
analy.sis structured design methodclogies and Ada object oriented design.

*programmj~ing support including syL%'e guidelines, static and d% narnic anti'. sis an,
source and object code generation.

* offlce automiazion, supporting project management.

In addition, they identified hardware resource constraints including support for.

* netwvorked software library (database);
* modern graphics oriented methodologies and tools.
" team Uapproach to software development.

They reflIned these hardware constraints further to:

* muitasing.supporting parallel simu!taneous interaction wvith emi ronmient
reSaDurces:

* mega-pixel graphics resolution, supporting multiple virtual termiunals for paraicl
s<multaneous interaction with concurrent tasks:

*mega-instructions per second. supporting resource-:nt nsi~e !kziturcs C! h

* eg2a-bvtes of main memnory, supporting resource-intensive f'aturc\ ot'
Sv stem.

(Missiie Scftware Branch. 1986. -)p. 6-S)

B. CASE ENVIRONMENT PROCUREMENT ISSUES
Within DoD. procurement of any large. expensive, complex system of hardware

and softw Nare (like a CASE environmnent? is governed by policies and standardls which
require such thingzs as demnonstration of economic feasibility and documentation of the
dcveliopment life c:ycle in a systematic way for management as the procurement
Pro0 2,essel, io.z. DoD Standard 2167 reqUiremnents). Our purpose here is not to study
[lie proce-ss. but to discuss somne general issues which would arise durin~g such a
procurement. A fundamental issue Is a consideration of make versus buy. By make we
:-ean *o make or have niade (e.g.. under contract) a system which is designed topdown
f'or -,he unique organization and software engineering processes of M.(SB. By buy we
rnean a sytcem ccrrmposed of existing (off-the-shelf) products which are purchase'd to
a. semble a CASE environment. We will discuss briefly two fundamental aspect of thie
buy option. In the first case one buys a collection of tools or toolsets from a varietv of'
sources, choosing each for the particular functional resource it provides. Because of'
tnc cerieral current state of the markctplace in tools (ie: lack of consistent user
interf"aces, lack cf' interoperabillty. etc.) the best result of this approach is a d:sJoint
enrvi-onment assembled in a bottom up fashion. We call this a short term arroach. In

z other as.one buvs a complete environment (In todays marketplace there are f~
choices) xh,,ch has been designed top dow,,n as an integrated environment. W\e cm 1 '11IS

a znzz term approac i.

1. Short Term Off-the-shelf Buy Approach

a. Advantages

i) twiediate Resuw'is. Compared to an environment as a whole, a tool
w:t!': 1.mted functions Is relatively inexpensive. This will often allow fuand~nz 1rerm
lo'.'er le~els within a bureaucracy, wvith less Justification and shorter ~cue~n
de~ays. The tool can be in the working environment much sooner.

(2, Ease of Extensdbili:y as User Experience and Tech~zn).,.

Rcau14, enzePncs. The relatively small investment In any partcular tooli in the
c:'.. rcnrnent, allows easier jastifica:ion and fundinga to enhance tihe envi-ror.nt 1-

a .ool which fulfills newX recuirements better than exidsting tools, or t,-& il

neo,% 1 nctions.

P;,-k Best of .4va(:4ahie Tools. As discussed previou ly \vitb -ead to

the c em~ of :rzec:ration versus a variet,- of sources, this approach _L L Ca'0

to the b)est technolczv availab-le now or in he future.

b. Disadvantages

The advantages listed above lead directly to some major disadvantages.

(1) Short Term Solutions Create Long Term Problems (e.g., Creeping

Evoiution qf the Environment). Within a software engineering environment, the issue at

hand is production of a software product. The product is more than just the object

code. Change (maintenance in the traditional view, or evolution in the

transformational prototype development view) of software is generally accepted as

inevitable. To be able to change object code in an efflicient and responsi',e manner

twithout starting over from scratch), is a major (if not the major) purpose for the

development environment. At a minimum, the environment should facilitate *he

archival of the product in some durable storage media from which the development

process can be recreated exactly and then evolved. Since the product is a direct result

of the specific tools used to create it (and the tools themselves are programs which are

not provably correct or identical), the only guaranty that a recreation from the archives

is precisely the same product is if precisely the environment used in the software

engineering process is also recorded in the archival process. If the environment is

subject to creeping evolution the task of archiving becomes very complex as multipie

versions of a tool. or even totally different tools. may have been used in developing the

same or different parts of the product at the same or different times.

12) Disjoint Emnironment. While each tool may add to overall productivity

it. a specific way, the additional overhead involved in using a disjoint environment wiIl

resu.: in the overall productivity gain being less than the sum of its parts. In contrast,

synergistic gains in productivity and quality should be expected from integrated tools

, e.g. a debugger which works with an cbject created by an editor, as source code. and

:s capable of changing the object without forcing the user to shift modes 0eave the

debugger and re-enter the editor to make the change)).

(3) Inconsistant User interface. With rare exceptions, the user interfaces

I':om cne vendor of software to the next vary considerably. While many argue that

:'is is onlv of concern with novice users who must learn a large number of intertaCIes at

t,c ,ame time, we feel it is a major consideration Ior expert users as well. The expert

user mav make fewer mistakes than the novice because he knows wh'ch krobs operate

the ,Nstem in each of the modes of operation imposed by the various disjoin: ools.

Bat. there is a cognitive investment. in navigating this modal hierarchy,. whih must

,etr,., from the creative work the uer is trying tc accomplish in the process. .\iSO.

3 %

.- _. . '~ " ' , , .,,, ",.", ",,', " ¢ z-# ' p.i' f2% "'€2" - J2.r '€- ¢ £

the training overhead required to create expert users (including acceptance of the new

environment by existing users in the first place) will be much higher than with a

consistant user interface.

2. Long Term Off-the-shelf Buy Approach

a. Advantages

(1) Long Term. Since this approach involves a complete environment, we

are talking about a major investment in both hardware and software. Once such a

system has been procured it is likely to remain quite stable for relatively long periods of

time. Because of its large mass as an investment it will tend to have a great deal of'

resting inertia. The developers' changes will be consistant with the overali design to

protect the users investment. Creeping evolution is unlikely, and any evolution is more

easily traceable due to reduced complexity in the number of vendors involved.

(2) Integrated Resources (within this CASE environment). One should

expect synergistic gains in productivity and product quality.

(3) Consistent User Interface. A consistent user interface is not

guaranteed just because the environment is the product of a single developer. Neither

is it prevented if more than one developer is involved. Since there are a variety o,

tossibilities. and no one well accepted standard, it takes a commrittment. by the lead

developer. to a consistent interface philosophy. One relatively successful approach to

this is the Apple M\acintosh interface. W\hile Apple themselves followed a consistent

interlace . they also invested in the future by providing the tooihox of resourcc. in

sy;stem firmware. which make it easier for application developers to simply conform
•.x*tla -he Wacitosh interface than to invent something new and difyerent.

b. Disadvantages

() High Cost. This approach requires an up-front corunittment to a

major hardware software system representing a major investment of funds rciative to

that involved for individual tools. Local approval and funding are less like!k.

Jusultcation of the system to a higher level of a bureaucracy is gencrally more flbrmal

'Ind -ax':es longer.

(2) Sole Source. Unless his prcduct has a well established market s'arc

and the vendor is clearly a healthy business concern, there is a great risk in a maior

investn.ent in his nroduct. (No one wants to be the first, and possibly only, customer.

This risk is even greater if the product invo!ves a unique hardware architecture rc.JL:red

to host the environment. The user may be effectively liiited :o the vcdor s

II
.-.., .," .. ,'.,." .." ,-' -".," ." "<" 4 -" " 4"-,"4 " 4"4¢ " 4".; ' .",.",." ':,' '.'.,,"', t

technological and proprietary vision both for what is included in the environment

today and how it will evolve in the future. The resting inertia which makes this a

stable long term asset may inhibit extensibility in stride with the advancing state of the

art. Also, an off-the-shelf complete environment may include resources which are not

applicable or useful for the MSB software engineering process. The customer naturally

resists paying for something he will not use

k3) Incompatible Data Formats (with other development environmentsL It is
a natural extension of the idea of interoperability within an environment, to also

consider interoperabilitv between different environments. If for example .[SB is tasked

to prototype a proposed change to an embedded software product developed for a

project by some contractor, the process would be significantly enhanced if the MSB

CASE environment could accept and operate on the model of the system and all of the

objects developed in the contractors original software engineering process and

environment.

3. Make Approach

The make approach shares many of the disadvantages of the long term buy

approach. In general terms it appears to far exceed existing MSB resources. In
Chapter IV, we will discuss some of the inherent risk for any sole development of a

CASE environment.

C. WHICH WAY FROM HERE

In order to efTectively make decisions which commit scarce resources to

developing a CASE environment for MSB. managers in the MSB chain of command

must understand, the software engineering problem and how it relates to the

productivity of MSB, as well as what a CASE environment is intended to be, and do.

to improve productivity. An understanding of general CASE environment development

issues, and principles for a good CASE environment will also help.

36

I

IV. CASE ENVIRONMENT DEVELOPMENT ISSUES

A. SCOPE oF CASE PROBLEMS

As previously mentioned there are a number of products on the market which

use the term CASE in their descrIptions but only amount to tools, or toolsets. iinited

zo a portion of a full lhf cycle software engineering environment. A I fe cyc:le ewo

CASE entails some major development probiems which are reflected In the genera !

state of this technology today.

1. Evolutionary Development Politically Necessary

Hig-h risk 'Is the driviln2 forcc behind evolutionary development of' CASE

environments. Because of the size and complexity of a CASE environment, and the
.iinmaturity,. instability or rapid evolution of the fundamental components in% ol\ ed ii.e..

1anLa ges. database technoloev. manaeement techniques. software engiineer:1g

niethods. economic models, hardware eng-ineering, graphics. netwcrking. ergrnoniics.

art~lxcial Intelligence. etc.). the classic problems of software engineering :c!'t CA-SE

environ~ment development. Deflnition of the problem (the software e~nc~

process5) is generally incomplete, or inconsistent. and likely to remain so for ~:c.n

"or the oftware industr-, as a whole. As a result, no clear industir; .kide e: 3:

rekUuirernents to be satisfied by the environment has emerged. Lie ~.no.or

aize~ienton tundamnental issues regarding data models ar.J omnponent iie:ae

wtIn eironments or amonig environments have emerged. \lost o!drn>f c.dur

seerm zo lack th'e resources and motivation to undertake a f'ui :ife -...c CA.SE

en-N. ro:umenz dexelopment project under such high risk condition anc:n c!' : -e

direction each of these technologies wvill take). As a1 result, most efTh-rts han u::nac

t3 LflQ away at the problem frcmn the bottom up. The risk of Chancgiig t~n~Y

not ::Nely to suddenly go awa%. The software engineering process; rr~.e "k . .: C a

-:Cr particular organization in wchthe rna--orit of proje(ts fol~ow :1C.~i %c~

H owever. it is like!-, that severai ;~ c en'. ,ronment markets e\i~t. an,-:~;~t~tc:

to a sinzele 'ife, cvcle model wNould cos~uea cozniit~ment to a sinzie \ert:.ca.

Eu;ropean developers 5cer. to ' ie way ahecad In top down-r o.enC,: c
in~or:~e LU!!I' cyc-le CA\SLEn:rmc;s

-If

"7

%V

2.Requirement Tradeoffs Contributing to Risk

.ro-_2 the manyt tradeoffs znvolled in CASE requirements analysis are:

* lo-. tcz- LX[Xi vs, ;igeh integration;

0 .o ,ed \'.. open emn'rnmt iextensiblilty):
* an~ua~ze denendence vs. irnderendence:

* r:~c;n~uJs. mnult:>Inlual:.

* partual '.s. 1'Z- if cv dcc support.

* '.rme . -utirle rnethodolo2z:

* .i~ user vs. inult~p~e user.

* >i.rd&l-vare dependant vs. independent,
*text % S. gr",' lics;.

*si, zern ccni :urabie %vs. user configurable:

* no-secre \sl secure-.

c ost (L~t\C'~ ost exorbitant

H-enderson. lS-. p, -;S). What is needed is a comrrmttmecnt to a CASE cnironmen't

..e~ eiourent phi'osophy w~h~ch wkill allow evolutionary development o.: glod
mron.'rcnts. %k... X in"L1t11IMin rsks from chaneingv software engincermn2 prcc:e-;

re~cimetsa:,. con~tinued technoiogica! advances. First, let's consider xh'.-It

a 20,. automated er.\ronment for software engineering.

B. FUiNDAMIENTAL PRINCIPLES FOR CASE ENVIRONMENTS

_;he -- ck~zrouriJ discus,.ion ofl the preceding chapters included se'rt: -ueie;

\:h i'.L ur~e the e~ciutlon of CASE environment efforts. We did no.,

1;1% er Lv :ear cut study or statistics proving one side of certain issues to h-e

".-~r~o totnecther. One can iet a feel for the trend of developrients. user

a.Cp:-nce an,. the direction of ongoing research. byexamiuning past and nirun

;\c~r~t.;:ir:ronrnents. A strong dose of corr-non sense can then 'Le appihed to thez

an .ces can be made which anpear to 6e fundantentall% better t;l' i-.

.-=t:% es A\n ohjecti% e studs to de-norns-rate that these choices are supcr:,:r to:c,

.r esis certa.'n.% a I'rec tion ,cr furthe-r rebearch. but far exceeds th'o L 1

'i. \eem, ti. few Suich ztudizs are ever ccniducted. Such a stt,;dj% u~

e:xdto he app1'.CJ ;n P~trall'l to the same prch,'eni m an e' r ie;
*~~~~~ .of,. yer rih2 ctire. ha~.-l'vare. -ecle ec r cNtri-n
~ ~ ~r~r~i. .Ash ctzer: hen -he case %kith -ast ae ipln'

Leon Osterweil (1981. pp. 36-37) wrote that,

The essence of a software envionmyent is the synergistic integration of' tools in
order to provide strong. close support For a software job. This environment must
have at least these five characteristics: breadth of' scope and applicability, user

iendliress. reusability of internal components. tight integration of capabilities.
and usec Of a central informnation repository%. A support system must possess
.hese cr-laracteris-zics iitis to merit tename environmni.

This ;ix year old view of what should characterize an environment has not generaily

been attacked or disproved, seems to represent the consensus of todays stated goals for

envircrents. and is the essence of what we cail fundamental principles for CA*SE

enviro n:nvents.

1. Portable/ Reusable CASE Resources
We view environments as a collection of resources. The collection includes:

" phvsical resources. consisting of computer hardware and systemn software and
,irmware:

" CA\SE re-source:s, consisting of software tools implemented on the physical
resources',

* nianual resources, consisting of' the methods and procedures necess ary to the
software- engineering process but not implemented as CASE
r,'sourCcs;

* human resources. Lonsisting of the people who use and facilitate utilization in
!:1e case of manual resource, of the environment.

oc :s or, CASE resources. Naturally, the CASE resources im-ply the

s~resources requred for their execution. The,, also dclethe

Laesfor a softwa-re engineering process in a given er,%irent

rnizthe nature of rnanua! and human resources.

CA.SU_ -esources should provide the softwvare enizincerin2 team ihumn

:e~x~r e i'.1 t~ a problem solving itraebetween the real worid probliem (for which ;

.... .~t e~lo- a software solution) and the mranual and physical ,-esources. A

'raJ -ailow, fr'.ctional hierarchy- of resourccs. Is required to SUrr:r' ,',:0z;:

.. er:_,Ucivi[V iw-ich is inherently difficult to quantify wi.th precisi' snc~eb
1e ' by he chanze. the industry tcndencv seems to be to -accept and expici.: h

-e If the advantage Of the chanze is not clear, it is resisted and either in. along
mirnr'or market share or dies out bynaturai' selection. In either case ther- seemi

tc have becr en v attempts to objectively quantify the relative advart~aco: Ot "le
.~,cranesinvorj,%ed. A: n-~. rnprcal oprde;*<~zgid comparisons of'~n~

su s areco.ued

% ~

goals (discussed later). By shallow, we mean a hierarchy with very few ia'~ers. This

tacilitates responin-eness by reducing the calling overhead required to descend thro;h

the hierarc h in order to use physical resources. Subordinate layers in Such a !,ha':o-

hierr~w illbe biroad in the sense that the% will of necessity contain many, resources

il r.xdu'ar dcsign principles of coupling and cohesion are observed). In such, anr

arcitctue.kCernlel Utitv resources cith unique, idpnetfunctiona!it~i Lrectr

access the hard'ware resources or the environment data model (the key CASE res;o Urce'.

on behalf of tool resources xhich pro'ide CASE environment services to the Lusor

nterfacc. Such an architecture enhances portability and reusability of' ;of-tware

cornpornenzs and extensibility of software systems.

The issues of portability and reusabiiity of CASE resources and extensibi:ity of'

CA (S E en'vironm-ents are fundamental to risk management. CASE

en%.rcnmner.: resource user r~sk will be reduced if their Investment is sccured well :flto

m te 1--t re nsp te of har-dware, methodology, and other technological aI.Nancer,1.
CASE Ln'.:r-onmnernt resource developer risk is reduced if their products reach a h1roader

niarkct i;ariDaus hardv.are and methodologies) with greater :onsevt,-:. Lnfor-una'.

ez-% c heJi~ct lnkae o' te:-respective products, to control their share -ii.ue

nrt.tend to resist otnin subtle way s 1dustnv standardizilon efiort-X\:Ls f

2fldcr2Lne n i arktet leverage.

2Integrated CASE Resources

A:I ithe CASE resources In an environment should be Integrated to cj:t

.2re~h.cr.roll and sharing (see Chapter 11) in order to yieid aisnr~tce1c

'vrerc'. heutitv cf the eniornn as a whole is mnore than just the un ;t,

-arts. Re-.,;i th-at %vith respect to automnated environmient toots. in this in~tan<e CA:SE

r~c.rce~ &edeflried itegrated as:
* ii rsourc es con."orm to a consiat usc in e:~c

* I.. resourc:es are as highly in teropcrable as

* o;ects and their interrelation~hlps t:re in a ners:sternt comnu data r.t
'A 'ich :s n-xaniriefui to all en-. ironnment resourCs.

Th e;'~ctuser lnterface and inieroperaii!,zv-allo w for intuitINe aLccS tO AS

re~or~e~r~he :a~:he user of' mlUch. o' theC LOgnltive o~ erhcad of n'~tn

a :oato. . %w.Zl %arous operating ccritrils. 1 eue anJ .t noic

attention to the software engineering task at hand. lnteroperabilty. based on

"Ianipulation of the common data model by all CASE resources. should allow the user

to create or change an object by manipuiating any of it s displa, ed Ifor-ms.

\ lacl-ennan. 19S-. p. l-3

3Open Environment

To evijo, the benefits of' new techrology and competitive endea'or. and

--ncotrage esOILu~ionar-v development for n-u.Iiple environment markets. en%':ronments

should be open to extensibility. To support reusahiity of' resources. funct;,.nailz of

estr CASE resources should not be dnminiihed by new resources. To reccn~ci!e

exte~ibi-vw th thc seern~inzly con."Icting principie of' integration requ:res agreement

on and zandardzation of.

* data =,odel used to represent ob,,ects and their interrelationships:

" ::'.enrtaces of CASE resources with the data model: 9

* inter!aces of CASE resources with ph% sicai resources.

* inrertfAces of CASE resourc.-s with the user.

U'ser Friendly

User friend>., is i much o'.erxorked term, but we've chosen to use it x

i~:e~'.wuhOsterxeil. Corrntment to an integrated CASE en'ironen't

,omposeU_ c" CA\SE resourccs as described above can IaLilitate an e, ent,;riven -%cr

In-ert-Le nhION, ',V.'. Suh a phYI'oSCpk%% 11 Charact'enlzedb\

* ~'~D.'~ r~~.u'~er s actions ha~ e Jrc eut.are intui:!x e and ~~'~reu
'i-e.. no inod'es o

*C'errass:%eness. the uscr can ao ar~th.riz re'asonal*I at ar-, time. the ,;ser deL:-Jes 4
wxhat to do rnext. no, -.he indjv idual CA-SE resour~e t ixe noi
moules)

*2cn I S erc. rce~ardless of what CASE rcsource is in e\ccuticri. "Ix Ic
control options and -he apparent rcsponse to them 1r7 ;C\tn
w ith the tx pe of' "unction being performe eg. i tc-I :;
seems like text editmn-7 should use idenzic~a corirro, r rc.
%%shether it ztov la'neling a grap:n:c&a. :am or :ert-;
textual doc um'~en-

rhe UIaabase L-ro% ides anmeca;i and uinit i'ne mnedium for :n-erac:ri :0..s
IA.11 ::Ito a Corr I.-'\ ItL t, ot'It Ia iitonl,:'' I oc: o"! 1,..

in -h'::i~ :e Jatabase arwd ;-c-:-m their reisto ,,, %k;ou: na'. :rx t, nzzer:_,a,

.2 ';2 .2.r oo:.. . .. in crer -,j ri.air,,tan lebiit ~~ 'ctjr> .

>r~cc~i':'xerF :r~C: t zOc, raierthn bidJ'c :nt3 the

The feel of such an interface should be that the environment is waiting to serve the

user as opposed to the other way around. This is done by emploving an event-driven

control structure where user actions are events and the svstemn is alwavs readv to

hande them (e.g,.. as priority interrupts, or by polling for them). The broad shallow

architecture, of the CASE resources in the environment. facilitates event handliniz

wliout mioda!;*%.

C. FUNCTIONAL ABSTRACTION AN APPROACH TO SOLVING
PROBLEMS

The principles may not have changed significantly in six years. but CASE

environmnents embody, Ing these principles are not generally available. Wit'hout

bejaboririg the point, we attribute this to the high risk of building on questionable

standards in rapidly changing and relatively immuature technologies. We propose a

strategy. to avert some of said risk, allowing progress towards these principles.

I1. Definition of Abstraction

An abstraction is a description of some object which separates the definins:

properties of the object from the unnecessary details about it. A software engineer is
concerned with soivinga seine problem. The tools (CASE resources) in his software

eng:ncering criv ironment form a Probi'cm solving absrracuion. The hardware iarx -sorre

of the softwvare). on which the problem solving abstraction (the CASE resources' ur-c
.implemented. form a ph.ysical resource ahstraction (}'urchak, 1984. p. S).

2. Formal Specification

It is g!enerally recognized that the operating system is an abstraction of' tIe

har~lwarc system of-primary and secondary memn resources, processor resources. and

:np nut output resources. Additional abstractions (e.g.. video displa-, recourcesh'

sobecomre commonplace. Such abstractions generally exhibit 111 of orna i%11 or

corns: *enc%. a semantic gyap, similar to the problemns faced by linguists irying to spccift\

:hIe scraxis of language constructs. "The %ital property of a specificani \Oh'ch

cuaarantees that a correct program corresponding to it may be constr.uctcd. is ;,s

,*:.OW--(Lehman. 198-4. p. 39 The practical problem to be soi'ed nj~e a

~'c:T~ltvof software. One must hne able to specit\ resources, in an n.mctac

.n ceren 'ent manner, in terms of abstract functional properties the-, nro\ :de. Da\ i

1 1;'S4 . us;irg concepts developed to specify the semantics of h igh ie~ el lnuc

constructs spirticularly abstract data types', developed a method for a;e&',raic
Lpc~aion to solv-e somne of these problems. Using such a formna: nc~a~c Sa

external frame of reference, correctness of a program developed from the specification

can be viewed as a calculable, instead of empirical, notion (Lehman. 19S,4. p.1 9). The

impli,:ation is that a correct implementation of a problem solving resource, layered on

top ot 'orrect implementation of physical resources, will always behave functionally the

som2 regardless of' the implementation or hardware details. The way is then clear for

de\ elopment of portable. reusable, functional resources.

Abstraction of Physical Resources
Yurchak (19S4) used Davis's algebraic formalism to specify AM, an abstract

machine ,physical resource) from functional requirements. Multiple instances of AM

hate beer, successfully implemented. from Yurchak's specification, on different physical

hardware at Naval Postgraduate School. Implementation efforts proceed quickly and

mehanicallv without the semantic ambiguity of less formal specifications. Work is

continuing testing portability of applications running on AM when hosted by different

physical hardware.

Grant (1986) functionally abstracted resources to support graphic user

intorfaces. He hosted his abstract resources on the Apple Macintosh and Digital

Rc,,earchs GEM lon the IBM PC). Applications. using only his abstract resources.

are portace between the two host implementations inspite of significantly ---rerent

hardware and svstem software (e.g., differences between color and monochroie are

Lundlc.'Ld b the abstraction by placing colors within a gray scale. from lig"t to _ark.

ci-ns t'en'. -o be displayed in logical shades of gray when hosted on monochrcme

-,dx2.v; re.). There is no noticeable (from a human interaction perspective de gada:ion

in :he response time of appiications using Grant's abstract resources vs. ini;ar :native

'.,tem resources le.g., mouse tracking) on either host. This is attributed to Grant s

a'.ercnce to the broad shallow architecture principle for portable reustbie re;ources

supnortlng user friendliness. At most two levels of calling overhead are added between

a, anm ,:.tion resource call and the native sstem resources.

4. Abstraction of Environment Resources

By defining abstractly the basic functionality of CASE resources bae,' cn a
,.seu. standard data model, and implemented on abstract hardware resources. ,.re

dcveiorers may be able to drive CASE development with minimal -:s-, r: the
une:a:ntcs of hardware evolution, language evolution. and even evolution oi',

oit,.r e.nincering process. One key is agreement on a standard data mcde c! :,e

,t' representing all o, the objects (i.e.. real like people, programs a,nd docurael,,-,: or

43

imaginary like yet undeveloped programs or unhired people) and their inter-

relationships which compose the software engineering environment. CASE resources

must assume basic hardware and system capability as specified for the abstract.

hardware resources. Once a CASE resource is operational on the abstract hardware, it

would be portable to any physical hardware capable of hosting the abstract hardware.

Given an abstract hardware host, fully integrated environments could be assembled

from abstract CASE resources. An environment builder could design ard implement

his own preferred consistent user interface which interacts with the abstract CASE and

plysical resources. But, ideally he would find it easier to adhere to user interface

guidelines making use of CASE resource utilities which directly and elliciently use the

abstract physical resources to provide a responsive, permissive, consistent, human

engineered user interface. New resources could be abstracted, as technolcgy advances,

by adhering to the specified data model and interfaces.

Such an aproach is directly pointed to by efforts such as CAIS and PCTE..

We believe efforts in this direction hold some promise for bringing order to the current

environment chaos.

5. Layers

The question of efficiency often comes up in connection with our advocacy of

layering abstract problem soiving resources on top of abstract physical resources on

tcp of actual physical resources. This is certainly an area of concern since

responsiveness is one of our user friendly requisites. and many- CASE resources may be

physical resource intensive (e.g.. manipu!ation of many interrelated objects in a large

project database). A key to this issue is our advocacy of a broad shallow hierarchy of

CASE resources facilitating responsiveness of" event driven user interfaces and resource

intensive tools. and providing rapid access to physical resources by avoiding a deep

mcdal hierarchy. Grant's experience indicates that this can be a viable approach for

supp3riing user friendliness in an interactive graphic user interface. The speed of

phvsica, resources has been continuously increased by hardware advances, and more

r.centi' through multi-processor architectures. so it seems reasonable to argue that

.- an example, the Multi Ba,.kend Database System MBDS) at the Naval
Postgrad-ate School provides for distributing a database evenly among muit:pe oil-
t e-shel bac!,kend :nicrccomputers. Database size can be doubled, w:th no impact on
trarsaction timne. if the numoer of backends is doubled. Or. the response time c .n he
hai.ed by daubling the number of backe:nds while maintainine database si/e. the
nu:n ,er of backends is transparent to the users who deal with MBDS a5 an abstract
databasc resource ,vhich suppor:s r,,ultple data models and multiple query iangaag& e.

I

small efficiency gains in CASE resource implementation, at the cost cf portablIit'. and

reusability. arc likely to be wasted in the long run (i.e., if you must scrap non-portable

resources in order to take advantagc of more significant performance gains offered by.

technological advanc;es).

In a-ddition to efficiency considerations, a major consideration, in constructing

abstract rescurc.es 's identifying the individual functions to be provided. A.s Oszerwe:1,

19Sl1, p. 3-) observed. difflerent application areas will inevitably lead to differences in

environments to support them. The bottom laver of problem solving resources Nhould

be atomiuc functionis which directly support multiple top layer resources. As an

example, an atoirac resource might be a parser which is called by pretty printers. error

checkers. stat:c analyzers and compilers. etc.. The philosophy for developing

environments should use Information hiding to protect the integrity of these basic

layers. In other words, the users of top level resources only interact wizlh thos e

resources. For ntncthe compiler user should only use the compiler. The fict th-at

'lhe parser even exists should be hidden from him. Those abstracting top level

.esources, know the parser exists, bout only access the parser in terms of it,~ abstract

Oanctional interfae If the need arises to jump around a laver of abstract resourest

zez at some lower function, then a function which should have been abstracted has

been miissed. This is one reason why high order langzuagzes like Ada or Pascal Is -n

produce portable applicationts. Ab\straction in these languages is at an extremelv high

:evei the prcgrannrig logic level), and hardware or operating sy,;temi calls are !ft e n

required! to handle external intert'aces (e.g., input output devices),. In the case cf cood
rogra Ls11P these na beclctd into abstract interfa ce pcae

documented as requiring changze beFore porting. Bv' abstracting at a lower le-, W. or,

o)emn conmmitted to a philosophy preserving the integrity of' lovers cf' resource

ab\:lrac: ins. oortabiiitv and reusabilitv of environment resources may be achieved.

6. Standards Enforcement vs. Encouragement

One thing2 the software industrv has is plenty of' standards. As par* o:' the

c r! rzn -I STARS-SEE effort. Znsrtzuie h1-r De~',ise .-1nalvses conducted a -tud'% ol

~:'fcmc~ir.interfiace related standards. They identified ~2existin-, standl-rds, ind -:22

en:zrn 2 standards 11 from 717. international. U].S. government. cr inlustrial.

or-2ania:cns;. The study- focused on staniards, in 25 categories (e.g.. data itrono

'The cate~orv of emcrinng standards included both standards orien.,ed
devlo: mc.tprc~ek:s arnd conmmercial ventures becning del'acto standar-'s r:i

:narkzz share.

% AL

project management, graphics. programmring languages, etc.). considered of posib!e

relevance in defining integration requirements for the STARS-SEE (Nash. 19S5. p.
223,).

The fact that so manv standards exist, and so many more are developing

su~iests that standards are anything but standard. Many standards are the result of

noble ;ffort by standards organizations. But, adhcrence to such standard., by

developers. cz n be a high risk proposition. If the standard is something new and

different, zhere is no easily predictable market for a product confor7ming with it.

Success of such a product (its market capture) is dtrermained by a multitude of I'actorg.

If the product is measurably or noticably superior to some existing successful product.

or provides some entirely new and highly demanded function, and is targeted for

ph':sical reore omnigasgnificant po,-tion or the likely user group. it will

pro'bab'y be successful. This is risky business, and many standards on paper nev.er

'become standards in f'act. Some standards of necessitV (e.g., hardware inter,-o rnection.

ext%.rnal conrnunication protocols, etc.), many of which began as defacto standards.

aro- broadly accepted as mutually benieficial to industry as a whole. Other st.andards.

such as those promoting solftware portability (in this case CASE resources). may be

v:ewed' fav-ora-b'L by users, and developers without a vested interest in particular real

physical resources. However, much market selection of hardware currently In. olves

ls~ues concerning the breadth and depth of software applicatlons available For tat

nardwxare. If software were more readily portable and rcusable a majo hrdar

mare::l2 ever would be altered sian"icantlv.

A*s stated earlier, hardware and software developers, who rely heavily on the

direcct U,-nkage of their respective prod,.tcts to control their share of' the miarker. tcnd to

-cstst (often in subtle ways) industr' standardization efforts. If their miarke.t !-.are is

arge enough. they collect strap hangers seeking some of that market. It is in this way

*hat dacostandards arise. Of' Course. at this point the authors of' the eco

s a r,. who have already, prolitted. may change directions radically in a bdto 'hake

Off Stra7,1p hangers who have not yet, recouped their investment. And so. oten %x:th

iuffernt lesser plavers, the cycle bcz:ns ag.,,M.

In a -:ew cases, such as th~e DcD Ada initiatives, a particular standard, or set

of' sta:'Jaris, have been implemented, and enforced by rimnendite.K te

"Ise Of Ada. ccnmpetition for DoD dollars has b-een the primar-, n.ustr,, :n :cnt:;% to

12 0ne may arue tnat Ada is :'-,r from being fully implemented. ,nd >J

tza:,nagemenzt resolve is not per:cc:>. ccar.

actually develop the resources required to support the dictated standard. One obv IOUs

drawback to tnills sort of approach to standardization is the fact that lew interest

zrou-ps have the !Inarncial cLbut required to pull something like this off. A more subtle.

ar .i In the long run possibly detrimental, drawback (to standards by edict) : the

possihihtv that the standard may not be a very good one, but gains momentum by

diretia.rid consumes resources xhich mi~ght otherwise contrIbute to esoiut-.on.

.hrough na~ura sele-ction, of somiething better. And, once in place, inertia will terid to

kee-p "It there. Of course, If the standa-rd is good, or at least acceptable. the audvanrtages

of focusin-e resources and effort should be sigifficant.

The dilerna of standards enforcement vs. encouragement is not likely to be

resolved. We Favor standards encouragement for CASE resource functional

ab)straction, interfaces, and data models. Keys to standards encouragement are:

" -ood desion. so there is 'tittle Incentive to repeat the effort:

" availab~ity, if possible make all forseeable low level resources sutflciently
eiTicient, and readily available so there is little Incentive to violaz2-
layer integrity (by Jumping around it), and little incentixe to
reovwent tir ivizecl

* J audines. well publicised and Justified philosophy, of why It is the wa\ -i!
an,. hnow to keep It that way.

*social change, growing recogniti .cn that standards promoting plug compatil'.7 o~ f
CASE resources with eachother, users, and physical resour cs. are
also stwulards rof necessit.

7Top Doin or Bottom Up

One Of our major criticisms of the current state of most CASE environmornt

deveioprnent has been the bottom up path being followed. We've recognized samcelof

t:-e nioz:vation for this. Commercial CASE developers are avoiding risk arid playilng to

the d'hs oint off-the-shelf tools market. In order to survive, software des elopers CA\SE

ro-'ouLe users customers) in the competitive trenches often require inmied:a-,e su-jprt.

sncof, xh~ch is available in disjoint off-the-sheif tools). One Si91ru1ficar-:b -rrcduct

.ioni the long termn view) of -.his activity has been the generation of e\perien,-e. wI;~

:0~of capabilities, as a b-ase f'or ;denti.,i ng problem solving resoLurce umo:s:or

A ra t on0

The top dowvn activity in our CASE environment development strategy bcgins

wvithic anai.vsis of' a basic software engineering process to abstractly specil i t,e :l

mo.Gel and interfacc rcquiremients . c are the infrastructure of' the en% rcn.mciit

anok- the f-UnLtions 'at lower la:.ers arid theiir zogrepate (at successivo hliher "I.C"'.

zq4-.

which together with the type of data they manipulate, define the resources of the

environment. Design then proceeds hierarchically with more complex resources

specied in terms of more primitive resources in the adjacent lower layer. Algebraic

formalism associates meaning to the specification of each resource, with a rigor which

can be used to calculably verify implementations of the resources defined in the

specif.catons (Davis. 19S7, pp. 30-2 - 30-7).

I

V. FUNCTIONAL REQUIREMENTS ANALYSIS ISSUES

A. SCOPE OF THIS EFFORT

In Chapter IV. we discussed CASE environment development issues and their

contribution to the existing chaos of disjoint tools, toolsets. and environments. We

discussed general principles for good environments and how abstraction of resources

and a formal method of algebraic specification may help to achieve those principles
and alleviate continuing chaos. We believe that this approach should be de',eloped

Lurther to make good CASE environment resources which become the foundation

building blocks of portable. reusable. interoperable CASE environments.

In virtually all conceivable software engineering processes, starting from the top

means analysis of the real world problem to be solved. It is clearly beyond the scope

of this work to conduct an in depth analysis of the process required by NISB. and the

functrional hierarchy of CASE environment resources required to support the process.

What we've done so far. falls more in the category of general farmliarization. It is

potentially useful as a starting point for more directed efforts.

In Chapter III. we outlined three basic alternatives for MSB CASE environnment

procurement:

* make;

* short term off-the-shelf buy:

* long term off-the-shelf buy.

We also indicated that the make alternative very likely exceeds %,ISB resources and is

therefore infcasible. However. we would like to carry the make ideas, discussed in

Chapter IV, a little further to illustrate some of the top level considerations invo"e"".

We are going to skirt the really difficult issues of a srwidard data model (based on the

sol:.vare engineering process whose definiion we've also bvpassedt and a daa

x.....e interface (at a higher level than sequential character based text fiies). We ".ill

iook at some functional design issues ior a relatively well understood subset o! CASE

environment resources supporting mi .dal programmer productivity (IPP). 13

-3This is not intended to appear like the type of bottom up effort we have
cri:lcised. \V- proceed in this fash:on because of time constraints, the explcratory-
slope of this effort, and the extremely broad scope. complexity, and uncertainty c: z-e
environment engineering task (whichi ias contributed to the current chaotic state of
environment automation in general). Our intended purpose is to advance u,.rstand.n

;I., -. -. ". ". ". '. '-.""" " "" ,"" " """ " " -

It is noteworthy that, with the layered approach we've advocated, most of the

low level resdurces. required to support a subset like IPP, are also required support for

other high level tools. As an example, all of the user interface resources, below the

CASE :oois resource layer, must be in place (as do the user interface guidelines). IPP

tool resources will use the user interface physical. CASE. and manual (i.e..the user

interface guidelines) resources. just as all subsequent tool resources should use them. as

the basis for the consistent. user friendly interface which is one fundamental attr:bute

of an integrated environment. This sort of idea should help one to visualize the

potentiai contribution of our approach towards open extensible environments withou"

compromising integration.

B. INDIVIDUAL PROGRAMMER PRODUCTIVITY (IPP) RESOURCES

What o'lows is a very broad brush treatment of a few of the concerns associated

with functional abstraction of CASE resources for a small part of a CASE

environment.

1. Physical Resources

One might ask why (given the difficuty of bringing new standards into the

marketpiace even attempt to abstractly specify physical resources. For nstance.

abt,,racting operating system level resources is tantamount to defining a standi.rd

opera:,n2 system (which has already been done on paper, but has not succeeded in

disnlacing defacto standards such as UNIX). Why not just adopt an existing dCf'acto

stanldird and build on top of it? This is what is generally being done today to achiexe

some portabiiity and reusabiity. Problems include:

* lack of fornmalism in specification of these defacto standards, resulting in 'ess
than functonaily equivalent instantiations and inherent portability .robler-;

Sknowedge of the underlying operating system layer, encouraging, Cr at ,caet
enauilng, undisciplined users to bail-out to the operating system. violat:ng the
.avcred functional information hiding structure to produce applications ,,:a
innerent portability and reuse probiems:

* d.ai functionality (i.e.. more than one way to accomplish the same :h:ra2 .

especiaily if more than one existing standard (e.g.. an operating stt, ,nd a
seperate graphics kernel) must be combined to get at the hardware, v.:,:I: nan

of the problem, and the potential of our problem solving approach. at several le- cs.
Oth;er. ra-orc specific, work to demcnstrate technical feasibility of ILnc':2r-,,

components of this problem sol ing approach (some specifically citeJ in this work anu
0tZ:ers Just corrmencing or being encouraged are in progress at Naval Poszzrduat'
School. We !,cie that our work will provide suflicent background to t:'.
continued efforts in an organized top down manner.

- w "* ~ -/ ~~5O

lead to implementations of higher resource layers which are affected in diff.,rent
wavs, by, changzes in the components of the physical resource la'er. end2
oni how that particular iripementation accomplished something violat~on 01
our unIUCe atomic function Interface pr~nciple f-or la'~ers.

c ritca7 functions required but not extendible to cx.1stir1: Jefacto standards ie L..
If' the environment must be a trusted secure s-ystem, the '%er-% presenc-e of' .il

,'sting operating systemcr is l~ke:% to pre~ ent realizinz ecurit, wkhich 1): e
dcsIzned In "rorn the b-zginning,.

'h-;sica! resource functions to b;- abstracted shou'd be familiar. They Ir L1Ude t

hardware v pical~v managed by, zhe onerating system. graphics Interface and d1,iihase

management system.

a. Abstract Hardware Resource Layer

Thze abstract hardware resource layer represents the hiardw are x!rtiua1

hardware that will host other physical resources (operating sy,:ern level resources,.

The ;hlIlenge at this level Is to aoszract needed hardware :'unctiona!witxwhich can ~
met wvith existing hardware technology) inawyta llwkxeso

parameterizing the Interface toz the next hih:level in a way that should aa' ce.

to future adaec withouit co ninu ising the integri.ty, of the la-yer. lue

shcul,- 1)e f"n-Ailar thinos :Ike:

* processor, S K

*prnmar-v and' secondJary miemrory stores:

* archival stora~cvce :

*bit mapped .ilsplayv:

* pontin deice;

network communications (not strictlyN required .fout cert'.ru-,.a
hlnderancc to extensib~lity if not available).

lie formal a!zebraic srec~ficat on of abstract hardw-are miay he :nrea;,-:;:c-
IrZ hardware hosted on sonic e xi*st ne h ardwaire. , im~la- to P.~ - -c,

::-ir'rentations) or It miay be imniemen-ted as new rh% sIcal hardwkare.

SSomne c-s tal ball gazing shnould be berie'lcial. but even .I' the resutdo. .,
.iovw the most efficient use of'alftr hardware dev elopmients. re h -1stLin,-,~i
dcv% ce,, to new hardwvare shiouldi stili capitalize on features such as adde ccu<w

ct.ixPortir1 z the enitire en'. ironrmn tit above it. We see till: sort C!....
a 2 cneraliv smaller scale., in up'xard>y moibile hardware families xihere, 1-::c

eM.lti Z: he instruction ,et o, ,n)lde.r mAhnrn n!n l\ ~...
ulv~r,2 port.ingz of ob ect ccde lbr the cl- i ma~hine to the new rna .mne.

51S

The abstract hardware resource layer represents the interface between real host

hardware and an open, extensible, portable and reusable enwionment o! CASE

resources. Of Course, this nucleus can be broadened by addition of other devives. which

nn, t thern be reflected back up through the resource hierarchy to (and down through

-L,ie n-.erarchxy from) the tool resources which can use them.

!t is cbvicus that the physical resources constrain higher level resources.

an U that hiigher level resources drive the demand for lower level resources. One should

not w~ork i::depe ndently with either set wxhen defining the functional resource hierarch-_

ln~tead one niust begzin In one place "either the top or the bottom) and model the

d.s-.rcd Furctlonall':. Since high level resources generally require an aggregate of lower

lexe: functions. one should analyze the situation in a combined top down and bottom

up f-ashion working both ends (required high level problem solving resources vs.

aaiizihL-e physical resources) tow-ards a meeting point in the middle. The goal is a

broad shiallow hierarchy with atomi c ftinctional resources at the base which are called

t'ircueh' -he interfacz to higher layers by resources providing compound tor aggregate)

..U:t1.1:CalIzxV (the combination of atomic functions from below) to the interfa-ce xit

-he lhiler of' even more capable resources above them. Working in such a fashi.on one

mntcont:nue pnulating a CA*SE enirnent IPP subset resource hir:cvas

b. A4bitract Opering System Resource Layer

,The namne of this laver :s virtuaiU self explanatory. However, the :d.er Is

e\2n~e. ~vorJ ore con~entionai operating systeni functions, to handle di:aha, e

~zetand craphcs Func-ions. The resource categories include:

* 'cccss management (including multitasking whic w nsdrrItclt
P'ro jac,, t. ax

* mr.or, mranagement:

* '~teflmanagement

* da:abase s%%tern management (the database system is essential to tiie
::iroprab~u~aspect of integration in environments).

* ~ oatpat de~emariagernent:

* rarhLS kernel.

As K':.. r. JJz:onai resources may be added (driven by the balance of' requirement,

.~C\2 .~au~s:capabihitics fromn below). As an example, a security 'rnei mt

'e adc .xx j~hooks to securiv, resources added to the abstract hardware iaxer, _ nd

* .~..ram sc~r~! mnier (,n :i-e CASE environment services resour~e _v' or'

*.O ~t.:c ecur~t% re , wr.ernwnts of the CASE tool resource layer.

2. CASE Resources

These are the problem solving resources. They. are intended to interfac:e

directly, and only, with the abstract operating system resource layer below, and ,Ile

user above. Thiere are only two hierarchical layers envlisioned (to remain broad and

saallow)

a. CASE Env.ironmnent Services Resource Lay~er

Resources at this level are the basis for integrationz standards within the

CASE tool resources. These resources are the result of the philosop~te.- goverann such

tnine-s as the user interf-ace design. Data interface standards are also resolved at this

level, and uitility- service resources (which have broad applicability among tool resources

and orovide a cohesive , unctional aggregate of operatnge system level resources) wou.d

also 'be included.

1) User Interface Serlice Resources. These resources provide services

which lrectly support the user interface guidelines. 16 Their presence .s intended to

pro-rote voluntary compoliance with the user interface by doing much cf the wor'K in

adJvance and 2ivinz it to too! resource developers. Included would be:
eve 0i'.Z1,7gQT. the hieart of a responsive user frie-ndly interface. reports e,\ mz

e.g2.. prointine device movements. key-board or pointing device 'key presc~ to
the user interface and ail other consistant CASE tool resources, to xh: :i-
can respond by forking to event handlers, whereby tool levei resourceO .1
1. Le sstem resourcc hierarchyinta of the user who remains f'ree to aher th-e
control i1c.v \it-i new events (whether an event qu-eue is poled. or e:;sare
nandled as nrion'ty interrupts wilbe ke% e!T*,ciencv considerations for dse

0 P;no~ ncnawzer servic-os create and manipulate windows as objects dispia'., :d to

c:onvey information to the user, classes of' windows include systen incx
created by the systemi user interface wtoo), and tool windows icrcat'ed byctlcr

tool resources , either of which niz-,% include dialogz or alert xindow5:

* U"1 0Z .C allows tool resources to create and display, menius consistent xit
tr e User inte.rface guidelines, and reports menu selections back to thle t -C",

ensaowusers to chose options at any time, menuopinar ie,
used analo~ouslv to comm-ands in more conventional systeins c.rri0n1I
2,r alternat'velv thev mnay be selecti;ons (e.Lz.. tont size 1%-Ce, uEr iner:dc
2 aidelines should provid "e for menu selectbnr via pointing ~~Vice or oiti
.1:cys. menus should not be hicrarchical (avoidance ofnmodesi:

t"Sirizr ' 19S- provides an in depth discussion of the user interlace p h:!0sOPh\
and thie resources and guidelines required to achieve iHe also ccinc ~m

inmlementa Issues and a discussion o.f the pozential oL :uch a Userinrc
S:;gni: iXit prodiu:tv:tv ;moroven-.eiit Mviefl filly e\ploited by advancedI CA\SE -oi

:',OUrCS su .h as visual procr,.an,_mir.2 tools.

a,

Lr,

* dialng manager used to create and control dialog windows when a tool resource
must have more information f:om the user in order to continue a task (dialogs
are modal if the user must respond before doing anything else, or mode'ess if the
u.,,er can still do other things, dialogs may make use of controls standardized !v
te user interface g'aidel ines and provided by a controls manager. or text entries
*e.g., raming a fileo, the dialog manager can also generate alert winjows
'Iotes. i.autions. warningsi when a potentially dangerous situation arises
, >~ajiv mcdal) ;

, g,.,fs ch manage the drawing plane in terms of commcn
tranieters, objects. and ur'.ctiors (e.g., two dimensional coordinate system and

cc-.'.noins for defining points. objects. rectangles. regions. bit images., bit
naps, patterns, cursors, graphics pens, icons. transfer modes, drawing
en',ircnments idefining how arid where graphics operations wxil take piacei.

rcxr yf:c:/irns to perform basic text entn" and editing, and handle different text
,harac:ers::cs (e... text font. face. mode. size, leading, etc.)

Peate, I e pp. --)

i2 Data Mode! Manager. The data model manager would provide for

:n.:pu,:,t.o of the chosen environment process data models. The technolog> exists
) nrc'. de sorhilicated fliters !or converting to and from models supporting .arious

1: Dee, both ::;ternal and evternal to this environment.

.;. ..r-.\[a'1Lger. In the interest of efficiency and responsi'enes. the

:rormen: ser.,ice resources -should be resident in memory, as are the operat.:

,' -,' rces and the user nterfLce too. resource. Ltiiitv service resources ,ar.c.

,. .er 'r.J toi resources in general wouLd most 1,kev' be in seconar.

,, st c,, to su- rsoures shouid bring them into mrn cr, unlil t ,e% are

Jr ,ert a b. the user or. the end of the user session. It shoulJ b a charac-cri'tc

-r:ent data rnodel that oh'ects created in the environment arL ,,ed '

a environment resources used in their creation. The ut;i~t\ :-a:uager

,.' a resource recorder checker ,unctuon le.,.. of :hv d,,,bac

:. .o . :i needed resoure -and brig theni into n c., " en .i:1 , ,c: ;'

S'he-. a reuu~red resoure ca:in:: -e found the uer sheu d be , .

;e cdin e:tNer , i ,r , g resource, or pricced ,n ,on:a 'trCr

* 7,',7 0 rCs%

* :,t-. • : ,s. • ,: : u i.'cr, :t. :!.t c dLc ,ned to allowk data ;tcrhan2' .t::
o .'. ., : a . , , c: . : 2 : ca r.ct' \ :k

%. %

* bndmg transfo)rmers. to allow glueing together parameterized ob~ects with
%.Iiffer. .nt native contexts (e.g.. moving a language dependent code pack ge fromn
a network libran- into the abstract. language independent representation of the
en'. ronment data model):

* anv of a number of' other possible utilities which have broad appilcabilt%
m=ng too' resources and provide a cohesive functional aggregate of s~stemn

ie-el resourccs ~eg.a parser or parsers. for the programmiung lang ages and
:1t0 moel supported by thc environment, which could be used by a conip:Icr.

debugger. pretty printer. etc.. or an unpurser to reverse the process).

b. CASE Tool Resource Layer

This laver consist of tools which are integrated by their use of the

un-derl% ins resource layers with adherence to user interf ,ace guidelies. the environment

udata nodelisi. and the mnanual and human resources of the environment. It is be',.ond

the scope of this work to completc any particular portion of the abstract function

typing for an environment. At this point our purpose is just to indicate the direction

of such an effort.

I)En-viroptpe'nt User Intei !ace. One mnitzht appropriately view the entire

CASE environment resource ii'erarchy as a super operating system. with this resource

prov:-.2 functicrialit" simn:Xr to the cormmand s*hell or command :ine interpreter or a

rrnzre ;con~ent ional operating systemn. fIowe~er. this resource is the User' InrtC7!;C

C-U:CI~nes incarnate, and it expioits interactive graphic user interf.ace prirnc:p~cs to

iec iser frien !iness and enhalnce produ".ct.%it-,. It is the example for :to ool

d.e;o'11ers -h.01i uJLSe the mnvironmen~t ser'.ice resources and uscr interfac.e eu-, elrnes

Lt aC iic Q e tie conimon user interface aspect for integration of their too! :7.o the

2 Pr'ec .~ an e~unr urpr:.This category of- resources for the IPP

;:~\nment rriacht include resources to help an individual manage his time. udzc..o

,ther reouce. ects gerierated here *e~.schedules reports) shou!ld be .'e,:gned to

:o::iea,-regatior by the project mnanuciement support reSOUrces of' a PrC-eL'

\!,r~crsen%. irrment which is created -'n ixenuc 'J dinC res;OUrces tc a

PP Li. . ronment.- 1PP toois, is c~c riiiL~i- :r-lude:

.j u:J cote el ,-,, e i' c :ea % prrci
'Ct'~' oar ''Ia:. t

(3) Syvstem Generation and Management. This should be a t - rmliar

category of tools commonly found in prcgramunii support environments. These tools

must assis: the prourarner in a verifiable transformation of the model of a software

%-,stern. created in the Designers environment, into an executable model which must be

alid.teJ against the model created in the Analvsts environment. Some of these

resources should ,,ave broad enoulzh applicability to be useful in the Managers.
Inc vst DsigersandMaitiers environment. For example, the folloie r

necessary to effectiveiy manaze all of the various models (i.e.. analysis. design.

iniplementation. etc.) within a software project:
* documnLntati.on generator.

* ve'rsiotitnainraaer.

*arcnwver.

* blackup.

Other tocis, in the systemn generation and management category. Would i.-C!UdC
programxnng language specific resources directly supporting transformaton of the

desqn, mnodel into the executable model. One consideration is exploitation of --he

aviable inter-ctive graphics of the user interface tSinger. 198Thadterwra

no-l dels of ob'ec-,s e. construction of objects by selecting1 tentpi ales and seiiing

c',t'sorf"IMng Out cnoices in dialogs, manipulation of'objects through their Jispax d
jarms.~~~~~~ rlii siutnos ies.amtion, etc.) with tools like sxnta\

kn'vcdaheedi~crs. ar~d :iiterpreting or incremental comp]Iiing Cebuc-Lcr-. to

:mpr-c' e -p-oduc:. *,%. In other words, use of visual programrrung techniques. Another

Ln:S:Jdrat.on. IS e\ploration of automiated transformation technology to take -dvantage

C," :raSpeL:ficat;on technologyy and calculable verification techniques in order to

eIc: jirecti'. (with some degree of autormatiorn with the system m odel generated in. the

Des*;-ers c-n-0rcn.ment. For the IPP subset we would begin with the More trad Iitional
pr:rnrmng suprt eriomtrsucsadexploit thc user interface for

p au~. t; ains. Tools wouid inclide:.

* c 'rater, i.arerpreter(s). I

* .. ':~~'r.mrrianl.

VWo prefer the use of an Incrcmnental compiler for debugg-:ng since *t makes
er::i..~~~~~~~~~~~~~ ""a ae hn fa.me~e~ri sddring development of %ounrce v.'&l

ea'e cornru a ,ia ncncri s 1 '

0 de' huggers.

a anal,,-ers metrics.

(4) S,,stern Iniegraiion and Testing. The !PP user must deal w:

inteerationl Of various system mnodules for which he is responsible. In addition to

debuggin2 and verification. he isalso concerned with validation of cohesive f--inctional

uxu;-s. Resources to assist him in test set generation, regression testing, etc. arc

requir.-d and also form a logical base for extension to overall systemn irtezra::,oi and

testing.

C. WHAT ABOUT THE REAL WORLD
The floregoing discussion presented an extremely high level view c," CASE

resource functional abstraction issues in a very lim.ited scope. Hopefully, the benefit of

such a discussion (in the context of the current chaotic proliferation of disjoint
environmients and environment resource options) will be the stimulation of xell

directed top down efforts to bring order to the devlopment of CASE environmen~ts

throuzgh such techniques. We will conclude with a brief discussion of' :h, c

ob-tacles to the success of such efforts. directions for continuing this A ork. and

rcconmmnda-tions for NISB.

49

uk dkI

VI. CONCLUSIONS

A. INVITATION FOR REVOLU~TION

Wclcomne to the CASE revolution." proclaimed the ebullient keynote speaker at
a reccrnt ;yniposium covering comiputer-aided software cngzineering (CASE).
WVhie well meant, those words may not have been well chosen for a technicaul
aud:ence ever wac~lof miarketing hype and still reeling from the past

r'o~ut ons* of' fourth generation languages. relational data bases. structured
pro _,.anirning and real-timne systems. -the thought of going through yet another
re'.olution is less than appeuihng to most. appealing about CASE. .. is thlit its
too!s. . -do not -ea~lv renresent revolution but rather evolution of too!, and
concert' ... alread. enmbraced in the systemns development 1lifecycie. (Huling. 19S7.

11bsxcr's 1960. p."3 7) defines revolution as "...radical and complete change....

WNe xouid agree that the CASE concept is evolutionary, not revolutionan. In this

thesis xeove acknoxlcdged the so.thLare probiem. and studied the evolution of softwxare

eng.1neeringy towaru's soiving t. We have little doubt that CASE environraen,,s 37c a

n:r.and needed staee in this evolution. Probably the most compelling eviden~e cf'

tn s Is th.a h--e demnand ',or. and rcsu'tant proliferation of, disjoint CASE tcols _,nu

Irazrent~'environments.

We've coalesced. frcni a variety of sources, spanning severai Xcars. a conzcn- LS

of f"undamental principles for good environments. We've reported on. the generza: -tatc

o: technolosv which faiis to adhere to these principles, and the technology and n-.Jrket

.:actors w.-hich have encouraged such unprincipled bottom up developments.

We've reported on promnising research, at the Naval Postgraduate Schcol.

inv~i~gformal specificatior. of functional (physca an polmsving) rcscurces

* ~asrcctluctin ~:in).We've proposed a top down strategy for developrg

nte-aced CASE environments in an open, exv~ensible. ev.olutionar. manner 'rc

cou>2.1 achieve standardization through functional interfaces allowinz integraition ct

ccfl_-mon user interface and interoreraiiiy without c.-nflict over advances In hard'. are

and soil~tr:..re technology, and supporting2 inultipie processes. medels. progrrnn,.ng

anguages, etc".. thlrough it extensibi':.,:

We've discussed the major obs-ac',cs to such a strategv. The task is d~flcu'.:

hcc.-usQ the Inwerat.es includ-e words likc agree and the descriptors are '1:'\- ie

standard. And. agreement on standards implies a required shift in marketing strategies.

especially for those hardware and software houses whose synmbiotic relat:onship is the

basis for their competitive edge in controlling their market share. Our strareay

provides for competition in hardware and software technologies directed not only

towards Imaplementirng standard functional resources, but also towards dzfiniing aind
.Lnp'cnient~nz flew f-unctional resource abstractions which will be integrated with earier

resources. While this would stzill allow for substantial competitive arenas, the,. wkould

be di~rerent than the currcrnt arenas. This would be a -radical and complete change".

So., i a be arcued that our strategy is an invitation for revolution.

Revolutions tend to begin %kith a small group of protagonists who mus- gather a

fbllowiin2 convinced that their cause is just and that revoiUtion is necessary. One g~oal

of :hIs particular revolution is relief from the current entvironment chaos and the dawn

of a new.% age of open. extensible, integrated environments built from portable, reusable

functional resources. Another goal is focusingz competitive innovation on advancin12

the state of technology without getting bogged down just trying: to cope with the chaos

spawned a!onu the way. i9

We~ believe the only practical means of' winning such a revolution is to miake it

seem. like evolution. In our discussicn of standards enforcement vs. encouraeem-ent. we

fvcdencouragement of standards through good design, availuhijiizy, and social

,'realization. that the standard is a standard of necessity',. Social change concernIng this

iqsue is alre-ad- afoot with more and more work focusing on abstraction, rI-gor1ous

oma 1'sm, user interface design and object oriented software engyineering. T.sisa

rel~iiLivcly slow process, but it may be accelerated with. a catalyst in the formn o!'

a'. Kbitv ofiveZI designed resources. Future work shouid be directed towards rhat enai.

B. FUTURE WVORK

FP.:-c~onal analysis is probably the hardest part of the task. We've d~scussed a

conm.binution top down bottomi up proccess. of balancing high level requirle'Merts

2g tphysical resource constraints, in ordcr to arrive at an abstract 'i_ ,o

-tierar~hy to meet the requirements. TAhle really dl.9lcult thn IS to dO hswzLt

lot tliz perceived (~but not actuall) constraints, derived firom the way thirge; are don,

toay 'ininlerricrtations), jaundice the functional abstractions. To arrive at use: W

SFor exarple. the chaotic prc!:fzration of programmning languages. Iny the e~i
19-o~s -zo saturazed developmient rc~curcces and hampered dle~ciopntent o!I:'c,
ze .hnology tnat u'e\elopmoznt of anvth~ng more thani rudiimentary programwung S1.F,",p :t

oc.)c :-npir AsNb.Ne-1S. linker-S and icaders) was c'anv.erablv deciaved.

5 k)

~~ ~ -e 4' ~

abstra ctions. work should progress in the context of a real world environment (keepmng

1,:, ml i ndte ultimate goal of portable resources). Detailed process and requirem~ent,

anal':sis. and understanding. are prerequisites to the high level balancing act reqiuired in

lunctional analvsis. Workine in the real world (e.12., the foundations, say an IPP

sulwset. of a CASE environment for an organization like NMSB' demands practi,.ai

results %s. esotcrnc discourse. Practical results are the essence of catalysts for scl

change.

Once a minimal l'unct~onal resource hierarchy is available. abstract resources

must be formal!,y specified. Then, parallel efforts can be applied to implementation.

Cowmpleted impiementation of -,he resources will constitute a prototype version of' a

CASE IPP environment. Several prototypes should be constructed from the samie

Formal specifications, and testing should be designed to evaluate achievement of the

principles for a good CASE environment. By repeating the process from functional

ana!, sis through prototy pe. functional evolution should add CASE resources 1f3r direct

support of increasing portions of the software engineering iifecycle.

C. RECOMMENDATIONS FOR NISB
Depending on the resources available for such an undertaking. the tnaA',! process

described above could take several vears inot to mention the time required to the

miarke: -evolution and see comnerciat available resources for constructln2

inte.,rttd CASE environments). We've also said that MSB jacks the reour, e- to

uindertake Such a project. Other, more practical solutions are of' Immediate COnLCr.n to

msB. :1

1. Near Term
Given insufficient resources to make their own CASE environment. and the

innerent disadvantages of the available buv options, we decided to con~sider aesr

of'i~brd of the available alternatives, as a potential means of means of'*y~rn

CASE resources while achieving at least some of the advantages emhodiecd :ni the

:-'Encouragement of such de~eloprnent usine resources which represerL Dol)
si-r. % costs (e.g.. Naval Posrzraduate School (NPS) Master's Candidatas, -reJ

essntxiv reeto NISB has thc potential to contribute to the revolutionar, :I "n:Ic
~o~run, but is not likely to oliler practicai CASE environment sclluticns ni !ic -,,,ar

term. Boitot., up NPS work on 'specifI'c tool resources (not incorporated to uwcr
a ton down CASE en-vironment developmient plan) like Ada~leasure can)Yz :t:cJ

1 11re iirniediate. practical beeisto NMSB (while also contributing to :;~ \te*
d': environment).

8, if JI * I.? * IP e

genera', principles for a good environment. We've devoted considerable Thought to

hybrid make buy schemes, an"' quitc frankly there aren't many good choices.

a. Physical Resources

(1I lardw -are. We believe that committment to unique architecurcs and

a propriezarily constrained source of software is a mistake both now and "or the :uture.

FIc\ii-%: now. zand portalbility and reusability in the future. are best sen. ed by a

rowerf": gencrul purpose hardware suite. NISB has already def'ined reasonable

ir ninium physical hardware constraints ,%Iissilt- Solftware Branch, 19S6. p. S . At the

tlnie tes constraints seemed to dictate the use of relatively high priced (S25;K - S75K)

32 yss bi pFfsPnal workstations. Recent market releases of networkable 32-bit pcrson:al

,ootwruer workstations, rival the more expensive machines in capability and arc driin

pr:ces into a far more affordable range (SSK - S25Ky Such an affordable general

r'i.-no'e hardware base seems to be a reasonable first step to productiv ity

:m:'roVernent. with the capab'!it% to host CASE resources available today and into the

:Uure.

2 Operating Sy-stem Resources. We've already discussed the problems

inherent to siadarai:ing on top of an existing operating system. A traditional

onera~inz si -tcmi cholice is likelv to be made based on such consideratios s

*What do we have the most experience xith what do we use now? (!n the1 cla'-
:n-IB h answver wouid I kely be UN'IX)-.

* 1 ou curen ope.rating systemi adequate?

* What addi-ional capabilities (i.e.. graphIcs. database) are required?

* \hich ope-ating system promiuses to support toe broadest selection of air-the-
SL' toc!s i.e.. a1 defacto standard)"

:\nd socon. We have little to oftfer here other than this common sense sort of' approa,_h

-j to ensure the operatin2 sNystem Will be adequate and supported until sonne:inga

'enfkoiv etter comnes along. Obviously if' LNX were kept as a defaIcto s-L:nridr

;pr:n ystemi. a graphics capabillt'y wouLI" be required (probabl% best to s-tk -.h

ISo G KS szandard). Sincc mtan% of' ,le siisjo~nt ell zhe-shnell C.\SF rl: CiirLe i'

* ... ~~. ~~d !:Y2plo, *the:r xxn ditabhasc ni..naceen. It L1oice on a aaaonaoce:

* ' t..to ziuvnen,: the L'\IX !'lce syitern. ntjieht either be a noni-requirer.,en: ro

0 '.~termO~ti:1. t.:~'. t J~sscuss. is to conce:ntrate ..

ros .~ \ ; ioi ~ on -'et:..o' !--!" (:.\Sl- develormen*t C:! -

6d-1

b. Problem Solving Resources

So far this near term discussion has sounded like straight short term off the-

shelf bu'. Environment service resources are the level at which we can see practical

potential for compromise between the short term off-the-shelf buy and some portions

of the make option. But, look ahead for a moment at the disjoint tools to be bought.

Th-e tools of the most interest are likely to be the new CASE tools. offering relativeiy

complete, language independent, support to the early software engineering phases of

structured analysis, structured design. and in some cases even generation of source

code. iYou supply the compile, debug and test functions.) These tools in general have

unique internal interfaces for interoperability. They generally have prirmtive.

unprincipled, inconsistent, and highly modal user interfaces which are also unique.

These tools generally do not consistently adhere to event driven control vs. hierarchical

mioa,tv. They generally support a limited set of structured methodologies. The point

we're gettirg at is that there is little common ground on which to base environment

service resources. The internal interfaces of these various tools are generally so deepiy

involved in 'heir design that it is doubtful any monetary incentive (especially something

MSB could offer) would entice a developer to re-engineer his tool to interact only

throuhzi \ISB standard data models of objects. That leaves the user interface.

Would it be possible for MSB to develop standard user interface guidehincs

based on availabi'ity of some suitable serice package (say GE*I. assuming it is

supported by the operating system of choice) and then successfully get CASE tool

de~elopers kfor the tools MSB really wants) to host their tool on the service -acka,.c

with a user interface conforming to the MSB guidelines? Although probably less

difficult than the common data model problem. the answer is still probably no. The

task would not be trivial. 22 and with a market of at most IS users, a prohibitive

?ricctae should be expected.

One other possibility, which falls somewhere between the long term a-nd

si.ort term off-the-shehf buy option, would be to identify a general purpose computing

, :c:. meeting the minimum hardware constraints, for which an cperating ," scim

,:prcr'ng a widely accepted (defacto standard) well principlcd. exent driven, ucr
enc, interac-ive graphic user interface. already exists. While the original Apple

\1 :rn:ci bh fi shcrt of the rrunirum hardware constraints, the 6W020 based %lacinto'h

-- For example, few existing tools are implemented using event driven program
o:nt:,O. 1,a,, , retructuring \toud be required to achieve user interface ,_udcl.cs

,cn evcent Jriver reepons;' ness and permissilleness.

--

11. scheduled for release this summer, will come much closer. The Macintosh user

Lnefc uidelines and service resources are well principled and accepted. Origin.ally

targeted at a market of unsophisticated computer users, the Macintosh still suflers

f~romi type casting as a Fancy toy. However, it is in fact a powerful system in its own

-ril:-. Over a ni-flion users later, it presents a lucrative horizontal market to the

wlfrware developers. OfT-the-shelf software is plentiful and the user interface has

survived to become a def'acto standard for Macintosh application developers, while also

influencing the competition. Amiong the off-the- shelf' Macintosh software ire.

sop-histicated sy-ntax kno-xedzeable editor visual prograrnnung incremental compie

and debug packages. at bargain basement prices (thanks to the horizontal maarket).

The Nfw acintosh open architectures promiuse access to UNIX and MIS-DOS. The

rnoint here is that, at least to the user interface chaos, there are alternatives. But, it

take a cmnutmenton he part of' the customer, to not accept 'eviation from

established user interf ace guidelines. And, guideline adherence can be a reality if you

give developers the tools required to make adherence easier than reinventing the wheel.

There is, of course, always a bottom line. In this particular discussion It goes !lke this.

Are the best ,functionallv, i.e., disregard the kluge user interface) off-the-h-eif CA\SE

tools available for Macintosh? What about Ada support? The answers are gener~t-.v

?wv)t. Can M/SB alone get a developer to port his product to Macintosh (adhCr:r.(c !.

th:! use-ritertace)? Probably not. but the incentive ought to be greater due to) a

rctentially larc-.r miarkct.

Sakdly, the bottom line of the whole near term issue Would seema *o b.if' its
a t.ter of survival, join the competition and buy, up the disjoint tools of your 'c'~

2. The Future
We ar, firmly convinced that the future of CASE environmecnt devclcnment

lies along2 the path wcove proposed For functional abstractioq and formnal pcfao

Oi pr':-c nd problem solving resources. Key to this effort are standa-r_;za:i3on on1

us~er interf'aces, and interoperability based on manipulation of global hc.

Cca~tecvchecking, validation. verification, and testing mlUst also be fsunjeJ on..

_~s the-rse'ves and their interrelationshis fot k ASwti hDD'cv

t,,av a start on this path in an eXtremelyI limi11ted arld language speciftc xay. anJ -;!,

.cou ormialism. But, they are a strand enj;oy direct support from a much c'. r

Ive::h not only the DoD bureaucracy, but (due to clout within the inJ,,itr; a

wh!ole, If' %ISII wants better choices in trne future, we recommend they ~c'

63

..L

lobbyv the DoD infrastructure to expand work like CAIS in the direction we %e
proposed.

LIST OF REFERENCES

Bennnin. H.D.. "Production of Large Computer Programs." Annals &U l ,si'r.
t C'inozl.iig. v. 5. October 1,483.

Boehm, B. and others. The TR 0' Snft.%;aie P duc.niv:y .S , emn T RW. Septenl'i,7 I'-

Bcehm. B.. S-,kr. a re Eng:nec'rwg Econornvcs. Prentice Hall, V4MS .

Booch. G., Softw,-are Ergoieerig iwah Ada, 2mnd ed., Ben~jamnin Currnmr z P.'r:;:

D--!-. 0.. Diilkstr-a. E W. and Hoare. C.A.R ., Siruciured Programm'hg Aau,.Pr~

Da\ ic. D.L.. A4 .Al,:'hod ror Svt'c. uzgo Conipu~cr Resources in anil~p

bzar~hItI .:~z(,e. Naval Pastc-radua~e SLhO~i. T~h Report \PVS \. '
\1 o:;z:ca C: Ornlii. N cven;"er 1 ;"4.

1 ,.%s. D.L.. , tzfLn and Inlra~ iardvi~kre and Sottv.jre):>v

:rx.',)~r A c'&eResexirch & De'. elo:c:e:; -A('ARD, ccrle-TILCn r~c>; -

D:Xstx XV.."The liurnhle Prc-_:.rmrne:.lr- -'.' 1'irJL x,: irc.

f.~:> k'.K S.in \ieder. J L . . I a.. c;wt cm: laak" , W..

'.c'.> P ?oKZraJduate Schoc>. \onterey .. m,...\&.. '

I i~~is \~. alPcsra~..~: Snc..\Ioc.r-c. (1.1: r. tc.~ '

i~ ~~ I2 P. C r -a lo~ e.r'~ I''.t *~lec . '_e '. Lt f.. .

'\rs: Ar:ra:o. (-I I~~:c2........c.

XV . Cr..2 *>~v ~. I.>...........2

I L_<

Lehman. M.A., Stenning. V. and Turski. W.M., "Another Look at Software Design
NMethoJolc gy." ACM SIGSOFT Software Engineering Notes, v. 9, April 1984.

Le--an. M.M. and Belady, L.A.. Program E,'olution: Processes of Sojtware Change.
.-\C-C Press, 19S;.

\lacLenr.an. B.J.. Principles of Programming Languages: Design, Evaluation and
I ,a',., :c~i: . r. lot. Rinehart and Winston. 1983.

NiacLennan. B.J . Prvgrantning Tools and Environments: Implementation of a Prnotpe
2) '-I,.:,rg En'~i,,)nmcnt. Part 1, notes for course CS-4150 at the Naval Postgradum:e
S.;ioc;. NIonterey. California. Winter 19S-.

3.l,'Av; Standard Common APSE Interface Set (CAIS), draft of proposed s'andard.
L S Depar:ment of Defensc. 31 January 19S5.

\rIssilc Sof:',;are Branch. Weapons Development Division, Naval Weapons Center.
(.:na Like. California. .4 Point Paper on the Computer Aided Software Engi.tei;?g

SC E-, !,'?roach ;, S,.';vare Engineering, draft, 4 November 19S6.

N!xars. XV . "Ada: First Users - Pleased: Prospective Users - Still liesitant." Cmruter.
', >*) N.1arch I19,.

" .* SIN. and Redwne. S.-. Jr.. In,,''zation Interface Related Standards. Gt,,,tc:
,,R :,.,'nn ici Pratccs StE-I.VIO-0. Institute for Defense Anaivsis. [D. ?'qer

N: Air I)e.opmer.t Center. fr.e volume collection of preilrnr repor:, ior '.e
t',re I :,-o!C2 !Or Ajdaptable Rehiablie Sstems Sofnvare l:.,ce-:.:

2: :-SIA.\RS-SE) rolect. 15 Julx 19Y.

c. L. "Sc:tware Enironment Research: Directions for t.e Ne: f1 Year,,."
.... :.-4 . -) ril 1951F

Pc -'D B in; Datazech Pu!-ications, . Iasterng ;ie .Vaci:osh T.,,,x. (','cr:-e

-wI(, I-I , ' r ie) r . _, J,
_ (r !':, .zt:..c (irzp;,.r .': ,a (" ' . ' ,., p;,,i,':'i: i.cr I,'t,, K;,,' roa.. v... ..

1..s-, ... ,Al Po I.-dua:c S, :ccl . 1 1 erex , Ca 1 ,-

"" AnI L ssa c:: Sz:"Ajrc Rec:,e, ILLI.I li,., sia,., : , '. .:,,

Ai'. Lss rn :ri "-

S. Rc,.,.rc:.,ct, \U \ Pr:":.:::nne Supper, I :rcn.c:,

I ~~~~ %~ %%% ,% %%

Suyda:m, W.. "CASE Makes Strides Towards Automated Software Development.-
Computer Desigpi. 1 January 1987.

li'cbster's Seventh C,.,egiae Dictionarv, G & C Merriam Company, 1966.

Yurion. E.. .[anaging the Structured Techniques: Strategies for Sofw.vare Dee.pnment
In t" 19Y';s, 3rd ed.. Yourdon Inc.. 19S6.

Yurchl.k. J.... The Formal Specification of' an Abstract .1achine. Masters Thesis.
Nav ui Poszeraduazc School. Monterev, Cailfornia. December 1984.

.1

VP

'V

] " ,-. -,...,-,.;-.--- :,-: .,.-..-. -. -,,. ,-,-- ,'.,, -,.-..' .-. .-. , ,.. ..,...,.- ,.: , . . *,, .

!\ITI.\L DISTRIBL TION LIST

No (>o'nes

I ~ ~ a' I n: rri:: o r (cc

.- C

) (:t cc . Cce ;2D'

I .0 -i -~

.6

w~ ~~ Iw w Qp ~ w. -
.1 % 4 I

%s % .. o ,

